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Abstrakt

Time-triggered (TT) systémy poskytuj́ı spolehlivé chováńı, zat́ımco event-triggered
(ET) systémy poskytuj́ı vyšš́ı flexibilitu a efektivněji využ́ıvaj́ı časovou š́ı̌rku pásma. Tato
práce formuluje framework kombinuj́ıćı ET a TT rozvrhováńı nepreemptivńıch úloh na
jednoprocesoru tak, aby bylo dosaženo výhod obou systémů.

Př́ıstup, založený na generováńı rozvrhovaćıho grafu, navržený autory Nasri a Bran-
denburg [RTSS 2017, s. 12–23], se hod́ı pro kombinaci rozvrhováńı ET a TT úloh. Zjistili
jsme však, že analýza rozvrhovatelnosti prezentovaná autory Nasri a Brandenburg neńı
exaktńı. Prvńı část diplomové práce je zaměřena na analýzu rozvrhovatelnosti, která
rovněž sestrojuje rozvrhovaćı graf, ale je zároveň exaktńı. Experimentálńı vyhodnoceńı
nav́ıc ukazuje, že naše analýza rozvrhovatelnosti je výrazně rychleǰśı.

Druhá část diplomové práce popisuje heuristický algoritmus, který hledá platnou
množinu čas̊u pro zahájeńı TT úloh tak, aby byla zajǐstěna rozvrhovatelnost pro TT
i ET úlohy. V experimentálńım vyhodnoceńı tento algoritmus našel řešeńı v 97.8 %
př́ıpad̊u, kdy řešeńı existovalo. Nav́ıc byl obecně schopný vyřešit instance s 20 TT a 20
ET úlohami během několika sekund.

Kĺıčová slova: analýza rozvrhovatelnosti, koĺısáńı doby vydáńı, koĺısáńı doby zpra-
cováńı, online a offline rozvrhováńı, rozvrhovaćı graf

Abstract

The time-triggered (TT) systems provide reliable behavior, while the event-triggered
(ET) systems provide higher flexibility and make use of the bandwidth more efficiently.
To attain the advantages of both, this thesis formulates a framework for combining ET
and TT scheduling of non-preemptive tasks on a uniprocessor.

We believe that the approach based on schedule graph generation, proposed by Nasri
and Brandenburg [RTSS 2017, pp. 12–23], is well suited for combining ET and TT
scheduling. However, we found out that the schedulability analysis presented by Nasri
and Brandenburg is not exact. The first part of the thesis focuses on a schedulability
analysis that also constructs the schedule graph but is exact. Additionally, the experi-
mental evaluation shows that our schedulability analysis is substantially faster.

In the second part of the thesis, we propose a heuristic algorithm that searches for a
valid set of start times for TT tasks while ensuring schedulability for both TT and ET
tasks. In an experimental evaluation, the heuristic algorithm was able to find a solution
in 97.8 % of cases where a solution existed. Additionally, it was generally able to solve
instances of 20 TT and 20 ET tasks in a matter of seconds.

Keywords: schedulability analysis, release jitter, execution time variation, online and
offline scheduling, schedule graph
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Chapter 1

Introduction

Time-triggered (TT) systems are dependable and robust and can easily detect dropped
messages. However, they lack flexibility as run time and start time of TT tasks need to
be known in advance. On the other hand, event-triggered (ET) systems are very flexible
as they can quickly react to unknown events. The downside of ET systems is they do
not guarantee that a task will be completed in a certain time.

In TT systems, the tasks are scheduled offline, and the start time of each task is pre-
determined. On the other hand, tasks in ET systems are scheduled online (dynamically),
and the start time of each task is unknown a priori.

1.1 Related work

The combination of TT and ET systems may keep the advantages of both systems. This
has been explored mostly for distributed automotive networks [1][17][8]. Specialized
protocols which combine TT and ET scheduling such as FTT-CAN [2][16][9] or FlexRay
[18] have been developed.

The combination of TT and ET systems has also been explored in interprocessor
communication [11] and for wireless communication [19].

These approaches do not assume prior information about the release and execution
time of ET tasks and many of them focus on preemptive scheduling. Assumption of
prior information about the execution time of ET tasks was partly explored in [7] which
combines periodic, aperiodic, and sporadic tasks. The tasks are however preemptive and
the analysis is only heuristic.

Scheduling of non-preemptive tasks with release jitter and execution time variation
may exhibit anomalies where the worst-case scenario does not result in a deadline miss
but a different scenario does. This is discussed in [12] where an exact schedulability
test is described. We wish to extend on the ideas presented in [12] to guarantee that
our solutions are sustainable. A schedulability test is sustainable if any task deemed
schedulable by the test remains schedulable even for a ”better” scenario [3].
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1.2 This thesis

This thesis formulates a scheduling problem with two types of tasks. The first type is
ET tasks with fixed priority, release jitter, and execution time variation. The second
type is TT tasks with no release jitter or execution time variation. We assume that an
upper and lower bound on the execution time and release time of ET tasks is known a
priori.

Both types of tasks are non-preemptive, periodic, and have deadlines. All tasks are
executed on a single unary resource (also known as uniprocessor or mono-processor),
which means that at most one task can be executed at any time. The goal is to find
start times for the TT tasks such that they satisfy their deadlines and do not cause
deadline misses for the ET tasks. The ET tasks may also not overlap with each other as
well. These start times are computed offline. The ET tasks are scheduled online during
the run time along with the TT tasks. In other words, we will do an offline analysis so
that the online scheduling may proceed without deadline misses.

The contribution of this thesis is a formal description of the problem, algorithms
that solve the problem, and an evaluation of these algorithms. The remaining part of
this thesis is organized as follows: Chapter 2 formally describes the problem. Chapter 3
focuses only on the scheduling of ET tasks and the solutions are evaluated in Chapter 4.
Likewise, Chapter 5 focuses on the combination of ET and TT tasks, and the solutions
are evaluated in Chapter 6. The thesis concludes in Chapter 7.

2



Chapter 2

Formal problem description

This section gives a formal description of the problem. The ET tasks, their properties,
and scheduling is introduced first. Then, TT tasks and their combination with ET tasks
is explained. All defined variables in Chapter 2 are integers. All proposed algorithms in
later sections also work only with integer values.

For integrity reasons most of the notation, definitions, and terminology regarding
ET tasks is kept the same or similar to [12].

2.1 Event-triggered tasks and jobs

Let us consider a set of ET tasks E = (E1, . . . , En), where each task Ei is comprised of an
earliest release time rmin

i , latest release time rmax
i , best case execution time cmin

i , worst
case execution time cmax

i , deadline dET
i , priority pi, and period τET

i . These values are
assumed to satisfy the following conditions:

0 ≤ rmin
i ≤ rmax

i

0 < cmin
i ≤ cmax

i

rmax
i + cmax

i ≤ dET
i ≤ τET

i

0 ≤ pi

Each ET task Ei is comprised of a set of jobs Ei,1, . . . , Ei,h where Ei,j is the j-th
job occurrence and h is an index of the last occurrence. The index h depends on other
ET tasks and will be discussed shortly. Each ET job Ei,j has earliest release time rmin

i,j ,

latest release time rmax
i,j , best case execution time cmin

i,j , worst case execution time cmax
i,j ,

deadline dET
i,j and priority pi,j . These variables are defined according to the associated

ET task thusly:

rmin
i,j = rmin

i + (j − 1) · τET
i

rmax
i,j = rmax

i + (j − 1) · τET
i

cmin
i,j = cmin

i

3



cmax
i,j = cmax

i

dET
i,j = dET

i + (j − 1) · τET
i

pi,j = pi

Simply put, an ET job Ei,j inherits execution times and priority from its correspond-
ing ET task Ei and its release times and deadline shift by τET

i (j − 1) times.

2.2 Scheduling of event-triggered jobs

The base of the problem is online scheduling of a set of ET jobs defined by a set of ET
tasks E = (E1, . . . , En) on a uniprocessor. The ET jobs repeat until they reach hyperpe-
riod defined as η = LCM(τET

1 , . . . , τET
n ) where LCM is the least common multiple. In

other words, each ET task Ei has η/τET
i job occurrences.

During run time, each ET job Ei,j is released at a priori unknown time rET
i,j ∈

[rmin
i,j , rmax

i,j ] where rET
i,j is an integer. This behavior is referred to as release jitter. Once

the value rET
i,j is known, ET job Ei,j is released. If an ET job Ei,j is executed at time

te then it occupies the processor during interval [te, te + cET
i,j ). Here cET

i,j ∈ [cmin
i,j , cmax

i,j ]
is an unknown a priori execution time and is also an integer. This behavior is referred
to as execution time variation. Time te is referred to as time of execution. If a job Ei,j

finishes execution at time te + cET
i,j > dET

i,j , then the online scheduler yields a deadline
miss.

Additionally, Ei,j is finished if it has been executed, i.e., it was picked by the online
scheduler and then occupied the processor for cET

i,j units of time. An ET job is unfinished
if it is not finished. An ET job Ei,j is certainly released at time t if rmax

i,j ≤ t and possibly

released if rmin
i,j ≤ t < rmax

i,j .

Applicable jobs EA = (E1,j , . . . , Ek,l) is a set of ET jobs that contains all jobs Ei,j

which satisfy: Ei,j is unfinished ∧ (j = 1∨Ei,j−1 is finished). Put differently, applicable
jobs contain the first unfinished occurrence of a job from each task. This set will have at
most as many elements as there are ET tasks. The set EA will contain a lower number
of elements if there is an ET task for which all ET job occurrences are finished.

2.3 Scheduling policies

Scheduling policy is a function P(t, EA) which for a given set of applicable jobs EA and
time t returns a job Ee, which should be scheduled next. We assume that no scheduling
policy would return a job that is not applicable if it was given a set of unfinished jobs
instead. The policy can also return null, which can happen if the set EA is empty or
the policy chooses to wait for an unreleased job to release.

The scheduling policy is invoked at time t = 0, after a job has finished execution,
or when a job is released and no jobs are currently being executed. It is assumed that
the scheduling overhead resulting from the run time of an online scheduler executing a
scheduling policy is insignificant and is therefore ignored.
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An example of a scheduling policy is earliest deadline first (EDF) which out of all
jobs which are applicable and released picks one with the earliest deadline, i.e., smallest
dET
i,j . If there is no job that is both applicable and released, then the policy returns null.

The priority value p of ET tasks and jobs is used only in scheduling policies. Tasks
with the lowest value pi have the highest priority.

2.4 Execution scenario

For a set of ET tasks E = (Ei, . . . , En) an execution scenario γ = (C,R) is a set of
execution times C = (C1, . . . , Cn) and release times R = (R1, . . . , Rn) where Ci =
(cET

i,1 , . . . , cET
i,h ), Ri = (rET

i,1 , . . . , rET
i,h ), cET

i,j ∈ [cmin
i,j , cmax

i,j ] and rET
i,j ∈ [rmin

i,j , rmax
i,j ]. In

other words, an execution scenario specifies the release time and execution time for
every ET job from E.

A set of ET tasks E is schedulable under policy P if there exists no execution scenario
resulting in a deadline miss for an online scheduler that uses policy P. In other words,
if the online scheduler used policy P and had to schedule jobs from E, then this could
not result in a deadline miss.

It is assumed that all tasks have unique identification numbers which are used in
scheduling policies to break ties so that an execution scenario is deterministic.

