
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Open Informatics, Software engineering

Web integrated development environment in
private cloud

Bc. Stanislav Ľaš

Supervisor: Ing. Martin Komárek
May 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

466294Personal ID number:Ľaš StanislavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Software EngineeringSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Web integrated development environment in private cloud

Master’s thesis title in Czech:

Webové vývojové prostředí v privátním cloudu

Guidelines:

Explore web integrated environments, especially platform Gitpod and its possibilities of use in a private cloud to:
- elimination of the time-consuming setup of a local development environment
- improvement of source code storage security
Iteratively design, implement, deploy, and test the solution that enables:
- automatic cloning of the selected GIT repository during workspace initialization
- the ability to commit changes into the GIT repository from the web IDE (automatic user context passing)
- display the relevant services and applications like PostgreDB, Kafka, Redis, etc. for the given workspace
- integration with runtime environments so that the user can consume previously deployed services

Bibliography / sources:

Gitpod-WebIDE [online]. [cit. 2022-02-08]. Dostupné z: https://www.gitpod.io/
Kubernetes - open source system for automating deployment, scaling, and management of containerized applications.
[online]. [cit. 2022-02-08]. Dostupné z: https://kubernetes.io/
Helm - The package manager for Kubernetes [online]. [cit. 2022-02-08]. Dostupné z: https://helm.sh/
Concourse [online]. [cit. 2022-02-08]. Dostupné z: https://concourse-ci.org/

Name and workplace of master’s thesis supervisor:

Ing. Martin Komárek Department of Information Security FIT

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 11.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Martin Komárek
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
First, I would like to thank Ing. Martin
Komarek, the supervisor of this thesis,
for his professional support, patience, and
willingness to help to overcome the obsta-
cles to writing this thesis. Next, I would
like to thank Ondřej Michalčík from the
company Stratox for technical guidance
and valuable advice. And last but not
least, I would like to thank my family
and friends for their support during my
studies.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

In Prague, May 20th, 2022

v

Abstract
This thesis deals with web develop-
ment environments and their use. The
work describes the platforms Github
Codespace and Gitpod, which allow the
application to be developed directly in the
cloud. The thesis, in detail, describes the
integration of these platforms with the
test application. This document also con-
tains how to deploy the Gitpod on the
customer‘s infrastructure using various
technologies. The tutorial begins by set-
ting up a domain and generating the cer-
tificates needed for the platform properly
run. Subsequently, it iteratively presents
deployment to different clusters. The out-
put of this work is an example that allows
the installation of GitLab and Gitpod
on one computer. The platforms are inte-
grated immediately after installation, so
you do not need to create a connection.
The Terraform is used to create the in-
frastructure and install the platforms, so
the deployment is automatic.

Keywords: thesis, virtual workspace,
certificates, integration, SSL, Docker,
Docker-desktop, Git-crypt, Kubernetes,
IDE, Cloud-based Development, Gitpod,
Github Codespaces, Kubernetes, k3s,
k3d, Terraform, HTTPS, Domain, Git,
Github, Gitlab, Helm, DNS, reverse
proxy, self-hosted, self-managed,
deployment

Supervisor: Ing. Martin Komárek
komarem@fel.cvut.cz

Author: Bc. Stanislav Ľaš
lasstani@fel.cvut.cz
stanislav.las@gmail.com

Abstrakt
Táto diplomová práca sa zaoberá webo-
vými vývojovými prostrediami a ich
použitím. V práci sú popísané plat-
formy Github Codespace a Gitpod,
ktoré umožňujú vývoj aplikácie priamo
v cloude. Práca podrobne popisuje inte-
gráciu týchto platforiem s testovacou apli-
káciou. Tento dokument taktiež obsahuje
návod ako nasadiť platformu Gitpod na
vlastnej infraštruktúre pomocou rôznych
technológií. Návod začína nastavením do-
mény a vygenerovaním certifikátov po-
trebných na správny chod platformy. Ná-
sledne je iteratívnym spôsobom prezen-
tované nasadzovanie do rôznych klastrov.
Výstupom tejto práce je príklad, ktorý
umožňuje inštaláciu platforiem GitLab a
Gitpod na jednom počítači. Platformy sú
po inštalácií ihneď integrované, takže nie
je potrebné vytvárať prepojenie. Na vy-
tvorenie infraštruktúry a inštaláciu platfo-
riem je použitý nástroj Terraform, ktorý
umožňuje, že je celý tento proces automa-
tický.

Klíčová slova: záverečná práca,
virtuálne pracovné prostredie, certifikáty,
integrácia, nasadenie, SSL, Docker,
Docker-desktop, Git-crypt, Kubernetes,
IDE, Cloud-based Development, Gitpod,
Github Codespaces, Kubernetes, k3s,
k3d, Terraform, HTTPS, Domain, Git,
Github, Gitlab, Helm, DNS, reverse
proxy

Překlad názvu: Webové vývojové
prostředí v privátním cloudu

vi

Contents
1 Introduction 1
2 Gitpod 3
2.1 Integration . 4

2.1.1 My first workspace 4
2.1.2 Prebuilds 5

3 GitHub Codespaces 9
3.1 Codespaces lifecycle 9
3.2 Dev container 11
3.3 Integration 11

3.3.1 Dev container configuration . 11
4 Gitpod Self-hosted 15
4.1 Domain name 15
4.2 Certificates 16
4.3 Kubernetes 16

4.3.1 Kubernetes in Docker-desktop 16
4.3.2 Microk8s 18
4.3.3 K3s . 19

4.4 Gitpod installation 19
5 Gitpod and Gitlab Self-hosted 27
5.1 Domain and Certificates 27
5.2 Installation on k3s 28
5.3 K3d . 28

5.3.1 Reverse proxy server 30
5.3.2 GitLab 32
5.3.3 Gitpod 32

5.4 One-click deployment 34
5.4.1 Installation script 35
5.4.2 Terraform apply 35
5.4.3 Auth Provider 37

6 Solved issues 41
6.1 Missing git context 41
6.2 Git-crypt . 42
6.3 Extensions 44
7 Operability 47
7.1 Scalability 47
7.2 Observability 49

7.2.1 Prometheus 49
7.2.2 Kube state metrics 50
7.2.3 Alert Manager 51
7.2.4 Grafana 51

8 Conclusion 55
Bibliography 57

vii

Figures
2.1 Virtual workspace 5
2.2 Prebuilds[5] 6
2.3 Successful prebuild 7

4.1 Enabling Kubernetes support . 17
4.2 kubectl output 17
4.3 Gitpod pods 18
4.4 Error in ws-daemon 18

6.1 PostgresSql extension 45

7.1 Utilization of four parallel
workspaces . 47

7.2 Utilization of nine parallel
workspaces . 48

7.3 Utilization of nineteen parallel
workspaces . 49

7.4 Kubernetes Prometheus
monitoring stack[57] 50

7.5 High Pod Memory alert 51

Tables

viii

Chapter 1
Introduction

The work of a developer should be creative and original. Therefore, we try to
automate the whole development process as much as possible. The evidence
is the CI/CD pipeline1, which can automatically run different types of
tests, build an application, and even deploy it to the server. However, this
process begins after changes are committed to the version control system.
Before creative work, there is the process, which is not automated yet. It is
a constantly recurring setting up the development environment, in which it
is necessary to take into account the operating system of the developer and
many other factors. We often hear the phrase, It works on my machine. But it
does not work on a colleague’s machine and not even on the test system. The
new style of development called Cloud-based Development[1] is trying to
change that. This style is based on moving the whole development process
to the cloud, where the developer simply logs in and can start work. The
advantage is that all calculations take place on the cloud, and access is
implemented through a web browser so the developer can work on any device,
such as a tablet or mobile phone. Developers working on the project have the
same operating system accessible after connecting to the cloud system, which
simplifies setting up the environment. As long as we provide all developers
with the same operating system, why not create a configuration file in which
we define the development environment for each application. And this is the
biggest advantage of Cloud-based Development. The developer creates a
configured development environment with one click that can build and run
an application. And without further configuration, the developer can begin
to develop.

The goal of this thesis is to get familiar with Cloud-based Development
platforms. And install, configure, and maintain one in a private cloud. The
two major platforms on the market that currently deal with this style are
Gitpod[3] and GitHub Codespaces[11]. Gitpod has been on the market
since 2020, while the beta version of GitHub Codespaces got released
in August 2021. Gitpod is available to public and private repositories
for fifty hours a month complimentary. It is an open-source project, and
therefore developers involved in the development can request unrestricted
access. Github Codespaces is currently only available to organizations with

1Continuous integration/continuous delivery pipeline

1

https://semaphoreci.com/blog/cicd-pipeline

1. Introduction
the Github Team2 or Github Enterprise Cloud3 subscription. However,
this should change soon because, according to CEO Nat Friedman, access for
individuals should be launched by the end of 2021[2]. Nonetheless, there is
still no access for individuals yet.

2https://docs.github.com/en/get-started/onboarding/getting-started-with-github-
team

3https://docs.github.com/en/get-started/onboarding/getting-started-with-github-
enterprise-cloud

2

https://docs.github.com/en/get-started/onboarding/getting-started-with-github-team
https://docs.github.com/en/get-started/onboarding/getting-started-with-github-team
https://docs.github.com/en/get-started/onboarding/getting-started-with-github-enterprise-cloud
https://docs.github.com/en/get-started/onboarding/getting-started-with-github-enterprise-cloud

Chapter 2
Gitpod

Gitpod[3] is a platform based on container development, which focuses on
developer experience. The platform provides an integrated workspace stored
in the cloud, and it allows the user to develop immediately through the web
browser on a variety of devices. The workspace configuration is stored in the
configuration file so developers can easily create a new workspace for every
single task.

Ready to code. A lot of time is lost during the development because
of the setting up of the environment on the developer‘s computer. Local
development environments are very fragile, and they can be easily corrupted
while working on multiple projects at a time. Furthermore, building and
downloading dependencies of an application is also a time-consuming task.

In contrast, preparation of an environment with Gitpod is elementary.
Instead of downloading code developer opens a virtual workspace, where all
dependencies are already poised, and the developer can start work creatively.
Dependencies are prepared on the bases of configuration, which is stored
as the code. Finally, when work is done workspace can be deleted, and the
developer does not have to worry about anything else.

Cloud as a local computer. A Virtual workspace contains everything
that a developer may need during the development. Workspace is running
lightweight Linux with editor VS Code1, so the developer has access to the
Unix shell2. Moreover, within the creation of the workspace source codes of
the application are downloaded. Workspaces are well customizable, and they
can even be preconfigured and optimized on a team, project, or individual level.
Additionally, Gitpod is compatible with the biggest git-based platforms
like Github3, Gitlab4, and Bitbucket5.

Velocity. Gitpod can start a virtual workspace in terms of seconds. It allows
developers to begin work immediately from any git context[4], anytime, and

1https://code.visualstudio.com/
2https://www.tutorialspoint.com/unix/unix-what-is-shell.htm
3https://github.com/
4https://about.gitlab.com/
5https://bitbucket.org/

3

https://code.visualstudio.com/
https://www.tutorialspoint.com/unix/unix-what-is-shell.htm
https://github.com/
https://about.gitlab.com/
https://bitbucket.org/

2. Gitpod
from any device. The creation of a new workspace is elementary. Moreover,
the platform provides the possibility to share the workspace with other team
members.

Readiness. Gitpod continuously compiles all main branches similar to a
CI server6. When some change is committed into a git repository, it starts
building dependencies even before a new virtual workspace is created. The
workspace is created almost immediately because dependencies are in place
and the application is already to built.

Security. We live in the world of remote connection, where copies of the
source code stored on countless insecure devices and networks is not good
practice. With Gitpod, the code is stored on the cloud, and it is accessible
only through a secure connection of a web browser. Furthermore, it is possible
to access the code from a variety of devices like mobile phones or tablets, and
work on all devices is the same as on a classic personal computer. Everything
the device needs for the connection to the workspace is a web browser and
access to the internet.

