
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering

Master’s Thesis

Mobile application for booking
tickets

Bc. Jozef Bugoš
Study program: Open Informatics
Branch: Software Engineering

May 2022
Supervisor: Ing. Božena Mannová, Ph.D.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

466219Personal ID number:Bugoš JozefStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Software EngineeringSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Mobile application for booking tickets

Master’s thesis title in Czech:

Mobilní aplikace pro rezervaci jízdenek

Guidelines:

The topic of this thesis is to solve the situation when it is not possible to buy a ticket, because they are all sold-out. In this
situation, it is necessary to check whether somebody did not cancel a ticket or the provider has not increased the capacity.
The outcome of this thesis should be a mobile application that automates the necessary activities.
Analyze network communication of selected reservation systems. Design and implement a server to emulate their
communication. Create a back-end service that will emulate this communication and provide the necessary data for the
proposed mobile application. Design a cross-platform mobile application that will use this service. Design the architecture
of the entire project and find suitable technologies for implementation. Justify your decisions. Implement the application.
Perform system functionality testing and evaluate the test results. Suggest possible improvements and extensions to the
application. Use software engineering resources for processing.

Bibliography / sources:

1. Roger S. Pressmann Bruce Maxim: Software Engineering: A Practitioner's Approach , ISBN-10: 9780078022128
2. Spring Framework. https://spring.io/projects/spring-framework.
3. What Is a REST API? https://www.akana.com/blog/what-is-rest-api.

Name and workplace of master’s thesis supervisor:

Ing. Božena Mannová, Ph.D. Center for Software Training FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 14.02.2022

Assignment valid until: 19.02.2024

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Božena Mannová, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to thank Ing. Božena
Mannová, Ph.D., the supervisor of this
master thesis for her valuable advice and
guidance, which was very helpful.

I declare, that I have done the as-
signed project alone led by the super-
visor. I used only literature, which is
listed in this work. In Prague 10. 5.
2022

. .

v

Abstrakt / Abstract

Tento projekt sa zaoberá analýzou
problému kúpy lístkov v prípade, že sú
vypredané, podrobnejšie pre poskyto-
vateľov RegioJet a FlixBus. Navrhuje
riešenie pozostávajúce z mobilnej ap-
likácie fungujúcej ako používateľské
rozhranie a zdroj notifikácii a serveru
schopného emulovať API vybraných
poskytovateľov a pravidelne sledovať
zmeny v dostupnosti lístkov. Výsledkom
tohto projektu je implementácia vyššie
uvedeného riešenia s funkčným serve-
rom a mobilnou aplikáciou nasadenou
na Google Play Store.

Kľúčové slová: Verejná doprava, Sys-
tém sledovania dostupnosti lístkov, Re-
gioJet, FlixBus, Spring, Java, Flutter,
Dart, Mobilná aplikácia, Vývoj naprieč
platformami

This project deals with analyzing
the problem of trying to buy tickets
when they are sold out, in more detail
for providers RegioJet and FlixBus.
It proposes a solution consisting of a
mobile application for user interface
and notifications, and a backend able
to emulate API of chosen providers and
periodically watch for changes in the
availability of the tickets. The result
of this project is the implementation
of the aforementioned solution with a
working server and mobile application
functioning and deployed on Google
Play Store.

Keywords: Transit, Ticket Availabil-
ity Tracking System, RegioJet, FlixBus,
Spring, Java, Flutter, Dart, Mobile Ap-
plication, Cross-Platform Development

vi

Contents /

1 Introduction .1
2 Analysis .2
2.1 Target audience2
2.2 Network communication2
2.3 Current system.5
2.4 Goals .6
2.5 Components .6
2.6 Conclusion .6

3 Server-side .7
3.1 Technology .7
3.2 Database .7
3.3 Architecture .8
3.4 Conclusion .8

4 Implementation .9
4.1 Design .9
4.2 Code . 10

4.2.1 Common code base 10
4.2.2 Provider’s specifics 14
4.2.3 Caching. 15
4.2.4 RESTful API 17
4.2.5 Database 17
4.2.6 Watchers 20

4.3 Conclusion . 20
5 Watchers . 21
5.1 Overview . 21
5.2 Scheduled. 21
5.3 Structure . 22
5.4 Examples . 24
5.5 Conclusion . 28

6 Future work and deployment 29
6.1 Deployment . 29
6.2 Future features 31
6.3 Conclusion . 32

7 Introduction to the mobile ap-
plication . 33

8 Technology . 34
8.1 Cross-platform development . . . 34
8.2 Frameworks . 34
8.3 Conclusion . 35

9 Application design 36
9.1 Pages . 36

9.1.1 Splash screen 37
9.1.2 Details and routes lists . . 38
9.1.3 Search . 40
9.1.4 Seat classes 41
9.1.5 Watchers 42

9.1.6 Settings. 43
9.1.7 Watched routes 44

9.2 Desing vs RegioJet’s web 44
9.3 Localization . 47
9.4 Conclusion . 48

10 User Testing . 49
10.1 Form. 49

10.1.1 Participant 1 49
10.1.2 Participant 2 50
10.1.3 Participant 3 50
10.1.4 Participant 4 50

10.2 Summary . 50
10.3 Conclusion . 51

11 Future work and deployment 52
11.1 Publishing . 52

11.1.1 Google Play Store 52
11.1.2 App Store 52

11.2 Future features 53
11.3 Promotion . 54
11.4 Conclusion . 54

12 Conclusion . 55
A Symbols . 57

References . 58

vii

/ Figures

2.1. RegioJet request for locations . . .3
2.2. RegioJet response with loca-

tions .3
2.3. RegioJet request for routes3
2.4. RegioJet response with routes . . .4
2.5. RegioJet request for route’s

details. .4
2.6. RegioJet response with route

details. (Red are free seats
overall, green are free seats
in the given class)5

4.1. Layered API Architecture9
6.1. Deployment docker 30
8.1. Trend on stackoverflow. 35
9.1. Splash screen page 37
9.2. Parameter details without

routes . 38
9.3. Parameter details with routes . 39
9.4. Search Page . 40
9.5. Seat classes page 41
9.6. Watchers page 42
9.7. Settings page 43
9.8. Watched routes page 44
9.9. App’s locations search 45

9.10. RegioJet’s locations search 45
9.11. App’s tariffs . 45
9.12. RegioJet’s tariffs 45
9.13. App’s connection details 46
9.14. RegioJet’s connection details . . 46
9.15. Routes in English 47
9.16. Settings in English 48
11.1. App running on Mac 53

viii

Chapter 1
Introduction

Public transportation is a sector that has experienced massive bloom in the years be-
fore the pandemic. After many years of stagnation, arrival of the non-state transport
providers (hereinafter referred to as private providers), such as RegioJet1, LeoExpress2

or FlixBus3, started competition not only between themselves, but forced the state
transport providers (hereinafter referred to as state providers) to rose up from their
sleep.

Private providers quickly overcame their state counterparts in popularity, as they
were considered a „fresh breath“ in public transportation. Until then, most of the
vehicles used by the state providers were old and not in a good state, being used
continuously for many years. Due to this, the common view of public transport was
that of a necessary evil, one you had to endure from time to time out of necessity.

This changed when private providers came with their own machinery, not necessarily
newer in age, but remodeled and better equipped. As the price was still comparable
to one of the state providers, it was only logical that people started using mostly their
services. This trend continued, even though the state providers tried to adapt to the
new standard of transportation until it reached a point where the tickets for holidays
or even weekends were sold out weeks in advance.

With this came the need to buy tickets as soon as they were available. However,
what was one to do if the tickets were already sold out? One could only periodically
visit a web page of the provider and check whether someone canceled their ticket or the
provider increased the capacity.

In our thesis, our primary goal is to address the aforementioned issue. We will show
that automating this process in form of a mobile application brings great value. Firstly,
we will have to analyze the network communication of chosen reservations systems.
Secondly, to create a back-end service that would emulate this communication, expose
their API through an adapter for our mobile application and periodically check the
watched connections for changes. Lastly, to create a cross-platform mobile application
that would use this service and enable users to select what connections to watch via a
familiar and intuitive user interface.

This project will consist of two main parts. The first one, contained in the first
half of the thesis, will be dealing with the analysis of network communication and the
creation and deployment of the back-end service. The second one will be describing the
development of the mobile application, its design, future work, and deployment in the
applications stores, namely Google’s Play Store and Apple’s App Store.

1 https://www.regiojet.com/
2 https://www.leoexpress.com/en
3 https://global.flixbus.com/

1

https://www.regiojet.com/
https://www.leoexpress.com/en
https://global.flixbus.com/

Chapter 2
Analysis

In this chapter, we will be looking into the current system of trying to buy sold-out
tickets from two private providers, namely RegioJet and FlixBus. We will discuss their
network communication and APIs used but also we will address the primary goals our
system is trying to achieve and how are they being fulfilled as of now. We will also
briefly discuss the target audience.

2.1 Target audience

As of the definition, we will treat the target audience of both providers as the same,
considering their only difference is nationality(RegioJet is mostly focused on Czechia
or Slovakia, FlixBus is more international), which we shall disregard.

Potential users include mostly people from the age range of fifteen to around fifty-
five, both men and women, of all income levels. The age estimation varies among the
users of public transportation, which includes both younger and older people. However,
just a portion of the older would own and use a smartphone application to watch for
tickets, and the younger usually do not have the financial means to buy the tickets,
therefore leaving it to their parents.

2.2 Network communication

Both RegioJet and FlixBus systems use an API to communicate between their front-
end and their back-end. This enables us to intercept this communication and analyze
both requests and responses.

For the interception, we made use of the Chrome DevTools 1. These tools include
a network activity panel, that logs all network activity that happened while this panel
was opened. These logs contain all the details about the activity, including but not
limited to the request URL and method, headers of both response and request, and of
course the payload of the request and the data returned by the response.

Using this information, we have all that we need to analyze the communication that
happens during the process of finding and buying the tickets. The process is similar for
both providers, and we will demonstrate it for RegioJet only, on a few examples.

Firstly, we need to find the source of data for locations, such as Praha or Brno, and
details about stations in these cities.

1 https://developer.chrome.com/docs/devtools/

2

https://developer.chrome.com/docs/devtools/

. 2.2 Network communication

Figure 2.1. RegioJet request for locations

Figure 2.2. RegioJet response with locations

The second step involves investigating what payload is sent to which URL address
in order to get the list of routes.

Figure 2.3. RegioJet request for routes

3

2. Analysis .

Figure 2.4. RegioJet response with routes

Lastly, we need to find out in which response we can see information about the
availability of free seats.

Figure 2.5. RegioJet request for route’s details

4

. 2.3 Current system

Figure 2.6. RegioJet response with route’s details. (Red are free seats overall, green are
free seats in the given class)

This is a bit oversimplified, but these three steps are the core skeleton of actions
needed to be taken for any-and-all providers that are to be supported by our system.
In order for all of these steps to be finished, we may have to investigate more (or even
all if needed) calls to APIs.

2.3 Current system
In the current system, the process of reserving sold-out tickets is either time-consuming
or based purely on luck. A user searches for the route he wants and checks if any tickets
are available. If there are none, he waits some amount of time, based on the urgency.
If the transport leaves tomorrow, he may be checking the site once every 10 minutes,
but if it leaves next week, he can check only once per day. The next step is for him to
hope somebody canceled their ticket, and what is more, that no one got there before
him and booked the ticket already.

