
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Radioelectronics

Decentralized authentication of IoT devices
based on blockchain technology

Viktoriia Chvykova

Supervisor: doc. Ing. Stanislav Vítek, Ph.D
May 2022

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

485392Osobní číslo:ViktoriiaJméno:ChvykovaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra mikroelektroniky

Elektronika a komunikaceStudijní program:

ElektronikaSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Decentralizovaná autentizace IoT zařízení založená na technologii blockchain

Název diplomové práce anglicky:

Decentralized Authentication of IoT Devices Based on Blockchain Technology

Pokyny pro vypracování:
1) Proveďte rešerši technologií Blockchain a Smart Contracts. Vyhodnoťte vhodnost využití těchto technologií pro autentizace
IoT zařízení.
2) Na základu rešerše navrhněte decentralizovaný systém autentizace IoT zařízení.
3) Navržený systém implementujte pomocí bezdrátových modulů s mikrokontroléry (např. ESP32).
4) Proveďte analýzu navrženého řešení z hlediska potřebné výpočetní kapacity a porovnejte s jinými přístupy autentizace.
5) Zhodnoťte dosažené výsledky.

Seznam doporučené literatury:
[1] ANTONOPOULOS, Andreas M.; WOOD, Gavin. Mastering ethereum: building smart contracts and dapps. O'reilly
Media, 2018.
[2] ALFANDI, Omar, et al. A survey on boosting IoT security and privacy through blockchain. Cluster Computing, 2021,
24.1: 37-55.
[3] LONE, Auqib Hamid; NAAZ, Roohie. Applicability of Blockchain smart contracts in securing Internet and IoT: a systematic
literature review. Computer Science Review, 2021, 39: 100360.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Stanislav Vítek, Ph.D. katedra radioelektroniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 20.05.2022Datum zadání diplomové práce: 09.02.2022

Platnost zadání diplomové práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
prof. Ing. Pavel Hazdra, CSc.
podpis vedoucí(ho) ústavu/katedry

doc. Ing. Stanislav Vítek, Ph.D.
podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomantka bere na vědomí, že je povinna vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements
I would like to thank my master’s thesis
supervisor, doc. Ing. Stanislav Vítek,
Ph.D., for our consistent communication
and pleasant collaboration.

Declaration
Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedla
veškerou použitou literaturu.

V Praze, 20. May 2022

v

Abstract
This master’s thesis examines the issues
of IoT architecture and offers decentral-
ized alternatives utilizing Blockchain and
IOTA Tangle, with the provision of com-
parative evaluation. Onward, provided
the operating concept of the IOTA Tangle
(Chrysalis protocol version) and authen-
tication principles. In the practical sec-
tion, the X-CUBE-IOTA1 software pack-
age for the B-L4S5I-IOT01A platform is
described, as well as the design and devel-
opment of an application extension that
provides remote device control utilizing
Tangle technology on the Mainnet net-
work. The proposed solution is imple-
mented in the C programming language
by utilizing STM32CubeIDE.

Keywords: Tangle, DLT, Blockchain,
Security, decentralization, Internet of
Things, constraint devices

Supervisor: doc. Ing. Stanislav Vítek,
Ph.D
Praha, Technická 1902/2, místnost:
B2-730

Abstrakt
Tato diplomová práce se zabývá problema-
tikou architektury IoT a nabízí decentrali-
zované alternativy využívající Blockchain
a IOTA Tangle se zajištěním komparativ-
ního vyhodnocení. Dále je poskytnutý ope-
rační koncept IOTA Tangle (verze proto-
kolu Chrysalis) a principy autentizace. V
praktické části je popsán softwarový balík
X-CUBE-IOTA1 pro platformu B-L4S5I-
IOT01A a také návrh a vývoj aplikač-
ního rozšíření, které umožňuje vzdálené
ovládání zařízení s využitím technologie
Tangle v síti Mainnet. Navržené řešení je
implementováno v programovacím jazyce
C s využitím STM32CubeIDE.

Klíčová slova: Tangle, DLT,
Blockchain, Bezpečnost, decentralizace,
Internet věcí, omezovací zařízení

Překlad názvu: Decentralizovaná
autentizace IoT zařízení založená na
technologii blockchain

vi

Contents
1 Introduction 1
1.1 Introduction to Internet of Things 3

1.1.1 What is IoT? 3
1.1.2 IoT architecture illustration . . 3
1.1.3 Present architecture drawbacks 4

2 Distibuted Ledger Technology 7
3 DLT and IoT integration 11
3.1 Blockchain 11

3.1.1 Introduction 11
3.1.2 Blockchain concepts 11
3.1.3 Blockchain-based network

operation concept 13
3.2 IOTA Tangle 17

3.2.1 The Tangle structure 17
3.2.2 Sending a message at a high

abstraction level 18
3.3 The primary distinctions between

IOTA’s Tangle and a Blockchain . . 26
3.4 The advantages of IOTA

technology versus Blockchain
technology . 28
3.4.1 Final conclusion of technology

adoption . 29
4 Security 31
4.1 Considered architecture 32
4.2 Securing Data over the Tangle . . 32

4.2.1 Masked Authenticated
Messaging . 33

4.2.2 Streams. 33
4.3 L2Sec—A Cryptographic Protocol

for Internet of Things Constraints . 34
4.3.1 Operating and Security

Principles . 34
5 Methodological contribution 39
5.1 Hardware . 39
5.2 Software . 40
5.3 Chrysalis – IOTA version 1.5 . . . 41
5.4 Initial use of software 42
5.5 Example analysis 44
6 Practical contribution 47
6.1 Implemented commands and

functions . 48
6.2 Additional system evolution 56

7 Practical part summary and
discussion 59
8 Conclusion 61
Bibliography 63

vii

Figures
1.1 IoT solution 4

2.1 Network architectures[2] 7
2.2 DLT structures 8

3.1 Block structure [7] 12
3.2 Verification and creation of the

Digital Signature [11] 15
3.3 Message connections in the Tangle 17
3.4 The Tangle structure 18
3.5 Process of message sending 18
3.6 Message structure [12] 22
3.7 The Coordinator 24
3.8 The confirmation cone 25

4.1 Highlevel system architecture . . . 32
4.2 Structure of the fields that make

up an L2Sec message on the left and
an IOTA Chrystalis message on the
right . 34

4.3 Sequencing of L2Sec messages . . 35
4.4 Index and Next Index generation 35
4.5 Index and Next Index generation 36
4.6 Message L2Sec with

Authentication Signature produced
by a Hardware Secure Element . . . 37

4.7 Encryption of an L2Sec message 37

5.1 B-L4S5I-IOT01A Discovery kit for
IoT node [13] 39

5.2 Build configurations 43
5.3 Run configurations 44

6.1 Proposed solution 47
6.2 BLE1 configurations 57
6.3 HCI_TL_INTERFACE

configurations 57
6.4 BCD configurations 57

Tables

viii

Chapter 1
Introduction

The idea of the Internet of Things is not new; for the first time, its idea in
its simplest form, by modern standards, was implemented in the early 1990s.
But since efficient communication protocols had not yet been devised at that
time, and besides, computer chips were too large, this model of the interaction
of things did not succeed in accordance with its ideological potential.

At that time, the term "Internet of Things" itself did not even exist, which was
first used by Kevin Ashton (co-founder of the Auto-ID Lab at MIT) in 1999
to describe a system in which the Internet is connected to the physical world
through ubiquitous sensors, including RFID (radio frequency identification).

Ashton described the idea of IoT as: "Today computers—and, therefore, the
Internet—are almost wholly dependent on human beings for information.
The problem is, that people have limited time, attention, and accuracy—all
of which means they are not very good at capturing data about things in
the real world. If we had computers that knew everything there was to know
about things—using data they gathered without any help from us—we would
be able to track and count everything, and greatly reduce waste, loss, and
cost. We would know when things needed replacing, repairing, or recalling,
and whether they were fresh or past their best. The Internet of Things has
the potential to change the world, just as the Internet did".[8]

Today, living in the era of automation of everything and the unprecedented
development of communication technologies such as 5G, Starlink, advanced
WAN protocols, and others, ever-greater data throughput and transmission
speed has become possible. In this regard, now many companies, and startups
are promoting and implementing IoT technology in smart manufacture (au-
tomation 4.0), smart homes, smart cities, healthcare systems, environmental
protection, logistics, wearables etc. In this situation, we are dealing with a
huge system that provides comprehensive services from the physical to the
application layer. And the situation is complicated by the trend of a constant
increase in the number of connected devices to the network.

According to a recent study by Statista (a popular market statistics and
consumer data company), more than one billion connected devices will be
added to the world of the Internet each year. There will be 38.6 billion devices

1

1. Introduction
connected to the Internet of Things (IoT) worldwide by 2025. In addition,
projections suggest that around 50 billion of these IoT devices will be in
use worldwide by 2030, creating a huge network of interconnected devices,
covering everything from smartphones to kitchen appliances.[9] Therefore,
modern technology is increasingly in need of solving the existing problems of
its implementation. Like highly centralized systems, data privacy, and access
control, data integrity and authenticity, identity and data management. So,
to face this issues, over the past few years, significant efforts have been made
to create technology that would help in solving them.

One of the most innovative solutions is the use of Distributed Ledger Technol-
ogy (DLT). DLT is known to the world thanks to cryptocurrencies. But its
application is much wider. It is also applicable to IoT and offers a solution
to the main problems associated with its existing architecture. A distributed
ledger is a form of digital database that is updated and held by every member
independently in a large network space. In this type of ledger there’s isn’t
any central authority to broadcast the record to every member. Every kind
of DLT has its own way to reach an agreement while storing the information
on the ledger. Onwards I consider two types of DLT: Blockchain (Bitcoin
based) and Directed Acyclic Graph (DAG - IOTA based).

Traditional blockchain technology and DAG adopt the principle of DLT with
architectural disparity. Their data structure is different, Blockchain consists
of digital information organized as “blocks” and recorded in public databases
known as “chains”, weather DLT, known as the Tangle in IOTA, employs a
mathematical concept known as directed acyclic graph. But both of them
have next key characteristics, which we are seeking to add to the current IoT
architecture: immutability, network decentralized structure, enhanced security,
distributed ledgers, consensus, faster settlement.

At the same time, these technologies have some important differences that
determine which one is more suitable for integration with IoT (this issue
will be discussed in more detail in the next chapters). Based on all of the
above this thesis aims to describe how distributed ledger technologies work in
relation to the IoT. I take IOTA as a basis as it is a promising project with
ambitions to become the basic protocol for decentralized IoT, taking into
consideration why it is more suitable than blockchain-based technology to
give readers a comprehensive sense of usability of this cutting-edge approach.

In addition, I am determining how to implement IOTA technology, and in
particular the procedures required to interface with Tangle using the C pro-
gramming language on STM32 microcontrollers. And based on this, I develop
software that enhances the usefulness and application possibilities of IOTA
Tangle on constrained devices.[4][6]

2

........................... 1.1. Introduction to Internet of Things

1.1 Introduction to Internet of Things

This chapter focuses on how the IoT architecture is currently implemented
and what are the shortcomings of such an implementation.

1.1.1 What is IoT?

The term IoT is not standardized, there are many definitions of it, there-
fore, for a universal designation, it is best to describe what layers the IoT
architecture, in general terms, consists of and what functionality it ultimately
performs.
The Internet of Things, in general, is a system composed of four levels:..1. Thinks or Physical layer represents spatially separated electrical devices

connected to the Internet, capable of collecting information from the
environment (sensors) or performing actions (actuators)...2. Network layer includes Gateways and edge computers to supply a trans-
lation of data flow from the physical layer to the Internet, and it includes
the Internet itself (IP, TCP, UDP provision)...3. Platform layer is situated between the network and application layers
and is often hosted in the cloud. Its purpose is to control and coordinate
overall communication orchestration which means the responsibility for
communication with downstream devices and ingesting large amounts
of data at high speed. The platform is also responsible for storing the
data in a time series and structured format for further processing and
analysis...4. Application layer is an intermediary serving the end-user as an interface
for communication with the system.

