
Instructions

Incorporating digital exhibits into modern museums’ exhibitions has become a widespread practice

for many good reasons. Instead of passively absorbing information, visitors become part of the

exhibition, which provides them with a whole new experience. This work aims to create a digital

exhibit that captures the observer’s area with a camera and uses that as a source for the moving

texture on a 3D model in real-time. This digital exhibit shall be a generalized virtual mirror that serves

as the base for similar techniques such as virtual water surfaces, anamorphic imaging, etc.

1. Explore platforms appropriate for implementing a virtual mirror, especially on mini-computers

suitable for deployment in exposures.

2. Design the architecture for the virtual mirror for the selected platform.

3. Implement a prototype virtual mirror application and test it in actual museum operation.

4. This thesis shall contain a detailed description of the implementation and annotated source code.

Electronically approved by Ing. Radek Richtr, Ph.D. on 20 April 2022 in Prague.

Assignment of bachelor’s thesis

Title: Virtual mirror effect for museums

Student: Richard Boldiš

Supervisor: Ing. Jan Buriánek

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Computer Graphics

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

Virtual mirror effect for museums

Richard Boldiš

Department of Software Engineering
Supervisor: Ing. Jan Buriánek

May 11, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Richard Boldǐs. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Boldǐs, Richard. Virtual mirror effect for museums. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 11, 2022

Abstrakt

Digitálńı zař́ızeńı již nejsou neobvyklou součást́ı standardńıch expozic mo-
derńıch muzéı. Vedle rozvoje grafických aplikaćı si digitálńı zař́ızeńı źıskávaj́ı
stále větš́ı oblibu d́ıky bezproblémovému začleněńı do nejr̊uzněǰśıch scén a
prostřed́ı, nemluvě o jejich nekonečném potenciálu pro interaktivitu s návštěv-
ńıky. Širš́ımu využit́ı těchto zař́ızeńı však někdy bráńı jejich relativně vysoká
cena, a proto se často hledá jejich cenově výhodná náhrada. Jedńım z řešeńı je
nalezeńı vhodného hardwaru, který splňuje požadavky na výkonnost jednot-
livých projekt̊u. Většinou toho lze dosáhnout pouze pomoćı chytrého a na mı́ru
šitého softwarového baĺıčku, který v ideálńım př́ıpadě stoj́ı jen zlomek jeho al-
ternativ. V této práci bylo vytvořeno virtuálńı zrcadlové zař́ızeńı s levným
minipoč́ıtačem, připomı́naj́ıćım obraz odrazu vody. Tvoř́ı kulisu moderńı mu-
zejńı expozice t́ım, že sńımá své bezprostředńı okoĺı a na výstupu vytvář́ı
upravený živý obraz, č́ımž pro návštěvńıky vytvář́ı iluzi, jako by pozorovali
sv̊uj vlastńı odraz na vodńı hladině. Tato práce popisuje návrh softwarového
řešeńı a techniku živého zpracováńı zachycených obraz̊u, které umožňuj́ı vy-
branému minipoč́ıtači zamýšlené provedeńı.

Kĺıčová slova digitálńı exponáty, virtuálńı zrcadlo, vestavěné systémy,
Linux, NVIDIA Jetson Nano, EGL, OpenGL ES, sd́ılená pamět’, zpracováńı
živého vstupu z kamery

Abstract

Digital devices are no longer an unusual part of modern museums’ standard
exhibitions. Alongside the development of graphical applications, the seam-
less incorporation of digital devices into all kinds of stages and settings, not to
mention its endless potential for interactiveness with the visitors, has gained
them increasing popularity. However, the relatively high cost of such devices
sometimes hinders their wider usage; thus, a cost-effective substitute is often
sought after. One solution is to find appropriate hardware that fulfills per-
formance requirements for individual projects. Most of the time, it can only
be achieved with a clever and tailored software stack, ideally costing only a
fraction of its alternatives. This work created a virtual mirror device with a
low-cost mini-computer, resembling water reflection images. It forms the set-
ting of a modern museum exhibition by capturing its immediate surroundings
and outputting a modified live image, generating an illusion for the visitors
as if they are observing their own reflection on a water surface. This thesis
describes the software stack’s design and the live processing technique of cap-
tured images that enable the chosen mini-computer for intended performance.

Keywords digital exhibits, virtual mirror, embedded systems, Linux,
NVIDIA Jetson Nano, EGL, OpenGL ES, shared memory, live camera feed
processing

Contents

Introduction 1
Goals . 2

1 Analysis 3
1.1 Virtual mirror . 3
1.2 Requirements . 4

1.2.1 Performance . 4
1.2.2 Cooling . 4
1.2.3 Durability . 4
1.2.4 Recovery . 5
1.2.5 Dimensions . 5

1.3 Computer device . 5
1.3.1 System on Chip . 5
1.3.2 System on Module . 6
1.3.3 Candidates . 6

1.3.3.1 Raspberry Pi 4 B 7
1.3.3.2 NVIDIA Jetson Nano 7

1.3.4 Conclusion . 8
1.4 Camera . 9

1.4.1 Sony IMX219 . 10

2 Design 11
2.1 Digital exhibit . 11
2.2 Software . 12

2.2.1 Operating system . 12
2.2.1.1 Jetson Linux 13
2.2.1.2 Vendor-provided SD card image 14

2.2.2 Windowing System . 14
2.2.2.1 X Window System 14

xi

2.2.2.2 Embedded-System Graphics Library 14
2.2.3 Graphics API . 14

2.2.3.1 OpenGL ES 15
2.2.4 Libraries . 15

2.2.4.1 OpenGL Mathematics 15
2.2.4.2 OpenGL Image 15
2.2.4.3 Open Asset Import Library 16
2.2.4.4 POCO C++ Libraries 16

2.2.5 Platform-specific libraries 16
2.2.5.1 NVIDIA Tegra Multimedia API 16

2.2.6 Container formats . 17
2.2.6.1 DirectDraw Surface 17
2.2.6.2 Filmbox . 17

3 Proof of concept 19
3.1 OS optimization . 19

3.1.1 The approach . 19
3.1.1.1 Stripping . 19
3.1.1.2 Bootstrapping 20

3.1.2 Minimal system installation 20
3.1.3 NVIDIA packages . 21
3.1.4 Emulating the rootfs . 23
3.1.5 Cleaning up . 23
3.1.6 Packaging the rootfs . 24
3.1.7 Partition table . 24
3.1.8 Populating the partitions 26
3.1.9 Automation . 27
3.1.10 Results . 27

3.2 Development environment . 28
3.2.1 Physical exhibit simulation 28
3.2.2 Remote development . 30

3.3 Implementation . 30
3.3.1 Project structure . 30

3.3.1.1 Addons . 30
3.3.1.2 Application . 31
3.3.1.3 Graphics . 31
3.3.1.4 Math . 31
3.3.1.5 Utils . 31

3.3.2 Error handling . 31
3.3.2.1 Assertions . 32
3.3.2.2 Exceptions . 32
3.3.2.3 Logging . 32

3.3.3 Initialization . 33
3.3.3.1 Application . 33

xii

3.3.3.2 Window . 33
3.3.3.3 Graphics context 33
3.3.3.4 Physical camera 34
3.3.3.5 Scene . 35

3.3.4 Main loop . 35
3.3.4.1 Retrieving camera frames 36
3.3.4.2 Rendering . 38
3.3.4.3 Synchronization 38
3.3.4.4 Flushing . 38

3.3.5 Rendering system . 38
3.3.5.1 Mesh . 39
3.3.5.2 Shaders . 39
3.3.5.3 Renderers . 40

3.3.6 Scene . 40
3.3.6.1 Walls . 40
3.3.6.2 Water . 40
3.3.6.3 Camera frame 41

3.4 Deployment . 41
3.4.1 Overheating . 43
3.4.2 Glossy display surface 43
3.4.3 Calibration . 44

Conclusion 45
Future improvements . 46

Camera latency . 46
Wayland . 46

Bibliography 47

A Acronyms 51

B Contents of enclosed CD 53

C NVIDIA L4T packages 55

D SD card image build automation structure 57

E Rendering pipeline 59

F 3D model 61

G Development model view 63

H Museum exhibit dimensions 65

I Device dimensions 67

xiii

List of Figures

1.1 SoM with its carrier board . 6
1.2 Raspberry Pi 4 B . 7
1.3 Raspberry Pi 4 B specifications . 8
1.4 NVIDIA Jetson Nano Developer Kit 8
1.5 Jetson Nano development kit specifications 9
1.6 Sony IMX219 sensor capture modes 10

2.1 Natural mirrors . 12
2.2 Exhibit design . 13
2.3 Graphics APIs supported by Linux for Tegra 15
2.4 Shared memory . 17

3.1 Removing the desktop environment 20
3.2 Bootstrapping the foreign architecture rootfs 21
3.3 Directory structure after bootstrapping the rootfs 22
3.4 NVIDIA repositiory configuration 22
3.5 NVIDIA packages . 23
3.6 Emulation of binaries in a foreign rootfs 23
3.7 Cleaning up APT and logs . 24
3.8 Usage of flash.sh . 25
3.9 Jetson Nano SD card partitions . 25
3.10 Allocating the SD card image . 26
3.11 Adding partition to GPT table . 26
3.12 Populating the SD card partition 27
3.13 Comparison of SD card image size 28
3.14 Comparison of resources utilization 29
3.15 Exhibit development version . 29
3.16 Application layers . 31
3.17 Logging macro usage . 33
3.18 Graphics context requirements . 34

xv

3.19 Initializing scene objects . 35
3.20 Camera frame acquire thread . 37
3.21 Creating OpenGL ES texture from shared frame buffer 37
3.22 Walls of the well . 41
3.23 Distortion using DuDv map . 41
3.24 Museum exhibit . 42
3.25 Jetson Nano placement . 42
3.26 Application deployed into exhibit 43
3.27 Visible reflection on display plastic protection 44
3.28 Project structure . 44

3.29 A secondary camera capturing the camera-to-screen latency 46

xvi

Introduction

Incorporating digital exhibits into modern museums’ exhibitions has become
a widespread practice for many good reasons. Instead of passively absorbing
information, visitors become part of the exhibition, which provides them with
a whole new experience. Digital technologies appear in museums on all kinds
of topics, from prehistoric, anthropology, and natural museums to modern,
cutting-edge computer museums.

Digital exhibition using a virtual mirror is one of the many instances of
interactive applications that alter the observer’s area or blend it with a virtual
3D scene. The exhibition’s computer system must instantaneously pick up the
live camera input from its ever-changing surroundings and present graphical
output in a reasonable time frame. This level of responsiveness is demanding
for the supporting hardware. Thus a prior evaluation of its criteria is necessary.

Industrial computer systems with hardware-accelerated graphics can be
overkill for simple interactive applications that do not demand high-end fea-
tures, resulting in increased expenses for hardware and power consumption.
Some of the recent hobbyist mini-computers offer impressive graphics perfor-
mance and are capable of hardware-accelerated video processing, 3D graphics,
and even artificial intelligence. Most of them have various IO options which al-
low them to connect to other devices such as industrial cameras and sensors.
Such powerful and extendable characteristics give hobbyist mini-computers
unlimited potential for a wide range of applications.

In the current project, the author attempts to create a virtual mirror
that resembles the water surface of a well. The well is situated in a museum
exhibition that tries to reconstruct the central European village life in the
Middle Ages as a part of its setting. The virtual mirror, i.e., a rectangle
monitor that displays the water surface, is physically installed at the bottom
of a deep and narrow cavity that simulates a well. When visitors approach the
well’s opening, the camera installed at the bottom of the cavity captures the
visitors’ images and renders them on the monitor together with a 3D water
effect to create an illusion for the visitors as if they see their reflections on the

1

Introduction

water surface. The author considered a few options and ended up choosing
NVIDIA Jetson Nano because this mini-computer’s spectrum can meet the
required criteria for this project while being portable and cost-efficient at the
same time.

Goals

This work aims to

• create an efficient foundation for implementing digital exhibition appli-
cations that operate for many hours daily;

• implement a virtual mirror application that graphically modifies camera
input and presents it as a part of the exhibition;

• incorporate the finished product as a part of a museum exhibition.