5

2. Analysis .

2.4 Goals
The system described in this thesis will address and will get rid of the issues of both
time consumption and of random success rate.

Users will only have to search for the route once, even if the tickets are sold out,
and the repetitive checks of availability will be carried out quickly and periodically by
our system using analysis of the API responses. By using a mobile application, we can
ensure that the user will know when he will be able to book the tickets, as the moment
they become available push notifications will be sent to his mobile device.

2.5 Components
Based on the aforementioned goals that we laid out, we know our system will consist of
two components. We can think of it as parts of the web systems. There is a back-end
side and a front-end side of the system. The backend part of the application sometimes
called „the server-side“ is basically how the site works, updates, and changes. This
refers to everything the user cannot see, like databases and servers. On the backend,
we manipulate and store all the data, like user profiles, images, etc. The front-end is
everything involved with what the user sees and interacts with, including design.

Front-end will be the mobile application that will provide an interface for users to
search and select which routes they want to watch. It will be pure UI, with only the
responsibility to show and send data from and to the back-end.

The server side will be a set of public APIs. By providing well-designed end-points
for the UI to use, we can manage the application using simple calls. The whole logic
will reside in this system. Its responsibility includes emulating APIs of other providers
and parsing their responses to get the data for all locations and stations, and all routes
between them. Furthermore, it will store the watched routes of each and every user,
and periodically check the availability of the tickets, and finally, it will create a push
notification that will be sent to the user’s device. We will discuss it in the next chapter.

2.6 Conclusion
This chapter aims to explain the process of analysis that is needed to understand how
one can emulate their system to automatically detect the change in the availability
of free seats. Moreover, it describes the current pain points of trying to buy sold-out
tickets and proposes an outline of a solution. We will build on this in the later chapters.

6

Chapter 3
Server-side

In this chapter, we will be looking into the server-side, or back-end, of the proposed sys-
tem. We will discuss the reasoning behind the technologies that were chosen and behind
the overall architecture. We will build upon this with an overview of implementation
in the next chapter.

3.1 Technology
For the language of the server, we decided to go with Java1. One of the reasons
is a familiarity with the language, but most importantly, with Java, we can use the
framework Spring2.

Spring is a framework that „... provides a comprehensive programming and configu-
ration model for modern Java-based enterprise applications - on any kind of deployment
platform. A key element of Spring is infrastructural support at the application level:
Spring focuses on the plumbing of enterprise applications so that teams can focus on
application-level business logic, without unnecessary ties to specific deployment envi-
ronments.“[1]

These are not just marketing words. With Spring, one can focus mostly on the appli-
cation logic itself, and write code, without worrying about the underlying environment.
Moreover, „at its core, Spring Framework’s Inversion of Control (IoC) and Dependency
Injection (DI) features provide the foundation for a wide-ranging set of features and
functionality.“[2]

These features will be explained in more detail in the Implementation 4 chapter.
Using Java and Spring, the best tool to provide data for a mobile application is via

Web API3 which the application will be communicating with.

3.2 Database
For storing information we need a database. Nowadays there are two main options:

. Relational database (often mentioned as „SQL databases“). Non-relational database (often mentioned as „NoSQL databases“)

These two categories may seem contradictory to each other. In fact, they are. To
some degree. To best annotate their difference, we can compare them to hand tools. A
saw and a knife may do the same job - cutting -, but one of them is better for cutting
soft materials whilst the other one is better for hard materials. This does not mean
one is better than the other. The same is true for the databases. „When comparing
relational and non-relational databases, it’s important to first note that these two very
1 https://www.java.com/en/
2 https://spring.io/
3 https://www.w3schools.com/js/js_api_intro.asp

7

https://www.java.com/en/
https://spring.io/
https://www.w3schools.com/js/js_api_intro.asp

3. Server-side .
different types of databases are equally useful in their own right—but for contrasting
reasons and use-cases. One type of database is not better than the other type, and
both relational and non-relational databases have their place. “[3]

To plainly state the main differences between these two categories: „..relational
databases store data in rows and columns like a spreadsheet while non-relational
databases store data don’t, using a storage model (one of four) that is best suited for
the type of data it’s storing. “[4]

In the end, we chose to go with the NoSQL database, in particular MongoDB1. This
decision was taken because the data we will be dealing with does not have relations. For
example, we will be storing the details of watched routes, such as the id of the route,
arrival and departure time, and seat classes that we should watch. This usage resembles
documents and is, therefore, better suited for NoSQL databases. Another reason for
choosing MongoDB is its easy and intuitive integration with the Spring framework.

3.3 Architecture
We will be building a REST API. „A REST API is an application programming interface
(API) that uses a representational state transfer (REST) architectural style. The REST
architectural style uses HTTP to request access and use data. This allows for interaction
with RESTful web services.“[5]

REST works on top of the HTTP. It takes advantage of its native capabilities, such
as GET, PUT, POST, and DELETE. When a request is sent to a RESTful API, the
response returns in one of the few formats, such as either JSON, XML, or HTML.

A RESTful API is defined by a web address, or Uniform Resource Identifier (URI),
typically following a naming convention. For an API to be considered RESTful, it has
to conform to these criteria[6]:

. A client-server architecture. Stateless client-server communication. Cacheable data. A layered system. A uniform interface between components. This requires that:
. Resource identification in requests
. Resource manipulation through representations
. self-descriptive messages
. Hypermedia as the engine of application state

In the next chapter, we will show how our implementation conforms to these criteria.
Finally, the goal of our Web API is to provide all the data from providers and emulate

their behavior. As the main steps are similar between providers, and we may want to
add another one in the future, the main part of the design is to be as generic as possible,
to remove the redundancy and increase the modularity of our system.

3.4 Conclusion
This chapter aims to explain the basis of the technology chosen for the project and the
used architecture. It mentions an overview of REST API with its methods. Moreover,
it describes the criteria for an API to be considered RESTful. We will build upon this
with an overview of our implementation in the next chapter.
1 https://www.mongodb.com/

8

https://www.mongodb.com/

Chapter 4
Implementation

In this part, we will go through a high-level overview of the implementation of the
application’s back-end, including the implementation and structure of the database
and the data in it.

4.1 Design

Figure 4.1. Layered API Architecture[7]

For the first layer, we are using the aforementioned Spring Framework, which manages
incoming requests and traffic. These requests are routed to corresponding controllers1.

To fully integrate layers into our architecture, we had to make sure that their purpose
is only to extract each parameter, validate its syntax, and authenticate the user making
the request, but most of the logic is done in the Application logic layer. Therefore, our
controllers only pass the arguments into the next layer and return the results of that
code in the right format. Example of one API endpoint controller code:

1 https://zetcode.com/springboot/restcontroller/

9

https://zetcode.com/springboot/restcontroller/

4. Implementation .
@GetMapping(value = "/routes")
public RoutesDto getRoutes(
@RequestParam String tariffs,@RequestParam String toLocationType,
@RequestParam String toLocationId, @RequestParam String fromType,
@RequestParam String fromLocationId, @RequestParam String departureDate)
{

return service.getRoutes(tariffs, toLocationType, toLocationId,
fromLocationType, fromLocationId, departureDate);
}

Every controller has at least one service containing the application logic. This layer
makes sure the user is authorized to access data, and then retrieves data from the next
layer.

The Entity Logic Layer can work through a Repository for databases and through
an Adapter for APIs. In our system, both are used. Generic Adapter is used to get
data from providers’ APIs, and Mongo Repository is used for data that we store.

The last layer is a Data Layer, which ideally should be really simple, only containing
the interface for the storage, like Database Entity classes, or other models.

4.2 Code

4.2.1 Common code base
Firstly, we needed to convert JSON responses from providers’ APIs into a Java objects.
For this, we used a web service JSON2CSharp1 that converts JSON objects into Plain
Old Java Objects(POJOs). For example this is a model for RegioJet’s delay response:

public class Delay {
private String busConnectionId;
private String label;
private String number;
private int delay;
private String vehicleCategory;
private int freeSeatsCount;
private List<ConnectionStation> connectionStations;

}

As you can see, it contains ConnectionStation, another model. This means that
one response can be made up of multiple models.

Using this, we went on and created a model for every RegioJet API response. The
next step was to create Data Transfer Objects(DTOs) from these models. DTO „is an
object that carries data between processes. The motivation for its use is that commu-
nication between processes is usually done by resorting to remote interfaces (e.g., web
services), where each call is an expensive operation.“[8] As response data contains a lot
of information, and not all of it relevant to our usage, we can reduce the number of
data send. Compare the model and the DTO for a RegioJet’s station:

public class Station {
private String id;
private String name;

1 https://json2csharp.com/json-to-pojo

10

https://json2csharp.com/json-to-pojo

. 4.2 Code

private String fullname;
private List<String> aliases;
private String address;
private List<String> stationsTypes;
private String iataCode;
private String stationUrl;
private String stationTimeZoneCode;
private String wheelChairPlatform;
private int significance;
private double longitude;
private double latitude;
private String imageUrl;

}

public class StationDto {
private String id;
private String name;
private String fullname;

}

To transform the model to DTO(and vice versa), we needed a Mapper class. As
we mentioned before, to speed up the development process and limit redundancy, we
tried to use generics[9] everywhere where it made sense. Therefore, we created an
abstract class that already contains the mapping logic for lists, and to have it work
with each and any model/DTO duo, one just has to inherit from this class and provide
an implementation for an abstract method.

public abstract class ToDtoMapper<Model, Dto> {

/**
* Maps model to dto
*
* @param models list of models
* @return list of dtos
*/

public List<Dto> mapToDto(Collection<Model> models) {
final List<Dto> result;
if (models != null) {

result = models
.stream()
.filter(Objects::nonNull)
.map(this::mapToDto)
.collect(Collectors.toList());

} else {
result = List.of();

}
return result;

}

protected abstract Dto mapToDto(Model model);
}

And the Mapper for Station model and its DTO that were shown above.

11

4. Implementation .
public class StationDtoMapper extends ToDtoMapper<Station, StationDto> {

@Override
public StationDto mapToDto(Station station) {

if (station == null) {
return StationDto.builder().build();

}
return StationDto.builder()

.id(station.getId())

.name(station.getName())

.fullname(station.getFullname())

.build();
}

}

After we repeated this for every model and DTO, we moved on to another part of
the system. This time, we focused on everything that could be called „common“ for all
providers.