2.5 Time-triggered tasks and jobs

Just like ET tasks, TT tasks T = (T1, . . . , Tm) are periodic but they have different
properties. Each TT task Ti consists of a release time rTT

i , execution time cTT
i , deadline

dTT
i , and period τTT

i . These values are assumed to satisfy the following conditions:

0 ≤ rTT
i

0 < cTT
i

rTT
i + cTT

i ≤ dTT
i ≤ τTT

i

Each TT task Ti is comprised of TT jobs (Ti,j , . . . , Ti,h) where Ti,j is the j-th job
occurrence and h is an index of the last occurrence. Each TT job Ti,j has release time
rTT
i,j , execution time cTT

i,j and deadline dTT
i,j . These variables are defined thusly:

rTT
i,j = rTT

i + (j − 1) · τTT
i

cTT
i,j = cTT

i

dTT
i,j = dTT

i + (j − 1) · τTT
i

2.6 Combining ET and TT tasks

When combining ET tasks and TT tasks, the aim is to find start times S = (S1, . . . , Sm)
where m is the number of TT tasks and Si ∈ [rTT

i , dTT
i −cTT

i ] such that when scheduling
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variable name Ei Ei,j Ti Ti,j

earliest release time rmin
i rmin

i,j – –

latest release time rmax
i rmax

i,j – –

release time – rET
i,j rTT

i rTT
i,j

best case execution time cmin
i cmin

i,j – –

worst case execution time cmax
i cmax

i,j – –

execution time – cET
i,j cTT

i cTT
i,j

deadline dET
i dET

i,j dTT
i dTT

i,j

priority pi pi,j – –

period τET
i – τTT

i –

Table 2.1: Summary of the ET and TT task and job notation.

a set of ET jobs, each TT job Ti,j is always executed at time Si + τTT
i · (j − 1) and the

resulting schedule does not yield a deadline miss for any execution scenario. A TT job
Ti,j is finished once it completes its execution at time Si + τTT

i · (j − 1) + Ti,j .c.

In other words, the aim is to find a start time for each TT task that specifies the
time each TT job will execute and the online scheduler will never yield a deadline miss
for any ET job. Also, note that an ET job cannot be interrupted so that a TT job can
begin execution at its predetermined start time. If a TT job does not get executed at
its predetermined start time, then the online scheduler yields a deadline miss.

The hyperperiod is defined as η = LCM(τET
1 , . . . , τET

n , τTT
1 , . . . , τTT

m ) when combin-
ing ET tasks with TT tasks. If a set of start times S does solve the problem, then the
set is called valid start times. This problem may not have a solution, for instance when
the set of ET tasks is not schedulable.

2.7 Summary and examples

A summary of the notation can be seen in Table 2.1. Note that rET
i,j and cET

i,j are both
unknown a priori unlike all other values and are revealed during run time execution.

To give a better understanding of the discussed concepts, we present two examples.
The first example consists only of ET tasks and the goal is to determine if the tasks are
schedulable. The second example combines ET and TT tasks and the goal is to find a
set of valid start times.

2.7.1 Example 1 - ET schedulability test

Let us consider a set of ET tasks E = (E1, E2, E3) and no TT tasks. The parameters of
these ET tasks can be seen in Table 2.2.

In this example, we will use the EDF scheduling policy that does not make use of
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rmin rmax cmin cmax dET τET

E1 2 5 5 7 16 20

E2 1 1 2 4 8 10

E3 0 0 1 1 5 5

Table 2.2: Parameters of ET tasks E = (E1, E2, E3).

Figure 2.1: A loose Gantt chart of ET tasks E = (E1, E2, E3). Each row represents a
different ET task. The top row represents task E1, the middle row represents task E2
and the bottom row represents task E3.

priority values p and they are therefore undefined.

The hyperperiod for this instance is η = LCM(20, 10, 5) = 20. This means that ET
tasks E1, E2, and E3 will have 1, 2, and 4 jobs respectively. Individual jobs are denoted
as E1 = (E1,1), E2 = (E2,1, E2,2) and E3 = (E3,1, E3,2, E3,3, E3,4).

The instance is visualized in Figure 2.1 but bear in mind that this visualization
displays only defined properties of ET tasks E and says nothing about the used policy
or when a job executes. This is due to the fact that in our case, the time of execution of
each job may vary based on an execution scenario. Despite this, the visualization still
provides some insight into the instance. We call this type of visualization a loose Gantt
chart. Because the time of execution of each job is unknown a priori, each job is placed
at its maximal release time.

In the following Gantt chart visualizations, gray areas show where a job can proceed
with the execution. Release jitter is displayed using bright gray color. Minimal and
maximal execution times are displayed using bright and dark red colors. Green lines
denote periods.

By using an execution scenario and a scheduling policy, the instance can be visualized
using a regular Gantt chart. Let us consider the EDF scheduling policy and execution
scenario in which all jobs have the worst execution times and latest release times. This
means that:

cET
1,1 = 7, rET

1,1 = 5

cET
2,1 = cET

2,2 = 4, rET
2,1 = 1, rET

2,2 = 11

cET
3,1 = cET

3,2 = cET
3,3 = cET

3,4 = 1, rET
3,1 = 0, rET

3,2 = 5, rET
3,3 = 10, rET

3,4 = 15

A Gantt chart using this scenario and the EDF scheduling policy is visualized in
Figure 2.2. This execution scenario does not result in a deadline miss. However, this
does not mean that the ET tasks E = (E1, E2, E3) are schedulable.

Let us consider a different execution scenario where ET job E1,1 releases at rET
1,1 =

rmin
1,1 instead of rmax

1,1 and execution time of ET job E2,1 is cET
2,1 = cmin

2,1 instead of cmax
2,1 .
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Figure 2.2: A Gantt chart of ET tasks E = (E1, E2, E3) assuming the worst case scenario.

Figure 2.3: A Gantt chart of ET tasks E = (E1, E2, E3) with execution scenario that
results in a deadline miss.

This execution scenario results in a deadline miss for ET job E3,2 as can be seen in
Figure 2.3.

This example shows that we cannot simply consider only the worst-case scenario
when testing schedulability and our tests, therefore, aim to be sustainable. [3]

2.7.2 Example 2 - finding valid start times

In this example we have one ET task E1 and one TT task T1. These are defined as:

rTT
1 = 2, cTT

1 = 4, dTT
1 = 8, τTT

1 = 10

rmin
1 = rmax

1 = 0, cmin
1 = 2, cmax

1 = 3, dET
1 = 5, τET

1 = 5

The tasks are visualized in Figure 2.4. Unlike in the first example, our goal is to find
a valid set of start times. Here we have only one TT task, therefore we have to find only
a single start time S1 ∈ [2, 4]. Because S1 is an integer, the only possible values of S1

are 2, 3, and 4.

Let us first look if S1 = 2 is viable. In an execution scenario where ET job E1,1 has
cET
1,1 = 3, the TT job T1,1 cannot start at the determined start time and therefore the

start time is not valid. This is illustrated in Figure 2.5.

Now let us consider S1 = 3. The ET job E1,1 no longer interferes with T1,1. To prove

Figure 2.4: A loose Gantt chart of ET task E1 and TT task T1. The top row represents
T1 and the bottom row represents E1.
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Figure 2.5: A loose Gantt chart of ET task E1 and TT task T1. Here cET
1,1 is set to 3 to

show that the start time S1 = 2 is not valid.

Figure 2.6: A loose Gantt chart of ET task E1 and TT task T1. As can be seen, E1,1

will never overlap with T1,1 and T1,1 will never overlap with E1,2. Start time S1 = 3 is
therefore valid.

that the start time S1 = 3 is valid, each execution scenario has to be accounted for. For
brevity, we show that the start time S1 = 3 is valid using Figure 2.6.

Start time S1 = 4 is not valid as it would cause a deadline miss for job E1,2 in
an execution scenario where cET

1,2 = 3. Therefore the only valid set of start times is
S = (S1) = (3).
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Chapter 3

ET solutions

Before trying to solve the problem of finding start times for TT jobs, we will first focus
only on the schedulability of a set of ET tasks.

This section describes more scheduling policies and then algorithms used for testing
the schedulability of ET tasks under these policies. A test deciding the schedulability of
a set of ET tasks will be referred to as an ET schedulability test.

The following pseudocodes use OOP notation. For instance a deadline dET
i,j of an ET

job Ei,j will be simply denoted as Ei,j .d.

3.1 Scheduling policies

This section describes more scheduling policies and provides their pseudocodes.

3.1.1 Earliest Deadline First (EDF)

We have already introduced the EDF scheduling policy in Chapter 2 as an example. A
pseudocode of the EDF scheduling policy can be seen in Algorithm 1. Note that this
policy does not make use of the priority values p.

Algorithm 1 EDF scheduling policy

Input: Time t and applicable jobs EA

Output: Selected job Ee or null

1: function EDF POLICY(t,EA)
2: ER ← subset of EA with only released jobs
3: if ER = ∅ then
4: return null
5: return job from ER with the lowest deadline

11



3.1.2 EDF - Fixed Priority (EDF-FP)

The EDF-FP is a version of the EDF policy that uses priority value p of ET jobs. If
multiple jobs E have the same lowest value p, the one with the lowest deadline is chosen.

A pseudocode of the EDF-FP policy can be seen in Algorithm 2. Line 5 returns the
same result as sorting all jobs ER in lexicographical order primarily by p in ascending
order, secondarily by d in ascending order, and then picking the first job.

Algorithm 2 EDF-FP scheduling policy

Input: Time t and applicable jobs EA

Output: Selected job Ee or null

1: function EDF-FP POLICY(t,EA)
2: ER ← subset of EA with only released jobs
3: if ER = ∅ then
4: return null
5: return job from ER with the lowest p value, then the lowest d value

By using priority values p, the resulting schedule may execute jobs with higher pri-
ority earlier. Another useful property of the EDF-FP policy is that it can be easily
changed to the EDF policy by setting the priority of all jobs to the same value. It can
also be changed to Fixed Priority policy (FP policy), which schedules jobs based only
on priority values p. This is done by setting unique priority values p for each task. Due
to these advantages, we use this as the go-to scheduling policy in the following policies.

3.1.3 Work-conserving and non-work-conserving policies

The EDF, FP, and EDF-FP scheduling policies are work-conserving policies, which
means that they never idle when there is at least one released and unfinished job. Al-
though work-conserving schedulers finish jobs earlier, a set of ET tasks may be schedu-
lable under a non-work-conserving policy while not being schedulable under a work-
conserving policy. This is due to the fact that non-work-conserving schedulers insert
idle times between jobs to avoid deadline misses. We will now describe three non-work-
conserving policies.

3.1.4 Precautious Rate-Monotonic (P-RM)

Under the P-RM scheduling policy, a job with a priority different than the highest one
cannot be scheduled if it may cause a deadline miss for some job with the highest priority.
The highest priority job is defined by having the lowest rmax out of all jobs for which
p = 0. [13]

The highest priority job is denoted as Ec in the pseudocode of the P-RM scheduling
policy, which can be seen in Algorithm 3. Jobs that are released, applicable, and do not
cause a deadline miss to Ec are called viable jobs and are denoted as EV .

Unlike in [13], our version of the P-RM policy follows the EDF-FP policy for jobs
that can be scheduled without causing a deadline miss for the highest priority job.
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Additionally, we define the highest priority as p = 0.

Algorithm 3 P-RM scheduling policy

Input: Time t and applicable jobs EA

Output: Selected job Ee or null

1: function P-RM POLICY(t,EA)
2: Ec ← job from EA with p = 0 and the lowest rmax

3: if Ec is null then
4: return EDF-FP POLICY(t,EA)

5: tc ← Ec.d− Ec.cmax

6: ER ← subset of EA with only released jobs
7: EV ← {Ei,j |Ei,j ∈ ER ∧ (t + Ei,j .c

max ≤ tc ∨ Ei,j = Ec)}
8: if EV = ∅ then
9: return null

10: return job from EV with the lowest p value, then the lowest d value

3.1.5 Critical Point (CP)

The CP scheduling policy follows the EDF-FP scheduling policy but does not schedule
a job if it will cause a deadline miss to an unfinished job with the lowest deadline. This
job is denoted as Ec and is called critical job. The pseudocode of the CP scheduling
policy can be seen in Algorithm 4.

Algorithm 4 CP scheduling policy

Input: Time t and applicable jobs EA

Output: Selected job Ee or null

1: function CP POLICY(t,EA)
2: if EA = ∅ then
3: return null
4: Ec ← job from EA with the lowest d value
5: tc ← Ec.d− Ec.cmax

6: ER ← subset of EA with only released jobs
7: EV ← {Ei,j |Ei,j ∈ ER ∧ (t + Ei,j .c

max ≤ tc ∨ Ei,j = Ec)}
8: if EV = ∅ then
9: return null

10: return job from EV with the lowest p value, then the lowest d value

This policy is similar to P-RM in the sense that both define a critical job and no
other job can be executed if it will cause a deadline miss for the critical job. The only
difference between the two policies is how the critical job is selected and that the P-RM
policy may not have a critical job while the CP policy always has a critical job if EA is
not empty.
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3.1.6 Critical Window (CW)

The CW policy differs from the CP policy by determining its critical time using all
applicable jobs instead of a single job. Its pseudocode can be seen in Algorithm 5. Note
that on line 4, the set of jobs ES is an ordered set of jobs, which is relevant in the for
cycle on line 6. This scheduling policy is inspired by Critical Window EDF from [12].

