FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Assignment of bachelor’s thesis

Title: Software for Nixie clock
Student: Martina Bechynova
Supervisor: Ing. Matéj Bartik, Ph.D.
Study program: Informatics

Branch / specialization: Computer engineering
Department: Department of Digital Design
Validity: until the end of summer semester 2021/2022

Instructions

Design, implement, and test a control software for an embedded system containing a microprocessor
from the STM32WB series, which supports Bluetooth Low Energy (BLE) communication.

The software should:

- implement a clock and a calendar function, with the option to add additional features to the base
program,

- support setting the clock, the calendar, and any other parameters via a mobile application, using the
BLE interface,

- use the real-time clock (RTC) to keep time and date,

- operate the individual nixie tube segments to display the desired data.

Document the resulting code properly. The implementation can be done in any programming
language. However, C/C++ is preferred.

Electronically approved by prof. Ing. Hana Kubdtovd, CSc. on 14 February 2021 in Prague.

Bachelor’s thesis

SOFTWARE FOR NIXIE
CLOCK

Martina Bechynova

Faculty of Information Technology
Department of Digital Design
Supervisor: Ing. Matéj Bartik, Ph.D.
May 12, 2022

Czech Technical University in Prague

Faculty of Information Technology

© 2022 Martina Bechynova. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Bechynova Martina. Software for Nizie clock. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2022.

Contents

|Acknowledgments| vii
Declaration viii
Abstract ix
[List of Abbreviations| x
[1_Introduction 1
2 Analysis 3
2.1 Hardware Description] L 3
2.1.1 STM32WBI e 4

2.2 Bluetooth Low Energy| L 4
[2.2.1 Generic Access Profilel 5

[2.2.2 Advertisements| 6

[2.2.3 Connections|. 6

[2.2.4 Attribute Protocoll 7

[2.2.5 Generic Attribute Profilel 7

2.3 Imter-Integrated Circuit| 0 L 7

2.4 Serial Peripheral Interface oL 8

2.5 Real-time Clock|. 9

2.6 Stateof the Art L 10
2.6.1 Software in Ready-made Products| 10

[2.6.2 Software in Self-made Products|. 10

2.7 Requirementso e 10
2.7.1 Functional Requirements, 10

2.7.2 Nonfunctional Requirements| 11

2.8 Compatibility with NixieClock Android Application| 12
2.8.1 Commentary on BLE Communication Design 12

2.9 Manufacturer Resources| 13
2.10 Identified Problems 13
2.10.1 Alarm Sorting| 13

2.10.2 Determination of the Day of the Week 14

2.11 Chapter SUMMArY o v v v it e e e e e 15

3 Implementation 17
3.1 [Initial Functional Testing of the Device 17

3.2 Display Manipulation 17

3.3 RTC Manipulation 21
3.4 Running an Example BLE Application 21

3.5 Building the First Prototype] L 21

3.6 Showing the Date, Date Format 22

3.7 LED Blinking| 23

iii

iv Contents

3.8 RTC Power Backup| 23
3.9 GAP and Advertising Adjustments 23
3.10 Alarms|.o 23
[3.11 Tube Detoxification it 25
[3.12 Daylight Saving Time Management 25
3.13 Stopwatch 25
3.14 Timer| e 26
3.15 EEPROM Manipulation| 26
3.16 Development Tools| 28
3.17 Chapter Summary| 28

4 Testing 31
4.1 Methodology 31
4.2 Testing Tools| 31
4.3 Manual Testing| L 32
4.3.1 Clockl . . oo o 32

4.3.2 Alarms, Ringing, Manual Ringing Deactivation 32

[4.3.3 Stopwatch, Timer 32

[4.3.4 Tube Detoxification 33

4.3.5 MCU Timer Sharing« it 33

4.3.6 RTC Power Backup 33

4.3.7 Daylight Saving Time Management|. 33

A38 DISPIAY « o o o o e 34

4.3.9 LEDs e 34

4.4 Portability Testing L 34
4.5 RTC Desynchronization 34
4.6 Feedback on the NixieClock Application| 35
4.7 Chapter Summary| 36

5 Conclusion 37
[A Additional Photographs of the PCB Board] 39
B GATT and GAP Design| 43
|C Embedded System Schematic 47
D STM32WB55xx Block Diagram)| 49
[E Installation Guide 51
[E.1 Wireless Stack Installation o1
[E.2 Existing Projects 51
[E.3 New Ports oo 51
E.3.1 CubeMX Configuration) 51

E.3.2 Adjusting the Generated Code 54

E.3.3 Adding Helper Files, . 59

F Additional Photographs of the Clock] 61

[Contents of the Enclosed Storage Medium 71

List of Figures

1.1 A Z566M nixie tube [1]. 1
1.2 A Wang 700 Advanced Programmable Calculator [3]. 2
2.1 HV5623 serial converter block diagram [5].]. 4
2.2 The PCB of the embedded system. (© Matéj Bartik) 5
2.3 An example of a complete I?C data transfer [17“.‘ 8
2.4 SPI bus with one master and three slave devices. The SCK pin is called SCLK in \

this image. [19] 9
2.5 A CD47 nixie tube with cathode poisoning. The parts of the digit that are not \

illumating properly are highlighted in green. ﬂ35ﬂ 12
2.6 ST-supplied resources ﬂ39].\ 14
3.1 The STLINK-V3MINI programmer [45]. 18
3.2 Push-pull vs open-drain output [46]., 18
3.3 STM32CubelDE (screenshot done by the author of the thesis). 28
5.1 A fully-assembled nixie clock device. (© Matéj Bartik) 38
A1 A close-up image of the MCU segment of the PCB (© Matéj Bartik). 40
A.2 A close-up image of the power supply segment of the PCB (© Matéj Bartik). . . 41
A.3 A close-up image of one of the serial-to-parallel converters that manipulate the \

nixie tube display. (© Matéj Bartik). 42
C.1 Nixie clock schematic [4]. 48
D.1 STM32WB55xx block diagram [20]. 50
F.1 A front view of the clock. The clock is showing the current time. The LEDs \

blinking was in the off state at the time of taking the photograph. (© Matéj Bartik) 62

F.2 A front view of the clock. The clock is showing the current date. Only the lower

two LEDs are turned on to make it easier to differentiate between the time and

the date. (© Matéj Bartik) L o 62
F.3 A front view of the clock from a slightly higher angle. (© Matéj Bartik) 63
F.4 A side view of the clock. (© Maté&j Bartik) 63
F.5 A back view of the clock. (© Matéj Bartik) 64
F.6 A top view of the clock. (@ Matéj Bartik) 65

vi

List of Tables

List of Tables

3.1 Bit offsets for the display digits on devices using the HV5623 converter. 20
13.2 Bit offsets for the display digits on devices using the HV5523 converter. 20

I would like to express my utmost gratitude to my supervisor,
Ing. Matej Bartik, Ph.D., for his guidance and valuable advice given
during the course of the thesis. I also would like to thank my family
and friends for their moral support.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance with
Article 46(6) of the Act, I hereby grant a nonexclusive authorization (license) to utilize this
thesis, including any and all computer programs incorporated therein or attached thereto and
all corresponding documentation (hereinafter collectively referred to as the “Work”), to any and
all persons that wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This authorization is not
limited in terms of time, location and quantity.

In Prague on May 12, 2022

viii

Abstrakt

Cilem prace je vytvorit fidici software pro an miru vytvoreny vestavny systém, ktery obsahuje
mikrokontrolér z rady STM32WB a lze ovlddat pomoci Bluetooth Low Energy. Prace se zabyva
analyzou kladenych pozadavkl na software a jeho naslednym vyvojem. Prace klade duraz na
kompatibilitu s komplementarni BLE Android aplikaci, ktera byla pro zakazkové zarizeni vyvin-
uta, nezaobira se vsak jeji implementaci. Software byl napsan od zdkladi, nebot nebyl nalezen
zéddny vhodny existujici projekt, ktery by mohl byt pouzit jako vychozi bod. Vysledkem prace je
funkéni ridici software, ktery lze vyuzit na zminénych zakazkovych systémech nebo jako zdklad
v podobnych projektech.

Klicova slova STM32WB, vestavny systém, ridici software, Bluetooth Low Energy, Generic
Attribute Profile, Generic Access Profile, hodiny redlného ¢asu

Abstract

The aim of this thesis is to create control software for a custom-made embedded system using
an STM32WB microcontroller unit that can be configured via Bluetooth Low Energy (BLE).
The thesis concerns itself with analyzing the criteria placed on the software and the development
of said software. The thesis also places emphasis on compatibility with the complementary
BLE Android application that was developed for the custom device, but it does not cover the
development of the application itself. The software is made from the ground up, because no
suitable existing project was found that could be used as its basis. The result of the thesis is
functional control software that can be used on the custom-made devices or as a basis for a
similar project.

Keywords STM32WB, embedded system, control software, Bluetooth Low Energy, Generic
Attribute Profile, Generic Access Profile, real-time clock

ix

BLE
DIY
DST
EEPROM
GAP
GATT
GPIO
HAL
HSE
IoT
IPCC
12C
LED
LL
LSE
MCU
MSB
PPCP
ppm
PWM
RF
RTC
RX
SPI
X
UUID

List of Abbreviations

Bluetooth Low Energy

Do It Yourself

Daylight Saving Time

Electrically Erasable Programmable Read-Only Memory
Generic Access Profile

Generic Attribute Profile

General-Purpose Input/Output

Hardware Abstraction Layer

High-Speed External (oscillator)

Internet of Things

Inter-Processor Communication Controller
Inter-Integrated Circuit

Light-Emitting Diode

Low-Layer

Low-Speed External (oscillator)
MicroController Unit

Most Significat Bit

Peripheral Preferred Connection Parameters
parts per million

Pulse-Width Modulation

Radio Frequency

Real-Time Clock

Receive

Serial Peripheral Interface

Transmit

Universal Unique Identifier or Universally Unique Identifier

Chapter 1

Introduction

A nixie tube (see Figure , also known as a cold cathode display, is an electronic device
used to display numerals and symbols. The rare-gas-filled tube contains a wire-mesh anode and
multiple cathodes, which are shaped like digits or other symbols. When voltage is applied to
a cathode, the gas surrounding it lights up, illuminating the character. They were introduced
to the market in 1955 and were at the height of their popularity in the late 1950s and 1960s.
The tubes were often used as numeric displays in early technical equipment (such as voltmeters,
multimeters, calculators (see Figure’ﬁb, and frequency counters) and early desktop calculators.
The 1970s saw them being superseded by newer and cheaper technologies, most notably light-
emitting diodes and vacuum fluorescent displays. However, the story of nixie tubes does not end
there—ever since around the turn of the millennium, they have been slowly growing their niche
community, for they have charmed many with their retro appearance. Nowadays, they can be
usually seen in DIY or ready-made nixie clocks.

B Figure 1.1 A Z566M nixie tube [1].

This thesis is complementary to the “Control application for nixie clock for mobile phones”
bachelor thesis [2], whose goal was to create an Android application that can set up the custom-
made device used in this thesis.

This thesis aims to design, implement, and test a control software for a custom embedded

Introduction

B Figure 1.2 A Wang 700 Advanced Programmable Calculator [3].

system containing a microprocessor from the STM32WB series. One of the crucial requirements
is that the device should display the set-up time and date. The program should also provide the
extra features the mobile application contains (e.g., stopwatch and alarms). The solution might
be expanded with additional functions, should they be deemed necessary. Another important
criterion is that the software should allow setting up the device via the Bluetooth Low Energy
interface. The implementation of the communication should be compatible with the Android
application. Lastly, the software should use the real-time clock to keep time and date and show
the desired data on the nixie tube display.

This thesis is not going to delve into the development of the mobile application itself, it
only needs to ensure that the control software can communicate with the Android application
correctly.

This thesis and the Android application thesis work in tandem to offer a nixie clock solution
that uses BLE for configuration. Anyone can make use of the final product to create their own
nixie clock, and they can choose to either adopt the solution as-is or use it as a foundation for
their own project.

The thesis starts with the analysis, which explains the relevant terminology, describes the
traits of the custom embedded systems, and highlights the important parts of the Android
application thesis. It also pinpoints the software requirements in greater detail, talks about useful
manufacturer resources, and identifies problems the software has to resolve. The implementation
chapter details the development process, starting from the smaller projects used to find the
correct configuration of the crucial elements and ending with the initial prototype of the control
software, which was then gradually expanded with more features. The implementation chapter
also includes a brief mention of the tools required during development. The testing chapter
covers the tools and methods used for testing the software and presents the outcome of said
tests. Finally, the last chapter evaluates and summarizes the results achieved.

Chapter 2

Analysis

The analysis aims to cover the research portion of the thesis. First, the analysis describes the
hardware characteristics of the embedded system. After that, the analysis explains the terms used
in this text, summarizes the state of the art, and details the constraints the mobile application
places on the control software. Then the analysis analyzes any MCU (microcontroller unit)
manufacturer resources that can be useful for implementation. Some computational problems
encountered during development can be approached in more than one way—the final section of
the analysis strives to compare the available algorithms to select the most optimal one.

2.1 Hardware Description

The custom-made embedded system (the schematic can be found in Appendix @7 see Figure
and Appendix m for PCB photographs) uses an MCU from the STM32WB series. The device
has a display consisting of six nixie tubes that can be used to show data to the user. Each
tube can show the digits 0-9. The tubes require a high voltage (170 V) to properly illuminate
the digits. The high voltage narrows the list of suitable candidates for the components that are
exposed to it, as the components must be able to withstand it. [4]

The system uses two 32-channel serial-to-parallel converters to manipulate the display [4].
The converter (see Figure ’ﬂ) is implemented as a 32-bit shift register, where each bit controls
the value of a channel [5]. The channels are connected to individual nixie tube cathodes and
turn the cathodes on/off [4]. The converters also offer the option to latch and blank the output.
The MCU can communicate with the converters through SPT [4].

The system has four LEDs available to help indicate the type of data currently displayed on
the nixie tubes [4]. Each LED can be controlled separately [4].

The system contains a buzzer that can be used to generate sounds. The system also contains
an accelerometer that can be used to detect whether the user is shaking the device. The MCU
can communicate with the accelerometer through I2C, and the accelerometer also has access to
two pins that it can use to indicate an interrupt event. Additionally, the system contains an
EEPROM that serves as nonvolatile memory for the control software. The EEPROM uses the
same I?C bus as the accelerometer. [4]

The system has two external oscillators: one with a 32.768 Hz frequency (LSE), and the
other with a 32 MHz frequency (HSE). The LSE is intended to clock the RTC, as the MCU only
supports battery backup of the RT'C when the LSE is used as the clock source for the RTC [6].
The main purpose of the HSE is to power the radio system [6]. The embedded system has a
capacitor [4] that can be used to power the LSE and the RTC if a blackout occurs [6].

Due to chip shortages, some of the embedded systems have the HV5523 converter instead

Analysis

POL o
BL o
LE o
HV,,,1
DATA]] E >—
INPUT O— Latch _D,_j
CLK 0— T HV,,,2
Latch _D_:)D f
32-Bit J\ I~ ~ (Outputs 3 to 30
Shift ~~ <~ not shown)
Register HV,, 31
Latch _D_j):: |
I HVOUT32
DATA ;D__)j >—
OUTPUT & Latch 1

B Figure 2.1 HV5623 serial converter block diagram [gl

of the HV5623 model and the ADXL345 accelerometer instead of the ADXL343 variant. While
the accelerometers are interchangeable for the purposes of the control software, since they share
their register design ﬁ, gﬂ, the converter change affects the software, as the HV5523 model maps
shift register bits to channels in reverse order from the HV5623 model B, @ﬂ To resolve the issue
that the two converters have different output mappings, the software can use the EEPROM to
store information about the converter type used on the system.

2.1.1 STM32WB

The STM32WB MCU series is manufactured by STMicroelectronics. The wireless MCUs consist
of two cores: one Arm® Cortex®-M4 core that serves as the application processor and one Arm
Cortex-M0+ core that serves as the network processor. The MCUs support BLE 5.2 and IEEE
802.15.4 wireless standards such as Zigbee and Thread. The architecture is optimized for real-
time execution and allows flexible resource use and power management. See Appendix|D|for the
block diagram of STM32WB55xx MCUs.

The MCU series is divided into a few lines. The STM32WBx5 line offers multiple packages
and memory sizes, and it provides users with enhanced performance and flexibility to address
different levels of complexity. The STM32WBx0 value line focuses on the essentials and offers
a feature-optimized, cost-effective solution. Lastly, the STM32WBxM line of modules offers
the functionality of the STM32WBx5 line in a small LGA86 package with wide certification

coverage. [ZO]

2.2 Bluetooth Low Energy

Bluetooth Low Energy (BLE) is a type of Bluetooth that focuses on energy efficiency, making
it suitable for devices running on a battery. Unlike Bluetooth Classic, which is usually used for

Bluetooth Low Energy

0801278547 UrS00822

—2
x
a
o
)
P
=
o
@
<
~n
ol

B Figure 2.2 The PCB of the embedded system. (© Maté&j Bartik)

audio streaming, BLE focuses on applications that work with small amounts of data and lower
speeds (e.g., IoT). BLE can be used in smart or fitness devices, indoor locating, etc. [11]

The main advantages of BLE are its low energy consumption, free access to its specification
documents, and the presence of BLE on most smartphones on the market. It is suitable for
applications that transfer short bursts of data at low speed. However, this makes it inferior for
video streaming and large data transfers. [11]

The technology used to be unsuitable for audio streaming as well [11], but with the introduc-
tion of LE Audio, BLE can now be used for this purpose, along with Bluetooth Classic [12].