For the end user, these layers working together, providing the function of big
data analysis, remote control, remote monitoring, automation, etc.

1.1.2 IoT architecture illustration

The pictures below is showing the building blocks of an current IoT solution.
Figure 1.1a illustrates the described architecture where the four levels are
clearly visible.
Figure 1.1b, in turn, is intended to draw attention to the main concept of
modern IoT architecture, namely its centralization.
It is the factor that determines the number of problems inherent in such
implementation.

3

1. Introduction

(a) : Functional blocks focused

(b) : Centralization focused [1]

Figure 1.1: IoT solution

Let’s see what exactly these disadvantages are.

1.1.3 Present architecture drawbacks

To understand why do we need to implement changes to present IoT architec-
ture, first of all, necessary to figure out what shortcomings of it we are facing.
As I mentioned earlier centralization is a source of problems in the IoT
architecture, let us take a closer look at the main ones:.Authentication and Authorization

The authorization ensures that only authorized users can access data on
the network. Certain mechanisms are required to make communications
secure and secure. In the absence of a strong authentication mechanism,
spoofing can get in the way. In general, any situation where an attacker
pretends to be someone else can be considered spoofing. It can take
many forms, but most often it is a situation where fraudsters disguise
themselves as a real phone number, e-mail, IP address, or a credible-
looking website. An attacker can disrupt the entire IoT network by

4

........................... 1.1. Introduction to Internet of Things

stealing sensitive data, flooding the network with useless messages, or
stopping message transmission.
Solution: To prevent this, authentication mechanisms must ensure
access only to authorized participants.
Authentication ensures that the user is who he claims to be so that it
does not come to the fact that the user impersonates someone else and
withdraws money from another user’s account or similar.. Single Point of Failure

Since the management of the entire system takes place on a centralized
cloud server, the functioning of the IoT system completely depends on
its performance. With large volumes of data arriving at the server, its
operation can significantly slow down or lead to a failure in service, which
as well can be caused by a DoS attack. Beside this on cloud database
data can be corrupted or can be modified by anyone who is in control.
Solution: Authorization mechanisms must be designed in such a way
that only the authorized person has access to data.. Security and Data Privacy

If there are compromising nodes in the network, then the data in the IoT
network, passing from the source to the target by many nodes providing
communication, can be subject to theft. Therefore we need to ensure
data confidentiality and integrity. This means that the data transmitted
from the sender to the recipient should not be accessible or modified by
third parties.
Solution: These requirements can be achieved by using data encryption
protocols..Trustless Environment

As long as the data is stored on a central authority server acting as a
third party, then the client-server relationship is built on trust in the
service provider. Therefore, there is no guarantee that the data will not
be sold or manipulated.
Solution: This problem can be solved by a decentralized network, where
data immutability is ensured by mathematical algorithms, and not by a
trust factor.. Energy inefficiency

Devices that are part of an IoT network are often limited in terms of
memory, power, and charge.
Therefore, it is important to pay attention to this type of attack, such
as flooding of messages, which depletes the resources of the device.
Solution: For proper working of the IoT network, mechanisms need to
be designed to identify and eliminate or minimize flooded messages in
the network.

5

1. Introduction
.Device Security Issue

For peer-to-peer communication, some mechanisms must provide device
authentication. This is necessary because attackers can use their devices
to fake and collect data.
Solution: There must be a specific protocol for this since devices cannot
authenticate the neighbor devices themselves.
So that the data origin can be trusted..Access Control Issue

In the IoT network, the data transferred is shared with all the nodes of
the network.
Solution: Protocols can be designed to restrict the sharing of data with
peers. This will also help in restricting data to unauthorized access in
the network.

To address discussed above issues it is proposed to integrate DLT into the IoT
network. According to the results of my research, of all DLTs implementations,
the most applicable for IoT are blockchain and DAG. Further, I am providing
a description of each of them and conduct a comparative analysis.[5][4][6][7]

6

Chapter 2
Distibuted Ledger Technology

In a Distributed Ledger IoT environment, DLT manages a distributed public
ledger that stores the communication and transaction data of multiple parties
without requiring a trusted central authority.
Everything we will talk about in the future is based on DLT, so for a start, it
is worth understanding what it is.

There are three types of organization of systems in a network: centralized,
decentralized, and distributed.
Figure 2.1 below illustrates these three architectures.

(a) : Centralized (b) : Decentralized (c) : Distributed

Figure 2.1: Network architectures[2]

. In the centralized architecture, one node does everything;.On the decentralized several nodes distribute work to sub-nodes;. On the distributed all the nodes are equal – peer-to-peer network archi-
tecture.

The concept of DLT originates from a peer-to-peer network that brought a
new principle of data storage, namely distributed. Peer -to peer network
creates a group of devices connected together which can exchange data with
one another without the need for a central authority. Each peer in the network
can serve as both a client and a server at the same time. Such a network
does not have a central server on which data could be stored in the form of
well-known databases, so the so-called DLT or "shared ledger" in other words

7

2. Distibuted Ledger Technology
arose.

So, in general, DLT is a digital system for storing transactions in a peer-
to-peer network. The data registry is stored on each node that is part of
the network. This registry may have a different structure, depending on the
specific implementation. For example, it can be a blockchain - that is, a chain
of blocks sequentially linked to each other by a cryptographic hash.
Or if it is a DAG, then its structure consists of vertices (in our case, represented
by blocks) and edges - cryptographic hashes that connect blocks, in such a
way that they will never form a cyclic (closed) structure. As in the case of
the blockchain, the blocks are linked by a hash, but at the same time, several
previous ones can point to the next block.
Figures 2.2a and 2.2b below illustrate the difference between these structures:

(a) : Directed Acyclic Graph

(b) : Blockchain

Figure 2.2: DLT structures

DLT has several common characteristics, regardless of the specific structure
of its implementation. The key ones are listed below:. Immutability

Cryptography is used to establish immutable and secure storage in a
distributed ledger. This ensures that data can’t be modified or altered
once it’s been stored..Append only

Append-only distributed ledgers provide complete transactional history.
This is in stark contrast to a typical database, which allows data to be
changed for the sake of functionality. However, data alterations and

8

.............................. 2. Distibuted Ledger Technology

manipulation might occur as a result of this, whether caused by internal
or external forces..Distributed

The distributed nature of the ledger is another important feature. Yes,
the data is not stored in a single location. In most distributed ledger
technologies, each peer has a copy of the ledger.. Shared

The ledger does not belong to a single entity. It’s shared by all nodes.
Some nodes are responsible for having a complete copy of the ledger, while
others only have the information they need to function and efficiency.
[2][6]

9

10

Chapter 3
DLT and IoT integration

This section provides an overview of two distributed ledger technologies
(DLTs): blockchain and IOTA Tangle. Traditional blockchain technology and
IOTA both use the DLT principle, but they are built differently. It’s all about
the differences between those two DLTs discussed previously and how they
relate to IoT applications.

3.1 Blockchain

This chapter focuses on how the IoT architecture is currently implemented
and what are the shortcomings of such an implementation.

3.1.1 Introduction

Blockchain technology is a distributed ledger technology (DLT) with extremely
secure properties. With cryptographic hashing, it is immutable, transparent,
and decentralized. This distinguishing feature of blockchain technology
positions it as a viable alternative to the costly, unsafe, and inefficient nature
of existing commercial platforms. It is composed of digital data structured in
"blocks" and stored in public databases referred to as "chains." The Bitcoin
network is built on blockchain technology. In 1991, Haber and Stornetta
invented blockchain technology to construct a time-stamped, tamper-resistant
record (Haber and Stornetta, 1991). However, Satoshi Nakamoto popularized
the technique in 2009 as the backbone of Bitcoin technology.
Apart from financial applications, blockchain technology has been shown to
be beneficial in a variety of industries, including healthcare, manufacturing,
and supply chain management.

3.1.2 Blockchain concepts

A blockchain is a series of blocks that contain chronologically ordered trans-
actions. Each block is connected to the preceding one by the root hash of the
previous block.
The following are some fundamental concepts that are helpful for the further
understanding of blockchain-based technology working principles:

11

3. DLT and IoT integration................................
Transaction: Depending on the platform and application for which blockchain
is used, the transaction may be any funds transfer, any event change, code
execution, or data transfer.
Hash: Blockchain stores transactions and user IDs using cryptographic mech-
anisms. Any length input produces a fixed length output. The cryptographic
function’s output is completely different when the input is changed slightly,
making it extremely difficult to hack. Encrypting transactions or identities
means converting them to hashes. For example, MD2, MD6, SHA-0, SHA-1,
SHA-2, SHA-3, RIPEMD-128, RIPEMD-160, etc. are cryptographic func-
tions.
Block: A block in a blockchain network is a collection of peer-verified trans-
actions. These are kept as hashes in chronological sequence. The block
size is set by the blockchain platform. With enough transactions, the block
is broadcast to the network for appending to the current blockchain (after
consensus algorithm). Figure 3.1 displays a blockchain block’s structure.

Figure 3.1: Block structure [7]

Block header: Each block has a header and a body. The block’s transactions
are the block’s body. A block header has four parts:.Merkle Root Hash: The block’s root hash. As demonstrated in Figure 3.1,

it is calculated by combining transaction hashes. The block’s transactions
are first hashed using a cryptographic method. At each level, two
neighboring hashes are joined to generate one hash.. Preceding Root Hash: The previous block’s root hash. The blocks are
linked together by the preceding root hash, producing a block chain.. Nonce: A number in the block header that miners find such that the
block’s hash is less than or equal to the current network threshold.

12

..................................... 3.1. Blockchain

. Timestamp: This is the block’s creation time.

Mining: Creating a block involves collecting real-time transactions, verifying
them from peers, turning them to hashes, and discovering the root hash and
nonce. Many miners are involved in mining.
But only one of the blocks made by mines is picked and added to the
blockchain. (That miner would be chosen who solved the consensus algorithm
faster than others). Blocks are generally rewarded to the miner.
Peer/node: Anyone who participates in the blockchain network is referred
to as a peer/node. A node might be a miner or a transaction processor.
Consensus: Consensus is a way for peers in a distributed computing system
to agree on a block version to append to the blockchain. Proof of Work is the
initial consensus protocol for Bitcoin. Additionally, there are other consensus
protocols such as Proof of Stake, Proof of Burn, and Practical Byzantine
Fault Tolerance.
Smart contract: Smart Contract is a kind of blockchain that is pre-
programmed with rules and milestones to function autonomously without a
third party. These contracts are maintained on blockchain and monitor real-
time activities. Smart contracts are widely utilized in online voting, mortgage
loans, insurance, supply chain management, and copyright protection.

3.1.3 Blockchain-based network operation concept

Blockchain is a decentralized technology. Every node in the network must be
kept up to date on all network transactions.

Architecture of blockchain P2P network

Nodes may be classified into three types based on the sort of work they do.

In other terms, a node is a computer with specially installed software that
knows how to communicate with the rest of the nodes in a certain decentralized
network.. Simple Node: Nodes that perform/send/receive transactions are re-

ferred to as simple nodes. They are not engaged in mining or transaction
validation. Simple nodes are not capable to store a copy of the blockchain.. Full Node: Also known as validator nodes. These nodes maintain a full
copy of the blockchain and assist in verifying transactions that will be
included in the next block..Miner Node: Miner nodes also maintain a full copy of the blockchain
and mine transactions in order to generate new blocks. In a blockchain,
miner nodes compete with one another to get their block acknowledged.