2

Chapter 1
Analysis

1.1 Virtual mirror

Digital devices used in modern exhibition is manifold, and a virtual or artificial
mirror is one such device. As its name indicates, it resembles a mirror’s
function by displaying the appropriate image on a screen. In reality, how it
achieves this effect cannot be more different than an ordinary mirror.

A mirror is a wave reflector that reflects light waves, which we perceive
as an image. Light waves are reflected from the mirror surface at the same
angle yet opposite from which they strike the reflecting surface. Therefore,
when we look at a mirror, we see a mirrored image of ourselves and the objects
that stand in front of the mirror. Depending on the incident angle, we can
even perceive objects that are out of our field of view (FOV), such as objects
around a corner. Mirrors are one of the essential tools we use in our everyday
life.

A virtual mirror creates a mirror-like effect by displaying an image most
commonly captured by a digital camera. Unlike an ordinary mirror, it does
not have to provide an authentic reflection of the physical world, which opens
the door of great potential for its applications. Some versions of the virtual
mirror feature an augmented reality that mixes the real-world environment
with computer-generated objects. This combination is already successfully
deployed in the virtual fitting rooms application that helps customers decide
whether to purchase specific clothing or accessories and reduce the time spent
in the shop [1]. Virtual mirrors can also completely remove the real component
of the physical world and use an entirely virtual graphical avatar representing
the user observing the mirror. The movement of the virtual avatar is usually
decided with the help of motion capture hardware, such as Microsoft Kinect.
Such scenarios are used in virtual trainers for motor learning applications
that teach users to perform specific movements, such as dancing, fitness, or
rehabilitation [2].

3

1. Analysis

1.2 Requirements

The following subsections discuss the requirements for a device that should
operate in a potential museum exhibit simulating a virtual mirror.

1.2.1 Performance

The virtual mirror application must instantaneously pick up the live camera
input from its surroundings and present it modified as a graphical output in
a reasonable time frame. Therefore, the graphics accelerator and the captur-
ing device must be powerful enough to handle this processing with acceptable
latency and frame rate. Opinions in the area of perceived delay vary and de-
pend on the individual user. It is noteworthy to mention that the type of user
involvement also plays a significant role. According to a study, motor-visual
activities involving the user’s input are more likely undetectable if their delay
is limited to around 100ms [3]. Concerning that the virtual mirror applica-
tion does not require the user’s active input as a response, it is reasonable to
assume that the delay will elude the user’s attention even longer.

1.2.2 Cooling

Exhibit computers operate in environments that are vastly different from those
of personal computers. Many operate in environments that might demand a
more comprehensive temperature tolerance range. There might be situations
where the computer system must be built into the exhibit, and the airflow
could be critically reduced. The exhibit itself may be placed indoors or out-
doors, which means the computer inside would be required to function during
the cold months of winter or hot months of summer. The upper-temperature
limit introduces challenges in most cases, as most computer components are
not designed for extreme heat. Using active cooling might be an attractive
solution. However, this introduces another point of failure. In the event of a
cooling failure or dust build-up on the heat sink, the computer may shut down.
Additionally, the increased noise due to active cooling may be unacceptable in
some situations. [4] Therefore, it is generally preferred to use passive cooling.

1.2.3 Durability

The device must be able to operate daily during the opening hours of the
exhibition. In order to prevent interruption of exhibit service, the device must
be able to quickly recover on its own in the event of software failure, either
by restarting the whole system or the application controlling the exhibit. The
system boot-up speed should be in the range of seconds.

4

1.3. Computer device

1.2.4 Recovery

The digital exhibit can be switched off simply by unplugging from the power
supply without sustaining any data loss or hardware damage. Because the
museum staff powers down the exhibits at the end of a business day, not
via sending instructions in the console and then disconnecting the power but
simply by flipping the power switch. Hence the system must be prepared to
lose power at any time and be able to recover after the power is resupplied.
This feature also becomes convenient in case of an unintended power outage.

1.2.5 Dimensions

Computer systems are made in all shapes and sizes. Recent mini computers
can be as small as an external 3.5” hard drive or even a thumb drive. The small
size gives them apparent advantages, such as being more portable, producing
less heat, consuming less power, and being easier to be incorporated into
complex museum exhibits.

1.3 Computer device

There are many compact-sized computers designed for headless or kiosk op-
eration. However, not all of them are suitable for 3D graphics rendering.
Industrial computers designed for graphics applications usually contain a ded-
icated graphics card that introduces high costs and power consumption. Some
of the recent low-cost hobbyist mini-computers and compute modules are
equipped with components capable of impressive graphics performance while
being power efficient. The minimalist design of these power-efficient devices
is possible due to the increasingly evolving system-on-chip concept.

The development of such devices is excellent news for electronic enthusi-
asts. The relevant low cost makes the devices easily affordable and accessible,
and the powerful computing capacity allows great development and deploy-
ment possibilities. These simple single-board mini-computers have, no wonder,
captured the interest and attention of the enthusiasts. In return, the devices
gain further potential by receiving constant support and improvement from
the community. Against this background, mini-computers have become ever
more reliable and popular; they are now an essential part of many companies’
IoT deployments.

1.3.1 System on Chip

System on Chip (SoC) is an integrated circuit that encloses most or all com-
puter system components into a single chip. The circuit usually contains a
central processing unit (CPU), graphics processing unit (GPU), memory in-
terfaces, peripheral controllers, radio modems, and more. In contrast to the

5

1. Analysis

standard personal computer (PC) that has its component installed separately
on a motherboard, the SoC integrates all components into a single small in-
tegrated circuit. Although the integrated components cannot be replaced or
upgraded, experience shows that a more tightly integrated system design im-
proves performance and reduce power consumption and mean time between
failure [5]. Due to these advantages, SoCs are rising in popularity where only
microcontrollers were used previously.

1.3.2 System on Module

System on Module (SoM) or Computer on Module (CoM) is a printed circuit
board (PCB) that integrates essential computer system components. The
module usually includes SoC and additional components such as memory
modules. Unlike single-board computers, the SoM needs a carrier board that
supplies the module with power and attaches various peripherals. Figure 1.1
contains a picture of the NVIDIA Jetson Nano module (on the left) with its
development carrier board (on the right).

Figure 1.1: SoM with its carrier board

1.3.3 Candidates

Based on the requirements of section 1.2, we have selected the following can-
didates among the many single-board computers with graphics hardware ac-
celeration. The prices shown in the following comparisons are as of May 2022.

6

1.3. Computer device

1.3.3.1 Raspberry Pi 4 B

The leading and most famous mini-computers are certainly the Raspberry Pi
series single-board computers developed by Raspberry Pi Foundation. Ini-
tially invented to promote teaching introductory computer science in schools
and developing countries, the phenomenon quickly became widespread outside
its targeting market. Due to its low cost, modularity, and relatively good per-
formance, the Raspberry Pi became famous for electronic hobbyists’ projects
and computer science experiments. The most recent version 4 is equipped with
Broadcom BCM2711 SoC integrating quad-core ARM Cortex-A72 64-bit CPU
accompanied by a low-power mobile multimedia processor VideoCore VI. The
LPDDR4 main memory size comes in various options, so one can choose the
best suitable memory size for the individual project while being cost-efficient
at the same time. [6]

Photo by Michael H. (”Laserlicht“) [7], licensed CC BY-SA 4.0 [8]

Figure 1.2: Raspberry Pi 4 B

1.3.3.2 NVIDIA Jetson Nano

Jetson Nano from the NVIDIA Jetson product family [9] is an energy-efficient
SoM containing NVIDIA Tegra SoC integrates NVIDIA Maxwell GPU with
128 CUDA cores, quad-core ARM Cortex-A57 64-bit CPU. The module con-
tains 4 GB of LPDDR4 shared memory, suitable for most of the applications
of its scale. [10]. There is also a 2 GB memory version of this SoM with the
exact specifications that cost half the price of the 4GB version. Both modules
are available as a standalone SoM or development kit that includes a refer-
ence board with various IO, including HDMI and Ethernet. Figure 1.4 shows
an image of such a development kit. More detailed specifications are listed
in Figure 1.5 .Appendix I additionally shows the dimension of the connected
device enclosed in a protective case.

7

1. Analysis

GPU Broadcom VideoCore VI, 64 GFLOPS (FP16)
CPU Quad-core ARMv8-A Cortex-A72 64-bit @ 1.5 GHz

Memory 1/2/4/8 GB LPDDR4
Storage microSD

Networking
RJ45 10/100/1000 BASE-T Ethernet,
2.4 GHz and 5 GHz 802.11b/g/n/ac,
Bluetooth 5.0

Video encode H.264 1080p @ 30
Video decode H.265 4K @ 60, H.264 1080p @ 60

Display 2x HDMI 2.0, MIPI DSI
Camera MIPI CSI-2

Other peripherals
2x USB 3.0, 2x USB 2.0, 4x I2C, 4x SPI, GPIO,
UART

Dimensions 85.6 mm x 56.5 mm x 17.0 mm
Power USB-C 5V 3A / PoE

Operating temp. 0-50ºC
Price 80€ (2 GB) / 100€ (4 GB)

Figure 1.3: Raspberry Pi 4 B specifications

Photo by Spark Fun Electronics [11][12], licensed CC BY 2.0 [13]

Figure 1.4: NVIDIA Jetson Nano Developer Kit

1.3.4 Conclusion

The dimensions of both devices certainly meet the requirements of compact-
ness. At the size of a credit card, they are great candidates for integration into
practically any museum exhibit. Although Raspberry Pi 4 B encloses a newer
ARM processor of type Cortex-A72 that theoretically offers 90% greater per-
formance than Cortex-A57 [14], NVIDIA Jetson Nano outweighs some other

8

1.4. Camera

GPU 128 NVIDIA Maxwell cores, 472 GFLOPS (FP16)
CPU Quad-core ARMv8-A Cortex-A57 64-bit @ 1.43 GHz

Memory 2/4 GB LPDDR4
Storage eMMC 5.1, microSD

Networking RJ45 10/100/1000 BASE-T Ethernet
Video encode
(H.264/H.265) 4K @ 30, 4x 1080p @ 30, 8x 720p @ 30

Video decode
(H.264/H.265) 4K @ 60, 2x 4K @ 30, 8x 1080p @ 30, 16x 720p @ 30

Display DisplayPort 1.2, HDMI 2.0
Camera 2x MIPI CSI-2

Other peripherals
PCIe 2.0 x4, USB 3.0, 3x USB 2.0, 3x I2C, 2x SPI,
I2S, GPIO, UART, PWM fan header

Dimensions 100.0 mm x 79.0 mm x 28.3 mm
Power Micro-USB 5V 2.5A / DC barrel jack 5V 4A

Operating temp. 0-60ºC
Price 74€ (2 GB) / 132€ (4 GB)

Figure 1.5: Jetson Nano development kit specifications

properties that are more important in this context. It is worth mentioning
that some speed tests do not come out significantly better compared to the
older processor [15]. The Raspberry Pi might be a better value for money
for regular day-to-day activities, such as browsing the internet and playing
multimedia content. The network connection possibilities are also much more
extensive out of the box. However, the graphical capabilities of the Jetson
Nano are much better suitable for 3D graphics applications. The specification
sheet shows that the 128 NVIDIA Maxwell cores are theoretically more than
seven times more powerful than Broadcom VideoCore VI. The Maxwell archi-
tecture and NVIDIA CUDA technology expand the opportunities to areas of
artificial intelligence, especially computer vision.

1.4 Camera

Jetson Nano has multiple interfaces for connecting a camera, such as USB,
Ethernet, and MIPI CSI-2. The industry standard MIPI CSI-2 is the world’s
most widely implemented embedded camera and imaging high-speed inter-
face [16] that provides transmission between cameras and host devices. The
development carrier board has two J13 connectors for connecting up to two
cameras. With a more comprehensive carrier board from third-party ven-

9

1. Analysis

dors, the SoM can link up to four connected cameras at once. Jetson Nano
supports a diverse ecosystem of cameras, from low-cost hobbyist cameras to
industrial high-performance cameras designed for AI. Most of the low-cost
cameras available for Raspberry Pi are also supported on Jetson Nano. Jet-
son partner supported cameras page [17] lists all officially supported cameras.