The most obvious part was an adapter to get data from given APIs. For every
provider, the URL and even return type would be different, but the basic functionality
stays the same. Fetch data from this URL and return them as the correct Java model.
To fulfill this, generics are needed again.

public class ApiAdapter<U extends ApiClient> {

private final U client;

public <T> T get(String uri, HttpEntity<?> requestEntity,
ParameterizedTypeReference<T> responseType) {

T response = client
.callApi(uri, HttpMethod.GET, requestEntity, responseType);

return response;
}
public <T> T post(String uri, HttpEntity<?> requestEntity,
ParameterizedTypeReference<T> responseType) {

T response = client
.callApi(uri, HttpMethod.POST, requestEntity, responseType);

return response;
}
public <T> T put(String uri, HttpEntity<?> requestEntity,
ParameterizedTypeReference<T> responseType) {

T response = client
.callApi(uri, HttpMethod.PUT, requestEntity, responseType);

return response;
}
public <T> T delete(String uri, HttpEntity<?> requestEntity,
ParameterizedTypeReference<T> responseType) {

T response = client
.callApi(uri, HttpMethod.DELETE, requestEntity, responseType);

return response;
}

}

12

. 4.2 Code

Where U is of type that extends ApiClient. ApiClient provides an in-
terface to call given API and return always the correct model, based on the
ParameterizedTypeReference.

public interface ApiClient {
default <T> T callApi(String uri, HttpMethod method,
ParameterizedTypeReference<T> responseType) {

return callApi(uri, method, null, responseType);
}

<T> T callApi(String uri, HttpMethod method, HttpEntity<?> entity,
ParameterizedTypeReference<T> responseType);

}

This way, we can easily swap clients, without any change in the code except for one
word. We went in this direction because we wanted the system to be as modular as
possible. For example, if we wanted to mock responses, we may create a MockClient
that would return statically created data. However, an even better use case showed itself
during the development. From the beginning, we were using Spring’s RestTemplate1

class. After finishing every functionality for RegioJet, we found out that a new and
better client was available, namely WebClient2. Thankfully, by building the ApiAdapter
using generics and thanks to Spring’s Dependency Injection, we only had to create a
new class implementing ApiClient. Let’s see both clients first, and then we will show
how easily we can swap them.

public class RestTemplateClient extends ApiClientWithExceptionHandling {
private final RestTemplate restTemplate;
@Override
protected <T> T callApiImplementation(String uri, HttpMethod method,
HttpEntity<?> requestEntity, ParameterizedTypeReference<T> type) {

ResponseEntity<T> rateResponse =
restTemplate.exchange(uri,

method, requestEntity, type);
return rateResponse.getBody();

}
}

public class WebFluxClient extends ApiClientWithExceptionHandling {
private final WebClient webClient;

@Override
protected <T> T callApiImplementation(String uri, HttpMethod method,
HttpEntity<?> requestEntity, ParameterizedTypeReference<T> type) {

Mono<T> response = webClient
.method(method)
.uri(URI.create(uri))
.retrieve()
.bodyToMono(type);

return response.block();
}

1 https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/
web/client/RestTemplate.html
2 https://www.baeldung.com/spring-5-webclient

13

https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/client/RestTemplate.html
https://www.baeldung.com/spring-5-webclient

4. Implementation .
As we can see, just by extending an ApiClientWithExceptionHandling - which is a

class building upon ApiClient, but enforcing logging and error handling - and overrid-
ing one method, we have a totally different client to work with APIs, without changing
any of the other classes. To swap between RestTemplate and WebFluxClient (and vice
versa), we only need to do the following change:

private final ApiAdapter<RestTemplateClient> client;

private final ApiAdapter<WebFluxClient> client;

No other change in code is needed, yet under the hood everything is different.

4.2.2 Provider’s specifics

Even with the focus on generics, every provider has to have some specific classes, like
its own controller and service that emulate RegioJet’s API.

For example, one endpoint of RegioJet controller:

@RequestMapping("/api/v1/regio")
public class RegioJetController {

private final RegioService service;
private final WatchedRegioConnectionDao watchDao;

@GetMapping(value = "/locations")
public List<LocationDto> getLocations() {

return service.getLocations();
}

...

...
}

Now, calling address .../api/v1/regio/locations will return all the data we se-
lected about locations from RegioJet’s API. As we can see, the endpoint is simply
calling a RegioService method and returning a list of DTOs. So let us take a look at
the service.

public class RegioService implements ServiceWithHealth {
private final ApiAdapter<WebFluxClient> client;
private final RegioMapper mapper;

public List<LocationDto> getLocations() {
List<Location> locations = client
.get(YbusApi.getLocationsUrl(),

new ParameterizedTypeReference<>() {
});
return mapper.mapToDto(locations);

}
...
...
}

What is going on here is very simple. We get the URL for delay’s API from YbusApi
class that stores all the information about RegioJet’s URLs used in APIs. We pass it
into the ApiAdapter and use GET method. This returns the data that RegioJet’s API

14

. 4.2 Code

has. The last step is to map this data to a list of DTOs, so we can reduce the size of
the transferred data.

This is similarly done for all remaining endpoints.

4.2.3 Caching
The attentive reader may have noticed that this system can cause unnecessary stress
on the provider’s server. A list of locations is not something that changes often, same
as for example a list of tariffs or seats.

One possible solution is to store this data on our side in the database. This comes
with its own set of problems. The first is an increase in the storage space, which may
increase the cost of the server, depending on the provider. The second is the sync up of
the local data with the source data. Should we check every time if we have all the data,
or if some items have been changed? Another approach would be to have a scheduled
task that synchronizes the data after a predefined period of time.

This is an approach that would make sense and would work, but the implementa-
tion would take us some time. Therefore we decided to go with a solution that is in
principle the same, yet different. The aforementioned problem is one of the most com-
mon problems in API development, and there is a solution with tested and optimized
implementations. This solution is called caching.

„Caching is a mechanism to improve the performance of any type of application.
Technically, caching is the process of storing and accessing data from a cache. But
wait, what is a cache? A cache is a software or hardware component aimed at storing
data so that future requests for the same data can be served faster.“[10]

The last sentence summarizes the value of caching. We do it so we can quickly serve
requests after the first initial one. For example, only the first user getting the locations
will have to wait for the data to be fetched from the provider. All subsequent queries
will use this first response automatically. No need to call the provider’s API or query
the database.

This is where the initial choice of language and framework comes into play. As stated
in the Spring documentation: „The Spring Framework provides support for transpar-
ently adding caching to an application. At its core, the abstraction applies caching to
methods, thus reducing the number of executions based on the information available in
the cache. The caching logic is applied transparently, without any interference to the
invoker. Spring Boot auto-configures the cache infrastructure...“[11]

What does this mean? Basically, we only need to add an annotation to the method
we want to cache. Let us show it on an example:

@Cacheable("tariffs")
public List<TariffDto> getTariffs(
@RequestParam(defaultValue = "cs") String language,
@RequestParam(defaultValue = "CZK") String currency) {

setVariables(language, currency);
return service.getTariffs();

}

As we can see, we have annotation @Cacheable. Its parameter is the name of the
cache that should be created. Without specifying a look-up key, all the parameters
will be combined to create one key. Now, all but the first invocation of the method
getTariffs with the same arguments will use stored response.

However, this is only an abstraction, meaning, this does not provide us with the real
implementation. The cache itself could be done as a database, on disk, or in memory.

15

4. Implementation .
We must choose the implementation that would fit our needs the best. Fortunately,
with Spring, there are many options, such as Encache, Guave, Redis, or Caffeine.

As we only need to store the data while the server is running, we need just an in-
memory cache, with no disk persistence. Our second need is to have two different
lifespans for the cache. The first is data that is not supposed to be changed much, or
at all. Tariffs, seats, and locations fall into this category. For them, we can have a
cache with a long time to live(TTL), such as a few days, or - as we selected- 6 hours.
The second category is a bit more specific. All the other calls, such as a list of routes
or connection details, belong to it. We want to store the responses for a short time -
for three minutes in our case-, as the resulting data can be changed quickly. So why
cache this data at all? Imagine two users searching for routes from Prague to Brno
at almost the same time. Without cache, we would need to fetch the data from the
provider’s API two times, and this can be slow. However, when we cache the first result
for a few minutes, we call it only once and then return this data for the second user as
well. With the TTL so short, we can be reasonably sure the data closely resembles the
correct data.

From the cache options, the best fit for our needs is Caffeine1. As stated in their
documentation, caffeine „ is a high performance Java caching library providing a near
optimal hit rate. A Cache is similar to ConcurrentMap, but not quite the same. The
most fundamental difference is that a ConcurrentMap persists all elements that are
added to it until they are explicitly removed. A Cache on the other hand is generally
configured to evict entries automatically, in order to constrain its memory footprint.
“[12]

As it is explained above, the Caffeine cache is a special implementation of Java’s Con-
currentMap2, therefore the cache lives in memory, as we wanted. The inner workings
are quite simple, a key is created from all the method’s parameters, and the method’s
response is stored with this key in the map for a specified amount of time.

Now, to enable the cache in our application, we just need to create cache managers
for the two aforementioned categories. With Spring, this is as easy as creating two
beans:

@Bean
@Primary
public CacheManager cacheLongManager() {

CaffeineCacheManager manager = new CaffeineCacheManager();
caffeineCacheManager.setCaffeine(Caffeine

.newBuilder()

.expireAfterWrite(6, TimeUnit.HOURS));
return manager;

}

@Bean
public CacheManager cacheShortManager() {

CaffeineCacheManager manager = new CaffeineCacheManager();
caffeineCacheManager.setCaffeine(Caffeine

.newBuilder()

.expireAfterWrite(3, TimeUnit.MINUTES));
return manager;

}

1 https://github.com/ben-manes/caffeines
2 https://www.baeldung.com/java-concurrent-map

16

https://github.com/ben-manes/caffeines
https://www.baeldung.com/java-concurrent-map

. 4.2 Code

The only thing left is to specify the correct manager for the correct caches. This is
done by providing a cacheManger parameter to the annotation.

@Cacheable(cacheNames="route", cacheManager = "cacheShortManager")
public ConnectionDto getConnection

After these steps, all responses from methods annotated with @Cacheable are au-
tomatically stored and reused when the method is called with the same parameters,
improving the efficiency and speed of the server.

4.2.4 RESTful API

In the previous chapter 3.3 we noted that for the API to be considered RESTful, it has
to conform to some criteria. Here we will argue that this system is a RESTful one.

. A client-server architecture - our system follows Separation of concerns[13], separat-
ing the user interface from the data storage. Stateless client-server communication - no session information is stored nor needed in
our system. Every call can be understood in isolation, as it contains all the necessary
information.. Cacheable data - some of the data cannot be cached (for longer than a few minutes),
e.g. the route’s details with the number of available seats, but most of the data
is supposed to be cached, for example, the cities and stations will not be changed
frequently. See section 4.2.3 above for more details.. A layered system - our system does not care whether it is connected directly to the
end server or to a proxy along the way, its communication is not dependent on the
recipient.. A uniform interface between components - individual resources are identified in re-
quests, and the resources themselves are separate from their internal representations,
e.g in the database, it is stored as long int, but in the JSON response string may be
returned.

4.2.5 Database

Following is the high-level overview of the implementation of the database mentioned
in 3.2. Spring has - as with most of the libraries and technologies - nice and easy
integration with MongoDB. Using MongoTemplate and MongoRepository, the whole
integration can be done in a few lines of code.

„MongoTemplate — MongoTemplate implements a set of ready-to-use APIs. A good
choice for operations like updates, aggregations, and others, MongoTemplate offers finer
control over custom queries. MongoRepository — MongoRepository is used for basic
queries that involve all or many fields of the document. Examples include data creation,
viewing documents, and more.“[14]

There are only two steps that are required to be taken in order for the Spring
application to work with MongoDB. The first step is to create an entity object. This
entity will specify what we want to store, as well as the naming, both the collection and
the stored objects. The second step consists of creating an interface for a repository,
and optionally creating method definitions on this interface. Let us show it on some
examples. Firstly, for the entity object, we will explain the details on our WatchedRe-
gioConnectionEntity - object with all the information we need to watch a specific route.

