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Abstract
Knowledge of the electromagnetic prop-

erties of biomolecules is important for the
understanding of the interaction of elec-
tric fields with biosystems and for the
development of novel biomedical diagnos-
tic and therapeutic methods. However,
developments in this field are hampered
by the large sample volumes required for
permittivity extraction.

The aim of this work is to propose
a novel method for obtaining a broad-
band complex permittivity based on a
conductor–backed coplanar waveguide.
The main advantage of this method is the
ability to measure the dielectric proper-
ties of extremely small sample volumes (in
the order of µL), approximately 20 times
smaller than with commercially available
methods.

The method is then tested in real life on
measured S–parameters of an aqueous so-
lution of selected biomolecules (L-alanine
and L-cysteine) with different concentra-
tions in the frequency band 1.5 – 50 GHz.

The extracted permittivity is then com-
pared with the permittivity values ob-
tained by another independent reference
method.
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waveguide; biomolecules; transmission
line; liquid samples
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Abstrakt
Znalost elektromagnetických vlastností

biomolekul je důležitá pro pochopení in-
terakce elektrických polí s biosystémy
a pro vývoj nových biomedicínských dia-
gnostických a terapeutických metod. Roz-
voji v této oblasti však brání velké objemy
vzorků potřebné pro extrakci permitivity.

Cílem této práce je navrhnout novou
metodu pro získání širokopásmové kom-
plexní permitivity založené na zeměném
koplanárním vlnovodu. Hlavní výhodou
této metody je možnost měřit dielek-
trické vlastnosti extrémně malých objemů
vzorků (řádově µL), přibližně 20-krát men-
ších než u komerčně dostupných metod.

Metoda je následně testována v praxi
na naměřených S-parametrech roztoku
vody a vybraných biomolekul (L-alanin
a L-cystein) o různých koncentracích ve
frekvenčním pásmu 1,5 – 50 GHz.

Extrahovaná permitivita je poté porov-
nána s hodnotami permitivity získanými
jinou nezávislou referenční metodou.

Klíčová slova: komplexní permitivita;
širokopásmové; S–parametry; koplanární
vlnovod; biomolekuly; přenosové vedení;
kapalné vzorky

Překlad názvu: Širokopásmová extrakce
permitivity vzorků z měření
mikrovlnných pasivních planárních
zařízení

vi



Contents
1 Introduction 1
2 State of the Art 3
2.1 Coaxial Probe Techniques . . . . . . . 3
2.2 Freespace Techniques . . . . . . . . . . . 4
2.3 Resonant Cavity Techniques . . . . 4
2.4 Transmission Line Techniques . . . 4

2.4.1 State of the Art of Transmission
Line Techniques . . . . . . . . . . . . . . . . 5

2.4.2 Trace Method . . . . . . . . . . . . . . 6
3 Interaction of Electromagnetic
Fields with Dielectric Materials 7
3.1 Dielectrics in Time Dependent

Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.1 Complex Dielectric Permittivity 7

3.2 Debye Model . . . . . . . . . . . . . . . . . . 8
3.2.1 Single–term Debye Model . . . . 8
3.2.2 Two–term Debye Model . . . . . 10

3.3 Dielectric Properties of Materials 11
3.3.1 Water . . . . . . . . . . . . . . . . . . . . 11
3.3.2 Amino Acids and Peptides . . 11

3.4 Supplementary Section – Complex
Dielectric Permittivity Sign
Convention . . . . . . . . . . . . . . . . . . . . 12

4 The Transmission Line 15
5 Theory of Permittivity Extraction
from the Transmission Line 17
5.1 The Transmission Line

Characterization . . . . . . . . . . . . . . . . 17
5.1.1 Propagation Constant

Extraction . . . . . . . . . . . . . . . . . . . . 18
5.1.2 Field Shape Factors Extraction 19
5.1.3 Solution of a System of

Equations . . . . . . . . . . . . . . . . . . . . 21
5.2 Permittivity of the Material under

Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6 Implementation of Permittivity
Extraction from the Transmission
Line 25
6.1 Transmission Line

Characterization . . . . . . . . . . . . . . . . 26
6.1.1 S–parameters Transformation 26
6.1.2 Data Interpolation . . . . . . . . . 26
6.1.3 First Calibration Sample

Propagation Constant from ABCD
Matrix . . . . . . . . . . . . . . . . . . . . . . . 27

6.1.4 Second Calibration Sample
Propagation Constant . . . . . . . . . . 27

6.1.5 Field Shape Factors Extraction 28
6.2 Complex Permittivity Extraction 28

6.2.1 Areas of Validity of the
Solution . . . . . . . . . . . . . . . . . . . . . . 29

6.2.2 Third Propagation Constant of
the MUT . . . . . . . . . . . . . . . . . . . . . 29

6.2.3 Choice of the Right
Propagation Constant of the MUT 31

6.2.4 Permittivity Extraction . . . . . 35
6.2.5 Interpolation of the Resulting

Permittivity by the Debye Model 36
7 Final Measurement 39
8 The Resulting Acquired
Pemitivity 41
8.1 Simulator/Reference

Measurement . . . . . . . . . . . . . . . . . . . 41
8.1.1 Alanine 100 mg/mL . . . . . . . . 41
8.1.2 Alanine 150 mg/mL . . . . . . . . 42

8.2 Real Measured Data . . . . . . . . . . 42
8.2.1 Concentrations 50 mg/mL . . 43
8.2.2 Concentrations 100 mg/mL . 44
8.2.3 Concentrations 150 mg/mL . 46

8.3 Evaluation of Results . . . . . . . . . . 48
8.4 Discussion . . . . . . . . . . . . . . . . . . . 48
9 Conclusion 51
10 Annex 53
10.1 Assumptions: . . . . . . . . . . . . . . . . 53
10.2 Derivation if Zc1 = Zc2 . . . . . . . 53
10.3 Derivation if Zc1 ̸= Zc2 . . . . . . . 54
Bibliography 59

vii



Figures
3.1 Single–term Debye model of

complex water permittivity based on
eq. 3.13. The values of the
parameters are [1]: ϵh = 6.09, ϵl =
79.27 , τ = 8.84 (ps),
σl = 1.245·10−4 (S/m). . . . . . . . . . . . 9

3.2 Two–term Debye model of complex
water and alanine permittivity
(1 - 50) GHz of various concentrations
in mg/mL, based on eq. 3.16. The
values of the parameters are [1, 2]: ϵh

= 6.09, ϵl = 79.27, τ1 = 8.84 (ps), ∆
= 1.63, 8.17, 16.35, 32.70, 49.05, τ2 =
0.50 (ps) and from our measurement:
σl = 1, 5.252, 6.004, 10, 14.21, 23.08
(µS/cm) . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Side view of conductor–backed
coplanar waveguide – ilustration by
Ing. Daniel Havelka, Ph.D.. . . . . . . 15

4.2 The measuring CBCPW
transmission line, the black lines
indicate the reference planes (red
arrows). . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Composition of wave–cascade
matrices M1 and M2. . . . . . . . . . . . . 18

5.2 Spatial area of the transmission
line divided into parts A and B. . . 20

6.1 Simplified scheme of the complex
permittivity extraction method. . . 25

6.2 Complex Equation (6.5) for
unknown γ3. . . . . . . . . . . . . . . . . . . . 30

6.3 2D map of solutions of Equation
(6.5), yellow color corresponds to
solution. . . . . . . . . . . . . . . . . . . . . . . . 31

6.4 Real part of values of the sorted γ3
by their absolute value, Abs 1
corresponds to the smallest solution. 33

6.5 Imaginary part of values of the
sorted γ3 by their absolute value, Abs
1 corresponds to the smallest
solution. . . . . . . . . . . . . . . . . . . . . . . . 33

6.6 Real values of permittivity of the
MUT based on the sorted γ3, Abs 1
corresponds to the smallest solution,
REF is the reference permittivity. . 34

6.7 Imaginary values of permittivity of
the MUT based on the sorted γ3,
Abs 1 corresponds to the smallest
solution, REF is the reference
permittivity. . . . . . . . . . . . . . . . . . . . 34

6.8 Imaginary values of permittivity of
the MUT based on the sorted γ3 –
Abs 1 and Abs 2. . . . . . . . . . . . . . . . 35

6.9 Solution of permittivity
corresponding to Abs 1 separated by
polynomial of fourth degree. . . . . . . 36

7.1 The experimental setup of the final
measurement. . . . . . . . . . . . . . . . . . . 39

7.2 Multiline TRL calibration kit for
the CBCPW transmission line. . . . 40

7.3 The CBCPW transmission line
with a liquid sample (250 µL). . . . . 40

8.1 Complex permittivity from
simulator/reference measurement and
from our method – MUT alanine
100 mg/mL. . . . . . . . . . . . . . . . . . . 41

8.2 Complex permittivity from
simulator/reference measurement and
from our method – MUT alanine
150 mg/mL. . . . . . . . . . . . . . . . . . . 42

8.3 Comparison between complex
permittivities obtained from the
coaxial probe [3] and from our
method – MUT cysteine 50
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 43

8.4 Standard deviation of complex
permittivity from our method (five
repetitions) – MUT cysteine 50
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 43

8.5 Comparison between complex
permittivities obtained from the
coaxial probe [3] and from our
method – MUT alanine 100
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 44

viii



8.6 Standard deviation of complex
permittivity from our method (five
repetitions) – MUT alanine 100
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 44

8.7 Comparison between complex
permittivities obtained from the
coaxial probe [3] and from our
method – MUT cysteine 100
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 45

8.8 Standard deviation of complex
permittivity from our method (five
repetitions) – MUT cysteine 100
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 45

8.9 Comparison between complex
permittivities obtained from the
coaxial probe [3] and from our
method – MUT alanine 150
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 46

8.10 Standard deviation of complex
permittivity from our method (five
repetitions) – MUT alanine 150
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 46

8.11 Comparison between complex
permittivities obtained from the
coaxial probe [3] and from our
method – MUT cysteine 150
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 47

8.12 Standard deviation of complex
permittivity from our method (five
repetitions) – MUT cysteine 150
mg/mL. . . . . . . . . . . . . . . . . . . . . . . 47

Tables
3.1 Table of sign conventions. . . . . . . 13

8.1 Absolute permittivity deviations of
our method from the reference
measurement – real components. . . 48

8.2 Absolute permittivity deviations of
our method from the reference
measurement – imaginary
components. . . . . . . . . . . . . . . . . . . . 48

ix





Chapter 1
Introduction

Knowledge of the electromagnetic properties of biomolecules is important
for the understanding of the interaction of electric fields with biosystems
and for the development of novel biomedical diagnostic and therapeutic
methods. Electromagnetic fields in radio and microwave frequency bands
interact with biological systems mainly through the electrical component of
the field [4]. Determining the permittivity of biomolecules is therefore crucial
for determining the electromagnetic properties of proteins, cells and the whole
living organisms. However, developments in this field are hampered by the
large sample volumes associated with permittivity extraction.