At an abstract level, a BLE device can either be in advertising mode, which enables the device
to send out data that can be discovered by others, or in connection mode. In advertising mode,
the data transfer is one-directional, while in connection mode, both connected devices transmit
data to each other. [13]

2.2.1 Generic Access Profile

The Generic Access Profile (GAP) defines how devices discover each other along with the adver-
tising and scanning procedures, and how they connect to each other and maintain the connection
afterward. This includes device roles, modes the devices operate in, connection parameters, ad-
vertising parameters, and security. [13]

GAP consists of two symmetrical pairs of roles. The first one is the Broadcaster and Observer
pair. A Broadcaster advertises data but does not accept connections, and an Observer reads the
advertisements and searches for other devices without initiating a connection. The second one
is the Central and Peripheral pair. A Central device not only searches for other devices and
reads their advertising data, but also has the option to connect to the advertisers. Analogically,
a Peripheral sends out advertisements and allows connections to be formed. [13]

The Central device is usually more capable (faster CPU, larger memory/battery capacity. ..),
while the Peripheral tends to be resource-constrained. By shifting most of the processing to the
Central, the Peripheral can turn off the radio and enter sleep mode for longer, allowing it to
conserve energy. A device can operate in multiple GAP roles at once, e.g., a smartphone can act
as a Central in one connection and as a Peripheral in another. [11]

(9}

Analysis

GAP modes are specific states a device can use to achieve a specific goal. They cover aspects
like discoverability, connectability, and security. [13]

2.2.2 Advertisements

Advertisements are packets a device can send to broadcast data or indicate that it might want
to be discovered and possibly connected to. They can indicate the advertiser’s connectability
and scannability status. When the advertiser is scannable, other devices can ask for additional
advertising data in a scan request. The packets can also signal whether the advertisement
is directed or not. Directed packets express the advertiser’s desire to connect to a specific
device. [14]

Advertisements can contain many types of information. The most common ones are the
device name, transmit power, and GATT Service UUIDs. If the advertisement packets are not
large enough to hold all the data the application wishes to expose, the program can utilize
the scan response feature. Bluetooth 5.0 has introduced so-called advertising extensions—these
mechanisms allow advertisements to transmit up to 8x more data. [14]

The device can choose how often it sends advertisements. The interval can range from 20 ms
to 10.24 s in increments of 625 ps. The advertiser can choose any subset of the three (primary)
advertising channels available. [14]

2.2.3 Connections

Connections are a mechanism that allows persistent and synchronized data exchange. They allow
devices to achieve the desired power consumption level and data rate more easily by adjusting
the connection parameters. [15]

After a connection is created, the Central device becomes the master, and the Peripheral
device turns into the slave. The master is responsible for managing the connection and makes
the final decision on the connection parameters. [15]

The process of establishing the connection starts with the Peripheral sending advertisements.
This allows Central devices to discover the device and initiate a connection. Only a Central is
capable of initiating a connection, a Peripheral merely advertises its ability to accept connections.
A Central device can respond to advertisements with a connection request, after which the
connection is considered to be created. After a set time period (the connection interval), the
master sends a packet. When the slave receives the packet and responds with a packet of its
own, the connection is considered established. [15]

The connection request packet contains important parameters that are needed to keep the
connection synchronized and persistent. The connection interval defines how often connection
events occur. A connection event starts with the master sending a data packet, and the slave
responds with a data packet that contains any data that the slave needs to transmit to the
master. If the slave does not have any data to send, it sends an empty packet. The slave latency
defines the number of connection events the slave can skip. If the slave has no data to send back,
it can ignore connection events, allowing it to sleep for longer. The supervision timeout defines
the period of time since the last data exchange after which the connection is considered lost.
Finally, the connection request packet contains the channel map and the channel hop increment.
Each connection event is on a different RF channel. The channel map defines which channels
can be used for the hopping mechanism. The hop increment helps to determine the next channel
to hop to. [15]

Inter-Integrated Circuit

2.2.4 Attribute Protocol

The Attribute Protocol (ATT) defines how a server exposes its data to a client and the structure
of said data. Data is sorted into attributes, where attribute serves as a generic term for any data
the server wishes to expose. [16]

An attribute consists of a 16-bit handle, an attribute type (also known as UUID), a value,
and a set of permissions. UUIDs can be 16-bit (SIG-adopted) or 128-bit (custom). Values have a
variable length and their format depends on the type. Finally, the permissions determine which
operations can be done with an attribute (e.g., write, read, notify) and their security level. [16]

There are two roles within ATT. A server device exposes the data it contains and accepts
commands from other peer devices. A client device interfaces with a server to read its exposed
data or control its behavior. A device can be both a server and a client at the same time. [16]

ATT defines the following packet types [16]:

= Commands
Packets sent by the client to the server. Commands do not require a response.

= Requests
Packets sent by the client to the server. Unlike commands, requests require a response from
the server.

= Responses
Packets sent by the server that serve as a response to a request.

= Notifications
Packets sent by the server to the client to indicate characteristic value changes. The server
will send notifications only if the client has enabled them. Notifications do not require a
response.

= Indications
Indications share the same traits as notifications, except they require a response from the
client.

= Confirmations
Packets sent by the client that serve as a response to an indication.

2.2.5 Generic Attribute Profile

The Generic Attribute Profile defines the format of services and characteristics and also details
the procedures to interface with these attributes. ATT is used as the underlying framework. [16]

A service is a grouping of related attributes that satisfy a specific functionality on the
server. A service can contain two types of attributes: characteristics hold values, while non-
characteristics help structure the service data. [16]

A characteristic represents a piece of information within the service. It also has additional
attributes that help to define the value it holds. One such example is properties, which describe
how a characteristic value can be used (e.g. read, write, notify). Descriptors hold additional
information about the value, such as the user description or fields for notification subscription.

GATT uses the same roles as ATT. Instead of being set per device, the roles are determined
by the transaction. Like in ATT, a device can act in both roles at once. [16]

2.3 Inter-Integrated Circuit

The Inter-Integrated Circuit (I?C) bus consists of two bidirectional wires: serial data (SDA) and
serial clock (SCL). These two lines carry information between the devices on the bus, all of which

Analysis

have a unique address. The protocol defines two pairs of roles for devices: transmitter/receiver
and master/slave. A transmitter device sends data to the bus, while a receiver device receives
data. A master device initiates a transfer, generates clock signals, and terminates a transfer.
The device addressed by a master fulfills the slave role. [17]

Each transaction (see Figure 2.3) starts with a START condition and ends with a STOP
condition. After the START condition, the slave address (7-bit or 10-bit long) is sent, followed
by the data direction (R/W) bit. The master can then send an unrestricted number of data
bytes. When the transfer is finished, the master can end the transaction by sending the STOP
condition, or it can transmit a repeated START condition if it wishes to address a different
device. After each byte, the receiver uses the acknowledge bit to indicate whether it has received
the data successfully, and another byte may be sent. Master devices may initiate a transfer only
if the bus is not busy. [17]

Since the protocol allows more than one master to be connected to the bus, multiple masters
might attempt to initiate a transfer at the same time. To resolve this issue, the protocol defines
an arbitration procedure. During each bit, each master device checks if the SDA level matches
the data it has sent. If a device tries to send a HIGH but detects a LOW on the SDA wire, it
knows that it has lost the arbitration and will terminate the data transfer. The winning device
completes the transaction, with no data loss occurring. [17]

The bus originally only supported up to 100 kbit/s operation (currently referred to as
Standard-mode), however, the specification has added four more operating speed categories over
time. The Fast-mode (< 400 kbit/s speed), Fast-mode Plus (< 1 Mbit/s speed), and High-speed
mode (< 3.4 Mbit/s speed) speed categories are downward-compatible, i.e., they allow devices to
operate at lower bus speeds. However, the Ultra Fast-mode (< 5 Mbit/s speed) is incompatible
with the other variants, since it requires a unidirectional bus. [17]

r—-1
I
I
I
I
I

-\ A O 00

-7
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I
I

i i |

I
I
I
I
I
I
I I
I I
I I
I I
I I
| |
I I
I I
I I
I I
I
I

: S : P

O J J |1 J J 1 J o2
START ADDRESS R/W ACK DATA ACK DATA ACK STOP
condition condition

B Figure 2.3 An example of a complete I?C data transfer [17].

2.4 Serial Peripheral Interface

The Serial Peripheral Interface (SPI) bus allows duplex, synchronous, and serial communication
between devices. It has four dedicated pins:

= Slave Select (SS)
The master can either use the SS pin to select which slave should communicate with it or for
mode fault detection. The pin is configured as an output in slave selection mode and input
in mode fault detection mode. The slave always treats the pin as an input.

= Serial clock (SCK)
In master mode, the device uses this pin to control the data shift registers of the slave device.
In slave mode, the SCK pin serves as the clock input.

Real-time Clock

= Master out/slave in (MOSI)
In normal mode, the MOSI pin transmits data from the slave to the master. In bidirectional
mode, the master uses the pin as serial data I/O (master out/master in, MOMI) and the
slave does not use the pin.

= Master in/slave out (MISO)
In normal mode, the MISO pin transmits data from the master to the slave. In bidirectional
mode, the slave uses the pin as serial data I/O (slave out/slave in, SOSI) and the master
does not use the pin.

During data transmission, the devices send and receive data simultaneously, using the serial clock
to synchronize the exchange. The master initiates transmissions, determines the transmission
speed, and uses the SS pin to select which slave to communicate with. The nonselected slaves
ignore any bus activity. See Figure|2.4 for an example of a multislave SPI bus. The clock polarity
(CPOL) and clock phase (CPHA) registers allow the SPI modules to operate in four different
clock formats.If CPOL = 1, SCK is high in idle state, if CPOL = 0, SCK is low in idle state. If
CPHA = 1, data sampling occurs at even edges of the SCK clock, if CPHA = 0, data sampling
occurs at odd edges of the SCK clock. [18]

SCLK » SCLK
MOSI » MOSI SPI
SPI MISO MISO Slave
Master SS1 p SS
'SS2
553
— SCLK
» MOSI SPI
MISO Slave
p| SS
—p»| SCLK
——» MOSI SPI
MISO Slave
—— P SS

B Figure 2.4 SPI bus with one master and three slave devices. The SCK pin is called SCLK in this
image. [19]

2.5 Real-time Clock

A real-time clock is a specialized hardware counter for keeping time. It is capable of automatically
making time- or date-specific adjustments, e.g., months having a different number of days or leap
years. It might also implement additional useful features such as alarms, clock calibration, or
battery backup. [20]

The MCU may have a built-in RTC (such is the case with most MCUs from the STM32WB
series) [10], alternatively the RTC can be external, in which case it communicates with the MCU
through a serial interface (e.g. I?C, SPI) [21, 22].

10

Analysis

2.6 State of the Art

2.6.1 Software in Ready-made Products

There is a notable selection of ready-made nixie clocks on the market. Differences between indi-
vidual products can range from visual aspects (number and type of tubes used, overall design. . .)
to more technical ones (technology used to set up the device, additional features...). [237 \24]
showcase a few different types of clocks. Some sellers offer the option of buying an assembly
kit HZE)] Customers that already own enough nixie tubes can take advantage of the no-tube
variants available [Z(S]

Devices can belong under a specific brand or be unbranded . Software in an unbranded
product might be more likely to be of inferior quality. However, if the seller has made the source
files and the hardware schematic public, this risk can be mitigated by checking the files.

Research by the thesis author suggests that both groups tend not to publish source codes
and hardware designs. Although there are examples of sellers that disclose the materials [23, ,
they appear to be on the scarce side.

Reusing parts of the software in ready-made products could potentially save time during
development. However, this advantage is overshadowed by the general issue of low portability of
embedded applications. This is because such programs usually need to work directly with the
hardware. No ready-made product that claims to use an STM32 microprocessor was found.

2.6.2 Software in Self-made Products

Some people have decided to create their nixie clock from scratch and have documented their
efforts. This includes projects with published source code and hardware schematics , both
of which can serve as inspiration for others. Like with unbranded, ready-made products, it can
be hard to evaluate how well-designed the device is without checking the resources. Using other
self-made solutions also suffers from the low portability of embedded applications.

There is no project that uses an STM32WB MCU, only a work that uses an MCU from the
STM32F1 series was discovered . As this solution diverges in major aspects like not using
BLE (or any other wireless technology) for device configuration, it is not suitable as a base for
the control software.

2.7 Requirements

This section aims to formalize the requirements the resulting application should meet. The
demands consist of the thesis assignment, the constraints required for compatibility with the
NixieClock application, the additional functions the Android application implements, the initial
draft of a more detailed assignment m, and any further details the thesis author and the
supervisor agree on. It is worth noting that the Google document serves as more of an outline
and may not be strictly followed—if the aforementioned parties decide to settle for a solution
that contradicts any points mentioned in the document, the agreement takes precedence.

2.7.1 Functional Requirements

Functional requirements, as the name implies, describe the functions and actions the application
should be able to perform.

= Clock and calendar
The application should show the time and date that has been set on the device.

Requirements

= Timekeeping
The application should keep time and date. It should utilize the RT'C to meet this condition.

m Automatic DST management
The application should automatically handle DST (daylight saving time) changes.

= Backup power supply
The application should utilize the RTC backup power feature to power the clock when the
main supply is off.

= Alarms
The application should allow the user to configure up to 10 alarms. The time and on/off
status can be changed separately. When an alarm is triggered, the digits on the display
should start blinking, and the device should start ringing. These actions should end after a
set period, or the user can end them early by shaking the device.

= Stopwatch
The application should implement a stopwatch function. It should show the current stopwatch
time on the display. The user should be able to start, pause, and reset the stopwatch at any
time.

= Timer
The application should allow the user to set a timer. It should show the time left on the
display. The user should be able to start, pause, and reset the timer whenever desired. When
the timer reaches zero, the application should notify the user by blinking the digits and
buzzing. The notification should end after a set period, or the user can dismiss it by shaking
the device.

= Parameter configuration
The application should allow the user to change the following settings: LED blink interval,
time display duration, date display duration, alarm ring duration, timer ring duration, and
date format.

= Nixie tube display operation
The application should use the nixie tube display to show any desired data.

= LED operation
The application should use LEDs to indicate the type of data currently shown on the display.

= Nixie tube detoxification
Nixie tubes can suffer from a phenomenon called cathode poisoning. When a cathode is lit
up, it releases particles into its surroundings, which get attached to the other digits. If a
cathode is not used for a longer period of time, these particles can accumulate into a thicker
layer. This causes parts of the digit not to illuminate properly or go completely missing (see
Figure @) To prevent this, the application should periodically cycle through all cathodes
to remove any buildup on their surface. [34]

2.7.2 Nonfunctional Requirements

Nonfunctional requirements define the attributes of the application and serve as constraints on
the design. They may be concerned with qualities such as security, performance, or scalability.

= Wireless communication technology
The application should use BLE to communicate with the device used to configure the em-
bedded system.

12

Analysis

B Figure 2.5 A CDA47 nixie tube with cathode poisoning. The parts of the digit that are not illumating
properly are highlighted in green.

= Compatibility with the NixieClock application
The application should be designed in a way that allows it to be set up by the NixieClock ap-
plication. This requires the implementation of a GATT server that follows the same structure
as the mobile application.

= Portability
The STM32WB microcontroller series is composed of several product lines. As the lines are
placed at different price points, the application should be as portable across the different lines
as possible. This allows a decrease in the cost of the device.

2.8 Compatibility with NixieClock Android Application

One of the crucial requirements is for the control software to be compatible with the android
application developed in the thesis “Control application for nixie clock for mobile phones” . To
meet this criterion, the software must follow the wireless communication design described in the
corresponding section of the document. This section serves as a summary, the full description
can be found in the original document.

The software should utilize the GAP and GATT profiles for BLE communication. The device
should act as a GATT server and a Peripheral device m

The application should adhere to the GATT and GAP design as defined in ﬁ] The server
should expose its data about the following functionalities: clock, alarms, stopwatch, timer, and
settings @ A more detailed summary of the design can be found in Appendix The advertising
packets should contain all service UUIDs and the connection interval @

2.8.1 Commentary on BLE Communication Design

The application shall adhere to the GATT server design defined by the Android application
thesis. The original design does not interpret some edge cases, so they shall be covered here. If
the LED blink interval is set to 0, the LEDs will remain on if the display is showing any data,
otherwise they shall be turned off. If the time display duration is set to 0, the device shall not
show the time when in clock mode. The same applies to date display duration. If both the date
and time display duration are 0, the display shall be empty in clock mode. Turning off ringing for
either the alarm or the timer, i.e. setting the respective duration to 0, shall also deactivate the
display blink cue. Although the original design does not mention this explicitly, since the timer
set time characteristic is write-only, the software design shall assume that any value written to
the characteristic is single-use. If a new set time value is received while the timer is running,

Manufacturer Resources

the timer shall restart with the new value. If the application receives invalid data on the GATT
server, it shall rewrite them with valid values. After reviewing the source code for the Android
application and the GATT server testing application in [2], it has been found that the Android
application transmits data of custom characteristics in big-endian order.

The design mentions that the minimum and maximum connection interval in the peripheral
preferred connection parameters characteristic should both have a value of 7.5 ms [2]. The
characteristic has two more parameters: the slave latency and the connection supervision timeout
multiplier [36]. Since the original design aims to maximize data transfer speed, the latency shall
be set to 0. The multiplier value shall be set to OXFFFF (no specific value requested).

The software cannot fulfill the proposed design of the advertising packet, as the MCUs cur-
rently do not support a packet size greater than 31 octets [37]. Although there is a scan response,
which can increase the amount of data that can be advertised, available, the size of this packet
must also not exceed 31 octets [37]. This is still not enough bytes to be able to advertise all
service UUIDs. As a compromise, the application shall at least advertise the UUID of the main
clock service, along with additional information.

The ST wireless library functions automatically insert certain data into the advertising packet
when setting up the discoverability mode, depending on its type [37]. In addition, the application
shall also include the complete local name, appearance, minimum and maximum slave connection
interval value, and LE role in the advertising packet. The scan response shall consist of an
incomplete list of 128-bit service UUIDs that contains the clock service UUID.

2.9 Manufacturer Resources

The MCU manufacturer offers a variety of additional resources that can be used for application
development. The control software itself can mainly benefit from the supplied drivers/middleware
and possibly example applications.

There are two categories of hardware drivers: Hardware Abstraction Layer (HAL) and low-
layer (LL) drivers. The main features of HAL drivers are their high level of abstraction and
portability. LL drivers offer a more optimized API at the cost of decreasing portability. The
application can even use both, as long as certain conditions are met. [38]

Since the goal of the control application is to be portable across the STM32WB MCU series,
it shall use HAL drivers whenever possible. It will only use LL drivers when the HAL variant
does not offer the required functionality.