17

4. Implementation .
@Getter
@Setter
@Document(collection = "regio.watched_connections")
public class WatchedRegioConnectionEntity {

@Id
private String id;
@NotBlank
private String userId;
@NotBlank
private String url;
@NotBlank
private String language;
@NotBlank
private String routeId;
@NotBlank
private String fromStationId;
@NotBlank
private String toStationId;
@Min(1)
private int tickets = 1;
@NotNull
private List<String> tariffs;
private List<String> seatClasses;
private Map<String, Date> notified = new HashMap<>();
@NotNull
@JsonFormat(pattern="yyyy-MM-dd HH:mm:ss.SSSX")
private Date arrivalTime;
@NotNull
@JsonFormat(pattern="yyyy-MM-dd HH:mm:ss.SSSX")
private Date departureTime;
@NotBlank
private String type;

}

The first thing that may have caught your attention is the annotations. There are
four different kinds of them. Firstly, there are Lombok1. annotations. These anno-
tations serve as code generation blocks. In our code, we are using the most common
annotations, @Getter and @Setter. Thanks to them, code for getters and setters is
created automatically during the compilation. Another example could be annotation
@Builder, which will create a builder for your class, or @RequiredArgumentsConstruc-
tor (and his parallels of No and All arguments), which will create a constructor for the
required arguments.

Secondly, there are MongoDB annotations, namely @Document and @Id. These
annotations are used as configuration tools. Within the document annotation, we
specify the name of the collection in which this entity should be stored. For @Id,
it does exactly what its name hints - it marks the attribute as a primary index.

Thirdly, we have JavaX validation annotations. These serve as validators, making
sure the data inside the entity comply with our rules. For instance, the @NotBlank
annotation makes sure that the string value is not null or whitespace, @Min specifies the
minimum permitted value inside the integer field, and so on. These rules are checked

1 https://projectlombok.org/

18

https://projectlombok.org/

. 4.2 Code

when we try to save the entity into the database, and if any of them fails, the saving
fails as well.

Lastly, we have a @JsonFormat annotation from Jackson1. With this annotation, we
can control the output format of Date data types.

Now, we can take a look at the actual data. To watch over a connection, we need all
the data specified in the entity. Let us take a look at each of them:

. id - autogenerated unique id for a database entity. userId - unique id of the user’s device generated by Firebase (will be explained in
chapter 5). language - language in which the notification to mobile should be sent. routeId - id of the route. fromStationId - id of the departure station. toStationId - id of the arrival station. tickets - number of tickets desired. tariffs - list of tariffs specified by the user. seatClasses - list of seat classes which we want to watch. notified - map with string keys and datetime values, representing the time when the
user has been notified from watcher of type key. arrivalTime - time of the supposed arrival. departureTime - time of the supposed departure. type - the type of the watcher that should be used, can be combined, e.g. string
„ticketsdelays“ is used when watching for both tickets and delays,

This is all that we need to actually watch for changes in the connection, as we will
show in the next chapter.

The second step of implementing MongoDB inside the Spring framework is easier
and quicker, but even more powerful. We just have to create a new interface that is
extending the already defined MongoRepository interface.

@Repository
public interface WatchedRegioConnectionRepository
extends MongoRepository<WatchedRegioConnectionEntity, String> {

List<WatchedRegioConnectionEntity> findByTypeLike(String type);
}

As you can see, we also created a new method declaration, but this step is optional.
All that is required to have basic functionality is to create an empty interface, and after
that, methods such as findAll, save, saveAll are available for you to use.

However, the option to create new methods is a really powerful one, due to how
Spring can create a method for querying the database automatically from the name of
the method, so you do not have to create your own queries. Let us explain it in our
example:

List<WatchedRegioConnectionEntity> findByTypeLike(String type);

The return type should usually be either a list of your entities or a single entity. The
name complies with the following pattern:

findBy<fieldName><method>

and it takes an argument(s) to this method.
Methods are similar to those used in SQL. Few examples:

1 https://github.com/FasterXML/jackson

19

https://github.com/FasterXML/jackson

4. Implementation .
findByAgeGreaterThan(int age),
findByAgeBetween(int from, int to)
findByFirstnameNull()
findByFirstname(String name)
findByActiveIsTrue()

[15]

4.2.6 Watchers
The most important part of this back-end (except the API emulation) system is „watch-
ers“. These are the scheduled actions that run periodically and check whether the
watched condition evaluates to true. Right now, for RegioJet, watchers for the avail-
ability of tickets, and delay checks are implemented. For FlixBus, both of the aforemen-
tioned watchers are created, as well as another one that checks whether the connection
has not been canceled. However, this is a topic bigger in scope, and as such we will
discuss it in chapter 5.

4.3 Conclusion
This chapter aims to explain the high overview of the implementation and its design. It
provides code examples to illustrate the discussed points. An explanation and reasons
are provided for the caching mechanism used in this implementation. Moreover, it
describes why the implementation conforms criteria for a RESTful API. The structure
of the database and the data in it is described, alongside its implementation in the
Spring framework. This chapter mentions watchers which will be an important part of
the discussion in the next chapter. The whole code is available on Github https://
github.com/alim971/watchdog/tree/rc.

20

https://github.com/alim971/watchdog/tree/rc
https://github.com/alim971/watchdog/tree/rc

Chapter 5
Watchers

In the following section, we will talk about watchers - the scheduled tasks that are
responsible for periodic checking of watched connections. We will explain the architec-
tural overview of their structure, and provide examples of their workings. This will also
require us to talk about the schedule functionality of the Spring framework, which we
will quickly cover. In the end, we will talk about our current functioning watchers.

5.1 Overview
The main bulk of the back-end service is its ability to detect changes on the watched
route. This is where the watchers come into the play. They use data from the database
to periodically monitor responses from the provider’s API. In case a wanted requirement
is met, the watcher notifies the user that saved this connection. The notification is sent
via Firebase Cloud Messaging. „Firebase Cloud Messaging (FCM) is a cross-platform
messaging solution that lets you reliably send messages at no cost.“[16]

If a notification was sent, another one for the same type cannot be sent again for a
specified amount of time. Currently, this time is set to ten minutes, but in the future,
this can be possibly replaced by users’ custom values.

If the conditions are met again after the aforementioned period, the notification is
sent again and the whole process repeats.

5.2 Scheduled
The watcher’s job is to periodically check the API responses. That is why we need
to repeatedly run the watcher at some interval. There are multiple approaches to
this problem. For example, one could create a script and then using cron execute
it periodically. However, this would only add another layer and complexity to our
application. We wanted to avoid that. Thankfully, Spring has this functionality built-
in.

We start by enabling the Scheduling tasks using the annotation @EnableScheduling
on our main application class. With this done, all we have to do is create the task that
should be run periodically. We do this by creating a function (preferably with a return
type of void, as anything returned will be ignored) and annotating it with @Scheduled.

@Scheduled(fixedDelay = 10000)
public void watch() {

watch(getWatchedConnections());
}

As you can see above, we have declared a method called watch, which is annotated as
a Scheduled task. We also provided the parameter fixedDelay which sets the schedule of
execution at 10000 milliseconds after the previous execution. This way, the task always
waits until the previous one is finished.

21

5. Watchers .
There are other options than fixedDelay. We could use fixedRate, with the difference

being that fixedRate executes the function every n milliseconds, even if the previous
execution has not ended. Instead of delays and rates we could also use the flexibility of
cron expression to control the executions. Let us show it on example:

@Scheduled(cron = "0 15 10 15 * ?")
public void watch() {

watch(getWatchedConnections());
}

In this example, the function will be executed at 10:15 on the 15th day of every
month. For more information about cron expressions see https://docs.oracle.com/
cd/E12058_01/doc/doc.1014/e12030/cron_expressions.htm.

5.3 Structure
As mentioned in the previous chapters, during implementation we placed importance on
the ease of extendability by using generics. Implementation of watchers is no exception.
Firstly, we created an abstract Watchdog class that has the implementation of the tasks
dealing with notifications and database access.

With the database access in mind, in the previous chapter, we described the data
we store about the watched route. Watchers use this data so they can get details from
the provider’s API. Therefore, the data is dependent on the exact provider, but some
attributes must be the same for all of them. This data is abstracted in the Notifiable
interface:

public interface Notifiable {
Map<String, Date> getNotified();
String getUserId();
String getLanguage();

void setNotified(Map<String, Date> notified);
}

The entities must implement this interface, making sure that we have the data we
need to notify the correct user - userId and language of the notification. Also, we need
to have a Map of string keys and date values that will be used to set the time when the
notification was sent to the user for the specific type of watcher, to avoid repeatedly
sending the same notification.

Now we ensured that we have all the needed data that the abstract watchdog will
use. Let us see the implementation:

@Service
@RequiredArgsConstructor
public abstract class Watchdog<Model extends Notifiable, Entity> {

protected final WatchedDao<Model, Entity> watchDao;
protected final NotificationSenderService senderService;
protected final String type;

@Scheduled(fixedDelay = 10000)
public void watch() {

watch(getWatchedConnections());
}

22

https://docs.oracle.com/cd/E12058_01/doc/doc.1014/e12030/cron_expressions.htm
https://docs.oracle.com/cd/E12058_01/doc/doc.1014/e12030/cron_expressions.htm

. 5.3 Structure

protected abstract void watch(List<Model> connections);

protected List<Model> getWatchedConnections() {
return watchDao.getAllWatched();

}

protected void notifyUser(
Model connection, Map<String, String> data, String message)
throws FirebaseMessagingException {

System.out.println(message);
NotificationWithData notification = NotificationWithData

.builder()

.title(TranslationService
.getTitleTranslation(connection.getLanguage(), type))

.message(message)

.data(data)

.build();
senderService.sendNotification(notification,

connection.getUserId());
setNotifyTimeToNow(connection);

}

protected void notifyUser(Model connection)
throws FirebaseMessagingException {

notifyUser(connection, null,
TranslationService
.getFoundTicketsTranslation(connection.getLanguage()));

}

protected final void setNotifyTimeToNow(Model connection) {
Map<String, Date> notified = connection.getNotified();
notified.put(type, new Date());
connection.setNotified(notified);
watchDao.saveModel(connection);

}

protected final boolean wasNotified(Notifiable connection) {
int timeToAdd = 10 * 60 * 1000;
return wasNotified(connection, timeToAdd);

}

protected final boolean wasNotified(
Notifiable connection, int timeToAdd) {

Date now = new Date();
return connection.getNotified() != null

&&
connection.getNotified().containsKey(type)
&&
now.before(new Date(
connection.getNotified().get(type).getTime() + timeToAdd));

}
}

23

5. Watchers .
Now, as you can see, everything is implemented already, there is only one abstract

method without implementation. This method is the one called periodically, it is the one
with the whole logic and watched condition. The concrete watcher needs to implement
only this method and the method to get the saved connections with the correct watcher
type.

protected abstract void watch(List<Model> connections);

protected List<Model> getWatchedConnections() {
return watchDao.getAllWatched();

}

There is one more intermediate step. For every provider, we create one more abstract
class that will extend the abstract Watchdog with the correct models and entities and
provide the corresponding service that will be handling API calls.

public abstract class RegioWatchdog
extends Watchdog<WatchedRegioConnection, WatchedRegioConnectionEntity> {

protected final RegioService service;

public RegioWatchdog(WatchedRegioConnectionDao watchDao,
NotificationSenderService sender,

String type, RegioService service) {
super(watchDao, sender, type);
this.service = service;

}
}

5.4 Examples
For now, we have watchers for tickets and delays for both RegioJet and FlixBus. The
latter has one additional watcher to check whether the route has been canceled.