It’s worth noting that, although the Bitcoin network technically supports
three different kinds of nodes, only two are utilized (primarily). Belonging
to one of these types of nodes is determined by the installed software and

13

3. DLT and IoT integration................................
the power of the computing device. Thus, every member in the Bitcoin
Blockchain may act as a blockchain validator by hosting a complete (full)
node.
However, the major reason for running a complete node is to improve security.
Regrettably, since this is an intangible benefit, it is insufficient to motivate
someone to operate a complete node. As such, Blockchain Validators are
mostly comprised of miners and mining pools that operate complete nodes.
To get the network on one copy of the blockchain, a solid consensus algorithm
is needed.
The four general phases of blockchain operation are as follows:..1. A transaction occurs when node A sends data/money to node B. Node

A sends out a transaction request to the network, which is subsequently
broadcast to all nodes...2. Validation of transaction. When the blockchain nodes receive a transac-
tion started request, they check their copy of blockchain at the sender’s
address, which represents the sender’s account details. The blockchain
is thus both visible and anonymous, as each node is represented by an
address rather than an actual identity...3. Adding a transaction to a new block: If the blockchain nodes approve
a transaction, the miner nodes add it to the new block. The transac-
tion hasn’t been added to the chain. To add a transaction to a block,
miners follow the blockchain’s consensus procedure. Every blockchain
environment has a unique consensus process...4. Adding block to blockchain: Multiple miner nodes create block. They
must solve a puzzle to find a nonce for the block. Depending on the
blockchain environment’s consensus protocol, one block is picked to be
added to the blockchain. To keep the network in consensus, the chosen
block is published to all participating nodes. The sender A’s transaction
is complete once the block is append to the blockchain. The time it takes
from start to finish a transaction varies between blockchain networks.
The public blockchain network has a longer wait time than private or
federated networks.

Validation and Blockchain Consensus

In many sources, little attention is paid to the validation stage, which will
not allow you to see the full picture of how the blockchain works and how
it differs from the consensus. Therefore, a more detailed explanation of the
validation process follows.

It’s crucial to understand the difference between "validation" and "consensus."
A Blockchain Validator validates transactions by ensuring that they are legal
(not malicious, double spends etc). Consensus, on the other hand, is defining
the order of blocks in the blockchain and reaching an agreement on that order.
Consensus entails agreeing on the sequence in which validated transactions

14

..................................... 3.1. Blockchain

should be processed.

Validation

How can nodes be certain that the request is authentic and that it was issued
by the message’s legitimate owner?
To unlock and spend money in Bitcoin, a so-called Digital Signature is
required. Through the mathematical procedure that prohibits duplication or
fraud in the digital environment, digital signatures establish the message’s
legitimacy. Each transaction requires a unique digital signature. Digital
signatures are created by combining two distinct but related keys. Private
Key is used to produce the Digital Signature, whereas the Public Key is
used to verify it (Private Key). Public Keys are the addresses used to send
Bitcoin transactions. To spend the cash, the sender must establish that they
legally control the public key address to which the payments were transmitted.
The Sender does this by producing a Digital Signature from the transaction
message and the Private Key associated with it.

Other nodes in the network may verify that the signature belongs to the
sender’s Public Key by using it in a separate function. The creation of the
Digital Signature and its verification on the side of the receiver is depicted in
Figure 3.2.

Figure 3.2: Verification and creation of the Digital Signature [11]

Nodes can verify that the sender possesses the Private Key without seeing
it due to the mathematics underpinning the Digital Signature. Because the
signature is based on the message, it will be unique for each transaction and
hence cannot be reused for another transaction. The signature’s reliance on
the message also implies that the message cannot be modified.
While it is being sent via the network, as any modification to the message
would invalidate the signature.

How do nodes in the network keep track of account balances?

Instead of balances ownership of funds is verified through links to previous

15

3. DLT and IoT integration................................
transactions.
For A to send 5 BTC to B, A must reference other transactions where A
received 5 or more BTC. These reference transactions are called Inputs.
(Outputs are funds that are going to be sent). Other nodes verifying this
transaction will check those inputs to make sure A was in fact a recipient and
also that the inputs at up to 5 or more Bitcoins.
The transaction that has been used once is considered spent and it can’t be
used again. Otherwise, someone can "double spent" input by referencing that
in multiple transactions.
When verifying the transaction, in addition to the other checks nodes also
make sure the inputs haven’t already been spent.

To summarize the verification includes:..1. The inputs belong to the sender (proving public key ownership)..2. The sum of all inputs is greater than or equal to the amount to be sent..3. Inputs are unspent

Consensus

Consensus techniques vary according to technology but consider Bitcoin, which
employs the Proof of Work mechanism and SHA-256 hashing algorithms.
Proof of work needs a computer to randomly execute hashing routines until
the output contains the required minimum number of leading zeroes.
The computer passes the block it wishes to add to the blockchain through
the hash function, altering the Nonce value each time until the output of the
hash function with a specific Nonce does not contain a hash with a certain
number of zeros in front. The software determines the required number of
zeros.[4][6][8][9][12]

16

.....................................3.2. IOTA Tangle

3.2 IOTA Tangle

3.2.1 The Tangle structure

In IOTA, the Tangle is a distributed ledger that keeps track of all messages
sent.

The Tangle is the only trustworthy. Any user, wherever on the planet, may
transmit valid messages, previously known as transactions, to any node, and
those messages will be duplicated throughout the network to establish one
version of truth: The Tangle. To construct a directed acyclic network, every
message in the Tangle is connected to two others - previous ones as shown in
Figure 3.3.

Figure 3.3: Message connections in the Tangle

A box represents each message in the graph, and a line represents each
attachment. When a new message is added to the Tangle, it is connected to
two previous messages, resulting in the graph being expanded by two lines.

Messages are tied to the Tangle by using the “branchMessage” and “trunk-
Message” attributes to relate to other messages. (These terms are important
for further understanding the work of the Coordinator using these fields to
reach consensus). In conjunction with the capacity to see the history of
communications, there is a notion of direct and indirect messages.

Message 5 is direct for messages 2 and 3 as it directly references them.
Message 6 is indirect for message 3 as it indirectly references it.

These references make up a message’s history; for example, if the message
is about a kid, the direct references are the child’s parents, and the indirect
references are the child’s grandparents, and so on. Tangle explorers frequently
provide connections to a message’s parents so it’s possible to trace its history
backward.
Let us examine the components of Tangle in Figure 3.4, a more full picture:

17

3. DLT and IoT integration................................

Figure 3.4: The Tangle structure

The transactions are represented as squares in this depiction of the graph,
and the arrows (dubbed Edges) connecting the transactions serve as references.
The older transactions are located on the left side of the graph, while the
newly added transactions are located on the right side.
Transactions validate up to eight previous transactions. They can be in one
of three different states:.Confirmed (green): Transactions are confirmed if all tips reference

them directly or indirectly (gray)..Unconfirmed (white): These are pending transactions..Tip (gray): Tips are freshly connected transactions that haven’t been
referenced.

3.2.2 Sending a message at a high abstraction level

The full cycle of sending a message is shown in the Figure 3.5.

Figure 3.5: Process of message sending

18

.....................................3.2. IOTA Tangle

The first step is to choose a network; let’s have a look at the available
options.

IOTA networks

Private or permissionless IOTA networks are possible:. Private networks: Permission from the network’s owner is required to
access the Tangle. These networks are often operated by businesses or
individuals interested in testing an application in a controlled setting..Permissionless networks: Because the Tangle is open to the public,
all communications sent across these networks are available to everyone.
These networks are comprised of nodes located around the globe. Anyone
may join the network for free.

The IOTA Foundation operates the following permissionless networks, which
anybody may join and operate a node on:.Mainnet: The primary IOTA network, where the IOTA token has

monetary value and is sold on platforms such as cryptocurrency exchanges.

Instead than depending on third-party nodes to receive messages, it is
recommended practice to operate your own node to have direct access
to the Tangle.
Hornet software is available for this purpose (to join Mainnet network)..Devnet: A development network in which the IOTA token has no value
other than for testing.
Additionally, there is a community permissionless network called "Com-
net".

Hornet

Hornet is a feature-rich, easy-to-use IOTA node software. It supports all node
capabilities, including the Chrysalis network update.
Following are listed advantages of operating your own node:. You get direct access to an IOTA network, rather than connecting to

and trusting another node.. By verifying messages and value transactions on the IOTA network, you
contribute to the network being more distributed and robust.

Coordinator public key

Because current IOTA networks rely on the Coordinator to reach agreement,
each node is hard-coded with the Coordinator’s public key. Nodes use
this public key, or set of keys, to validate the Coordinator’s signatures in
milestones.
The Coordinator is discussed in further detail later in this chapter.

19

3. DLT and IoT integration................................
Sending an IOTA message - detailed steps

The transaction procedure is condensed into five steps:..1. A transaction is created with a recipient, sender, value, and optional
message...2. The transaction is signed using the private key (seed). This verifies
ownership of the made entries...3. A node chooses up to eight unconfirmed transactions (tips) to reference
in a new transaction...4. Proof of Work is required simply for spam prevention, not consensus.
Work must be done immediately, and a little math issue (nonce) must be
addressed. Also, your tips are examined to verify whether the account is
properly covered or if there are any conflicts...5. The completed transaction is delivered to a node, which distributes it
to all of its neighbors (other nodes). Someone else will now come and
inspect your transaction in the “tip selection”, so confirm it.

The Message

In the network can be data, value or mixed transfer. IOTA supports a variety
of message types. Certain messages carry value (the IOTA token or digital
assets), while others merely transmit data, and other message types may
include both.

This flexible message format allows decentralized data and value delivery in
a single message with the utmost security and no costs. The network nodes
assure the secure dissemination of all Tangle messages.

IOTA message overview

A message is an object that contains information that has been disseminated
in the Tangle. Any protocol-compliant application may send these data items
to a node. An Iota node’s role is to validate incoming messages and broadcast
them to the network if they are genuine and meet protocol parameters.

Nodes will use the gossip protocol to transmit legitimate messages to their
immediate neighbors. Every neighbor who gets the message forwards it to
their neighbors. In a few seconds, every other node in the network sees the
message and has the same information and knowledge of the network’s "state".

A message contains fundamental information about the message’s type and
structure, as well as payloads. A payload is an attachment that may include an
IOTA transaction as well as a variety of other types of information. The IOTA
protocol classifies these data bundles into kinds and treats them accordingly.
So, every message delivered to the network must have a unique label that
identifies it and what it is for. A node will only receive and process messages

20

.....................................3.2. IOTA Tangle

that include this information.

Creating an IOTA message

Messages are created by so-called clients. It is possible for such clients to be
an IOTA wallet or any other program that sends IOTA messages. Messages
are forwarded from the client to an IOTA node for processing.