The manufacturer also offers a wireless interface that is shared across the whole MCU se-
ries [37]. For this reason, the control software shall use this interface for BLE manipulation.

2.10 Identified Problems
2.10.1 Alarm Sorting

The design of the GATT server offers 10 alarms that the user can use [2|, but the RTC has only
two alarms available [20]. Since there are not enough hardware alarms, the software will need
to reschedule the alarm. To simplify the rescheduling process, the software shall keep a sorted
array of active alarms.

As alarm changes are an asynchronous event from the user, the software shall update the
event whenever any of the alarm data changes to keep the array ready for the next reschedule.
Since the software changes only one alarm at a time, it adds a new record to a nearly sorted
array, and therefore it may be able to take advantage of adaptive sorting algorithms. The small
size of the array (n = 10) may also impact which algorithm should be chosen. According to [40],
straight insertion sort should be a good candidate, as well as the new algorithm developed in
the article. The newly proposed algorithm combines straight insertion sort and quickersort with

13

14

Analysis

4)
Evaluation boards Discovery boards Nucleo boards Dedicated boards
Utilities
Application-level Demonstrations

- J/

/ —_— . . N\

((\ [\ (\)

usB . FAT
TCP/IP Host & Device Touch Sensing RTOS File System CcMSIS
\ VRN J U J

Middleware level) Utilities

J/

” BSP Drivers

Hardware Abstraction Layer (HAL)

BSP Components

Low-Layer APIs (LL)

\ Driverlevel)
\ /

B Figure 2.6 ST-supplied resources [39].

merging [40]. The new algorithm does not have a specific name and is only referred to as "new
sorting algorithm” [40|. As both algorithms have the same performance on very small and very
nearly sorted arrays [40], the software shall use straight insertion sort, since the other algorithm
requires more memory in the form of an additional array [40]. Should the number of alarms be
increased in the future, the potential speed increase achieved by using the new algorithm might
compensate for the additional memory it requires.

2.10.2 Determination of the Day of the Week

The Czech Republic observes DST: summer time begins at 2:00 on the last Sunday in March and
ends at 3:00 on the last Sunday in October. Therefore, the software needs to know the current
day of the week to automatically manage DST. However, the GATT Date Time characteristic,
which is used to represent the current time and date [2], does not contain this information [41].
As such, the software has to calculate the day of the week from the date. The application can
take advantage of the RTC having a day of the week field [6]: it can calculate the day of the
week when a characteristic write event occurs on the clock Date Time characteristic and update
the relevant field when setting up the RTC with the new time and date value. The RTC will
then automatically update the day of the week when necessary [6]. It is worthy of note that not
all countries observe DST, and even countries that do observe it might differ in when summer
time begins and ends.

The Rata Die algorithm [42] works on a simple basis: after choosing an arbitrary starting
date D, the algorithm keeps track of how many days have passed since D, which can be useful
for calendrical calculations. One of them is the determination of the day of the week. Since the
algorithm knows which day of the week D is, it can determine the day of the week of other dates
by calculating how many days have passed since D to the date and then using mod7 on the day
count to get the day of the week.

Another method of determining the day of the week is using Zeller’s congruence. The formula
goes as follows [43]:

h=(¢+ {WJ + K+ M(J + HJ —2J) mod 7 (2.1)

The variables in the formula have the following meaning [43]:

Chapter Summary

q the day of the month

m the month; January and February are considered the 13th and 14th month of the previous
year respectively

K tens and units of the year (year mod 100)

J year hundreds (|5 |)
h the day of the week the date falls on; 0 = Sat, 1 = Sun, ...

The formula works on Gregorian dates [43]. Zeller has also supplied a version for Julian dates [43],
but since the Date Time characteristic assumes a Gregorian date [41], only the Gregorian version
is needed.

Since the application does not benefit from other uses of day counting besides the day of
the week determination, the application shall use Zeller’s congruence. The congruence should
be easier to implement than Rata Die, as figuring out how many days have passed since D
might be a more complex task due to uneven days in months and leap years. The congruence
formula shall be used with a minor modification, since it is to be used in computer code. The
expression in the parantheses may return a negative value for some dates (e.g., 2002-04-19),
which may complicate the implementation, since many programming languages do not have
a modulus operator, only a remainder one. The formula can be modified to an equivalent
version that does not contain any subtractions using modular arithmetic. Since (a+b) mod m =
((a mod m) + (b mod m)) mod m [44], (a-b) mod m = ((a mod m) - (b mod m)) mod m [44], and
—2 =5 (mod 7), the formula can be modified to:

h=(q¢+ {%(T{;DJ + K+ “:J + MJ +5J) mod 7 (2.2)

2.11 Chapter Summary

First, the analysis described the characteristics of the target embedded device. The embedded
system uses an STM32WB MCU, which is a dual-core MCU capable of wireless communication,
including BLE. The display consists of six nixie tubes that can be controlled by a pair of serial-to-
parallel converters. Additionally, the device has four LEDs, two external oscillators, a buzzer, an
EEPROM, and an accelerometer. The system also implements a power backup system, allowing
it to drive the LSE and the RTC during power outages. Due to chip shortages, some devices
might use different component models.

The analysis then covered the relevant technology: BLE, I2C, SPI, and RTC. After that,
the analysis described the state of the art. As no existing solution that is similar enough to
serve as a basis for the control software was found, the software will be made from scratch. The
next topic was the requirements the control software should meet. The functional requirements
described the expected functionalities of the software, and the non-functional requirements named
the constraints the software should adhere to. The analysis then focused on what it means to
be compatible with the Android application created in [2] and gave feedback on the wireless
communication design. After that, the analysis covered the manufacturer resources that can
be take advantage of during development. The application will use the HAL drivers whenever
possible to maximize its portability. Lastly, the analysis identified the problems the control
software has to resolve and suggested an appropriate algorithm for each issue. The software will
use the Insertion Sort algorithm for sorting alarms and a slightly modified version of Zeller’s
congruence to calculate the day of the week from the date.

16

Analysis

Chapter 3

Implementation

This chapter covers the implementation process. The first steps consisted of resolving crucial
elements such as display and RTC manipulation. After that, a minimalistic initial prototype
of the control software was created with the aim of successfully combining the previous steps
together. The prototype was then gradually expanded with the desired functionalities.

3.1 Initial Functional Testing of the Device

The first step in the implementation process was to check whether the device was operational.
To begin with, the electrical characteristics of the circuit needed to be inspected. Measuring the
PCB revealed that its components are supplied with the desired voltage, and no short circuits
were detected.

After that, an MCU programming test had to be performed. LED blinking was an ideal task
for this purpose, as it was simple to implement and could be reused in the final application.
After consulting the schematic, an initial draft of GPIO configuration was created and used to
generate the initialization code. In the main program loop, the application turned all the LEDs
on, waited for a certain time period (e.g., 1 s), then turned all the LEDs off and waited once
again.

When the program was done, it had to be flashed into the device with a programmer. One
of the options available is the STLINK-V3MINI programmer (see Figure @), which was the
programmer of choice for this thesis. After the program was successfully uploaded, it was found
that while the LEDs blinked in the correct interval, the light they emitted was notably weaker
than it should have been. After rechecking the initialization settings, it was discovered that
the issue was with setting the pins to open-drain mode, which resulted in them not producing
sufficient voltage to drive the LEDs properly. After the GPIO mode was changed to push-pull,
the LEDs lit up properly. See Figure|3.2| for the difference between open-drain and push-pull
outputs.

3.2 Display Manipulation

The next step was to find out how to manipulate the nixie tube display correctly. The first
subtask was to configure the SPI peripheral, as it is used to communicate with the display.
Certain settings had to be chosen based on the converter (e.g., CPOL, CPHA), while some
were up to the developer to choose (e.g., bit order). After analyzing the waveform diagram
of the converters [g, 7 CPOL was set to 0 and CPHA to 1. The SPI data transfer size can
be set to 4-16 bits [6]. 16-bit size minimizes the number of transfers needed to rewrite the

17

Implementation

18

=1

NN AN ¢

™~
-

&

B Figure 3.1 The STLINK-V3MINI programmer [45].

open-drain output

inside puC

———— . ——— —

+Vpp

push-pull output

—_——— e ——— ———

inside puC

/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\

B Figure 3.2 Push-pull vs open-drain output [E]

Display Manipulation

display and divides the bit size of the display data without a remainder, making it the optimal
pick. Since the shift register output of the first converter is connected to the shift register input
of the second converter, the two can be thought of as a single 64-bit register. As such, the
application can construct the display data in a single 64-bit variable. For the same reason, the
SPI was configured to send data in MSB order, allowing the software variable to better reflect
the hardware implementation (the lowest bit of the variable corresponds to the lowest bit of the
”64-bit” shift register, ...). The application also had to manipulate the latch and the blank pin
appropriately. Display blanking was not necessary at the time, but latching was used to prevent
visual noise when changing display data.

To test the configuration, a simple program was made: it slowly shifted a bit through all
the shift register positions, allowing the developer to check whether the appropriate digit lit up.
Running the application showed that the digits were not being cycled through correctly: not
only did they light up in the wrong order, but sometimes two different digits were active at the
same time. To better determine the underlying issue, a logic analyzer was used to check the
signals sent to the display. Checking the signals revealed that the actual data sent to the display
did not match the data supplied to the HAL (Hardware Abstraction Layer API) SPI function.
To find out whether the problem was with the circuit or the MCU, an alternative version of the
application was created: instead of using the dedicated SPI peripheral, the signals were generated
using bit-banging. The bit-banging variant worked as intended, narrowing the potential culprit
to either the SPI peripheral or the software. To determine whether the SPI peripheral was
working correctly, one more variant of the application was created using LL (Low-Layer APT)
instead of HAL. The LL version also worked correctly, which meant that the initial version not
working correctly was related to the usage of HAL. After further experimenting, it was discovered
that the HAL version was not working correctly because the HAL SPI transmit function did not
receive the data in the correct format. The data parameter is defined as uint8_t* [38], so the
application originally split the data into a byte array before passing it to the function. However,
it was discovered that the data format depends on the transfer bit size. E.g., for 16-bit transfers,
the function behaves correctly if it is passed an uint16_t array, while it malfunctions if it passed
an uint8_t array. The situation is reversed for 8-bit transfers: passing an uint8_t array results in
the appropriate behavior, but passing an uint16_t array breaks the function.

The final part of the SPI configuration tests was to determine whether it was better to set
the latch pin as a regular GPIO pin or as the SPI SS pin. After examining the behavior of both,
the regular GPIO pin solution was selected. The issue with the SPI variant was that it unlatched
the display after each data transfer, which is undesirable, because transfers only transmit 4-16
bits at a time 6], making it impossible to rewrite the shift registers in a single transfer.

With the SPI configuration completed, it was time to implement proper display manipulation.
To light up a specific digit on a specific tube, the application needs to know the bit position that
is responsible for manipulating that digit on that tube. The two display converters have 64
channels in total, while the display only has 60 digits, which means that some channels do not
control any digit. The application can take advantage of the sequence in which the digits are
ordered to account for the four unused channels. The bits corresponding to the digits of a specific
tube are always in succession, and the order of the digits within the bit range of a tube is always
the same (Table ’3T and Table ’372 illustrate this pattern). As such, the position offset can be
split into two numbers: the offset of the first of the 10 bits corresponding to a tube, and the
offset of the specific digit from the first tube bit.

To test whether the offsets were calculated correctly, a simple program was made: it cycled
through the digits and showed that digit on all tubes at once (i.e., light up digit 1 on all tubes,
light up digit 2 on all tubes, ...). The results showed that the solution was mostly functional, but
some offsets were not counted correctly. After replacing the faulty values, the solution worked
as expected.

19

20

Implementation

OPT1 | OPT2 | OPT3 | OPT4 | OPT5 | OPT6
Digit 1 | 2 12 22 34 A4 54
Digit 2 | 3 13 23 35 15 55
Digit 3 | 4 14 24 36 46 56
Digit4 | 5 15 25 37 A7 57
Digit 5 | 6 16 26 38 48 58
Digit 6 | 7 17 27 39 49 59
Digit 7 | 8 18 28 40 50 60
Digit 8 | 9 19 29 41 51 61
Digit 9 | 10 20 30 42 52 62
Digit 0 | 11 21 31 43 53 63

B Table 3.1 Bit offsets for the display digits on devices using the HV5623 converter.

OPT1 | OPT2 | OPT3 | OPT4 | OPT5 | OPT6
Digit 1 | 29 19 9 61 51 41
Digit 2 | 28 18 8 60 50 40
Digit 3 | 27 17 7 59 19 39
Digit 4 | 26 16 6 58 48 38
Digit 5 | 25 15 5 57 a7 37
Digit 6 | 24 14 1 56 46 36
Digit 7 | 23 13 3 55 15 35
Digit 8 | 22 12 2 54 A4 34
Digit 9 | 21 11 1 53 43 33
Digit 0 | 20 10 0 52 12 32

B Table 3.2 Bit offsets for the display digits on devices using the HV5523 converter.

RTC Manipulation

3.3 RTC Manipulation

One of the crucial requirements is that the device keeps time and date accurately using the
RTC. The LSE is the only RTC clock source that can be supplied by the power backup mech-
anism [6]. Since this feature will be essential for the RTC power backup functionality, the LSE
was chosen to clock the RT'C. The asynchronous (PREDIV_A) and synchronous (PREDIV_S)
prescalers must have the appropriate values for the RTC to keep time properly; specifically, they
must fulfill the following formula: < PREDIVj]ﬁ?(CPLgE BTV ST — L [6]. If both prescalers are
necessary, the configuration should aim for the highest possible PREDIV_A value to minimize
power consumption [6]. Taking the aforementioned points and the LSE frequency (32.678 Hz)
in consideration, PREDIV_A is set to 127 and PREDIV_S to 255. The current aim was merely
to assess if the RTC kept time correctly, so the time and date registers were kept at the default
values.

To test the RT'C configuration, a program was made that would print the new time and date
value whenever the RTC counter got incremented. To keep the prints synchronized with the RTC,
the application can make use of the RTC wake-up flag and its corresponding interrupts. The
1 Hz wake-up frequency was chosen, as it allows the application to immediately react to the RT'C
counter updating, while keeping the number of interrupt events at the minimum value needed.
After verifying that the application prints new values at the correct interval (i.e., every second),
the program was left running for a few hours so that the print output could be checked for any
inconsistencies in RTC counter incrementation. The output did not indicate any problems, and
the RTC appeared to work correctly.

3.4 Running an Example BLE Application

Another important criterion is that the control software is capable of communicating via BLE.
One of the manufacturer-provided example applications was generated to test radio communi-
cation. However, the program was not working correctly. After consulting STForums, multiple
issues were found. The first problem was that the author of the thesis did not generate some
of the necessary interrupts, resulting in the application crashing. For BLE communication to
work, the application needs to implement the HSEM (hardware semaphore) interrupt, the IPCC
(inter-processor communication controller) RX and TX interrupts, and the RTC wake-up inter-
rupt. The second problem was that the author of the thesis did not correctly configure the RF
wake-up clock source. RF wake-up can either be clocked by the prescaled HSE or the LSE. The
chosen clock source must be reflected in the CFG_BLE_LSE_SOURCE macro in the app_conf .h file.
Lastly, it was discovered that the secondary MCU core (Cortex-M0 based) must be flashed with
an appropriate wireless stack for BLE applications to work properly (see Appendixm. After
the aforementioned issues were resolved, the example application started working as expected.

3.5 Building the First Prototype

After resolving the previous steps, it was time to slowly start building the control software. The
goal of the first prototype was to show the current time and to implement the GATT server.
This iteration did not yet need to react to the user changing data in the server; the aim of this
prototype was just to test whether the server data can be read and set.

The initialization generation tool is capable of generating most of the BLE source code,
but it is not suitable in this case, as the tool can only generate up to five services with up to
five characteristics, which is not enough to meet the server design. To save time, the control
software will reuse the BLE source files from the GATT server emulator developed in the Android
application thesis [2]. The source files can be found in the STM32_WPAN/App folder. Most of the
files were left as-is, excluding some minor refactoring. The main exceptions are the custom_app

21

22

Implementation

files: these are meant to implement the BLE application and will therefore undergo extensive
changes over the course of the implementation. The manufacturer also offers additional utilities
for BLE applications: the sequencer implements a simple background scheduling function, while
the timer server provides virtual timers for the application to use [47]. The application makes
use of the sequencer, as it would have to implement a similar functionality otherwise. However,
the timer server will not be used if possible, as the dedicated timers should offer better precision.

Since the application will grow larger as more functionalities are implemented, an application
controller structure was added to store any data needed for the program to behave correctly. To
show the current time, the application has to implement a date/time update task and a display
update task. The date/time update task updates any relevant application data, update the clock
GATT service, and schedule a display update. To keep the date/time update task synchronized
with RTC counter updates, the application uses the RTC wake-up interrupt to schedule said
task. The display update task has to rewrite the display data according to the state of the
application. In this iteration, the display was always in clock mode, and the clock state was set
to time display.

The application also needs to react to data changes in the GATT server. When the server
software receives a write command, it creates an application notification containing the rele-
vant information such as the characteristic being changed, the data itself, or data length. The
application then processes said notification: it validates the data if necessary and updates the
corresponding application data.

Running the application revealed that the software did not update the display correctly. The
application did not work properly because the timer server uses the RT'C wake-up flag to measure
time, placing some constraints on the application even when the server is not running any timers.
Firstly, the timer server does not support the 1 Hz wake-up frequency option, which was what the
application was using. The server only supports the RTCQC LK. RTCf LK RTICCLK oy BICCLK
wake-up frequencies. Secondly, the timer server automatically turns off the RTC wake-up flag
functionality if there is no active timer running on the server. To fix the problem, the application
switched to the % wake-up frequency, which invokes the least extra interrupts out of the
viable options, and created a dummy timer on the timer server. The CFG_RTC_WUCKSEL_DIVIDER
macro in app_conf.h must match the selected wake-up frequency. To test whether the GATT
server and the notifications work correctly, the application printed out the received data whenever
it received a notification. The tests revealed that the notifications and the GATT server behave
as intended.