We will show you two examples of the watchers to further explain the inner workings
and the ease with which a new watcher can be added.

Let us start with the watcher for RegioJet tickets availability:
@Service
@Slf4j
public class TicketsWatchdog extends RegioWatchdog {

public TicketsWatchdog(WatchedRegioConnectionDao watchDao,
NotificationSenderService sender, RegioService service) {

super(watchDao, sender, "tickets", service);
}

@Override
protected void watch(List<WatchedRegioConnection> connections) {

for (WatchedRegioConnection connection : connections) {
try {

if (wasNotified(connection)) {
continue;

}
if (connection.getArrivalTime().before(new Date())) {

throw new ClientException(

24

. 5.4 Examples

"Connection is already finished");
}
ConnectionDto result = service.getConnection(

connection.getTariffs().get(0),
connection.getRouteId(),
connection.getFromStationId(),
connection.getToStationId()

);

long routesSatisfiable = connection
.getSeatClasses() != null

&& !connection.getSeatClasses().isEmpty()
? result.getPriceClasses().stream()

.filter(Objects::nonNull)

.filter(e -> connection

.getSeatClasses()

.contains(e.getSeatClassKey())
&&
e.getFreeSeatsCount()
>= connection.getTickets())

.count()
: result.getFreeSeatsCount();

if (routesSatisfiable > 0
&&
result.getFreeSeatsCount() >= connection.getTickets()) {

Map<String, String> map = new HashMap<>();
map.put("url", connection.getUrl());
map.put("routeId", connection.getRouteId());
notifyUser(connection, map,
TranslationService
.getFoundTicketsTranslation(
connection.getLanguage()));

}
} catch (ClientException exception) {

if(exception.getMessage()
.contains("Sedadla již nejsou k dispozici")
||
exception.getMessage()
.contains("Not enough free seats available")

|| exception.getMessage().contains("message:50")) {
continue;

}
log.info(exception.getMessage());
connection.setType(connection.getType()
.replace("tickets", ""));
if (connection.getType().isEmpty()) {

log.info("Deleting with id " + connection.getId());
watchDao.deleteById(connection.getId());

} else {
log.info("Not watching " + connection.getId());
watchDao.saveModel(connection);

}
}

25

5. Watchers .
catch (FirebaseMessagingException e) {

log.info("Notification unsuccessful");
log.info(e.getMessage());

}
}

}
@Override
protected List<WatchedRegioConnection> getWatchedConnections() {

return
((WatchedRegioConnectionDao) watchDao).getTicketConnections();

}
}

We will explain what is happening above. Firstly, we extend the abstract Re-
gioWatchdog and create a correct constructor. We should note here that the parameters
in this constructor are automatically provided(wired) by the Spring framework.

Next, we override the watch method, where we iterate through the connections that
are loaded via the getWatchedConnections method. In this method, we get all the
connections saved in our database that have the type of tickets. For every connection,
we first check whether we already did send a notification, if yes, we skip it. The next
check is a simple one, we check whether the connection did not arrive yet. If it did,
we know we can delete this connection as it does not make sense to watch it anymore.
Then, using the RegioJet service mentioned in the previous chapter, we get details
about the watched connection, and in them, we find out whether there are enough
available seats. This check is done either for the specific seat class if it was requested
by the user or for free seats in general. If there are enough free seats, we notify the
user. This notification is sent via FirebaseMessaging package, and the whole message
is localized based on the saved language of the connection.

In case there are exceptions that are signaling that the route is no longer available
to be watched, we delete it and continue to another connection.

@Service("FlixDelaysWatchdog")
@Slf4j
public class DelaysWatchdog extends FlixWatchdog {

public DelaysWatchdog(WatchedFlixConnectionDao watchDao,
NotificationSenderService sender, FlixService service) {

super(watchDao, sender, "delays", service);
}

@Override
protected void watch(List<WatchedFlixConnection> connections) {

for (WatchedFlixConnection connection : connections) {
try {

if (wasNotified(connection)) {
continue;

}

if (connection.getArrivalTime().after(new Date())) {
throw new ClientException(
"Connection is already finished");

}

26

. 5.4 Examples

StationTimetableDto result = service.getStationTimetable(
connection.getStationId(),
connection.getArrivalTime().toString(),
connection.getArrivalTime().toString()

);

Optional<RouteDetailsDto> routesSatisfiable =
result.getTimetable()
.getArrivals().stream()

.filter(trip -> trip .getTripUid()

.equals(connection.getRouteId())
&&
trip.getDelay() != null)

.findFirst();
if(routesSatisfiable.isEmpty()) {

continue;
}
if(!routesSatisfiable.get().isHasTracker()) {

throw new ClientException("Not tracked");
}
Map<String, String> map = new HashMap<>();
map.put("routeId", connection.getRouteId());
map.put("delay", routesSatisfiable
.get().getDelay().getTz());
notifyUser(connection, map,
TranslationService.getFoundDelayTranslation(
connection.getLanguage(),
routesSatisfiable.get().getDelay().getTz()));

} catch (ClientException exception) {
log.info(exception.getMessage());

//find by ID and delete
connection.setType(connection.getType()
.replace(type, ""));

if (connection.getType().isEmpty()) {
watchDao.deleteById(connection.getId());

} else {
watchDao.saveModel(connection);

}
} catch (FirebaseMessagingException e) {

log.info("Notification unsuccessful");
log.info(e.getMessage());

}
}

}

@Override
protected List<WatchedFlixConnection> getWatchedConnections() {

return ((WatchedFlixConnectionDao)watchDao).getDelayConnections();
}

}

27

5. Watchers .
This next example shows a delay watcher of FlixBus. Firstly, we extend the

FlixWatchdog which has an instance of FlixService. The beginning is the same as
before, we check whether the notification was not already sent and whether the connec-
tion is not already finished. Next, we get details about the connection, but now using
the FlixService. For this, we need to check the timetable of the arrival station and
filter out all connections that do not have our saved id. If we find the right connection
and there is a delay present, we notify the correct user, same as for the RegioJet’s
Tickets watcher.

5.5 Conclusion
This chapter tries to give a brief overview of the structure and the workings of watchers
that are responsible for periodic checks of users’ saved connections. Spring functionality
that enables us to run scheduled tasks is explained. Lastly, we provided examples and
explanations of the actual code of our watchers.

28

Chapter 6
Future work and deployment

In this chapter, we will talk about the deployment of the web on a server, particularly
using cloud services. The next part will be spent discussing the future work that is
planned around the back-end service.

6.1 Deployment
To have our app running constantly, we need to deploy it on either our own server
or use cloud providers, such as Amazon and Google. As we do not have a dedicated
machine to serve as our own server, we went with the deployment into the cloud. We
have chosen Amazon Web Services(AWS) as our provider of cloud services, mostly due
to the fact that we are familiar with the technology.

„Amazon Web Services (AWS) is a secure cloud services platform, offering compute
power, database storage, content delivery and other functionality to help businesses
scale and grow.“[17]

AWS provides many different options when it comes to serving your application on
the cloud:

. EC2 (Elastic Compute Cloud) — virtual machines in the cloud with OS-level control. LightSail —„Amazon Lightsail is a virtual private server (VPS) provider ... Lightsail
provides developers compute, storage, and networking capacity and capabilities to
deploy and manage websites and web applications in the cloud. Lightsail includes
everything you need to launch your project quickly – virtual machines, containers,
databases, CDN, load balancers, DNS management etc..“[18]. ECS (Elastic Container Service) — highly scalable container management service
that enables you to run Docker containers in the cloud. EKS (Elastic Container Service for Kubernetes) — highly scalable container man-
agement service that enables you to run Kubernetes applications in the cloud. Lambda — AWS’s serverless technology that allows you to run functions in the cloud.
It’s a huge cost saver as you pay only when your functions execute.. Batch —batch management that allows you to run hundreds of thousands of com-
puting jobs using other AWS services. Elastic Beanstalk — „AWS Elastic Beanstalk is an easy-to-use service for deploying
and scaling web applications and services developed with Java, .NET, PHP, Node.js,
Python, Ruby, Go, and Docker on familiar servers such as Apache, Nginx, Passenger,
and IIS.“[19]

There are multiple options that would serve our purpose. We could choose EC2
and have a private machine that we can manage by ourselves. However, this would
require more experience to configure everything correctly, and would be much more
time-consuming. There is another reason. Spring java applications are easily docker-
ized, meaning we could create a container that our server would be running inside. „A

29

6. Future work and deployment .
container is a standard unit of software that packages up code and all its dependen-
cies so the application runs quickly and reliably from one computing environment to
another. A Docker container image is a lightweight, standalone, executable package of
software that includes everything needed to run an application: code, runtime, system
tools, system libraries, and settings.“[20].

By dockerizing our application, we can effortlessly control the environment and, most
importantly, scale our application by easily creating new instances.

Figure 6.1. Deployment docker[21]

There are three AWS services that make use of docker images: ECS, EKS, and Elastic
Beanstalk. We do not want or need to deal with Kubernetes, so only two options remain.
Between ECS and Elastic Beanstalk, there are a few differences. The biggest one is
that the ECS is more complicated, and one would need to micro-manage it. That is
why we decided to go with Elastic Beanstalk. This service is using ECS in itself and
provides a simpler interface to it. It does not provide as much control, but it suffices
for our purposes.

Firstly, we need to create a docker image of our application. This is easily done by
creating a Dockerfile script at the root of our application.

FROM openjdk:17-slim-bullseye
RUN adduser --system --group spring
USER spring:spring
ARG JAR_FILE=target/*.jar
COPY ${JAR_FILE} app.jar
EXPOSE 8080
ENTRYPOINT ["java","-jar","/app.jar"]

We faced some problems at this point, due to the fact that the development was done
on one of the new Macs that have an M1 processor, which some images still do not
support. That is the reason why we selected the base image openjdk:17-slim-bullseye
instead of the usual alpine version.

The next step is to build the image and push it to a public repository. We chose the
repository available for us in the AWS, called Elastic Container Registry, or ECR.

Once pushed, we now have an image ready to be downloaded and used anywhere we
want. Therefore, we are ready to deploy our application on AWS Elastic Beanstalk. To
do so we need to utilize docker-compose. „Compose is a tool for defining and running
multi-container Docker applications. With Compose, you use a YAML file to configure

30

. 6.2 Future features

your application’s services. Then, with a single command, you create and start all the
services from your configuration.“[22]

We start by creating a docker-compose.yml file, where we define the docker applica-
tion that our service should use. In our case, it is the image of our Spring application
alongside the MongoDB instance.

version: "3.9"
services:

catchit:
image: 869874504804.dkr.ecr.eu-central-1.amazonaws.com/catchit
restart: always
ports:

- "80:8080"
depends_on:

- mongo
mongo:

image: mongo:5.0.6
restart: always
ports:

- "27017-27019:27017-27019"
container_name: mongo

After these steps, we are ready to utilize the Elastic Beanstalk command line inter-
face (EB CLI)[23]. Executing commands to create an environment and deploy docker-
compose on it is all that is needed to finish the deployment of our application. From the
default settings, we have an automatic load balancer that would spin up new instances
if the load was too big. However, due to the combined cost of the load balancer and
multiple running instances, we have disabled the load balancer and switched to single
instance deployment. This way our service will always be available exactly on one node.
This is important with the way our database is set up - if we used multiple nodes, the
same data would not be available on all of them. More on this in the next part of this
chapter.