Algorithm 5 CW scheduling policy

Input: Time t and applicable jobs EA

Output: Selected job Ee or null

1: function CW POLICY(t,EA)
2: if EA = ∅ then
3: return null
4: ES ← EA sorted by d in descending order
5: tc ←∞
6: for each Ei,j ∈ ES do
7: if Ei,j .d < tc then
8: tc ← Ei,j .d− Ei,j .c

max

9: if Ei,j .d ≥ tc then
10: tc ← tc − Ei,j .c

max

11: Ec ← the last job in ES

12: ER ← subset of EA with only released jobs
13: EV ← {Ei,j |Ei,j ∈ ER ∧ (t + Ei,j .c

max ≤ tc ∨ Ei,j = Ec)}
14: if EV = ∅ then
15: return null
16: return job from EV with the lowest p value, then the lowest d value

3.2 Brute force ET schedulability test

The most simple approach for implementing an ET schedulability test is a brute force
algorithm. The brute force algorithm simulates the work of an online scheduler for every
execution scenario.

3.2.1 Advantages and disadvantages

The main benefit of this approach is its ease of implementation. This does not only
concern the algorithm itself but also its variations for different scheduling policies.

Its only disadvantage is that it greatly suffers from combinatorial explosion. For
instance, let us consider 10 ET jobs each with rmin = 5, rmax = 10, cmin = 5 and
cmax = 10. Each job has 6 · 6 = 36 unique combinations of release and execution times.
For 10 ET jobs, this means a total of 3610 ≈ 3, 66 · 1015 unique combinations. The brute
force algorithm still has a practical use in empirical verification, which will be discussed
later.
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3.2.2 Pseudocode

A pseudocode of the algorithm can be seen in Algorithm 6. In this case, the algo-
rithm uses the EDF-FP scheduling policy as can be seen on line 16. However, it can
be replaced with any other scheduling policy function and the algorithm will still be
correct. The pseudocode consists of two functions. Function BRUTE FORCE TEST
receives a set of tasks E and for each execution scenario assigns release and execution
times to all jobs. After each assignment, BRUTE FORCE TEST executes the SIMU-
LATE SCHEDULING function which determines if the given scenario would result in a
deadline miss on an online scheduler.

Algorithm 6 Brute force ET schedulability test

Input: Set of ET tasks E
Output: if the instance is schedulable

1: function BRUTE FORCE TEST(E)
2: for each unique execution scenario γ = (C,R) do
3: for each job Ei,j ∈ E do
4: set Ei,j .c and Ei,j .r according to γ

5: success← SIMULATE SCHEDULING(E)
6: if ¬success then
7: return false
8: return true
9: function SIMULATE SCHEDULING(E)

10: t← 0
11: set all jobs from E to unfinished
12: while true do
13: EA ← applicable jobs from E
14: if EA = ∅ then
15: return true ▷ Every job is finished with no deadline misses

16: Ee ← EDF-FP POLICY(t,EA)
17: if Ee is null then
18: t← min{Ei,j .r | Ei,j ∈ EA ∧ Ei,j .r > t}
19: continue ▷ No jobs are released, wait

20: if Ee.c + t > Ee.d then
21: return false ▷ Deadline miss
22: t← t + Ee.c
23: set Ee to finished

The SIMULATE SCHEDULING function can set jobs to be finished or unfinished
(such as on line 11). Although maybe obvious, what is important to note is that the
SIMULATE SCHEDULING function does not actually occupy a processor for Ei,j .c
units of time when simulating execution of a job Ei,j and instead increases its local t
variable.

An interesting thing of note is that using Ee.c
max instead of Ee.c on line 20 gives

us the same result faster. The pseudocode uses Ee.c to be more illustrative of the idea
behind the algorithm, which is testing every scheduling scenario individually.
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3.3 Schedule graph introduction

In 2017 Mitra Nasri and Björn B. Brandenburg introduced a scalable algorithm that
implements an ET schedulability test using a so-called schedule graph in their paper
”An Exact and Sustainable Analysis of Non-Preemptive Scheduling”. This graph en-
capsulates all possible execution scenarios and merges similar scenarios while keeping
the schedulability test exact. [12] We believe that this solution is not exact for non-
work-conserving policies. We describe this issue in more detail in Appendix A.

This section describes a schedule graph generation algorithm that is heavily inspired
by [12] and which is exact even for non-work-conserving policies. First, we focus on
the basics of the schedule graph. We then provide a rough description of the generation
algorithm and an example. The precise rules for schedule graph generation are described
afterward.

3.3.1 Schedule graph

An intuitive understanding of the schedule graph is that each vertex vi contains a set of
finished jobs and a range of times [ei, li]. The schedule graph is a directed graph where
an edge characterizes the execution of an ET job. A job can finish in a range of times
for instance due to execution time variation.

The graph starts with a root vertex vr (sometimes also denoted as v0) with no
finished jobs and a range of times [0, 0]. The schedule graph is gradually built from the
root vertex up to a graph that encapsulates all possible sequences of job executions.

Formally, the schedule graph G = (V,Σ) is defined as a directed acyclic graph where
each vertex has a label consisting of earliest finish time e (EFT) and latest finish time
l (LFT). These two variables define a finish time interval [e, l]. Furthermore, each edge
σ ∈ Σ has a label corresponding to a single job that is denoted as σ.E. Multiple edges
can have the same job label.

Usually, a set of edges is denoted as E, however E already denotes a set of ET jobs,
so Σ is chosen instead. Additionally, because e already denotes EFT, an edge is denoted
as σ.

It is useful to see the schedule graph as a directed level-structured graph. This means
V can be split into disjoint sets based on the distance from root vertex vr. [5] Here,
distance of a vertex vi from the root vertex vr is the length of the shortest path from vr
to vi. Let Vi denote set of vertices for which the distance from root vertex vr is i. Note
that V0 = {vr}.

3.3.2 Graph generation

The schedule graph is generated based on a set of ET tasks E and a scheduling policy
P. The generation algorithm initializes with root vertex vr where [er, lr] = [0, 0] and
V0 = {vr}. It then keeps performing two alternating phases called expansion phase and
merge phase. The expansion phase generates a new set of vertices V ex

i+1 from Vi. The
merge phase then tries to merge some vertices from V ex

i+1 with each other which results
in Vi+1.
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rmin rmax cmin cmax dET τET

E1 0 0 1 2 10 10

E2 0 0 1 1 3 5

E3 1 3 3 4 9 10

Table 3.1: Parameters of ET jobs used in the schedule graph example.

The algorithm starts with V0 and keeps executing the two alternating phases until
Vj is generated where j is the total number of jobs in E. The algorithm may also end
earlier if it finds a deadline miss. If a deadline miss is detected, a set of tasks E is not
schedulable under policy P. If the entire graph is generated with no deadline misses
found, then the set of tasks E is schedulable under policy P.

3.3.3 Expansion phase

Vertex vi can be characterized by [ei, li] time range and its position in the graph. The
position in the graph determines which jobs are finished by the path taken from the root
vertex. This set of jobs is denoted as Evi and can be used to determine applicable jobs
for vertex vi.

As previously mentioned, the expansion phase takes vertices Vi and generates a new
set of vertices V ex

i+1. The expansion phase evaluates each vertex individually by using
its applicable jobs EA and time interval [e, l]. It determines at which time which jobs
can be executed using this information. This in turn means generating new vertices and
edges. The result is a set of new vertices, some of which may be merged in the merge
phase.

3.3.4 Merge phase

The merge phase takes the result of expansion phase V ex
i+1 and attempts to merge its

vertices together. Two vertices vi and vj can be merged if Evi = Evj ∧ [ei, li]∩ [ej , lj ] ̸= ∅.
If vertices vi and vj are merged, then all edges pointing to vj are reoriented so that they
point to vi, time interval of vi is updated as [ei, li] ← [ei, li] ∪ [ej , lj ] and vj is removed
from the graph. Note that the schedule graph is not a multigraph, which means that
some edges that are reoriented from vj to vi may be removed instead.

3.3.5 Example

Let us consider 3 ET tasks E = (E1, E2, E3). The parameters of these ET tasks can be
seen in Table 3.1. We will use the EDF scheduling policy which does not make use of
priority values p and they are therefore undefined. The loose Gantt chart of this instance
can be seen in Figure 3.1.

The entire schedule graph generation process is visualized in Figure 3.2. The algo-
rithm starts at level 0 with root vertex v0, [e0, l0] = [0, 0] and no jobs finished. At this
point, there are two certainly released jobs E1,1 and E2,1. The expansion phase concludes
that the EDF policy would pick E2,1 at t = 0 as it has earlier deadline than E1,1. Job
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Figure 3.1: Loose Gantt chart of the schedule graph example instance.

E3,1 is not considered as it would not be released at t = 0 for any execution scenario. The
expansion results in creating a new vertex v1 with [e1, l1] = [e0 + cmin

2,1 , l0 + cmax
2,1 ] = [1, 1].

Additionally, new edge pointing from v0 to v1 is created with label of the picked job
E2,1. This concludes the expansion phase on level 0. The merge phase is executed next
but it does not change the graph in any way as the result of expansion phase is only one
vertex.

The algorithm continues with expansion phase on V1 = (v1). Here, two scenarios
may occur. In the first scenario, job E3,1 has just released at t = 1. If that is the case,
E3,1 would be picked by EDF policy as it has earlier deadline compared to E1,1. In
the second scenario, job E3,1 does not release at t = 1 and E1,1 is picked instead as
there are no other released jobs. These two scenarios result in vertices v2 and v3 with
[e2, l2] = [e1 + cmin

2,1 , l1 + cmax
2,1 ] = [2, 3] and [e3, l3] = [e1 + cmin

3,1 , l1 + cmax
3,1 ] = [4, 5]. This is

the result of the expansion phase. The merge phase does not merge vertices v2 and v3
as Ev2 ̸= Ev3 .

At level V2 = (v2, v3), the expansion phase individually evaluates v2 and v3. When
expanding a vertex which has a different earliest and latest start time, the expansion
phase has to check all times in interval [e, l]. In the case of v2, the only jobs left are E3,1

and E2,2, but E2,2 will not release until t = 5 and is therefore ignored. At t = 2, there
are two scenarios. If E3,1 releases at t = 2, then it would be picked by EDF policy. If
E3,1 releases at t = 3, then EDF policy would return null and the scheduler would idle
for one time unit. At t = 3 the job E3,1 is certainly released and would be picked by
EDF policy. To summarize, EDF will always pick job E3,1 in time interval [2,3]. The
earliest time it would execute is t = 2 and the latest time is t = 3. This results in a new
vertex v4 with [e4, l4] = [e2 + cmin

3,1 , l2 + cmax
3,1 ] = [5, 7].

The expansion phase is not done yet with level V2 because it needs to evaluate v3 as
well. Vertex v3 has finish time interval [e3, l3] = [4, 5]. At time t = 4, job E1,1 would be
picked by EDF because E2,2 is not yet released and there are no other unfinished jobs.
However, at time t = 5 job E2,2 is certainly released and because it has lower deadline
than E1,1, it would be picked by EDF instead. This results in two new vertices v5 and
v6 where [e5, l5] = [4 + cmin

2,1 , 4 + cmax
2,1 ] = [5, 6] and [e6, l6] = [5 + cmin

2,2 , 5 + cmax
2,2 ] = [6, 6].

Note that because different jobs would execute at different times, the new finish time
intervals of v5 and v6 are computed by the earliest and latest time they would be picked
by the EDF policy.