1.4.1 Sony IMX219

The camera for the virtual mirror does not need high FPS or depth sensing.
Therefore we chose a low-cost and low power consumption camera with a
Sony IMX219 CMOS sensor capable of resolution up to 3264 x 2464 (8.04M
pixels) at 21 frames per second (FPS). There are a few other modes that allow
framerate up to 60 FPS at lower resolution. Figure 1.6 shows sensor capture
modes revealed by the v4l2-ctl tool.

Resolution # pixels FPS

3264 x 2464 8.04M 21
3264 x 1848 6.03M 28
1920 x 1080 2.07M 30
1280 x 720 0.92M 60

Figure 1.6: Sony IMX219 sensor capture modes

10

Chapter 2
Design

The following chapter describes the theoretical design and technique of the
virtual mirror application. Furthermore, it describes some of the available
technologies exclusive to the Jetson Nano and their potential to render the
camera frame more efficient.

2.1 Digital exhibit

We set our course to create a water surface in an attempt to construct a
virtual mirror. The water surface is all around us and acts as a native mirror.
Whether muddy or not, there is always some level of reflection that reflects the
surroundings of the water. Water surfaces can have different shapes depending
on if water is still or in motion. In the natural environment, season, time,
weather, the constitution of the water, and many other factors all contribute
to the unique conditions of the water as well as its surface, thus making its
simulation both challenging and exciting.

This work aims not to create a realistic-looking water surface with all the
water’s physical properties. Instead, it should demonstrate a real-time ren-
dering of a moving texture with a camera frame image projected onto it. A
water-like illusion can be further achieved by adding an efficient shader tech-
nique that makes the moving texture resembles the water surface’s intrinsic
properties.

Apart from a piece of shielded glass which is most commonly seen in ev-
eryday life, the concept of a mirror has more comprehensive applications. For
example, a wet or water surface creating specular reflection is a mirror, as
seen in Figure 2.1.

In order to simulate reflection similar to the water surface, the camera
must be pointed in the direction of reflection from the potential visitor’s view.
Aligning the camera can be difficult on a stage accessible to visitors from
different angles. The exhibit cannot track the observers looking angle and then
adjust its capturing angle. If more than one visitor stood next to the exhibit,

11

2. Design

Photo on left by Max.kit [18], licensed under CC BY-SA 4.0 [8]

Photo on right by Daniel Lowth [19], licensed under Pixabay License [20]

Figure 2.1: Natural mirrors

everyone’s view angle would be different, creating a situation impossible to
simulate with one camera and one display device. For this reason, we decided
to significantly limit the visitor’s angle of view to a near-vertical view by
simulating the water level inside the well. By positioning the water surface
deep enough, the angle between the water surface and the observer’s view angle
is small enough to become neglectable. When the observer looks down the 2
meters deep well to the water surface while being distanced from its center by
35 centimeters, the angle between the water surface and the observer’s view
angle is less than 10 degrees. Figure 2.2 shows a sketch of the potential digital
exhibit, in which I represents the view vector, N the water surface normal
vector, and R the reflection vector.

2.2 Software

The following subsections walk through the software stack required to run
graphical applications and introduce technologies used for implementing the
exhibit application.

2.2.1 Operating system

An operating system (OS) for traditional embedded computer systems is typ-
ically a specialized software system designed for a specific purpose to increase
reliability for achieving a specific task. [21] Depending on the task require-
ments, these systems must meet specific time constraints, and therefore this
type of OS is frequently considered a real-time OS (RTOS).

Modern embedded systems and single-board computers are equipped with
multi-core microprocessors can run the usual time-sharing OSes compatible
with the processor architecture, making it possible to adapt existing modular

12

2.2. Software

Figure 2.2: Exhibit design

OSes to perform a more comprehensive set of tasks. These include but are not
limited to smart TVs and phones, tablets, entertainment systems, navigation
systems, and networking equipment.

Many vendors base their systems on the popular open-source Linux kernel,
mainly because of its versatility, portability, and vast availability of device
drivers. Another excellent example of such an OS would be Android, a mobile
OS based on a modified version of the Linux kernel, whose development is
sponsored by Google. [22]

2.2.1.1 Jetson Linux

Jetson Linux or NVIDIA Jetson Linux Driver Package (L4T) is a software
package for Jetson series devices. The package contains Linux Kernel 4.9,
bootloader, NVIDIA device drivers, and utilities for customizing and flashing
the filesystem image. Next to the L4T software package, NVIDIA provides
an SD card image, drivers source code, documentation, and other related
tools that might help during the development process on Jetson Nano. [23]
It is important to check for the latest Jetson Linux release on the archive
[24] page. The default download page does not offer downloads for the Nano
boards anymore.

13

2. Design

2.2.1.2 Vendor-provided SD card image

The NVIDIA supplied SD card image’s rootfs is based on the popular Ubuntu
Linux distribution. It includes a full-sized Ubuntu Desktop environment, ap-
plication demos, device drivers, and documentation. We discuss the minimiza-
tion of the OS better suited for production use in the section section 3.1.

2.2.2 Windowing System

A windowing system is essential for managing different parts of the graphi-
cal display, enabling applications to create windows and draw user interface
components such as buttons, menus, and icons.

2.2.2.1 X Window System

The X Window System or X11 is an architecture-independent client/server
windowing system for displays used on Unix-like operating systems. [25] X11
provides an abstract interface for applications to draw windows and handle
input devices interactions. The clients are applications, while the server dis-
plays the windows and handles input devices such as keyboards, mice, and
touchscreens

2.2.2.2 Embedded-System Graphics Library

Embedded-System Graphics Library (EGL) is an interface between graphics
APIs and the underlying platform window system such as X11. It speci-
fies mechanisms for managing graphics API context, creating the surface the
graphics API renders to, and synchronizing graphics API operations. EGL
spares a programmer from touching the platform-specific API, such as GLX
on X11-based platforms.

2.2.3 Graphics API

Graphics API allows the programmer to access the graphics hardware capabil-
ities without writing hardware-specific code. These capabilities can efficiently
calculate and draw graphics in a frame buffer intended for output to a dis-
play device or perform general-purpose parallel computing for the scientific
domain.

GPU vendors implement the API specifications in the OS drivers. There-
fore, we have to look for a graphics API supported by GPU vendors and their
compatible OS. Linux for Tegra features several well-known modern graphics
APIs. Figure 2.3 lists graphics APIs available in Linux for Tegra.

14

2.2. Software

Specification Version Release year

Vulkan 1.0.2 2016
OpenGL 4.5 2014
OpenGL ES 3.2 2015

Figure 2.3: Graphics APIs supported by Linux for Tegra

2.2.3.1 OpenGL ES

OpenGL ES or GLES (Open Graphics Library for Embedded Systems) is a
royalty-free, cross-platform graphics hardware API specification for rendering
2D and 3D graphics on embedded and mobile systems - including gaming
consoles, phones, and multimedia devices. The API is a subset of OpenGL, a
more complex API in terms of the number of functions, making it easier for
vendors to implement it on devices with simpler and low-powered hardware.

2.2.4 Libraries

Implementing well-tested libraries is generally considered good practice in
software development for it saves time and minimizes the risk of error. Mature
libraries offer various reliable functions that can be easily incorporated into
projects without writing all logic from scratch. Such practice saves much
valuable time for development and ensures less chance of making errors. The
following subsections introduce libraries used to implement certain required
functionality of a graphics application, such as mathematical functions or
interaction with container formats described in subsection 2.2.6.

2.2.4.1 OpenGL Mathematics

OpenGL Mathematics (GLM) is a header-only, platform-independent C++
mathematics library for graphics designed and implemented with the same
naming conventions and functionality of OpenGL Shading Language (GLSL).
Along with the GLSL related features, the library provides an extension sys-
tem that offers helper functionality for matrix transformations, quaternions,
and more. [26] GLM takes advantage of the C++11 and utilizes SIMD instruc-
tion set extensions to increase performance [27] when the same mathematical
operations are performed on multiple data objects.

2.2.4.2 OpenGL Image

OpenGL Image (GLI) is a header-only, platform-independent C++ texture
image loading library supporting popular formats such as Khronos Texture
(KTX) and Microsoft DirectDraw Surface (DDS). GLI is developed by the
same author (G-Truc Creation) as the GLM library and shares many simi-
larities when it comes to following the GLSL specification. Additionally to

15

2. Design

texture image loading, the library features OpenGL and Vulkan texture cre-
ation helpers and automatic mipmaps generation. [28]

2.2.4.3 Open Asset Import Library

Open Asset Import Library (Assimp) is a widespread, open-source library for
importing and processing geometric scenes. The library unites more than 50
file formats under a common API, including popular Wavefront OBJ, COL-
LADA, and FBX. A programmer can specify post-processing steps such as
mesh optimization and accommodating geometry calculation. The imported
meshes, materials, bone animations, and other associated model data are ac-
cessible in a hierarchical data structure.

2.2.4.4 POCO C++ Libraries

POCO C++ Libraries, the abbreviation for portable components, is a highly
portable collection of client and server libraries helping programmers solve
frequently-encountered practical problems. The library complements the stan-
dard C++ library (STL) with many practical extensions, wrappers, and helpers
for data structures, multithreading, parsers, application logging, etc.

2.2.5 Platform-specific libraries

In order to access all of the hardware and features on an embedded device, low-
level libraries are often developed directly by the hardware vendors. These
libraries are available in NVIDIA’s apt repositories configured via the Jet-
son Linux package. We explain how are the repositories installed during the
filesystem bootstrapping in section 3.1.

2.2.5.1 NVIDIA Tegra Multimedia API

NVIDIA Tegra Multimedia API or NVIDIA Multimedia Utilities is a collec-
tion of lower-level APIs, libraries, and documentation for developing embed-
ded applications for the Jetson platform. The package also contains sample
application source code that demonstrates the usage of lower-level APIs for
the underlying hardware blocks and high-level patterns and solutions for un-
derstanding multimedia development. The following two libraries were used
for acquiring frames from the physical camera:

• NVIDIA Buffer Utilities is a closed source [29] set of utilities for
hardware buffer allocation and management. This library allows us to
administer the camera frame buffers shared between CPU and integrated
GPU to gain zero-copy benefits. Figure 3.3.4.1 describes the benefits of
zero-copy in more depth.

16

2.2. Software

Figure 2.4: Shared memory

• NVIDIA Argus library allows us to acquire pictures and associated
metadata from Jetson-supported cameras. The library handles the trans-
mission of the camera sensor data and processes it into the output of var-
ious encodings suited for further graphics processing. Available capture
configuration allows achieving a variety of use cases, such as traditional
or computational photography, computer vision, and other fields. [30]

2.2.6 Container formats

Container formats specify how are various types of digital information stored
on a computer system. The following subsection describes two industry-
standard container formats used to store graphics data loaded by our im-
plementation.

2.2.6.1 DirectDraw Surface

The DirectDraw Surface is (DDS) a container file format developed by Mi-
crosoft for storing uncompressed and compressed texture image data. [31]
Compressed variations use a previously proprietary S3 Texture Compression
(S3TC) that enables the image data to be transferred and stored in com-
pressed format, thus improving rendering speed, lowering the loading times,
and allowing the application to utilize higher resolution textures with the same
memory footprint. [32]

2.2.6.2 Filmbox

Filmbox (FBX) is an industry-standard geometry exchange format owned by
Autodesk that is compatible with almost all 3D graphics and animation soft-
ware. The format describes detailed geometry data, lights, cameras, materials,
and animations. While Autodesk’s implementation is proprietary, its format
description is exposed in the FBX Extensions SDK, which provides header
files for FBX readers and writers. For this reason, many open-source projects
implement the FBX specifications, which further enhances its popularity.

17

Chapter 3
Proof of concept

3.1 OS optimization

A fully equipped distribution like the one provided in the SD card image
available from Jetson Download Center [33] might be helpful for home exper-
imentation and demonstrations of enclosed application demos. However, the
standard desktop environment consumes significantly more resources than the
minimal environment running only the necessary processes. At the moment,
there is no official NVIDIA-produced SD card image without the desktop en-
vironment [34]. In the case of minimalist systems like the Jetson Nano, it
makes sense to reduce the operating system footprint so our application can
fully utilize the underlying hardware capacity.

The main memory is physically shared between the central and graphics
processing units. Therefore, decreasing the base memory footprint allows
the GPU to utilize more memory, giving the application programmer more
opportunities for performance optimizations, and space for graphical content.