2.1 Integration

To get more familiar with Gitpod I decided to integrate with the project
Pet Clinic7. The project is a simple application that demonstrates the
Spring framework8. First, I forked source codes into my personal Github
(https://github.com/stanislavlas/spring-petclinic), and then I followed
steps from official Gitpod documentation[6].

2.1.1 My first workspace

The best way to configure Gitpod is by using Gitpod[6]. So I navigated
my web browser to the project repository, and in the address bar, I pre-
fixed the entire URL with gitpod.io/#. So in my case URL looked like
gitpod.io/#https://github.com/stanislavlas/spring-petclinic. It redirected me
to the Gitpod side, where I had to allow a connection between Github
and Gitpod and install the Gitpod bot into the repository. After these
steps, my first virtual workspace spun up. In the picture[2.1] is what the
workspace looks like. It has an integrated editor VS Code, and on the left
side is a field with standard editors functionality like file explorer and source
control manager. On the bottom is opened terminal which provides control
of the workspace through bash. Moreover, Gitpod automatically detected
application written in the Java and offered me appropriate extensions to the
editor. All dependencies were downloaded and when I started the application,
workspace proposed to open the application in the new window in the browser.

6Continue integration server
7https://github.com/spring-projects/spring-petclinic
8https://spring.io/

4

https://github.com/stanislavlas/spring-petclinic
https://github.com/spring-projects/spring-petclinic
https://spring.io/

..................................... 2.1. Integration

Figure 2.1: Virtual workspace

I could work with an application similar to running it on a local machine in
the new window.

2.1.2 Prebuilds

In the previous section, Gitpod created a virtual machine and cloned a git
repository into it. There is still a need to download dependencies and build the
application manually. I created a .gitpod.yml configuration file at the project
root to get the most out of Gitpod. The file provides instructions to Gitpod
on how to build and prepare the development environment specifically for
a project. The config file is created automatically by the command gp init
at the project root. In the file[2.1.2], there are two sections. One for the
definition of which tasks should run and when, and another for the port
forwarding definition.

List the start up tasks. Learn more
https://www.gitpod.io/docs/config-start-tasks/
tasks:

- init: ./mvnw package
command: java -jar target/*.jar

List the ports to expose. Learn more
https://www.gitpod.io/docs/config-ports/
ports:

- port: 8080
onOpen: open-preview

5

2. Gitpod
Tasks. This part includes a statement, of which jobs will run before, during,
or after workspace creation. Jobs that are supposed to be running first when
a workspace is created are defined in the section before. These tasks are
usually for setting up a terminal or installing global dependencies of a project.
Section init enunciates commands for building an application, downloading
dependencies, and time-consuming tasks. It is used for prebuilds and allows
Gitpod to start the workspace in seconds. The section command defines
what happens after a workspace is created. For example, start the application
and open it in the browser. The following figure[2.2] illustrates how these
sections are triggered during the start of workspace with and without prebuilds
enabled. In the integration, I used ./mvnw package in the init section for

Figure 2.2: Prebuilds[5]

building the application and java -jar target/*.jar in the command section
for starting the application.

Ports. When the project starts a service that listens on a given port, Gitpod
automatically serves traffic to this port. Additionally, when Gitpod detects
the available port, it performs the defined task. In our case, open-preview,
which means it opens the application on a new tab.

6

..................................... 2.1. Integration

At this point, Gitpod is configured to be able to perform prebuild.
Prebuild is ordinarily triggered after a change in the repository, by the
standard in the main branches. Modification of this manner is possible in
the configuration file, but for the integration, I will use default behavior. I
created a small change and committed it to the repository, and it triggered
prebuild, which successfully finished[2.3]. After a successful prebuild, I
created a new workspace, it started in a few moments, and it opened the
running application on a new tab.

Figure 2.3: Successful prebuild

7

8

Chapter 3
GitHub Codespaces

Github Codespaces[7] is a virtual development environment stored in
the cloud. Environment configuration is stored in configuration files in a
repository, which creates a repeatable codespace configuration for all users
of your project. Github provides a variety of virtual machines for running
Codespaces. Connection to the Codespace is provided by a web browser
or locally using VS Code.

3.1 Codespaces lifecycle

Creation. Codespace can be created in several ways:. implementation of a new feature from the repository. exploration of work-in-progress from pull request1. investigation of a bug at a specific point at the time from a commit in
the repository history.Visual Studio Code

During the creation of a new codespace some steps happen in the background
before it is available:..1. virtual machine and storage are assigned to the codespace..2. the container is created..3. connecting to the codespace is established..4. post-creation setup

Codespace as a temporary entity. Codespace is considered a temporary
entity that will disappear when the work is done. In this case, changes need to
be regularly committed to the repository to make sure each new functionality
is in the git. The maximum number of running codespaces is ten. Therefore,
if the number is reached, it is necessary to delete one of the old codespaces
to create a new one.

1https://docs.github.com/en/pull-requests

9

Githttps://github.com/
https://docs.github.com/en/pull-requests

3. GitHub Codespaces
Codespace as a long-running entity. We can understand codespace as

a long-running entity that we always connect to for every new task. It is
necessary to download changes from a standard branch regularly to make
sure all new features are available. This workflow is similar to working on a
local computer.

Saving changes in a codespace. Through the web, editor codespace has
enabled auto-save. So changes are automatically saved after a few seconds.
The codespace is available for thirty minutes from the last activity and
subsequently shut down. The activity is considered some change in the editor
or output of the terminal. During the long-running tasks, the codespace
will remain open. Modifications are safely stored in the case of shut down,
and at the next start of the codespace, the state is restored. Changes are
not saved automatically during work on a local computer in VS Code. It
requires some configuration of VS Code to enable auto-save of changes.

Stopping and closing a codespace. The way how to shut down a codespace
is using the command palette in the VS Code (Shift + Command + P (Mac)
or Ctrl + Shift + P (Windows)) by entering the command Codespaces: Stop
Current Codespace. Codespace is not shut down when the tab is closed.
However, It is automatically shut down after a predefined time (default thirty
minutes) When deleting the codespace, it detects all uncommitted changes,
and the editor prompts the developer to commit or discard the changes.

Access to application in a codespace. Application in a codespace that is
accessible allows port forwarding, which defines ports accessible outside of
codespace. Processes running inside a codespace can access the application,
even without port forwarding. Forwarded ports are not accessible from the
internet by default. However, it is possible to configure it and expose it to the
organization‘s network or the internet. Codespace is stored on the cloud,
and it requires an internet connection to access it. It is not possible to work in
codespace when the connection is lost. On the other hand, all uncommitted
changes are stored and in the incoming connection to codespace, the changes
are restored.

Committing changes. Every codespace contains the git, which allows
working in a codespace according to standard git workflows. Working with
git is possible by using a terminal or the interface for resource management
integrated into the VS Code.

Personalization. The editor allows the installation of various extensions from
Visual Studio Code Marketplace2. Moreover, possibility to synchronize
all extensions, settings, themes, and keyboard shortcuts from the local VS
Code.

2https://marketplace.visualstudio.com/vscode

10

https://marketplace.visualstudio.com/vscode

.................................... 3.2. Dev container

3.2 Dev container

Dev container[8] is an environment, which provides tools necessary for
software development. There is a possibility to define own container. However,
codespace will use the default one with regular tools for development when
the container is not defined. The configuration of a container must be
stored in a folder .devcontainer, which consists of files devcontainer.json and
Dockerfile. The main configuration is stored in the file devcontainer.json,
which is mandatory. Dockerfile is optional, but it defines an image used for
the container, and in some scenarios, it might be handy. A reference needs
to be added to the devcontainer.json. Codespace offers several predefined
configurations for a specific project type. These configurations are accessible
via the pallet of commands in VS Code (Shift + Command + P (Mac) or
Ctrl + Shift + P (Windows)) after selecting Codespaces: Add Development
Container Configuration Files <...>.

3.3 Integration

Codespaces are currently only available for organizations that use GitHub
Team[?] or GitHub Enterprise Cloud[10]. Unfortunately, it is not avail-
able for individuals, so I could not try integration on my project. According
to the official guide[11], it should be simple. After clicking on the Code button
in a repository, the Codespace tab will appear. This tab contains all created
codespaces and a button for creating a new one. VS Code editor with
terminal will appear after the creation of codespace. An application can be
compiled and run using a terminal or the editor. When codespace detects
the port on which the application is running, it offers port forwarding and
opens the application in a new browser tab.

3.3.1 Dev container configuration

To define a container, we can choose one of the predefined configurations
or create a file .devcontainer.json. In the example[3.3.1], we can see the
.devcontainer.json file generated after using a predefined Java configuration.
At the beginning of the file is the defined name of the container followed by
the definition of an application compilation, in our case Dockerfile with
appropriate arguments. Next, we can see the editor settings such as the type

11

3. GitHub Codespaces
of terminal, home directory for Java, and the path to the package manager
Maven. In other options, we can see the settings of extensions in VS Code,
port forwarding, and commands to run after codespace creation. Finally,
the user, which the developer logs into the codespace, is defined. By default
the user vscode is used, but the alternative is to use the root user, for
example.

{
"name": "Node.js",
"build": {

"dockerfile": "Dockerfile",
"args": { "VARIANT": "14" }

},

"settings": {
"terminal.integrated.shell.linux": "/bin/bash"

},

"extensions": [
"dbaeumer.vscode-eslint"

],

// "forwardPorts": [],

// "postCreateCommand": "yarn install",

"remoteUser": "node"
}

12

..................................... 3.3. Integration

The Dockerfile[3.3.1] is also generated from a predefined configuration for
the Java. As we can see at the beginning, the image on which the container
will run is defined. Subsequently, the arguments and the installation of the
package manager are defined, followed by the installation of the Node.js
application.
[Choice] Node.js version: 14, 12, 10
ARG VARIANT="14-buster"
ARG URL="mcr.microsoft.com"
ARG PATH="/vscode/devcontainers/javascript-node:0"
FROM ${URL}${PATH}-${VARIANT}

[Optional] Uncomment this section to
install additional OS packages.
RUN apt-get update && \
export DEBIAN_FRONTEND=noninteractive && \
apt-get -y install --no-install-recommends \
<your-package-list-here>

[Optional] Uncomment if you want to
install an additional version of node using nvm
ARG EXTRA_NODE_VERSION=10
RUN su node -c "source /usr/local/share/nvm/nvm.sh && \
nvm install \
${EXTRA_NODE_VERSION}"

[Optional] Uncomment if you want
to install more global node modules
RUN su node -c "npm install -g <your-package-list-here>"

13

14

Chapter 4
Gitpod Self-hosted

Gitpod supports an installation on the customer‘s infrastructure[12], which
must include the distribution of Kubernetes platform. Supported distribu-
tions are Amazon Elastic Kubernetes Service, Google Kubernetes
Engine, k3s, and Microsoft Azure Kubernetes Service. Gitpod also
requires a domain name resolvable by a DNS server in infrastructure and
trusted HTTPS certificates for SSL communication.