6.2 Future features
The main improvement to this service would be the addition of new watchers and new
providers. Our whole application and code structure have been created with this option
in mind, as mentioned in 4.2.1. Therefore, the plans for the future consist of multiple
supported providers, as opposed to the current state where only RegioJet and FlixBus
are supported.

Apart from adding new providers, there is also a small room for improvement inside
the currently implemented providers. We now have an option of watchers for tickets,
delays, and for FlixBus the option to watch for cancellation is implemented. However,
there is a potential to create more watchers, ones that would be a bit more specific. For
this, a detailed analysis of the responses would be needed. For instance, if the required
data is there, we could notify users when the platform for the watched connection is
selected. Another example watcher could be to watch for changes in either arrival or
departure times.

There is one more problem that we mentioned earlier. If we wanted to scale our
application by creating new nodes, we would face a problem with our database, where
every node would have its own database with different data. We solved this problem

31

6. Future work and deployment .
for now by configuring AWS to be in single instance mode. However, in the future,
the application will hopefully have lots of users, and load balancing would be needed.
Therefore, one of the most significant improvements that are planned for the future
is to change our database model from the local dockerized database to online services
such as MongoDB Atlas1 or Amazon DocumentDB2.

6.3 Conclusion
This chapter aims to explain the deployment of our back-end service and the work that
is planned for the future. Dockerization of the application is introduced and illustrated
with infrastructure examples. A detailed explanation of the AWS cloud services was
provided, alongside the reason why we chose the Elastic Beanstalk for our deployment
to the cloud. Possible improvements to our implementation were mentioned, with a
focus on future changes to the database that are needed for better scalability. This
marks the end of the first part of this thesis, which was focused on the back-end side.

1 https://www.mongodb.com/atlas/database
2 https://aws.amazon.com/documentdb/

32

https://www.mongodb.com/atlas/database
https://aws.amazon.com/documentdb/

Chapter 7
Introduction to the mobile application

In the next part of this thesis, we will talk about the mobile application we created as
a user interface for our system to communicate with our API. This application enables
users to search for RegioJet’s connections and buy the tickets or, in case of a sold-
out connection, watch for the availability of the tickets. We will begin by explaining
the technology we chose alongside the reasons for it. We will mention the problem of
having multiple codebases for multiple platforms and how this is solved by tools that
enable cross-platform development. We will proceed to illustrate how we designed the
application with its screens, theme, and resemblance to the RegioJet’s web page in
order to be as intuitive to use as we can. Afterward, we will document the results of
our user testing. Lastly, we will talk about the deployment of the application on Google
Play, why we did not deploy the application on the App Store(yet), and the future work
that is planned as the next step for the improvement of the application. In the end, the
discussion of our plans to attract users and promote our application will take place.

33

Chapter 8
Technology

Mobile app development is an area in which we had no experience. That is why,
firstly, we wanted to research this field and decide on which technology should we rely.
As the mobile market is „one of the most lucrative business venues“[24], there is an
abundance of frameworks to choose from. Therefore, in this chapter, we will discuss
what technology we chose and why.

8.1 Cross-platform development
With multiple platforms on which the application should run (e.g. Android, iOS), there
comes a need to have multiple codebases for the same app. One codebase for Android,
one for Apple, et cetera. Now imagine that you wanted to change one text in your
application. You would have to change it in all codebases. This is only a small change,
but what if the application went through a bigger rework?

That is why cross-platform development is now the prominent solution. With frame-
works such as Xamarin, React Native, or Flutter, you write your code once and run it
anywhere. Now, it is possible to have one codebase and from it deploy the application
to multiple platforms. Of course, native development will still offer more possibilities,
but for a simple application, such as ours, this is not a problem. Positives outweigh
the negatives, as with native development, we would have to learn multiple languages
and frameworks, and write the app in all of them. With cross-platform development,
however, we only need to learn and work with one language and one framework.

8.2 Frameworks
After lengthy consideration, we decided to go with a Flutter framework.1 „Flutter is
Google’s portable UI toolkit for crafting beautiful, natively compiled applications for
mobile, web, and desktop from a single codebase. Flutter works with existing code, is
used by developers and organizations around the world, and is free and open source.
“[25]

Flutter work with Google’s language Dart2. „Dart is a client-optimized language
for developing fast apps on any platform. Its goal is to offer the most productive
programming language for multi-platform development, paired with a flexible execution
runtime platform for app frameworks...Dart is designed for a technical envelope that
is particularly suited to client development, prioritizing both development (sub-second
stateful hot reload) and high-quality production experiences across a wide variety of
compilation targets (web, mobile, and desktop).“[26]

With Flutter, we have a single codebase for a range of platforms. It works thanks
to Flutter’s own high-performance rendering engine. This has another advantage. As
1 https://flutter.dev/
2 https://dart.dev/

34

https://flutter.dev/
https://dart.dev/

. 8.3 Conclusion

Flutter is working not with native widgets, but with its own, we can minimize the
differences between the platforms, yet still have a native feel for all of them.

We have chosen the Flutter framework for a few reasons:

. Modern - both the framework and the Dart language are modern and open source. Popular - there is a big community built around the Flutter, see trend on StackOver-
flow at 8.1. Well documented - documentation is both clear and exhaustive. Beginner-friendly - alongside the documentation, there exist multiple tutorials and
guides, both fan-made and official. For instance, there is an official example shown
at a Keynote talk, that we have found very helpful, and it contained some beautiful
animations and assets that we are using in my application[27]. Feature heavy - A lot of requested features are being continuously released. Also, a
lot of functionality and widgets come right out-of-the-box

Figure 8.1. Trend on stackoverflow[28]

8.3 Conclusion
In this chapter, we aimed to outline the technology behind mobile app development
and lay out the problem with having multiple codebases. We explained the solution in
form of cross-platform development. Then we proceed to explain why we chose Flutter
as our main technology framework.

35

Chapter 9
Application design

In this chapter, we will show you the design of our application and the ideas behind
it. We will argue that the best way to appeal to users is to strike for a design similar
to the one they are used to. In our case, this means creating a user interface(UI) that
closely matches the one used on RegioJet’s web page. With this in mind, we aimed for
recognition rather than recall with our UI. „The big difference between recognition and
recall is the amount of cues that can help the memory retrieval; recall involves fewer
cues than recognition... Recognition is easier than recall because it involves more cues:
all those cues spread activation to related information in memory, raise the answer’s
activation, and make you more likely to pick it.“[29]

First, we will talk about the individual pages that our application consists of, after
which we proceed to compare them to their respective representations on RegioJet’s
web page.

9.1 Pages

From the get-go, we knew our application should consist of at least four (plus one)
separate pages. They are are as follows:

. List of searched routes + details of search parameters. List of possible seat classes of one route. List of possible watchers for one seat class. List of settings

The „plus one“ represents the search page for selecting the departure and arrival
stations.

Two additional pages were added during the development. The first was a splash
screen, that was added to buy a bit of time for the application to load, and to check
whether the device has a working internet connection. The second addition came up
during user testing (more on that in 10). Testers mentioned that a page with the list
of all watched routes was missing.

We will now go through the pages one by one, and explain the functionality present
in them.

36

. 9.1 Pages

9.1.1 Splash screen

Figure 9.1. Splash screen page

The splash screen serves as the entry point to the application. It shows a random
transport vehicle with animations, while the application state is being loaded. There is
one more functionality hidden behind the splash screen. Before allowing the user to ad-
vance further, it checks whether the device has a connection to the internet and whether
the connection works. If not, a message about it is shown to the user. Otherwise, it
normally continues into the application.

37

9. Application design .
9.1.2 Details and routes lists

Figure 9.2. Parameter details without routes

Firstly, we have a page with details of search not filled in. This is the first thing user
sees after advancing through the splash screen. The top half of the screen is dedicated
to the parameters of the route search. There are two fields, each for a departure and
arrival station, respectively. Between them is a button to swap these two stations.
Under them is a widget for selecting tariffs of users, see 9.11. Then there are the last
two buttons. The first one of them is a button to select a date of the route. Upon
clicking this button, a calendar widget is shown. The second one serves as a reload
button, in case anything goes wrong or the user wants to load the newest data after
some time of using the app.

38

. 9.1 Pages

Figure 9.3. Parameter details with routes

When all the parameters of the search are filled, an automatic request to get the
routes is executed. After the data from our API is fetched, the list of routes is shown
in the bottom half of the screen. Each route is shown as an expandable panel. The
header contains information about the date and the time when the connection will take
place, alongside the information about the transport type(bus vs train vs mixed) and
the number of transfers. Next, it contains the number of available seats, and in case
of delay, the length of the delay. Lastly, it contains a button with the minimum prize,
that upon clicking will take the user onto the next page with a selection of seat classes.

Upon clicking the header, more details are shown. These details include the travel
time of each section of the route, with information about the transit type and vehicle
and the name of the start and end stations of the section.

39

9. Application design .
9.1.3 Search

Figure 9.4. Search Page

Next, we have the intermediate search page. This page is shown when a user clicks
on either one of the departure/arrival station fields. After typing a character(s), sug-
gestions are shown. Suggestions are sorted alphabetically, with stations from Czech
and Slovakia being placed higher. There are two different types of locations. The first
is a city type - if selected, it will include all the stations in that city. The second type is
one concrete station. Clicking on the suggestion selects it and returns to the previous
details page.

40

. 9.1 Pages

9.1.4 Seat classes

Figure 9.5. Seat classes page

After selecting a route, seat classes selection is shown. At the top of the screens
are details about the route - names of the stations and times of departure and arrival.
Directly under them starts a list of seat classes. The first two items are special - they
represent no seat class or any seat class, respectively. In case the user selects no seat
class, it will automatically start watching for delays on this route.

For the rest of the items, they represent the possible seat classes that RegioJet offers.
In case there are enough free seats available in the individual classes, a button with
a price is shown. After clicking on it, the user is redirected by the web browser to
RegioJet’s web where he can reserve and buy the chosen tickets immediately. If the
user has an official RegioJet app installed on his device, clicking on the button can take
him to the aforementioned app, from where he can buy the tickets.

41

9. Application design .
On the other hand, if there are not enough free seats available, a button to watch

this class is shown. Upon clicking this button, the Watchers page is shown.

9.1.5 Watchers

Figure 9.6. Watchers page

The watchers page is the last page in the workflow of creating a watched route. On
this page, the possible watchers are displayed to be selected. Right now, there are two
watchers implemented, for tickets and for delays. The user can select one or more of
them that he wants to apply to the selected route and seat class. After clicking on the
select button (with an icon of Pokeball, more on this later), the selected watcher(s) are
created.

42

. 9.1 Pages

9.1.6 Settings

Figure 9.7. Settings page

The settings page can be accessed by clicking on the gear icon in the top bar. Within
the page, there are language and currency settings. Lastly, we can find the application’s
version here.