With the expansion phase done with level V2, the merge phase takes over. Because
Ev4 = Ev5 and [e4, l4]∩[e5, l5] ̸= ∅ vertices v4 and v5 are merged. This is done by changing
the parameters of v4, redirecting edges pointing to v5 to v4 and removing v5. In this
case one edge is redirected and the resulting interval is [e4, l4] = [5, 7] ∪ [5, 6] = [5, 7].
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Figure 3.2: The process of generating the schedule graph. Inside of each vertex is its
index and finish time interval [e, l]. The stages are annotated with level and type of
phase (either E for expansion or M for merge). The merge phase on levels 0 and 1 does
not change the graph and is therefore omitted from the visualization.
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On level V3 = (v4, v6), the final iteration of expansion and merge phase starts. The
expansion phase individually evaluates v4 and v6. For both of these vertices, only one
unfinished job remains. For v4 the last remaining job is E2,2 which releases at t = 5 and
for v6 the last remaining job is E1,1 which released at t = 0. The expansion phase creates
vertex v7 as expansion of v4 and v8 as expansion of v6. The resulting finish time intervals
are [e7, l7] = [e4 + cmin

2,2 , l4 + cmax
2,2 ] = [6, 8] and [e8, l8] = [e6 + cmin

1,1 , l6 + cmax
1,1 ] = [7, 8].

Because Ev7 = Ev8 and [e7, l7] ∩ [e8, l8] ̸= ∅, vertices v7 and v8 are merged.

There was no deadline miss in this example to show the complete construction of a
schedule graph. A deadline miss can be detected during the expansion phase. When
creating a new vertex vi from vertex vj with job Ek,l, there is a deadline miss if vi.l >
Ek,l.d.

3.4 A formal description of schedule graph generation for
work-conserving policies

We first describe schedule graph generation rules only for work-conserving policies. We
discuss generation rules for non-work-conserving policies in a later section.

3.4.1 Parameters of vertices and edges

Before we describe the rules and algorithms, let us define parameters of each vertex and
edge. Every vertex v has earliest finish time v.e, latest finish time v.l, incoming edges
v.in and outgoing edges v.out. Every edge σ has job label σ.E, source vertex σ.s, and
a destination vertex σ.d.

As mentioned in previous sections, we can determine the applicable jobs of a vertex
v from its position in the graph. This is done by taking any path from root vertex vr to
the vertex v and then transforming the set of path’s edges into a set of jobs by taking
the label of each edge. This set is then equivalent to a set of finished jobs which can be
used to determine the applicable jobs. Applicable jobs of a vertex v will be denoted as
v.EA.

3.4.2 Job eligibility

A job Ei,j has higher policy priority than Ek,l if P(∞, {Ei,j , Ek,l}) returns job Ei,j ,
where P is the used policy function. This means that Ei,j would be picked by the
scheduling policy given that both Ei,j and Ek,l are certainly released. If one of the jobs
is null, then the other one is automatically picked. Behavior for both jobs being null
is undefined. The policy function P(∞, {Ei,j , Ek,l}) can be replaced for instance with
EDF-FP POLICY(∞, {Ei,j , Ek,l}) if we wished to use the EDF-FP policy.

For a given set of applicable jobs EA and time t, an ET job Et
ce is certainly-eligible

at time t if Et
ce is certainly released at time t and there is no other certainly released

applicable job at time t with higher policy priority than Et
ce. Formally, job Et

ce ∈ EA is
certainly-eligible at time t iff

Et
ce.r

max ≤ t ∧ ∄Ei,j ∈ EA st. Ei,j ̸= Et
ce ∧ Ei,j .r

max ≤ t ∧ Ei,j = P(∞, {Ei,j , E
t
ce})
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Note that there may be at most one certainly-eligible job at time t. If there is no
certainly-eligible job at time t, we say that Et

ce does not exist.

Similarly, ET job Et
pe is possibly-eligible at time t if it is possibly released at time t

and the Et
ce has lower policy priority than Et

pe. Formally, we define the set of possibly-
eligible jobs at time t as

{Ei,j | Ei,j ∈ EA ∧ Ei,j .r
min ≤ t < Ei,j .r

max ∧ Ei,j = P(∞, {Ei,j , E
t
ce})}

3.4.3 Explanation of job eligibility

The certainly-eligible job Et
ce is the job that would be picked by the policy function in

a scenario where all possibly-eligible jobs are released at time t + 1 or later. This is due
to the fact that possibly-eligible jobs are not released at time t and jobs that are not
certainly-eligible or possibly-eligible at time t either have a lower policy priority than
Et

ce or cannot be released at time t.

If some of the possibly-eligible jobs at time t do release at time t or earlier, then
one of these jobs is picked by the policy function because it has higher policy priority
than the certainly-eligible job Et

ce. However, we do not know in advance which possibly-
eligible jobs will release at time t or earlier. Any of the possibly-eligible jobs may release
at time t or earlier while all other possibly-eligible jobs release at time t + 1 or later.
This means that each of the possibly-eligible jobs may be picked by the policy function
in some scenario.

Given a set of applicable jobs v.EA and a work-conserving scheduling policy, jobs
that are certainly-eligible or possibly-eligible at time t ∈ [v.e, lext] where lext = min{t |
t ≥ v.l ∧ Et

ce exists} may begin execution in some execution scenario at time t. The
reason we are not using interval [v.e, v.l] is due to one exception where there are no
certainly released jobs in the interval [v.e, v.l], i.e., there might be a scenario, where the
online scheduler does not have any available jobs and needs to wait. Because of this
fact, we are extending the interval to a time where a certainly-eligible job exists.

3.4.4 Expansion phase

The goal of the expansion phase is to find times, where each job is either possibly or
certainly eligible and expand vertices based on this information. A pseudocode of the
expansion phase can be seen in Algorithm 7.

What needs a more detailed explanation is the idea of converting integers into ranges
as can be seen on line 14 in Algorithm 7. Example of converting integers into ranges is
{2,3,4,5,7,8,10,14,15,16} being converted into {[2,5], [7,8], [10,10], [14,16]}. The integers
may not be sorted prior to conversion, but we assume that they are sorted beforehand.

Due to the properties of work-conserving policies, there will always be only one range
in variable tR. In addition, the left boundary of this range est will always be equal to
max(v.e, Ei,j .r

min). These two rules do not apply to non-work-conserving policies.
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Algorithm 7 Expansion phase

Input: set of vertices Vi

Output: set of vertices V ex
i+1

1: function EXPANSION PHASE(Vi)
2: V ex

i+1 ← ∅
3: for each vertex v ∈ Vi do
4: Vn ← NEXT NODES(v)
5: V ex

i+1 ← V ex
i+1 ∪ {Vn}

6: return V ex
i+1

7: function NEXT NODES(v)
8: if v.EA = ∅ then
9: return ∅ ▷ All jobs are completed

10: Vn ← ∅
11: lext ← min{t | t ≥ v.l ∧ Et

ce exists}
12: for Ei,j ∈ EA do
13: tEL ← all times t ∈ [e, lext] where Ei,j is certainly or possibly eligible
14: tR ← times tEL converted into ranges
15: for each range [est, lst] ∈ tR do
16: vn ← EXPAND VERTEX(v,Ei,j , est, lst)
17: Vn ← Vn ∪ {vn}
18: return Vn

19: function EXPAND VERTEX(v,E, est, lst)
20: vn ← new vertex with vn.e = est + E.cmin and vn.l = lst + E.cmax

21: σn ← new edge with σn.E = E, σn.s = v and σn.d = vn
22: vn.in← vn.in ∪ {σn}
23: v.out← v.out ∪ {σn}
24: return vn
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3.4.5 Low-level view of the expansion phase

Algorithm 7 provides high-level pseudocode of the expansion phase. The way of finding
times during which a job is certainly or possibly eligible on line 13 is not explained.
We, therefore, provide another pseudocode of function NEXT NODES CONSERVING
in Algorithm 8 which is more representative of an actual implementation for work-
conserving policies. On line 12, there might not be any certainly released job, in which
case Et

ce is null. Line 10 defines the job Et
ce such that it always has a higher policy

priority. This means that its parameters are set so that the used policy prioritizes Et
ce

over all other jobs. For the EDF-FP and EDF policies, this could be achieved by setting
Et

ce.d = Et
ce.p = −1.

Algorithm 8 More detailed version of NEXT NODES (work-conserving)

Input: vertex v
Output: set of vertices Vn

1: function NEXT NODES CONSERVING(v)
2: if v.EA = ∅ then
3: return ∅
4: lext ← min{t | t ≥ v.l ∧ Et

ce exists}
5: CE ← null
6: PE ← ∅
7: Vn ← ∅
8: for t = v.e to lext + 1 do
9: if t = lext + 1 then

10: Et
ce ← newly created ET job st. Et

ce = P(∞, {Et
ce, Ei,j}) for any job

Ei,j ∈ EA

11: else
12: Et

ce ← certainly-eligible job at time t or null

13: if Et
ce ̸= null ∧ Et

ce ̸= CE then
14: if CE ̸= null then
15: vn ← EXPAND VERTEX(v, CE,max(v.e, CE.rmin), t− 1)
16: Vn ← Vn ∪ {vn}
17: if Et

ce ∈ PE then
18: PE ← PE \ {Et

ce}
19: CE ← Et

ce

20: for each Ei,j ∈ PE do
21: if Ei,j is not possibly eligible at time t then
22: vn ← EXPAND VERTEX(v,Ei,j ,max(v.e, Ei,j .r

min), t− 1)
23: Vn ← Vn ∪ {vn}
24: PE ← PE \ {Ei,j}
25: for each Ei,j ∈ EA do
26: if Ei,j is possibly eligible at time t ∧ Ei,j ̸∈ PE then
27: PE ← PE ∪ {Ei,j}
28: return Vn

This pseudocode goes through each integer time t ∈ [vn.e, lext + 1] and notes how
the certainly and possibly released jobs change. The certainly-eligible job is in variable
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CE and the set of possibly eligible jobs is in variable PE. In each time t ∈ [vn.e, lext] the
algorithm finds the certainly-eligible job Et

ce and, if needed, changes job CE and jobs in
PE according to Et

ce. Lastly, it adds new possibly-eligible jobs to PE.

When changing job CE or removing some job from PE, the algorithm expands vertex
v. One way to explain this behavior is that because a job is no longer certainly or possibly
eligible, we now know the time interval during which the job was eligible. This means
that we know the parameters needed to expand vertex v.

During the last iteration of the algorithm, i.e., t = lext + 1, the certainly-eligible
job is a made-up job that has higher policy priority than any other applicable job in
v.EA. This way, the jobs left in variables CE or PE are removed, which means that they
expand the vertex v.

3.4.6 Merge phase

Unlike the expansion phase, the implementation of the merge phase is the same for both
work-conserving and non-work-conserving policies. A pseudocode of the merge phase
can be seen in Algorithm 9.

Algorithm 9 Merge phase

Input: a set of vertices V ex
i

Output: none, the changes are done locally

1: function MERGE PHASE(V ex
i )

2: while ∃vm, vx ∈ V ex
i st. Evm = Evx ∧ [vm.e, vm.l] ∩ [vx.e, vx.l] ̸= ∅ do

3: vm.e ← min(vm.e, vx.e)
4: vm.l ← max(vm.l, vx.l)
5: for each edge σx ∈ vx.in do
6: if ∄σm ∈ vm.in st. σx.E = σm.E ∧ σx.s = σm.s then
7: σx.d = vm
8: vm.in = vm.in ∪ {σx}
9: remove vx and all edges {σx | σx.d = vx} from the graph

The merge phase keeps merging vertices until there are no two vertices that satisfy
the conditions to be merged. When merging two vertices vm and vx, vertex vm has its
finish time range changed to [vm.e, vm.l] ∪ [vx.e, vx.l] and all edges directed to vx are
redirected to vm. Because the schedule graph is not a multigraph, an edge can be deleted
instead if there already exists an edge directed to vm with the same label.

3.4.7 Complete schedule graph generation

Schedule graph generation alternates between the described expansion and merge phase.
It starts with root vertex vr where vr.e = vr.l = 0 and vr.in = vr.out = ∅. Pseudocode
of the graph generation algorithm can be seen in Algorithm 10. Although the input of
the algorithm E is not used directly, every vertex computes the applicable jobs from the
given set of tasks E.