There are numerous pieces of information that must be provided by the
message label produced by a client before the message can be processed and
entered into the network in order to guarantee that the message is genuine
and that a node understands what to do with it..Message ID

The message ID is generated as a one-of-a-kind cryptographic hash of
the message’s bytes. The client (application) or wallet that sends the
message generates it. Or the node in case of the client request. But not
whole nodes support this..Network ID
An indication of which IOTA network the message belongs to (Mainnet /
Testnet / private network) - Nodes will only receive messages that identify
themselves as belonging to the network to which the node belongs..Parents length and Parents ID
This is the quantity and identification of the messages referred to by
the new message. Every new message in the Tangle must reference 2 -
8 prior messages in order to develop the Tangle’s graph structure. The
node chooses those two messages and provides the IDs to the client, who
must include this information in the message’s "label". As a result, nodes
ensure that the Tangle’s data structure changes in accordance with the
protocol..Payload length
Because messages in IOTA cannot be larger than 32kb, the message
must indicate the amount of its payload to the node..Payload type
A description of the sort of payload included in the message. The
node must be aware of this since certain payload types must be treated
differently than others..Nonce
That is the nonce that allows this message to satisfy the Proof-of-Work
requirement. Proof of work is mostly performed locally on the device that
sends the message and serves as a kind of spam defense. However, if the
node permits it, PoW may be performed by the node rather than the client.
This is a useful feature since it allows extremely low-powered devices
(such as sensors, chips, and so on) to send messages without performing
the PoW in the local device. When such low-power devices are linked to

21

3. DLT and IoT integration................................
a node that supports remote PoW, they may transmit messages while the
node (which is normally operating on a more powerful device) executes
the PoW for them. This is one of the reasons IOTA is so well suited
to IoT and data applications. Users wishing to transmit a big number
of data messages from a large number of extremely low-power devices
should just connect those devices to a node capable of conducting the
PoW on their behalf (which will be, in most cases, their own node).
Because the PoW requirement in IOTA is so low in general, it is possible
to achieve this even for a large number of devices by a node.

Structure of the message

The message structure is depicted in Figure 3.6. All further data must be
provided by a client.

Figure 3.6: Message structure [12]

Message verification

If the following syntactic rules are fulfilled, a message is deemed valid:. The message cannot be larger than 32 KiB (32 * 1024 bytes).. Analyzing the message’s syntax structure (parsing) leaves no unknown
bits, indicating that all message information is completely accessible by

22

.....................................3.2. IOTA Tangle

the node. Unreadable data may contain harmful code and is therefore
prohibited.. If the node is aware of the payload type.. If the Message PoW Hash shows that the network’s or the node’s mini-
mum PoW criteria have been met.. The number of parent messages must range between 1 and 8..Only if these criteria are satisfied and the message is readable by the
node will it be approved for processing.

Payloads A payload may be included in a message.

The Mainnet specifies three payload types at the moment, but developers are
free to create their own and attach them to messages provided they match
certain conditions. The IOTA token used as the transaction payload is only
one of the numerous types of data that an IOTA message may include.
The following table summarizes the presently stated core payloads:. A transaction payload. An indexation payload. A milestone payload
A communication having just an indexation payload (Data) may be sent
without a signature. It may hold any data that the user chooses to convey,
as long as it is parsable and complies with the required syntax and size
constraints.

An index is used to characterize the message, which enables any user to find
the message and the Data it contains by searching the network for this index.
A message sent through the IOTA network does not need a specific receiver.

All network communications are broadcast to all nodes and are thus accessible
to all network users. Additionally, the data payload is available to all message
receivers (if the sender does not encrypt it). The IOTA Streams framework is
designed for transmitting data messages via the IOTA protocol to a limited
number of receivers. It will establish a direct connection with receivers and
encrypt data from the rest of the network.

Anyone who comprehends the index of a data message, which is supplied
as an indexation payload, is capable of quickly locating it. If you desire to
convey an arbitrary message or sensitive data to a recipient, you must tell
them of the index you are using. Recipient may then use an explorer to scan
the network for any messages that have this index.

The payment receiver - an IOTA address - will be specified in a value
transaction’s "signed transaction payload" field. The funds may then be
utilized only by the owner of that specific address by unlocking them using
the receiving address’s private key.

23

3. DLT and IoT integration................................
The Coordinator

Consensus in the IOTA network is done with help of the Coordinator.

The Coordinator is a client that provides signed messages known as mile-
stones that nodes rely on to confirm messages. Furthermore, how nodes
utilize milestones to decide whether messages are verified is discussed. The
Coordinator is only in place for a limited time. IOTA Foundation planning
to remove the Coordinator in the next network update: Coordicide. Current
network version 1.5 is named Chrysalis.

The Coordinator’s current role within IOTA is outlined below.

Nodes only confirm messages if they are referenced by a validated milestone.
All IOTA nodes in the same network are preset with a trustworthy Coordina-
tor’s Merkle root address. Nodes may use this address to verify milestone
signatures from their trusted Coordinator. The Coordinator sends out in-
dexed milestones at regular intervals to keep track of fresh communications.
Nodes may check their milestone indexes against the network’s to see whether
they are synchronized.

Figure 3.7: The Coordinator

The Coordinator transmits milestones in the same manner as regular
messages, with one exception: the milestone’s past cone tips are utilized for
confirmation. (Past cone - a collection of transactions in the Tangle that are
directly or indirectly referenced by a child transaction, including the child
transaction).

This past cone comprises any pending messages that the tip messages mention.
As a result, the confirmation cone is named after it as confirmation cone.

24

.....................................3.2. IOTA Tangle

In case of duplicate spends, nodes and coordinator agree on which message
should be verified by ordering the confirmation cone.

Ordering the confirmation cone If the confirmation cone results in a

double expenditure, nodes and the Coordinator agree that the first message
should be verified and the rest disregarded.

It is possible to arrange messages in Tangle in many ways. Using depth-first
search, nodes and Coordinator agree to arrange the confirmation cone as
follows:..1. Begin with the milestone;..2. Iterate over the trunk messages until the first verified message is located;..3. Include the most recent message in the list;..4. Retrace your steps through the remaining confirmation cone messages,

using the same technique that prioritizes the trunk message first.

Figure 3.8: The confirmation cone

Follow the trunk down to message D to order the confirmation cone. The
confirmation cone’s initial message. Then you work your way back up, reaching
the ultimate order. Thus, beginning with V, the messages are organized as
follows: D G J L M R I K N O S V
As a consequence, since message G precedes messages O, milestone V verifies
message G.

25

3. DLT and IoT integration................................
Recording the confirmed messages

To enable nodes to determine which messages in the confirmation cone have
been verified by a milestone, it provides the Merkle root of the confirmed tail
messages.

Constructing the bundle

After building a Merkle root, the Coordinator is ready to include all of this
information in its milestone bundle for validation by nodes.

To begin, the Coordinator signs the hash of the bundle and appends the
signature to the head messages. The Merkle root is then appended to the
signature by the Coordinator.

The Coordinator then signs the Merkle root to establish its ownership, and
this signature is then appended to the milestone bundle’s other zero-value
messages.

Validating milestones

Nodes must do the following to verify milestones:..1. Verify signatures to ensure that the Coordinator really submitted the
milestone...2. Verify the Merkle root to ensure the Coordinator does not confirm
duplicate expenditures...3. Nodes do the same depth-first search as the Coordinator to verify the
Merkle root...4. Thus, nodes may generate their own Merkle root and compare it to the
one specified in the milestone. The milestone is legitimate if both Merkle
roots match. If not, the node invalidates the milestone.

3.3 The primary distinctions between IOTA’s
Tangle and a Blockchain

After considering the operating principles of both technologies, which helped
to intuitively understand the primary differences between the Blockchain
and DLT, an overview of all the differences is provided for greater clarity,
following which we can conclude that using one or the other technology is
more beneficial...1. The first significant distinction is in the structure.

Blockchain

In a blockchain, each block has a set number of messages. As a result,
Validators can only add messages to the end block. These limits slow

26

............. 3.3. The primary distinctions between IOTA’s Tangle and a Blockchain

blockchain network confirmation times. This causes the blockchain bot-
tleneck.

IOTA Tangle

Each message in the Tangle data structure is connected to two to eight
preceding messages. Rather than being restricted to a single location,
you may connect messages to the Tangle in several locations. The proto-
col may handle many attachments simultaneously. Parallel processing
alleviates congestion...2. The second significant distinction is consensus.

Blockchain

Participants in blockchains are validators (miners) and clients. Miners
need a lot of computer power to link the blocks together.
The following motivates miners to validate messages:. Users’ willingness to pay a charge to have their transactions included

in a block;. A reward (Bitcoin) is given to the miner who solves the mathematical
challenge first. As a consequence, mandating validators to perform
PoW strengthens blockchain networks by making them more difficult
to hack, alter, or shut down. The more miners that participate, the
safer the network becomes.

IOTA Tangle

Messages are free since Tangle has no miners. PoW does not secure the
Tangle. Instead, PoW discourages spam. To achieve consensus, all IOTA
nodes evaluate messages and use various functions alongside messages.
Currently, transactions will only be deemed valid if they reference a
milestone. The Coordinator establishes these milestones...3. Transaction fees are eliminated since in the IOTA are no miners.

Blockchain

In Bitcoin, clients must pay miners to get their transactions included to
the ledger.

IOTA Tangle

In IOTA, every network member that does a transaction also actively
participates in the consensus process. Because the sender must do
Proof of Work for two to eight preceding transactions in order to add a
transaction to the tangle...4. IOTA Tangle is quantum resistant.

27

3. DLT and IoT integration................................
Quantum computing threatens many current encryption protocols.

Cryptographic techniques safeguard a blockchain.

Private/public key pairs protected by asymmetric encryption algorithms
like RSA or Elliptic Curve (EC) cryptography are generated on blockchains.

It is expected that by 2035 quantum technology will have matured enough
to efficiently break RSA2048. The US National Institute of Standards
and Technology (NIST) has began the process of standardizing and
deploying quantum-safe public-key encryption.

The signature system of networked transactions is susceptible to quan-
tum attacks. The major type of attack found is against unincorporated
transactions. A quantum attacker can determine a transaction’s private
key using the sender’s public key. They can then replicate the transaction
with any desired output location.

Bitcoin’s system is secured via the use of a technique termed an "elliptic
curve signatures scheme".

IOTA does not use elliptic curve encryption (ECC), preferring instead
to utilize hash-based signatures. This is distinct from Bitcoin in that it
makes the protocol more resistant to quantum computers.

IOTA is immune to quantum computing because of using "Winternitz
signatures".

3.4 The advantages of IOTA technology versus
Blockchain technology

To address this point, let us examine the disadvantages of blockchain technol-
ogy.

The blockchain’s shortcomings will be demonstrated through the use of Bit-
coin technology.

Bitcoin, which is based on blockchain technology, is confronted with the
following issues:..1. Scalability

The Bitcoin blockchain takes around ten minutes to confirm a transaction,
which is far too long for a system designed for microsystems. At any
given moment, there are around 200K unconfirmed transactions. We
want M2M, or machine-to-machine communication, to send millions of
transactions each second. For example, Visa supports 2000 transactions
per second. Bitcoin transacts at a rate of 5-7 transactions per second.
In Bitcoin, transaction speed reduces as the network grows in size.

28

............. 3.4. The advantages of IOTA technology versus Blockchain technology..2. Fees

In the Bitcoin network, the average transaction cost is one dollar. A
dollar is a large sum of money for a network designed to facilitate
micropayments. As a result, micropayments of less than a dollar are
essentially meaningless...3. Lots of computing power required to maintain the Bitcoin blockchain

Lots of computing power required to maintain the Bitcoin blockchain
When miners perform Proof of Work, they consume a significant amount
of power, yet in the end, only one miner performed valuable work, as
only one miner’s block is added to the blockchain. That means, all of
the other miners power was squandered, which is a significant downside
of the Bitcoin system...4. Vulnerable to Quantum Attack

3.4.1 Final conclusion of technology adoption

Taking into consideration the aforementioned shortcomings of blockchain-
based technology, we can infer that DLT based on DAG, namely IOTA Tangle,
is a better fit for IoT integration, since it addresses all of these issues.[7][9][13]

29

30

Chapter 4
Security

End-to-end security is required for IoT devices, from the sensor to the distant
location where data is stored and processed. End-to-end security challenges
are critical and typically determine solution selection.

Transport Layer Security (TLS) is widely used to safeguard data transfer
in sensor systems (TLS). TLS is a robust and adaptable secure protocol
for device communication. A secure channel enables mutual authentication,
secrecy, and integrity of data transferred.