The aim of this work is to propose a novel method for obtaining a broadband
complex permittivity based on a conductor–backed coplanar waveguide (the
transmission line design is based on [3]). The main advantage of this method
is the ability to measure the dielectric properties of extremely small sample
volumes (in the order of µL), approximately 20 times smaller than with
commercially available methods [3]. This is a very desirable feature since
purified protein samples can easily reach hundreds of EUR per mg.

The result of this work is an innovative method for extracting permittivity
from the S–parameters. The method is then tested in real life on measured
S–parameters of an aqueous solution of selected biomolecules (alanine and
cysteine) with different concentrations in the frequency band 1.5 – 50 GHz.
Alanine and cysteine are some of the most common proteinogenic amino acids,
therefore, they are well described and readily available. For these reasons,
alanine and cysteine were chosen as testing samples.

The extracted permittivity is then compared with the permittivity values
obtained by another independent reference method.
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Chapter 2
State of the Art

Here we review state of the art of technology for permittivity analysis in RF
and MW bands focusing on techniques which employ vector network analyzers.
The methods for extracting complex permittivity using a microwave vector
network analyzer can be divided into four basic groups [5]:. Coaxial probe. Freespace. Resonant cavity. Transmission line

Now we briefly describe the advantages and disadvantages of each approach.
Special attention will then be paid to the transmission line approach.

2.1 Coaxial Probe Techniques

Advantages [5]:. Non-destructive for a large number of materials.. Broad frequency range 0.2–50 GHz..Good for liquids or semisolids.. Easy to use.

Disadvantages [5]:. Need more sample volume.. The sample must be homogeneous and isotropic.. Problematic when measuring solids.

This is a well known technique of permittivity extraction. It is easy to use
and works in a wide frequency range. It is not suitable for low-loss materials,
magnetic materials, or where high precision is required [5].

3



2. State of the Art ...................................
2.2 Freespace Techniques

Advantages [5]:. Non-contact and non-destructive for many materials. Suitable for non-
contact measurement.. Broad frequency range, to 325 GHz.. It is possible to measure high temperature samples.

Disadvantages [5, 6]:.More complex operation.. Rather used for high frequencies from 100 GHz.. Very large samples needed at low frequencies.

Technique suitable for sheet materials, powders, or liquids [5]. Its main
problem is its price and its more complicated use.

2.3 Resonant Cavity Techniques

Advantages [5]:.More accurate than broadband techniques.. Ideal for low-loss materials.. Small samples size.

Disadvantages [5]:. Results at one frequency only.. Not suitable for high loss materials.. Complex post analysis.

This is the most accurate technique, especially for low-loss materials. The
big limitation of this technique is that permittivity is extracted at only one
frequency point and that the analysis can be complex.

2.4 Transmission Line Techniques

Advantages [3, 5]:. A very affordable method based on coax or waveguide fixtures.. Broad frequency range 0.1–110 GHz.

4



............................. 2.4. Transmission Line Techniques

. Suitable for hard solid materials or liquids.. It is possible to measure magnetic materials.. Small samples size.

Disadvantages [5]:. A precise shape of the sample is required (although this is not the case
for our measuring structure [3]).. Liquids, powders and gases must be contained.. Large sample volume needed for low frequencies.

A very good techniques for investigating the effects of dissolved species in
water. Provides information on understanding of the structure, molecular
motions, and interactions in biological materials [6].

These techniques require the sample to be in close proximity to the mea-
suring probe. The probe can be a transmission line section, waveguides, etc.
[6]. The main advantage of these techniques is the ability to measure the
dielectric properties of extremely small sample volumes. Where classical
dielectric spectroscopy requires a large sample volume for high-frequency
measurements, transmission line methods only need approximately 100 µL
[3] or even less in order from 1–10 µL to nL [7, 8, 9].

Our goal is an affordable method for measuring small volumes of
biomolecules dissolved in water, in wide frequency range. It is obvious
that this direction of methods is the best for our work.

2.4.1 State of the Art of Transmission Line Techniques

The current body of scientific literature can be divided into two main
directions, and so we we also divide this section. The first direction deals with
measured transmission line quantities, such as sample capacitance (per length)
and its contrast to some control for the purpose of biosensing. However, this
direction does not result in broadband permittivity extraction. The aim of
these methods is, for example, the detection of antibodies in cancer [10],
label–free detection of changes in DNA [11], and so on.

The second direction results in a broadband permittivity extraction. Here
the developments in this area are categorized on the basis of the way of
obtaining the resulting complex permittivity [12, 13].

Simulator

This is a large family of methods that use a simulator for the final estimation
of complex permittivity, see [14, 15, 7, 8, 16]. The principle of these methods
is based on the fact that in a certain step, the least squares method minimizes
the difference between the measured data (that is, S parameters, propagation
coefficient γ, or distributed transmission line parameters) and the data from

5



2. State of the Art ...................................
the simulator. It is then possible to read the resulting values of complex
permittivity from the simulator.

The advantage of these group of methods is a good accuracy [13]. The
disadvantage is the high computational complexity. Obtaining complex
permittivity by this method can be very time consuming.

Closed-Form Equations

This is a group of methods based on closed form equations. The complex
permittivity in this case is directly expressed from the equations, see [17, 18,
19, 20, 21].

The advantage of these methods is the high speed of complex permittivity
extraction. The disadvantage is lower accuracy compared to the complex
permittivity obtained from simulator in the previous Section [13].

2.4.2 Trace Method

Some methods from the previous Section 2.4.1 are specific in that they uses
the so-called Trace equation (see Section 5, eq. (5.15)) to obtain permittivity.
The advantage of these methods is that the Trace equation is based on
differential measurements. This means that only the difference between
measurements is used to obtain the permittivity and therefore we can neglect
the influence of the whole transmission path from VNA (connection cables,
transitions, and other imperfections leading to and from the sample), see
[13, 22, 23]. The resulting permittivity from the measurement can then be
obtained, for example, on the basis of a simulator [22].

6



Chapter 3
Interaction of Electromagnetic Fields with
Dielectric Materials

Electromagnetic fields in radio and microwave frequency bands interact
with biological systems mainly through the electrical component of the field
[4]. For this reason, dielectric properties in this frequency band are key to
characterizing and understanding the electromagnetic properties of biological
systems.

3.1 Dielectrics in Time Dependent Fields

If we put a dielectric material into an electric field, its microscopic particles
will begin to polarize in a way that reaches equilibrium with the acting electric
field. If the rate of change of the electric field occurs much slower than the
speed of motion of the microscopic particles, then the equilibrium between
the dielectric material and the acting electric field can be reached at all times.
Otherwise, there will be a dielectric displacement D∗(t) which in the case of
harmonic time-dependent fields can be written as:

D∗(t) = D0ei(ωt−δ(ω)), (3.1)

where D0 is constant, δ(ω) is a phase difference with respect to the electric
field, for a given frequency ω and t is time [6].

3.1.1 Complex Dielectric Permittivity

To describe the interaction of the dielectric material with the variable-
frequency electric field, we need to introduce a complex, frequency–dependent
dielectric permittivity ϵ∗(ω) [6]:

ϵ∗(ω) = D0
ϵ0E0

e−iδ(ω), (3.2)

where D0 is the dielectric displacement, E0 is the electric field intensity and ϵ0
is the permittivity of vacuum. Usually, D0 and E0 are frequency dependent,
so we can write:

D∗(ω) = ϵ0ϵ∗(ω)E∗(ω). (3.3)

7



3. Interaction of Electromagnetic Fields with Dielectric Materials ...............
After applying Euler’s relations to the complex permittivity, we get the
following:

ϵ∗(ω) = ϵ′(ω) − iϵ′′(ω), (3.4)

where:
ϵ′(ω) = D0(ω)

ϵ0E0(ω) cos (δ(ω)) (3.5)

ϵ′′(ω) = D0(ω)
ϵ0E0(ω) sin (δ(ω)) (3.6)

D0(ω) = ϵ0E0(ω)
√

ϵ′2(ω) + ϵ′′2(ω). (3.7)

Frequency dependent complex permittivity is particularly useful for describ-
ing lossy dielectric materials. The real part of Equation (3.4) then describes
the electric polarizability and the imaginary part corresponds to energy losses.