3.1.1 The approach

Stripping and bootstrapping are two of the approaches for minimizing the
initial resource requirements through OS optimization. Both options have
their advantages and disadvantages and require different tools.

3.1.1.1 Stripping

Stripping the existing root filesystem (rootfs) would require fewer steps than
creating the filesystem from scratch. We could flash the official image onto a
physical SD card, boot the Jetson Nano, and remove the unwanted packages
and files on a running system using apt, the package manager and filesys-
tem utilities, such as rm. It will allow us to test immediately if the recently
removed packages and files are causing the system or application instability.
However, we might miss removing the packages or especially the files that

19

3. Proof of concept

are not required. The sample SD card image contains some files that are not
part of any packages, so removing the packages would still keep those files on
the filesystem. Removing a large number of existing files might also possibly
introduce fragmentation [35]. Figure 3.1 list commands used for removing
the desktop environment - one of the most significant packages that a single
graphical application environment does not need.

Stop and disable gnome desktop manager
systemctl disable --now gdm3

Change systemd boot target
systemctl set-default multi-user.target

Remove ubuntu desktop and desktop manager packages
apt remove ubuntu-desktop gdm3

Remove no longer required dependencies
apt autoremove

Figure 3.1: Removing the desktop environment

3.1.1.2 Bootstrapping

Bootstrapping the filesystem allows a more precise selection of packages, files,
and services that are included in the system. Bootstrapping is done by in-
stalling the base OS files into a subdirectory of an existing Linux system that
does not necessarily have to be Jetson Nano. Using a utility that allows us to
change the current root directory, we can execute the binaries for installing
desired packages and configuration files. With the technologies that we de-
scribe in subsection 3.1.4, the host does not even need to match the processor
architecture of the Jetson Nano, therefore allowing us to produce the filesys-
tem on an entirely different system, such as the Linux desktop workstation
with the x86-64 processor architecture.

After preparing the rootfs, an image of the SD card and its GPT table is
created, which must conform to the structure defined in the NVIDIA documen-
tation. Finally, the packaged rootfs partition, bootloader, and other system
partitions are written to the SD card image. This process, along with the more
detailed steps of the filesystem preparation, is described in subsection 3.1.2.

3.1.2 Minimal system installation

Bootstrapping allows us to customize the system to a greater extent and, at the
same time, helps us to deeper understand the graphics software components
and their dependencies. Therefore we decided to choose the bootstrap process.

20

3.1. OS optimization

In the following subsections, we explain what tools we used to bootstrap the
structure of the rootfs, how we installed the required packages and files, and
finally, how we, with the help of NVIDIA tools, constructed an SD card image
structure.

debootstrap is a tool for installing the Linux directory structure and
essential system packages into a subdirectory of another already installed sys-
tem. The tool downloads the packages from the apt-compatible repository
and installs them the same way as the apt tool would in a non-simulated
environment.

qemu-debootstrap is a wrapper of debootstrap that allows us to boot-
strap the system of different processor architectures. It installs and uses qemu,
an emulation software that handles the execution of the foreign architecture
binaries during the bootstrapping process.

Command in Figure 3.2 consisting of the following arguments bootstraps
Ubuntu 18.04.6 LTS (Bionic Beaver) of an ARM64 architecture into /mnt
directory. Unless otherwise stated throughout the sections below, /mnt refers
to the directory that stores the prepared rootfs.

• --arch Desired processor architecture
• --variant The name of the bootstrap script to use that decides what

packages to install. In this case, the minbase variant is used that in-
stalls only the apt package manager and required packages for the base
system.

• --include Additional packages to install during the bootstrap process.
The systemd-sysv package installs the system and service manager for
Linux, that is not included in the minbase script.

• --cache-dir Path to optional package cache to prevent repeated down-
loading of already fetched packages.

qemu-debootstrap --arch=arm64 \
--variant=minbase \
--include=systemd-sysv \
--cache-dir="$(pwd)/packages-cache" \
bionic \
/mnt

Figure 3.2: Bootstrapping the foreign architecture rootfs

3.1.3 NVIDIA packages

Jetson Nano requires several packages present on the root partition to boot
and utilize its capabilities. NVIDIA provides these packages via their public

21

3. Proof of concept

root@hostname:/mnt# ls -a /mnt
. .. bin boot dev etc home lib media mnt
opt proc root run sbin srv sys tmp usr var

Figure 3.3: Directory structure after bootstrapping the rootfs

package repository that needs to be configured on the system before issuing
the apt install command. Figure 3.4 demonstrates the steps of registering
the NVIDIA-issued public key for package integrity validation and installation
of two repositories.

Add repository key
curl -L -o /mnt/etc/apt/trusted.gpg.d/nvidia_jetson.asc \
'https://repo.download.nvidia.com/jetson/jetson-ota-public.asc' \

Add NVIDIA common repository
echo \
'deb https://repo.download.nvidia.com/jetson/common r32.7 main' \
> /mnt/etc/apt/sources.list.d/nvidia_jetson.list

Add NVIDIA t210 (Jetson Nano) repository
echo \
'deb https://repo.download.nvidia.com/jetson/t210 r32.7 main' \
>> /mnt/etc/apt/sources.list.d/nvidia_jetson.list

Figure 3.4: NVIDIA repositiory configuration

The commands mentioned so far do not require any emulation of binaries
located inside the prepared rootfs. We can alter the configuration files outside
the root directory with host tools not necessarily present on the guest system.
However, some tools, such as the package manager or other administrative
tools, have to reside inside the managed rootfs. Moreover, some tools might
not exist for the host processor architecture, especially third-party tools from
NVIDIA or other providers that only target Jetson’s processor architecture,
ARM 64. Therefore emulation of these binaries inside the rootfs is necessary.

After installing the repositories and updating the packages cache with em-
ulated apt update command, we can start installing the essential packages,
such as bootloader, kernel, firmware, and graphics API libraries. Figure 3.5
lists the packages that we require inside our custom SD card image. The
installed size row represents the package sizes without their required depen-
dencies. The extended list with the dependencies of other NVIDIA packages
can be viewed on a graph in Appendix C.

1See subsection 3.1.4

22

3.1. OS optimization

Package(s) Description Installed size

nvidia-l4t-core Core shared libraries 7.7 MB
nvidia-l4t-bootloader Bootloader 11.3 MB
nvidia-l4t-initrd Initial ramdisk 7.1 MB
nvidia-l4t-kernel
nvidia-l4t-kernel-dtbs Kernel 120.0 MB

nvidia-l4t-firmware
nvidia-l4t-xusb-firmware Firmware 2.3 MB

nvidia-l4t-jetson-multimedia-api Multimedia API 95.7 MB
Total: 244.1 MB

Figure 3.5: NVIDIA packages

3.1.4 Emulating the rootfs

To make the rootfs work with the actual device, we need to execute addi-
tional modification steps before transforming the rootfs into an SD card im-
age. These steps include the installation of packages critical for device booting.
Therefore, we need to use a method for executing these steps in an emulated
environment on a computer system that builds the SD card image.

chroot is a utility that changes the apparent root directory for a running
process and its children. In the combination of chroot and emulation software,
we can execute foreign architecture binaries in our virtual rootfs, as shown in
Figure 3.6.

Change root password
chroot /mnt qemu-aarch64-static /usr/bin/passwd root

Install packages
chroot /mnt qemu-aarch64-static /usr/bin/apt install \

--no-install-recommends -y \
openssh-server rsync

Figure 3.6: Emulation of binaries in a foreign rootfs

3.1.5 Cleaning up

When performing changes with the emulated binaries, some tools, mainly
package manager, accumulates cache and log files inside the virtual rootfs.
This cache grows into significant sizes, unnecessarily increasing the overall
size of the future SD card image. It is wise to remove the cache and other
unwanted files before packaging the rootfs. Commands in Figure 3.7 erase the
package manager cache and empty log files.

23

3. Proof of concept

Clean apt cache
chroot /mnt qemu-aarch64-static /usr/bin/apt clean

Remove logs
rm /mnt/var/log/apt/*.log.xz
find /mnt/var/log -type f -exec truncate -s 0 {} \;

Figure 3.7: Cleaning up APT and logs

3.1.6 Packaging the rootfs

Before packaging the rootfs into a raw image, the final step is creating a boot
menu entry by copying the reference config from the NVIDIA L4T driver
package. After that, based on the board and storage type, the NVIDIA-
made script called flash.sh additionally replaces bootloader configuration
placeholders and converts the rootfs directory into a raw partition image that
can be written into the first SD card partition. Figure 3.8 demonstrates the
usage of the script supplied with the parameters suitable for Jetson Nano
boards that use the SD card storage medium. The script requires the following
few environment variables arguments.

Environment variables:

• BOARDID Board identification
• FAB Board revision
• BUILD SD IMAGE SD card image mode

Arguments:

• --no-root-check Do not validate root user (compatibility issues)
• --no-flash Skip flashing to to physical device
• --sign Sign the partition images
• -S Root filesystem size with reserve

3.1.7 Partition table

Embedded systems do not have a BIOS or UEFI [36]. Instead, the firmware
stretches across the SD card partitions [37][38]. These partitions are vital
in the device booting process. The existence, order, sizes, and contents of
these partitions must comply with the specification described in the NVIDIA
documentation [38]. The partitions, other than rootfs, are binary data instead
of the standard filesystems that can be mounted or used as regular partitions.

24

3.1. OS optimization

Estimate root partition size (real size + 20%)
ROOTFS_DIR_SIZE="$(du -bms /mnt | awk '{print $1}')"
ROOTFS_DIR_SIZE="$(("${ROOTFS_DIR_SIZE}" * 12 / 10))"

BOARDID=3448 \
FAB=200 \
BUILD_SD_IMAGE=1 \
bash /opt/l4t/flash.sh \

--no-root-check
--no-flash \
--sign \
-S "${ROOTFS_DIR_SIZE}MiB" \
jetson-nano-qspi-sd \
mmcblk0p1

Figure 3.8: Usage of flash.sh

Number Name Description Size in bytes Required

1 APP Root filesystem - ✓

2 TBC TegraBoot CPU-side binary 131 072 ✓

3 RP1 Bootloader DTB binary 458 752 ✓

4 EBT CPU bootloader binary 589 824 ✓

5 WB0 Warm boot binary 65 536 ✓

6 BPF SC7 entry firmware 196 608 ✓

7 BPF-DTB BPMP DTB binary 393 216 ✗

8 FX Fuse bypass 65 536 ✗

9 TOS TOS binary 458 752 ✓

10 DTB Kernel DTB binary 458 752 ✓

11 LNX U-Boot 786 432 ✓

12 EKS Encrypted keys 65 536 ✗

13 BMP Boot splash screen image 81 920 ✗

14 RP4 USB module’s firmware 131 072 ✓

Figure 3.9: Jetson Nano SD card partitions

See Figure 3.9 for the complete list of supported partitions by the Jetson Nano
device.

We start by allocating the SD card image file. The size of this file is esti-
mated based on the sum of the GPT header and partitions size. The enclosed
source code reveals a technique that calculates the exact size of the image
file. Please refer to the file system-image/scripts/201-allocate-image.sh.
Figure 3.10 shows the steps for allocating a 2 GB image file and writing the
empty GPT table to the beginning of the image that stores the information

25

3. Proof of concept

about the partitions. The dd command fills the allocated space with NULL
bytes to further improve the compression potential of the free space provided
by the 20% space reserve applied in the Figure 3.8.

Allocate SD card image file
dd if=/dev/zero \

of=jetson-sd-card.img \
bs=1048576
count=2000

Write GPT table
sgdisk -og jetson-sd-card.img

Figure 3.10: Allocating the SD card image

Figure 3.11 shows the creation of a single partition with a given number,
number of sectors, and name. The number of the sectors is calculated by
dividing the partition size by the sector size, in this case, 512.

sgdisk -n "${NUMBER}:0:+$((${SIZE} / 512))" \ # Number of sectors
-c "${NUMBER}:${NAME}" \ # Partition name
-t "${NUMBER}:8300" \ # Partition type
jetson-sd-card.img

Figure 3.11: Adding partition to GPT table

3.1.8 Populating the partitions

In this work, we aim to customize only the first partition containing the root
filesystem. Other partitions from the Figure 3.9 are to be populated with the
partition images supplied in the NVIDIA L4T driver package. After creating
the GPT table and adding the partitions, we are ready to mount the image
virtually, using the tool for loop device management. The host kernel then
detects the image, and all its partitions are recognized and accessible via the
/dev directory. The pattern for each partition is /dev/loopXpY, where the X
is the first free loop device number and the Y is the partition number from the
Figure 3.9.