4.1 Domain name

Since Gitpod requires a domain resolvable by the DNS, I bought the domain
test-gitpod.com on side https://www.godaddy.com/. I associated it with
the public IP address of my local network by adding A record into DNS
records in DNS management of the domain. As a quick test of the connection
with my network, I ran a simple server on my computer with python3 -m
http.server 8080, which started service on localhost:8080. When I tried to
hit test-gitpod.com:8080 request failed because test-gitpod.com refused to
connect. The reason for failure was that I did not allow connection on my
router which is possible by port forwarding1. My TP-Link router supports
port forwarding by the feature called "Virtual servers". The feature
requires an IP address of the computer in the local network, external and
internal port of the service, service type and, the protocol. After I set up
port forwarding on port 8080 I could reach the server from outside of
my home network by using the domain test-gitpod.com. Gitpod launches
services and workspaces on additional subdomains, it also needs two wildcard
domains, so I created all DNS records 4.1 in DNS management of the domain.

your-domain.com
*.your-domain.com
*.ws.your-domain.com

1https://learn.g2.com/port-forwarding

15

https://aws.amazon.com/eks/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://k3s.io/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://www.godaddy.com/
https://learn.g2.com/port-forwarding

4. Gitpod Self-hosted
4.2 Certificates

Gitpod requires HTTPS certificates. There is no hard requirement on
any certificate authority, but the recommendation is to use the ACME
certificate issuer2 to renew and install certificates automatically[25]. I
used certbot3 to get certificates from Let‘s Encrypt4 by command on 4.2.
Command runs the certbot image in docker container with attached volumes
where certificates will be saved followed by my email. I used the DNS
challenge5 with manual domain owner confirmation. It means the certbot
asks to deploy randomly generated TXT records into DNS management of
the domain and then provides certificates. The last three arguments are
domains, which must be included in certificates.

sudo docker run -it --rm --name certbot \
-v $WORKDIR/etc:/etc/letsencrypt \
-v $WORKDIR/var:/var/lib/letsencrypt \

certbot/certbot certonly \
-v \
--email stanislav.las@gmail.com \
--manual \
--preferred-challenges=dns \
--agree-tos \
-d test-gitpod.com \
-d *.test-gitpod.com \
-d *.ws.test-gitpod.com

4.3 Kubernetes

4.3.1 Kubernetes in Docker-desktop

First, I tried to make Gitpod work on my computer in the Docker[13].
I used Docker-desktop[14] on the operation system Windows 10 and
WSL[16]. Docker-desktop contains a standalone Kubernetes server[15]
on a local computer. The server is not configurable, contains one node,
and is intended for testing purposes. Enabling of Kubernetes support is
placed in the settings of Docker-desktop in Preferences > Kubernetes[4.1].
Installation can be validated by the tool kubectl get nodes[4.2], which returns
all nodes in the cluster. The Kubernetes command-line tool, kubectl[17],
allows users to run commands against Kubernetes clusters. It needs to
have a properly configured context pointing into the correct Kubernetes
cluster. Installation of Gitpod requires a configuration file, so I created

2https://caddyserver.com/docs/automatic-https
3https://eff-certbot.readthedocs.io
4https://letsencrypt.org/
5https://letsencrypt.org/docs/challenge-types/

16

https://caddyserver.com/docs/automatic-https
https://eff-certbot.readthedocs.io
https://letsencrypt.org/
https://letsencrypt.org/docs/challenge-types/

..................................... 4.3. Kubernetes

Figure 4.1: Enabling Kubernetes support

Figure 4.2: kubectl output

values.custom.yaml4.3.1. These values are used for configuration tools, such
as RabbitMQ6 and Minio7, which are part of Gitpod installation. In
my case, the only condition was that keys for Minio must have the correct
format. Therefore, I generated it by the command openssl rand -hex 20 8.

docker-registry:
authentication:

username: gitpod
password: your-registry-password

rabbitmq:
auth:

username: your-rabbitmq-user
password: your-secret-rabbitmq-password

minio:
accessKey: your-random-access-key
secretKey: your-random-secret-key

Next, I installed Gitpod by Kubernetes deployment manager helm[18]
with these commands[4.3.1].

helm repo add gitpod.io https://charts.gitpod.io
helm repo update
helm install -f values.custom.yaml gitpod \

gitpod.io/gitpod --version=0.10.0

6https://www.rabbitmq.com/
7https://min.io/
8https://www.wolfssl.com/docs/

17

https://min.io/
https://www.rabbitmq.com/
https://min.io/
https://www.wolfssl.com/docs/

4. Gitpod Self-hosted
It installed Gitpod on the local Kubernetes cluster, but some pods were
not in the RUNNING state. The reason was that I did not provide SSL
certificates, so I added them into the cluster as a secret. At this point,
almost all pods were running correctly[4.3], except ws-daemon, which was
failing on the error[4.4]. The description of the error is on the official

Figure 4.3: Gitpod pods

Figure 4.4: Error in ws-daemon

web of the Gitpod[19]. The suggested solution is to configure paths to the
containerd[22] and upgrade the installation. At this point, I ran into the
problem because the cluster runs on Docker-desktop, and it does not allow
trivial configuration. I could not change the paths, so I decided to switch to
the Linux to prevent similar issues.

4.3.2 Microk8s

As mentioned in the documentation, Gitpod requires Kubernetes installed
on the machine, so I decided to use microk8s[20]. Its installation is ele-
mentary and quick. I followed the installation guide, which uses installation
manager snap. A snap is a bundle of applications and their dependencies
that works without modification across many different Linux distributions[24].
Installation of Microk8s is by command sudo snap install microk8s –classic,
and it is possible to check if the cluster is ready by microk8s status –wait-ready.
When the cluster is ready, it needs to enable some services with microk8s
enable dashboard dns registry istio. After the proper installation of the cluster,
the command microk8s kubectl get all –all-namespaces should return all re-
sources running on the cluster. Also, there is a way to enable the dashboard
with microk8s dashboard-proxy, but I think it is better to use the command

18

.................................. 4.4. Gitpod installation

line for configuration. Microk8s provides a simple way to pause and start
the cluster by microk8s start and microk8s stop, respectively. Unfortunately,
I was not able to make Gitpod work on the microk8s. All pods went into
the RUNNING state, but I could not access service on the test-gitpod.com.
I am not sure what the problem was, but I decided not to continue with the
microk8s and use k3s instead, which is listed as a supported by Gitpod.

4.3.3 K3s

K3s[29] is lightweight Kubernetes that is production-ready, easy to install,
half the memory, all in a binary less than 100MB[29] in size. K3s installation
is by the command curl -sfL https://get.k3s.io | sh -, and to verify the cluster
works, I ran k3s kubectl get node. Running k3s kubectl... every time is not
much pleasure, so I copied k3s kubectl config into local kube configuration
by 4.3.3 so I can run kubectl get nodes now.
sudo k3d kubeconfig get gitpod > $HOME/.kube/config

When I installed Gitpod on k3s proxy pod could not start because of an error:
0/1 nodes are available: 1 node(s) didn’t have free ports for the requested
pod ports. This error is caused by traefik proxy9 since Gitpod has its
proxy. Therefore I had to uninstall it, which consists of a few steps[26]:..1. Remove traefik helm chart resource: kubectl -n kube-system delete helm-

charts.helm.cattle.io traefik..2. Stop the k3s service: sudo service k3s stop..3. Edit service file: sudo nano /etc/systemd/system/k3s.service and add
this line to ExecStart: –no-deploy traefik..4. Reload the service file: sudo systemctl daemon-reload..5. Remove the manifest file from auto-deploy folder: sudo rm /var/lib/rancher/k3s/server/manifests/traefik.yaml..6. Start the k3s service: sudo service k3s start

It is possible to disable the deployment of Traefik in the installation by
adding the k3s flag into the installation command: curl -sfL https://get.k3s.io
| INSTALL_K3S_EXEC="–disable=traefik" sh

4.4 Gitpod installation

Helm. This section describes how to install Gitpod on any Kubernetes
cluster using Helm. The chart for releases resides in the Helm repos-
itory[charts.gitpod.io], and the source of the charts is in the git reposi-
tory[https://github.com/gitpod-io/gitpod/blob/main/chart/]. I created con-
figuration file values.custom.yaml[4.4] and replaced the key/secrets with

9https://traefik.io/

19

https://k3s.io/
https://charts.gitpod.io/
https://github.com/gitpod-io/gitpod/blob/main/chart/
https://traefik.io/

4. Gitpod Self-hosted
random values. The values are used for internal communication inside the
application.

docker-registry:
authentication:

username: gitpod
password: your-registry-password

rabbitmq:
auth:

username: your-rabbitmq-user
password: your-secret-rabbitmq-password

minio:
accessKey: your-random-access-key
secretKey: your-random-secret-key

The next step was to add charts repo into the Helm, update Helm reposito-
ries, and install Gitpod using these commands 4.4.

helm repo add gitpod.io https://charts.gitpod.io
helm repo update
helm install -f values.custom.yaml gitpod \

gitpod.io/gitpod --version=0.10.0

At this point, Gitpod was deployed, but some pods were not starting correctly.
The reason is that I did not set up the domain and certificates for installation.
Configuration of the domain[4.1] is in values.custom.yaml[4.4] by adding the
test-gitpod.com in hostname and my public IP address in loadBalancerIP.

hostname: <your-domain.com>
components:

proxy:
loadBalancerIP: <your-IP>

Generation of the certificates was in 4.2. I moved them into secrets/https-
certificates and renamed them to tls.crt and tls.key. I also generated dh-
params.pem and ran the kubectl command to create Kubernetes secret
https-certificates from folder secrets/https-certificates. When I set up the
domain and certificates I had to upgrade the Gitpod installation. It was
done by following commands 4.4.

20

https://security.stackexchange.com/questions/94390/whats-the-purpose-of-dh-parameters
https://security.stackexchange.com/questions/94390/whats-the-purpose-of-dh-parameters

.................................. 4.4. Gitpod installation

Generate the dhparams.pem
openssl dhparam -out \

secrets/https-certificates/dhparams.pem 2048

Create new secret with name httpsCertificates
kubectl create secret generic https-certificates \

--from-file=secrets/https-certificates

Upgrade installation of gitpod
helm upgrade --install -f values.custom.yaml \

gitpod gitpod.io/gitpod --version=0.10.0

After this setup, all pods were in a RUNNING state, but I could not access
the Gitpod dashboard. The problem was that Gitpod runs on port 443,
but my router did not forward the port. I added port forwarding for port 443,
and at this point, I could open the dashboard and run workspaces on my Self
Hosted Gitpod. Unfortunately, this installation is currently deprecated, so
I had to use a different approach which is using an installer.

Installer. The current way to install Gitpod on your Kubernetes clus-
ter is using the Gitpod installer. The installer is currently available
only for Linux. I used k3s as a Kubernetes cluster, which I installed
in 4.3.3. The first step was to download the latest version of the installer
from https://github.com/gitpod-io/gitpod/releases/download/2022.01/gitpod-
installer-linux-amd64. Next, I installed the binary and tested it to ensure the
version I installed was up-to-date. It is possible to generate the base config
file[4.4] used in the installation with the installer. For all these steps, I used
the following commands[4.4].

Download the latest release with the command
curl -fsSLO https://github.com/gitpod-io/gitpod/ \

releases/download/2022.01/gitpod-installer-linux-amd64
Download the checksum file
curl -fsSLO https://github.com/gitpod-io/gitpod/releases \

/download/2022.01/gitpod-installer-linux-amd64.sha256
Validate the binary against the checksum file
echo "$(<gitpod-installer-linux-amd64.sha256)" \

| sha256sum --check
Install the binary
sudo install -o root -g root gitpod-installer-linux-amd64 \

/usr/local/bin/gitpod-installer
Test to ensure the version you installed it up-to-date
gitpod-installer version
Generate the base config
gitpod-installer init > gitpod.config.yaml

I added the domain test-gitpod.com and the path where Gitpod containers

21

https://www.gitpod.io/docs/self-hosted/latest/installation
https://github.com/gitpod-io/gitpod/releases/download/2022.01/gitpod-installer-linux-amd64
https://github.com/gitpod-io/gitpod/releases/download/2022.01/gitpod-installer-linux-amd64

4. Gitpod Self-hosted
are stored in this file[4.4] because the path is different in k3s. The path is
found by running mount | grep rootfs on the node.
apiVersion: v1
authProviders: []
blockNewUsers:

enabled: false
passlist: []

certificate:
kind: secret
name: httpsCertificates

containerRegistry:
inCluster: true
s3storage: null

database:
inCluster: true

domain: test-gitpod.com
imagePullSecrets: null
jaegerOperator:

inCluster: true
kind: Full
metadata:

region: local
objectStorage:

inCluster: true
observability:

logLevel: info
repository: eu.gcr.io/gitpod-core-dev/build
workspace:

resources:
requests:

cpu: "1"
memory: 2Gi

runtime:
containerdRuntimeDir: \
/run/k3s/containerd/io.containerd.runtime.v2.task/k8s.io
containerdSocket: /run/k3s/containerd/containerd.sock
fsShiftMethod: fuse

Before installation, I ran scripts for validation of the config file[4.4].
Checks the validity of the configuration YAML
gitpod-installer validate config \

--config gitpod.config.yaml

Checks that your cluster is ready to install Gitpod
gitpod-installer validate cluster --kubeconfig \

~/.kube/config --config gitpod.config.yaml

22

.................................. 4.4. Gitpod installation

The second check failed because I did not have some required dependencies
set up correctly, which can be seen in the output of validation[4.4].