The graph is generated and changed only in the expansion and merge phases. The
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Algorithm 10 Schedule graph generation

Input: a set of ET tasks E, policy function P
Output: if set of ET tasks E is schedulable under the given policy

1: function GRAPH GENERATION(E, P)
2: vr ← new vertex with vr.e = vr.l = 0 and vr.in = vr.out = ∅
3: V0 ← {vr}
4: for i = 1 to |E| do ▷ |E| is the total number of jobs in E
5: V ex

i ← EXPANSION PHASE(Vi−1)
6: for each vexi,j ∈ V ex

i do
7: Eex

i,j ← label of the only edge in vexi,j .in
8: if vexi,j .l > Eex

i,j .d then
9: return false ▷ Deadline miss detected

10: Vi ← MERGE PHASE(V ex
i )

11: return true ▷ Generation completed with no deadline misses

function GRAPH GENERATION combines the two phases while detecting deadline
misses.

The part of the code which detects deadlines (lines 6-9) can be executed after the
merge phase on a potentially smaller amount of vertices. However, there is an issue
with this approach. If the expansion phase yields a vertex with a deadline miss, then
the deadline would be found after the merge phase was conducted. In this case, the
execution of the merge phase would be redundant.

The merge phase does not need to be done in the very last iteration of the algorithm.
Instead, the deadline miss detection would be executed directly on the expanded vertices
V ex
i and the merge phase would be omitted as its result is not used.

3.5 A formal description of schedule graph generation for
non-work-conserving policies

In this section, we expand on the ideas of schedule graph generation for work-conserving
policies and describe schedule graph generation for non-work-conserving policies.

3.5.1 Generalization of non-work-conserving policies

We have intentionally made all described non-work-conserving policies follow the EDF-
FP policy when they are not trying to insert idle times. This makes it easier to create
a single algorithm that works for all described policies.

A commonality of the described non-work-conserving policies is that they all define
some critical time tc using a job or a set of jobs. A job cannot be picked by any of
the policies if it may finish after tc. This rule does not apply to one job, which we call
critical job Ec.

Note that both tc and Ec can be obtained from a set of applicable jobs, which means
that each vertex has its own tc and Ec. This will be denoted as v.tc and v.Ec for vertex
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Notation Name Type

v.e earliest finish time integer

v.l latest finish time integer

v.in incoming edges set of edges

v.out outgoing edges set of edges

v.EA applicable jobs set of jobs

v.tc critical time integer

v.Ec critical job job

Table 3.2: All variables that are associated with a single vertex. Variables v.EA, v.tc

and v.Ec are used to simplify the notation and terminology. They do not have to be
stored and can be computed when needed using the other variables.

v. We won’t be adding any more variables to a vertex and we, therefore, provide a
summary of vertex notation in Table 3.2.

How to obtain the tc and Ec has been described in pseudocodes of each policy.
However, for clarity, we define a function for each of the non-work-conserving policies
which returns tc and Ec for a non-empty set of applicable jobs EA. These functions can
be seen in Algorithm 11. The tc and Ec are the same for all work-conserving policies.

This model is much simpler compared to [12] as deadline prevention of the whole
expansion phase of a single vertex is described only using two variables while [12] uses
a function with three arguments.

3.5.2 Job eligibility for non-work-conserving policies

To accommodate for the properties of non-work-conserving policies, we need to redefine
certainly and possibly eligible jobs. In general, these properties can be defined on a set
of applicable jobs EA, critical time tc, critical job Ec, and time t. We defined them
based on a vertex v and time t to ease off the notation.

For a given vertex v and time t, a job Ei,j ∈ v.EA violates time v.tc if Ei,j .c
max + t >

v.tc ∧Ei,j ̸= v.Ec. That is, Ei,j is not the critical job and if it was executed at time t it
might finish after v.tc.

For a given vertex v and time t, a job Et
ce is certainly-eligible at time t if Et

ce is
certainly released at time t, does not violate v.tc and there is no other certainly released
applicable job at time t which does not violate v.tc and has a higher policy priority than
Et

ce. Formally, given vertex v, job Et
ce ∈ v.EA is certainly-eligible at time t iff

Et
ce.r

max ≤ t ∧ (t+Et
ce.c

max ≤ v.tc ∨ Et
ce = v.Ec) ∧ ∄Ei,j ∈ v.EA st. Ei,j ̸= Et

ce ∧
Ei,j .r

max ≤ t ∧ (t + Ei,j .c
max ≤ v.tc ∨ Ei,j = v.Ec) ∧ Ei,j = P(∞, {Ei,j , E

t
ce})

In other words, from a set of certainly released jobs that do not violate v.tc the
certainly-eligible job is the one with the highest policy priority out of all of them. Note
that there is at most one certainly-eligible job at time t.

Similarly, a job Et
pe is possibly-eligible at time t if it is possibly released at time t,
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Algorithm 11 How to get tc and Ec for each policy

Input: Applicable jobs EA (non-empty)
Output: tc and Ec of a given policy

1: function EDF-FP C(EA)
2: return (∞, null)

3: function P-RM C(EA)
4: Ec ← job from EA with p = 0 and the lowest rmax

5: if Ec is null then
6: return (∞, null)
7: else
8: tc ← Ec.d− Ec.cmax

9: return (tc, Ec)

10: function CP C(EA)
11: Ec ← job from EA with the lowest d value
12: tc ← Ec.d− Ec.cmax

13: return (tc, Ec)

14: function CW C(EA)
15: ES ← EA sorted by d in descending order
16: tc ←∞
17: for each Es

i,j ∈ ES do
18: if Es

i,j .d < tc then
19: tc ← Es

i,j .d− Es
i,j .c

max

20: if Es
i,j .d ≥ tc then

21: tc ← tc − Es
i,j .c

max

22: Ec ← the last job in ES

23: return (tc, Ec)
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does not violate v.tc and has higher policy priority than Et
ce. Formally, we define the set

of possibly-eligible jobs at time t as

{Ei,j | Ei,j ∈ v.EA ∧ Ei,j .r
min ≤ t < Ei,j .r

max ∧
(t + Ei,j .c

max ≤ v.tc ∨ Ei,j = v.Ec) ∧ Ei,j = P(∞, {Ei,j , E
t
ce})}

Just as with work-conserving policies, jobs that are certainly-eligible or possibly-
eligible at time t ∈ [v.e, v.l] may begin execution in some execution scenario at time t.
This means that the previous pseudocodes in Algorithm 7, Algorithm 9, and Algorithm
10 apply for non-work-conserving policies as long as we use the modified definition of
certainly and possibly eligible jobs.

3.6 Possible improvements

In Algorithm 8 we provided a low-level description of the expansion phase for work-
conserving policies. One possible way of improving this algorithm is to not iterate over
all times t ∈ [vn.e, lext + 1]. Instead, we can iterate only over times t ∈ {t | Ei,j ∈
EA ∧ (Ei,j .r

min = t ∨ Ei,j .r
max = t)} ∪ {lext + 1} and the result of the expansion phase

will be the same. However, we need to make sure that we iterate over those times in
ascending order.

A similar rule applies for the expansion phase of non-work-conserving policies. Here
we need to add times where a job Ei,j may no longer be eligible because it would
violate critical time. Formally, we need to iterate only over times t ∈ ({t | Ei,j ∈
EA ∧ (Ei,j .r

min = t ∨ Ei,j .r
max = t)} ∪ {lext + 1} ∪ {t | Ei,j ∈ EA ∧ Ei,j ̸= v.Ec ∧ t =

v.tc − Ei,j .c
max + 1}). Once again, these times need to be iterated over in ascending

order.
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Chapter 4

ET solution evaluation

In this section, we discuss the evaluation of the described algorithms. We won’t try
to give asymptotic complexity as it is very difficult to describe due to the branching
factor being hard to identify. Instead, we are doing empiric measurements on randomly
generated instances.

4.1 System information

The ET schedulability brute force test and the ET schedulability test using schedule
graph were implemented using Java 8. The source code of this implementation and
instances used in benchmarking are publicly available on GitHub1. The code implements
the improvements mentioned in Chapter 3.6. These are the relevant specifications of the
computer the benchmarking was done on:

• CPU: 3550Mhz, 8 cores, 16 threads

• Memory: 16GB, DDR4, 2666MHz (Java VM used at most 4GB of memory)

4.2 Instance generation

We developed a function which returns a random instance based on several parameters.
The aim of the function is to have utilization as close as possible to

U =

n∑
i=1

Ei.cmax

Ei.τ

for a set of ET tasks E. Utilization could be described as a percentage of time a processor
will spent executing jobs if Ei,j .c = Ei,j .c

max for all Ei,j ∈ E. This function accepts the
following parameters:

• Number of tasks AE - Total number of tasks of the instance.

1https://github.com/redakez/ettt-scheduling
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• Target hyperperiod Aη - Maximum possible hyperperiod of the instance. For
large amount of tasks, the hyperperiod of the instance usually equals to the target
hyperperiod.

• Minimum task period Aτ - Minimum period τ a task may have

• Utilization AU - Utilization of the instance

• Utilization swaps AU
s - For how long should the utilization be randomized

• Utilization swap amount AU
a - How much should utilization differ between tasks

• Release jitter percentage AP
j - The amount of release jitter

• Execution time variation percentage AP
c - The amount of execution time

variation

• Release shift percentage AP
r - How far should the release time be from the

beginning of a period

• Deadline shift percentage AP
d - How far should the deadline be from the end

of a period

• Random shift percentage AP - How much should the previous 4 percentages
randomly differ between tasks

• Minimum priority Ap
min - Minimum priority a task can have

• Maximum priority Ap
max - Maximum priority a task can have

• Seed AS - Seed of the instance

To achieve utilization as close as possible to the provided argument, each task Ei is
assigned a number Ui = AU/AE . Then the algorithm picks two random tasks Ei and Ej
and sets Ui = Ui + Uj ·AU

a and Uj = Uj − Uj ·AU
a . This is done AU

s times.

Execution time variation percentage is defined as (Ei.cmax−Ei.cmin)/(Ei.cmax−1) for
task Ei . Similarly, release jitter percentage is defined as (Ei.rmax−Ei.rmin)/Ei.rmax. The
release jitter and execution time variation percentage can be understood as: the higher
the percentage the more release jitter or execution time variation. If both percentages
are set to 0, then Ei.rmin = Ei.rmax and Ei.cmin = Ei.cmax for all Ei ∈ E. The instance
generation algorithm tries to make all tasks have release jitter percentage as close as
possible to AP

j and execution time variation percentage as close as possible to AP
c .

Similarly, the instance generation algorithm tries to make deadline of task Ei as close
as possible to Ei.d = (Ei.τ + Ei.cmax)/2 + (1−AP

d ) · (Ei.τ −Ei.cmax)/2 and the maximum
release time of a task as close as possible to Ei.rmax = AP

r · (Ei.τ − Ei.cmax)/2. These
two percentages limit in what interval a job can be executed. Note that AP

d = 0 results
in Ei.d = Ei.τ and AP

r = 0 results in Ei.rmax = 0. On the other hand, if both values are
to 1 then Ei.rmax + Ei.cmax = Ei.d.

The random shift percentage AP gives a bound on how much can the previous four
percentage variables differ. For instance, if AP = 0.5 and AP

d = 0.2 then each task
will have its deadline defined as if the value AP

d was taken uniformly from range [AP ·
AP

d , A
P
d + (1−AP

d ) ·AP ] = [0.5 · 0.2, 0.2 + 0.8 · 0.5] = [0.1, 0.6]. The same formula would
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apply for any other percentage variable. All of the percentage arguments can be set to
any double in range [0, 1].

We will use this function to generate instances for future run time measurement tests.

4.3 Empirical correctness verification

Using the instance generator, we generated 10 million instances with arguments AE = 5,
Aη = 10, Aτ = 5, AU = 0.3, AU

s = 20, AU
a = 0.1, AP

j = 0.3, AP
c = 0.3, AP

r = 0.1,

AP
d = 0.1, AP = 0.5, Ap

min = 1 and Ap
max = 2. After each instance was generated, it was

tested for schedulability using both the brute force ET schedulability test and schedule
graph ET schedulability test. The results did not differ on any of the instances for any
of the described policies.