3.2 Debye Model

The Debye model can be used to model and predict the complex permittivity
of dielectric materials. To estimate the permittivity of a liquid sample
consisting of only one type of molecule (e.g., pure water), a single–term Debye
model can be used. To estimate the permittivity of a liquid sample consisting
of two types of molecules (e.g., water and alanine), the two–term Debye model
can be used. With extension of this logic, it is possible to describe samples
consisting of three or more types of molecules.

3.2.1 Single–term Debye Model

In the event of a step change in the electric field, transients begin to occur
in the dielectric. Microscopic particles of the dielectric material will reach a
new equilibrium state after a characteristic period of time [6]. Lets consider
a macroscopic relaxation function ϕ(t):

ϕ(t) = e− t
τ , (3.8)

where τ is the characteristic relaxation time of the dielectric material. In our
specific case, the relaxation time of a spherical particle in a viscous medium
can be written as [4]:

τ = 3V η

kBT
, (3.9)

where V is the volume of amino acid, η is the dynamic viscosity of the solvent at
temperature T and kB is the Boltzmann constant. The frequency–dependent
complex dielectric permittivity can be connected with the relaxation function
through the following equation:

ϵ∗(ω) − ϵh

ϵl − ϵh
= L̂

[
− d

dt
ϕ(t)

]
, (3.10)

8



.................................... 3.2. Debye Model

where L̂ represents the Laplace transform

L̂[f(t)] =
∫ ∞

0
e−ptf(t)dt, p = x + iω, x → 0 (3.11)

and ϵl is the low, ϵh is the high frequency limit of the permittivity for the
given relaxation. Equation (3.10) is crucial because it states that it does not
matter if the dielectric response is measured experimentally in the time or
the frequency domain. In both ways, the obtained information will be equal
[6].

By substituting Equation (3.8) into Equation (3.10) we get the famous
Debye formula for the frequency–dependent dielectric permittivity:

ϵ∗(ω) − ϵh

ϵl − ϵh
= 1

1 + iωτ
. (3.12)

For real dielectrics, the equation can be written as:

ϵ∗(ω) = ϵh + ϵl − ϵh

1 + iωτ
+ σl

iϵ0ω
, (3.13)

where σl/iϵ0ω is the added term of low frequency conductivity and σl is
conductivity. The real part of the ϵ∗(ω) function is equal to:

ϵ′(ω) = ϵh + ϵl − ϵh

1 + (ωτ)2 . (3.14)

The imaginary part is equal to:

ϵ′′(ω) = σl

ϵ0ω
− ωτ(ϵl − ϵh)

1 + (ωτ)2 . (3.15)

Figure 3.1: Single–term Debye model of complex water permittivity based on
eq. 3.13. The values of the parameters are [1]: ϵh = 6.09, ϵl = 79.27 , τ = 8.84 (ps),
σl = 1.245·10−4 (S/m).
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3. Interaction of Electromagnetic Fields with Dielectric Materials ...............
In Figure 3.1, we can see a single–term Debye model of the complex

permittivity of water. The real part of the complex permittivity is connected
to the polarization of the microscopic particles of the dielectric material
(water). At lower frequencies, the speed of motion of the microscopic particles
is much higher than the rate of change of the electric field, so the real part of
the permittivity remains constant. As the frequency rises, the microscopic
particles losses their ability to follow the electric field and the real value of
the permittivity starts to decline. The imaginary part of the permittivity is
connected to the energy losses inside the dielectric material. As you can see,
the steeper the slope of the real part of the permittivity, the higher the value
of the imaginary part of the permittivity.

3.2.2 Two–term Debye Model

From the point of view of this work, the two–term Debye model is especially
important. It is not the best model for describing the complex permittivity
of liquid samples (e.g., biomolecules of one type dissolved in pure water),
but its main advantage is simplicity. The more variables the model has, the
more problems it sets when fitting this model to real data. Therefore, the
two–term Debye model will be used for the final fitting and interpolation of
the obtained complex permittivity spectrum.

Figure 3.2: Two–term Debye model of complex water and alanine permittivity
(1 - 50) GHz of various concentrations in mg/mL, based on eq. 3.16. The values
of the parameters are [1, 2]: ϵh = 6.09, ϵl = 79.27, τ1 = 8.84 (ps), ∆ = 1.63, 8.17,
16.35, 32.70, 49.05, τ2 = 0.50 (ps) and from our measurement: σl = 1, 5.252,
6.004, 10, 14.21, 23.08 (µS/cm)
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............................ 3.3. Dielectric Properties of Materials

We can obtain the two–term Debye model by adding a second term in eq.
(3.13), i.e.:

ϵ∗(ω) = ϵh + ϵl − ϵh

1 + iωτ1
+ ∆

1 + iωτ2
+ σl

iϵ0ω
, (3.16)

where τ1 is the characteristic relaxation time of the first material (water),
τ2 is the characteristic relaxation time of the second material (dissolved
biomolecules), and ∆ is the dielectric increment of the second material. In
the Figure 3.2, we can see the two–term Debye model for dissolved alanine in
pure water of various concentrations.

For other models describing complex permittivity of water and amino acids
see Section 3.3.2.

3.3 Dielectric Properties of Materials

In this section, we will focus on the dielectric properties of materials relevant
to this work.

3.3.1 Water

Water is one of the basic building blocks of life, therefore it is essential to
understand it. The water molecule is composed of an oxygen atom in the
center and two light hydrogen atoms at two of its vertices. Its shape can be
described as an almost regular tetrahedron [6].

The most important thing in our case is that the complex permittivity
spectrum of water at low frequencies (assuming a constant temperature) can
be well described by a Debye function [6].

3.3.2 Amino Acids and Peptides

Amino acids are the basic building blocks of proteins and because of that
a fundamental elements of life. So far, 20 biologically significant amino acids
are known [6]. They can be classified into three groups:

. Hydrophilic – charged and polar. Hydrophobic – nonpolar. Special

In our case, the most important fact is the polar nature of amino acids
in aqueous solutions. The dielectric properties of amino acids in aqueous
solutions can thus be studied by broadband dielectric spectroscopy.
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3. Interaction of Electromagnetic Fields with Dielectric Materials ...............
Dissolving Biomolecules in Water

Study of any polar molecule in aqueous solutions comprises the following
two elementary tasks:..1. estimation of the molecule dipole moment (from literature, analytical

models, etc.),..2. estimation of the relaxation time (from literature, analytical models,
etc.).

Water and amino acids have both polar molecules, therefore at least two
relaxation processes should occur in the permittivity spectrum [6]. The low
frequency relaxation is credited to the rotation of the biomolecules, while
the high frequency relaxation is assigned to the water dielectric properties.
In its entirety, the entire dielectric spectrum of such a solution ϵ∗(ω) can be
described by the phenomenological Cole–Cole dispersion function [6]:

ϵ∗(ω) = ϵh + ∆ϵ1
1 + (iωτ1)α1

+ ∆ϵ2
1 + (iωτ2)α2

, (3.17)

where ϵh is the high frequency limit of the permittivity, ∆ϵ1 and ∆ϵ2 are the
corresponding relaxation strengths - dielectric increments, τ1 and τ2 are the
relaxation times (Equation (3.9)) and α1 and α2 are shape parameters of the
appropriate mode.

The amount of biomolecules dissolved in water has a direct effect on the
complex permittivity of the water & biomolecules dielectric solution. The
effect can be expressed by the dielectric increment ∆ϵ. We can write [4]:

∆ϵ = NV gp2

2kBTϵ0
, (3.18)

where NV is the density of the molecules, g is the correlation factor, p is the
dipole moment of the molecules, T is the absolute temperature and kB is the
Boltzmann constant.

3.4 Supplementary Section – Complex Dielectric
Permittivity Sign Convention

For the following sections, it was necessary to determine the sign convention
and adhere to it during the calculations. If we start from Maxwell’s equations
(Ampère’s law), we can easily derive the sign convention:

∇⃗ × H⃗ = J⃗ + ∂D⃗

∂t
, (3.19)

∇⃗ × H⃗ = σ · E⃗ + ϵ̄ · ∂E⃗

∂t
,

where
E⃗ = E⃗0 · ejωt, (3.20)
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.......... 3.4. Supplementary Section – Complex Dielectric Permittivity Sign Convention

we can then write that:

∇⃗ × H⃗ = σ · E⃗ + jωϵ̄ · E⃗,

∇⃗ × H⃗ = jωE⃗ ·
(

ϵ̄ + σ

jω︸ ︷︷ ︸
ϵ∗

)
, (3.21)

where ∇ is the nabla operator, H⃗ is the magnetic H field, J⃗ is the electric
current density J field, D⃗ is the electric displacement D field, E⃗ is the
intensity of the electric field, E⃗0 is the constant intensity of the electric field,
t is time, σ is conductivity, ϵ̄ is complex permittivity, j is the imaginary unit,
ω is the angular frequency and ϵ∗ is the total frequency-dependent complex
permmittivity.

This sign convention (A) for ϵ∗ will be followed during the work. See Table
3.1 for clarity on the possible transition between conventions:

A B
ejωt e−jωt

ϵ∗ = ϵ̄ − jϵ̂ ϵ∗ = ϵ̄ + jϵ̂

ϵ̄ +
σ

jω
ϵ̄ −

σ

jω

Table 3.1: Table of sign conventions.

where ϵ̂ =
σ

ω
.
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Chapter 4
The Transmission Line

The transmission line for permittivity extraction is based on a conductor–
backed coplanar waveguide (CBCPW) where the segment of the line dedicated
to the sensing part is inverted. It consists of a middle ENIG (Electroless
Nickel / Immersion Gold) copper conductor that is surrounded by a pair
of ENIG copper ground conductors. The grounding conductors are then
connected to the ground plate by vias (see Figure (4.1)). This transmission
line was developed and tested in previous work [3].