3.6 Showing the Date, Date Format

The next step was to switch from only displaying the time to displaying both the time and the
date. The switching was done with a timer: the timer can be configured to measure the time
period the specific data type should be displayed for, and when said period elapses, the timer
can change the clock state and schedule a display update. TIM2 was chosen to manipulate the
display, as it has the biggest autoreload register (ARR) out of the available timers [6], allowing for
more precise time measurements. To measure the desired period, the application takes advantage
of ARR being large enough to hold the time/date display period by setting ARR to the respective
period and the prescaler to a millisecond’s worth of timer clock ticks (all time periods in the
GATT settings service are in ms). To show the date in the correct format, the application checks
which format should be used and adjusts the display data calculation accordingly. Specifically,
the application changes the tube positions of the day of the month, the month, and the year to fit
the selected date format. Running the application revealed that the application switched between
showing the time and the date in correct intervals, the display data matched the RTC counter,
and that the software showed the date in the selected format. Additionally, the application
reacted to changes in the respective GATT characteristics appropriately.

LED Blinking

3.7 LED Blinking

To avoid using the TIM1 timer, which is the only timer with access to the buzzer pin, and
the TIM16/TIM17 timers, which are not present on all STM32WB lines, the application uses
one of the low-power timers, specifically LPTIM1. However, even when at the smallest timer
frequency, the low-power timers do not have large enough registers to measure the larger LED
blink interval values in a single run. To remedy the issue, the application calculates how many
timer ticks correspond to the desired time period and then keeps track of how many ticks are
left until the period elapses. When the counter hits zero, the application changes the LED state
and schedules the LED update task, which turns the LEDs off/on according to the LED state
and the data being displayed. To make it easier to distinguish between the time and date in
clock mode, the application only turns on the lower two LEDs when showing the date. If LED
blinking is turned off, the LEDs are left on if the display is showing any data, otherwise they are
turned off. Running the application showed that LED blinking worked correctly, and changing
the interval value in the GATT server resulted in the application updating the timer to work
with the new value.

3.8 RTC Power Backup

At start-up, the application should check whether the power backup system RTC was kept
running while the device was powered off. The application checks whether both the RTC and
the LSE are running (LSEON, LSERDY and RTCON bits in the RCC_BDCR register [6]) at
start-up and skips their initialization if they are, allowing the device to retain the configured
time and date. Testing the application revealed that on some devices, the program would restart
the RTC despite being charged for extended periods of time. It was discovered that the MCU
has a dedicated register for activating power backup (bits VBE and VBRS of the PWR_CR4
register [6]) that the application did not enable. After the shortcoming was fixed, the backup
mechanism worked correctly.

3.9 GAP and Advertising Adjustments

There were some adjustments left to do on BLE communication: the Peripheral Preferred Con-
nection Parameters (PPCP) characteristic, the scan response and the advertising data had not
been configured properly yet. PPCP initialization should be done in the GAP initialization func-
tion (Ble_Hci_Gap-Gatt_Init function in app_ble.c), as it is a GAP characteristic. The function
now updates the characteristic data with the values defined in Section Advertising data
can be set up using the function responsible for activating discoverable mode [37]. The scan
response can be set up in a similar manner—the wireless interface offers a function that can fill
the scan response with the desired data [37]. In the Adv_Request function in app_ble.c, which
is in charge of starting the advertising process, the application sets both the scan response and
advertising data. After the aforementioned changes were added, the PPCP, the scan response
and the advertising packets contained the desired data.

3.10 Alarms

The program uses one of the RTC alarms for the user alarms. To make the alarm ring at the
desired time, the application sets the time registers accordingly and takes advantage of the alarm
masks to ignore the date registers. When the RTC alarm time and the current time match, the
alarm raises a flag, allowing the application to react accordingly. When an alarm gets triggered,

23

24

Implementation

the application should notify the user by buzzing and flashing the display. It also needs to
reschedule the RTC alarm to the next user alarm.

The application uses two arrays to store alarm data. The first one stores the active alarms,
where a record consists of the alarm time and a counter of how many alarms have been set up
for said time. The second one is a copy of GATT server data, which is needed to update the
active alarms array correctly (e.g., when the time on an active alarm is changed, the application
needs to remove the previous value from active alarms first).

Two timers are required to implement the buzzing: the first one is in charge of generating the
PWM signal and the second one measures the ringing period. Since TIM1 is the only timer with
access to the buzzer pin, it has to be used for PWM generation. The timer generates a 2300 Hz
signal, because the buzzer performs at its highest sound level at said PWM frequency [48|. That
means that only LPTIM2 remains for measuring the ringing period. Using LPTIM2 has the
same problem encountered in LED blinking—since the timer cannot measure larger periods of
time in one run, the application has to keep track of the elapsed timer ticks here as well. The
application should also flash the display during alarm notifications. If LED blinking is turned
on, the flashing is synchronized with the LEDs. If the blinking is turned off, the application
reuses the LED timer to flash the display for the duration of the buzzing. If a new alarm trigger
event occurs while the ringing is still on, the new event terminates the previous ringing early and
restarts it.

After running the application, it was discovered that the alarms did not trigger notifications
successfully. To simplify the process of debugging, a different, simpler program was made to
test the RTC alarm configuration. Experimenting with the testing program revealed that the
RTC alarms were set up correctly, but adding BLE code prevents the RTC alarm interrupt from
triggering. The issue was encountered in all of the tested example BLE applications. As the root
cause was not found, a workaround was implemented: since the hardware interrupt flags work
properly, the date/time update task can check the flag and call the interrupt function manually
if needed. Adding the workaround resulted in the application working as intended.

To allow the user to deactivate the ringing early without having to use the Android appli-
cation, the application uses an accelerometer to detect movement. The user can then move the
device to indicate that the ringing should be turned off. The accelerometer can detect (in)activity
in general, and it can also be configured to react to more complex types of movement such as
single/double-tap. The application does not need to concern itself with how the user moves the
device, it merely needs the information that the device is being moved. As such, the accelerome-
ter was configured to react to activity on any of its axes. When the activity threshold is crossed
on any axis, the accelerometer generates an interrupt. Setting the two accelerometer pins in
interrupt mode allows the application to react to the user shaking the device with minimal delay.

Testing the accelerometer configuration in a separate program showed that the EXTI inter-
rupts also do not work with BLE applications. To remedy the issue in the control software,
the date/time update task also checks the interrupt pins and calls the corresponding interrupt
if needed. It was also found that the device only called the interrupt on the first activity event
and ignored any subsequent ones. When an interrupt gets triggered on the accelerometer, the
accelerometer latches the interrupt pin output until certain registers are read. Since the applica-
tion did not read any of said registers, the pin output would not return to the idle state, so the
test application was unable to detect any successive activity events. The program was changed
to read one of the registers after an interrupt gets triggered, which resulted in the desired be-
havior. As such, the configuration was applied to the control software, where no further issues
were discovered.

Tube Detoxification

3.11 Tube Detoxification

After analyzing the equivalent functionality in other nixie clocks (see Section, it was observed
that the detoxification routine is often done on the frequent side. On the other hand, the routine
should not take too long, as it might interfere with the user trying to use the device. As a
compromise between the two, the application sets the second RTC alarm to trigger every hour,
after which it begins the detoxification procedure: in cca 30 seconds, it cycles through all the
digits to remove any buildup on the cathodes. Since the device cannot show the time/date and
detoxify the tubes at once, the application reuses the TIM2 timer to change the digit every
500 ms. Detoxification places no particular constrains on how to configure the PSC and ARR
registers, so the application just sets PSC to 0 and ARR to 500 ms’s worth of ticks. Instead
of staying on a single digit for longer periods of time, the application lights up a digit multiple
times for shorter periods, as the latter option makes it easier to indicate that the behavior is
intentional and that the device has not malfunctioned. The second RTC alarm suffers from
the same interrupt issues as the first one, and the same workaround is used here. Running the
application revealed no problems with the detoxification functionality.

3.12 Daylight Saving Time Management

As mentioned in Section [2.10.2, the Czech Republic observes DST, so it was decided that the
application should automatically manage the DST changes. Automatic DST is more comfortable
for the user, as they do not have to remember to update the clock manually. As DST observation
differs across the globe, this section of the application might have to be adjusted for the country
the clock will be used in. The application uses the dedicated RTC DST registers to change the
time. The ADD1H and SUBI1H are write-only registers that add/subtract one hour from the
current time respectively [6]. The advantage of using them is that they do not require the RTC to
enter initialization mode to be used, allowing the application to change the time without having
to stop the RTC [6]. Additionally, the RTC contains a bit that the application can use to store
DST status [6]. The program takes advantage of the hourly RTC alarm already used for tube
detoxification and also performs a DST check.

The April-September month range always falls under summer time; likewise, the November—
February range can fall under standard time. March and October require further inspection,
as they can belong in either category. If it is not the last week of the month, the DST change
has not yet happened. In the last week of the month, the application has to check whether the
current day is Sunday and whether the hour matches the times when the change should occur.
When both conditions are met, the application changes the DST accordingly. Additionally, the
program has to account for the possibility that the DST change occurred while the device was
off. To determine whether that is the case, the application checks whether the next Sunday
overflows into the next month or not. If it does, the DST change has already happened, and the
application needs to change the RTC time accordingly.

Testing the application revealed that the DST change occurred at the designated time, but
the application also kept adding/subtracting an hour at every hour mark after the DST change.
It was discovered that the thesis author misunderstood how the DST registers should be used;
after adjusting the application logic to reflect the intended usage, the application worked as
expected.

3.13 Stopwatch

Since there is only one display, the application reuses TIM2, which was only used to switch
between displaying the time and the date so far, for the stopwatch. Using TIM2 also reduces the
number of timers the application requires to run. When in stopwatch mode, the timer sets PSC

26

Implementation

to 0 and ARR to one second’s worth of timer clock ticks. Minimizing the PSC value allows the
application to store the subsecond count when the stopwatch gets paused. The current prescaler
count cannot be accessed [6], the count will be lost if the device has to switch to a different mode.
Setting PSC to 0 results in clock ticks immediately propagating to the CNT register, whose value
can be read and saved for later use. When unpausing the stopwatch, the application can set
CNT to the stored value, preserving the subsecond value. After each second, the timer updates
the stopwatch time and schedules a display update. For simplicity, the application keeps showing
stopwatch data as long as the stopwatch is not turned off. When the stopwatch is turned off,
the application resets the time to 0 and returns to clock mode.

The application shows the time in the HH:MM:SS format, and days are displayed in the
equivalent number of hours (e.g., 2 days’s worth of seconds shows up as 48:00:00). Due to the
size of the display, the application only shows the hour tens and units.

Since the stopwatch counts up, the time variable will eventually overflow. The stopwatch
time is in seconds, and the data type of the GATT characteristic and its corresponding variable
is uint32, so the time will overflow in cca 136 years. The author of the thesis has evaluated
that the chance of the user running the stopwatch for such a period of time is minimal, so the
application does not perform any special actions in the event of an overflow.

Testing the application revealed that the stopwatch was mostly functional, except that the
counter instantly jumped to 1 s instead of starting at 0 s. The skip was caused by the application
not clearing the timer update interrupt flag, which is raised during timer initialization. When the
timer was started, the flag immediately triggered the update interrupt, which is responsible for
incrementing the counter. Clearing the flag before starting the timer resulted in the application
acting correctly.

3.14 Timer

In principle, the timer is very similar to the stopwatch. The main differences are that the timer
is counting down instead of up and that it should start buzzing and flashing the display when
the timer is done. The timer also uses the TIM2 timer to update the counter every second, and
the timer registers are configured in the same manner. The application stores the CNT register
value for the timer as well, to preserve the subsecond count. Since the stopwatch and the timer
functions share the same MCU timer, the application has to define an arbitration process. The
application allocates the MCU timer on a first-come-first-serve basis: if one of the two is currently
using the MCU timer (i.e., the status of the functionality is ”turned on”), application does not
allow the other to be started. If the application is in either the timer or stopwatch mode, but
the counter is paused, the application allows the other functionality to be started. If both are
paused, the application shows the most recently started of the two on the display. For a more
consistent behavior, the application checks the status of the other function when either of them
is being turned off, and switches to showing the other function if it is in paused mode. As such,
the application only shows the clock if both the stopwatch and the timer are turned off (paused
does not count as turned off in this context).

The application also uses the same MCU timer for both alarm and timer ringing. If an alarm
or the timer gets triggered, any currently running buzzing gets ended early, and the buzzing is
started anew, with the ringing duration depending on the ringing source (alarms and timers can
be configured for different ringing durations). Testing the application revealed no issues with the
timer function.

3.15 EEPROM Manipulation

The preliminary step to managing the EEPROM is evaluating what information to store in it.
It has been decided that EEPROM should store the following:

EEPROM Manipulation

= Display converter type
Storing the converter type allows the application to adjust the calculation of the display SPI
data accordingly, without having to recompile the program to match the used converter.

= Year hundreds
The RTC can only store year tens and units [6]. Setting 20 as the default year hundreds
value can cover the situation where the user synchronizes the device with the current time
reasonably well, but the user might wish to set it to a time that falls outside of the current
year hundreds. Storing the year hundreds in the EEPROM allows the application to retain
the correct year hundreds value even after shutting down.

= Data in the GATT settings service
Storing the settings allows the application to recover the user-set values after power outages,
which is more comfortable for the user.

The aforementioned data should not change often, and storing them brings merit to the appli-
cation. However, the application does not store the following data in the EEPROM:

= Alarm times and statuses
= Stopwatch time and status
= Timer time and status

The values of the above characteristics are expected to change frequently, so storing them in the
EEPROM would negatively impact its lifespan. The converter type gets written in the EEPROM
during its initialization only and is treated as read-only afterward. The remaining data are also
initialized to the default values used in the application, but they may also need to be updated
when the corresponding GATT characteristic changes. To avoid wearing down the EEPROM,
the application does not write in the EEPROM if the old value matches the new value. To
simplify the application design, the EEPROM stores multibyte data in the same endianness as
the GATT server.

The initial version of the EEPROM read/write functions was kept simple: it read from and
wrote to the EEPROM byte by byte. Testing the functions revealed that the write function failed
when it attempted to write multiple bytes in succession. The EEPROM does not acknowledge
the master while it is processing a write request [49]. When the application attempted to write
the second byte, the EEPROM did not acknowledge I2C' transmission. It appears that the HAL
I?C function used does not reattempt the transaction, so the function returned a fail status after
not getting acknowledged by the EEPROM. Since the write function needs to check the return
status for other possible I2C errors, it was edited to wait until the EEPROM write cycle elapses
after each transaction, thus eliminating the EEPROM being busy processing a write request as
a possible cause of the error. Adding the delay loop fixed the problems with the EEPROM write
function.

After testing the basic version, a more elegant solution was made. The EEPROM allows
sequential reads: as long as the MCU keeps responding with ACK (acknowledge), the EEPROM
increments the address counter and sends the corresponding byte [49]. Sequential reads do not
place any data size limits [49], so the EEPROM read function can just read the desired data in
a single transaction. The EEPROM also supports writing multiple bytes at once, but the data
size of the transaction must not exceed the page size, as the EEPROM would start rewriting the
previously transmitted data [49]. As such, the EEPROM write function has to split the data
into multiple transactions if the data size exceeds the page size. Testing the improved version
revealed no problems.

27

28

Implementation

[workspace_1.6.1 - rev2wb35ce/Core/Src/main.c - STM32CubelDE - X
File Edit Source Refactor Navigate Search Project Run Window Help
[m] [B-&-@iw SR - S-E- G- % -0 - Q- b-F-vr e 0 Q s |Em
[Project Explorer [C/C++ Projects 1% |E% 8 = 8 [nixecompi.] nixie.c [8) custom _app.c [€] main.c 52 [g rtec [nixie_compil. [8) spic = =08 =&
[3 Iptim
0 re2
% Binaries
£l Includes
v 5 Core
= Inc
& S
(= Startup
(3 Drivers
(= CMsIS
(= STM32WBix HAL Driver
v (2 Middlewares
@ ST
(& STM32_WPAN
G App

a5 /* IPCC jnitialisatien */ ~ Ox
MX_TPCC_Tnit(); l”’}

/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */

/* Initialize all configured peripherals =/
MX_GPIO_Init();
MX_LPTIML Init();
MX_LPTIMZ Init();
MX_RF_Init();
MX_RTC_Init();
()5

MX_TIMI_Init();
MX_TIMIZ_Tnit(); v

(&= Torget [#] Prob.. & Tasks B Con.. 57 [0 Prop.. [f)Buil. = Stati. = 8 4D x 4'S PP @F %S ST HIR =D =0
5 Utilities - = i £
(= Debug Mo conseles to display at this time.

(= Rubbish
L] desktop.ini

[revzioc

2] rev2.launch

| STM32WBS5CGUX_FLASH.Id

W STM32WBS5CGUX_RAM.IA
v [rev2wb3sce

3 Binaries

[l Includes

(2 Middlewares
(2 STM32_WPAN
2 Utilities

(= Debug
71 v dh25m e ©

B Figure 3.3 STM32CubelDE (screenshot done by the author of the thesis).

3.16 Development Tools

STMicroelectronics has created a free development environment called the STM32Cube Ecosys-
tem, which will be used to develop the control software. The ecosystem offers four main tools: m

m STM32CubeMX
A tool that allows developers to easily generate peripheral initialization code for any of the
STMicroelectronics MCUs.

m STM32CubelDE
An open-source IDE (see Figure ’ﬁ) that includes compilation reporting and advanced debug-
ging features, and it also integrates other tools from the ecosystem (e.g., STM32CubeMX).

= STM32CubeProgrammer
A programming tool that provides an easy-to-use environment for reading, writing, and ver-
ifying devices / external memories.

m STM32CubeMonitor
A family of monitoring tools that help developers fine-tune the behavior and performance of
their applications in real time.