4.4 Comparison with SANS schedulability test

The aim of this subsection is to compare the run times of our implementation to im-
plementation based on [12] which is currently maintained by Björn B. Brandenburg on
GitHub2. We will call this implementation the SANS schedulability test. This applica-
tion implements the schedule graph generation algorithm based on [12] as well as [15]
and [14]. However, we will be using only part of the application which is described in
[12], i.e., uniprocessor analysis. The application is written in C++.

4.4.1 Generated datasets

Because our approach and the approach of [12] differs in non-work-conserving policies
(see Appendix A), we will be comparing the 2 schedulability tests only for the EDF
policy.

We generated 3 datasets Ds
1, Ds

2, and Ds
3. The first dataset Ds

1 was generated with
AP

j = AP
c = 0, the second dataset Ds

2 with AP
j = AP

c = 0.3, and the third dataset Ds
3

with AP
j = AP

c = 0.6. Each dataset contains 960 instances.

Because EDF policy has a very low schedulability, all generated instances had uti-
lization of 0.3 which should result in both several schedulable and non-schedulable in-
stances. All instances were generated with the following arguments: 2 ≤ AE ≤ 61,
Aη = 1000000000, Aτ = 10000000, AU = 0.3, AU

s = 300, AU
a = 0.1, AP

r = 0.05,
AP

d = 0.05, AP = 0, Ap
min = Ap

max = 1. The high periods and non-zero deadline and
release shift is set due to the fact that both ET schedulability tests handle tie-breakers
differently and these values make it extremely unlikely for them to happen. Each in-
stance was generated with a different seed.

2https://github.com/gnelissen/np-schedulability-analysis
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4.4.2 How was the benchmarking conducted

The benchmarking was done using a Java program, which executed a dataset of instances.
Both schedulability tests were launched only once for each instance and ran on a single
processor. However, Java’s garbage collector did run in parallel.

All tested instances were generated beforehand. The input file of our schedulability
test is a set of ET tasks while the input file for the SANS schedulability test contains a
set of ET jobs. Because the input format differs, two input files were created for each
instance, one for our test and one for the SANS test. No schedulability tests ran in
parallel, i.e., there was always only one schedulability test running at any time. The
measured time includes parsing of the input file.

4.4.3 Results

The results for dataset Ds
1 can be see in Figure 4.1, Ds

2 in Figure 4.2, and Ds
3 in Figure 4.3.

Generally speaking, the higher the release jitter and execution time variation percentage
the higher the run time. Note the increasing scale on the y axis with each subsequent
dataset. During the benchmarking, none of the instances yielded a conflicting result
between the two schedulability tests. As can be seen in the charts, the schedulability
tests seem to have the same asymptotic behavior. The instances that yielded non-
schedulable finish quicker, as they do not compute the entire schedule graph unlike in
the schedulable instances.

Additionally, we provide a box plot of speedups between our schedulability test and
SANS schedulability test for each of the three datasets in Figure 4.4. Speedup in this
case is defined as

S =
Ss
So

where So is the run time of our test and Ss is the run time of the SANS schedulability
test. As can be seen in the figure, for the datasets Ds

1 and Ds
2, the median speedup is

about 15, and for dataset Ds
3 the median speedup is about 10. This might be due to the

fact that the definition of job eligibility in [12] differs from our approach, although the
result is the same.

4.5 Policy schedulability and performance

In this section, we evaluate the run times and schedulability of all described policies.

4.5.1 Generated datasets

Once again, we generated 3 datasets Dp
1, Dp

2, and Dp
3. The first dataset Dp

1 was generated
with AP

j = AP
c = 0, the second dataset Dp

2 with AP
j = AP

c = 0.3, and the third dataset

Dp
3 with AP

j = AP
c = 0.6. Each dataset contains 200 instances for each utilization AU ∈

{0.1, 0.2, . . . , 0.9}, i.e., 1800 instances for each dataset. All instances were generated
with arguments: 2 ≤ AE ≤ 61, Aη = 1000000000, Aτ = 10000000, AU

s = 300, AU
a = 0.1,

AP
r = 0.05, AP

d = 0.05, AP = 0.These arguments are the same as for datasets Ds
1, Ds

2, and
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Figure 4.1: Run times of our schedulability test and SANS schedulability test on dataset
Ds

1. The top chart shows measurements on all instances and the bottom chart only
measurements that yielded schedulable.
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Figure 4.2: Run times of our schedulability test and SANS schedulability test on dataset
Ds

2. The top chart shows measurements on all instances and the bottom chart only
measurements that yielded schedulable.
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Figure 4.3: Run times of our schedulability test and SANS schedulability test on dataset
Ds

3. The top chart shows measurements on all instances and the bottom chart only
measurements that yielded schedulable.
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Figure 4.4: Box plots of speedups for the datasets Ds
1, Ds

2, and Ds
3 between our schedu-

lability test and SANS schedulability test.

Ds
3, only now the utilization is variable instead of fixed. Additionally, all task priorities

are set to zero so that the P-RM policy has the maximum possible schedulability.

4.5.2 Results

The resulting run times on dataset Dp
1 can be see in Figure 4.5, Dp

2 in Figure 4.6, and
Dp

3 in Figure 4.7. For dataset Dp
3, two generated instances had to be left out of the

measurements as they would not finish its run time due to lack of memory. These two
instances had unusually high branching factor and tens of millions of vertices on a single
level of the schedule graph.

To get a better understanding of the relative run times between different policies, we
provide Figure 4.8 which shows how much slower the non-work-conserving policies were
compared to the EDF policy. More formally, we show the inverse of speedup which is in
this case defined as

S−1 =
Sn
Se

where Sn is the run time of some non-work-conserving policy and Se is the run time of
the EDF policy. As can be seen in the figure, the P-RM and CP policies are about 2
times slower than the EDF policy on all datasets. The median S−1 for the CW policy
is between 3 and 5 depending on the dataset.

Schedulability of policies for all datasets can be seen in Figure 4.9. The schedula-
bility of all policies decreases with increasing release jitter and execution time variation
percentage except for the CW policy.

The EDF policy runs the fastest as it uses simplified rules of schedule graph genera-
tion. Run times of the CP and P-RM policy are about the same. This is likely due to
the fact that both policies search through the entire set of applicable jobs to find the
critical job and the critical time. The CW policy is the slowest as it has to sort the
set of applicable jobs and then process each job in order to find the critical job and the
critical time.
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Figure 4.5: Run times of different scheduling policies on dataset Dp
1. The top chart

shows measurements on all instances and the bottom chart only measurements that
yielded schedulable.
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Figure 4.6: Run times of different scheduling policies on dataset Dp
2. The top chart

shows measurements on all instances and the bottom chart only measurements that
yielded schedulable.
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Figure 4.7: Run times of different scheduling policies on dataset Dp
3. The top chart

shows measurements on all instances and the bottom chart only measurements that
yielded schedulable.
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Figure 4.9: Schedulability of policies. The top chart shows schedulability on the dataset
Dp

1, middle chart on dataset Dp
2, and the bottom one on dataset Dp

3.
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Chapter 5

ET+TT solutions

This section describes algorithms that for a set of both ET and TT tasks find a set of
valid start times for TT tasks.

5.1 Fixation of TT jobs

As mentioned in Chapter 2, we wish to find a set of valid start times for the TT tasks.
First we need to describe a method, which for a set of ET tasks E, TT tasks T, and start
times S evaluates if S is a valid set of start times. This can be done by transforming the
TT tasks T into ET tasks and running the ET schedulability test.

TT task Ti becomes fixed at a start time Si ∈ [Ti.r, Ti.d−Ti.c] when it is transformed

to an ET task Efi where Efi .rmin = Efi .rmax = Si, Efi .cmin = Efi .cmax = Ti.c, Efi .d =

Si + Ti.c and Efi .p = 0.

A set of TT tasks T = (T1, . . . , Tm) can be fixed by a set of start times S =
(S1, . . . , Sm) by fixing each TT task Ti using start time Si. This then results in a
set of fixed TT tasks Ef . When we wish to check if a set of start times S is valid for
a set of TT tasks T and ET tasks E, we test schedulability on set E ∪ Ef . If the test
returns schedulable, then the set of start times S is valid.

To make sure that the fixed TT jobs are prioritized over the ET jobs, we add a
constraint Ei.p > 0 for every Ei ∈ E. If a fixed TT job Ef

i,j if not executed at its
predetermined start time, then the schedule results in a deadline miss due to the fact
that Ef

i,j .d = Ef
i,j .r +Ef

i,j .c. This then follows the idea of time-triggered systems, where
a job is always executed at a predetermined time.

5.2 Brute force algorithm

In this section, we describe a brute force algorithm which for a set of ET tasks E and
TT tasks T finds the set of valid start times S. This algorithm goes through all pos-
sible combinations of start times, fixes the TT tasks for each combination, and runs
an ET schedulability test. The algorithm terminates when it either finds a valid set of
start times or goes through all possible combinations of start times and does not find a
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solution.

A pseudocode of the brute force algorithm is in Algorithm 12. Note that |T| is the
number of TT tasks.

Algorithm 12 ET+TT Brute force algorithm

Input: Set of TT tasks T and ET tasks E
Output: Set of valid start times S or null

1: return FIX RECURSIVELY(1, array of |T| zeros)
2:

3: function FIX RECURSIVELY(i, S)
4: if i > |T| then
5: Ef ← fixed TT tasks T using start times S
6: ET success← result of ET schedulability test for E ∪ Ef
7: if ET success then
8: return S

9: if i ≤ |T| then
10: for s = Ti.r to Ti.d− Ti.c do
11: Si ← s
12: success← FIX RECURSIVELY(i+1, S)
13: if success ̸= null then
14: return S

15: return null

5.2.1 Overlap check

What can improve the brute force algorithm is checking if fixing a TT task would create
an overlap with another already fixed TT task. This can potentially prune many com-
binations while keeping the algorithm exact. The overlap checking can be done using an
interval tree. The interval tree saves intervals and can check if a given interval overlaps
with an interval in the interval tree. [10]

Pseudocode with a brute force algorithm with an overlap check can be seen in Al-
gorithm 13. In the pseudocode, the interval tree is treated as a set of numbers. For
some interval [i, j] the operation of adding the interval to the interval tree is denoted as
IT ← IT ∪ [i, j], operation of removing an interval as IT ← IT \ [i, j], and operation of
intersection as IT ∩ [i, j].

5.3 Fixation with and without jitter

In sections 5.1 and 5.2 the fixation of TT tasks was done without jitter, i.e., for each
task, there was only one start time which determined the start time of each job repetition
of that task. In Chapter 5.4 we will be fixing TT tasks with jitter, i.e., each job will
have its own start time which determines its release time and deadline. A more formal
description follows.

TT job Ti,j becomes fixed with jitter at a start time Si,j ∈ [Ti,j .r, Ti,j .d−Ti,j .c] when
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Algorithm 13 ET+TT Brute force algorithm with overlap check

Input: Set of TT tasks T and ET tasks E
Output: Set of valid start times S or null

1: return FIX RECURSIVELY(1, array of |T| zeros, empty interval tree)
2:

3: function FIX RECURSIVELY(i, S, IT)
4: if i > |T| then
5: Ef ← fixed TT tasks T using start times S
6: success← result of ET schedulability test for E ∪ Ef
7: if success then
8: return S
9: if i ≤ |T| then

10: for s = Ti.r : Ti.d− Ti.c do
11: overlap← false
12: for j = 0 to η/Ti.τ − 1 do
13: if [s + j · Ti.τ, s + j · Ti.τ + Ti.c− 1] ∩ IT ̸= ∅ then
14: overlap← true
15: break
16: if overlap then
17: continue
18: for j = 0 to η/Ti.τ − 1 do
19: IT ← IT ∪ [s + j · Ti.τ, s + j · Ti.τ + Ti.c− 1]

20: Si ← s
21: success← FIX RECURSIVELY(i+1, S, IT)
22: if success ̸= null then
23: return S

24: for j = 0 to η/Ti.τ − 1 do
25: IT ← IT \ [s + j · Ti.τ, s + j · Ti.τ + Ti.c− 1]

26: return null
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it is transformed to an ET job Ef
i,j where Ef

i,j .r
min = Ef

i,j .r
max = Si,j , Ef

i,j .c
min =

Ef
i,j .c

max = Ti,j .c, E
f
i,j .d = Si,j + Ti,j .c and Ef

i,j .p = 0. Note that a fixed ET job Ef
i,j

does not inherit its release time and deadline from ET task Efi .