Coplanar waveguide transmission lines are becoming a popular structure
for low-volume permittivity measurements of liquid samples [13]. Their main
advantages are:..1. confined fields in the slots..2. ease of fabrication..3. ease of integration into microfluidic structures

Figure 4.1: Side view of conductor–backed coplanar waveguide – ilustration by
Ing. Daniel Havelka, Ph.D..

In our case, the measuring transmission line (see Figure (4.2)) is a modified
CBCPW structure. The measuring area of the transmission line (delimited
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4. The Transmission Line.................................
by a green ellipse, see Figure (4.2)) is a 4 mm long CBCPW line, which is
brought to the other side of the transmission line (ground plate side) by vias.
The transmission line provides accurate reading regardless of the shape and
volume of the material under test (for more info see [3]).

Figure 4.2: The measuring CBCPW transmission line, the black lines indicate
the reference planes (red arrows).
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Chapter 5
Theory of Permittivity Extraction from the
Transmission Line

The basic idea of this method is to measure the propagation of electro-
magnetic signals (S–parameters) of a transmission line. When the sample is
placed on the transmission line, the distribution of the electromagnetic field
changes (see Chapter 4), and thus the S–parameters change. This change
in the S–parameters allows us to calculate the complex permittivity of the
material under test.

5.1 The Transmission Line Characterization

We start from the standard equation for the propagation constant γ and
the characteristic impedance Z0 of an arbitrary transmission line [24, eq. (37,
38), p. 541]:

γ =
√

(jωL + R)(jωC + G), (5.1)

Z0 =
√

(jωL + R)/(jωC + G), (5.2)

where j is the imaginary unit, ω is angular frequency, L is inductance per
length, R is resistance per length, C is capacitance per length and G is
conductance per length (see [24, Fig. 1, p. 541].

Our transmission line will be calibrated with two liquid media, which means
that we will get two propagation constants:

γ1 =
√

(jωL1 + R1)(jωC1 + G1), (5.3)

γ2 =
√

(jωL2 + R2)(jωC2 + G2). (5.4)

Due to the fact that the geometry and conductivity of the transmission line
will be the same for both media and that the electromagnetic field interacts
with biological samples mainly through the electrical component of the field
(it therefore does not change the inductance of the transmission line), we can
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5. Theory of Permittivity Extraction from the Transmission Line................
say that [22]:

L1 = L2, (5.5)
R1 = R2. (5.6)

5.1.1 Propagation Constant Extraction

From measurement and/or simulation, γ1 can be obtained. γ2 can be
obtained from trace of measured wave–cascade matrices M1, M2 (also called
chain transfer matrices, see [25, Fig. 2, eq. (6a, 6b)] for the definition):

M1 = X · RZ0,Z0
1 (l1) · Y, (5.7)

M2 = X · RZ0,Z0
2 (l2) · Y, (5.8)

where X,Y are matrices that represent the networks from the measurement
planes to the transmission line and l1, l2 correspond to length of the transmis-
sion line segment loaded with the media. RZ0,Z0

1 (l1) and RZ0,Z0
2 (l2) represent

the cascade matrices of the transmission lines referenced to a common refer-
ence impedance Z0 at their input and output (see Figure 5.1).

Figure 5.1: Composition of wave–cascade matrices M1 and M2.

For RZ0,Z0
1 (l1) holds:

RZ0,Z0
1 (l1) = QZ0,Zc1 · RZc1,Zc1

1 (l1) · QZc1,Z0 , (5.9)

where RZc1,Zc1
1 (l1) represents the cascade matrix of the measuring surface

of the transmission line with the first calibration medium referenced to the
characteristic impedance Zc1 [24, eq. (38), p. 541], i.e.:

RZc1,Zc1
1 (l1) =

[
e−γ1·l1 0

0 eγ1·l1

]
. (5.10)

The same relation as eq. (5.9) and (5.10) can be written as RZ0,Z0
2 (l2). The

QZ0,Zc1 and QZc1,Z0 are impedance transformers defined by [24, eq. (79), p.
548]:
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......................... 5.1. The Transmission Line Characterization

QZn,Zm = 1
2Zm

∣∣∣∣Zm

Zn

∣∣∣∣
√

ℜ(Zn)
ℜ(Zm)

[
Zm + Zn Zm − Zn

Zm − Zn Zm + Zn

]
, (5.11)

where Zm, Zn are the corresponding impedances and ℜ symbol refers to the
real part of an imaginary number. The following relation can be derived from
the Equations (5.7), (5.8) [22, eq. (10)]:

Tr
{
M2 · M−1

1
}

=

2 · cosh (γ1 · l1) cosh (γ2 · l2) −
(Zc1

Zc2
+ Zc2

Zc1

)
· sinh (γ1 · l1) sinh (γ2 · l2).

(5.12)

See annex (Section 10) for detailed derivation of eq. (5.12) from Equations
(5.7), (5.8), (5.9), (5.10) and (5.11).

Since the length of the measuring surface of the transmission line will be
the same for both calibration media, we can write that:

l1 = l2 = l. (5.13)

Furthermore, since inductance L and resistance R in Zc1 and Zc2 will also
be the same for both calibration media (L, R depend only on the conductor
geometry and conductivity – see [22, eq. (11)]), based on eq. (5.5) and (5.6),
we can write the following:

Zc1
Zc2

=
√

(jωLc1 + Rc1)/(jωCc1 + Gc1)
(jωLc2 + Rc2)/(jωCc2 + Gc2) =

√
(jωCc2 + Gc2)
(jωCc1 + Gc1) = γ2

γ1
(5.14)

Based on Equations (5.13) and (5.14), we can rewrite Equation (5.12) in
its final form:

Tr
{
M2 · M−1

1
}

=

2 · cosh (γ1 · l) cosh (γ2 · l) −
(γ1

γ2
+ γ2

γ1

)
· sinh (γ1 · l) sinh (γ2 · l). (5.15)

From Equation (5.15) we can finally obtain γ2 by numerical solver, because
γ2 is the only unknown. See Section 6 for more information.

5.1.2 Field Shape Factors Extraction

Thanks to the previous section, we have obtained numerical values for the
propagation constants γ1 and γ2. To derive field shape factors, we start from
Equation (5.3) for γ1:

γ1 =
√

ZRL ·
√

jωC1 + G1, (5.16)

where for simplicity:
ZRL = jωL1 + R1. (5.17)
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5. Theory of Permittivity Extraction from the Transmission Line................
The spatial area in which the measuring transmission line is located can be

divided into two parts, above (surface area of the transmission line with the
measured sample) and below (substrate) the transmission line (see Figure
5.2). We assume that all electromagnetic lines above the transmission line
are contained within the sample.

Figure 5.2: Spatial area of the transmission line divided into parts A and B.

Capacitance C and conductance G thus can be divided into a part A (above)
and part B (below), i.e.:

C1 = C1A + C1B, (5.18)

G1 = G1A + G1B. (5.19)

Based on Equations (5.18) and (5.19), Equation (5.16) can be rewritten as:

γ1 =
√

ZRL ·
√

jω(C1A + C1B) + G1A + G1B, (5.20)

The corresponding capacitances and conductances can be rewritten using the
corresponding field shape factor K, the conductivity σ and the permittivity
ϵ, i.e.:

C1A = KAϵ1A, (5.21)

C1B = KBϵ1B, (5.22)

G1A = KAσ1A, (5.23)

G1B = KBσ1B. (5.24)

After some equation manipulation and using Equations (5.21), (5.22), (5.23)
and (5.24), Equation (5.20) can be rewritten as:

γ1 =
√

ZRL ·
√

KA(jωϵ1A + σ1A) + KB(jωϵ1B + σ1B), (5.25)

In this way we get into the Equation (5.25) the field shape factors KA and
KB that we are looking for. We now use the relation that the frequency-
dependent complex permittivity ϵ∗ is equal to (see Section 3.4):

ϵ∗ = ϵ̄ + σ

jω
, (5.26)
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......................... 5.1. The Transmission Line Characterization

where ϵ̄ is the complex permittivity, σ is the conductivity, and ω is the angular
frequency. Using Equation (5.26), we obtain from Equation (5.25):

γ1 =
√

ZRL ·
√

KAjωϵ∗
1A + KBjωϵ∗

1B, (5.27)

where ϵ∗
1A corresponds to the complex permittivity of the first calibration

sample above the transmission line and ϵ∗
1B corresponds to the complex

permittivity of substrate below the transmission line.
In the same way, we can derive for γ2:

γ2 =
√

ZRL ·
√

KAjωϵ∗
2A + KBjωϵ∗

2B, (5.28)

where ϵ∗
2A corresponds to the complex permittivity of the second calibration

sample above the transmission line, ϵ∗
2B corresponds to the complex permit-

tivity of the substrate below the transmission line and based on Equations
(5.5) and (5.6) we assume [22, eq. (11)]:

jωL1 + R1 = jωL2 + R2 = ZRL. (5.29)

The electromagnetic field intensity above the transmission line will be
affected by the enclosed measured sample, however, the field under the
transmission line will always be the same. The transmission line substrate
will not change between measurements. Based on that, we can write that:

ϵ∗
1B = ϵ∗

2B = ϵ∗
S . (5.30)

5.1.3 Solution of a System of Equations

From the previous section, we got a system of two complex equations with
two unknowns KA and KB. Thus, on the basis of Equations (5.27), (5.28),
(5.29) and (5.30):

γ1 =
√

ZRL ·
√

KAjωϵ∗
1A + KBjωϵ∗

S , (5.31)

γ2 =
√

ZRL ·
√

KAjωϵ∗
2A + KBjωϵ∗

S . (5.32)

From Equation (5.32) we express KA:

γ2
2 = ZRL · (KAjωϵ∗

2A + KBjωϵ∗
S)