Figure 3.12 shows the process of mounting the SD card image virtually
using the losetup utility and then writing the partition data into the corre-
sponding partition on the SD card image.

26

3.1. OS optimization

Mount the SD card image
LOOP_DEVICE="$(losetup --show -f -P jetson-sd-card.img)"

Write partition contents
dd if="${PARTITION_IMAGE_PATH}" of="${LOOP_DEVICE}p${NUMBER}"

Unmount the SD card image
losetup -d "${LOOP_DEVICE}"

Figure 3.12: Populating the SD card partition

3.1.9 Automation

The developer often needs to install additional libraries and files to the device
because of the updated application requirements. Therefore, it is practical to
automate the process of SD card image creation so the developer can apply
the changes and generate an updated image efficiently. Furthermore, adding
a versioning system to this automation makes it possible to build multiple
slightly different images that share the same foundation. The scripting ap-
proach also allows the developer to track down the unused packages and files
and measure their actual file size after the unpacking.

The enclosed solution to the process automation uses Docker for OS-level
virtualization, making the build process portable and secure by isolating the
build processes and data operations into a virtual container. The building
process consists of smaller scripts executed in an order that apply various
independent changes, making it possible to choose which changes to apply
and which to skip. Refer to the Appendix D for a brief description of the
scripts.

3.1.10 Results

Rootfs customization measures significantly decreased the overall SD card
image size, improving the SD card flashing speed by more than ten times1.
Figure 3.13 compares the size of the custom production, custom development,
and vendor-provided SD card image in three different categories.

• Real category represents the sum of the sizes of all files contained on
the rootfs.

• Uncompressed image category represents size of the SD card image
in raw disk image format (.img).

1Compared to uncompressed vendor SD card image

27

3. Proof of concept

• Compressed image category represents size of the SD card image
in raw disk image format (.img) compressed with zstd --adapt -T0
(adaptive compression level, all CPU cores).

Real Uncompressed image Compressed image
0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

84
2

1,
01

5

28
91,
07

4

1,
28

9

36
3

11
,5

52 13
,0

71

5,
08

6

Si
ze

in
M

B

Custom
Custom (DEV)

Vendor

Figure 3.13: Comparison of SD card image size

Furthermore, the memory usage with the exhibition running decreased
roughly from 2 GB to 0.5 GB, and the load average (5 min) from 1.42 to
0.85, resulting in more available memory for application and lower device
temperatures measured during the operation. Figure 3.14 shows the graphical
comparison of both mentioned resources.

3.2 Development environment

A development environment is a collection of tools for developing and debug-
ging an application. The following short section briefly describes the parts of
the development process worth mentioning.

3.2.1 Physical exhibit simulation

In addition to the software stack, the environment consists of a dedicated
monitor for displaying the exhibit’s digital output. The monitor is suspended
in the air with a mechanical arm and has a box mounted on its front to
simulate the walls surrounding the well’s water. The box helps to calibrate
the scene rendering. Figure 3.15 shows the development version of the exhibit.

28

3.2. Development environment

Memory
0

500

1,000

1,500

2,000

2,500

3,000

56
0

1,
92

0

M
em

or
y

us
ag

e
in

M
B

Custom
Vendor

Load average
0

0.5

1

1.5

2

0.
85

1.
42

Lo
ad

av
er

ag
e

(5
m

in
)

Custom
Vendor

Figure 3.14: Comparison of resources utilization

The picture on the left displays the dedicated screen, Jetso Nano sitting on
top, and a modified PC power supply powering the device. The picture on
the right reveals the view into the exhibit with the camera mounted on the
upper part of the monitor.

Appendix G additionally reveals a more detailed view of the early develop-
ment version of the exhibit with calibration tapes in place to align the water
surface.

Figure 3.15: Exhibit development version

29

3. Proof of concept

3.2.2 Remote development

The device we are using has unusual hardware not available on a regular
desktop computer a developer would use. When developing an application
for concrete hardware with a foreign architecture, the development process
must be implemented on the targeting device unless a virtualized environ-
ment simulating all device components is available. Remote development was
made possible by CLion IDE’s remote development feature that automati-
cally synchronizes the project files between the development device and the
programmer’s system. The IDE also provides a remote debugging interface
that collects debugging data from the remote GDB server running on the de-
vice, making the development experience as if the whole process took place
on the programmer’s computer.

3.3 Implementation

The following section describes the architecture behind the graphical appli-
cation and the implementation specifics for the virtual mirror deployed in
the museum’s exhibit. Words that use the monospace font style through this
section refer to source code file names, functions, and class names.

3.3.1 Project structure

The application comprises several packages representing various layers and
blocks of the application. This separation allows the programmer to navigate
the application implementation parts quickly during the development process.
The implementation is distributed into classes, each representing an object,
regardless of the object’s multi-instance potential. The only component that
does not follow this pattern is the Utils component.

3.3.1.1 Addons

Addons package consists of classes that wrap the functionality of third-party
libraries. The classes simplify the usage of the underlying library APIs by
combining multiple API calls into a more high-level interface used by the
application. The framework implements the following three addons:

• ArgusCamera for acquiring frames from the physical cameras using pow-
erful NVIDIA Argus API;

• SharedFrameBuffer for management of the shared hardware buffers us-
ing closed-source NVIDIA Buffer Utils;

• X11Display for creating window and receiving the input events using
X11 protocol.

30

3.3. Implementation

3.3.1.2 Application

The application package provides classes for bootstrapping different layers
of the application. Classes from the upper layers inherit the logic from the
lower layers and gradually define a more complex application. Figure 3.16
describes the functionality on different layers up to the entry point class,
WellApplication.

Figure 3.16: Application layers

3.3.1.3 Graphics

The most extensive package among all others, containing over 75% of the code
base, is the Graphics package. It contains mainly classes representing OpenGL
ES objects whose functionality is wrapped into more high-level and easy-to-use
methods. This interface is compatible with other framework components, is
more manageable, implements automatic deallocation, and performs real-time
validation of the OpenGL ES state machine.

3.3.1.4 Math

The Math package defines Matrix and Vector types generated from the tem-
plates provided by the OpenGL Mathematics library. The generated types
follow the OpenGL ES specification naming and application’s code style.

3.3.1.5 Utils

The Utils package covers functionality shared among multiple classes, includ-
ing pseudo-random number generator, mathematical functions, string helpers,
and timing functionality.

3.3.2 Error handling

Graphical applications are long-living dynamic processes with various compo-
nents that can sometimes operate incorrectly due to a software bug or hard-
ware failure. It is essential to implement measures to reduce the chance of
errors created by the programmer and to terminate the program safely in
time if they occur. Failure to release some device resources before application

31

3. Proof of concept

termination may result in the system not recovering even after restarting the
application.

Several concepts were implemented during the development process to de-
tect errors created by the programmer, such as assertions and run-time checks.

3.3.2.1 Assertions

Assertions are programming language macros that test certain program logical
assumptions. Violation of these assumptions results in immediate program
termination. Our implementation uses two types of assertions:

• Compile-time or static assertions are evaluated during compilation
and result in a compilation error with an accompanying message if
an asserted expression is negative. Static validations are helpful when
compile-time restrictions, such as template evaluations or constant vari-
ables, need to match specific properties.

• Run-time assertions, in contrast to static assertions, test software state
while the program is running. Assumptions about how the code will be-
have while running is often wrong. Checking the program’s state during
execution can prevent execution over unexpected data that might lead
to severe inconsistent or unrecoverable states. Compared to exceptions,
run-time assertions terminate the program immediately without an at-
tempt to restore a healthy state or perform the cleanup. When suffi-
ciently implemented, run-time assertions can quickly detect and prevent
bugs from reaching the production system. Our implementation con-
tains over a hundred run-time checks, mainly checking the initialization
state and passed method arguments for unexpected values.

3.3.2.2 Exceptions

Exceptions are unexpected software events that occur during the program
execution. The software may still recover and continue normal execution or
log the error, safely release resources, and shut down the application.

3.3.2.3 Logging

Software logging is a crucial component in tracking the application’s behavior
and can help track mistakes quickly, even without debugging. POCO C++
provides logging macros that prepend the log message with the source com-
ponent name, file, and line. With this format, a developer can save time by
narrowing the area of browsed or debugged code.

Across the implementation, the logging system tracks checkpoints of appli-
cation initialization, dynamic configuration values, and resource allocations.
Figure 3.17 demonstrates the logging of camera initialization using negotiated
sensor mode.

32

3.3. Implementation

poco_information_f4(Poco::Logger::get("Camera"),
"Configured camera %u with sensor mode %ux%u @ %.3hf",
static_cast<uint32_t>(this->_deviceIndex),
this->_width, this->_height,
1.0f / (static_cast<float>(this->_frameTime.count()) / 1e9f));

// Outputs: Configured camera 0 with sensor mode 1640x1232 @ 30.000

Figure 3.17: Logging macro usage

3.3.3 Initialization

Application entry point lies in the source file WellMain.cpp. It uses a macro
from the Poco library that expands to a classical C++ entry-point, the main
function. The macro accepts the name of a class that must implement the
Poco::Util::Application interface. The interface defines the basic applica-
tion structure that forces the programmer to define the initialization, deini-
tialization, and main logic methods.

3.3.3.1 Application

The application’s functionality is separated into different layers. Each layer is
responsible for handling its feature. The lowest layer, contained in Applica-
tion class, handles basic application logic, such as initialization of the logging
system and exception catching. RenderApplication layer adds initialization
and management of the window, graphics context, and graphics synchroniza-
tion. The highest layer initializes the shading system, connects to the physical
camera, and invokes the loading of the models and textures.

3.3.3.2 Window

The initialization of the X11 client begins with retrieving the DISPLAY envi-
ronment variable, which instructs the client which X11 server it is to connect
to. Poco::Environment helper class attempts to retrieve the value of this
variable and sets it to the default value (typically :0) if it is missing. The
logic for creating the display is stored inside X11Display addon, a wrapper
around Xlib API calls to create and manage a simple full-screen window and
receive keyboard input.

3.3.3.3 Graphics context

Graphics context represents a state machine that stores all the application’s
rendering data. Since the display and graphics context are not part of the
same specification, connecting them is platform-dependent. EGL handles the

33

3. Proof of concept

connection of graphics context with the underlying platform windowing system
and other features such as rendering synchronization and object binding.

EGL provides an interface for obtaining EGLDisplay, an abstract repre-
sentation of the underlying platform. From obtaining this object, the further
interaction with the display from the graphics API is using this object. An-
other related object is EGLSurface that represents the native window and
associated buffers, such as color buffer, depth buffer, stencil buffer, and alpha
mask buffer [39].

Before obtaining the graphics context, the application needs to create a
surface that the graphics API uses to draw the frame. The drawing surface
has few attributes that the application can require prior to creating. Fig-
ure 3.18 demonstrates how such requirements look like and what are their
typical values.

const EGLint configAttribs[] = {
EGL_RED_SIZE, 8, // Red channel size
EGL_GREEN_SIZE, 8, // Green channel size
EGL_BLUE_SIZE, 8, // Blue channel size
EGL_ALPHA_SIZE, 8, // Alpha channel size
EGL_DEPTH_SIZE, 24, // Depth buffer size
EGL_STENCIL_SIZE, 8, // Stencil buffer size
EGL_SURFACE_TYPE, EGL_WINDOW_BIT, // Surface type
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT, // Graphics API
EGL_NONE // End of requirements

};

Figure 3.18: Graphics context requirements

With a drawing surface created and display abstraction acquired, drawing
context is created and activated using eglMakeCurrent.

The graphics API separately provides error handling for context-related
errors to improve the ability to locate the GLES errors. It is possible to check
for debugging support prior to enabling by inspecting the GL CONTEXT FLAGS.
Calling glEnable with the GL DEBUG OUTPUT activates the debugging and
should be accompanied by the call with GL DEBUG OUTPUT SYNCHRONOUS. Syn-
chronous mode guarantees the callback to be called from the same thread as
the context, assuring that the programmer can find the origin of the error in
the call stack.