TLS is used to create secure communication between the sensor and the
Edge or Cloud device. Because an IoT device cannot open more than one
TLS channel, any scenario involving multiple data analysis points must be
handled at the Edge or Cloud level. TLS drains resources on IoT devices.
The Tangle is meant to store data with a transaction of a specific message
with an indexation payload.

A transaction with an indexation message binds data to Tangle. It is retrieved
by any node eager to consume it. In order to structure data across the Tangle
and allow complicated data stream transfer and easy data retrieval, a Layer
2 protocol (L2) (on top of IOTA Layer1) has been implemented. An L2
protocol of this kind is a cryptographic protocol that protects data transfer
across the Tangle from end to end.

Securing data transfer across the Tangle requires an L2 protocol. In addition,
it allows you to encrypt and decrypt data streams, as well as convenient
access and consume data streams while confirming their origins, ownership,
and authenticity. The Tangle ensures data integrity and immutability. Us-
ing an L2 cryptographic protocol with the Tangle allows for multi-point to
multi-point safe data transmission. This combination allows dispersed sensor
systems to safely share data in near real-time.

Heterogeneous and independent systems may communicate without re-designing
and developing new unique data exchange interfaces. Any data source may
offer the other device access to its data stream.

IOTA has two L2 solutions. Masked Authenticated Messaging (MAM) and
STREAM. The MAM uses an obsolete IOTA Tangle. STREAM replaces

31

4. Security
MAM and works with the new Chrysalis version of the IOTA Tangle.

STM’s X-CUBE-IOTA1 expansion software package contains L2Sec, an IoT-
friendly cryptography protocol. L2Sec allows a constrained IoT device to
arrange data streams via Tangle and enable secure data exchange. L2Sec
is a cryptographic technology for structuring, securing, and navigating Tan-
gle data. Moreover, L2Sec additionally uses a Hardware Secure Element
(STSAFE A110) to provide a HW root-of-trust at the IoT device, enhancing
total system security with a secure-by-design approach.

4.1 Considered architecture

The architecture used by IoT target devices to connect with one another and
with servers is shown in Figure 4.1. Each IoT device connects to the IOTA
Tangle through an IOTA node that acts as a gateway for the distributed
ledger.

Figure 4.1: Highlevel system architecture

The IOTA Tangle is considered a safe way to send data acquired by sensors
on target devices. Other network nodes (servers, sensors, etc.) may ingest
data from the IOTA Tangle. Using the DLT allows for secure point-to-point,
point-to-multipoint, and multipoint-to-multipoint communication between
devices and servers.

4.2 Securing Data over the Tangle

To structure and traverse data via the Tangle, the IOTA Foundation created
two L2 protocols.

32

............................. 4.2. Securing Data over the Tangle

4.2.1 Masked Authenticated Messaging

Masked Authenticated Messaging (MAM) is compatible with the IOTA
Tangle’s older (legacy) version. MAM allows any device to publish to Tangle.
So only authorized devices can read, reconstruct, and consume a data stream
safely attached to the Tangle.

The legacy IOTA Tangle introduced zero-value transactions concept to write
data to the Tangle. The IOTA L1 protocol handles data transactions, however
they are neither secured nor validated. In order to decrypt and authenticate
data streams sent across Tangle, MAM is used as an L2 protocol.

The MAM introduced data channels. Devices allowed to receive and consume
the channel’s data may detect malicious attempts to write false data or seize
control of the channel. MAM channels are thus a simple way to check a
device’s data dissemination. If device publish data to a channel, it get a
channel ID, which other devices can use to subscribe and get data. Any data
on a channel includes the address of the following data on the channel.

Public, private, and restricted channels exist. STREAMS has replaced the
MAM protocol, so these changes will not be detailed in depth here. Good to
know he recognized the present Chrysalis benefits.

4.2.2 Streams

STREAMS is a new IOTA Foundation protocol. It’s a way to structure and
navigate secure data in the Tangle.

To ensure the data structure’s integrity and immutability, STREAMS allows
any device to organize messages (data) into a uniform and interoperable
structure. A Publisher device can publish messages in a Stream for everyone
to see or restrict access to messages using public key encryption.

Other devices, called Subscribers, can subscribe to a Stream and pull data
from it. Subscribers can also contribute messages to a Stream by cross-
referencing. Unlike MAM, where only the channel owner could post unsigned
messages.

With the new linking mechanisms, each message can be linked to another,
allowing for more flexible data structures than MAM. STREAMS reformulates
the message types. STREAMS introduces many types to make it easy to
publish several messages on a single channel and identify them by their
headers. Moreover, STREAMS improves channel access control by allowing
multiple cryptographic mechanisms to be applied to each message type to
provide various access control rules.

33

4. Security
4.3 L2Sec—A Cryptographic Protocol for Internet
of Things Constraints

L2Sec is a lightweight cryptography technique for the IOTA Chrysalis Tangle.
It’s designed to fit on IoT devices. For example, the L2Sec protocol employs
the indexation payload of a Chrysalis message. There’s an index and some
odd data in the indexation payload. It encapsulates any L2Sec protocol
message. L2Sec creates a data stream as a Tangle chain. Indexes link
the data in the stream. By reading at arbitrary indexes over the Tangle,
subscribers can reconstruct it. Every data message contains the current and
next message’s indexes. The L2Sec protocol uses the IOTA Chrysalis Tangle’s
native binary encoding, removing the need to convert data to and from
trits (i.e., ternary data representation, as it is implemented in MAM). For
extra protection, L2Sec combines Authenticated Encryption with Associative
Data (AEAD). Due to L2Sec’s use of Sodium’s IOTA client(for cryptographic
functions), no other libraries are required. The L2Sec protocol design allows
for cryptographic operations to be performed on hardware. An IoT device’s
electronic identifier can be derived from the secure element’s hardware Root-
of-Trust.

4.3.1 Operating and Security Principles

A L2Sec message is wrapped within an IOTA Chrysalis message’s indexation
payload. Figure 4.2 illustrates the structure of an IOTA Chrysalis message
and an L2Sec message.

Figure 4.2: Structure of the fields that make up an L2Sec message on the left
and an IOTA Chrystalis message on the right

Message Chaining

Higher level protocols or apps using L2Sec wrap their data in the APPDATA
field and its length in the APPDATA LEN field. For data transfer that
exceeds the maximum length of a single L2Sec message, a data sequence must

34

............ 4.3. L2Sec—A Cryptographic Protocol for Internet of Things Constraints

be chained. The NEXT IDX field provides the index of the next message in
the stream to seek for in the Tangle. This is seen in Figure 4.3.

Figure 4.3: Sequencing of L2Sec messages

A single message connection allows each subscriber to only read one direc-
tion. This is done to prevent previous data (messages belonging to the same
data stream) from being obtained.

Figure 4.4 depicts the INDEX and NEXT IDX creation methods. L2Sec
generates a secret and public key from a random seed. The key-pair is based
on the Edwards25519 curve. The public key’s hash function then determines
the message’s index. Each L2Sec packet contains the next index (NEXT
IDX). The NEXT IDX is determined using a different key-pair.

Figure 4.4: Index and Next Index generation

35

4. Security
Data Ownership

Each message includes the field SIGN, which is derived by signing a digest h
with the key pair’s private key (PRIV KEY), as described in Equations 4.1
and 4.2.

h = H(APPDATA_LEN + APPDATA + PUB_KEY + NEXT_IDX) (4.1)

SIGN = signature(h|PREV_KEY) (4.2)

A subscriber who wants to verify the message recalculates the hash and
compares it to the signature using the public key (PUB_KEY) included in
the message. It also double-checks that the PUB_KEY’s hash matches the
message’s index. Figure 4.5 displays data verification using L2Sec message
fields.

Figure 4.5: Index and Next Index generation

To divert the next message to another malicious stream, an adversary
would need to find the next index’s public key and insert it in its message.
It is impossible for the receiver to utilize the found NEXT_IDX to attach
its message chain since it does not know the key-pair used to generate the
NEXT_IDX. Basically, this design enables a subscriber to confirm the data
source. For integrity signature, L2Sec uses EdDSA (Edwards-curve Digital
Signature Method) over the edwards25519 elliptic curve with the BLAKE2b
hashing algorithm.

Authentication

The SIGN field does not give author authentication since the key-pair used
is just for message chaining. L2Sec needs an extra key-pair tied with the
electronic identification of the IoT device to confirm and validate the data
source’s identity. So L2Sec adds an Authentication Signature (AUTHSIGN)
field to identify and authenticate the sender. Using the private key, this

36

............ 4.3. L2Sec—A Cryptographic Protocol for Internet of Things Constraints

signature authenticates all other fields of the L2Sec transaction. The private
key and its public key certificate might be kept in a hardware secure device.
To verify the source of the content, a subscriber must use the source’s public
key, which has been validated by a trustworthy Certification Authority. Figure
4.6 depicts the whole L2Sec message.

Figure 4.6: Message L2Sec with Authentication Signature produced by a Hard-
ware Secure Element

Encryption

To protect the data in the Tangle, every L2Sec message is encrypted as
seen in Figure 4.7. Using a symmetric cryptographic key and a nonce as
an initialization vector, the encryption is carried out. The encryption key
is pre-shared (PSK) between the message author and the subscribers. The
XSalsa20 cipher is used to encrypt ’s entire L2Sec message.

Figure 4.7: Encryption of an L2Sec message

The L2Sec message is now encrypted and ready to be despatched and

37

4. Security
anchored to the Tangle. The final message is encased in a Chrysalis indexation
payload and consists of the encrypted L2Sec message together with the nonce
used for encryption. The preceding theoretical material was provided to
provide sufficient background knowledge to comprehend the software solution
described in the following chapter and to appreciate why, in light of modern
IoT technology requirements, it is advantageous to integrate DLT technology
with traditional IoT.[13][15][17]

38

Chapter 5
Methodological contribution

The practical section is based on software produced by STMicroelectronics;
at the moment, this is the only software that enables complete interaction
with IOTA Tangle using constrained devices based on STM32 controllers.

Prior to this, the majority of current projects were developed for less versatile
controllers, such as the ESP32 and ESP8266, and as a result, their software did
not incorporate all of the capabilities provided by the protocol for connecting
with the IOTA Tangle.

This section discusses how the Tangle communication protocol is implemented
practically, at the level of written code.

What steps should a developer take to effectively construct a client capable
of communicating with the proposed distributed network on the basis of any
STM32 controller? This question will be addressed in the chapter below
within the scope of the methodological contribution.

5.1 Hardware

Figure 5.1: B-L4S5I-IOT01A Discovery kit for IoT node [13]

39

5. Methodological contribution
Key Product on board:. Ultra-low-power STM32L4+ Series STM32L4S5VIT6 microcontroller

based on the Arm® Cortex®-M4 core with 2 Mbytes of Flash memory
and 640 Kbytes of RAM in the LQFP100 package. Bluetooth® 4.1 module (SPBTLE-RF) from STMicroelectronics. 802.11 b/g/n compliant Wi-Fi® module (ISM43362-M3G-L44) from
Inventek Systems. Dynamic NFC tag based on ST25DV04K with its printed NFC antenna. 2 digital omnidirectional microphones (MP34DT01) from STMicroelec-
tronics. Capacitive digital sensor for relative humidity and temperature (HTS221)
from STMicroelectronics. High-performance 3-axis magnetometer (LIS3MDL) from STMicroelec-
tronics. 3D accelerometer and 3D gyroscope (LSM6DSL) from STMicroelectronics. 260-1260 hPa absolute digital output barometer (LPS22HB) from STMi-
croelectronics. Time-of-flight and gesture-detection sensor (VL53L0X) from STMicro-
electronics. Highly secure solution (STSAFE-A110) from STMicroelectronics. 2 push-buttons (user and reset) Flexible power-supply options: ST-LINK,
USB VBUS, or external sources. On-board ST-LINK/V2-1 debugger/programmer with USB re-enumeration
capability: mass storage, Virtual COM port, and debug port

5.2 Software

This section describes the X-CUBE-IOTA1 software extension for the STM32Cube.