γ2
2

ZRL
− KBjωϵ∗

S = KAjωϵ∗
2A

KA = 1
jωϵ∗

2A

·
(

γ2
2

ZRL
− KBjωϵ∗

S

)
. (5.33)

Substituting Equation (5.33) into Equation (5.31) we get the following:

γ1 =
√

ZRL ·

√√√√ 1
jωϵ∗

2A

·
(

γ2
2

ZRL
− KBjωϵ∗

S

)
· jωϵ∗

1A + KBjωϵ∗
S
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5. Theory of Permittivity Extraction from the Transmission Line................
γ2

1
ZRL

=
(

γ2
2

jωϵ∗
2AZRL

− KBjωϵ∗
S

jωϵ∗
2A

)
· jωϵ∗

1A + KBjωϵ∗
S

γ2
1

ZRL
= γ2

2ϵ∗
1A

ϵ∗
2AZRL

− KBjωϵ∗
Sϵ∗

1A

ϵ∗
2A

+ KBjωϵ∗
S

γ2
1

ZRL
− γ2

2ϵ∗
1A

ϵ∗
2AZRL

= KB ·
(

jωϵ∗
S − jωϵ∗

Sϵ∗
1A

ϵ∗
2A

)

KB =

γ2
1

ZRL
−

γ2
2ϵ∗

1A

ZRLϵ∗
2A

jωϵ∗
S −

jωϵ∗
Sϵ∗

1A

ϵ∗
2A

. (5.34)

Substituting Equation (5.34) into Equation (5.33) we get KA:

KA = 1
jωϵ∗

2A

·
(

γ2
2

ZRL
−

γ2
1

ZRL
−

γ2
2ϵ∗

1A

ZRLϵ∗
2A

jωϵ∗
S −

jωϵ∗
Sϵ∗

1A

ϵ∗
2A

· jωϵ∗
S

)

KA = 1
jωϵ∗

2A

·
(

γ2
2

ZRL
−
[

γ2
1

ZRL
−

γ2
2ϵ∗

1A

ZRLϵ∗
2A

]
·
[

ϵ∗
2A

jωϵ∗
Sϵ∗

2A − jωϵ∗
Sϵ∗

1A

]
· jωϵ∗

S

)

KA = 1
jωϵ∗

2A

·
(

γ2
2

ZRL
−
[

γ2
1

ZRL
−

γ2
2ϵ∗

1A

ZRLϵ∗
2A

]
·
[

ϵ∗
2A

ϵ∗
2A − ϵ∗

1A

])
. (5.35)

In addition, based on Equations (5.1), (5.2) and (5.29) we can use a trick
for the numerical value of ZRL, that is:

ZRL = γ1 · Z1 =√
(jωL1 + R1)(jωC1 + G1) ·

√
(jωL1 + R1)
(jωC1 + G1) = jωL1 + R1. (5.36)

Finally, by simplifying Equations (5.35) and (5.34) we obtain the final form
of KA and KB, that is:

KA =
γ2

1 − γ2
2

jωZRL(ϵ∗
1A − ϵ∗

2A) (5.37)

KB =
γ2

2ϵ∗
1A − γ2

1ϵ∗
2A

jωZRLϵ∗
S(ϵ∗

1A − ϵ∗
2A) (5.38)
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......................... 5.2. Permittivity of the Material under Test

5.2 Permittivity of the Material under Test

Thanks to the previous sections, we have a characterized transmission line
in the form of the propagation constant γ1 and the field shape factors KA

and KB. We will now obtain a procedure for obtaining complex permittivity
from this data.

We start with the Equation (5.15):

Tr
{
M3 · M−1

1
}

=

2 · cosh (γ1 · l) cosh (γ3 · l) −
(γ1

γ3
+ γ3

γ1

)
· sinh (γ1 · l) sinh (γ3 · l), (5.39)

where M3, M1 (wave-cascade matrices) are obtained from the measured data
(see Section 5.1.1), γ1 is the propagation constant of the first calibration
medium, l is the measurement surface length of the transmission line, and γ3
is the propagation constant of the material under test (MUT). The γ3 is the
only unknown and we obtain it by numerical solution of eq. 5.39.

Subsequently, we divide γ1 by γ3 and based on the Equation (5.27), we
obtain:

γ1
γ3

=
√

KBjωϵ∗
s + KAjωϵ∗

1A

KBjωϵ∗
s + KAjωϵ∗

3A

, (5.40)

where ϵ∗
s is the complex permittivity of the substrate, ϵ∗

1 is the complex
permittivity of the first calibration medium and ϵ∗

3 is the unknown complex
permittivity. By expressing ϵ∗

3 from the Equation (5.40), we then obtain the
required permittivity of the MUT, i.e.:(

γ1
γ3

)2

= KBjωϵ∗
s + KAjωϵ∗

1A

KBjωϵ∗
s + KAjωϵ∗

3A

KBjωϵ∗
s + KAjωϵ∗

3A =
[
KBjωϵ∗

s + KAjωϵ∗
1A

]
·
(

γ3
γ1

)2

ϵ∗
3A =

[
KBϵ∗

s + KAϵ∗
1A

]
·
(

γ3

γ1

)2

− KBϵ∗
s

KA
(5.41)

This is possible because in Equation (5.40), ϵ∗
3 is the only unknown.
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Chapter 6
Implementation of Permittivity Extraction
from the Transmission Line

The aim of this chapter is to provide a detailed description of the implemen-
tation of the method. The whole method is implemented in MATLAB. For
ease of understanding, Figure 6.1 shows a simplified diagram of the method.
The goal of this schema is to capture the flow of data through the method.

Figure 6.1: Simplified scheme of the complex permittivity extraction method.
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6. Implementation of Permittivity Extraction from the Transmission Line ............
The method can be divided into two basic parts:..1. Coplanar transmission line characterization..2. Complex permittivity extraction

Coplanar transmission line characterization is performed once. Subsequently,
we insert the measured S parameters of the MUT (material under test) into
the method. The result is the required complex permittivity of the MUT.

The division of sections in this chapter corresponds to the course of the
method. At the beginning of each section are its inputs and outputs. It is
important to note that the procedure described in this chapter is performed
many times - once for each measured frequency point.

6.1 Transmission Line Characterization

6.1.1 S–parameters Transformation

Input:. S–parameters – magnitude and phase format

Output:. S–parameters – complex number format

S–parameters are often in magnitude and phase format. Before entering the
method, it is necessary to convert them to S–parameters in complex number
format, i.e.:

x = 10(Mag/20) · [cos(Pha) + i · sin(Pha)], (6.1)
where Mag is the magnitude of the input S–parameters, Pha is the phase of
the input S–parameters and x are the S–parameters in the complex number
format.

6.1.2 Data Interpolation

Input:. Any data

Output:. Any data

The measured data and the data from the simulator/reference measurement
often do not have the same length – they are not from the same frequency
points. Before using the method, all data must be interpolated to the same
frequency points. In our case, the data from the reference measurement were
interpolated to the frequency points of the real measured data from the vector
network analyzer.

Spline smoothing interpolation can be used for interpolation.
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6.1.3 First Calibration Sample Propagation Constant from
ABCD Matrix

Input:. S–parameters from the simulator

Output:. Propagation constant γ1 of the CBCPW line with the first calibration
medium

First we need to obtain the value of a propagation constant of the first
calibration medium. One option would be to obtain the propagation constant
from measurement. This might be rather easy for an empty transmission line
(i.e. loaded by air only, which does not represent a good calibration medium,
since its permittivity is far from water-based biological media), but is much
more complicated for liquid samples. To that end, it would be necessary to
eliminate all other sections of the CBCPW line (with air, etc.), transitions
and so on, by de-embedding.

For these reasons, decided we obtain γ1 from the simulator (based on our
and reference measurement). In the simulator, we define a short section of
the CBCPW line with only the first calibration medium. We then obtain the
S–parameters of the line section with reference planes directly on the first
calibration medium. The S–parameters than can be converted to the propa-
gation constant γ1. We can use ABCD parameters to convert S–parameters
to the propagation constant. We first convert the S–parameters to the ABCD
parameters [25]:

A =
(1 + S11) · (1 − S22) + S12S21

2S21
, (6.2)

D =
(1 − S11) · (1 + S22) + S12S21

2S21
, (6.3)

where A and D are parts of the ABCD matrix, and S11, ..., S22 are the
S–parameters from simulator. Substituting Equations (6.2) and (6.3) into
Equation (6.4), we obtain the propagation constant of the first calibration
medium γ1 [26], that is:

γ1 =
arcCosh(

√
A · D)

l
, (6.4)

where l is the length of the section of the CBCPW line.

6.1.4 Second Calibration Sample Propagation Constant

Input:.Measured S–parameters of the first calibration sample
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.Measured S–parameters of the second calibration sample. Propagation constant γ1 of the CBCPW line of the first calibration

sample

Output:. Propagation constant γ2 of the CBCPW line of the second calibration
sample

This section is based on Section 5.1.1, specifically Equation (5.15). Propa-
gation constant γ2 of the second calibration sample can be obtained using
numerical solver. Because Equation (5.15) is complex, γ2 can have multiple
solutions. It is therefore important to set the numeric solver in such a way
that it behaves deterministically and converges to the same solutions under
the same initial conditions.

6.1.5 Field Shape Factors Extraction

Input:. Propagation constant γ1 of the first calibration sample. Propagation constant γ2 of the second calibration sample. Permittivity ϵ∗
1A of the first calibration sample. Permittivity ϵ∗
2A of the second calibration sample. Permittivity ϵ∗
S of the CBCPW line substrate. Characteristic impedance Z1 of the CBCPW line.

Output:. Field shape factors KA and KB.