A set of TT tasks T = (T1, . . . , Tm) can be fixed with jitter by a set of start times
S = (S1,1, . . . , S1,h1 , S2,1, . . . , S2,h2 , . . . . . . , Sm,1, . . . , Sm,hm), where hi = η/Ti.τ , by fixing
each TT job Ti,j using start time Si,j . This then results in a set of fixed TT tasks Ef .
When we wish to check if a set of start times S is valid for a set of TT tasks T and ET
tasks E, we test schedulability on set E ∪ Ef . If the test returns schedulable, then the
set of start times S is valid.

5.4 Heuristic algorithm for work-conserving policies

This section describes a scalable heuristic algorithm that for a set of ET tasks E and
TT tasks T finds start times of TT jobs with jitter. This algorithm works only for
work-conserving policies.

The algorithm uses the previously described schedule graph generation algorithm
and adds a new phase called fixation phase. The resulting graph of the algorithm is
called fixation graph.

First, we will focus on the basics of the fixation graph. Then we will provide a rough
description of the generation algorithm and an example. The exact rules for fixation
graph generation are described afterward.

5.4.1 Fixation graph structure

The schedule graph generation algorithm features a single type of vertex which is denoted
as v. For clarity, we will call v a regular vertex from now on. The fixation graph contains
another type of vertex called decision vertex denoted as w. It is called decision vertex
because it decides start times of TT jobs. Unlike a regular vertex, the decision vertex
does not contain a time interval [e, l]. Instead it contains time t, which is denoted as
wi.t for vertex wi. Just as in the schedule graph generation algorithm, the fixation graph
generation algorithm starts with a root vertex vr where [er, lr] = [0, 0] and V0 = {vr}.

Due to these modifications, a level Vi no longer contains vertices whose distance from
the root vertex is i. The index i now only denotes how many times has the merge phase
occurred.

5.4.2 Applicable TT jobs

So far we have considered applicable jobs to be a set of ET jobs. From now on we will
call this set applicable ET jobs. Furthermore, we will now distinguish between applicable
ET jobs EA and applicable TT jobs TA. Applicable TT jobs TA = (T1,j , . . . , Tk,l) is a
set of TT jobs that contains all jobs Ti,j which satisfy: Ti,j is unfinished ∧ (j = 1∨Ti,j−1

is finished). Note that the definition differs from the definition of applicable ET jobs
only by replacing ET jobs with TT jobs.

Furthermore, the set Evi contains only ET jobs encountered on a path from the root
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vertex to vertex vi. Set T vi contains only TT jobs encountered on a path from the
root vertex to vertex vi. A regular vertex v now contains applicable TT jobs, which is
denoted as v.TA. These jobs can still be computed using T v .

5.4.3 Fixation phase

The schedule graph generation algorithm consists of two alternating phases, the expan-
sion phase, and the merge phase. The fixation graph generation algorithm adds a new
phase called fixation phase. This phase occurs before the expansion phase. The fixation
phase tries different combinations of start times and in case a combination results in
a deadline miss, it backtracks. It does this by adding decision vertices to the fixation
graph in times, where TT jobs may be fixed. The fixation phase also incorporates a
modified version of Bratley’s algorithm, which is used to decide the start times of TT
jobs.

5.4.4 Modified Bratley’s algorithm

Bratley’s algorithm is an algorithm that finds an optimal solution to scheduling problem
1|rj , d̃j |Cmax [4][6], i.e., scheduling problem with non-periodic tasks, where each task has
an execution time, release time, and deadline and the objective is to find a schedule that
finishes the earliest possible. If any task finishes execution after its deadline, then the
solution is not feasible. The Bratley algorithm finds an optimal solution by searching
through space of all possible task order executions. To do this, the Bratley algorithm
uses a graph we will call the Bratley graph.

A Bratley graph is contained in each decision vertex to determine the order of fixed
TT jobs. The Bratley graph is made up of Bratley vertices. A Bratley vertex is denoted
as wi.bj , where wi is the decision vertex associated with the Bratley graph which contains
vertex wi.bj . A Bratley vertex wi.bj contains time wi.bj .t. All edges in the Bratley graph
contain a single TT job, which is denoted as σi.T for edge σi.

The Bratley graph used in the decision vertices is not generated using the origi-
nal Bratley’s algorithm, instead, a modified Bratley’s algorithm is used. The modified
version considers the fact that a TT job Ti,j cannot be executed before Ti,j−1. It also
generates all possible orderings by using a breadth-first-search instead of a depth-first-
search. In order to prevent a combinatorial explosion of possible job orderings, the
modified algorithm has an expansion and merge phase similar to the schedule graph
generation algorithm.

Unlike the original algorithm, the modified Bratley algorithm does not generate the
whole Bratley graph once called. Instead, it is called iteratively, generating the Bratley
graph gradually with each call. Each Bratley vertex corresponds to fixing some TT jobs
in some order. A Bratley vertex is viable if it satisfies certain conditions, for instance,
not causing a deadline miss. These conditions are described in detail later.

5.4.5 Example

Let us consider 2 ET tasks E = (E1, E2) and 2 TT tasks T = (T1, T2). The parameters of
these tasks can be seen in Table 5.1. We will use the EDF scheduling policy which does
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r c dTT τTT

T1 4 2 9 10

T2 2 5 20 20

rmin rmax cmin cmax dET τET

E1 1 1 1 3 8 10

E2 0 2 1 2 18 20

Table 5.1: Properties of TT and ET jobs used in the fixation graph example instance.

Figure 5.1: Loose Gantt chart of the fixation graph example instance.

not make use of priority values p and they are therefore undefined. The loose Gantt
chart of this instance can be seen in Figure 5.1. The final fixation graph can be seen in
Figure 5.2.

Level V0 = {v0}
The fixation graph generation starts with root vertex v0. The fixation phase deter-

mines that an ET job may be executed before the first possible start time of a TT job.
In this case, ET job E2,1 may be executed at time t = 0, however the first possible start
time is S2,1 = 2. The fixation phase makes no changes to the graph and the expansion
phase proceeds next.

The expansion phase on V0 = {v0} concludes that if ET job E2,1 was released at time
t = 0, then ET job E2,1 is executed at time t = 0, otherwise ET job E1,1 is executed at
time t = 1. This results in vertices v1 and v2. The merge phase makes no changes to
the graph.

Level V1 = {v1, v2}
The fixation phase does not fix any TT jobs for vertices V1 = {v1, v2}. Notice that

if a TT job was fixed at time t = 2 and job E1,1 began execution at time t = 1, then the
schedule would result in a deadline miss for a scenario, where E1,1.c > 1. The same logic
applies for start time t = 3. Even for t = 4 the schedule would result in a deadline miss.
This may happen for instance in a scenario where E2,1.r = 2, E1,1.c = 2 and E2,1.c = 2.
Same logic applies for t = 5.

The fixation phase does not make any changes to the graph for V1. The expansion
phase creates two new vertices, which are then merged in the subsequent merge phase
into vertex v3.

Level V2 = {v3}
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Figure 5.2: Fixation graph of the example instance. Viable Bratley vertices have a green
outline while Bratley vertices that cause a deadline miss have a red outline. Note that
a Bratley vertex w4.b1 does not actually contain a reference to vertex v5. The dashed
edge only shows that the vertex v5 is created due to w4.b1 being viable. The same goes
for Bratley vertices w4.b3 and w10.b1.

49



The fixation phase creates a decision vertex w4 from V2 = {v3}. This is due to the
fact that no unfinished ET jobs are released in the time interval [v3.e, v3.l] = [2, 6] and
a TT job may therefore be fixed at time t = 6. Which TT jobs, if any, will be fixed at
this time is decided through the modified Bratley’s algorithm.

The modified Bratley’s algorithm starts by creating a root Bratley vertex w4.b0 with
time w4.b0.t = v3.l = 6. At this time one of TT jobs T1,1 and T2,1 may be fixed. The
Bratley vertex w4.b0 corresponds to fixing no TT jobs at time t = 6. The earliest time
an ET job releases is at time t = 11 and T1,1 or T2,1 would finish its execution before
or at this time. This means that both can be fixed at time t = 6 and not interfere with
other ET jobs. The modified Bratley’s algorithm concludes that w4.b0 is not viable due
to this fact and expands it, which results in vertices w4.b1 and w4.b2.

Vertex w4.b1 represents fixing TT job T1,1 at time w4.b0.t = 6 and vertex w4.b2
represents fixing TT job T2,1 at time w4.b0.t = 6. Therefore w4.b1.t = w4.b0.t + T1,1.c =
6 + 2 = 8 and w4.b2.t = w4.b0.t + T2,1.c = 6 + 5 = 11.

If TT job T2,1 is fixed at time S2,1 = 6, then TT job T1,1 cannot be fixed after T2,1 at
time w4.b2.t = 11 due to the latest start time of T1,1 being T1,1.d−T1,1.c = 9−2 = 7 < 11.
The modified Bratley’s algorithm does not consider the vertex w4.b2 to be viable due to
this fact. However, the vertex w4.b1 is considered viable and the fixation phase concludes
by creating regular vertex v5 with [v5.e, v5.l] = [8, 8] = [w4.b1.t, w4.b1.t].

The fixation phase is done on level V2 = {v3} and the expansion phase continues by
creating a regular vertex v6. The merge phase does not change the graph in any way.

Level V3 = {v6}
All ET jobs are finished for vertex v6, but there are still unfinished TT jobs T1,2 and

T2,1. The fixation phase therefore creates a decision vertex w7 and its root Bratley vertex
w7.b0. This Bratley vertex is not viable, because all ET jobs are finished, but there are
still unfinished TT jobs. The vertex w7.b0 is expanded, which results in vertices w7.b1
and w7.b2.

In case of w7.b1 TT job T2,1 cannot be fixed at time w7.b1.t = 16 because the latest
start time of T2,1 is T2,1.d− T2,1.c = 20− 5 = 15 < 16. Same logic applies for w7.b2 and
the modified Bratley algorithm concludes that there is no solution for vertex w7.

The expansion phase continues by backtracking to the latest created decision vertex,
which in this case is w4. Here, the modified Bratley algorithm is called again with
the goal to find another combination of start times. Because the vertex w4.b2 and its
expansions would result in a deadline miss, only vertex w4.b1 is expanded. The result is
Bratley vertex w4.b3. This vertex is considered to be viable. Therefore, the fixation phase
creates a regular vertex v8 with [v8.e, v8.l] = [13, 13] = [w4.b3.t, w4.b3.t]. The expansion
phase then creates vertex v9 from v8. Merge phase does not make any changes to the
graph.

Level V4 = {v9}
Just as with level V3, all ET jobs are finished, but there is still an unfinished TT

job T1,2. The fixation phase therefore creates a decision vertex w10 and its root Bratley
vertex w10.b0. This vertex is not viable and is expanded, which results in vertex w10.b1.
This vertex is viable and the result of the fixation phase is vertex v11. Both expansion
and merge phases make no changes to the graph.
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Level V5 = {v11}
At this point, the fixation graph algorithm concludes, because there exists a regular

vertex that does not cause a deadline miss to any ET job, has empty applicable ET jobs,
and empty applicable TT jobs. In other words, all jobs are finished with no deadline
misses.

Start times of the TT jobs are gathered by backtracking through the fixation graph.
An undirected path is taken from one of the last created vertices to the root vertex. For
each decision vertex encountered on this path, we backtrack in its Bratley graph to find
the start times.

In this example, we encounter two decision vertices w10 and w4 on the undirected
path from vertex v11 to the root vertex v0. In case of w10, the last used Bratley vertex
is w10.b1, which corresponds to fixing job T1,2 at time w10.b0.t = 16. Therefore its
start time is S1,2 = 16. Similarly with w4, the last used Bratley vertex is w4.b3, which
corresponds to fixing job T2,1 at time w4.b1.t = 8, and then T1,1 at time w4.b0.t = 6.
Therefore S1,1 = 6 and S2,1 = 8.