3.17 Chapter Summary

Before starting any development, the electrical characteristics of the device were checked, and
a programming test of the MCU was performed. After confirming that the device was opera-
tional, several separate applications were made to test the implementation of the core features
of the control software. Specifically, the applications tested display and RTC manipulation and
BLE communication. To manipulate the display properly, the application has to use the SPI
peripheral correctly and has to be capable of calculating the display data based on which digits
the application desires to light up on the nixie tubes. With the RTC properly configured, the

Chapter Summary

time/date gets updated correctly, and the wake-up flag of the peripheral allows the application
to update its data in synchrony with the RTC clock source. BLE communication was verified
by running one of the example BLE applications supplied by the manufacturer.

The individual applications were then merged into an initial prototype of the control software,
which only showed the current RTC time. It was found that the timer server utility that is
automatically included in BLE applications places some constraints on RTC configuration, so
the RTC settings had to be adjusted accordingly. The software was then gradually expanded
with the rest of the functionalities. To switch between showing the time and the date, the
software uses the TIM2 timer. Showing the date in the desired format entails storing which
format should be used and adjusting the display data calculation accordingly. LED blinking is
managed by the LPTIM1 timer. To retain RTC data after power outages, the application checks
if the power backup mechanism kept the RTC and the LSE running and skips their initialization
power backup was successful. Then, some minor adjustments to the advertisement packet data
and the PPCP characteristic were made to fulfill the BLE communication design as mentioned
in Section

The application uses an RTC alarm to implement the user alarm functionality. Since the user
can set up more than one alarm, the application has to reschedule the RTC alarm after it gets
triggered to ensure the desired behavior. To notify the user that an alarm was triggered, the
application starts ringing for a set time period. To implement the ringing, the application uses
the TIM1 timer to generate the PWM signal for the buzzer and the LPTIM2 timer to ensure
that the ringing ends on its own after the maximum ringing period has elapsed. Additionally,
the application flashes the display while the the device is ringing. The user can end the ringing
early by moving the device, which generates an accelerometer interrupt. The application uses
a different RTC alarm to detoxify the nixie tubes every hour. Since the display the time/date
while it is being detoxified, the application reuses the TIM2 timer to cycle through the digits.
The application also uses the hourly RTC alarm originally configured for tube detoxification to
check for DST changes. If the RTC is not adjusted for DST correctly, the application uses the
dedicated RTC DST registers to switch to the appropriate time. Both the stopwatch and the
timer use the TIM2 timer to increment/decrement their counter every second respectively, since
the display can only show one type of information at once. The timer turns on ringing when
the countdown is done. The timer ringing works on the same basis as alarm ringing, except the
user can set up different durations for the two. The application also stores certain data on the
EEPROM: some are crucial for the application to behave correctly, while some offer QoL changes
to the user. The chapter ends with a brief mention of the tools used for development.

29

30

Implementation

Chapter 4

Testing

This chapter covers the testing methodology and the tools used. It then reports any problems
discovered during the tests and describes how they were resolved. It also provides feedback on
the Android application developed in [2].

4.1 Methodology

Some basic testing was already done during the implementation phase to check for any obvi-
ous issues. The bugs discovered during the implementation were covered in the corresponding
chapter.

The fact that the correct behavior of the application depends on the MCU’s register values
makes it difficult to automate tests. As such, the testing was done manually. The tests aimed
to cover the base and edge cases of the implemented functionalities.

4.2 Testing Tools

The main tool for testing BLE communication was the Android application created in [2], as
it is meant to be the application of choice for the user. A generic BLE scanner application
was also used to double-check the GATT server data and to check the aspects the Android
application does not show (e.g., the PPCP characteristic and advertisement packet data). The
former has to be edited slightly and recompiled to be usable, as it only filters the Nucleo board
used during the testing of the Android application. In the ScannerViewModel.kt file, line 71
needs to be changed to a more generic address prefix. After observing the default addresses on a
few different STM32WB MCUs, the common prefix is 0x00:80:E1, which is the ST company 1D
according to [47|. Said document also mentions an ID for the WB series, but the number was
not encountered in any of the addresses, so using just the company ID prefix is recommended.
Assuming that the application should filter addresses starting with 0x00:80:E1, the prefix string
on line 71 should be edited to ”00:80:E1".

STM32CubelDE and STM32CubeProgrammer were used on the embedded system itself. The
former was used for its debugging capabilities and the latter for its ability to read / write to the
peripheral registers.

31

32

Testing

4.3 Manual Testing

4.3.1 Clock

The clock functionality was tested by setting the GATT characteristic to a variety of different
date time values and observing if the RTC data were changed accordingly. After uploading
a new value, the device was left running for some time to check for timekeeping issues. It
was also verified whether the application rejects invalid date time values. Testing the clock
functionality revealed that the application did not update some of its controller data, which
resulted in incorrect behavior when the year hundreds increased. The bug was fixed by updating
the controller data used to check RTC year overflow.

4.3.2 Alarms, Ringing, Manual Ringing Deactivation

The alarm functionality was tested by setting the characteristics to a variety of times and eval-
uating whether the application sorted the alarms correctly and whether it rescheduled to the
appropriate alarm. The alarms were turned on in sequences that required the application to
insert new times (in)to the beginning, the middle, and the end of the array to verify the sorting
algorithm. It was also checked whether the application reacted to the time changing on an al-
ready active alarm appropriately and whether it rejects invalid time and status values. Lastly,
the tests also checked if the application handled duplicate times as intended and if the alarms
work correctly regardless of how many and which of the alarms are turned on. The tests showed
that the application did not reschedule correctly after the last alarm of the day was triggered if
at least one alarm was turned off. The problem was caused by doing boundary checks against
the maximum capacity of the array instead of the current number of valid records. The bug was
fixed by checking against the current array size.

Ringing tests consisted of verifying that the ringing stayed active for the desired period of
time when the timer or one of the alarms was triggered. It was checked if the application set
up the correct duration based on the ringing source. They also checked if the display flashing
behaves as expected. The tests showed that the application got stuck in timer mode if the timer
ringing duration was 0. The bug was fixed by immediately returning the device to clock mode
when the timer ends and the duration is set to 0.

Accelerometer tests were done by checking if moving the device ended the alarm /timer ringing
early. They also checked if moving the device when it is not currently ringing results in any
unexpected behavior. The tests were passed successfully.

4.3.3 Stopwatch, Timer

The stopwatch functionality tests consisted of checking if the application reacts to stopwatch
status changes appropriately and that the application increments the counter correctly. They
also verified if the application rejects invalid status values. The tests revealed that the application
did not consider the display state when pausing / turning off the stopwatch, which could result in
inappropriate behavior. The bug was fixed by checking the display state in the relevant functions.
The timer functionality was tested similarly to the stopwatch, as the two are not very different
implementation-wise. The tests checked if the application reacts to status changes, decrements
the counter correctly, and rejects invalid status values. The tests additionally tried setting the
GATT set time characteristic to a variety of values to see if the application behaves appropriately.
The tests showed that the application did not account for the possibility of starting the timer
with the counter set to 0, resulting in an underflow. The problem was fixed by adding a counter
value check when starting the timer. They also revealed that the application did not consider

Manual Testing

the display state when pausing / turning off the timer, just like in the stopwatch functions. The
issue was fixed in an analogous manner here, as well.

4.3.4 Tube Detoxification

The tube detoxification functionality was tested by leaving the device on for extended periods of
time and verifying that the detoxification occurs every hour for the expected period. The test
was passed successfully.

4.3.5 MCU Timer Sharing

Since the stopwatch, timer, and tube detoxification functionalities share the same MCU timer,
it was also verified if the timer is allocated between the three appropriately. The tests checked
if the application did not allow the timer to be turned on if the stopwatch was running and
vice versa, but allowed the other functionality to be started if the current one is paused. They
also verified whether detoxification did not interfere with the other two functions if one of them
was running. Lastly, the tests checked if turning off the timer/stopwatch made the application
switch to showing the other functionality’s data if it was currently paused. The tests revealed
that the application did not account for the current display state when starting detoxification,
which resulted in the timer/stopwatch malfunctioning if it was currently running. The issue
was fixed by checking the display state and only starting detoxification if neither of the two is
currently running.

4.3.6 RTC Power Backup

RTC power backup was tested by first letting the device charge for a bit and then leaving it
turned off for a few hours. The device was then turned on to check whether the RTC counter
held the expected value. The tests were passed successfully.

4.3.7 Daylight Saving Time Management

DST management tests consisted of setting the RTC time to a variety of times that were close
to a change in DST state. Then it was checked if the RTC time was adjusted correctly when
it reached the corresponding DST change mark. The tests also verified whether the application
updated the time correctly in a situation where the DST had changed while the device was
off. The tests showed that the application did not handle the situation in which the device was
turned off and on after DST change from summer to standard time. The summer-to-standard
change shifts the hours back by one, making it tricky to evaluate whether the clock is in the
expected DST state when the DST check is done at device start-up. After careful consideration,
the issue was fixed in the following way: if the current RTC time is 02:00-02:59 and it is the last
Sunday in October, the application checks the recorded DST state. If the RTC store operation
bit claims that the time was adjusted to standard time, the application assumes that the time
was changed correctly. This behavior will result in the DST not changing at start-up if the device
was powered off before the change to summer time occurred and the current time is 02:00-02:59
and the date falls on the last Sunday in October. For such a scenario to happen, the capacitor
would have to sustain the RTC and the LSE for cca 7 months, but the personal experience of the
author of the thesis is that the power backup mechanism does not last for such a long period of
time. As such, the probability of such scenario occurring should be minimal. If it does happen,
the RT'C will hold the wrong time until the DST change takes place.

33

34

Testing

4.3.8 Display

Time/date display duration tests were done by changing the corresponding GATT characteristics
and observing if the application reacted appropriately. The date format tests were also included
in this set, as it is closely related to displaying the date. It was evaluated if the date format
changes according to the GATT server data and if the application rejects any invalid format
values. The tests were passed successfully.

4.3.9 LEDs

LED blinking tests consisted of changing the value and verifying that the blinking interval was
updated appropriately. They also checked if the LEDs state gets managed correctly if LED
blinking was turned off. The tests revealed that the LEDs were not in the expected state if both
the time and display duration were set to 0, the blinking interval was 0, and the display was
showing the stopwatch/timer time. The LEDs were supposed to temporarily turn on while the
device was in stopwatch/timer mode and then turn off when the device reentered clock mode,
but the LEDs remained in the off state even in stopwatch/timer time. The issue was fixed by
scheduling a LED update when starting the stopwatch/timer.

4.4 Portability Testing

The development of the application was done on a single embedded system that contains an
STM32WB55CGx MCU. Some of the other assembled devices use an STM32WB35CEx MCU
instead, allowing some verification of the portability requirement. The STM32CubelDE version
used during the thesis does not support changing the target MCU after creating the project, so a
new project was created with the same STM32CubeMX configuration settings (see Appendix E
for more detailed steps).

Due to time constraints, only some basic tests were done on the ported version of the appli-
cation. It was found that the CPOL = 0, CPHA = 1 SPI configuration did not work on the
WB35CE system, the settings had to be changed to CPOL = 1, CPHA = 0 for the display to
work correctly. However, the WB55CG system behaves correctly with either configuration. As
such, the value of CPOL and CPHA might have to be adjusted to fit the particular system.

During the portability test of the control software, it was discovered that the page write
variant of the EEPROM write function did not work correctly. The bug was not detected earlier
because of presumably improper basic testing during the implementation and because the author
of the thesis forgot to perform an additional round of EEPROM tests in the prior stages of testing.
For lack of time, the EEPROM write function was reverted to the simpler byte write version and
retested.

4.5 RTC Desynchronization

Leaving the RTC to run for extended periods of time showed that the RTC may desynchronize
notably due to the 20 ppm frequency accuracy of the LSE. To remedy the issue, the application
can use the smooth calibration feature of the RTC to adjust the frequency. The CALP and
CALM registers allow for digital calibration with a resolution of cca 0.954 ppm with a range
from -487.1 ppm to +488.5 ppm [6]. The calibration feature has three different calibration
periods available: 8 s, 16 s and 32 s [6]. The 32 s period was chosen as it offers the most accurate
frequency adjustment out of the three options.

The first attempted solution was that the device would measure the accuracy and set up
the calibration registers accordingly at start-up. The application ran two timers at once: one
of the LPTIM timers was run for a time period that was equal to the calibration period (i.e.,

Feedback on the NixieClock Application

32 s). TIM2 was used as a counter. When the LPTIM timer was done, it stopped TIM2. The
application then compared the value of the CNT register with the ideal value (i.e. the value the
register would have if the LSE had a 32.768 Hz frequency exactly) to calculate the mismatch
between the ideal and the measured frequency and set up the calibration registers accordingly.
However, testing the calibration revealed that the measured frequency was notably different
from the empirically observed frequency. In reality, the device desynchronized by cca 2 s (i.e.,
the LSE had a cca +20 ppm frequency accuracy), but the calculated imprecision was larger by
a noteworthy margin (most measurements yielded values close to or higher than the maximum
ppm value the RTC can calibrate). The reason for the measurements being largely imprecise
was not found, so the idea was abandoned.

Since the first solution did not provide the desired results, an alternate solution was made: the
GATT server was expanded with an additional service that the mobile application can use to set
the CALP and CALM registers. The mobile application can measure the frequency imprecision
and then calibrate the RTC accordingly. The service was designed as follows:

= Service UUID: 000075e0-f908-44b0-81b9-3450ca663{46
m CALP characteristic

= UUID: 000075e1-f908-44b0-81b9-3450ca663f46

= Data type: uint8. The CALP register is a single bit, so only the lowest bit of the charac-
teristic is used. Any unused bits should be set to 0.

= Properties: read, write
= CALM characteristic

= UUID: 000075€2-f908-44b0-81b9-3450ca663{46

= Data type: uint16. The CALM register is 10 bits long, so only the lowest 10 bits of the
characteristic are used. Any unused bits should be set to 0. The characteristic uses the
same endianness as the rest of the GATT server.

= Properties: read, write

After the appropriate changes were made to the application, the solution was tested for any defi-
ciencies. An error was found in the function responsible for setting the CALP register according
to the characteristic data, which was promptly fixed. Checking the reaction of the Android ap-
plication to the new GATT server structure revealed that having an additional service does not
interfere with the rest of the application.

4.6 Feedback on the NixieClock Application

When setting the date manually, the application does not send the correct month value to the
clock, it sends a value that is smaller by 1 instead. The application also does not write new
values of the duration/interval characteristics in the settings service correctly. The application
reads the value of the characteristics correctly, and when the user attempts to change the value
of any of the characteristics, it claims that the characteristic has been updated with the new
value. In truth, the write operation does not happen, which can be checked by using a different
BLE scanner application. When the user switches from the settings screen to a different one
and then back, the NixieClock application correctly shows that the characteristic still has the
old value. The stopwatch status button does not update correctly after changing the value. The
user has to switch to a different screen and back to force an update. The timer screen has a
similar issue.

The application also does not seem to account for the possibility of the user connecting
to the clock via a second BLE application at the same time. If the user changes any GATT

36

Testing

server data that do not have notifications and the application is currently located on the screen
corresponding to said GATT data, the NixieClock application does not reflect said changes until
the user switches to a different screen and back. It is expected that the application would behave
similarly if two different Android devices were connected to the clock at once. However, this
hypothesis was not tested, because the control software does not support multiple connections,
as such behavior would be undesirable. There was no mention found about how the application
should behave in such situations in the thesis, so it cannot be said with certainty whether this
behavior is intentional.

According to [2], the Android application does not show the local device name. However, the
application always displayed the correct name while it was used during the implementation and
testing of the control software.

It should be noted that since the application had to be edited slightly and recompiled, any
aforementioned bugs might have been caused by not building the source code correctly. Should
the implementation of the Android application be revisited in the future, it might be worthwhile
to check the issues listed above.

4.7 Chapter Summary

Some basic testing was already done during the implementation to check for any major issues.
The tests were done manually, because the correct application behavior is dependent on the MCU
register values. A slightly modified version of the NixieClock application and a generic BLE
scanner were used to verify BLE communication, while tools from the STM32Cube ecosystem
were used to check for inconsistencies in the register or software data.

The chapter described how the functionalities were tested and reported any found issues, all
of which were fixed afterward. The software was also ported to a system with an MCU different
from the one used during development. The basic tests of the ported version revealed that the SPI
CPOL and CPHA values might have to be adjusted depending on how the configuration behaves
on the specific system. The portability test also revealed an issue that had gone unnoticed in the
previous stages of the testing, which was then addressed. It was also found that the frequency
error of the LSE could result in RTC desynchronization at significant rates. The attempts to
have the MCU measure and calibrate the frequency yielded unsatisfactory results, so the GATT
server was expanded with a new service instead. The Android application can use the service to
set the RTC smooth calibration registers as needed. Lastly, the chapter provided feedback on
the NixieClock application.

Chapter 5

Conclusion

The goal of this thesis, which was to create control software for a custom nixie clock embedded
system containing an STM32WB MCU (see Figure E and Appendix |F| for photographs of a
fully-assembled device), was met. The thesis includes an analysis of the state of the art. No
suitable solution was found that could be used as the basis for the software, so it was built from
the ground up. To be compatible with the complementary Android application, the software
follows the same BLE communication design. The only exception is the advertising data format,
which could not be met because of driver/firmware limitations.

The software was developed by implementing smaller subparts and integrating them into the
final product. Choosing such a development method meant that component testing could be
done during the implementation. After finishing the implementation, a final round of testing
was performed. The tests revealed a notable number of problems, such as incorrect edge case
handling or faulty boundary checks. A detailed description of the problems found and their fixes
can be found in the testing chapter.

The software can be improved in various ways, such as adding more features or optimizing
its power consumption. The software can also be ported to different MCUs or reused in similar
projects. Any changes to the BLE communication design should be reflected in the Android
application.

37

38

Conclusion

B Figure 5.1 A fully-assembled nixie clock device. (© Maté&j Bartik)

Appendix A

Additional Photographs of the
PCB Board

This appendix consists of additional close-up photographs of the PCB board.

39

40

Additional Photographs of the PCB Board

B Figure A.1 A close-up image of the MCU segment of the PCB (© Mat&j Bartik).