43

9. Application design .
9.1.7 Watched routes

Figure 9.8. Watched routes page

The watched routes page can be accessed by clicking on the Pokeball icon in the top
bar. This is an easter egg to the fact that this app’s name is Catch It, and the motto of
Pokemon is „Catch them all“. Within the page, there are routes that we have watched.
Due to the difference in data that is available for routes that already left the departure
station, there are two lists. The first list is a list of ongoing routes and the second list
contains the routes that are planned for the future.

9.2 Desing vs RegioJet’s web
As our application is aimed at the users of RegioJet, we tried to stay as close to the
design and patterns of RegioJet’s web page. As mentioned in the introduction, we

44

. 9.2 Desing vs RegioJet’s web

want to achieve recollection instead of remembrance for users using our application.
This means, that even first-time users should have enough clues from the original web
page to recall how to use it. To complement this, the theme of the application was set
to be yellow, similar to the RegioJet, and the other colors were selected to be matching
this theme.

Other than that, we also tried to use the same patterns of icons, widgets, and texts.
Let us show you some comparisons side to side:

Figure 9.9. App’s locations search Figure 9.10. RegioJet’s locations search

Figure 9.11. App’s tariffs Figure 9.12. RegioJet’s tariffs

45

9. Application design .

Figure 9.13. App’s connection details Figure 9.14. RegioJet’s connection details

46

. 9.3 Localization

9.3 Localization

As RegioJet is active in multiple countries, so should be our application. For this reason,
the app is fully localized, so far, in three languages: Slovak, Czech, and English. The
initial language is taken from the device. If this language is not supported, the Czech
language is taken as a default one. However, if the user changes the language in the
settings, this language is saved and used in the subsequent usages of the application.

Figure 9.15. Routes in English

As we are not only dealing with text, but with price as well, to complete the local-
ization, the application supports multiple currencies. At the moment, the Czech crown
and Euro are supported. Crown is selected by default, but if the user changes the
currency, it behaves the same as the language mentioned above.

47

9. Application design .

Figure 9.16. Settings in English

9.4 Conclusion
In this chapter, we discussed the design of the mobile application. We showed you all
the pages that the app consists of, with an explanation of their functions. We compared
the design to RegioJet’s web page and argued that we aimed for a recollection rather
than the remembrance with the user interface of the application. Lastly, we talked
about the localization of our app.

48

Chapter 10
User Testing

In this chapter, we will talk about the user testing that we conducted. This was done
to ensure the UI is intuitive and the transition from RegioJet’s web page is seamless.
Another reason was to get the opinions of other people on whether the design fulfilled the
goals outlined in the 9. The tests were taken on the Android version of the application.

10.1 Form
The testing was split up into three parts. In the first one, general questions about users’
experience with RegioJet were asked. The second part consisted of five tasks that the
users were supposed to complete. The time to finish each task was measured. In the
last part, the participants talked about the app, whether they missed any functionality
and the testing process.

We will now state the questions and tasks of the testing: The first part:

. Have you used RegioJet services?. How often do you travel via RegioJet?. Have you encountered a situation, when the tickets you wanted were sold-out?

The second part:

. Find any route from Prague to Brno(any station) that takes place on May the 2nd
(2.5.2022). Find any route from Brno to Prague(any station) that takes place on May the 2nd
(2.5.2022). Change the language of the application. Find a train route from Prague to Brno(any station) that takes place on May the
2nd (2.5.2022). Create a watcher for delays. Delete the watched route from the previous step

The last part:

. Do you have any notes about the application? Did you miss any functionality?

In the next section, we will go over the participants and their responses one by one.

10.1.1 Participant 1
The first tester has used RegioJet in the past and uses it sever times a year. He even
encountered the situation when he wanted to purchase a ticket, but they were all sold
out.

For the timed tasks, it took him thirty seconds to find routes from Prague to Brno,
and then twenty-five seconds to find them from Brno to Prague. To change the language
of the application, only eight seconds were needed. Then, to create a delay watcher
for connection from Prague to Brno, it took thirty-five seconds, and the watcher was
deleted in ten seconds.

49

10. User Testing .
He liked the application, and when asked about what future he thought could be

missing, he explained that a page with the list of all watched routes would be nice to
have. He did not have any further complaints.

10.1.2 Participant 2

The second user also used RegioJet several times per year and faced the issue of tickets
being sold out, too.

She spent less time on the first task, namely twenty-six seconds. The second task
was interesting because at first, it took her about twenty seconds, but then she realized
she could have just switched the arrival and departure station using the switch button.
We allowed her to try it again, and this time the task was finished in five seconds.
Changing the language took her nineteen seconds. A lot more time was spent on setting
the watcher for the third task - one minute and two seconds. Then she proceeded to
delete this watcher in thirteen seconds.

When asked about the process and the application, she had something to say. We
present her response: „The application is pretty intuitive. It took me longer than
necessary to switch routes. The first time I did it manually instead of simply using
the button. Also, I got the longest time for setting watcher because it took longer to
reload all the information. Other tasks were done in matter of seconds, each function
was simple and clear to find.“

10.1.3 Participant 3

The third tester uses RegioJet regularly, once a month, yet in his experience, the tickets
he wanted to purchase were always available.

He finished the first task in fifteen seconds. For the second task, he realized there is
a button providing just the wanted outcome, and he did it in five seconds. This same
time it took him to change the language. He was the quickest of them all, setting the
watcher in just twenty seconds. To delete the watcher, it took him exactly half of the
time it took him to set it up.

He had further comments.

10.1.4 Participant 4

The last participant uses a RegioJet, but only once a year. However, he too experienced
that the tickets he wanted to purchase were sold out.

It took him twenty-five seconds to find the routes from Prague to Brno, but only six
seconds to find it the other way around. Changing the app’s language was even faster,
with the result of five seconds. Creation and deletion of the watcher took him longer,
thirty-eight and twenty-five seconds, respectively. These higher times were partly due
to him encountering longer loading times.

He mentioned this in the last section, where he complained that to delete the watcher
he had to delete it from the route list that had to be loaded again.

10.2 Summary
All in all, the users thought the application was intuitive and they knew how to finish
the task without us giving them any hints. Most of them realized that the second task
could be finished with just one click of a button. Only one did not realize it until we
told him at the end of the testing.

50

. 10.3 Conclusion

Thanks to their feedback, we were able to realize quickly that accessing watchers
only from the list of routes is not ideal, and we created a new page with all the watched
routes, as mentioned in 9.1.7.

10.3 Conclusion
In this chapter, we discussed the user testing that took place with four participants.
Firstly, we explained the form of this testing and stated the questions and tasks asked
of all users. Then we proceeded to go over their responses one by one. Lastly, we
summarized the findings and the impact this testing had on our application, namely
the addition of a page with a list of all watched routes.

51

Chapter 11
Future work and deployment

In this chapter, we will talk about the deployment of the mobile application on Google
Play. The next part will be spent discussing the future work that is planned for the app.
Lastly, we will talk about the methods to promote the application to users’ attention.

11.1 Publishing

11.1.1 Google Play Store
To publish our application, we followed the official Flutter guideline1.

Firstly, we had to create a developer’s account, and pay a one-time fee of 25 dollars.
With this done, the next step was to create a new upload keystore that is required
for new app bundles. Then we changed the Gradle configuration to actually use this
keystore for signing the app bundle. There is one more change needed. Android appli-
cations do not have permission to use the internet automatically. We need to add it by
adding the following lines to AndroidManifest.xml

<manifest xmlns:android="...">
<uses-permission android:name="android.permission.INTERNET"/>

</manifest>

Now, the application is ready. After running

flutter build appbundle

we have the .aab bundle stored in build/app/outputs/bundle/release/.
The next steps are easy enough, but a bit tedious. We need to set everything up

for a successful release to Google Play. This includes adding an app description, logo,
screenshots, translations, and selecting in which countries the app should be available.
After all required fields are filled, we can go to Production and create a new release.
Here we need to upload the app bundle from the previous step and create the release.
Now all that is left is to wait for them to check and review the application. This can
take several days. Then, as soon as they approve it, the app will start rolling out to
Google Play. This too can take up some time, so there is no reason to panic if you
cannot find your application there right away. Not, the application is available for
download on Google Play2.

11.1.2 App Store
As we mentioned in 8.1, the technology was chosen so we can deploy our application
to multiple platforms from a single codebase. And as such, we have a working version
for both Android and iOS, and actually, the app can run on Apple Macs that have M1
processors.
1 https://docs.flutter.dev/deployment/android
2 https://play.google.com/store/apps/details?id=cz.catchit

52

https://docs.flutter.dev/deployment/android
https://play.google.com/store/apps/details?id=cz.catchit

. 11.2 Future features

Figure 11.1. App running on Mac

However, the process of publishing the app to the Apple Store requires developers to
have a Mac computer and pay a yearly fee of 3000 crowns. Thankfully, as part of the
agreement between Czech Technical University and Apple, we as students are eligible
to set up our developer account without paying the fee under their organization.

To publish our application onto App Store, we followed the official Flutter guideline
for iOS1. The requirement is to have a Mac that would be used for signing the applica-
tion. The process is straightforwards, thanks to automatic signing by Xcode2. We just
had to create a new application at App Store connect and run

flutter build ipa

This created a .xcarchive that has to be opened using Xcode. Once opened, there is an
option to distribute the app to App Store. In the process of validating the app, there
is an option to choose between manual and automatic signing. We chose the latter, as
it sufficed for our purposes and it made the publishing much easier.

After the upload is completed, we have to fill out all the required information, similar
to the Google Play mentioned above. We needed to provide screenshots of our app
on iPhones and iPad of different sizes, add names and descriptions for all supported
languages, take a privacy survey and for each language, provide a link to a page with
support to your page.

After all of the above is filled in, we submitted our app for review. In our case,
the application was approved and published to the App Store in a matter of hours,
compared to the few days it took Google to finish the review process. It is now available
for download on the App Store3.

11.2 Future features
There is one big improvement to the application that we have in mind. Supporting
not only RegioJet but also FlixBus, as we have our back-end ready for both of them.
Therefore, in the future, we want to add a tab for the providers, and users could freely
switch between them in one app. However, to correctly create a design for FlixBus

1 https://docs.flutter.dev/deployment/ios
2 https://developer.apple.com/xcode/
3 https://apps.apple.com/us/app/odchy%C5%A5-to/id1619323306

53

https://docs.flutter.dev/deployment/ios
https://developer.apple.com/xcode/
https://apps.apple.com/us/app/odchy%C5%A5-to/id1619323306

11. Future work and deployment .
and implement is almost the same (in the amount of work) as creating a whole new
application.

For minor additions, we plan on supporting the German language and adding some
customization to the app, such as the interval of notifications.

Of course, any improvements to the back-end service, like new watchers, will be also
reflected in the application.

11.3 Promotion
After this thesis is finished and presented, we would like to promote our app to a wider
range of users. To do so, we can take advantage of the fact that potential users of
our application should be traveling often, and even better if they periodically travel
between Czechia and Slovakia. Fortunately, there are a lot of Facebook groups that
fit our description perfectly. Groups such as Slovaks in Prague1 and similar, grouping
people of Slovak nationality living in the Czech Republic, are perfect for us. They even
contain posts about RegioJet’s connections or selling tickets for a specific date. We
would promote our application with posts in these kinds of groups, and of course, by
showing the application to our friends that could use an app like this, hoping that if
they like it, they will continue the promotion chain.