{
"status": "ERROR",
"items": [

{
"name": "Linux kernel version",
"description": "all cluster nodes run Linux 5.4.0-0",
"status": "OK"

},
{

"name": "containerd enabled",
"description": "all cluster nodes run containerd",
"status": "OK"

},
{

"name": "Kubernetes version",
"description": "all cluster nodes run k8s 1.21.0-0",
"status": "OK"

},
{

"name": "affinity labels",
"description": "Affinity labels not present in cluster",
"status": "ERROR",
"errors": [

{
"message": "gitpod.io/workload_ide",
"type": "ERROR"

},
{

"message": "gitpod.io/workload_workspace_services",
"type": "ERROR"

},
{

"message": "gitpod.io/workload_workspace_regular",
"type": "ERROR"

},
{

"message": "gitpod.io/workload_workspace_headless",
"type": "ERROR"

},
{

"message": "gitpod.io/workload_meta",
"type": "ERROR"

}
]

23

4. Gitpod Self-hosted
},
{

"name": "cert-manager installed",
"description": "cert-manager is installed",
"status": "ERROR",
"errors": [

{
"message": "cannot find the cert-manager",
"type": "ERROR"

}
]

},
{

"name": "Namespace exists",
"description": "ensure that the namespace exists",
"status": "OK"

},
{

"name": "https-certificates is present and valid",
"description": "cannot find the https-certificates",
"status": "ERROR",
"errors": [

{
"message": "secret https-certificates not found",
"type": "ERROR"

}
]

}
]

}

The installer required affinity labels and installation of a cert-manager10,
which I installed by command kubectl apply -f https://github.com/cert-manager/cert-
manager/releases/download/v1.7.1/cert-manager.yaml. Cert-manager should
generate the certificates, but I use ClouDNS11 as DNS manager, which
cert-manager does not support. Therefore I had to create the HTTPS
certificates without cert-manager, add them to the file[4.4], and run kubectl
apply -f https-certificates. The certificate and the key in the file must be
encrypted by Base6412 encryption.

10https://cert-manager.io/docs/
11https://www.cloudns.net/
12https://www.base64decode.org/

24

https://cert-manager.io/docs/
https://www.cloudns.net/
https://www.base64decode.org/

.................................. 4.4. Gitpod installation

apiVersion: v1
kind: Secret
metadata:

name: https-certificates
data:

tls.crt: <cert>
tls.key: <key>

After these steps everything was set up so I rendered gitpod.yaml and deploy
Gitpod by 4.4.
Render the YAML
gitpod-installer render --config \

gitpod.config.yaml > gitpod.yaml

Deploy
kubectl apply -f gitpod.yaml

In a few minutes, I could access the Gitpod dashboard on test-gitpod.com.
First, I set up integration with Github by creating OAuth App[44] in
Github and providing the client ID and client secret to the Gitpod. I also
tried to create a new workspace from Pet Clinic, which got successfully
created. After the build, application started in a new window as I set up in
the chapter[2.1.2].

25

https://github.com/stanislavlas/spring-petclinic

26

Chapter 5
Gitpod and Gitlab Self-hosted

Requirements for GitLab deployed on Kubernetes are kubectl 1.16 or
higher and helm v3 or higher installed on the machine. Default Helm chart
configuration creates an implementation where all GitLab services placing
into a cluster similar to Gitpod installation. However, it can be configured
to point to external stateful storage such as PostgreSQL, Redis, all Non-Git
repository storage, or Git repository storage[27]. The Gitpod was already
running in the k3s cluster. So decided to install GitLab on the same cluster
to another namespace.

5.1 Domain and Certificates

By default, the chart relies on Kubernetes Service objects of type LoadBal-
ancer to expose GitLab services using name-based virtual servers configured
with Ingress objects. Therefore it needs a domain that will contain records
to resolve GitLab, registry and minio to the appropriate IP address[28]. I
decided I use gitpod.test-gitpod.com for Gitpod and gitlab.test-gitlab.com
for GitLab. So I changed records in the DNS manager for the domain
test-gitpod.com to contain the following A records[5.1].

test-gitpod.com
*.test-gitpod.com
*.gitlab.test-gitpod.com
*.gitpod.test-gitpod.com
*.ws.gitpod.test-gitpod.com

GitLab should be running with HTTPS, which requires TLS certificates.
There are few options for obtaining free certificates, but I have already done
it using certbot for Gitpod, so I chose the same approach[4.2] for GitLab.
I used similar command to the one I already used in 4.2. However in this
case, I also included wildcard DNS records for GitLab[5.1]. Next, I updated
the certificate secret with a new certificate and key, which contains records
for GitLab.

27

5. Gitpod and Gitlab Self-hosted
sudo docker run -it --rm --name certbot \

-v $WORKDIR/etc:/etc/letsencrypt \
-v $WORKDIR/var:/var/lib/letsencrypt \

certbot/certbot certonly \
-v \
--email stanislav.las@gmail.com \
--manual \
--preferred-challenges=dns \
--agree-tos \
-d test-gitpod.com \
-d *.test-gitpod.com \
-d *.gitlab.test-gitpod.com \
-d *.gitpod.test-gitpod.com \
-d *.ws.gitpod.test-gitpod.com

kubectl apply -f https-certificates

5.2 Installation on k3s

Once I had all of my configuration options collected, I could get all depen-
dencies and ran the helm command for deployment[5.2]. First, I added the
GitLab repository to the helm and updated it. I called this deployment
gitlab, and I specified the domain, the file name where certificates were
stored, and that I do not want to use cert-manager1.
helm repo add gitlab https://charts.gitlab.io/
helm repo update
helm install gitlab gitlab/gitlab \

--set global.hosts.domain=test-gitpod.com \
--set certmanager.install=false \
--set global.ingress.configureCertmanager=false \
--set global.ingress.tls.secretName=https-certificates

After a few minutes, some pods were still not in the RUNNING state, so I
investigated why. My findings were that GitLab uses the proxy running on
the same port as the proxy in Gitpod. Therefore GitLab proxy could not
start, so I had to find how to run both proxies on the server.

5.3 K3d

K3d[30] is a lightweight wrapper to run K3s in the docker container. K3d
uses a Docker image built from the K3s repository to spin up multiple k3s
nodes in Docker containers on any machine with Docker installed. Because

1https://cert-manager.io/docs/

28

https://k3s.io/
https://github.com/k3s-io/k3s
https://cert-manager.io/docs/

.. 5.3. K3d

of that, a single computer can run a various number of k3s clusters, with
multiple server and agent nodes each, simultaneously[30]. I found the example
of how to install both GitLab and Gitpod on k3d[21]. The idea is to run
two k3s clusters, one for Gitpod, and another one for GitLab, and on top
of that, run Nginx2 reverse proxy server. A reverse proxy server is a type
of proxy server that typically sits behind the firewall in a private network
and directs client requests to the appropriate backend server[31]. The first
step was to install k3d and create clusters for Gitpod and GitLab[5.3]. I
used different ports for the clusters, so they have not interfered anymore.
Additionally, I created the reverse proxy server on port 443 which will be
forwarding the communication to the appropriate cluster. I disabled the
Traefik proxy for both clusters to prevent errors, which I mentioned in the
previous chapter[4.3.3]. For the Gitpod cluster, I also attached the volume
for workspaces. Next, I created a secret for certificates in both clusters, and
I used the last command to be able to swap between clusters.

Install K3d
wget -q -O - https://raw.githubusercontent.com/\

k3d-io/k3d/main/install.sh | bash

Create Gitlab cluster
sudo k3d cluster create \

-p 1443:443@loadbalancer \
--k3s-arg "--disable=traefik@server:0" \
gitlab

Create Gitpod cluster
mkdir -p /tmp/workspaces
sudo k3d cluster create \

-p 2443:443@loadbalancer \
-v /tmp/workspaces:/var/gitpod/workspaces:shared \
--k3s-arg "--disable=traefik@server:0" \
gitpod

Create secrets for certificates
k3d get kubeconfig gitlab --switch
kubectl apply -f https-certificates
k3d get kubeconfig gitpod --switch
kubectl apply -f https-certificates

Command to setup kubectl
sudo k3d kubeconfig get <gitpod/gitlab> > $HOME/.kube/config

2https://www.nginx.com/

29

https://www.nginx.com/

5. Gitpod and Gitlab Self-hosted
5.3.1 Reverse proxy server

The reverse proxy server configuration is in file default.conf [5.3.1]. In the
configuration file, I created two upstream services for GitLab and Gitpod
where I defined URLs and ports pointing to clusters. I also built up two
servers that formulate how forwarding works with certificates and proxy
headers. There is a parameter client_max_body_size which I had to increase
to 100m for GitLab because it requires a bigger body size.

map $http_upgrade $connection_upgrade {
default upgrade;
’’ close;

}
map $http_upgrade $vs_connection_header {

default upgrade;
’’ $default_connection_header;

}

upstream gitlab {
server gitlab.test-gitpod.com:1443;

}

server {
listen 443 ssl;
server_name gitlab.test-gitpod.com

registry.test-gitpod.com
minio.test-gitpod.com;

ssl_certificate /etc/nginx/certs/fullchain.pem;
ssl_certificate_key /etc/nginx/certs/privkey.pem;

location / {
client_max_body_size 100m;

set $default_connection_header close;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $vs_connection_header;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For \

$proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $host;
proxy_set_header X-Forwarded-Port $server_port;
proxy_set_header X-Forwarded-Proto $scheme;

proxy_pass https://gitlab;

30

.. 5.3. K3d

}
}

upstream gitpod {
server gitpod.test-gitpod.com:2443;

}

server {
listen 443 ssl default_server;
server_name _;

ssl_certificate /etc/nginx/certs/fullchain.pem;
ssl_certificate_key /etc/nginx/certs/privkey.pem;

location / {
client_max_body_size 10g;

set $default_connection_header close;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection $vs_connection_header;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For \

$proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Host $host;
proxy_set_header X-Forwarded-Port $server_port;
proxy_set_header X-Forwarded-Proto $scheme;

proxy_pass https://gitpod;
}

}

I attached the config file as a volume into the docker container alongside
volumes for certificate and key, which I obtained in 5.1, and create a reverse
proxy server by 5.3.1.

sudo docker run --rm --name nginx-proxy \
-v "$ROOT_DIR/default.conf:/etc/nginx/conf.d/default.conf" \
-v "$ROOT_DIR/fullchain.pem:/etc/nginx/certs/fullchain.pem" \
-v "$ROOT_DIR/privkey.pem:/etc/nginx/certs/privkey.pem" \
-p 0.0.0.0:443:443 -d nginx

31

5. Gitpod and Gitlab Self-hosted
5.3.2 GitLab

For GitLab installation I used the same approach as in 5.2. First, I had
to set up kubectl to point into the GitLab cluster. The installation went
relatively smoothly, but I ran into two problems. The first, when I tried to
hit gitlab.test-gitpod.com it returned 502 - Bad Gateway status code. I
found out the gitlab.test-gitpod.com:1443 is refusing the connection when I
take a look into reverse proxy logs. The reason was that router was not port
forwarding 1443, so I allowed it similar to 4.1. Another problem was the low
value of maximum body size, which I solved by increasing the value in the
reverse proxy[5.3.1] to 100m. At this point, I was able to reach GitLab on
the gitlab.test-gitpod.com. GitLab asked for credentials where the username
was root, and the password could be fetched from Kubernetes secret by
5.3.2. This password is available for 24 hours, so the recommendation is to
change it for the root as soon as possible.

kubectl get secret \
gitlab-gitlab-initial-root-password \
-ojsonpath=’{.data.password}’ | base64 \
--decode ; echo

I tested GitLab by pushing the Pet Clinic repo into it, and everything
worked as expected.