The X-CUBE-IOTA1 extension software package for STM32Cube comprises
middleware to allow the IOTA Distributed Ledger Technology (DLT) func-
tionality.

The X-CUBE-IOTA1 software package augments the capability of STM32Cube
with the following important features:.Middleware libraries containing:

40

..............................5.3. Chrysalis – IOTA version 1.5

.Wi-Fi administration. Transport-level security (MbedTLS). IOTA Client API for Tangle interaction. Complete driver for developing applications that access motion and
environmental sensors. Example to illustrate how to construct and send to the Tangle an
encrypted authenticated stream based on L2Sec. STM32Cube facilitates simple porting across several MCU families

The software extension enables the IOTA DLT on an STM32 microcontroller
by adding the necessary middleware.

5.3 Chrysalis – IOTA version 1.5

Chrysalis is the name of the protocol upon which the X-CUBE-IOTA1 exten-
sion software package is based.

It is essential to comprehend that the IOTA protocol has its own growth
path, which begins with the usage of a centralized node - "Coordinator" -
for transaction validation and ends with a completely decentralized network.
Consequently, it is possible that the version that worked a year ago is no
longer supported. Nevertheless, it is important to note that the transfer to
Chrysalis was the final major transformation.

The transition from IOTA 1 to IOTA 1.5 is not simple. Developers must
restructure their apps and move their tokens in order to use Chrysalis. But
at the same time I t will make the adoption of IOTA 2.0 much easier. So
Chrysalis is an interim upgrade before going on to Coordicide, a completely
decentralized network.

According to the IOTA Foundation, the new Chrysalis protocol update is
60 percent more energy-efficient than IOTA’s initial implementation. This
is why Chrysalis is already so appealing to developers. To accomplish these
advantages, the Foundation modified its protocol to use atomic transactions,
which record state changes more effectively than "account-based models" that
need the updating of the whole account balance. These atomic transactions
may be as short as 275 bytes per transaction, as opposed to the initial 3500
bytes. A refined method for selecting "tips" expedites transaction validation
and synchronization. According to the IOTA Foundation, its systems can
complete 600 million transactions using the same amount of energy as one
Bitcoin transaction.

Consider the substantial enhancements made between versions 1.0 and 1.5.
(Chrysalis):

41

5. Methodological contribution
. IOTA 1.0 has an unorthodox implementation strategy based on trinary

representation: each IOTA element is defined using trits = -1, 0, 1 rather
than bits and trytes of 3 trits rather than bytes of 8 bits. A tryte is
represented as an integer between -13 and 13, encoded with the letters
A through Z and the number 9.. IOTA 1.5 (Chrysalis) substitutes a binary structure for the trinary
transaction architecture.

The primary enhancements added by Chrysalis are:. Reusable addresses: the introduction of the Ed25519 signature scheme,
which replaced the Winternitz one-time signature system (W-OTS),
enables users to securely transfer tokens many times from the same
address;. No more bundles: IOTA 1.0 uses bundles to make transfers. Bundles are
groups of transactions linked by a root reference (trunk). With IOTA 1.5,
the former bundle format is gone, replaced with Atomic transactions. The
Tangle vertex is represented by the Message, a container for payloads;. UTXO model: Originally, IOTA 1.0 tracked individual IOTA tokens
using an account-based model: each IOTA address stored a number of
tokens, and the total number of tokens from all IOTA addresses equaled
the entire supply. (This is the same concept as Bitcoin.) Instead, IOTA
1.5 employs the unspent transaction output model, or UTXO, which is
based on the concept of monitoring unspent token amounts through a
data structure called output.. Up to 8 Parents: In IOTA 1.0, you could only reference two parent
transactions. Chrysalis introduces a higher number of referred parent
nodes (up to 8). At least two distinct parents should be used at the
same time to get the greatest outcomes.

Now that we have a broad understanding of the software implementation of
the IOTA protocol, let’s move on to its practical examination.[17][18][?]

5.4 Initial use of software

I used STM32CubeIDE, thus all descriptions will pertain to this environment.
Build and run the project The project is structured such that there are
three different build configurations:. L2SEC to run the respective example application relying on STASAFE

security services and libsodium crypto support;. CRYPTOLIB to include the cryptographic middleware by ST;. SODIUM to include the cryptographic middleware by libsodium;

42

................................. 5.4. Initial use of software

I used L2Sec since a portion of the theory is based on this protocol.

In the .cproject file are the next configurations:
1 <c o n f i g u r a t i o n conf igurat ionName="SODIUM"/>
2 <c o n f i g u r a t i o n conf igurat ionName="CRYPTOLIB"/>
3 <c o n f i g u r a t i o n conf igurat ionName="L2SEC"/>
4 <c o n f i g u r a t i o n conf igurat ionName=" Debug ">

To build the project successfully, the L2Sec configuration must be set to
"active":

Figure 5.2: Build configurations

43

5. Methodological contribution
The "Build configurations" box in "Run configurations" will be set to

"Select Automatically" by default; with this option, uploaded programs will
not function properly. It is crucial to set it to L2SEC.

Figure 5.3: Run configurations

In debug configurations, ST-LINK S/N SWD interface is chosen.

5.5 Example analysis

Here I provide sample code from the X-CUBE-IOTA1 software package, to see
how the described theory is applied in practice. In particular, the formation
of the structure of the message and the inclusion of a payload in it. The
function that we will consider is responsible for sending encrypted messages
to the Mainnet network.

Function
1 i n t send_enc_data (void) ; // send encrypted data

utilize the next major steps and functions to send data to the Mainnet
network:..1. Data encryption/decryption function;..2. Defining client endpoint configuration, such as next:

host = NODE_HOST, port = NODE_HOST_PORT, use_tls = NODE_USE_TLS
Which are defined for Mainnet:

1 #d e f i n e NODE_HOST " c h r y s a l i s −nodes . i o t a . org "
2 #d e f i n e NODE_HOST_PORT 443
3 #d e f i n e NODE_USE_TLS true
4

44

................................... 5.5. Example analysis..3. Creation of the message object, which is correspond to structure of the
message described in theoretical part:

1 typede f s t r u c t {
2 uint64_t network_id ;
3 UT_array∗ parents ;
4 payload_t payload_type ;
5 void ∗ payload ;
6 uint64_t nonce ;
7 } core_message_t ;
8..4. Creation of indexation payload:
1 i ndexat ion_create (Payload_type , data , data_length) ;
2

Payload type for the Indexation payload is "2";..5. Sending the message itself (main part of this function):
1 send_core_message (c l i ent_endpo int_conf ig , msg , &msg_res) ;
2

Let’s investigate the inner workings of the send_core_message() function.

Three major events take place in this function:..1. Getting tips from the Mainnet network.
To get tips an HTTP request is sent with the command "/api/v1/tips";
Parents field is also fulfilled from the received tips structure...2. Sending the HTTP request with the JSON data commands...3. Getting as a respond "Message ID" saved in &msg_res structure , which
can be used for getting message from the Tangle.

45

46

Chapter 6
Practical contribution

Remotely located devices may need to be managed. As a result, as part of
the application level extension, I built methods that enable the transmission
of messages containing instructions to the Tangle; these messages are down-
loaded by the designated client upon request. The command is consequently
processed and executed. Figure 6.1 illustrates the description.

Figure 6.1: Proposed solution

After uploading project and connecting the device to WiFi menu will be
displayed on the terminal. The menu will give the user a choice, whether to
send message with an encrypted or decrypted (common) payload. In each of
the cases entered command will then form part of the indexation payload and
will be forwarded to the Mainnet network as a structured message, where it
will be connected to the Tangle. In response to a client’s request to attach

47

6. Practical contribution
a message to a node, the node will complete a Proof of Work, verify the
message, and then allocate and return a 64-digit hexadecimal number as the
message identification (to B-L4S5I). This identification will then be used to
receive a message from the network and execute the command it contains.

6.1 Implemented commands and functions

Defined commands:
1 { " use_l2sec " , " use_enc_msg " , " use_msg " }

use_l2sec: command to send L2Sec Stream.
The parameter is a number, from 1 to 255.

use_enc_msg: command to send an encrypted message. Parameter - a string
from 1 to 127 characters long, not including end of the string character.

use_msg: command to send a standard message.
Parameter - a string from 1 to 127 characters long, not including end of the
string character.

Each command also involves the transfer of a parameter, which is entered
through the command’s trailing space. The inclusion of a parameter is
required for the command validity check to be completed successfully prior
to its execution.

Further are given examples of the correct input:

use_l2sec 5
use_enc_msg Hello world
use_msg Hello world

Function:
1 /∗ Send message with user input r eques t ∗/
2 void send_user_in_req_message (void) ;

includes next executable steps:..1. Request user to input the payload..2. Sending the message to the network (for more details view 5).

The actual function is shown below.
1 void send_user_in_req_message (void)
2 {
3 char ∗ id_input_request = " Payload : " ; // ques t i on
4 char ∗ in_payload ;
5 s i z e_t t_max_length = MSG_ID_LEN + 1 ; // max_length
6

48

......................... 6.1. Implemented commands and functions

7 in_payload = (char ∗) mal loc (t_max_length) ;
8 s e r i a l _ g e t _ a s c i i (id_input_request , in_payload , t_max_length) ;
9

10 i o ta_c l i ent_conf_t ctx = { . host = NODE_HOST, . port =
NODE_HOST_PORT, . use_t l s = NODE_USE_TLS} ;

11

12 p r i n t f (" Sending data message to the Tangle . . . \ n ") ;
13 res_send_message_t r e s ;
14 memset(&res , 0 , s i z e o f (res_send_message_t)) ;
15

16 /∗FEL\xF0\x9F\xA6\x8B − Index ; \xF0\x9F\xA6\x8B − B u t t e r f l y
symbol ∗/

17 i n t r e t = send_indexation_msg(&ctx , "FEL\xF0\x9F\xA6\x8B" ,
in_payload , &r e s) ;

18 i f (r e t == 0) {
19 i f (! r e s . i s _ e r r o r) {
20 p r i n t f (" message : https : // e x p l o r e r . i o t a . org /mainnet/message

/%s \n" , r e s . u . msg_id) ;
21

22 } e l s e {
23 p r i n t f (" Node response : %s \n" , r e s . u . e r ro r −>msg) ;
24 r e s_er r_f ree (r e s . u . e r r o r) ;
25 }
26 } e l s e {
27 p r i n t f (" send_indexation_msg API f a i l e d \n") ;
28 }
29 re turn ;
30 }

Function:
1 /∗ Send encrypted message with user input r eques t ∗/
2 i n t send_user_in_req_msg_enc (void) ;

is similar to send message function 6.1 with the difference that the message
entered by the user passes through the encryption function and only after
that, in encrypted form, it becomes part of the indexation payload.

Encryption function placement (functions have been simplified to emphasize
order):

1 s e r i a l _ g e t _ a s c i i (id_input_request , in_payload_enc ,
t_max_length) ;

2 /∗ After user input ∗/
3 /∗ Data encrypt ion ∗/
4 xor_encrypt_decrypt (in_payload_enc , encrypted) ;
5 /∗ Before indexat ion c r e a t e ∗/
6 idx = indexat ion_create ("FEL\xF0\x9F\xA6\x8B" , (byte_t ∗)

encrypted) ;
7 send_core_message (idx) ;

Now that the available commands and rules for inputting them as well as
the functions for sending a message have been discussed, let’s move on to
the primary function responsible for receiving a message from the network,
examining the message, and executing the matching command if it was
discovered.