11.4 Conclusion
This chapter aims to explain the deployment of our application and the work that is
planned for the future. The process of enrolling the app into the Google Play Store and
Apple App Store is discussed. Improvements that are planned, such as the addition of
support for the German language, the addition of FlixBus provider, or customization
of the app were proposed. Lastly, we introduced ways to promote our application to
get users’ traction.

With this, we conclude the second part of this thesis, which was dedicated to the
mobile application consuming the data and API from the first part.

1 https://www.facebook.com/groups/slovacivprahe

54

https://www.facebook.com/groups/slovacivprahe

Chapter 12
Conclusion

The purpose of this thesis was to propose and implement a solution to the problem of
booking sold-out tickets from public transportation providers.

We formulated the current problem of having to periodically visit a web page of the
provider and check whether someone canceled their ticket or the provider increased the
capacity. We addressed this issue and argued that the best solution is to automate this
process in form of a mobile application.

Firstly, we talked about the process of analyzing network communications of the
current providers’ reservations systems. Then we proceeded to show how to use this
analysis to create a back-end service that would emulate their functionality and expose
their data for our use in the form of a mobile application. We presented the design,
technology, and architecture of this server implementation by using REST API and
then followed with the implementation, describing how it aligned with the proposed
architecture, and how it fulfilled the laid down goals. We explained the deployment
of our server into the cloud by using the AWS Elastic Beanstalk service, alongside the
discussion of future improvements that are planned. Lastly, we talked about the devel-
opment, design, and testing of this cross-platform mobile application, as well as about
the technology behind it. We talked about the process of deploying our application into
the Google Play Store and also how the process was different for the Apple Store. In
the end, we mentioned possible improvements to the app, in particular, the addition of
support for FlixBus.

55

Appendix A
Symbols

API Application Programming Interface
AWS Amazon Web Services

DI Dependency injection
DTO Data Transfer Object

EB CLI Elastic Beanstalk command line interface
EC2 Elastic Compute Cloud
ECR Elastic Container Registry
ECS Elastic Container Service
EKS Elastic Container Service for Kubernetes

HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol

IoC Inversion of Control
JSON JavaScript Object Notation

NoSQL Not Only Structured Query Language
POJO Plain Old Java Object
REST Representational State Transfer

SQL Structured Query Language
TTL Time to live

UI User Interface
URI Uniform resource identifier
URL Uniform resource locator
XML eXtensible Markup Language

YAML Yet another markup language

57

References

[1] Spring Framework.
https://spring.io/projects/spring-framework. Last accessed on on 2022-01-05.

[2] Why Spring?
https://spring.io/why-spring. Last accessed on on 2022-01-05.

[3] Relational vs. non-relational databases, 2020-08-13 .
https://www.pluralsight.com/blog/software-development/relational-vs-non-
relational-databases. Last accessed on on 2022-04-01.

[4] What’s the Difference? Relational vs Non-Relational Databases, 2021-02-15 .
https: / / insightsoftware . com / blog / whats-the-difference-relational-vs-non-
relational-databases/. Last accessed on on 2022-04-01.

[5] What Is a REST API?, 2020-11-20 .
https://www.akana.com/blog/what-is-rest-api. Last accessed on on 2022-04-01.

[6] REST Architectural Constraints, 2022-03-09 .
https://restfulapi.net/rest-architectural-constraints/. Last accessed on on
2022-04-13.

[7] Clean API Architecture, 2019-06-01 .
https://medium.com/perry-street-software-engineering/clean-api-architecture-
2b57074084d5. Last accessed on on 2022-04-01.

[8] Data transfer object, 2021-03-31 .
https://en.wikipedia.org/wiki/Data_transfer_object. Last accessed on on 2022-
04-01.

[9] Generics in Java, 2022-02-09 .
https://www.geeksforgeeks.org/generics-in-java/. Last accessed on on 2022-04-
13.

[10] What is Caching and How It Works, 2021-05-17 .
https://auth0.com/blog/what-is-caching-and-how-it-works/. Last accessed on on
2022-04-05.

[11] Caching.
https://docs.spring.io/spring-boot/docs/2.1.6.RELEASE/reference/html/boot-
features-caching.html. Last accessed on on 2022-02-22.

[12] Home, 2021-02-22 .
https://github.com/ben-manes/caffeine/wiki. Last accessed on on 2022-04-05.

[13] Separation of Concerns in Software Design, 2020-01-16 .
https://nalexn.github.io/separation-of-concerns/. Last accessed on on 2022-
04-13.

[14] Spring Boot Integration with MongoDB Tutorial.
https://www.mongodb.com/compatibility/spring-boot. Last accessed on on 2022-
04-06.

58

https://spring.io/projects/spring-framework
https://spring.io/why-spring
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://www.pluralsight.com/blog/software-development/relational-vs-non-relational-databases
https://insightsoftware.com/blog/whats-the-difference-relational-vs-non-relational-databases/
https://insightsoftware.com/blog/whats-the-difference-relational-vs-non-relational-databases/
https://www.akana.com/blog/what-is-rest-api
https://restfulapi.net/rest-architectural-constraints/
https://medium.com/perry-street-software-engineering/clean-api-architecture-2b57074084d5
https://medium.com/perry-street-software-engineering/clean-api-architecture-2b57074084d5
https://en.wikipedia.org/wiki/Data_transfer_object
https://www.geeksforgeeks.org/generics-in-java/
https://auth0.com/blog/what-is-caching-and-how-it-works/
https://docs.spring.io/spring-boot/docs/2.1.6.RELEASE/reference/html/boot-features-caching.html
https://docs.spring.io/spring-boot/docs/2.1.6.RELEASE/reference/html/boot-features-caching.html
https://github.com/ben-manes/caffeine/wiki
https://nalexn.github.io/separation-of-concerns/
https://www.mongodb.com/compatibility/spring-boot

. .
[15] MongoDB repositories.

https://docs.spring.io/spring-data/mongodb/docs/1.2.0.RELEASE/reference/
html/mongo.repositories.html. Last accessed on on 2022-04-06.

[16] Firebase Cloud Messaging, 2022-03-24 .
https://firebase.google.com/docs/cloud-messaging. Last accessed on on 2022-
04-08.

[17] What is AWS and What can you do with it, 2018-06-03 .
https: / / medium . com / @kunalyadav / what-is-aws-and-what-can-you-do-with-it-
395b585b03c. Last accessed on on 2022-04-07.

[18] Amazon Lightsail FAQs.
https://aws.amazon.com/lightsail/faq/. Last accessed on on 2022-04-09.

[19] AWS Elastic Beanstalk.
https://aws.amazon.com/elasticbeanstalk/. Last accessed on on 2022-04-09.

[20] What is a Container?
https://www.docker.com/resources/what-container.

[21] How to dockerize your PHP application for AWS Fargate?
http://cloudonaut.io/how-to-dockerize-your-php-application-for-aws-fargate.

[22] Overview of Docker Compose.
https://docs.docker.com/compose/. Last accessed on on 2022-04-09.

[23] Using the Elastic Beanstalk command line interface (EB CLI).
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html. Last
accessed on on 2022-04-09.

[24] Mobile Application Development Statistics: 5 Facts, 2021-11-23 .
https://intersog.com/blog/mobile-app-development-statistics/. Last accessed
on on 2022-04-13.

[25] FAQ.
https://docs.flutter.dev/resources/faq. Last accessed on on 2022-04-11.

[26] Dart overview, 2022-03-23 .
https://dart.dev/overview. Last accessed on on 2022-04-11.

[27] GitHub Repository, 2019-06-05 .
https://github.com/mjohnsullivan/berlin_transport/. Last accessed on on 2022-
04-13.

[28] Stack Overflow Trends.
https://insights.stackoverflow.com/trends?tags=flutter%2Creact-native. Last
accessed on on 2022-04-11.

[29] Memory Recognition and Recall in User Interfaces, 2014-06-06 .
https://www.nngroup.com/articles/recognition-and-recall. Last accessed on on
2022-04-12.

[30] C. Martin, Robert. Clean Code: A Handbook of Agile Software Craftsmanship.
Edition 1 ed. Prentice Hall, 2008. ISBN 978-0132350884.

[31] Roger S. Pressmann, Bruce Maxim. Software Engineering: A Practitioner’s
Approach. 8th edition ed. McGraw Hill, 2014. ISBN 978-0078022128.

[32] Gaitatzis, Tony. Learn REST APIs: Your guide to how to find, learn, and connect
to the REST APIs that powers the Internet of Things revolution. 8th edition ed.
BackupBrain Press, 2019. ISBN 978-1989775004.

59

https://docs.spring.io/spring-data/mongodb/docs/1.2.0.RELEASE/reference/html/mongo.repositories.html
https://docs.spring.io/spring-data/mongodb/docs/1.2.0.RELEASE/reference/html/mongo.repositories.html
https://firebase.google.com/docs/cloud-messaging
https://medium.com/@kunalyadav/what-is-aws-and-what-can-you-do-with-it-395b585b03c
https://medium.com/@kunalyadav/what-is-aws-and-what-can-you-do-with-it-395b585b03c
https://aws.amazon.com/lightsail/faq/
https://aws.amazon.com/elasticbeanstalk/
https://www.docker.com/resources/what-container
http://cloudonaut.io/how-to-dockerize-your-php-application-for-aws-fargate
https://docs.docker.com/compose/
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/eb-cli3.html
https://intersog.com/blog/mobile-app-development-statistics/
https://docs.flutter.dev/resources/faq
https://dart.dev/overview
https://github.com/mjohnsullivan/berlin_transport/
https://insights.stackoverflow.com/trends?tags=flutter%2Creact-native
https://www.nngroup.com/articles/recognition-and-recall

References .
[33] Sharma, Sourabh. Modern API Development with Spring and Spring Boot: De-

sign highly scalable and maintainable APIs with REST, gRPC, GraphQL, and the
reactive paradigm. Packt Publishing, 2021. ISBN 978-1800562479.

[34] Simone Alessandria, Brian Kayfitz. Flutter Cookbook: Over 100 proven tech-
niques and solutions for app development with Flutter 2.2 and Dart. Packt Pub-
lishing, 2021. ISBN 978-1838823382.

60

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Analysis
	Target audience
	Network communication
	Current system
	Goals
	Components
	Conclusion

	Server-side
	Technology
	Database
	Architecture
	Conclusion

	Implementation
	Design
	Code
	Common code base
	Provider's specifics
	Caching
	RESTful API
	Database
	Watchers

	Conclusion

	Watchers
	Overview
	Scheduled
	Structure
	Examples
	Conclusion

	Future work and deployment
	Deployment
	Future features
	Conclusion

	Introduction to the mobile application
	Technology
	Cross-platform development
	Frameworks
	Conclusion

	Application design
	Pages
	Splash screen
	Details and routes lists
	Search
	Seat classes
	Watchers
	Settings
	Watched routes

	Desing vs RegioJet's web
	Localization
	Conclusion

	User Testing
	Form
	Participant 1
	Participant 2
	Participant 3
	Participant 4

	Summary
	Conclusion

	Future work and deployment
	Publishing
	Google Play Store
	App Store

	Future features
	Promotion
	Conclusion

	Conclusion
	Symbols
	References