Similar to the graphics API debugging, the EGL registers a debug callback
using eglDebugMessageControlKHR.

3.3.3.4 Physical camera

Sony IMX219 camera is operated by the ArgusCamera addon, which is a wrap-
per around the NVIDIA Argus API. The addon adds modularity and auto-

34

3.3. Implementation

matically handles the compatible buffer allocation for captured frames.
The initialization starts by selecting the camera device by its physical

connector index. Prior to selecting the sensor mode, the graphics context
must exist so that the camera can allocate the internal DMA buffers used
to store the captured frames. The external camera frame buffer managed
by the rendering thread is allocated similarly to internal DMA buffers via
CreateCompatibleFrameBuffer method of ArgusCamera wrapper.

As the last step, the application spawns the camera frame acquire thread.
subsubsection 3.3.4.1 describe the process of retrieving camera frames in more
detail.

3.3.3.5 Scene

In this particular application, the scene is relatively simple. It contains the
3D model of the walls, a quad displaying the water surface, and a quad for
projecting the camera frame. Loading of all the objects is handled by their
Create method and unloading by their Destroy method. The loading of the
objects is thus simple, as shown in Figure 3.19, and it is invoked inside the
WellApplication::Create method.

Model wellModel;
wellModel.Create("well");

CameraFrameQuad cameraFrameQuad;
cameraFrameQuad.Create(1640.0f / 1232.0f);
cameraFrameQuad.SetPosition({-0.1f, -0.025f, -90.0f});
cameraFrameQuad.SetScale(2.225f);

Figure 3.19: Initializing scene objects

3.3.4 Main loop

After initialization, the application enters the so-called main loop, where it
performs a series of actions repeatedly until the exit request is received. The
actions usually process the inputs, update the program state, and generate
the outputs. One iteration of the loop is called a frame. [40] Most real-time
computer graphics applications perform 30, 60, or more FPS and process the
inputs at least from the keyboard or mouse.

In the case of unattended computers or embedded devices, the user input is
processed only in particular situations, like initial setup or calibration. Refer
to the subsection 3.4.3 for the example from this project. Instead, the non-
user applications usually process the input from other places, such as GPS,
sensors, and cameras. This input can be further processed and represented
graphically or, in the case of cameras, passed directly to the shader unit.

35

3. Proof of concept

The application state is updated according to the inputs or additional
predefined update logic, such as updating the position of a moving texture or
animated mesh. The updated state is then transformed into graphical output,
and the frame is presented on display.

The implementation of the main loop is defined in the following methods:

• X11Display::ProcessEvents registers keyboard events that occured
since last invocation;

• WellApplication::Update updates the scene state according to the
pressed keyboard keys and predefined update logic;

• WellApplication::Draw renders the meshes using their renderers and
shaders;

• RenderApplication::Sync waits for the graphics card to finish the ex-
ecution of drawing operations;

• RenderApplication::Finish sleeps the application until the frame dead-
line, calculates a new frame delta, and swaps the display frame buffers.

3.3.4.1 Retrieving camera frames

Retrieving frames from the camera is blocking operation. Therefore, the frame
retrieval runs on a separate thread to avoid blocking processing on the ren-
dering thread. In the initialization step, the application spawns execution of a
static method WellApplication::FrameAcquireThread. The method enters
a loop that repeatedly acquires the camera frame, copies it into a side buffer
used by the renderer on another thread, and releases it back to the camera
processing logic.

We encountered a few unexpected data races in the Argus library that
caused visual glitches and tearing when the acquired frame was used directly
by the renderer. Therefore the application must clone the acquired buffer
and release it as soon as possible. ”Copy frame” block from Figure 3.20
represents the logic that clones the acquired frame buffer into another frame
buffer accessed by the renderer.

The camera sends captured frames to the main memory via an attached
interface, such as USB, CSI, or PCIe. Further processing of these captured
frames inside the shader requires the data to be transferred into video memory,
where the pixel data is accessible by integrated GPU. When processing live
footage from a camera that produces tens to hundreds of frames, there can be
significant delays that will not allow all of the frames produced to be processed.
NVIDIA Buffer Utilities library allows us to take advantage of the fact that
the memory of Jetson Nano is shared between CPU and integrated GPU.

NvBufferCreateEx function creates a hardware frame buffer that can be
accessed without any additional copy operation by the camera sensor and inte-
grated GPU shader unit. SharedFrameBuffer addon wraps the functionality

36

3.3. Implementation

Figure 3.20: Camera frame acquire thread

of the NVIDIA Buffer library. It provides additional methods for more con-
venient manipulation and conversion into EGLImageKHR object that acts as a
representative on the EGL side.

The actual camera frame is represented by the ExternalTexture, a wrap-
per around a special type GLES texture that is provided by the GLSL external
image extension. The actual pixel data is then accessible inside the shader
via samplerExternalOES that has similar properties as standard 2D texture
sampler2D [41]. Figure 3.21 demonstrates how to assign a shared frame buffer
to ExternalTexture.

SharedFrameBuffer cameraFrameBuffer;
cameraFrameBuffer.Create(graphicsContext, // Context

1920, 1080, // Resolution
NvBufferColorFormat_NV12); // Format

ExternalTexture cameraFrameTexture;
cameraFrameTexture->Create();
cameraFrameTexture->Bind();
cameraFrameTexture->Data(graphicsContext, cameraFrameBuffer);
cameraFrameTexture->Unbind();

Figure 3.21: Creating OpenGL ES texture from shared frame buffer

37

3. Proof of concept

3.3.4.2 Rendering

The rendering of the water surface and the surrounding walls takes three
steps. The first two steps render the scene from two different perspectives
while omitting some parts of the scene. Both results are stored into textures
for later use instead of storing the result onto the display frame buffer. These
two textures are then used to render the complete scene in the third step. The
three steps are:

• Refraction pass renders the scene under the water surface while culling
the geometry above the water surface;

• Reflection pass renders the scene from the water’s view towards the
well’s entrance while culling the geometry below the water surface;

• Scene pass then takes reflection and refraction textures, combines them
to create an illusion of a water surface with refraction and reflection
properties, and adds distortion to mimic a wavy surface.

More details about the rendering system can be found in subsection 3.3.5.

3.3.4.3 Synchronization

OpenGL ES rendering commands are asynchronous. Whenever the applica-
tion invokes a function to initiate rendering, it is not guaranteed by the specifi-
cation that the rendering has finished when the call returns. The synchroniza-
tion process in the graphics context ensures that the graphics API rendering
pipeline executed all the commands queued for execution. Modern graphics
APIs, such as OpenGL ES 3.0, feature multi-threading support and allow
synchronization via synchronization objects. The virtual mirror framework
implements the synchronization logic in RenderApplication::Sync method.
This method blocks the execution on the current thread until all queued ren-
dering operations are executed.

3.3.4.4 Flushing

At the end of the frame rendering, the application waits for the frame deadline
to meet the required frame rate. Then it calculates the frame delta used in
scene update logic to maintain independent animation speed from rendering
speed. Finally, the application commands the graphics context to swap the
display frame buffers to present the updated frame to the physical display.

3.3.5 Rendering system

The rendering system consists of multiple sub-rendering systems that can draw
different types of meshes into the display frame buffer. A model is a collection
of different types of meshes. The scene of this exhibit consists of a single model

38

3.3. Implementation

that contains all types of mentioned meshes. Mode details about the exhibit’s
scene are described in subsection 3.3.6. There are three types of meshes in
this implementation:

• BasicMesh represents basic 3D textured mesh that can use diffuse, nor-
mal, and specular textures;

• CameraFrameQuad represents a 2D quad of variable size that projects
the physical camera frames onto its surface. The shader that outputs
the fragments representing the quad uses a special external texture that
contains camera frame pixel data;

• WaterMesh represents a water surface that refracts the scene under the
water and reflects the scene above the water. The shader that outputs
the fragments representing this surface mixes refraction and reflection
and applies slight distortion that updates in time to simulate water
movement.

3.3.5.1 Mesh

A mesh is a collection of interconnected vertices that form a structure of a
model. Vertices and their arrangement of interconnections are represented
by vertex array object, a list of vertex buffer objects that are automatically
bound when the vertex array object is bound. The following two types of
vertex buffer objects are on the list of the vertex array object:

• Vertex data buffer contains data associated with vertices. Each vertex
consists of its position, normal vector, texture coordinates, and tangent
vector. VertexAttributesConfig helper class is used to generate GLES
commands that configure the layout of the vertex data buffer;

• Indices buffer contains indices to vertices in vertex data buffer. GLES
draw command uses these indices to render primitives from the vertex
data buffer.

3.3.5.2 Shaders

Rendering a geometry into a frame buffer takes a sequence of steps, also re-
ferred to as a rendering pipeline. The rendering pipeline is initiated whenever
the application invokes a rendering operation. Some parts of the rendering
pipeline are programmable by the application programmer, while others are
implemented by a GPU vendor and cannot be changed. A simplified ver-
sion of the OpenGL ES pipeline without additional optional shader stages is
shown in Appendix E. The shader is a small user-defined program executed
by shader units of GPU in different programmable stages of the rendering
pipeline. Shaders are written in GLSL, a C-style programming language. The
implementation stores all shader program source files in Resources/Shaders

39

3. Proof of concept

directory, where each shader program source files has the <name>.<type>
naming pattern.

3.3.5.3 Renderers

The renderer takes care of configuring the graphics API to render a specific
type of mesh using the appropriate shader system. It handles the activation
of the appropriate shader program that can draw the geometry of the given
mesh, followed by uploading the necessary uniform variables to the shader
program. In order to render the complete model, the model have to pass
through all renderers associated with its mesh types.

3.3.6 Scene

In order to achieve the desired effect, the scene is split into three objects.
Each of them is rendered by a different shader system. The following sections
describe the methods used to render different object types.

3.3.6.1 Walls

The walls surround the water and have a clay texture with small rocks and
cracks. Figure 3.22 shows rendered walls in Blender (on the left) and the
implementation rendering system (on the right). They are rendered by the
BasicRenderer that renders static textured meshes using BasicShader. The
shader has the following properties:

• Phong lighting model with light located behind the camera;
• Normal vector mapping to make the cracks in the walls more realistic;
• Attenuation for decreasing the visibility after entering the water;
• Corner darkening to simulate superficial ambient occlusion.

3.3.6.2 Water

The water surface quad fakes the surface of the water in the well. The surface
refracts the scene under the water and reflects the scene above the water.
Before merging the refraction and reflection into the resulting texture, both
components are slightly distorted using the DuDv map. The DuDv map is
similar to a normal map in storing directional information, except it only stores
two components of 2D direction. The directional information transforms the
original uniform texture mapping to a wavy pattern. The offset of the DuDv
map is additionally updated in time to produce the effect of the moving waves.
Figure 3.23 shows the DuDv map used for producing the distortion effect and
its effect when applied to the exhibit scene.

40

3.4. Deployment

Figure 3.22: Walls of the well

Figure 3.23: Distortion using DuDv map

3.3.6.3 Camera frame

The camera frame quad projects what is happening outside the well (in the real
world) from the view of the water surface. It uses physical camera frames as
its texture. Before mapping to the surface of the quad, the camera frame
is blurred using the Gaussian blur function to decrease the image’s high-
frequency components. The quad’s surface is then captured as a reflection
from the water surface in the Reflection pass step from subsubsection 3.3.4.2
of the model rendering.

3.4 Deployment

The application was deployed in an existing exposure of an old wooden well
from the Middle Ages. The well has a square shape and is approximately 1.8
meters deep and 70 centimeters wide. Visitors have a limited view into the

41

3. Proof of concept

well, only from certain angles. The appearance of the exhibit can be seen in
Figure 3.24.

Also of a square shape, a display device of size 60x60 centimeters and
resolution of 1920x1920 pixels is located approximately 10 centimeters above
the bottom of the well model to allow free passage of cables present for pow-
ering the display device and Jetson Nano. The screen surface is additionally
protected against possible objects falling into the exposure by a plastic shield.

Figure 3.24: Museum exhibit

The short camera cable that forced us to install the device very close to
the display device. Therefore, the Jetson Nano device is positioned right next
to the display as shown in Figure 3.25.