5.3.3 Gitpod

I swapped kubectl to point into the Gitpod cluster and installed Gitpod
by steps from 4.4. I also set up port forwarding on the router for port 2443.
After some time, all pods were in a RUNNING state except ws-daemon pod.
I looked into the logs of this pod, and I found out disable-kube-health-monitor
container using bash script, but the k3s image, running the cluster does
not contain bash. According to the discussion[32], k3d uses k3s image, not
built on their side, but from Dockerfile3. So k3d does not provide a way to
modify k3s image. However, there is a way to specify which image k3d will
use for creating clusters. The comment[33] in the previous discussion is how
it is possible to solve this problem. The solution was to build up my own
image based on the k3s image and install bash here. I customized provided
Dockerfile to meet my requirements, and I created my k3s image from 5.3.3
by docker build . -t k3s.

3https://github.com/k3s-io/k3s/blob/master/package/Dockerfile

32

https://github.com/stanislavlas/spring-petclinic
https://github.com/k3s-io/k3s/blob/master/package/Dockerfile

.. 5.3. K3d

FROM rancher/k3s:latest AS k3s

FROM alpine:latest
COPY --from=k3s / /
RUN apk add --no-cache bash curl nano
This is as per-the parent image
RUN chmod 1777 /tmp
VOLUME /var/lib/kubelet
VOLUME /var/lib/rancher/k3s
VOLUME /var/lib/cni
VOLUME /var/log
ENV PATH="$PATH:/bin/aux"
ENV CRI_CONFIG_FILE="/var/lib/rancher\

/k3s/agent/etc/crictl.yaml"
ENTRYPOINT ["/bin/k3s"]
CMD ["server", "--disable=traefik"]

Consequently, I had to delete the Gitpod cluster and create a new one
with the just created image. I used command[5.3.3], which differs from the
previous installation by the flag -i k3s, and it means k3d will use a customized
image instead of the default k3s one. After the new installation of Gitpod
ws-daemon pod was still failing to start because it requires /sys/fs/cgroup
and /proc mounts to be shared. When I made these mounts shared it finally
got into a RUNNING state.

sudo k3d cluster create -i k3s \
-p 2443:443@loadbalancer \
-v /tmp/workspaces:/var/gitpod/workspaces:shared \
--k3s-arg "--disable=traefik@server:0" \
gitpod

Make mounts shared
sudo docker exec k3d-gitpod-server-0 \

mount --make-shared /sys/fs/cgroup

sudo docker exec k3d-gitpod-server-0 \
mount --make-shared /proc

When I hit gitpod.test-gitpod.com I was able to reach the self-hosted Gitpod
dashboard. I tested the connection with GitLab, which I deployed in another
cluster, by creating OAuth App4 in GitLab and providing client ID and
client secret to the Gitpod. There is one thing that does not work, and it is
Projects. After creating a new project it is stuck in a loading state. I found
the question[34] on the official Gitpod side, and it seems it is the problem
on their side. It is relatively new, so I hope they solve it soon.

4https://docs.github.com/en/developers/apps/building-oauth-apps

33

https://docs.github.com/en/developers/apps/building-oauth-apps

5. Gitpod and Gitlab Self-hosted
5.4 One-click deployment

At this point, when I was able to deploy Gitpod and GitLab using k3d, I
started working on the automation of the process. The goal was to provide an
easy and quick solution to make Self-Hosted Gitpod and Self-managed
GitLab work on a single machine. The first step was to find some In-
frastructure as Code (IaC)[35] tool which supports the creation of k3d
clusters[5.3] and Docker containers for the reverse proxy[5.3.1]. There are a lot
of IaC tools like AWS CloudFormation5, Azure Resource Manager6, or
Google Cloud Deployment Manager7, but these tools are locked on one
cloud provider. Some tools like Terraform[38] or Ansible[39] can work with
multiple cloud providers. At a very high level, given the capabilities of both
the products, Terraform and Ansible come across as similar tools. Both of
them are capable of provisioning the new cloud infrastructure and configuring
the same with required application components. The Terraform works best
with orchestration, and Ansible is great at configuration management[37].
Since I needed a tool for creating infrastructure for Gitpod and GitLab, I
chose the Terraform.

Terraform. HashiCorp Terraform[38] is the most popular and open-
source tool for infrastructure automation. It helps in configuring, provisioning,
and managing the infrastructure as code. With Terraform, is possible to
easily plan and create IaC across multiple infrastructure providers with
the same workflow. It uses the declarative approach to define the required
infrastructure as code[36]. Terraform relies on plugins called providers
to interact with cloud providers and other APIs. Terraform configurations
must declare which providers it will use so that Terraform can install and
use them. Additionally, some providers require configuration before they
use it. Each provider provides sets of resources types and data sources that
Terraform can manage. Terraform Registry[41] is a major directory of
publicly available Terraform providers and hosts providers for most major
infrastructure platforms[40].

I used pvotal-tech/k3d8 provider for creating k3d clusters[5.3] and kreuzw-
erker/docker9 provider for producting the reverse proxy[5.3.1] container. The
configuration with Terraform was elementary. K3d provider allows me to
specify k3s image, mount volumes to the cluster, specify ports and disable
Traefik. Docker provider is also very intuitive, and it provides options to
create the same reverse proxy server as in 5.3.1, and it is possible to build
up docker images. I used this feature to create customized k3s images[5.3.3]
during the creation of infrastructure[5.4].

5https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
6https://docs.microsoft.com/en-us/azure/azure-resource-manager/
7https://cloud.google.com/deployment-manager/docs
8https://registry.terraform.io/providers/pvotal-tech/k3d/latest
9https://registry.terraform.io/providers/kreuzwerker/docker/latest

34

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.microsoft.com/en-us/azure/azure-resource-managerview
https://cloud.google.com/deployment-manager/docs
https://registry.terraform.io/providers/pvotal-tech/k3d/latest
https://registry.terraform.io/providers/kreuzwerker/docker/latest

................................. 5.4. One-click deployment

resource "docker_image" "k3s" {
name = "k3s"
keep_locally = false
build {

path = "k3s"
}

}

Terraform needs to be initialized first by terraform init, and then it builds
the whole infrastructure by command terraform apply and provided configu-
ration. At this point, I could install the Gitpod and the GitLab on created
infrastructure. It was similar to 5.3, but my goal was to automate it as much
as possible.

5.4.1 Installation script

I created installation scripts for both applications where I defined steps to
install the Gitpod, respectively the GitLab. I made one more script[5.4.1]
where I ran Terraform followed by installation scripts for both applications.
terraform apply -auto-approve
./gitpod/install.bash
./gitlab/install.bash

This solution depended on the platform because the docker provider requires
a docker host string in configuration. And when I ran it on WSL creation of
workspace failed on a Unix-related error. When I ran it from Windows
power shell installation scripts also failed because they are written in the
bash. The solution was not very good, and it also felt weird to me, so I
started thinking about another way.

5.4.2 Terraform apply

At this point, I was looking for a way to run scripts directly from Terraform.
I found a feature called Provisioners used to model specific actions on the
local machine or a remote machine to prepare servers or other infrastructure
objects for service[42]. There are three types of basic provisioners:. file - used to copy files or directories from the machine executing Ter-

raform to the newly created resource. local-exec - invokes a local executable after a resource is created. remote-exec - invokes a script on a remote resource after it is created

The biggest issue I discovered is that most provisioners require access to
the remote resource via SSH10 or WinRM11, and in my case, it would

10https://www.ssh.com/
11https://docs.microsoft.com/en-us/windows/win32/winrm/portal

35

https://www.ssh.com/
https://docs.microsoft.com/en-us/windows/win32/winrm/portal

5. Gitpod and Gitlab Self-hosted
require additional unnecessary configuration. I decided to use a simpler way.
Since my solution uses Docker I used volume attachment instead of file
provisioner. The remote-exec provisioner also requires connection to
the resource, so what was left was the local-exec provisioner. There is an
issue[43] where people ask about a docker-exec provisioner. But it is still
open, so maybe there will be such a provisioner in the future.

I attached configuration files and the installation script to each container,
and using a local-exec provisioner to ran the installation with docker exec...
command. I ran into a few problems according to the install scripts. Since
GitLab was installed with package manager Helm the installation failed
because the docker image did not contain it. I had to update my k3s docker
image to be able to use tools like curl, openssl, tar, and helm. Gitpod
uses an installer, and it was also missing in the image, so I installed it in the
installation script. There I ran into another issue with the cert-manager.
The script was quick enough to run the installation of Gitpod, but the
cert-manager was not ready yet, so the installation failed. I implemented a
loop[5.4.2] checking if cert-manager pods are in the RUNNING state.
while [[$(kubectl get pods -n cert-manager | \

grep Running) == 3]]; do
printf .
sleep 10

done

It was a naive solution because sometimes the state of pods was RUNNING,
but pods were not ready yet, and the installation failed anyway. So I had
to implement something smarter and after some investigation, I found the
command kubectl rollout status deployment <deploymentName>. The com-
mand requires the name of the deployment to check. Therefore I implemented
a function[5.4.2] that fetches the names of all deployments in the specified
namespace and runs the status command in the loop. I added the parameter
to pass namespace, so I could reuse this function also for checking if the
installation was done.
Check if all deployments are ready
function check_deployments() {

deployments="$(kubectl get deployments -n $1 \
-o custom-columns=":metadata.name")"

for deployment in $deployments; do
kubectl rollout status deployment -n $1 $deployment

done
}
Function call
check_deployments "cert-manager"

At this point, I was able to start Gitpod, GitLab, and the reverse proxy
server by one terraform apply command. I cleaned up the Terraform
main file with variables and the configuration file. I also wanted to get rid
of the hardcoded domain name in configuration files, so I passed it from

36

................................. 5.4. One-click deployment

the Terraform as an environment variable. This also required changes in
installation scripts where I used the sed12 command to replace all occurrences
of a string <domain> with domain from the environment variable. The
domain was hardcoded also in the reverse proxy configuration file, which
passed as volume directly into the proxy configuration directory, and the proxy
server used this configuration. Therefore I used a slightly different approach.
I attached the volume with a configuration file with string <domain> instead
of the domain name into the container. Then I used the sed command and
redirected the output into the proxy configuration file, and finally, I had to
reload the Nginx proxy config by nginx -s reload.

5.4.3 Auth Provider

Gitpod is connecting to a Git provider. It happens via the dashboard on the
first launch or by providing authProviders configuration as a Kubernetes
secret. In my case, I went for the second option to set up a provider during
the installation. The configuration requires two secret strings, one for client id
and another for client secret. For security reasons, client id and client secret
cannot be hardcoded in the configuration. So I found another Terraform
provider, hashicorp/random13, which supports the use of randomness within
Terraform configurations. I generated two random strings with a length of
64 characters and passed them into clusters as environment variables. Then I
used sed to replace all occurrences of <clientId> and <clientSecret> with
values from environment variables.

I started with GitLab, where the PostgreSQL14 database needs to contain
an OAuth[44] configuration. I created the SQL script[5.4.3], which was
supposed to add an OAuth record into the database.
INSERT INTO oauth_applications (name, uid, secret,

redirect_uri, scopes,
created_at, updated_at,
owner_id, owner_type)

VALUES (
’Gitpod’,
’<clientId>’,
’<clientSecret>’,
’https://gitpod.<domain>/auth/gitlab/callback’,
’api read_user read_repository’,
now(), now(), 1, ’User’
);

Insertion to the database requires a password, which I fetched from Ku-
bernetes secret from the GitLab cluster, and then I used sed to replace
variables. Finally, I created a record in the database by the following com-
mands[5.4.3].