This section is based on Section 5.1.3, specifically Equations (5.37) and
(5.38). Obtained field shape factors KA and KB are the main result of the
transmission line characterization phase.

6.2 Complex Permittivity Extraction

The procedure in this section will be shown specifically on MUT alanine
100 mg/mL, calibration solutions water and water with alanine 50 mg/mL.
However, the procedure can be generalized to any sample with a permittivity
close to that of the calibration solutions.
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6.2.1 Areas of Validity of the Solution

Input:.Measured S–parameters of the first calibration sample.Measured S–parameters of the second calibration sample. Propagation constant γ1 of the CBCPW line of the first calibration
sample. Propagation constant γ2 of the CBCPW line of the second calibration
sample

Output:. Areas of validity of the solution for Section 6.2.3

In this section, we try to find permittivity of the MUT. We try to achieve
this using the field shape factors, which were calculated from the propagation
constant of the second calibration sample. Ideally, Equation (5.15), from
Section 5.1.1, would apply in all cases. In practice, however, this is not the
case, because the equation contains complex hyperbolic functions.

Complex hyperbolic functions consist of exponentials, which means that
they can quickly reach very large values. Ideally, there would be no problem
with absolute numerical accuracy. In practice, however, the numbers are
stored on a computer with limited numerical accuracy – each value is rounded.
Thanks to complex hyperbolic functions, these small inaccuracies can multiply
into huge values.

In practice, therefore, we must substitute the input values into the Equation
(5.15) and check whether the equation holds. If the error of the equation
exceeds a certain limit, its results for the given frequency points cannot be
used for further calculations.

In Section 6.2.3 in Figures 6.6 and 6.7 we can see in the range 20 – 25 GHz
that the permittivity results do not correspond well. This area corresponds to
the area where Equation (5.15) does not give the correct solutions. Therefore,
results in this frequency range cannot be used.

6.2.2 Third Propagation Constant of the MUT

Input:.Measured S–parameters of the first calibration sample.Measured S–parameters of the MUT. Propagation constant γ1 of the CBCPW line of the first calibration
sample

Output:. Propagation constants γ3 of the CBCPW line of the MUT
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6. Implementation of Permittivity Extraction from the Transmission Line ............
This section is based on Section 5.2, specifically Equation (5.39). The beauty

of Equation (5.39) is that it allows us to determine propagation constant from
S–parameters without direct measurement, which is very difficult. However,
the problem is the complexity of this equation.

Equation (5.39) does not give an unambiguous solution. If we convert the
Equation (5.39) into the following form:

0 = 2 · cosh (γ1 · l) cosh (γ3 · l) −
(γ1

γ3
+ γ3

γ1

)
· sinh (γ1 · l) sinh (γ3 · l)

− Tr
{
M3 · M−1

1
}
, (6.5)

insert any actual values obtained by the previous steps:

l = 0.004 [m]
γ1 = 0.12 + 34.14i [1/m]

Tr
{
M3 · M−1

1
}

= 1.99 + 1.50i

and plot the output for unknown γ3, we get Figure 6.2.

Figure 6.2: Complex Equation (6.5) for unknown γ3.

In Figure 6.2 we have a complex plane plotted on the x and y axes. The
z-axis corresponds to the output value of the complex function. The green area
corresponds to the real component of the function. The red area corresponds
to the imaginary component of the function. The blue area is then the complex
plane itself corresponding to the x and y axes. Where the red and blue areas
simultaneously intersect the blue area, there is a solution to Equation (6.5).
If we draw only the solutions map in 2D space (areas where the red and
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............................ 6.2. Complex Permittivity Extraction

green areas simultaneously approach zero), we get Figure 6.3. The yellow
area corresponds to the solution of Equation (6.5) whenever the real and
imaginary output components were simultaneously less than 2. However, if
we increase the resolution and look at the solution map in more detail, we
will find that each yellow area contains whole nests of other solutions.

The solution of Equation (6.5) cannot be expressed analytically. The
equation can be solved using a numeric solver, but it is obvious that the
solver converges to different solutions based on the different initial conditions.
Each of the solutions then results in a different complex permittivity of the
MUT.

The solution to this problem is to run the numeric solver many times with
random initial conditions. The goal is to obtain as many independent γ3
solutions as possible, which will be further processed.

Figure 6.3: 2D map of solutions of Equation (6.5), yellow color corresponds to
solution.

6.2.3 Choice of the Right Propagation Constant of the MUT

Input:. Propagation constants γ3 of the CBCPW line of the MUT

Output:. Selected solutions of the propagation constants γ3 of the CBCPW line
of the MUT

Consider, for example, calibration solutions of water and water with alanine
50 mg/mL. Our MUT will be water with alanine 100 mg/mL. If we sort the
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6. Implementation of Permittivity Extraction from the Transmission Line ............
calculated γ3 from the previous section based on its size (absolute values of
the complex number), we get Figure 6.4 and Figure 6.5.

If we then calculate the corresponding permittivity for these sorted γ3
on the basis of Section 5.2, we obtain Figures 6.6 and 6.7. As we can see,
the solutions with the smallest absolute value achieve the best values of the
resulting permittivity. These are the base solutions, where higher harmonic
solutions no longer achieve such good results. We will select the first two
absolutely smallest γ3 as the solution of Equation (6.5) (Figure 6.5, Abs 1
and Abs 2).

Although this example of a selection of the propagation constant of the MUT
was shown for alanine 100 mg/mL only, this procedure can be generalized to
any other liquid samples close to the calibration media.
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Figure 6.4: Real part of values of the sorted γ3 by their absolute value, Abs 1
corresponds to the smallest solution.

Figure 6.5: Imaginary part of values of the sorted γ3 by their absolute value,
Abs 1 corresponds to the smallest solution.

33



6. Implementation of Permittivity Extraction from the Transmission Line ............

Figure 6.6: Real values of permittivity of the MUT based on the sorted γ3,
Abs 1 corresponds to the smallest solution, REF is the reference permittivity.

Figure 6.7: Imaginary values of permittivity of the MUT based on the sorted γ3,
Abs 1 corresponds to the smallest solution, REF is the reference permittivity.
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6.2.4 Permittivity Extraction

Input:. Selected solutions of the propagation constants γ3 of the CBCPW line
of the MUT

Output:. Permittivity of the MUT at certain frequency points

Using the procedure described in the previous section, we have selected γ3
propagation constants, from which we calculate the unknown permittivity of
the MUT (based on Section 5.2). The output can be seen in Figures 6.6 and
6.7 (red and yellow curves corresponding to Abs 1 and Abs 2).

In Figure 6.8 we can see the imaginary component of the solutions of Abs 1
and Abs 2. As we can see, these are the base solutions for the γ3 that are
very close in value, but have a different final permittivity of the MUT. The
numerical solver jumps between these two solutions, as is evident in Figure 6.8.
At the same time, we can see that the Abs 1 and Abs 2 solutions behave like
their complements, mirroring each other.

Figure 6.8: Imaginary values of permittivity of the MUT based on the sorted γ3
– Abs 1 and Abs 2.

In Figure 6.8 we can see two main courses of the solution. The correct
solution is marked with green arrows, and the wrong solution is marked with
red arrows. Our goal is to separate the two solutions. From Section 6.2.1 we
know that the intervals for correct solutions are approximately 0 to 12 GHz
and 28 to 50 GHz. We just need to interpolate the permittivity solution for
Abs 1 and Abs 2 with a suitable curve that separates the upper and lower
course of the solution. In the interval 0 to 12 GHz, we will consider only
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6. Implementation of Permittivity Extraction from the Transmission Line ............
the upper part of the solutions (above the separating curve), in interval 28
to 50 GHz we will consider only the lower part of the solutions (below the
separating curve).

In Figure 6.9 we can see a specific example for the permittivity solution
corresponding to Abs 1 (γ3). The separating function here is a fourth degree
polynomial function. The solution areas are indicated by green arrows.

Figure 6.9: Solution of permittivity corresponding to Abs 1 separated by
polynomial of fourth degree.

Following the same procedure as in Figure 6.9, we obtain a solution for
permittivity corresponding to Abs 2 (γ3). Although we did separation for
the imaginary parts of the solutions, we also separated the real parts of the
solutions. We then add the resulting permittivity solutions for Abs 1 and
Abs 2 into one result.

6.2.5 Interpolation of the Resulting Permittivity by the
Debye Model

Input:. Permittivity of the MUT at certain frequency points

Output:. Interpolated Permittivity of the MUT for the whole frequency spectrum

We now have the resulting MUT permittivity data. However, the data is
fragmentary, not continuous across the spectrum, wavy, and contains outliers
caused by numerical errors. Therefore, it would be good to interpolate the
data with a suitable curve, capturing the physical nature of the thing.

We will use the two–term Debye model (Section 3.2.2) for the final fit of
the data in the following way.
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............................ 6.2. Complex Permittivity Extraction..1. Use an optimizer to fit the data using the Debye two–term model...2. Find in the data the farthest point from the two–term Debye model and
remove it...3. Return to point 1. until the distance of the furthest point from the
model reaches a certain threshold value.

This self–tuning procedure removes outliers and gives us the desired
smoothed complex permittivity over the entire measured frequency spec-
trum.
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Chapter 7
Final Measurement

Here we describe materials and methods used to obtain the experimental
data for this thesis. The amino-acid samples were prepared from L-alanine
(purity 98.5 % , P-Lab CZ, R30761) and L-cysteine (purity 98% , P-Lab,
C 10502) powder for the sample preparation. The powder was dissolved
in milipore-Q water to obtain the requested concentrations. The course
of the final measurement of S–parameters can be seen in Figure 7.1. The
S–parameters were measured using vector network analyzer Rohde & Schwarz
– ZVA 67, from 1.5 to 50 GHz at 1601 frequency points. The assembly
was first calibrated with a custom calibration set, consisting of sections of
CBCPW lines of different lengths (1,2,4,8 mm), thru, short (see Figure (7.2)).
Subsequently, the measurement itself began.