B Figure A.2 A close-up image of the power

supply segment of the PCB (© Matéj Bartik).

41

42

Additional Photographs of the PCB Board

s UG

CTTEPRET P

226800548.Y58.210805

.

B Figure A.3 A close-up image of one of the serial-to-parallel converters that manipulate the nixie tube
display. (© Maté&j Bartik).

Appendix B
GATT and GAP Design

This appendix serves as a concise summary of GATT and GAP design defined in @
The GATT server should have the following structure:

= Clock service

= Service UUID: 00007500-f908-44b0-81b9-3450ca663{46
= Date Time characteristic

« UUID: 0x2A08

Data type: Date Time

Properties: read, write, notify

m Alarm service (10x)

= Service UUID: 000075X0-f908-44b0-81b9-3450ca663f46, where X corresponds to the alarm
number in hexadecimal notation. The alarms are numbered 1-10 (i.e., 0x1-0xA).

= Time characteristic
« UUID: 0x2A08
* Data type: Date Time
Properties: read, write
= Alarm status characteristic
+ UUID: 00007511-f908-44b0-81b9-3450ca663{46
* Data type: uint8
Properties: read, write

= Stopwatch service

= Service UUID: 0000075b0-f908-44b0-81b9-3450ca663f46
= Stopwatch current time characteristic

+ UUID: 000075b1-f908-44b0-81b9-3450ca663f46
+ Data type: uint32
Properties: read, notify

= Stopwatch status characteristic

+ UUID: 000075b2-f908-44b0-81b9-3450ca663f46
* Data type: uint8

43

44

Properties: read, write

m Timer service

= Service UUID: 0000075c0-f908-44b0-81b9-3450ca663{46

= Timer current time characteristic

+ UUID: 000075¢1-f908-44b0-81b9-3450ca663{46
+ Data type: uint32
x Properties: read, notify

= Timer set time characteristic

+ UUID: 000075¢2-f908-44b0-81b9-3450ca663{46
+ Data type: uint32

* Properties: write

Timer status characteristic

+ UUID: 000075¢3-f908-44b0-81b9-3450ca663{f46
+ Data type: uint8

* Properties: read, write, notify

= Settings service

= Service UUID: 0000075d0-f908-44b0-81b9-3450ca663f46

LED blink interval characteristic

+ UUID: 000075d1-f908-44b0-81b9-3450ca663f46
+ Data type: uint32

* Properties: read, write

Time display duration

+ UUID: 000075d2-f908-44b0-81b9-3450ca663f46
* Data type: uint32

* Properties: read, write

Date display duration

+ UUID: 000075d3-f908-44b0-81b9-3450ca663f46
+ Data type: uint32

* Properties: read, write

Alarm ringing duration

+ UUID: 000075d4-f908-44b0-81b9-3450ca663f46
* Data type: uint32

* Properties: read, write

Timer ringing duration

+ UUID: 000075d5-f908-44b0-81b9-3450ca663f46
+ Data type: uint32

* Properties: read, write

Date format

+ UUID: 000075d6-f908-44b0-81b9-3450ca663f46
+ Data type: uint8

* Properties: read, write

GATT and GAP Design

The GATT server also contains a dedicated service for the GAP profile. The application
should set up the characteristics as:

= Device name characteristic

= Properties: read

= Value: the design does not request a specific name
= Appearance characteristic

= Properties: read

= Value: 256 (Generic Clock category)

46

GATT and GAP Design

Appendix C
Embedded System Schematic

This appendix shows the schematic of the target embedded system.

47

Embedded System Schematic

48

ong3a

VZ00-dd + S3IM ¥IAT0S
2NIDa

2 T T T 2 T <
Py Joquin ewnaog | ez =1 = =
- - zenonH ano zZenonH aNo
o010 SN oolenig ol en — LEMOAH ano (2 VENoAH ano -2
] - oo 0EIoAH 0B J
(20 Weuzos@}pyeqiew) QU HMed e Bul 209 = [28 6zInonH L 62INOAH L
.. . wxdowZ2Z2Zam] L= x Sanonn w0y Sanont so0) =
= T 5 xue LINI n 2 :E — LZNOAH L L2INOAH 4
&z 1wioas 8T B3 9ZNONH aan STINOAH aan
40y == u00) == u0o n lasas [— NER: w Sanon o canoni o
8 | %o | 20 oldan 108 as_oz1 kS Ad0 YENOAH s YEINOAH Ss
v L1 aan #50 08 oa ERS — £2NONH PON f——x STNOAH PON (5
9 va = - znonH €N EE 5 zanonH €N [E ¢
Z008ere XY AdO L2nonr 2N [5 VZnoAH 2N (2 X
eAE 8n 01 $0L A 21d0 oanonH Ton 522 Aot ToN ez
esx0 tuay ozt Y Y L oA v oA v
)) 20085ETHAY HITE 21dQ InoAH SLnoAH
= — = EAE EAE AT 210 Thwont Thnont
e 1d0 9o 9nnoAH
1d0 o, w o u
‘ ‘ ‘ e | |
= = = - = . 1d0 o, o,
= T i T - i e e
N dna ooy = M_LLdO [t wa LOnoAH V8 e
= 2] mmo@\ = 20 MLIO onnoAH € SNV onnonr T NV
g 01 ¥zt i 2° DILL InoAH 6INOAH
H —— B 0o ons - Y S Clido Sment neAn
@ Z z " 0vo H L0 LnoAH vz LnopH [
o 82y dNa 624 S v | Y F [N QINOAH e HOLV1 GINOAH e HoL
n 1 Tova X g PAL1dO’ GINOAH SINOAH
up up - oL ey S5y WP PInoAH PInoAH
: dNa 1oy vaaiZL01L w0 €0 x0z1 el A 211do anony o QnonH o
860 vaaizLonL Y 11 1d0% 02 Zinonn NIa k& pITE) o e ez piEi)
s V6N n Z] nonni 1noa € NiQ Ginonrt 1n0a [(Z€_ 1Inoa
winssozi1o | 23] o 0ey ohs o P -} &—oa &
\zd Xd130210993Wd SIIE29GNH BRI
a on sn
v Jopre-und/61/ /8102 /Bota oo sxoowspre waw /ed33u eIV dNd e (rop70 379 posTaRon) o-pEzSSIN UV
v [HOTATPR-SeRdNOT - 93 130U~ 1233 -3U0P /80/€0 /L 107/u02 Repexoeu/ / :sd31u
ons e 100 o—x 100 s—x 100 |s—x
g - - i - i 2 - [y 22 -
= = Y 59140 o [155140 o 5710
o - o alals o1 A91d0 5 |0k MSId0 o1 NI
= = = = = o 20 b >91d0 ol M GIdO ol > r1d0
x—Jov ss= olooseHd i 2 i 91d0 ol Pi51d0 o Dr1do
[) . . |y 282 v oloos S 2 EY 291d0 EY MSId0 o Dr1d0
180 = = 1z 2 LsuN : i 9191d0 i 9161d0 i 9 p1d0
dm @ vas _ Y & Y 2 91d0 Y M 61dO o5l N 1dO
m € vas ozl dNa gdi x| g 8910 83610 8 p1dO
Q0AE 108 L g o T o K o 1|
CEEREE] oms/ead A ¥ o >91d0 o D51d0 ol DI r1d0
v c15 1QIOVZIv Y oM rvd a3 200Ny [0% 91d0 200Ny [0 51d0 Sa0nv [O ¥1d0
T T
10/1-LT0¥852 HOMSIPVE |5 —SToms ene 0" 75 N B
05%0 sua¥ 92T LYS6Z1-L8065291YA ny 910 st S1d0 st V1o st
) Lame 3 LY Y e
N = = =
eAE Aoz Aoz Aoz
uoop uo0L == doo} 734 e
< - = s o oo 68d 100 [——x 100 f——x 100 f——x
8- = = z 2Maan _ 88d [- 1 12k — i 2k - e
H H iy (3 Xk Lvsniad |5 _ = o Lk el ey 52140 2 LU0
3 N e 5 XLt Lavsniead Xe_1wvn Equn DiE1d0 & [i g1do Equn 211d0
3 & A€ ZHNOOL009 €1 sad Ty @20 b £ 61d0 b £121d0 b £11d0
g — z Eid T s ad LINI = 2 o PIE1d0 o IYWIPD) i L0
g % ey WZEOSO Ve N 550 zad [o 2 s > 1_£1d0 > 1 2Ud0 BY S_LLdO
5 2 vIA S lag H B 9EId0 B 9 Z1d0 Y 10
I AA D vv & mno o084 2 NE Y DE1d0 Y D 21d0 o L0
& o4 N0 280S0610d v 8 o D_£1d0 &l Di_21d0 o Lelen
- ~ & EOV-VH089LZ€ GEL~ ou AT AR Y 6 €140 Y 6 21d0 ol 64 11d0
° = ¢ = 7 NIZ€0S0%10d. Sivd = aaony [OXELd0 aaony [0472Ldo 3aony [O4HLdo
3 | 5 4 o q SLY_LLMVSNZIVd a3 - - -
]] Siomiavenivd €031 a 2N wN 2N
T Tzeo €0 aan i 1ova 9 €140 M5 Zido e 110 s
O Weeaso TWzeoso aan XU LLven/evd Qs oz Y Y o
aan [8— osou Azostacad-ruT
qan ene Aoz Aoz Aoz
o aan L
—— oy aan SINVIE
1 €12 1D
1L 7 I s T —
vaan 2vd [2L R R e
T = = = =
W 999 vt - 08 Hds/vd [EE
SNV1E 0 222 T ercNviE — [o— E0TZALIVZHELNS ~ X0TZ !
T - C A S NG EAE ZHWOOLO0D 21 w1 |V ove = F-058-S0¢2 T € 7 Lo Lo L vz
M AN - VS AE HOLYT) SOSCAMENIS WISZTHPOTICLOXEOPEOD — ADSZ/UO0T ~ 66D so um |9 T a0 | 0 10
ot v EAE 1D = n ERQOSHSZZRZELNLSOND ~ A0SZ/eng - 21’ LNk S
L) =0geaNZENIS T 0 1y 5010 228 NaHS
= = = VZHBLAZYOLHOOA . 13 9o ¥
% T = £S5INGZLLWOS T [
ook a0z uaz ugot = = £ = = = = T 10 +VSITZITOR =
610 0 € 14\ 810 a1z Az
T Luons oo Luoos Luons Looor Loy L v o ansscsoomors L
£ v e 14\ mNulﬁ «.Nulﬁ mwulﬁ Nmulﬁ Eolﬁ ﬁulﬁ ES) L-AHLOTLRYSZENNE -
XOESTZLPaxVrL vz
s mn €A
024 Legiea-4esa noo}
Xd120210993Wd eAE Aoz sa 1
80 €AC = === = == azasouphLIs ALITIOTOP0T-TZL YR
a Hogy oz NAT09THSSHT seansorous
(229 2l - (Y w2l - MM9HOHII90Z) 14 S0L0-0HD :ae_eypoyonza =
>37 >33
, A 333 |5 , % 333 I3 v £
nzz NN w0is EEE wor [nez ngg NN 089 R 0oL T ez 23
oH 150 s2d) on QSH QH 90 = L2y) o mNoH a
6 7 5 Z g
SsiNg SSING ek g
e Kl NiA (-2 s NiA (-2 3
050520058AN 0S0SZ005UAN 2
SAGT0-L0LHS L Ea wn Az o>m en Azt nev

M Figure C.1 Nixie clock schematic [Zl

Appendix D
STM32WB55xx Block Diagram

This appendix shows the block diagram of the STM32WB55xx MCUs, which is the MCU on the
device that was used during development.

49

50

NVIC

Cortex-M0O+

STM32WB55xx Block Diagram

—> APB asynchronous

BLE IP 802.15.4J

RCC2

LSI2
32 kHz

| | |
BLE/802.15.4 HSE2)
RF IP 32 MHz)

> 32 KB SRAM2a WKUP
\ J Backup

_l LSE
RTC2 [& | 32kHz

feli

asynchronous

AHB Lite

@
-~
m

(
[
(
[
[
(
[
L
(
(
(

+—{_rrcz
% %] g ,0<_: 32 KB SRAM2b @l @
2 o u_(‘j é :§ PKA + RAM
SIS | e
ﬁL\# % RNG
Cortex-M4 g
o)
PWR (P s ore)
QSPI - XIP]4—» .4_,{ CRS HRC48J
DMA1 7channells]1—’ % ;/ q-.{ USB FS + RAM]
DM|A2 7 channells]Q—P g Upto 192 KB .q—’[WWDG]
DMAMUX j&—> "’[SRAM1 ’ > DBG
A GBPI((;) ISorés y [Temp (°C) sensor J %
,B,C,D,E, - > SPI1
CRC jq-» vl iom) ["]
TSC JG—D- [LCD)‘-. -4—5(12C1]
AEST Je__J APB > 2c3
LPTIMT je—> TIM1) <> LPUARTT |
LPTIMZ j&— <~ TM2] l«—{ UsarRTI |
SAI1 }<—> .4_.[TIM16, TIM17] -q—p[SYSCFG/COMPNREFJ

B Figure D.1 STM32WB55xx block diagram [20].

Appendix E

Installation Guide

This appendix covers the steps necessary for running the software on a new device.

E.1 Wireless Stack Installation

For the application to function properly, the MCU radio core must be flashed with the appropriate
wireless stack [5—1L zip file]. The STM32CubeWB package El] contains the available wireless
binaries, along with the installation instructions. The manufacturer offers multiple BLE stacks
to choose from, which differ in how many functionalities they implement and, by extent, in the
size of the binary @7 zip file]. To avoid unnecessary reflashing, the secondary core was flashed
with the full-stack version, which can be used on any STM32WB MCU zip file].

E.2 Existing Projects

An STM32CubelDE project was created for the STM32WB55CGx and STM32WB35CEx MCU
lines, as they were needed during development. If the target device uses either of the MCUs, the
corresponding project can be used to flash the software on the MCU. As mentioned in Section|4.4,
it was discovered that SPT CPOL and CPHA might need to be changed, depending on the device.
If the initialization code is regenerated with CubeMX, some adjustments will have to be done to
the project. The specific steps can be found below.

E.3 New Ports

If there is no existing project for the target MCU, a new one has to be created. The CubeMX
configuration from one of the existing projects has to be copied into the new project so the
initialization code can be generated. The IDE does not currently offer an elegant solution to
migrating projects to different MCUs. As such, the settings might have to be ported manually.

E.3.1 CubeMX Configuration

The following list names the configuration used in the main development project. Some of the
settings may be changed or optimized, as the time constraints did not always allow more thorough
experiments with the settings.

51

Installation Guide

E.3.1.1 Pinout & Configuration Tab
= GPIO

= Set the LEDx, LATCH, and BLANK as GPIO output, with output level = "Low”, GPIO
mode = ”Output Push-Pull”, GPIO Pull-up/Pull-down = "No pull-up and no pull-down”,
and maximum output speed = "Low”.

= Set DIN as SPI1_MOSI and CLK as SPI1_SCK, with GPIO mode = ”Alternate Function
Push Pull”, GPIO Pull-up/Pull-down = "No pull-up and no pull-down”, and maximum
output speed = "Low”.

= Set I2C_SDA as I12C1_SDA and I2C_SCL as 12C1_SCL, with GPIO mode = ”Alternate
Function Open Drain”, GPIO Pull-up/Pull-down = ”No pull-up and no pull-down”, and

maximum output speed = "Low”.
= Set DAC1 as TIM1_CH4, with GPIO mode = ”Alternate Function Push Pull”, GPIO Pull-
up/Pull-down = ”"No pull-up and no pull-down”, and maximum output speed = "Low”.

= Set INT1 and INT2 as TIM1_CH4 as GPIO EXTI5/4 respectively, with GPIO mode =
"External Interrupt Mode with Rising edge trigger detection” and GPIO Pull-up/Pull-
down = "Pull-down”.

= HSEM

= Activate HSEM. The interrupt should be on by default, activate it if that is not the case.
= [PCC
= Activate IPCC and the RX/TX interrupts.

= RCC
= Activate HSE and LSE as ”Crystal/Ceramic oscillator”. The other settings can be left as
default.
= LPTIMI1
= Set mode to = "Counts internal clock events”, clock prescaler to "Prescaler Div 128",
update mode = "Update Immediate”, and trigger source = ”Software Trigger”. Turn on

LPTIM1 global interrupt.

= LPTIM?2
= Set mode to = "Counts internal clock events”, clock prescaler to ”"Prescaler Div 128",
update mode = "Update Immediate”, and trigger source = "Software Trigger”. Turn on

LPTIM2 global interrupt.
= RTC

= Activate clock source, calendar, internal alarm A/B and internal wake-up.

= Set clock format = "Hourformat 24”. The asynchronous prescaler should be set to 127 and
the synchronous one to 255. In BLE applications, the values of the prescalers are set by the
CFG_RTC_ASYNCH_PRESCALER and the CFG_RTC_SYNCH_PRESCALER macros in app_conf .h.

= Calendar time/date and alarm A/B values can be left as default, the application will
update them as needed.

= Set the wake-up clock as RTCCLK / 16 and the counter as 0. the clock value has to match
the CFG_RTC_WUCKSEL_DIVIDER macro in app-conf.h.

= Activate the wake-up and alarm interrupts.

New Ports

= TIM1

= Set clock source as internal clock and channel 4 as "PWM Generation CH4”.

= Counter settings are managed by the application as needed. The application does not use
trigger output, break and dead time management, and clear input settings.

= Set PWM generation mode to "PWM mode 17, enable output compare preload, disable
fast mode, set CH polarity as high and CH idle as low. The pulse is managed by the
application as necessary.

= Enable TIM1 update interrupt.
= TIM2

= Set clock source as internal clock. Counter settings are managed by the application as
needed, trigger output settings are not used.

= Activate the TIM2 global interrupt.
= [2C1

= Set 12C1 to I12C mode. Disable custom timing, set speed mode to standard and speed
frequency to 100 KHz. Digital and analog filter settings can be left as default.
= Slave settings are not used.