12https://linux.die.net/man/1/sed
13https://registry.terraform.io/providers/hashicorp/random/latest
14https://www.postgresql.org/

37

https://linux.die.net/man/1/sed
https://registry.terraform.io/providers/hashicorp/random/latest
https://www.postgresql.org/

5. Gitpod and Gitlab Self-hosted
Fetch PostgresSQL password
DBPASSWD=$(kubectl get secret gitlab-postgresql-password \

-o jsonpath=’{.data.postgresql-postgres-password}’ \
| base64 --decode)

Replace variables
SQL=$(sed "s+<clientId>+${CLIENT_ID}+g;

s+<clientSecret>+${CLIENT_SECRET}+g;
s+<domain>+${DOMAIN}+g" \
"gitlab/insertOauthApplication.sql")

Insert record in database
kubectl exec -it gitlab-postgresql-0 -- bash \

-c "PGPASSWORD=$DBPASSWD psql -U postgres
-d gitlabhq_production -c \"$SQL\""

For the Gitpod, I had to add an authProvider record[5.4.3] into the
gipod.config.yaml file[4.4] and generate a secret with appropriate values[5.4.3].
After this configuration, I added commands[5.4.3] into the installation script
for the Gitpod. The first command replaces secrets and the domain with
values from the environment variables, and another one creates Kubernetes
secret.

authProviders:
- kind: secret

name: public-github

id: Local GitLab
host: gitlab.<domain>
protocol: https
type: GitLab
oauth:

clientId: <clientId>
clientSecret: <clientSecret>
callBackUrl: https://gitpod.<domain>/auth/gitlab/callback
settingsUrl: gitlab.<domain>/profile/applications

38

................................. 5.4. One-click deployment

Replace variables
PROVIDER=$(sed "s+<clientId>+${CLIENT_ID}+g;

s+<clientSecret>+${CLIENT_SECRET}+g;
s+<domain>+${DOMAIN}+" \
"gitpod/gitlab-oauth.yaml")

Create secret
kubectl create secret generic \

--from-literal=provider="$PROVIDER" gitlab-oauth

39

40

Chapter 6
Solved issues

In this chapter, I will mention some issues, I ran into during working with
Gitpod deployed on my machine. I found solutions or workarounds for all of
them, and in my opinion, it expanded my knowledge of Gitpod.

6.1 Missing git context

After I created a new workspace and I wanted to commit some change, the
workspace complained about missing user.name and user.email. Moreover,
when I set these values manually the commit worked, but the workspace asked
for git credentials to push the change. This behavior puts on the future user
some unpleasant work, which should be automatic. Furthermore, according
to the official Gitpod documentation[3], it should be done by Gitpod.
Therefore, I asked about this missing behavior in the Gitpod community[45].
The answer was to use some mechanisms provided by Gitpod to add git
context into the workspace. The first suggestion was to set the remote URLs
to include the username and the git personal data. I did not try this because
I think sending personal tokens in the URL is not a very secure way of
providing git context. Another suggestion was to use dotfiles. Dotfiles
are a way to customize the development environment according to personal
needs[46]. The idea is to store files in another repository. These files are
downloaded into the workspace during the start. Furthermore, Gitpod
recognizes scripts with names like install.sh, bootstrap.sh, or setup.sh among
the files, and runs it. This approach with dotfiles requires storing the git
personal access token in some repository, which is also not so much secure.
So I started digging into it more, and I found that the workspace was missing
a /home/gitpod/.gitconfig file. The purpose of this file is to configure what I
need. I created a workspace in the official Gitpod[https://gitpod.io/projects]
and checked if the file exists here. The file[6.1] contains the name, email, and
also credentials part. Gitpod credential-helper sets the credentials during
the start of the workspace by helper = /usr/bin/gp credential-helper.

41

https://gitpod.io/projects

6. Solved issues.....................................
[push]

default = simple
[credential]

helper = /usr/bin/gp credential-helper
[user]

name = stanislavlas
email = stanislav.las@gmail.com

I created a file /home/gitpod/.gitconfig in my self-hosted workspace and copied
the file content[6.1] into it. It solved the missing context issue. So I was not
asked for user.name, user.email, or git credentials anymore. At this point, I
could use dotfiles[46] because there are no sensitive data in the .gitconfig
file. After setting up a dotfiles repository and the URL, I ran into another
issue when I initialized a new workspace Paradoxically, it could not download
data from the repository because git context was missing in the workspace. I
came up with a solution to this issue. I could store the file .gitconfig in the
application repository and copy it into the correct location[6.1] by creating
a workspace in the before task[2.1.2]. Finally, this approach worked as
expected, and it creates a .gitconfig file during every creation of a workspace.
Before task
- before: sudo sh ./.gitpod/setup.sh \

$GITPOD_GIT_USER_NAME $GITPOD_GIT_USER_EMAIL

Replace variables with actual values
sed "s+<user.name>+$1+g; s+<user.email>+$2+g" \

".gitpod/.gitconfig" > /home/gitpod/.gitconfig

6.2 Git-crypt

There must be some configuration file with appropriate URLs to communicate
with other already deployed services. The file can store in the repository,
but it needs some mechanism to be securely encrypted. Git-crypt[47]
is a tool that allows encrypting and decrypting files with GPG keys1 in
the background of git commands. The files are encrypted on push to and
decrypted when fetched from the remote server. The configuration consists of
an installation with apt-get install -y git-crypt and the creation of the secret
key for decryption. Sensitive files, which need encryption, can be defined in a
.gitattributes file. I created a dummy secret file api.key for testing purposes
and set up encryption for it[6.2].
api.key filter=git-crypt diff=git-crypt

The secret key is generated by git-crypt export-key <path to key>. Once data
is encrypted by the secret key, it is decrypted only with the same key.

1https://www.privex.io/articles/what-is-gpg

42

https://www.privex.io/articles/what-is-gpg

...................................... 6.2. Git-crypt

Gitpod provides the way to define a custom dockerfile on which workspace
will be running[48], so I created one with the installation of git-crypt and
added it to the .gitpod.yaml[6.2].

FROM gitpod/workspace-full

RUN sudo apt-get update && \
sudo apt-get install -y git-crypt

When I started a new workspace the creation crashed on error: ERROR:
failed to mount /tmp/containerd-mount. Unfortunately, I could not solve
this issue on my own, so I asked for help from the Gitpod community[49].
The suggestion was to use the Ubuntu image instead of the Alpine image.

I wanted to use a similar approach as from 5.3.3, but it did not work
because the it copies the whole root directory from the k3s image and
rewrites everything from Ubuntu. Therefore, I had to install all tools on the
Ubuntu image from scratch[6.2].

FROM ubuntu:latest

RUN apt-get update && \
apt-get install -y curl containerd

RUN curl -LO https://github.com/k3s-io/k3s/releases/\
download/v1.23.5-rc5%2Bk3s1/k3s && \
chmod 755 k3s && mv k3s /bin/

RUN curl -LO "https://dl.k8s.io/release/$(curl -L -s \
https://dl.k8s.io/release/stable.txt)\

/bin/linux/amd64/kubectl" && \
install -o root -g root -m 0755 kubectl \
/usr/local/bin/kubectl && rm kubectl

RUN curl -fsSLO https://github.com/gitpod-io/gitpod/releases\
/latest/download/gitpod-installer-linux-amd64 && \
install -o root -g root gitpod-installer-linux-amd64 \
/usr/local/bin/gitpod-installer

RUN chmod 1777 /tmp
VOLUME /var/lib/kubelet
VOLUME /var/lib/rancher/k3s
VOLUME /var/lib/cni
VOLUME /var/log
ENV PATH="$PATH:/bin/aux"
ENV CRI_CONFIG_FILE=/var/lib/rancher/k3s/agent/etc/crictl.yaml
ENTRYPOINT ["k3s"]
CMD ["server"]

43

6. Solved issues.....................................
After I made this work, I started a workspace with the Ubuntu image, but
sadly, I ran into the same error as before. I tried one more thing I used
fsShiftMethod instead of fuse in the Gitpod config file[4.4]. At this point,
the ws-daemon pod failed with the error: Your kernel headers for kernel
5.4.72-microsoft-standard-WSL2 cannot be found.. That gives me an idea to
run the whole infrastructure on Ubuntu instead of Windows. And finally, it
solves the issue with dockerfile and the problem with missing git context[6.1].

I had to solve how to get git-crypt-key into the workspace. I built up
a new repository for testing purposes, where I added the key. It is not a
secure way, but I need to test if the key can fetch during the creation of the
workspace. To make it secure, I would use some tools dedicated to storing
sensitive data, for example, Vault[50].

I had the key in another place, so I added a new line into the workspace
dockerfile[6.2], which is supposed to download the key in the image build.
FROM gitpod/workspace-full

RUN sudo apt-get update && \
sudo apt-get install -y git-crypt

RUN wget https://github.com/stanislavlas/dotfiles\
/blob/main/git-crypt-key?raw=true -O git-crypt-key

The last thing I had to add was git-crypt unlock /git-crypt-key into before
task[2.1.2] to initialize git-crypt with the key. In conclusion, I could make
git-crypt work automatically in the Gitpod workspace.

6.3 Extensions

Gitpod allows the usage of VS code extensions in the workspace. Ad-
ditionally, the definition of extensions is in the .gitpod.yaml file for every
repository. It allows the owner to show which services might be used in the
application. I tried to configure one of the extensions on my own. There are
a variety of extensions for different tools like Redis, SQL, Kafka, and more[51].
I chose the PostgreSQL Management Tool[52], which is a query tool
for PostgreSQL databases. Moreover, it provides database explorer as a
visual aid to craft queries. It is necessary to include the extension[6.3] part
in the .gitpod.yaml for proper installation into the workspace.
vscode:

extensions:
- ckolkman.vscode-postgres

Once I had the extension installed, I wanted to make some simple test if
it works from the Gitpod workspace. I initialized a docker container[6.3]
running the PostgreSQL database, where I defined the password and
forwarded port. I also needed to allow the port on my router[4.1] to reach
the database.

44

......................................6.3. Extensions

docker run --name postgres -d \
-e POSTGRES_PASSWORD=123456789 \
-p 5432:5432 \
postgres

Consequently, I created a new workspace and opened the extension, in which
I could add a new connection to the database. It asked me for connection
details like the database hostname, username, password, and database name.
At this point, I verified the established connection. In the explorer appeared
a new item with a database name. The database was empty. Therefore I run
scripts for the creation and fulfillment of a table[6.1].

Figure 6.1: PostgresSql extension

Unfortunately, I did not find a way to configure the connection automatically
during the initialization of the workspace. The user will need to configure the
appropriate extension after initialization. For facilitation, there can be some
configuration files that will contain a list of relevant services and connection
details to them. As I mentioned in the previous section[6.2], the files could
be securely encrypted.

45

46

Chapter 7
Operability

7.1 Scalability

I did some benchmark tests to see how much I could get from Gitpod on
my personal computer. Gitpod recommends at minimum two CPUs and
8GB of memory, but for a better experience is recommended to use at least
a machine with four CPUs and 16GB of memory for node. The computer
I ran benchmarks on has 16GB of memory and 8 CPUs, so it met into
recommendations. I used deployment without GitLab to have the better
overview of Gitpod itself. I was able to run four parallel workspaces on this
setup. When I tried to create a new workspace, it got stuck in the creating
state until some of the running workspaces timed out. The utilization of
the memory and processor was not significantly high as we can see in the
figure[7.1].

Figure 7.1: Utilization of four parallel workspaces

Since utilization pointed out that the computer can handle more, I thought
I missed some restrictive configurations. I posted the question in the Gitpod
community channel[53] and got the response that there might be a problem
with pods. When I listed all Gitpod pods, it turned out that one of the pods

47

7. Operability......................................
was in the PENDING state. I checked pod logs and the reason for failure was
0/1 nodes are available: 1 Insufficient memory.

The reason why the utilization showed there were available resources and
the pod still failed is Kubernetes Resource Management for Pods and
Containers[54]. I described how to install Gitpod using the installer and
the configuration file gitpod.config.yaml in the previous section[4.4]. The file
contains the part which describes resource management for workspaces and
defines that the workspace requests one CPU and 2GB of memory. It
means the kubelet1 reserves the requested amount of that system resource
specifically for that container. The Gitpod requires a minimum of 8GB
of memory, so when I created four workspaces, it reserved another 8GB.
Therefore the computer was running out of memory, and I could not create a
new workspace.