Figure 7.1: The experimental setup of the final measurement.

Each sample was measured five times. Between samples, the transmission
line was cleaned with isopropyl alcohol and dried with nitrogen. In Figure 7.3,
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7. Final Measurement ..................................
we can see the transmission line with a liquid sample. Throughout the
measurement, the temperature was maintained at 23◦C and the relative
humidity at 45 %.

Figure 7.2: Multiline TRL calibration kit for the CBCPW transmission line.

Figure 7.3: The CBCPW transmission line with a liquid sample (250 µL).
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Chapter 8
The Resulting Acquired Pemitivity

8.1 Simulator/Reference Measurement

The method was first tested on ideal data from the simulator/reference
measurement, CST microwave studio. Water and water with alanine 50
mg/mL were used as the calibration solutions. We can see the results in
Figures 8.1 and 8.2.

8.1.1 Alanine 100 mg/mL

Figure 8.1: Complex permittivity from simulator/reference measurement and
from our method – MUT alanine 100 mg/mL.
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8.1.2 Alanine 150 mg/mL

Figure 8.2: Complex permittivity from simulator/reference measurement and
from our method – MUT alanine 150 mg/mL.

8.2 Real Measured Data

In this section, we describe the main results of this work. The measured
water and water with alanine 50 mg/mL samples were used as the calibration
solutions. The other necessary inputs were obtained from the simulator/ref-
erence measurement (for more information, see Section 6).

Figures 8.3, 8.5, 8.7, 8.9, and 8.11 show the results of the complex permit-
tivity obtained by our method compared to the results measured by another
independent method, which employs an open-ended coaxial probe [3]. The
orange line is the absolute difference in permittivity between those two meth-
ods. Each sample was measured five times. The previous figures, therefore,
show the average of the five repetitions of the extracted complex permittivity.
In Figures 8.4, 8.6, 8.8, 8.10 and 8.12 we can then see the standard deviation
calculated from these five measurements for each sample.

It is important to say that the samples we measured were different from
the samples measured by the reference method, although the concentrations
were the same. Furthermore, the samples that we measured had a different
temperature than those measured by the reference method.
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8.2.1 Concentrations 50 mg/mL

Figure 8.3: Comparison between complex permittivities obtained from the
coaxial probe [3] and from our method – MUT cysteine 50 mg/mL.

Figure 8.4: Standard deviation of complex permittivity from our method (five
repetitions) – MUT cysteine 50 mg/mL.
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8.2.2 Concentrations 100 mg/mL

Figure 8.5: Comparison between complex permittivities obtained from the
coaxial probe [3] and from our method – MUT alanine 100 mg/mL.

Figure 8.6: Standard deviation of complex permittivity from our method (five
repetitions) – MUT alanine 100 mg/mL.
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Figure 8.7: Comparison between complex permittivities obtained from the
coaxial probe [3] and from our method – MUT cysteine 100 mg/mL.

Figure 8.8: Standard deviation of complex permittivity from our method (five
repetitions) – MUT cysteine 100 mg/mL.
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8.2.3 Concentrations 150 mg/mL

Figure 8.9: Comparison between complex permittivities obtained from the
coaxial probe [3] and from our method – MUT alanine 150 mg/mL.

Figure 8.10: Standard deviation of complex permittivity from our method (five
repetitions) – MUT alanine 150 mg/mL.
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Figure 8.11: Comparison between complex permittivities obtained from the
coaxial probe [3] and from our method – MUT cysteine 150 mg/mL.

Figure 8.12: Standard deviation of complex permittivity from our method (five
repetitions) – MUT cysteine 150 mg/mL.
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8.3 Evaluation of Results

We can see that our method works well. As expected, in the case of data
from the simulator/reference measurement, the method almost overlaps the
reference data.

In the case of real use, the method also works well. Quantitative results can
be found in Tables 8.1 and 8.2 , where we can find the average and maximum
deviation of our method from the reference measurement of permittivity by
coaxial probe.

However, it must be said that the data from the coaxial probe were measured
only at 201 frequency points. Our method works at 1601 points, and the data
from the coaxial probe were therefore linearly interpolated for comparison
purposes.

mean deviation maximum deviation
alanine 100 mg/mL 0.90 (2.57 %) 1.54
alanine 150 mg/mL 2.32 (7.07 %) 3.95
cysteine 50 mg/mL 0.62 (1.67 %) 2.22
cysteine 100 mg/mL 1.26 (3.57 %) 2.49
cysteine 150 mg/mL 1.96 (5.78 %) 4.37

Table 8.1: Absolute permittivity deviations of our method from the reference
measurement – real components.

mean deviation maximum deviation
alanine 100 mg/mL 0.48 (1.60 %) 1.96
alanine 150 mg/mL 1.61 (5.40 %) 3.44
cysteine 50 mg/mL 0.82 (2.79 %) 1.32
cysteine 100 mg/mL 0.61 (3.11 %) 1.66
cysteine 150 mg/mL 1.75 (6.06 %) 5.56

Table 8.2: Absolute permittivity deviations of our method from the reference
measurement – imaginary components.

As we can see, the farther we are from the permittivity of the calibration
solutions, the worse the method works. For solutions with a concentration
of 150 mg/mL, a large standard deviation begins to appear. This might be
because, at such high concentrations, the sample placed on the transmission
line tended to flow through the vias away. This caused differences in the
measurement of the S–parameters.

8.4 Discussion

Our method is a combination of the previous methods from Section 2.4
with several new elements. We can divide the method into two parts. In the
first part, when the method is calibrated, we use real measured data and
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data from the simulator. The uniqueness of this method is that the result of
calibration is the so-called field shape factors (also called geometry factors),
obtained from the derived analytical relations (see Section 5.1.2). These field
shape factors capture the geometry of the electromagnetic field inside the
sample. In the second part we obtain permittivity of the MUT from closed
form equations. This is again unique because we have complex permittivity
explicitly stated.

This method is therefore computationally fast, thanks to the Trace equation
(see Section 2.4.2) immune to the influence of the imperfections leading to
and from the MUT and accurate, even at the problematic low frequencies.

Our method is less accurate in the area where the Trace equation tends
to break down. This is due to complex hyperbolic functions, when small
numerical inaccuracies can multiply into huge values (see Section 6.2.1).
The solution to this problem should be shorter CBCPW line. Another
improvement could be the analytical rule for finding the area of the base
solution of the γ from Section 6.2.2. The numerical solver then would not
have to be iterated many times. It would only run once, when based on a
correct estimate of the starting point, it would be possible to quickly converge
to the correct solution. This would speed up the whole method even more.
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Chapter 9
Conclusion

In this work, the state of the art of broadband complex permittivity
extraction was described in Section 2. The basic principles of the interaction
of the electromagnetic field with matter in the radio frequency and microwave
band were described in Section 3. In Section 5 special emphasis was placed on
the broadband extraction of complex permittivity of materials with a focus
on planar transmission lines, specifically the coplanar waveguide.

In Section 6 a semi-analytical method for extracting complex permittivity
spectra from measured frequency-dependent S–parameters, was obtained. In
Section 7, the S–parameters of the CBCPW lines with liquid samples of water
and biomolecules were measured up to 50 GHz.

Finally, the method was tested in real life on the measured S–parameters.
The extracted permittivity was compared with the reference data measured
using a coaxial probe. The results of our method differed from the refer-
ence method on average by 1.41 (4.05 %) for the real component and by
1.05 (3.56 %) for the imaginary component of permittivity. The average is
then considered from all MUT concentrations, even across the problematic
concentrations of 150 mg/mL.

The CBCPW transmission line broadband permittivity extraction method
could be used in the future for the development of a complex permittivity
sensing device for general liquid samples.
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Chapter 10
Annex

10.1 Assumptions:

From [22, eq. (1a, 1b, 2, 4)] and [24, eq. (79)]:

M1 = X · RZ0,Z0
1 (l1) · Y (10.1)

M2 = X · RZ0,Z0
2 (l2) · Y (10.2)

where:

RZ0,Z0
1 (l1) = QZ0,Zc1 · RZc1,Zc1

1 (l1) · QZc1,Z0 (10.3)

where:

QZn,Zm = 1
2Zm

∣∣∣∣Zm

Zn

∣∣∣∣
√

ℜ(Zn)
ℜ(Zm)

[
Zm + Zn Zm − Zn

Zm − Zn Zm + Zn

]
(10.4)

RZc1,Zc1
1 (l1) =

[
e−γ1·l1 0

0 eγ1·l1

]
(10.5)

10.2 Derivation if Zc1 = Zc2

M2 · M−1
1 = [X · RZ0,Z0

2 (l2) · Y ] · [X · RZ0,Z0
1 (l1) · Y ]−1 =1=

X · RZ0,Z0
2 (l2) · Y · Y −1 · [RZ0,Z0

1 (l1)]−1 · X−1 =

X · RZ0,Z0
2 (l2) · [RZ0,Z0

1 (l1)]−1 · X−1 (10.6)

Tr
{
M2 · M−1

1
}

=2= Tr
{
RZ0,Z0

2 (l2) · [RZ0,Z0
1 (l1)]−1 · X−1 · X

}
=

Tr
{
RZ0,Z0

2 (l2) · [RZ0,Z0
1 (l1)]−1} (10.7)

See eq. (10.3) and eq. (10.5).
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M−1
1 ⇒ [RZ0,Z0