49

6. Practical contribution

Function:
1 i n t get_message_in_idx (void)

is responsible for:..1. User input of the message ID..2. Receiving the message..3. Unwrapping message..4. Check whether the payload is a command or a standard message..5. Parse the command..6. If the command was valid, the function intended to provide access will
be executed.

The actual function is shown below.
1 i n t get_message_in_idx (void)
2 {
3 char cmd_buffer [1 2 8] = {0} ;
4 char cmd_decrypted [1 0 0] = {0} ;
5 /∗ User input r eques t message ∗/
6 char ∗ id_input_request = " Message id : " ;
7 s i z e_t t_max_length = MSG_ID_LEN + 1 ;
8 char ∗ out_dest inat ion ;
9 out_dest inat ion = (char ∗) mal loc (t_max_length) ;

10 is_cmd_e is_cmd_ret = 0 ;
11 /∗ Get user input and save i t in out_dest inat ion po in t e r ∗/
12 s e r i a l _ g e t _ a s c i i (id_input_request , out_dest inat ion ,

t_max_length) ;
13

14 p r i n t f ("%s −− %d" , out_dest inat ion , s t r l e n (out_dest inat ion)) ;
15

16 i o ta_c l i ent_conf_t ctx = { . host = NODE_HOST, . port =
NODE_HOST_PORT, . use_t l s = NODE_USE_TLS} ;

17

18 res_message_t ∗msg = res_message_new () ;
19 i f (msg) {
20 i f (get_message_by_id(&ctx , out_dest inat ion , msg) == 0) {
21 i f (msg−>i s _ e r r o r) {
22 p r i n t f ("API response : %s \n" , msg−>u . er ror −>msg) ;
23 } e l s e {
24 switch (msg−>u . msg−>type) {
25 case MSG_PAYLOAD_TRANSACTION:
26 p r i n t f (" i t ’ s a t r a n s a c t i o n message\n") ;
27 dump_tx_payload (msg−>u . msg−>payload) ;
28 break ;
29 case MSG_PAYLOAD_INDEXATION:
30 p r i n t f (" i t ’ s an indexat ion message\n") ;
31

32 /∗Unwrap the message and get the payload ∗/
33 dump_indexation_payload_cmd (msg−>u . msg−>

50

......................... 6.1. Implemented commands and functions

34 payload , cmd_buffer) ;
35

36 /∗ Check i f command , in case o f standard
37 message ∗/
38 is_cmd_ret = is_cmd_payload (cmd_buffer) ;
39

40 /∗ Check i f command , in case o f encrypted
41 message ∗/
42 is_cmd_enc_ret = is_cmd_enc_payload
43 (cmd_buffer , cmd_decrypted) ;
44

45 /∗ I f command was found in message then c a l l
46 an accord ing func t i on ∗/
47 i f (CMD_MSG == is_cmd_ret)
48 {
49 p r i n t f ("Msg_cmd : %s \n" , cmd_buffer) ;
50 cal l_cmd_function (cmd_buffer) ;
51 }
52

53 /∗ I f command was found in encrypted message
54 then c a l l an accord ing func t i on ∗/
55 e l s e i f (CMD_MSG == is_cmd_enc_ret)
56 {
57 p r i n t f ("Msg_cmd_enc : %s \n" , cmd_decrypted) ;
58 cal l_cmd_function (cmd_decrypted) ;
59 }
60 e l s e
61 {
62 p r i n t f (" data : %s \n" , " Not a command") ;
63 dump_indexation_payload (msg−>u . msg−>payload) ;
64 }
65 break ;
66 case MSG_PAYLOAD_MILESTONE:
67 p r i n t f (" i t ’ s a mi l e s tone message\n") ;
68 dump_milestone_payload (msg−>u . msg−>
69 payload) ;
70 break ;
71 case MSG_PAYLOAD_UNKNOW:
72 d e f a u l t :
73 p r i n t f ("Unknow message\n") ;
74 break ;
75 }
76 }
77 } e l s e {
78 p r i n t f (" get_message_by_id API f a i l e d \n") ;
79 }
80 res_message_free (msg) ;
81 } e l s e {
82 p r i n t f ("new message response f a i l e d \n") ;
83 }
84

85 re turn 0 ;
86 }

Parsing and calling the function is in:
1 cal l_cmd_function (cmd_buffer) ; // l i n e 50 and 59

51

6. Practical contribution
This function is responsible for deciding which command function should be
executed.

1 s t a t i c void cal l_cmd_function (char ∗ in_cmd_buffer)
2 {
3 valid_out_e r e s = WRONG_INPUT;
4 cmd_pack_t cmd_f = {0 , 0} ;
5 s i z e_t t_str_lim = 128 ; // max_length
6 cmd_f . supply_str = (char ∗) mal loc (t_str_lim) ;
7

8 /∗ Pars ing func t i on ∗/
9 /∗ cmd_f i s the s t r u c t u r e with data about command type ∗/

10 /∗and user parameter inc luded to the command via te rmina l ∗/
11 r e s = parse_cmd (in_cmd_buffer , &cmd_f) ;
12

13 i f (CORRECT_INPUT == r e s)
14 {
15 switch (cmd_f . cmd_func)
16 {
17 case L2SEC_FINIT :
18 /∗ L2Sec f i n i t stream ∗/
19 send_l2sec_protected_stream (cmd_f . supply_val) ;
20 ser ia l_press_any () ;
21 break ;
22 case ENCRYPTED_MSG:
23 /∗ Sending encrypted message ∗/
24 send_enc_data_user_in (cmd_f . supply_str) ;
25 ser ia l_press_any () ;
26 break ;
27 case MSG:
28 /∗ Sending message ∗/
29 send_data_message_user_in (cmd_f . supply_str) ;
30 ser ia l_press_any () ;
31 break ;
32 case NONE:
33 break ;
34 d e f a u l t :
35 break ;
36 }
37 }
38 e l s e {
39 p r i n t f ("Wrong input . ") ;
40 }
41 re turn ;
42 }

Additional data types:..1. Enumeration type cmd_func_e used as the return type of the parse
function to indicate user commands.

1 typede f enum
2 {
3 NONE = 0 ,
4 L2SEC_FINIT = 1 ,
5 ENCRYPTED_MSG,
6 MSG
7 }cmd_func_e ;

52

......................... 6.1. Implemented commands and functions..2. Structure type cmd_pack_t is used to transfer the data needed to execute
the commands to the place of their use.

1 typede f s t r u c t
2 {
3 cmd_func_e cmd_func ;
4 uint16_t supply_val ;
5 char ∗ supply_str ;
6 }cmd_pack_t ;..3. Enumeration type cmd_func_e used as a return type to determine the

validity of function output.
1 typede f enum
2 {
3 WRONG_INPUT = 0 ,
4 CORRECT_INPUT
5 } valid_out_e ;

And finally, the parsing function is presented below.
All explanations are provided in the comment sections in the code.

1 s t a t i c valid_out_e parse_cmd (char ∗ in_cmd_str , cmd_pack_t∗
out_cmd_f_type)

2 {
3 valid_out_e r e t = WRONG_INPUT;
4 valid_out_e check_dig i t_ret = WRONG_INPUT;
5 uint16_t out_int_dig i t ;
6 uint8_t temp_ret_1 = 0 ;
7

8 s i z e_t s t r_len = 0 ;
9 i n t cmp_ret = 0 ;

10 char ∗ cmd ;
11 char ∗ str_supply ;
12

13 const char ch = ’ ’ ;
14

15 temp_ret_1 = s t r l e n (in_cmd_str) ;
16

17 i f (0 != temp_ret_1) /∗ I f s t r i n g i s not empty∗/
18 {
19 /∗Check i f space i s inc luded in to the s t r i n g ∗/
20 i f (NULL != s t r c h r (in_cmd_str , ch))
21 {
22 /∗ Extract ing command from the common s t r i n g
23 ∗ conta in ing cmd and parameter ∗/
24 cmd = s t r t o k (in_cmd_str , " ") ;
25 f o r (uint32_t i = 0 ; i < CMD_NUM; i++)
26 {
27 /∗ Comparing input with e x i s t i n g commands ∗/
28 cmp_ret = strcmp (cmd , cmd_set [i]) ;
29 /∗ I f input i s the same as e x i s t i n g cmd then True ∗/
30 i f (0 == cmp_ret)
31 {
32 p r i n t f (" in parse ") ;
33

53

6. Practical contribution
34 /∗ Extract ing parameter from the common s t r i n g
35 ∗ conta in ing cmd and parameter ∗/
36 str_supply = s t r t o k (NULL, " ") ;
37 switch (i)
38 {
39 case 0 :
40 /∗ For L2Sec func check i f parameter i s s t r i n g o f
41 ∗ d i g i t s and i t i s in range from 1 to 25 .
42 ∗ Func convert s t r o f char to i n t number and
43 ∗ return i t through parameter i f input was v a l i d .

∗/
44 check_dig i t_ret = check_l2sec_dig i t (str_supply ,
45 &out_int_dig i t) ;
46

47 i f ((CORRECT_INPUT == check_dig i t_ret))
48 {
49 out_cmd_f_type−>cmd_func = L2SEC_FINIT ;
50 out_cmd_f_type−>supply_val = out_int_dig i t ;
51

52 r e t = CORRECT_INPUT;
53 }
54 break ;
55 case 1 :
56 /∗ St r ing l enght i s between 1 and 127 ∗/
57 s t r_len = s t r l e n (str_supply) ;
58 i f (MIN_STR_LEN<= str_len && MAX_STR_LEN >=str_len)
59 {
60 out_cmd_f_type−>cmd_func = ENCRYPTED_MSG;
61 out_cmd_f_type−>supply_str = str_supply ;
62

63 r e t = CORRECT_INPUT;
64 }
65 break ;
66 case 2 :
67 /∗ St r ing l enght i s between 1 and 127 ∗/
68 s t r_len = s t r l e n (str_supply) ;
69 i f (MIN_STR_LEN<= str_len && MAX_STR_LEN >=str_len)
70 {
71 out_cmd_f_type−>cmd_func = MSG;
72 out_cmd_f_type−>supply_str = str_supply ;
73

74 r e t = CORRECT_INPUT;
75 }
76 break ;
77 d e f a u l t :
78 break ;
79 }
80

81 break ;
82 }
83 }
84 }
85 }
86 re turn r e t ;
87 }

Using command use_l2sec X as an example, let’s examine how it works.

54

......................... 6.1. Implemented commands and functions

Of the menu options, I choose Send data message, entered the command
use_l2sec X.

And got next output to the terminal:

message: https://explorer.iota.org/mainnet/message/
543cf0258254a242b887504ff722f410e4daa0aec00f1894ab8c0c6f762a1a69

Message can be found on the following link [1], by entering
543cf0258254a242b887504ff722f410e4daa0aec00f1894ab8c0c6f762a1a69 to the
search.