I lower the requested values to the half of the CPU and 1GB of the
memory for the next benchmark. At this point, I could create nine parallel
workspaces. We can see that the utilization of memory was similar to first
benchmark, but the CPU is utilized a bit more in the 7.2.

Figure 7.2: Utilization of nine parallel workspaces

1https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

48

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

.....................................7.2. Observability

I used a quarter of the CPU and 500MB of the memory in the last
benchmark. The maximum number of concurrent workspaces I could run
on my computer was nineteen. The utilization went rapidly up[7.3] and it
consumed almost all the resources on the machine.

Figure 7.3: Utilization of nineteen parallel workspaces

7.2 Observability

The last part which was missing from reasonable usage was observability.
Observability is the ability to measure a system’s current state based on the
data it generates, such as logs, metrics, and traces[55]. It could be achieved
by the integration of Prometheus[56] on a Kubernetes cluster.

7.2.1 Prometheus

Prometheus is an open-source monitoring framework[57]. It provides out-of-
the-box monitoring capabilities for the Kubernetes container orchestration
platform..Metric Collection - Prometheus uses the pull model to retrieve

metrics over HTTP..Metric Endpoint - The systems should expose the metrics on an
/metrics endpoint..PromQL - Prometheus comes with the language PromQL that can
be used to query the metrics in the Prometheus dashboard.. Prometheus Exporters - Exporters are libraries that convert existing
metrics from third-party apps to Prometheus metrics format..TSDB (time-series database) - Prometheus uses TSDB for storing
all the data efficiently.

49

7. Operability......................................
The Prometheus monitoring stack for Kubernetes consists of three

components:.Prometheus Server.Alert Manager.Grafana

The following figure[7.4] shows how the components are connected.

Figure 7.4: Kubernetes Prometheus monitoring stack[57]

For Prometheus implementation alongside Gitpod, I followed the instruc-
tions from the example[57]. First, I created a new namespace for observability
tools. Prometheus uses Kubernetes API to read the metrics, so according
to the guide, I defined a policy for the API and bound it to the namespace.
The Prometheus configuration defines in the file prometheus.yaml, and
rules for Alert manager[7.2.3] are in the file prometheus.rules. These files
mount by config map to the Prometheus container in /etc/prometheus
location. The advantage of this approach is that when the configuration
needs an update, it is enough to update the config map and restart the
Prometheus pod. Next, the Prometheus deployment is triggered. It uses
the latest Prometheus image from the docker hub. Finally, it exposes as a
Kubernetes service on the port 30000. After these steps, I could access the
Prometheus dashboard on localhost:30000.

7.2.2 Kube state metrics

Kube state metrics primarily produce metrics in Prometheus format with
the stability as the Kubernetes API. It also provides Kubernetes objects
and resources metrics that cannot fetch directly from native Kubernetes
monitoring components[58]. I used the example[58] to implement it into the
cluster. Kube state metrics are available as a public docker image, and it
requires deploying:. Service account.Cluster role for permissions to Kubernetes API

50

.....................................7.2. Observability

.Cluster role binding, which binds the service account with the cluster
role. Service to expos metrics

7.2.3 Alert Manager

Alert Manager[59] is an open-source alerting system that works with the
Prometheus monitoring system. I followed the guide[59] to implement
Alert Manager on Kubernetes. It requires deploying a config map for
Alert Manager configuration. The configuration from the instructions uses
an email and Slack webhook receivers. It also requires an alert template,
also deployed with a config map. Alert Manager image is publicly available,
and the image using for the deployment. Finally, the service exposes the
Alert Manager endpoint was available on the localhost:31000. I created
a simple rule to alert me when the container memory usage is high. After
the deployment of the alert, the alert did not fire up because I did not
configure receivers properly. It requires an SMTP server for the email
receiver, which I did not have, so I decided to demonstrate the rule by Slack
webhook2. I followed instructions to create a webhook, and it provides an
URL, which I used in the Alert Manager configuration. When I initialized
a new workspace memory, usage in the cluster raised, and the alert started
firing[7.5].

Figure 7.5: High Pod Memory alert

7.2.4 Grafana

Grafana is an open-source lightweight dashboard tool. For the Grafana
integration I used instructions from the guide[60]. Deployment requires
configuration with the Prometheus endpoint, deployed as a config map. For
the Grafana deployment is used official Grafana docker image. And in the
end, it requires service, which exposes the Grafana to localhost:32000. The
initial credentials are username: admin, password: admin, and it prompts
to change the password after the first login. There are many community
dashboard templates available for Kubernetes. Therefore it is easy and

2https://api.slack.com/messaging/webhooks

51

https://api.slack.com/messaging/webhooks

7. Operability......................................
quick to import a prebuild dashboard for Prometheus metrics. The detailed
instructions on how to import a prebuild dashboard are in the guide[60].

At this point, observability worked after manual setup, so I decided to
automate it alongside the installation of GitLab and Gitpod from the pre-
vious chapter[5.4]. So I downloaded all configurations for Prometheus[57],
Kube state metrics[58], Alert Manager[59], and Grafana[60] into the
/observability folder in the one-click deployment[5.4] repository. After I
had the configuration files ready, I created the script[7.2.4], which creates
a monitoring namespace and runs all steps to deploy Prometheus moni-
toring into the cluster. It also checks if all monitoring tools got successfully
deployed, and in the end, it prints URLs for observability tools.

#!/bin/bash

function check_deployments() {
deployments="$(kubectl get deployments -n \

$1 -o custom-columns=":metadata.name")"
for deployment in $deployments; do

kubectl rollout status deployment -n $1 $deployment
done

}

echo "Installing observability"

kubectl create namespace monitoring

kubectl create -f observability/kubernetes-prometheus/
kubectl apply -f observability/kube-state-metrics-configs/
kubectl create -f observability/kubernetes-alert-manager/
kubectl create -f observability/kubernetes-grafana/

check_deployments "monitoring"

echo "Premotheus endpoint: localhost:30000"
echo "Alert manager: localhost:31000"
echo "Grafana: localhost:32000"

52

.....................................7.2. Observability

Next, I needed to forward ports for the tools to be able to hit them from
the outside of the container. I attached the /observability folder to the
container, and also I added the possibility to turn on and off observability
installation. It required the passing of a new environment variable. In the
Gitpod installation script, I added a condition that checks if observability is
enabled[7.2.4].
if ["$ENABLE_OBSERVABILITY" = "true"]
then

./observability/install.bash
fi

At this point, the initialization of the observability is triggered by Ter-
raform variable.

53

54

Chapter 8
Conclusion

The purpose of the thesis was to explore Cloud-based Development[1]
and its possibilities for usage in the private cloud. Currently, two major
platforms deal with it, Gitpod[3] and GitHub Codespaces[7]. What are
the platforms offering? Basically, they provide the possibility to create a
virtual development environment fulfilling a task in the cloud from the git
context. The virtual workspace destroys itself after finishing the job. Cloud-
based Development is a big step to boosting productivity when we think
about constantly switching the task contexts or remote work. Both platforms
provide an environment similar to a local computer with the Linux operating
system. Additionally, environment configuration is stored as a code that
allows reproducibility of the workspaces. The platforms use VS Code editor
that is customizable and configurable on the team, project, or individual level.
Security is enforced by the HTTPS connection to the remote workspace
using TLS certificates. Moreover, the source codes are stored in the one
place of trust on the cloud, which is accessible only via a secure connection
of a web browser. GitHub Codespaces is currently available only for users
with GitHub Team or GitHub Enterprise subscriptions. On the other
hand, Gitpod is free to use for up to fifty hours per month for individuals.
Furthermore, it provides a possibility to install Gitpod Self-hosted[12] on
the customer‘s infrastructure.

In the thesis, I described the process of the Gitpod installation on different
platforms using different tools. Finally, I created a guide for building the
infrastructure and installing Gitpod and GitLab using Terraform on one
machine, which I shared with the Gitpod community[61]. The community
also helped me to solve issues with git context[45], errors with creating a
workspace[49], and parallel workspaces issues[53]. I provided solutions for all
the questions, so I believe that in case someone runs into similar problems,
it will help. When I overcame these issues, every workspace I create can
clone a git repository, and a user is able to commit and push changes without
restrictions. Every workspace also allows installing VS Code extensions for
connection to relevant services like databases. Unfortunately, I could not find
a way to automatically configure extensions, but the connection strings can
be stored in the configuration files alongside URLs to other services. The
configuration files can be encrypted and decrypted in the background of git

55

8. Conclusion......................................
commands with git-crypt[47]. In this case, the connection strings do not
expose in plaintext in the git repository. Eventually, I integrated observability
on the cluster and did benchmarks, where I could run a maximum of nineteen
parallel workspaces on my machine. There is a limitation from the Self-
hosted Gitpod on the number of users using Gitpod without fees. The
maximum number of users is ten, and after reaching the limit, every new
user will cost 29€ per month. After creating the tenth user, Gitpod stopped
responding to the new creation when I tested the behavior.

In conclusion, I think the Gitpod is a helpful feature when a company has
enough resources for running its self-hosted. The limitation on the number
of users is a disadvantage for smaller companies with dozens of users, which
would not have the large budget for Gitpod. I think the management of
Gitpod will be open to price negotiation in the case of corporates with a large
number of users. Overall, in my opinion, Cloud-based Development is the
direction that software development should take. The predefined environment
configuration allows to simply run an application for the developer, manager,
sale, or even customer. Remote access from various devices like computers,
mobile phones, or tablets is also a practical convenience. I believe this
thesis will aid people in better understanding Cloud-based Development,
especially Gitpod. And I hope I use the knowledge I gained in this thesis in
my future career, and maybe I will work on some interesting Cloud-based
projects.

56

Bibliography

[1] Shkurhan Gregorii, What Is Cloud Development? The fundamentals You
Need To Know In 2021, 30.09.2021, https://northell.design/blog/cloud-
development-do-your-business-need-it/

[2] Friedman Nat [@natfriedman], End of year. If you really
need it before then you can buy a Team account, 11.08.2021,
https://twitter.com/natfriedman/status/1425508910476271624?s=20

[3] Gitpod, Introduction to Gitpod, 2021, https://www.gitpod.io/docs/

[4] GitHub Inc, Contexts, 2021, https://docs.github.com/en/actions/learn-
github-actions/contexts

[5] Gitpod, Start tasks for Prebuilds & New Workspace), Start
Tasks, 2022, https://www.gitpod.io/images/docs/beta/configure/start-
tasks/prebuilds-new-workspace.png

[6] Gitpod, Getting Started), 2022, https://www.gitpod.io/docs/getting-
started

[7] GitHub Inc, GitHub Codespaces overview, 2022,
https://docs.github.com/en/codespaces/overview

[8] GitHub Inc, Introduction to dev containers, 2022,
https://docs.github.com/en/codespaces/setting-up-your-project-for-
codespaces/configuring-codespaces-for-your-project

[9] GitHub Inc, GitHub Team, 2022, https://docs.github.com/en/get-
started/onboarding/getting-started-with-github-team

[10] GitHub Inc, GitHub Enterprise Cloud, 2022,
https://docs.github.com/en/get-started/onboarding/getting-started-
with-github-enterprise-cloud

[11] GitHub Inc, Deep dive into Codespaces, 2022,
https://docs.github.com/en/codespaces/getting-started/deep-dive

[12] Gitpod, Gitpod Self-Hosted, 2022, https://www.gitpod.io/docs/self-
hosted/latest