Figure 3.25: Jetson Nano placement

42

3.4. Deployment

Figure 3.26: Application deployed into exhibit

3.4.1 Overheating

The higher resolution of the display device and closed operating space with no
airflow contributed significantly to the operating temperature of the Jetson
Nano deployed in the exposure. Compared to the measurements from the
development phase, the temperature rose from 47 degrees to approximately 67
degrees, which began to cause occasional shutdowns. It takes a few minutes
for Jetson Nano to cool down, and it is not possible to turn it on while it
is cooling down. That caused downtimes, which are not acceptable in this
situation.

The problem has been resolved by installing a small 40-millimeter cooling
fan that blows air to the heat sink that dissipates the heat of the Jetson Nano
SoC. The cooling fan is controlled by a script that periodically reads the CPU
and GPU temperature and sets the appropriate PWM fan speed to stabilize
the temperature below the critical value. The exhibit environment is dusty,
which might later, in combination with the cooling fan, require maintenance
for dusting off the hardware.

3.4.2 Glossy display surface

Plastic protection used to prevent damage in the event of a foreign object
falling into the well is made of glossy material that, on top of the application’s
shader effects, unfavorably contributes to the shininess of the virtual water
surface. In combination with the strong glaring of the ceiling lights, this
unwanted effect makes the render of the water surface less realistic. A simple
remedy to this problem is to either relocate the position of the ceiling lights
or decrease the specular shader strength while finding a better replacement
for the plastic protection is still desired.

43

3. Proof of concept

Figure 3.27: Visible reflection on display plastic protection

3.4.3 Calibration

The construction and scale of the development setup differ significantly from
the construction of the museum exhibit, primarily due to a lack of informa-
tion. Photos provided at the beginning of the work only gave us a rough idea
of the exhibit dimensions. Therefore, it was necessary to perform additional
calibration of the quad that projects the camera frames. We implemented an
interactive quad calibration using keyboard arrow keys that allows the techni-
cian to adjust the offset and zoom of the projected camera frame. Figure 3.28
describes the calibration control. The precision row represents the number of
units per keystroke.

Keyboard key Description Precision

+ (plus) Increase the scale 0.0250
− (minus) Decrease the scale 0.0250
↑ (up arrow) Increase the position along the Y axis 0.0125
↓ (down arrow) Decrease the position along the Y axis 0.0125
→ (right arrow) Increase the position along the X axis 0.0125
← (left arrow) Decrease the position along the X axis 0.0125

Figure 3.28: Project structure

44

Conclusion

This work aimed to explore appropriate computer systems suitable for deploy-
ing graphics applications into museum exhibits. The author considers mini-
computers as great candidates for this purpose as their recent development
ensures their sufficient calculating capacity and optimal size for flexible incor-
poration into other hardware while at the same time being cost-efficient. While
experimenting, implementing, and testing a prototype virtual mirror applica-
tion in a museum operation, the author successfully designed the framework
for the virtual mirror for the selected platform. The programmer is given com-
plete control of the captured camera image in the GLSL shader, expanding
the application possibilities even more than initially anticipated.

Furthermore, the automated system for creating a modified SD card im-
age, which came about as a by-product of this work, allows developers to
rapidly customize the OS and potentially reduce the requirements for the de-
vice specifications. In the case of the subject of this thesis, a 2GB version of
Jetson Nano, having its OS undergoing customization, turns out to meet the
overall resource requirements. It is worth noting that the version with less
memory costs roughly 50% less than the initially chosen device.

Experience obtained from this project indicates that if one can minimize
the overhead of an implemented framework by cleverly choosing the suitable
technologies, the potential for complex and powerful graphical applications is
endless. Due to its modularity design, the framework of the current project
leaves room for further extension. Instead of limiting itself to applications that
only utilize a single camera, the framework will become suitable for a much
more comprehensive range of usage after a small expansion, such as taking on
the multiple cameras system.

45

Conclusion

Future improvements

Camera latency

While the FPS was satisfactory, a slight latency is still perceptible in the re-
sulting implementation. Measured delay exceeds the previously established
limits in subsection 1.2.1 that are perceivable by humans. At a resolution
of 3264 x 2464, Sony IMX219 sensor is capable of recording at 21 FPS, in-
troducing 47.62ms latency. The rendering speed is set to 30 FPS, introduc-
ing an additional delay of 33.3ms. The resulting maximum theoretical delay
should be thus 47.62ms + 33.3ms ≈ 81ms. Later discovered behavior of im-
age signal processor (ISP) when using Argus library multiplies the camera
latency by a factor of 4 [42], resulting in a maximum theoretical delay of
4 ∗ 47.62ms + 33.3ms ≈ 224ms. Using a 60 FPS mode while sacrificing the
higher resolution could decrease the delay to 4 ∗ 16.6ms + 33.3ms ≈ 100ms.
Figure 3.29 shows a comparison of a timer (on the left) and its captured frame
via the virtual mirror application (on the right) to determine the camera-to-
screen latency. A secondary camera captures the actual comparison. In this
case, the measured difference is about 1.492s− 1.338s = 154ms. The latency
issue and its testing could be a topic for future work.

Figure 3.29: A secondary camera capturing the camera-to-screen latency

Wayland

The implementation of the museum exhibit uses the X windowing system for
displaying the contents onto a physical display, which is a very old technology
made since 1984. It has many flaws and potential security issues and has be-
come incompatible with the design of modern hardware and applications [43].
A possibly better alternative could be Wayland, a modern windowing system
also being supported by L4T. According to NVIDIA, Wayland performs better
and is more suitable for many embedded and mobile use cases [44].

46

Bibliography

[1] Pachoulakis, I.; Kapetanakis, K. Augmented Reality Platforms for Vir-
tual Fitting Rooms. The International journal of Multimedia & Its Appli-
cations, volume 4, August 2012: pp. 35, 41, doi:10.5121/ijma.2012.4404.

[2] Waltemate, T. Creating a Virtual Mirror for Motor Learning in Virtual
Reality. 2018, doi:10.4119/unibi/2932705.

[3] Raaen, K.; Eg, R.; et al. Can gamers detect cloud delay? In 2014 13th
Annual Workshop on Network and Systems Support for Games, IEEE,
2014, p. 1.

[4] Should I take an actively cooled or passively cooled Mini-PC? [online; ac-
cessed 2022-05-04]. Available from: https://www.spo-comm.de/en/blog/
know-how/should-i-take-an-actively-cooled-or-passively-
cooled-mini-pc

[5] Staff, E. Is a single-chip SOC processor right for your em-
bedded project? August 2013, [online; accessed 2022-05-07].
Available from: https://www.embedded.com/is-a-single-chip-soc-
processor-right-for-your-embedded-project/

[6] Raspberry Pi 4 Tech Specs. [online; accessed 2022-03-18]. Avail-
able from: https://www.raspberrypi.com/products/raspberry-pi-4-
model-b/specifications/

[7] (”Laserlicht“), M. H. Raspberry Pi 4 Model B from the side. [online;
accessed 2022-05-08]. Available from: https://commons.wikimedia.org/
wiki/File:Raspberry_Pi_4_Model_B_-_Side.jpg

[8] Attribution-ShareAlike 4.0 International. Available from: https://
creativecommons.org/licenses/by-sa/4.0/legalcode

47

https://www.spo-comm.de/en/blog/know-how/should-i-take-an-actively-cooled-or-passively-cooled-mini-pc
https://www.spo-comm.de/en/blog/know-how/should-i-take-an-actively-cooled-or-passively-cooled-mini-pc
https://www.spo-comm.de/en/blog/know-how/should-i-take-an-actively-cooled-or-passively-cooled-mini-pc
https://www.embedded.com/is-a-single-chip-soc-processor-right-for-your-embedded-project/
https://www.embedded.com/is-a-single-chip-soc-processor-right-for-your-embedded-project/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://commons.wikimedia.org/wiki/File:Raspberry_Pi_4_Model_B_-_Side.jpg
https://commons.wikimedia.org/wiki/File:Raspberry_Pi_4_Model_B_-_Side.jpg
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

Bibliography

[9] Jetson Modules. [online; accessed 2022-03-16]. Available from: https:
//developer.nvidia.com/embedded/jetson-modules

[10] Jetson Nano Developer Kit. [online; accessed 2022-03-18]. Avail-
able from: https://developer.nvidia.com/embedded/jetson-nano-
developer-kit

[11] NVIDIA Jetson Nano Developer Kit. [online; accessed 2022-03-16]. Avail-
able from: https://www.sparkfun.com/products/16271

[12] Spark Fun Electronics. [online; accessed 2022-03-16]. Available from:
https://www.sparkfun.com

[13] Attribution 2.0 Generic. Available from: https://
creativecommons.org/licenses/by/2.0/legalcode

[14] Frumusanu, A. ARM Reveals Cortex-A72 Architecture De-
tails. April 2015, [online; accessed 2022-03-19]. Available from:
https://www.anandtech.com/show/9184/arm-reveals-cortex-a72-
architecture-details

[15] Luigi Morelli. Jetson Nano vs Raspberry PI 4 – CPU compar-
isons. August 2019, [online; accessed 2022-03-25]. Available from:
https://www.moreware.org/wp/blog/2019/08/01/jetson-nano-vs-
raspberry-pi-4-cpu-comparisons/

[16] MIPI Camera Serial Interface 2 (MIPI CSI-2). [online; accessed 2022-03-
18]. Available from: https://www.mipi.org/specifications/csi-2

[17] Jetson Partner Supported Cameras. [online; accessed 2022-03-18].
Available from: https://developer.nvidia.com/embedded/jetson-
partner-supported-cameras

[18] Max.kit. Eiffel Tower under cloudy sky. [online; accessed 2022-05-01].
Available from: https://commons.wikimedia.org/wiki/File:Eiffel_
Tower_under_cloudy_sky.jpg

[19] Bird reflected in water. [online; accessed 2022-05-01]. Available from:
https://pixabay.com/photos/bird-water-nature-pool-wildlife-
3072175/

[20] Pixabay License. [online; accessed 2022-05-01]. Available from: https:
//pixabay.com/service/license/

[21] Jabeen, Q.; Khan, F.; et al. A survey: Embedded systems supporting by
different operating systems. arXiv preprint arXiv:1610.07899, 2016.

[22] Linux range of use. [online; accessed 2022-03-22]. Available from: https:
//en.wikipedia.org/wiki/Linux_range_of_use#Embedded_devices

48

https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-modules
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.sparkfun.com/products/16271
https://www.sparkfun.com
https://creativecommons.org/licenses/by/2.0/legalcode
https://creativecommons.org/licenses/by/2.0/legalcode
https://www.anandtech.com/show/9184/arm-reveals-cortex-a72-architecture-details
https://www.anandtech.com/show/9184/arm-reveals-cortex-a72-architecture-details
https://www.moreware.org/wp/blog/2019/08/01/jetson-nano-vs-raspberry-pi-4-cpu-comparisons/
https://www.moreware.org/wp/blog/2019/08/01/jetson-nano-vs-raspberry-pi-4-cpu-comparisons/
https://www.mipi.org/specifications/csi-2
https://developer.nvidia.com/embedded/jetson-partner-supported-cameras
https://developer.nvidia.com/embedded/jetson-partner-supported-cameras
https://commons.wikimedia.org/wiki/File:Eiffel_Tower_under_cloudy_sky.jpg
https://commons.wikimedia.org/wiki/File:Eiffel_Tower_under_cloudy_sky.jpg
https://pixabay.com/photos/bird-water-nature-pool-wildlife-3072175/
https://pixabay.com/photos/bird-water-nature-pool-wildlife-3072175/
https://pixabay.com/service/license/
https://pixabay.com/service/license/
https://en.wikipedia.org/wiki/Linux_range_of_use#Embedded_devices
https://en.wikipedia.org/wiki/Linux_range_of_use#Embedded_devices

Bibliography

[23] Jetson Linux R32.7.1 Release Page. [online; accessed 2022-03-29]. Avail-
able from: https://developer.nvidia.com/embedded/linux-tegra-
r3271

[24] L4T Archive. [online; accessed 2022-03-28]. Available from: https://
developer.nvidia.com/embedded/jetson-linux-archive

[25] X.Org. [online; accessed 2022-04-01]. Available from: https://
xorg.freedesktop.org/wiki/