Then, upon receiving the message by Message ID, the associated function was
performed (sending L2Sec messages), resulting in the following output(L2Sec
protected Stream execution):

1 Channel : >> 5 << message (s) w i l l be sent
2

3 Channel : sending message # 1 (hex : 1) . . .
4

5 Appl i ca t ion data message to L2Sec p ro t e c t and send :
6 ’SENSOR DATA (IOTA L2Sec app payload #1) −− Thu May 19 0 8 : 1 2 : 4 1

2022
7 {" Device " : " B−L4S5I−IOT01A " , " time " : 1652947961 , " temp " : 3 2 . 7 8 , " humi

" : 2 7 . 4 6 } ’
8

9 STSAFE: Random − Generate −> OK
10 STSAFE: Random − Generate −> OK
11 STSAFE: Authent icat ion S ignature − Sign −> OK
12 STSAFE: PSK − Unwrap −> OK
13 STSAFE: Random − Generate −> OK
14 Cleaning PSK from RAM. . . −> OK
15

16 Sent message − ID :
17 7 e376cadf4dc47e68b4523ef6c38ac493f2b118aa2069faae98857a3a993c438
18 Sent message − index :
19 551E547DD3C9F7837E94105FC266BEA72514D6A76E2525A30939B2D31585DEAC
20

21 Index o f the f i r s t message in the channel : 551
E547DD3C9F7837E94105FC266BEA72514D6A76E2525A30939B2D31585DEAC

22

23

24 Channel : sending message # 2 (hex : 2) . . . \ vs

Messages can be found on [1], by entering Index of the first message in the
channel:
551E547DD3C9F7837E94105FC266BEA72514D6A76E2525A30939B2D31585
DEAC

55

6. Practical contribution
6.2 Additional system evolution

In addition to the already proposed application layer extensions, I prepared
the basis for porting the IOTA project to another platform and implemented
BLE (Bluetooth low energy) communication between the two devices.

The idea is that in the future it would be possible to use more than one STM
controller to interact with Tangle and by means of BLE control access of
another device to send messages to the IOTA network.

The second device is the STM32 Discovery kit B-L475EIOT01A2C, which
has a different CPU than the prior kit, making the process of adding IOTA
software to this device more difficult.

Next, I give a quick, efficient and proven way to organize BLE communication
between devices B-4S5I and B-L475 (STM32CubeIDE is used).

This method is suitable for any STM32 devices with a built-in SPBTLE-RF
BLE module or those that use a separate one.

Communication will work so that by pressing a button on one device, it will
toggle on another. The application works bidirectionally.

Steps to be taken to configure BLE for B-L475:..1. In STM32CUbeIDE go to Help > Manage Embedded Software Packages;
Click the STMicroelectronics tab; find the X-CUBE-BLE1 package,
choose the last version, and install it;..2. Then File > New > STM32 Project; select your board in the Board
selector; create the project and open CubeMX (.ioc file);..3. Go to Software Packs > Select Components and choose configurations
as shown in Figure 6.2...4. In Pinout & Configuration tab choose the BLE1 package in the Software
Packes tab;..5. Choose both Wireless BlueNRG-MS and Device BLE1 Applications;..6. Communication with the BLE module is going on via SPI, therefore
figure out what SPI is connected on your board to this module in User
Manual. As well as find out what USART is connected to the Virtual-
COM port. USART is used in the application to provide user feedback
about the connection and communication process...7. Enable and configure SPI and USART in Pinout & Connectivity >
Connectivity...8. HCI_TL_iNTERFACE (HCI stands for Host-Controller Interface) and
BSP configurations are provided in Figures 6.3 and 6.4 accordingly.

56

.............................. 6.2. Additional system evolution..9. Then click on the Device Configuration Tool Code Generation button
on the Instrument panel.

Figure 6.2: BLE1 configurations

Figure 6.3: HCI_TL_INTERFACE configurations

Figure 6.4: BCD configurations

All the processes must be repeated for the second board. For B-L4S5I, the
only variation between these stages will be the selection of a different board
during project creation.

Whether the device is a server or a client is determined by defining SERVER_ROLE
or not accordingly.

Therefore use at the BlueNRG_MS/App/app_bluenrg_ms.c:
1 #d e f i n e SERVER_ROLE

or comment it.

Now load the project first to the Client board and restart it. And do the same
for the Server board. When LED 4 goes out, then the devices are connected.

57

58

Chapter 7
Practical part summary and discussion

The objective of the practical section was to serve as the foundation for remote
device control through a decentralized network. In such a manner that one
device transmits messages containing payloads in the form of commands to
the IOTA network, another device may download and execute these messages.
In my thesis, I examined this concept on a single device. However, the
functionality I developed may be readily incorporated into other devices.
Therefore, this system might be enhanced by including Bluetooth Low Energy
communication across devices, with each item able to connect to Tangle. For
instance, while sending a command to Tangle for execution, the master device
sends a Message-ID (through Bluetooth) as well to the device that should
download and execute the message.

59

60

Chapter 8
Conclusion

The objective of this study was to investigate Internet of Things-integrable
decentralized technologies like Blockchain, Smart Contracts, and others. It
was important to assess whether or not a certain technology is suited for
such integration and to provide the optimal solution. The foundation for
developing a microcontroller-based system.

Taking a slow, bottom-up approach, I began my work with a short intro-
duction to IoT, concentrating mostly on the problems with the present IoT
architecture, to clarify why many are attempting to employ a decentralized
method in the design of IoT systems today. In addition, two technologies,
Blockchain and IOTA Tangle serve as the foundation for study and com-
parison. Starting with Blockchain because, in my opinion, it is easier to
comprehend the operation of IOTA Tangle (a more sophisticated technology)
if you are already familiar with the operation of another decentralized tech-
nology. Moreover, I conclude by explaining why IOTA Tangle is the ideal
answer for Constrained devices.

During my study for the thesis, I discovered that STMicroelectronics has just
produced software that implements the Chrysalis protocol from IOTA. This
ST software package was created just for the B-L4S5I board I worked with. I
discovered how this software package is structured, allowing the developer to
easily and flexibly increase the user level’s capabilities by supplementing it
and creating add-ons for their own reasons.

Therefore, I built extra functionality in the C programming language that
enables remote device control through Tangle. In such a manner that one
device must transmit commands to the Tangle, another device may download
and execute these commands. Currently, this capability has only been tested
on one device, but flexible interaction with additional devices is assumed.

But the first step toward working with numerous devices has already been
done, as I present a technique for extending the system through Bluetooth in
the Additional system evolution section.

61

62

Bibliography

[1] LIJUN, Wei, Liu SHAOWEI, Wu JING a Long CHENGNIAN. Enabling
Distributed and Trusted IoT Systems with Blockchain Technology. IEEE
Blockchain [online]. Hong Kong, 2018, 2019 [cit. 2022-04-27]. Available
from: https://blockchain.ieee.org/technicalbriefs/january-2019/enabling-
distributed-and-trusted-iot-systems-with-blockchain-technology

[2] GUINARD, Dominique. THE LEDGER OF EVERY THING: What
Blockchain Technology Can (and Cannot) Do for the IoT [online]. 2017,
38 [cit. 2022-05-03]. Available from: https://evrythng.com/wp-
content/uploads/2018/11/The-Ledger-of-Every-Thing_-What-
Blockchain-Technology-Can-and-Cannot-Do-for-the-IoT-1.pdf

[3] LEA, Perry. IoT and Edge Computing for Architects: mplementing edge
and IoT systems from sensors to clouds with communication systems,
analytics, and security. 2nd ed. Birmingham: Packt Publishing, 2020.
ISBN 978-1839214806.

[4] SHENG-LUNG, Peng, Pal SOUVIK a Huang LIANFEN. Principles of
Internet of Things (IoT) Ecosystem: Insight Paradigm. Switzerland:
Springer Cham, 2020. ISBN 978-3-030-33595-3.

[5] TAMBOLI, Anand. Build Your Own IoT Platform: Develop a Fully
Flexible and Scalable Internet of Things Platform in 24 Hours. Sydney:
Apress, 2022. ISBN 978-1484244975.

[6] VYAS, Sonali, KUMAR SHUKLA, Vinod, Shaurya GUPTA a
Ajay PRASAD, ed. Blockchain Technology: Exploring Opportu-
nities, Challenges, and Applications [online]. Boca Raton: CRC
Press, 2022 [cit. 2022-04-02]. ISBN 9780367685584. Available from:
doi:https://doi.org/10.1201/9781003138082

[7] NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic
Cash System [online]. 2008 [cit. 2022-03-20]. Available from:
https://bitcoin.org/bitcoin.pdf

[8] POPOV, Serguei. The Tangle [online].
2018 [cit. 2022-03-25]. Available from:

63

8. Conclusion......................................
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/
45eae33637ca92f85dd9f4a3a218e1ec/iota1/_4_3.pdf

[9] Kevin Ashton Invents the Term "The Internet of Things": Exploring
the History of Information and Media through Timelines. HistoryofIn-
formation [online]. Cambridge, 1999 [cit. 2022-03-03]. Available from:
https://www.historyofinformation.com/detail.php?id=3411

[10] Number of Internet of Things (IoT) connected devices
worldwide from 2019 to 2030, by vertical. Statista [online].
Cambridge: Statista, 2022 [cit. 2022-03-05]. Available from:
https://www.statista.com/statistics/1194682/iot-connected-devices-
vertically/

[11] Digital Signatures and Certificates. In: GeeksforGeeks [online]. 2021
[cit. 2022-03-15]. Available from: https://www.geeksforgeeks.org/digital-
signatures-certificates/#: :text=A

[12] About IOTA: Data Transfer. In: Wikipedia: the free encyclopedia
[online]. San Francisco (CA): Wikimedia Foundation, 2022 [cit. 2022-04-
06]. Available from: https://wiki.iota.org/learn/about-iota/data-transfer

[13] Vývojová sada pro procesory a mikrokontroléry, Cortex
M4, 32 bitů, Cortex M4, B-L4S5I-IOT01A, Deska mikrokon-
troléru. In: Rs-online [online]. [cit. 2022-05-06]. Available
from: https://cz.rs-online.com/web/p/vyvojove-nastroje-pro-
mikrokontrolery/2044106?cm_mmc=CZ-PLA-DS3A-_-google-_-
PLA_CZ_CZ_Raspberry_Pi_

[14] CARELLI, Alberto, Andrea PALMIERI, Antonio VILEI, Fabien CAS-
TANIER a Andrea VESCO. Enabling Secure Data Exchange through
the IOTA Tangle for IoT Constrained Devices. Sensors [online]. 2022 [cit.
2022-04-19]. Dostupné z: doi:https://doi.org/10.3390/s22041384

[15] STMicroelectronics. B-L4S5I-IOT01A: STM32L4+ Discovery
Kit IoT Node, Low-Power Wireless, BLE, NFC, WiFi [on-
line]. STMicroelectronics, ©2021 [cit. 2022-04-01]. Available from:
https://www.st.com/en/evaluation-tools/b-l4s5i-iot01a.html

[16] IOTA Foundation. IOTA Wiki. The Complete Reference for IOTA [on-
line]. IOTA, ©2021 [cit. 2022-03-15]. Available from: https://wiki.iota.org

[17] STMicrolectronics. X-CUBE-IOTA1 [online]. ©2021 [cit. 2022-04-01].
Available from: https://github.com/STMicroelectronics/x-cube-iota1

[18] STMicroelectronics. UM2606. Rec 4. ©2021. Available online:
https://www.st.com/resource/en/user_manual/um2606-getting-started-
with-the-iota-distributed-ledger-technology-software-expansion-for-
stm32cube-stmicroelectronics.pdf

64

	Introduction
	Introduction to Internet of Things
	What is IoT?
	IoT architecture illustration
	Present architecture drawbacks

	Distibuted Ledger Technology
	DLT and IoT integration
	Blockchain
	Introduction
	Blockchain concepts
	Blockchain-based network operation concept

	IOTA Tangle
	The Tangle structure
	Sending a message at a high abstraction level

	The primary distinctions between IOTA's Tangle and a Blockchain
	The advantages of IOTA technology versus Blockchain technology
	Final conclusion of technology adoption

	Security
	Considered architecture
	Securing Data over the Tangle
	Masked Authenticated Messaging
	Streams

	L2Sec—A Cryptographic Protocol for Internet of Things Constraints
	Operating and Security Principles

	Methodological contribution
	Hardware
	Software
	Chrysalis – IOTA version 1.5
	Initial use of software
	Example analysis

	Practical contribution
	Implemented commands and functions
	Additional system evolution

	Practical part summary and discussion
	Conclusion
	Bibliography