57

https://northell.design/blog/cloud-development-do-your-business-need-it/
https://northell.design/blog/cloud-development-do-your-business-need-it/
https://twitter.com/natfriedman/status/1425508910476271624?s=20
https://www.gitpod.io/docs/
https://docs.github.com/en/actions/learn-github-actions/contexts
https://docs.github.com/en/actions/learn-github-actions/contexts
https://www.gitpod.io/images/docs/beta/configure/start-tasks/prebuilds-new-workspace.png
https://www.gitpod.io/images/docs/beta/configure/start-tasks/prebuilds-new-workspace.png
https://www.gitpod.io/docs/getting-started
https://www.gitpod.io/docs/getting-started
https://docs.github.com/en/codespaces/overview
https://docs.github.com/en/codespaces/setting-up-your-project-for-codespaces/configuring-codespaces-for-your-project
https://docs.github.com/en/codespaces/setting-up-your-project-for-codespaces/configuring-codespaces-for-your-project
https://docs.github.com/en/get-started/onboarding/getting-started-with-github-team
https://docs.github.com/en/get-started/onboarding/getting-started-with-github-team
https://docs.github.com/en/get-started/onboarding/getting-started-with-github-enterprise-cloud
https://docs.github.com/en/get-started/onboarding/getting-started-with-github-enterprise-cloud
https://docs.github.com/en/codespaces/getting-started/deep-dive
https://www.gitpod.io/docs/self-hosted/latest
https://www.gitpod.io/docs/self-hosted/latest

8. Conclusion......................................
[13] Docker Inc, Docker, 2022, https://www.docker.com/

[14] Docker Inc, Docker, 2022, https://www.docker.com/products/docker-
desktop

[15] Docker Inc, Deploy on Kubernetes, 2021,
https://docs.docker.com/desktop/kubernetes/

[16] Microsoft, Windows subsystem for linux, 2022,
https://docs.microsoft.com/en-us/windows/wsl/install

[17] The Kubernetes Authors, Install Tools, 2022,
https://kubernetes.io/docs/tasks/tools/

[18] Helm Authors, The package manager for Kubernetes, 2022,
https://helm.sh/

[19] Gitpod, Troubleshooting Gitpod Self-Hosted, 2022,
https://www.gitpod.io/docs/self-hosted/latest/troubleshooting

[20] Canonical Ltd, High availability K8s, 2022, https://microk8s.io/

[21] Cornelius A. Ludmann [@corneliusludmann], GitLab and Gitpod installa-
tion on k3d, 03.07.2020, https://github.com/corneliusludmann/k3d-gitlab-
gitpod

[22] containerd Authors, Containerd, 2022, https://containerd.io/

[23] Dabit Nader, GitHub Codespaces vs Gitpod – Full
Stack Development Moves to the Cloud, 30.08.2021,
https://www.freecodecamp.org/news/github-codespaces-vs-gitpod-
cloud-based-dev-environments/

[24] Canonical Ltd., Getting started, 2022, https://snapcraft.io/docs/getting-
started

[25] Gitpod, Installation requirements for Gitpod Self-Hosted, 2022,
hthttps://www.gitpod.io/docs/self-hosted/latest/requirements

[26] Volker Thiel [@riker09], Unable to disable Traefik, 04.12.2019,
https://github.com/k3s-io/k3s/issues/1160#issuecomment-561572618

[27] GitLab Inc, Installing GitLab using Helm, 2022,
https://docs.gitlab.com/charts/installation/

[28] GitLab Inc, Deployment Guide, 2022,
https://docs.gitlab.com/charts/installation/deployment.html

[29] Rancher, K3s - Lightweight Kubernetes, 2021,
https://rancher.com/docs/k3s/latest/en/

[30] k3d Authors, K3d, 17.02.2022, https://k3d.io/v5.3.0/

58

https://www.docker.com/
https://www.docker.com/products/docker-desktop
https://www.docker.com/products/docker-desktop
https://docs.docker.com/desktop/kubernetes/
https://docs.microsoft.com/en-us/windows/wsl/install
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/
https://www.gitpod.io/docs/self-hosted/latest/troubleshooting
https://microk8s.io/
https://github.com/corneliusludmann/k3d-gitlab-gitpod
https://github.com/corneliusludmann/k3d-gitlab-gitpod
https://containerd.io/
https://www.freecodecamp.org/news/github-codespaces-vs-gitpod-cloud-based-dev-environments/
https://www.freecodecamp.org/news/github-codespaces-vs-gitpod-cloud-based-dev-environments/
https://snapcraft.io/docs/getting-started
https://snapcraft.io/docs/getting-started
hthttps://www.gitpod.io/docs/self-hosted/latest/requirements
https://github.com/k3s-io/k3s/issues/1160#issuecomment-561572618
https://docs.gitlab.com/charts/installation/
https://docs.gitlab.com/charts/installation/deployment.html
https://rancher.com/docs/k3s/latest/en/
https://k3d.io/v5.3.0/

...................................... 8. Conclusion

[31] F5 Networks Inc, What Is a Reverse Proxy Server?, 2022,
https://www.nginx.com/resources/glossary/reverse-proxy-server

[32] Simon Emms [@MrSimonEmms], Can I install /bin/bash on the Docker
image?, 20.12.2021, https://github.com/k3d-io/k3d/discussions/901

[33] Simon Emms [@MrSimonEmms], Can I install /bin/bash on the Docker
image?, 20.12.2021, https://github.com/k3d-io/k3d/discussions/903

[34] Max Alber [@MaxAlber], Projects support for Gitpod Self-hosted In-
stances, 02.03.2022, https://github.com/gitpod-io/gitpod/issues/8536

[35] Navdeep Singh Gill, What is Infrastructure as Code?
Best Practises | Benefits | Adoption, 17.12.2020,
https://www.nexastack.com/blog/infrastructure-as-code

[36] Navdeep Singh Gill, Infrastructure as Code Tools to Boost Your Produc-
tivity in 2022, 02.03.2022, https://www.nexastack.com/blog/best-iac-tools

[37] Sumeet Ninawe, Terraform vs. Ansible : Key Differences and Comparison
of Tools, 01.10.2021, https://spacelift.io/blog/ansible-vs-terraform

[38] HashiCorp, Terraform, 2022, https://www.terraform.io/

[39] Red Hat, Inc, Red Hat Ansible Automation Platform, 2022,
https://www.ansible.com/

[40] HashiCorp, Providers, 2022, https://www.terraform.io/language/providers

[41] HashiCorp, Terraform registry, 2022,
https://registry.terraform.io/browse/providers

[42] HashiCorp, Provisioners, 2022, https://www.terraform.io/language/resources/provisioners/syntax

[43] Carlo Cabanilla [@Carlo Cabanilla], Support provisioning using docker
exec, 15.01.2016, https://github.com/hashicorp/terraform/issues/4686

[44] Gitlab, OAuth 2.0 identity provider API, 2022,
https://docs.gitlab.com/ee/api/oauth2.html

[45] Stanislav Las [@Stanislav Las], Git context is missing, 26.03.2022,
https://discord.com/channels/816244985187008514/879915120510267412/957196500692267019

[46] Gitpod, Dotfiles, 2022, https://www.gitpod.io/docs/config-dotfiles

[47] Alexander Kus, How to secure sensitive data with git-crypt, 09.03.2020,
https://buddy.works/guides/git-crypt

[48] Gitpod, Custom Docker Image, 2020,
https://www.gitpod.io/docs/config-docker

[49] Stanislav Las [@Stanislav Las], ERROR: failed
to mount /tmp/containerd-mount, 27.03.2022,
https://discord.com/channels/816244985187008514/879915120510267412/957682548497080321

59

https://www.nginx.com/resources/glossary/reverse-proxy-server
https://github.com/k3d-io/k3d/discussions/901
https://github.com/k3d-io/k3d/discussions/903
https://github.com/gitpod-io/gitpod/issues/8536
https://www.nexastack.com/blog/infrastructure-as-code
https://www.nexastack.com/blog/best-iac-tools
https://spacelift.io/blog/ansible-vs-terraform
https://www.terraform.io/
https://www.ansible.com/
https://www.terraform.io/language/providers
https://registry.terraform.io/browse/providers
https://www.terraform.io/language/resources/provisioners/syntax
https://github.com/hashicorp/terraform/issues/4686
https://docs.gitlab.com/ee/api/oauth2.html
https://discord.com/channels/816244985187008514/879915120510267412/957196500692267019
https://www.gitpod.io/docs/config-dotfiles
https://buddy.works/guides/git-crypt
https://www.gitpod.io/docs/config-docker
https://discord.com/channels/816244985187008514/879915120510267412/957682548497080321

8. Conclusion......................................
[50] HashiCorp, Manage Secrets and Protect Sensitive Data, 2022,

https://www.vaultproject.io/

[51] Ilana Brudo, Top 40+ VSCode Extensions for Developers in 2022,
02.12.2021, https://www.tabnine.com/blog/top-vscode-extensions/

[52] Chris Kolkman, PostgreSQL Management Tool, 21.01.2022,
https://marketplace.visualstudio.com/items?itemName=ckolkman.vscode-
postgres

[53] Stanislav Las [@Stanislav Las], Open 4 parallel workspaces, 13.04.2022,
https://discord.com/channels/816244985187008514/879915120510267412/963797507450753094

[54] The Kubernetes Authors, Open 4 parallel workspaces, 27.03.2022,
https://kubernetes.io/docs/concepts/configuration/manage-resources-
containers

[55] Jay Livens, What is observability?, 01.10.2021,
https://www.dynatrace.com/news/blog/what-is-observability-2/

[56] Prometheus Authors, Prometheus, 2022,
https://prometheus.io/docs/introduction/overview/

[57] Bibin Wilson, How to Setup Prometheus Monitoring On Kubernetes Clus-
ter, 28.01.2022, https://devopscube.com/setup-prometheus-monitoring-
on-kubernetes/

[58] Bibin Wilson, How To Setup Kube State Metrics on Kubernetes,
27.01.2022, https://devopscube.com/setup-kube-state-metrics/

[59] Bibin Wilson, Setting Up Alert Manager on Kubernetes – Beginners
Guide, 27.01.2022, https://devopscube.com/alert-manager-kubernetes-
guide/

[60] Bibin Wilson, How To Setup Grafana On Kubernetes, 29.01.2022,
https://devopscube.com/setup-grafana-kubernetes/

[61] Stanislav Las [@Stanislav Las], Gitlab and
Gitpod on k3d using Terraform, 25.03.2022,
https://discord.com/channels/816244985187008514/931200235601023016/956904813520637972

60

https://www.vaultproject.io/
https://www.tabnine.com/blog/top-vscode-extensions/
https://marketplace.visualstudio.com/items?itemName=ckolkman.vscode-postgres
https://marketplace.visualstudio.com/items?itemName=ckolkman.vscode-postgres
https://discord.com/channels/816244985187008514/879915120510267412/963797507450753094
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers
https://www.dynatrace.com/news/blog/what-is-observability-2/
https://prometheus.io/docs/introduction/overview/
https://devopscube.com/setup-prometheus-monitoring-on-kubernetes/
https://devopscube.com/setup-prometheus-monitoring-on-kubernetes/
https://devopscube.com/setup-kube-state-metrics/
https://devopscube.com/alert-manager-kubernetes-guide/
https://devopscube.com/alert-manager-kubernetes-guide/
https://devopscube.com/setup-grafana-kubernetes/
https://discord.com/channels/816244985187008514/931200235601023016/956904813520637972

	Introduction
	Gitpod
	Integration
	My first workspace
	Prebuilds

	GitHub Codespaces
	Codespaces lifecycle
	Dev container
	Integration
	Dev container configuration

	Gitpod Self-hosted
	Domain name
	Certificates
	Kubernetes
	Kubernetes in Docker-desktop
	Microk8s
	K3s

	Gitpod installation

	Gitpod and Gitlab Self-hosted
	Domain and Certificates
	Installation on k3s
	K3d
	Reverse proxy server
	GitLab
	Gitpod

	One-click deployment
	Installation script
	Terraform apply
	Auth Provider

	Solved issues
	Missing git context
	Git-crypt
	Extensions

	Operability
	Scalability
	Observability
	Prometheus
	Kube state metrics
	Alert Manager
	Grafana

	Conclusion
	Bibliography