[26] OpenGL Mathematics documentation. [online; accessed 2022-04-07].
Available from: http://glm.g-truc.net/0.9.8/api/index.html

[27] Lento, G. Optimizing Performance with Intel Advanced Vector Ex-
tensions. Technical report, Intel Corporation, September 2014, [online;
accessed 2022-04-15]. Available from: https://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/performance-
xeon-e5-v3-advanced-vector-extensions-paper.pdf

[28] OpenGL Image documentation. [online; accessed 2022-04-07]. Available
from: http://gli.g-truc.net/0.8.2/api/index.html

[29] Richardds, D. NVIDIA Developer Forums - Source code
of nvbuf utils. [online; accessed 2022-04-06]. Available from:
https://forums.developer.nvidia.com/t/source-code-of-nvbuf-
utils/179079/3

[30] NVIDIA Corporation. Libargus Camera API. [online; accessed
2022-04-06]. Available from: https://docs.nvidia.com/jetson/l4t-
multimedia/group__LibargusAPI.html

[31] Microsoft Corporation. DDS. [online; accessed 2022-04-07]. Avail-
able from: https://docs.microsoft.com/en-us/windows/win32/
direct3ddds/dx-graphics-dds

[32] Dominé, S. Using Texture Compression in OpenGL. Technical re-
port, NVIDIA Corporation, 2000, [online; accessed 2022-04-07]. Avail-
able from: https://web.archive.org/web/20041120095329/http://
developer.nvidia.com/attach/6585

[33] Jetson Download Center. [online; accessed 2022-03-16]. Available from:
https://developer.nvidia.com/embedded/downloads

[34] mau, D. NVIDIA Developer Forums - Jetson Nano Image with-
out Desktop. [online; accessed 2022-03-28]. Available from:
https://forums.developer.nvidia.com/t/jetson-nano-image-
without-desktop/176571/3

49

https://developer.nvidia.com/embedded/linux-tegra-r3271
https://developer.nvidia.com/embedded/linux-tegra-r3271
https://developer.nvidia.com/embedded/jetson-linux-archive
https://developer.nvidia.com/embedded/jetson-linux-archive
https://xorg.freedesktop.org/wiki/
https://xorg.freedesktop.org/wiki/
http://glm.g-truc.net/0.9.8/api/index.html
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/performance-xeon-e5-v3-advanced-vector-extensions-paper.pdf
http://gli.g-truc.net/0.8.2/api/index.html
https://forums.developer.nvidia.com/t/source-code-of-nvbuf-utils/179079/3
https://forums.developer.nvidia.com/t/source-code-of-nvbuf-utils/179079/3
https://docs.nvidia.com/jetson/l4t-multimedia/group__LibargusAPI.html
https://docs.nvidia.com/jetson/l4t-multimedia/group__LibargusAPI.html
https://docs.microsoft.com/en-us/windows/win32/direct3ddds/dx-graphics-dds
https://docs.microsoft.com/en-us/windows/win32/direct3ddds/dx-graphics-dds
https://web.archive.org/web/20041120095329/http://developer.nvidia.com/attach/6585
https://web.archive.org/web/20041120095329/http://developer.nvidia.com/attach/6585
https://developer.nvidia.com/embedded/downloads
https://forums.developer.nvidia.com/t/jetson-nano-image-without-desktop/176571/3
https://forums.developer.nvidia.com/t/jetson-nano-image-without-desktop/176571/3

Bibliography

[35] Ji, C.; Chang, L.-P.; et al. An Empirical Study of File-System Frag-
mentation in Mobile Storage Systems. In 8th USENIX Workshop on
Hot Topics in Storage and File Systems (HotStorage 16), Denver,
CO: USENIX Association, June 2016, [online; accessed 2022-03-30].
Available from: https://www.usenix.org/conference/hotstorage16/
workshop-program/presentation/ji

[36] bwana, d., Honey Patouceul. NVIDIA Developer Forums -
bios. [online; accessed 2022-04-07]. Available from: https:
//forums.developer.nvidia.com/t/bios/73787/3

[37] NVIDIA Corporation. Jetson Nano Boot Flow. [online; accessed
2022-04-09]. Available from: https://docs.nvidia.com/jetson/
l4t/index.html#page/Tegra%20Linux%20Driver%20Package%
20Development%20Guide/bootflow_jetson_nano.html

[38] NVIDIA Corporation. Partition Configuration. [online; accessed
2022-04-07]. Available from: https://docs.nvidia.com/jetson/
l4t/index.html#page/Tegra%20Linux%20Driver%20Package%
20Development%20Guide/part_config.html

[39] Khronos Group. Introduction to managing client API rendering through
the EGL API. [online; accessed 2022-04-15]. Available from: https://
www.khronos.org/registry/EGL/sdk/docs/man/html/eglIntro.xhtml

[40] Gregory, J. Game Engine Architecture, Second Edition. USA: A. K. Pe-
ters, Ltd., second edition, 2014, ISBN 1466560010.

[41] Khronos Group. OES EGL image external. [online; accessed 2022-
05-03]. Available from: https://www.khronos.org/registry/OpenGL/
extensions/OES/OES_EGL_image_external.txt

[42] ShaneCCC. Low latency camera and software drivers? [online; accessed
2022-04-10. Available from: https://forums.developer.nvidia.com/t/
low-latency-camera-and-software-drivers/109966/2

[43] Why Use Wayland versus X11? [online; accessed 2022-04-28]. Available
from: https://www.cbtnuggets.com/blog/technology/networking/
why-use-wayland-versus-x11

[44] Weston (Wayland) Windowing System. [online; accessed
2022-04-28]. Available from: https://docs.nvidia.com/
jetson/l4t/index.html#page/Tegra%20Linux%20Driver%
20Package%20Development%20Guide/window_system_
wayland.html#wwpID0E0FJ0HA

50

https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ji
https://www.usenix.org/conference/hotstorage16/workshop-program/presentation/ji
https://forums.developer.nvidia.com/t/bios/73787/3
https://forums.developer.nvidia.com/t/bios/73787/3
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootflow_jetson_nano.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootflow_jetson_nano.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/bootflow_jetson_nano.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/part_config.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/part_config.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/part_config.html
https://www.khronos.org/registry/EGL/sdk/docs/man/html/eglIntro.xhtml
https://www.khronos.org/registry/EGL/sdk/docs/man/html/eglIntro.xhtml
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external.txt
https://www.khronos.org/registry/OpenGL/extensions/OES/OES_EGL_image_external.txt
https://forums.developer.nvidia.com/t/low-latency-camera-and-software-drivers/109966/2
https://forums.developer.nvidia.com/t/low-latency-camera-and-software-drivers/109966/2
https://www.cbtnuggets.com/blog/technology/networking/why-use-wayland-versus-x11
https://www.cbtnuggets.com/blog/technology/networking/why-use-wayland-versus-x11
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/window_system_wayland.html#wwpID0E0FJ0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/window_system_wayland.html#wwpID0E0FJ0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/window_system_wayland.html#wwpID0E0FJ0HA
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/window_system_wayland.html#wwpID0E0FJ0HA

Appendix A
Acronyms

API application programming interface

CoM computer on module

CMOS complementary metal–oxide–semiconductor

CPU central processing unit

CSI camera serial interface

DDS Microsoft DirectDraw Surface

EGL embedded-system graphics library

eMMC embedded MultiMedia Card

FOV field of view

FP16 half-precision floating-point format

FPS frames per second

GDB GNU project debugger

GFLOPS giga floating point operations per second

GLM open graphics library mathematics

GLSL open graphics library shading language

GPIO general-purpose input/output

GPU graphics processing unit

HDMI high-definition multimedia interface

I2C inter-integrated circuit

51

A. Acronyms

I2S inter-integrated circuit sound

ISP image signal processor

JPEG Joint Photographic Experts Group

KTX Khronos Texture

L4T Linux for Tegra

LPDDR low-power double data rate

OGL, GL open graphics library

OGLES, GLES open graphics library for embedded systems

PCB printed circuit board

PCIe peripheral component interconnect express

PWM pulse-width modulation

RJ registered jack

rootfs root filesystem

RTOS real-time operating system

S3TC S3 Texture Compression

SD secure digital

SDK software development kit

SoC system on chip

SoM system on module

SPI serial peripheral interface

STL standard library

UART universal asynchronous receiver-transmitter

USB universal serial bus

52

Appendix B
Contents of enclosed CD

dist...distributable files
jetson-sd-card....................................SD card images

id jetson SD card image private key1

id jetson.pub.........................SD card image public key
jetson.img.zst.......................production SD card image

well....................................... implementation binaries
JetsonWell ARM64 executable compiled in release mode

src .. source codes
system-image.........source codes of the SD card image automation
thesis LATEX source codes of the thesis
well source codes of the implementation

video .. video files
00-latency-test.mp4 Camera processing latency test
01-home-dev.mp4..........................Home development setup
02-exhibit.mp4.................Museum exhibit before deployment
03-digital-exhibit.mp4 Museum exhibit after deployment

thesis.pdf..............................the thesis text in PDF format

1Change the reference key pair soon as possible.

53

Appendix C
NVIDIA L4T packages

55

Appendix D
SD card image build automation

structure

config.env.............environment variables for emulated environment
docker-compose.yml.....................Docker compose configuration
Dockerfile..........Docker image of SD card image build environment
files......................................configuration files for rootfs
packages..................................debootstrap packages cache
README.md...documentation
scripts..build scripts

000-build.sh.................starting point of SD card image build
001-base-system.sh.................base system using debootstrap
002-system-config.sh hostname and root password
010-repositories.sh........................additional repositories
011-nvidia.sh...................................NVIDIA software
012-network.sh.......................network renderer and firewall
013-ssh.sh SSH remote access
014-display.sh windowing system
015-runtime.sh........................application runtime libraries
016-development.sh development tools, libraries and header files
017-app.sh..................first-boot setup and application service
100-cleanup.sh......................clean up of cache and log files
200-create-fs-images.sh..........create various filesystem images
201-allocate-image.sh...............SD card image file allocation
202-create-partitions.sh create GPT table and partitions
203-write-partitions.sh......................populate partitions
300-export.sh.......compress SD card image with zstd compression

57

Appendix E
Rendering pipeline

59

Appendix F
3D model

61

F. 3D model

62

Appendix G
Development model view

63

Appendix H
Museum exhibit dimensions

65

Appendix I
Device dimensions

67

I. Device dimensions

68

	Introduction
	Goals

	Analysis
	Virtual mirror
	Requirements
	Performance
	Cooling
	Durability
	Recovery
	Dimensions

	Computer device
	System on Chip
	System on Module
	Candidates
	Raspberry Pi 4 B
	NVIDIA Jetson Nano

	Conclusion

	Camera
	Sony IMX219

	Design
	Digital exhibit
	Software
	Operating system
	Jetson Linux
	Vendor-provided SD card image

	Windowing System
	X Window System
	Embedded-System Graphics Library

	Graphics API
	OpenGL ES

	Libraries
	OpenGL Mathematics
	OpenGL Image
	Open Asset Import Library
	POCO C++ Libraries

	Platform-specific libraries
	NVIDIA Tegra Multimedia API

	Container formats
	DirectDraw Surface
	Filmbox

	Proof of concept
	OS optimization
	The approach
	Stripping
	Bootstrapping

	Minimal system installation
	NVIDIA packages
	Emulating the rootfs
	Cleaning up
	Packaging the rootfs
	Partition table
	Populating the partitions
	Automation
	Results

	Development environment
	Physical exhibit simulation
	Remote development

	Implementation
	Project structure
	Addons
	Application
	Graphics
	Math
	Utils

	Error handling
	Assertions
	Exceptions
	Logging

	Initialization
	Application
	Window
	Graphics context
	Physical camera
	Scene

	Main loop
	Retrieving camera frames
	Rendering
	Synchronization
	Flushing

	Rendering system
	Mesh
	Shaders
	Renderers

	Scene
	Walls
	Water
	Camera frame

	Deployment
	Overheating
	Glossy display surface
	Calibration

	Conclusion
	Future improvements
	Camera latency
	Wayland

	Bibliography
	Acronyms
	Contents of enclosed CD
	NVIDIA L4T packages
	SD card image build automation structure
	Rendering pipeline
	3D model
	Development model view
	Museum exhibit dimensions
	Device dimensions