1 (l1)]−1 =

[QZ0,Zc1 · RZc1,Zc1
1 (l1) · QZc1,Z0 ]−1 =1=

[QZc1,Z0 ]−1 ·
[
e−γ1·l1 0

0 eγ1·l1

]−1

· [QZ0,Zc1 ]−1 =

QZ0,Zc1 ·
[
eγ1·l1 0

0 e−γ1·l1

]
· QZc1,Z0 =

QZ0,Zc1 · RZc1,Zc1
1 (−l1) · QZc1,Z0 =

QZ0,Zc1 · QZc1,Zc2 · RZc2,Zc2
1 (−l1) · QZc2,Zc1 · QZc1,Z0 =

QZ0,Zc2 · RZc2,Zc2
1 (−l1) · QZc2,Z0 (10.8)

M2 · M−1
1 = RZ0,Z0

2 (l2) · [RZ0,Z0
1 (l1)]−1 =

QZ0,Zc2 · RZc2,Zc2
2 (l2) · QZc2,Z0 · QZ0,Zc2 · RZc2,Zc2

1 (−l1) · QZc2,Z0 =

QZ0,Zc2 · RZc2,Zc2
2 (l2) · RZc2,Zc2

1 (−l1) · QZc2,Z0 (10.9)

Tr
{
M2 · M−1

1
}

=2=

Tr
{
RZc2,Zc2

2 (l2) · RZc2,Zc2
1 (−l1) · QZc2,Z0 · QZ0,Zc2

}
=

Tr
{
RZc2,Zc2

2 (l2) · RZc2,Zc2
1 (−l1)

}
(10.10)

Tr
{
M2 · M−1

1
}

= Tr
{[

e−γ2·l2 0
0 eγ2·l2

]
·
[
eγ1·l1 0

0 e−γ1·l1

]}
=

Tr
{[

e−γ2·l2 · eγ1·l1 0
0 eγ2·l2 · e−γ1·l1

]}
= e−γ2·l2 · eγ1·l1 + eγ2·l2 · e−γ1·l1 =

eγ1·l1−γ2·l2 + eγ2·l2−γ1·l1 = 2 · eγ1·l1−γ2·l2 + 2 · e−(γ1·l1−γ2·l2)

2 =3=

2 · cosh (γ1 · l1 − γ2 · l2) =4=
2 cosh (γ1 · l1) cosh (γ2 · l2) − 2 sinh (γ1 · l1) sinh (γ2 · l2) (10.11)

10.3 Derivation if Zc1 ̸= Zc2

Rewritten eq. (10.8):
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M−1
1 ⇒ [RZ0,Z0

1 (l1)]−1 =

[QZ0,Zc1 · RZc1,Zc1
1 (l1) · QZc1,Z0 ]−1 =1=

[QZc1,Z0 ]−1 ·
[
e−γ1·l1 0

0 eγ1·l1

]−1

· [QZ0,Zc1 ]−1 =

QZ0,Zc1 ·
[
eγ1·l1 0

0 e−γ1·l1

]
· QZc1,Z0 =

QZ0,Zc1 · RZc1,Zc1
1 (−l1) · QZc1,Z0 (10.12)

M2 · M−1
1 = RZ0,Z0

2 (l2) · [RZ0,Z0
1 (l1)]−1 =

QZ0,Zc2 · RZc2,Zc2
2 (l2) · QZc2,Z0 · QZ0,Zc1 · RZc1,Zc1

1 (−l1) · QZc1,Z0 =

QZ0,Zc2 · RZc2,Zc2
2 (l2) · QZc2,Zc1 · RZc1,Zc1

1 (−l1) · QZc1,Z0 (10.13)

Tr
{
M2 · M−1

1
}

=2=

Tr
{
RZc2,Zc2

2 (l2) · QZc2,Zc1 · RZc1,Zc1
1 (−l1) · QZc1,Z0 · QZ0,Zc2

}
=

Tr
{
RZc2,Zc2

2 (l2) · QZc2,Zc1 · RZc1,Zc1
1 (−l1) · QZc1,Zc2

}
=

Tr
{[

e−γ2·l2 0
0 eγ2·l2

]
· 1

2Zc1

∣∣∣∣Zc1
Zc2

∣∣∣∣
√

ℜ(Zc2)
ℜ(Zc1)

[
Zc1 + Zc2 Zc1 − Zc2
Zc1 − Zc2 Zc1 + Zc2

]
·

[
eγ1·l1 0

0 e−γ1·l1

]
· 1

2Zc2

∣∣∣∣Zc2
Zc1

∣∣∣∣
√

ℜ(Zc1)
ℜ(Zc2)

[
Zc2 + Zc1 Zc2 − Zc1
Zc2 − Zc1 Zc2 + Zc1

]}
(10.14)

Tr
{
M2 · M−1

1
}

=5=

1
2Zc1

∣∣∣∣Zc1
Zc2

∣∣∣∣
√

ℜ(Zc2)
ℜ(Zc1) · 1

2Zc2

∣∣∣∣Zc2
Zc1

∣∣∣∣
√

ℜ(Zc1)
ℜ(Zc2) · Tr

{[
e−γ2·l2 0

0 eγ2·l2

]
·

[
Zc1 + Zc2 Zc1 − Zc2
Zc1 − Zc2 Zc1 + Zc2

]
·
[
eγ1·l1 0

0 e−γ1·l1

]
·
[
Zc2 + Zc1 Zc2 − Zc1
Zc2 − Zc1 Zc2 + Zc1

]}
=6,7,8=

1
2Zc1

· 1
2Zc2

· Tr
{[

e−γ2·l2 · (Zc1 + Zc2) e−γ2·l2 · (Zc1 − Zc2)
eγ2·l2 · (Zc1 − Zc2) eγ2·l2 · (Zc1 + Zc2)

]
·

[
eγ1·l1 · (Zc2 + Zc1) eγ1·l1 · (Zc2 − Zc1)

e−γ1·l1 · (Zc2 − Zc1) e−γ1·l1 · (Zc2 + Zc1)

]}
=

1
4Zc1Zc2

· Tr
{[

a x1
x2 b

]}
(10.15)
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a = eγ1·l1−γ2·l2 · (Zc1 + Zc2)2 − e−γ1·l1−γ2·l2 · (Zc1 − Zc2)2 (10.16)
b = eγ2·l2−γ1·l1(Zc1 + Zc2)2 − eγ1·l1+γ2·l2 · (Zc1 − Zc2)2 (10.17)

Tr
{
M2 · M−1

1
}

= 1
4Zc1Zc2

· (a + b) =

1
4Zc1Zc2

· [eγ1·l1−γ2·l2 · (Zc1 + Zc2)2 − e−γ1·l1−γ2·l2 · (Zc1 − Zc2)2+

eγ2·l2−γ1·l1 · (Zc1 + Zc2)2 − eγ1·l1+γ2·l2 · (Zc1 − Zc2)2] =
1

4Zc1Zc2
· [(eγ1·l1−γ2·l2 + eγ2·l2−γ1·l1) · (Zc1 + Zc2)2

− (e−γ1·l1−γ2·l2 + eγ1·l1+γ2·l2) · (Zc1 − Zc2)2 =3=
1

2Zc1Zc2
·[(cosh (γ1 · l1 − γ2 · l2)·(Zc1+Zc2)2−cosh (γ1 · l1 + γ2 · l2)·(Zc1−Zc2)2] =4=

1
2Zc1Zc2

·
{

[cosh (γ1 · l1) cosh (γ2 · l2)− sinh (γ1 · l1) sinh (γ2 · l2)] · (Zc1 +Zc2)2

− [cosh (γ1 · l1) cosh (γ2 · l2) + sinh (γ1 · l1) sinh (γ2 · l2)] · (Zc1 − Zc2)2
}

=
1

2Zc1Zc2
·
{

cosh (γ1 · l1) cosh (γ2 · l2)·(Zc1+Zc2)2−sinh (γ1 · l1) sinh (γ2 · l2)·(Zc1+Zc2)2

−cosh (γ1 · l1) cosh (γ2 · l2)·(Zc1−Zc2)2−sinh (γ1 · l1) sinh (γ2 · l2)·(Zc1−Zc2)2
}

=
1

2Zc1Zc2
·
{

cosh (γ1 · l1) cosh (γ2 · l2) · [(Zc1 + Zc2)2 − (Zc1 − Zc2)2]

− sinh (γ1 · l1) sinh (γ2 · l2) · [(Zc1 + Zc2)2 + (Zc1 − Zc2)2]
}

=
1

2Zc1Zc2
·
{

cosh (γ1 · l1) cosh (γ2 · l2) · (4Zc1Zc2)

− sinh (γ1 · l1) sinh (γ2 · l2) · (2Z2
c1 + 2Z2

c2)
}

=

2 · cosh (γ1 · l1) cosh (γ2 · l2) −
(Zc1

Zc2
+ Zc2

Zc1

)
· sinh (γ1 · l1) sinh (γ2 · l2)

(10.18)

Tr
{
M2 · M−1

1
}

=

2 · cosh (γ1 · l1) cosh (γ2 · l2) −
(Zc1

Zc2
+ Zc2

Zc1

)
· sinh (γ1 · l1) sinh (γ2 · l2)

(10.19)
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............................... 10.3. Derivation if Zc1 ̸= Zc2

(1) [A · B · C]−1 = C−1 · B−1 · A−1

(2) Tr[A · B · C] = Tr[B · C · A]

(3) cosh (x) = ex + e−x

2
(4) cosh (x ± y) = cosh (x) cosh (y) ± sinh (x) sinh (y)
(5) Tr[k · A] = k · Tr[A]
(6)

√
a · b =

√
a ·

√
b

(7)
∣∣∣∣ab
∣∣∣∣ = |a|

|b|
(8) [A · B] · C = A · [B · C]
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