= Enable the I2C1 error and event interrupts.
= RF

= Activate RF1.
= SPI1

= Set SPI mode to "Transmit Only Master”, disable the hardware NSS signal.

= Set the frame format to Motorola, data size to 16 bits, and MSB order. Set the prescaler
to 16. Low baud rate is not recommended, as they might result in occasional visual noise.
The baud rate should not exceed 16 Mbit/s [5, 9]. As mentioned in Section 4.4, the
CPOL/CPHA settings might have to be adjusted to the specific system. According to [5,
9], CPOL should be set to "Low” and CPHA to "2 Edge”. Disable CRC calculation, set

NSS signal type to software.
= Enable the SPI1 global interrupt.

= STM32_WPAN

= Turn on BLE.

= In "BLE Application and services”, set wireless stack to full, application type to server
profile. The IDE does not properly include the required drivers if none of the server modes
are enabled, so the custom template mode should be activated. The other settings can be
ignored.

= SEQUENCER
= The sequencer should be automatically activated when BLE is turned on.
= TINY_LPM

= TINY_LPM should be automatically activated when BLE is turned on.

Installation Guide

E.3.1.2 Clock Configuration Tab
= Set HSE frequency to 32 MHz and LSE frequency to 32.768 Hz.

= Set HSE_SYS as system clock source, LSE as RTC clock source. Set PCLK1 as 12C1, LP-
TIM1, and LPTIM2 clock source. Set LSE as REWKUP source. REFEWKUP must match the
CFG_BLE_LSE_SOURCE macro in app_conf .h. SMPS can be left to the default value. Prescalers
can be left as /1.

E.3.1.3 Project Manager Tab

= No changes are necessary in the Projects subtab.

m In the code generation subtab, choose "Copy only the necessary library files”, ”Generate
peripheral initialization as a pair of “c¢/.h’ files per peripheral”, and "Keep user code when
re-generating”.

= In the advanced settings subtab, choose HAL for all peripherals. Make sure ”Generate Code”
is ticked for all peripheral. Enable "Register CallBack” for 12C, LPTIM, RTC, SPI, TIM.

E.3.1.4 Tools Tab

No changes are required in this tab.

E.3.2 Adjusting the Generated Code

The CubeMX version used in STM32CubelDE v.1.7.0 is unable to generate some aspects of
the initialization code as needed. The RTC power backup feature needs to be manually added.
In BLE applications, the registered RTC wake-up callback is not executed because the BLE
application redefines the function called in the interrupt, which does not take the callback into
consideration. Lastly, CubeMX STM32_WPAN generation is not capable of generating all of the
GATT-related settings needed. If the shortcomings are addressed in future versions of the tools,
it is recommended that the initialization is done via the generator tool. For STM32_WPAN
specifically, the tools must be able to generate all the services and characteristics and to set up
the advertisement / scan response data and the PPCP to the desired values.

E.3.2.1 RTC Power Backup

In the main.c file, add a flag that is going to be used to indicate whether a backup domain
restart is needed. In the SystemClock _Config function, set the flag according to LSE and RTC
status. If both are running, skip LSE and RTC initialization. After adjusting the code, main.c
should look similar to:

/* USER CODE BEGIN Includes */
#include "stm32wbzz_ll_rcc.h"”
/* USER CODE END Includes */

/* USER CODE BEGIN PV */
bool bkup_domain_restart_needed = true;
/* USER CODE END PV x/

void SystemClock_Config(void)
{

New Ports

RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct {0%};
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

#1f (NIXIE_FORCE_BACKUP_DOMAIN_RESET == 0)
if (LL_RCC_LSE_IsEnabled() && LL_RCC_LSE_IsReady()
&& LL_RCC_IsEnabledRTC())
{
bkup_domain_restart_needed = false;
}
#endif

/** Configure LSE Drive Capability

*/

HAL_PWR_EnableBkUpAccess() ;

if (bkup_domain_restart_needed)

{

__HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW) ;

+

/** Configure the main internal regulator output wvoltage

*/

__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

/*% Initializes the RCC Oscillators according to the specified parameters

* 4n the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI
|RCC_OSCILLATORTYPE_HSE
|RCC_OSCILLATORTYPE_LSE;

RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;

RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE,;
if (!bkup_domain_restart_needed)
{
RCC_OscInitStruct.OscillatorType &= “RCC_OSCILLATORTYPE_LSE;
}
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_0K)
{
Error_Handler();
}
if (!bkup_domain_restart_needed)
{
RCC_OscInitStruct.OscillatorType |= RCC_OSCILLATORTYPE_LSE;
¥

/** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK4|RCC_CLOCKTYPE_HCLK2
|RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;

(9}
(9}

Installation Guide

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLK4Divider RCC_SYSCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();

X

/** Initializes the peripherals clocks

*/

PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SMPS
|RCC_PERIPHCLK_RFWAKEUP
|RCC_PERIPHCLK_RTC|RCC_PERIPHCLK_USART1
|RCC_PERIPHCLK_LPTIM1|RCC_PERIPHCLK_LPTIM2
|RCC_PERIPHCLK_I2C1;

PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;

PeriphClkInitStruct.I2c1ClockSelection = RCC_I2C1CLKSOURCE_PCLK1;

PeriphClkInitStruct.LptimliClockSelection = RCC_LPTIM1CLKSOURCE_PCLK1;

PeriphClkInitStruct.Lptim2ClockSelection = RCC_LPTIM2CLKSOURCE_PCLK;

PeriphClkInitStruct.RTCClockSelection = RCC_RTCCLKSOURCE_LSE;

PeriphClkInitStruct.RFWakeUpClockSelection = RCC_RFWKPCLKSOURCE_LSE;

PeriphClkInitStruct.SmpsClockSelection = RCC_SMPSCLKSOURCE_HSTI;

PeriphClkInitStruct.SmpsDivSelection = RCC_SMPSCLKDIV_RANGE1;

if (!bkup_domain_restart_needed)

{

PeriphClkInitStruct.PeriphClockSelection &= “RCC_PERIPHCLK_RTC;

}

if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)

{

Error_Handler();

}

if (!bkup_domain_restart_needed)

{

PeriphClkInitStruct.PeriphClockSelection |= RCC_PERIPHCLK_RTC;

X

/* USER CODE BEGIN Smps */

/* USER CODE END Smps */

In the main.h file, declare the flag as extern:

/* USER CODE BEGIN Includes */
#include <stdbool.h>
/* USER CODE END Includes */

/* USER CODE BEGIN ET */
extern bool bkup_domain_restart_needed;
/* USER CODE END ET */

New Ports

In the rtc.c file, only call the RTC initialization functions if a backup domain restart is
necessary:

/% USER CODE BEGIN 0 */
#include "main.h"
/* USER CODE END 0 */

void MX_RTC_Init(void)

{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC Init 0 */

RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate {03};
RTC_AlarmTypeDef sAlarm = {0};

/* USER CODE BEGIN RTC Init 1 */
/* USER CODE END RTC_Init 1 */

/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = CFG_RTC_ASYNCH_PRESCALER;
hrtc.Init.SynchPrediv = CFG_RTC_SYNCH_PRESCALER;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
hrtc.Init.OutPutRemap = RTC_OUTPUT_REMAP_NONE;
if (bkup_domain_restart_needed && HAL_RTC_Init(&hrtc) != HAL_OK)
{

Error_Handler();

}

/* USER CODE BEGIN Check_RTC_BKUP */
/% USER CODE END Check_RTC_BKUP */

/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0xO0;
sTime.Minutes = 0x0;
sTime.Seconds = 0x0;
sTime.SubSeconds = 0x0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (bkup_domain_restart_needed
&& HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BCD) != HAL_OK)

{

Error_Handler();
}
sDate.WeekDay
sDate.Month =

= RTC_WEEKDAY MONDAY;
RTC_MONTH_JANUARY;

Installation Guide

sDate.Date 0x1;
sDate.Year 0x0;
if (bkup_domain_restart_needed
&& (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BCD) != HAL_OK))

{
Error_Handler();
}
/** Enable the Alarm A
*/
sAlarm.AlarmTime.Hours = 0x0;
sAlarm.AlarmTime.Minutes = 0x0;
sAlarm.AlarmTime.Seconds = 0x0;
sAlarm.AlarmTime.SubSeconds = 0x0;
sAlarm.AlarmTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sAlarm.AlarmTime.StoreOperation = RTC_STOREOPERATION_RESET;
sAlarm.AlarmMask = RTC_ALARMMASK_NONE;
sAlarm.AlarmSubSecondMask = RTC_ALARMSUBSECONDMASK_ ALL;
sAlarm.AlarmDateWeekDaySel = RTC_ALARMDATEWEEKDAYSEL_DATE;
sAlarm.AlarmDateWeekDay = Ox1;
sAlarm.Alarm = RTC_ALARM_A;
if (bkup_domain_restart_needed
&& HAL_RTC_SetAlarm IT(&hrtc, &sAlarm, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/** Enable the Alarm B
*/
sAlarm.Alarm = RTC_ALARM B;
if (bkup_domain_restart_needed
&& HAL_RTC_SetAlarm_IT(&hrtc, &sAlarm, RTC_FORMAT_BCD) != HAL_OK)
{
Error_Handler();
}
/** Enable the WakeUp
*/
if (bkup_domain_restart_needed
&& HAL_RTCEx_SetWakeUpTimer_IT(&hrtc, 0, RTC_WAKEUPCLOCK_RTCCLK_DIV16)
= HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
/* USER CODE END RTC Init 2 */

E.3.2.2 RTC Wake-up Interrupt

The RTC wake-up interrupt must be adjusted to schedule a date time update. After making the
changes, stm32wbxx_it.c should look like

New Ports

/* USER CODE BEGIN Includes */
#include "stm32_seq.h"
#include "app_conf.h"

/* USER CODE END Includes */

void RTC_WKUP_IRQHandler (void)
{
/* USER CODE BEGIN RTC_WKUP_IR@n 0 */
UTIL_SEQ SetTask(1 << CFG_TASK_NIXIE_UPDATE_ DATETIME_ID, CFG_SCH_PRIO_0);
/* USER CODE END RTC WKUP_IRQn 0 */
HAL_RTCEx_WakeUpTimerIRQHandler (&hrtc) ;
/* USER CODE BEGIN RTC_WKUP_IR@n 1 */
/* USER CODE END RTC_WKUP_IR@n 1 */

E.3.2.3 STM32 WPAN

To resolve STM32_WPAN generation issues, copy the contents of the template/STM32_WPAN folder
into the STM32_WPAN folder in the IDE project.

E.3.3 Adding Helper Files

To add the helper files, copy the contents of template/Core/Inc and template/Core/Src into
the respective folders in the IDE project.

60

Installation Guide

Appendix F

Additional Photographs of the
Clock

This appendix contains additional photographs of a fully-assembled clock device.

61

62 Additional Photographs of the Clock

v
”
-

!

o
f

la S ——

B Figure F.1 A front view of the clock. The clock is showing the current time. The LEDs blinking was
in the off state at the time of taking the photograph. (© Matéj Bartik)

B Figure F.2 A front view of the clock. The clock is showing the current date. Only the lower two
LEDs are turned on to make it easier to differentiate between the time and the date. (© Matéj Bartik)

B Figure F.3 A front view of the clock from a slightly higher angle

B Figure F.4 A side view of the clock. (© Matgj Bartik)

. (© Matéj Bartik)

63

64

Additional Photographs of the Clock

B Figure F.5 A back view of the clock. (© Matgj Bartik)

B Figure F.6 A top view of the clock. (© Matéj Bartik)

66

Additional Photographs of the Clock

10.

11.

Bibliography

HELLBUS. Z566M digit 6 [online]. 2009-09 [visited on 2022-04-16]. Available from: https:
//commons.wikimedia.org/wiki/File:Z566M_digit_6. jpg.

VERNER, David. Mobilni aplikace pro ovldadani digitronovych hodin. Prague, 2021. Avail-
able also from: https://dspace.cvut.cz/handle/10467/95573. Bachelor thesis. Czech
Technical University in Prague, Faculty of Information Technology.

ZUIJLEKOM, Dennis van. Wang 700 Advanced Programmable Calculator (9220477911)
[online]. 2013-07-05 [visited on 2022-04-16]. Available from: https://commons.wikimedia.
org/wiki/File:Wang_700_Advanced_Programmable_Calculator_(9220477911) .png.

BARTIK, Matéj. Bluetooth Nizie Clock: Rev 2.1. 2022.

MICROCHIP TECHNOLOGY INC. HV5623 32-Channel Serial-to-Parallel Converter with
Open-Drain Outputs [online]. 2019-05-14 [visited on 2022-04-19]. Available from: https:
//wwl .microchip.com/downloads/en/DeviceDoc/HV5623~-32-Channel -Serial-to-
Parallel-Converter-with-Open-Drain-Outputs-Data-Sheet-20005702A.pdf.

STMICROELECTRONICS. Multiprotocol wireless 32-bit MCU Arm®-based Cortea®-M4
with FPU, Bluetooth® Low-Energy and 802.15.4 radio solution - RM0434 Reference manual
[online]. 2021-04-20 [visited on 2021-06-18]. Available from: https://www.st.com/content/
ccc/resource/technical /document /reference_manual/group0/83/cf/94/7a/35/
a9/43/58/DM00318631 /files /DM00318631 . pdf / jcr : content / translations/en .
DM00318631 .pdf.

ANALOG DEVICES, INC. ADXL348 (Rev. 0) Data Sheet: 3-Axis, +2 g/+4 g/+8 g/+16 g
Digital MEMS Accelerometer [online]. 2012 [visited on 2022-04-19]. Available from: https:
//www.analog.com/media/en/technical-documentation/data-sheets/ADXL343.pdf.
ANALOG DEVICES, INC. ADXL345 Data Sheet: 3-Axis, +2 g/+4 g/+8 g/+16 g Digital
Accelerometer [online]. 2015 [visited on 2022-04-19]. Available from: https://www.analog.
com/media/en/technical-documentation/data-sheets/ADXL345.pdf.

MICROCHIP TECHNOLOGY INC. HV5523 32-Channel Serial-to-Parallel Converter with
Open-Drain Outputs [online]. 2019-05-14 [visited on 2022-04-19]. Available from: https :
//wwl.microchip.com/downloads/en/DeviceDoc/HV5523-32~-Channel - Serial-to-
Parallel-Converter-with-Open-Drain-Outputs-Data-Sheet-20005700A.pdf.
STMICROELECTRONICS. STM32WB - Bluetooth, Wireless Microcontrollers (MCU) -
STMicroelectronics [online]. 2022 [visited on 2022-04-19]. Available from: https://www.
st.com/en/microcontrollers-microprocessors/stm32wb-series.html.

ELLISYS S.A. Ellisys Bluetooth Video 1: Intro to Bluetooth Low Energy [online]. 2018-
04-09 [visited on 2022-01-25]. Available from: https : //www . youtube . com/watch?v=
eZGixQzBo7Y.

67

https://commons.wikimedia.org/wiki/File:Z566M_digit_6.jpg
https://commons.wikimedia.org/wiki/File:Z566M_digit_6.jpg
https://dspace.cvut.cz/handle/10467/95573
https://commons.wikimedia.org/wiki/File:Wang_700_Advanced_Programmable_Calculator_(9220477911).png
https://commons.wikimedia.org/wiki/File:Wang_700_Advanced_Programmable_Calculator_(9220477911).png
https://ww1.microchip.com/downloads/en/DeviceDoc/HV5623-32-Channel-Serial-to-Parallel-Converter-with-Open-Drain-Outputs-Data-Sheet-20005702A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/HV5623-32-Channel-Serial-to-Parallel-Converter-with-Open-Drain-Outputs-Data-Sheet-20005702A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/HV5623-32-Channel-Serial-to-Parallel-Converter-with-Open-Drain-Outputs-Data-Sheet-20005702A.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/83/cf/94/7a/35/a9/43/58/DM00318631/files/DM00318631.pdf/jcr:content/translations/en.DM00318631.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/83/cf/94/7a/35/a9/43/58/DM00318631/files/DM00318631.pdf/jcr:content/translations/en.DM00318631.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/83/cf/94/7a/35/a9/43/58/DM00318631/files/DM00318631.pdf/jcr:content/translations/en.DM00318631.pdf
https://www.st.com/content/ccc/resource/technical/document/reference_manual/group0/83/cf/94/7a/35/a9/43/58/DM00318631/files/DM00318631.pdf/jcr:content/translations/en.DM00318631.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL343.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL343.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ADXL345.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/HV5523-32-Channel-Serial-to-Parallel-Converter-with-Open-Drain-Outputs-Data-Sheet-20005700A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/HV5523-32-Channel-Serial-to-Parallel-Converter-with-Open-Drain-Outputs-Data-Sheet-20005700A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/HV5523-32-Channel-Serial-to-Parallel-Converter-with-Open-Drain-Outputs-Data-Sheet-20005700A.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.st.com/en/microcontrollers-microprocessors/stm32wb-series.html
https://www.youtube.com/watch?v=eZGixQzBo7Y
https://www.youtube.com/watch?v=eZGixQzBo7Y

68

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Bibliography

BLUETOOTH SIG, INC. LE Audio — Bluetooth® Technology Website [online]. 2020-01-06
[visited on 2022-01-25]. Available from: https://www.bluetooth. com/learn-about -
bluetooth/recent-enhancements/le-audio/.

ELLISYS S.A. Ellisys Bluetooth Video 2: Generic Access Profile [online]. 2018-04-09 [visited
on 2022-01-25]. Available from: https://www.youtube.com/watch?v=80f0wD8f2VI.

ELLISYS S.A. Ellisys Bluetooth Video 3: Advertisements [online]. 2018-04-18 [visited on
2022-01-25]. Available from: https://www.youtube.com/watch?v=be9ct70KI7.

ELLISYS S.A. Ellisys Bluetooth Video 4: Connections [online]. 2018-05-08 [visited on 2022-
04-16]. Available from: https://www.youtube.com/watch?v=YmMDy8q¥X_c.

ELLISYS S.A. Ellisys Bluetooth Video 5: Generic Attribute Profile (GATT) [online]. 2018-
06-05 [visited on 2022-04-16]. Available from: https://www . youtube . com/watch?v=
eHqtiCMe4NA.

NXP SEMICONDUCTORS N.V. PC-bus specification and user manual [online]. 2021-
10-01 [visited on 2022-03-14]. Available from: https://www.nxp.com/docs/en/user-
guide/UM10204 . pdf.

MOTOROLA, INC. SPI Block Guide V04.01 [online]. 2004-07-14 [visited on 2022-03-04].
Available from: https://www.nxp.com/files-static/microcontrollers/doc/ref _
manual/S12SPIV4.pdf.

CBURNETT. SPI three slaves [online]. 2006-12-19 [visited on 2022-03-05]. Available from:

https://commons.wikimedia.org/wiki/File:SPI_three_slaves.svg.

STMICROELECTRONICS. Datasheet - STM32WB55xx STM32WBS35xx - Multiprotocol
wireless 32-bit MCU Arm®-based Cortea®-M/ with FPU, Bluetooth® 5.2 and 802.15.4 radio
solution [online]. 2021-04-17 [visited on 2021-08-03]. Available from: https://www.st.com/
resource/en/datasheet/stm32wb55cg. pdf.

STMICROELECTRONICS. M41T81 - Serial real-time clock (RTC) with alarm - STMi-
croelectronics [online]. 2022 [visited on 2022-04-19]. Available from: https://www.st.com/
en/clocks-and-timers/m41t81.html.

STMICROELECTRONICS. M/1T93 - Serial SPI bus real-time clock (RTC) with bat-
tery switchover - STMicroelectronics [online]. 2022 [visited on 2022-04-19]. Available from:
https://www.st.com/en/clocks-and-timers/m41t93.html,

GLOW TUBE RESEARCH S.R.O. Products [online] [visited on 2022-01-24]. Available from:
https://www.daliborfarny.com/shop/.

NIXIE SHOP. Nizie Shop — Buy Nizie Clocks Online [online]. 2021 [visited on 2022-01-24].
Available from: https://nixieshop.com/store.html.

3DSIMO S.R.O. Nizie clock (kit) — 3dsimo.com [online] [visited on 2022-01-24]. Available
from: https://eshop.3dsimo.com/products/nixie-clock.

3DSIMO S.R.O. Nizie clock (kit without Nizie tubes) — 3dsimo.com [online| [visited on
2022-01-24]. Available from: https://eshop.3dsimo.com/products/nixie-clock-kit-
without-nixie-tubes.

Y-0009. Nizie Clock 4 x IN-12 With Tube RGB Backlight Assembled 12/24 format USA
store — eBay [online] [visited on 2022-01-24]. Available from: https://www.ebay . com/
itm/184362056151.

FOMIN, Aleksej. GRA & AFCH Nizie Tubes Clock on NCM105, NCM107, NCM109 [on-
line]. 2014 [visited on 2022-01-23]. Available from: https://github.com/afch/NixieClock.

GLOWTIME NIXIE CLOCKS LTD. Nizie Clock IN-14 Kit (no tubes) Arduino Open Source
— eBay [online] [visited on 2022-01-24]. Available from: https://www.ebay.com/itm/
132023669741.

https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/le-audio/
https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/le-audio/
https://www.youtube.com/watch?v=8OfOwD8f2VI
https://www.youtube.com/watch?v=be9ct7OKI7
https://www.youtube.com/watch?v=YmMDy8qYX_c
https://www.youtube.com/watch?v=eHqtiCMe4NA
https://www.youtube.com/watch?v=eHqtiCMe4NA
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/docs/en/user-guide/UM10204.pdf
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/S12SPIV4.pdf
https://commons.wikimedia.org/wiki/File:SPI_three_slaves.svg
https://www.st.com/resource/en/datasheet/stm32wb55cg.pdf
https://www.st.com/resource/en/datasheet/stm32wb55cg.pdf
https://www.st.com/en/clocks-and-timers/m41t81.html
https://www.st.com/en/clocks-and-timers/m41t81.html
https://www.st.com/en/clocks-and-timers/m41t93.html
https://www.daliborfarny.com/shop/
https://nixieshop.com/store.html
https://eshop.3dsimo.com/products/nixie-clock
https://eshop.3dsimo.com/products/nixie-clock-kit-without-nixie-tubes
https://eshop.3dsimo.com/products/nixie-clock-kit-without-nixie-tubes
https://www.ebay.com/itm/184362056151
https://www.ebay.com/itm/184362056151
https://github.com/afch/NixieClock
https://www.ebay.com/itm/132023669741
https://www.ebay.com/itm/132023669741

Bibliography

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

GREATSCOTTLAB. Make Your Own Retro Nixzie Clock With an RTC! : 7 Steps (with
Pictures) - Instructables [online]. 2019-12-16 [visited on 2022-01-24]. Available from: https:
//www.instructables.com/Make-Your-Own-Retro-Nixie-Clock-With-an-RTC/.

MCERI12. GitHub - mcer12/Nick-ESP8266: Nick is a series of different Nizie clocks based
on ESP8266. [Online]. 2020 [visited on 2022-01-24]. Available from: https://github.com/
mcer12/Nick-ESP8266.

TYSCH. GitHub - tysch/STM32-Nixie: GPS-disciplined STM32-based alarm clock [online].
2017 [visited on 2022-01-24]. Available from: https://github.com/tysch/STM32-Nixie.
BARTIK, Maté;j. Digitronové hodiny (Nizie clock) - specifikace pro idcely BP [online]. 2020
[visited on 2022-01-24]. Available from: https://docs.google.com/document/d/1xetzb_
nKhZtPHte_wYIlsmfKd7ueFHZZWfDHvDGd1Fs/edit?usp=sharing.

DALIBORFARNY.COM. Nizie Tube Health - Zen Nizie Clock - 1 [online]. 2022 [visited on
2022-04-23]. Available from: https://docs.daliborfarny.com/zen-nixie-clock/1/en/
topic/nixie-tube-health.

WACHTER, Dieter. pois-01 [online] [visited on 2022-04-20]. Available from: http : //
Wwww . tube - tester . com/sites/nixie/different /cathode’ 20poisoning/ cathode -
poisoning.htm.

BLUETOOTH SIG, INC. Bluetooth Core Specification: Rev 5.3 [online]. 2021-07-12 [visited
on 2021-09-16]. Available from: https://www.bluetooth.com/specifications/specs/
core-specification-5-3/.

STMICROELECTRONICS. STM32WB Bluetooth® Low Energy (BLE) wireless interface
- AN5270 Application note [online]. 2021-01 [visited on 2021-06-22]. Available from: https:
//www . st .com/content/ccc/resource/technical /document /application_note/
groupl /25/56/53/7b/a0/17 /47 /c8/DM00571230/ files /DM00571230 . pdf / jecr :
content/translations/en.DM00571230.pdf.

STMICROELECTRONICS. Description of STM32WB HAL and low-layer drivers - UM2442
User manual [online]. 2020-03 [visited on 2021-04-24]. Available from: https://www.st.
com/content/ccc/resource/technical/document/user_manual/groupl/4b/81/e9/cf/
40/24/4f/1a/DM00524025/files/DM00524025 . pdf / jcr : content /translations/en.
DM00524025 . pdf.

STMICROELECTRONICS. STM32Cube: embedded software quality assurance [online] [vis-
ited on 2022-04-23]. Available from: https://www.st.com/content/ccc/resource/sales_
and_marketing/presentation/product_presentation/b4/36/4a/82/9d/49/4b/1c/
stm32cube_HAL_qualification.pdf/files/stm32cube_HAL_qualification.pdf/jcr:
content/translations/en.stm32cube_HAL_qualification.pdf.

COOK, Curtis R.; KIM, Do Jin. Best Sorting Algorithm for Nearly Sorted Lists. Commun.
ACM. 1980, vol. 23, no. 11, pp. 620-624. 1sSN 0001-0782. Available from DOI: 10.1145/
359024 .359026.

BLUETOOTH SIG, INC. GATT Specification Supplement: v6 [online]. 2022-03-22 [visited
on 2021-04-10]. Available from: https://www.bluetooth.com/specifications/specs/
gatt-specification-supplement-6/.

REINGOLD, Edward M.; DERSHOWITZ, Nachum. Calendrical Calculations: The Ulti-

mate Edition. 4th ed. Cambridge University Press, 2018. 1SBN 9781107415058. Available
from DOI: 10.1017/9781107415058.

ZELLER, Christian. Kalender-Formeln. Acta Mathematica. 1887, vol. 9, pp. 131-136. Avail-
able from DOI: 10.1007/BF02406733.

JONES, Gareth A.; JONES, J. Mary. Elementary Number Theory. 1st ed. Springer London,
1998. 1SBN 978-1-4471-0613-5. 1SSN 2197-4144. Available from DOI: 10.1007/978-1-4471-
0613-5.

https://www.instructables.com/Make-Your-Own-Retro-Nixie-Clock-With-an-RTC/
https://www.instructables.com/Make-Your-Own-Retro-Nixie-Clock-With-an-RTC/
https://github.com/mcer12/Nick-ESP8266
https://github.com/mcer12/Nick-ESP8266
https://github.com/tysch/STM32-Nixie
https://docs.google.com/document/d/1xetzb_nKhZtPHte_wYI1smfKd7ueFHZZWfDHvDGd1Fs/edit?usp=sharing
https://docs.google.com/document/d/1xetzb_nKhZtPHte_wYI1smfKd7ueFHZZWfDHvDGd1Fs/edit?usp=sharing
https://docs.daliborfarny.com/zen-nixie-clock/1/en/topic/nixie-tube-health
https://docs.daliborfarny.com/zen-nixie-clock/1/en/topic/nixie-tube-health
http://www.tube-tester.com/sites/nixie/different/cathode%20poisoning/cathode-poisoning.htm
http://www.tube-tester.com/sites/nixie/different/cathode%20poisoning/cathode-poisoning.htm
http://www.tube-tester.com/sites/nixie/different/cathode%20poisoning/cathode-poisoning.htm
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.bluetooth.com/specifications/specs/core-specification-5-3/
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/25/56/53/7b/a0/17/47/c8/DM00571230/files/DM00571230.pdf/jcr:content/translations/en.DM00571230.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/25/56/53/7b/a0/17/47/c8/DM00571230/files/DM00571230.pdf/jcr:content/translations/en.DM00571230.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/25/56/53/7b/a0/17/47/c8/DM00571230/files/DM00571230.pdf/jcr:content/translations/en.DM00571230.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/25/56/53/7b/a0/17/47/c8/DM00571230/files/DM00571230.pdf/jcr:content/translations/en.DM00571230.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/4b/81/e9/cf/40/24/4f/1a/DM00524025/files/DM00524025.pdf/jcr:content/translations/en.DM00524025.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/4b/81/e9/cf/40/24/4f/1a/DM00524025/files/DM00524025.pdf/jcr:content/translations/en.DM00524025.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/4b/81/e9/cf/40/24/4f/1a/DM00524025/files/DM00524025.pdf/jcr:content/translations/en.DM00524025.pdf
https://www.st.com/content/ccc/resource/technical/document/user_manual/group1/4b/81/e9/cf/40/24/4f/1a/DM00524025/files/DM00524025.pdf/jcr:content/translations/en.DM00524025.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/b4/36/4a/82/9d/49/4b/1c/stm32cube_HAL_qualification.pdf/files/stm32cube_HAL_qualification.pdf/jcr:content/translations/en.stm32cube_HAL_qualification.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/b4/36/4a/82/9d/49/4b/1c/stm32cube_HAL_qualification.pdf/files/stm32cube_HAL_qualification.pdf/jcr:content/translations/en.stm32cube_HAL_qualification.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/b4/36/4a/82/9d/49/4b/1c/stm32cube_HAL_qualification.pdf/files/stm32cube_HAL_qualification.pdf/jcr:content/translations/en.stm32cube_HAL_qualification.pdf
https://www.st.com/content/ccc/resource/sales_and_marketing/presentation/product_presentation/b4/36/4a/82/9d/49/4b/1c/stm32cube_HAL_qualification.pdf/files/stm32cube_HAL_qualification.pdf/jcr:content/translations/en.stm32cube_HAL_qualification.pdf
https://doi.org/10.1145/359024.359026
https://doi.org/10.1145/359024.359026
https://www.bluetooth.com/specifications/specs/gatt-specification-supplement-6/
https://www.bluetooth.com/specifications/specs/gatt-specification-supplement-6/
https://doi.org/10.1017/9781107415058
https://doi.org/10.1007/BF02406733
https://doi.org/10.1007/978-1-4471-0613-5
https://doi.org/10.1007/978-1-4471-0613-5

70

45.

46.

47.

48.

49.

50.

o1.

Bibliography

STMICROELECTRONICS. STLINK-V8 compact in-circuit debugger and programmer for
STM32 [online] [visited on 2022-04-30]. Available from: https://www . st .com/en/
development-tools/stlink-v3mini.html,

TVZ MECHATRONICS TEAM. Digital inputs and outputs [online]. 2018-10-11 [visited
on 2022-05-05]. Available from: https://os .mbed . com/ teams /TVZ - Mechatronics -
Team/wiki/Digital-inputs-and-outputs.

STMICROELECTRONICS. Building wireless applications with STM32WB Series micro-
controllers - AN5289 Application note [online]. 2021-04-20 [visited on 2021-04-24]. Avail-
able from: https://www. st . com/ content/ccc/resource/technical / document /
application_note/groupl/43/ea/2f/dc/10/a3/46/e6/DM00598033/files/DM00598033.
pdf/jcr:content/translations/en.DM00598033.pdf.

CUIDEVICES. CMT-1271-88-SMT-TR Datasheet - Audio Transducers | Buzzers | CUI De-
vices [online]. 2020-01-22 [visited on 2022-05-10]. Available from: https://www.cuidevices.
com/product/resource/cmt-1271-88-smt-tr.pdf.

SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC. CAT24AA01, CAT2,AA02
- EEPROM Serial 1/2-Kb I2C [online]. 2018-04 [visited on 2022-05-10]. Available from:
https://www.onsemi.com/pdf/datasheet/cat24aal0l-d.pdf.
STMICROELECTRONICS. STM32Cube - Discover the STM32Cube Ecosystem - STMicro-

electronics [online] [visited on 2022-05-07]. Available from: https://www.st.com/content/
st_com/en/ecosystems/stm32cube-ecosystem.html.

STMICROELECTRONICS. STM32CubeWB - STMicroelectronics [online] [visited on 2022-
05-07]. Available from: https://www.st.com/en/embedded-software/stm32cubewb.html.

https://www.st.com/en/development-tools/stlink-v3mini.html
https://www.st.com/en/development-tools/stlink-v3mini.html
https://os.mbed.com/teams/TVZ-Mechatronics-Team/wiki/Digital-inputs-and-outputs
https://os.mbed.com/teams/TVZ-Mechatronics-Team/wiki/Digital-inputs-and-outputs
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/43/ea/2f/dc/10/a3/46/e6/DM00598033/files/DM00598033.pdf/jcr:content/translations/en.DM00598033.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/43/ea/2f/dc/10/a3/46/e6/DM00598033/files/DM00598033.pdf/jcr:content/translations/en.DM00598033.pdf
https://www.st.com/content/ccc/resource/technical/document/application_note/group1/43/ea/2f/dc/10/a3/46/e6/DM00598033/files/DM00598033.pdf/jcr:content/translations/en.DM00598033.pdf
https://www.cuidevices.com/product/resource/cmt-1271-88-smt-tr.pdf
https://www.cuidevices.com/product/resource/cmt-1271-88-smt-tr.pdf
https://www.onsemi.com/pdf/datasheet/cat24aa01-d.pdf
https://www.st.com/content/st_com/en/ecosystems/stm32cube-ecosystem.html
https://www.st.com/content/st_com/en/ecosystems/stm32cube-ecosystem.html
https://www.st.com/en/embedded-software/stm32cubewb.html

Contents of the Enclosed Storage
Medium

B =Y-Vo 111 =0 v A a brief summary of the contents

| src
AMPL e the implementation source files
template......cooeevenieennnnnn the helper source files to be included in IDE projects
1EEaACY e the original IDE project used during development
0] new, cleaned-up IDE projects
BheSIS. i e the source files of the thesis text in IMTEX format
I =D PP the thesis text
| thesis o the thesis text in PDF format

71

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Analysis
	Hardware Description
	STM32WB

	Bluetooth Low Energy
	Generic Access Profile
	Advertisements
	Connections
	Attribute Protocol
	Generic Attribute Profile

	Inter-Integrated Circuit
	Serial Peripheral Interface
	Real-time Clock
	State of the Art
	Software in Ready-made Products
	Software in Self-made Products

	Requirements
	Functional Requirements
	Nonfunctional Requirements

	Compatibility with NixieClock Android Application
	Commentary on BLE Communication Design

	Manufacturer Resources
	Identified Problems
	Alarm Sorting
	Determination of the Day of the Week

	Chapter Summary

	Implementation
	Initial Functional Testing of the Device
	Display Manipulation
	RTC Manipulation
	Running an Example BLE Application
	Building the First Prototype
	Showing the Date, Date Format
	LED Blinking
	RTC Power Backup
	GAP and Advertising Adjustments
	Alarms
	Tube Detoxification
	Daylight Saving Time Management
	Stopwatch
	Timer
	EEPROM Manipulation
	Development Tools
	Chapter Summary

	Testing
	Methodology
	Testing Tools
	Manual Testing
	Clock
	Alarms, Ringing, Manual Ringing Deactivation
	Stopwatch, Timer
	Tube Detoxification
	MCU Timer Sharing
	RTC Power Backup
	Daylight Saving Time Management
	Display
	LEDs

	Portability Testing
	RTC Desynchronization
	Feedback on the NixieClock Application
	Chapter Summary

	Conclusion
	Additional Photographs of the PCB Board
	GATT and GAP Design
	Embedded System Schematic
	STM32WB55xx Block Diagram
	Installation Guide
	Wireless Stack Installation
	Existing Projects
	New Ports
	CubeMX Configuration
	Adjusting the Generated Code
	Adding Helper Files

	Additional Photographs of the Clock
	Contents of the Enclosed Storage Medium