Note that the fixation graph keeps vertices v5, v6, w7 in the graph, even though they
could have been deleted once vertex v8 was created. We call these vertices dead vertices.
In the formal description of the fixation graph generation algorithm, we chose to leave
dead vertices in the fixation graph to make the algorithm more comprehensible.

5.4.6 New notation

This section summarizes new notation which will be used in the following sections to
formally describe the fixation graph generation algorithm. Notation of different types of
vertices can be seen in Table 5.2.

The next ET release time is defined as wi.t
e = max{wi.t,min{Ei,j .r

min | Ei,j ∈
wi.E

A}} for a decision vertex wi. A decision vertex wi also contains so called next TT
fixation time denoted as wi.t

f . This value is a heuristic guess of the next time a decision
vertex will be created. Finally, a decision vertex contains a set of Bratley vertices w.B
and an index w.idx.

Both regular vertex v and decision vertex w contain a previous decision vertex de-
noted as v.PD and w.PD. The previous decision vertex is defined as the first encoun-
tered decision vertex on an undirected path from the vertex v or w to the root vertex of
the fixation graph. If no decision vertex is found, the value is null.

The process of computing applicable TT jobs for Bratley vertices differs from that
of regular and decision vertices. For a Bratley vertex wi.bj the path Twi.bj contains all
TT jobs encountered when taking a path from the root vertex vr to decision vertex wi

and then a path from root Bratley vertex wi.br to vertex wi.bj . Applicable TT jobs are
then computed from Twi.bj .

The Bratley vertex also contains two so far unmentioned variables. The best incoming
candidate w.b.best specifies which edge in w.b.in resulted in the time w.b.t during its
creation. This value is used to compute fixed TT jobs w.b.T f . This set contains all edges
encountered when taking a path from w.b to the root Bratley vertex by only taking edges
w.b.best.
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During creation of a decision vertex wi, the value w.idx is set to 0 and w.B is set to
{wi.br} where wi.br.t = wi.t, wi.br.in = wi.br.out = ∅, and wi.br.best = null.

5.4.7 A formal description of modified Bratley’s algorithm

The pseudocode of the modified Bratley’s algorithm can be seen in Algorithm 14. The
algorithm always takes a decision vertex wi as an input and uses its variables wi.B
and wi.idx. The function MOD BRATLEY NEXT is called repeatedly to get dif-
ferent combinations. Function GENERATE NEXT LEV EL operates on the same
principle as the expansion and merge phase from the schedule graph generation algo-
rithm. Function EXPAND BRATLEY V ERTEX operates on the same principle as
function EXPAND V ERTEX from Algorithm 7.

A Bratley vertex is viable if it does not cause a deadline miss, all TT jobs which
would miss their deadlines by w.tf are fixed, and fixing more TT jobs would interfere
with ET jobs. This condition applies if there are still unfinished ET jobs. In case all
ET jobs are finished, then a Bratley vertex is viable if all TT jobs are also finished and
there are no deadline misses. Formally Bratley vertex wi.bj is viable iff

(∄σi ∈ wi.bj .in st. σi.s.t + σi.T.c > σi.T.d) ∧ ((wi.E
A = ∅ ∧ wi.bj .T

A = ∅) ∨
(wi.E

A ̸= ∅ ∧ ∄Ti,j ∈ wi.bj .T
A st. wi.t

f + Ti,j .c > Ti,j .d ∧
∄Ti,j ∈ wi.bj .T

A st. max(wi.bj .t, Ti,j .r) + Ti,j .c ≤ wi.t
e))

Use of this property can be seen on line 9.

One of the reasons the fixation graph is heuristic is the fact that the modified Bratley
algorithm tries to finish all TT jobs as soon as possible. It may happen that a schedule
results in a deadline miss for an optimal order of TT jobs, but does not for a sub-optimal
one.

5.4.8 A heuristic approach of the fixation phase

As can be seen in the example in Chapter 5.4.5, fixing a TT job in the time interval
[2, 5] would result in a deadline miss. This is due to the release jitter and execution time
variation of ET jobs and the properties of work-conserving policies. If a TT job was
fixed before time t < v2.l = 4, then in some scenario, an ET job would be executing at
time t and the TT job may not begin its execution, which results in a deadline miss.
If a TT was fixed at time t = v2.l = 4 then an ET job may finish its execution before
t = 4 and another ET job may start its execution and still be executing at time t = 4.
The fixation phase takes this into account to fix TT jobs in places, where they would
not cause a deadline miss in a similar manner. A more general rule follows.

Let vj ∈ Vi. If vj .e = vj .l ∧ |Vi| = 1, then a TT job may be fixed at time vj .l. This
is due to the fact that the online scheduler would finish executing a job at time vj .l in
every scenario and a TT job may begin execution at that time.

If ∀vj ∈ Vi ∄Ek,l ∈ vj .E
A st. Ek,l.r

min < vj .l, then a TT job may be fixed at time
lmax = max{vj .l | vj ∈ Vi}. Because no unfinished ET jobs are released before lmax in
every scenario and a TT job may begin its execution at time lmax.
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Notation Name Type

v.e earliest finish time integer

v.l latest finish time integer

v.in incoming edges set of edges

v.out outgoing edges set of edges

v.PD previous decision vertex decision vertex

v.EA applicable ET jobs set of jobs

v.TA applicable TT jobs set of jobs

Notation Name Type

w.t time integer

w.in incoming edges set of edges

w.out outgoing edges set of edges

w.B Bratley vertex level set of Bratley vertices

w.idx Bratley vertex level index integer

w.PD previous decision vertex decision vertex

w.EA applicable ET jobs set of ET jobs

w.TA applicable TT jobs set of TT jobs

w.te next ET release time integer

w.tf next TT fixation time integer

Notation Name Type

w.b.t time integer

w.b.in incoming edges set of edges

w.b.best best incoming candidate edge

w.b.out outgoing edges set of edges

w.b.TA applicable TT jobs set of TT jobs

w.b.T f fixed TT jobs set of TT jobs

Table 5.2: All variables that are associated with a single regular, decision, and Bratley
vertex. Variables EA, TA, T f , tf , PD, and te are used to simplify the notation and
terminology. They do not have to be stored and can be computed when needed using
the other variables.
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Algorithm 14 Modified Bratley’s algorithm

Input: a decision vertex wi

Output: a Bratley vertex

1: function MOD BRATLEY NEXT(wi)
2: while true do
3: if wi.idx = |wi.B| then
4: GENERATE NEXT LEVEL(wi)
5: if wi.B = ∅ then
6: return null
7: wi.bj ← wi.B[wi.idx]
8: wi.idx← wi.idx + 1
9: if wi.bj is viable then

10: return wi.bj

11: function GENERATE NEXT LEVEL(wi)
12: Bex ← ∅
13: for each wi.bj ∈ wi.B do
14: if ∃σi ∈ wi.bj .in st. σi.s.t + σi.T.c > σi.T.d then
15: continue ▷ wi.bj caused a deadline miss and is not expanded

16: for each Ti,j ∈ wi.bj .T
A do

17: if wi.bj .t < Ti,j .r ∧ wi.t
e < Ti,j .r then

18: continue ▷ An ET job could be executing at t = Ti,j .r

19: Bex ← Bex ∪ {EXPAND BRATLEY V ERTEX(wi.bj , Ti,j)}
20: while ∃wi.bm, wi.bx ∈ Bex st. wi.bm.TA = wi.bx.T

A ∧ wi.bm.t ≤ wi.bx.t do
21: for each edge σx ∈ wi.bx.in do
22: σx.d = wi.bm
23: wi.bm.in = wi.bm.in ∪ {σx}
24: remove wi.bx and all edges {σx | σx.d = wi.bx} from the graph

25: wi.B ← Bex

26: wi.idx← 0

27: function EXPAND BRATLEY VERTEX(wi.bj , Ti,j)
28: wi.bn ← new Bratley vertex with wi.bn.t = max{wi.bj .t, Ti,j .r}+ Ti,j .c
29: σn ← new edge with σn.T = Ti,j , σn.s = wi.bj and σn.d = wi.bn
30: wi.bn.in← wi.bn.in ∪ {σn}
31: wi.bn.best← σn
32: wi.bj .out← wi.bj .out ∪ {σn}
33: return wi.bn
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r c dTT τTT

T1 2 1 11 12

rmin rmax cmin cmax dET τET

E1 0 1 2 3 12 12

E2 1 1 3 3 11 12

E3 2 2 1 2 10 12

E4 3 3 1 1 9 12

Table 5.3: Parameters of TT and ET jobs used in the fixation graph anomaly instance.

Figure 5.3: Loose Gantt chart of the fixation graph anomaly instance.

The fixation phase considers these two rules when creating a decision vertex. If
neither of the conditions is met, no decision vertex is created, meaning that no TT jobs
are fixed at this stage.

The fixation does not find every possible time, where a TT job may be fixed. We
show this in an example specified in Table 5.3. In this example, the fixation graph
generation algorithm runs under the EDF scheduling policy. Therefore priority values of
tasks are undefined. The loose Gantt chart of the instance can be seen in Figure 5.3 and
the resulting fixation graph in Figure 5.4. Here the TT job T1,1 may be fixed at time
S1,1 = 4, because no job will be executing at time 4 no matter the execution scenario.
However, the fixation phase does not detect this possible start time. Due to this fact,
the fixation graph generation algorithm finds no solution despite the fact that a solution
exists.

As previously discussed, a decision vertex wi contains next TT fixation time wi.t
f .

This value is computed by simulating a scenario, where no TT jobs are fixed by decision
vertex wi and ET jobs exhibit the worst case behaviour, i.e., all ET jobs release at their
latest release time, and their execution time is the worst case execution time. Then time
wi.t

f corresponds to the earliest time any job Ei,j ∈ wi.E
A has been executed and no

ET jobs are released before wi.t
f . If wi.E

A = ∅ then wi.t
f =∞.

In the case of decision vertex w4 in example 5.4.5, w4.t
f = E1,2.r

max+E1,2.c
max = 14.

Note that at this time both of the tasks T2,1 and T1,2 may be individually fixed at
w4.t

f = 14 without missing their deadlines, but both of them cannot be fixed without a
deadline miss. Due to the way a viable Bratley vertex is defined, the decision vertex w4

still attempts to not fix job T2,1 earlier and the fixation phase has to later backtrack to
vertex w4.
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Figure 5.4: Fixation graph for the anomaly instance. Bratley vertices are not shown in
this visualization.

5.4.9 A formal description of the fixation phase

Pseudocode of the fixation phase can be seen in Algorithm 15. For a set of vertices Vi

the fixation phase returns a vertex vj and integer ST . The ST variable determines how
the fixation graph generation will continue. There are four possible values:

• 0 - use {vj} as input for the expansion phase

• 1 - use Vi as input for the expansion phase

• 2 - a solution has been found, the algorithm ends

• 3 - no solution has been found, the algorithm ends

When the fixation phase returns a vertex vj , its parent is a decision vertex. This
decision vertex has either just been created in the fixation phase or was already part of
the fixation graph and the fixation phase backtracked to it.

5.4.10 Fixation graph generation algorithm

A pseudocode of the fixation graph generation algorithm can be seen in Algorithm 16.
Function GATHER START TIMES is filling a set of start times S. An element of
the set is accessed as Si,j for job Ti,j .
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Algorithm 15 Fixation phase

Input: a set of regular vertices V
Output: a regular vertex v and integer ST

1: function FIXATION PHASE(V)
2: if ∀vi ∈ V ∄σi ∈ vi.in st. vi.l > σi.T.d then ▷ If no deadline miss
3: if ∀vi ∈ V vi.E

A = ∅ ∧ vi.T
A = ∅ then ▷ If all jobs are completed

4: return (null, 2)

5: lmax ← max{vi.l | vi ∈ V}
6: if (|V| = 1 ∧ V[0].e = V[0].l) ∨ (∀vi ∈ V ∄Ei,j ∈ vj .E

A st. Ei,j .r
min < lmax)

then ▷ If can create a decision vertex
7: wn ← new decision vertex with wn.t = lmax

8: for vi ∈ V do
9: σn ← new edge with σn.s = vi, σn.d = wn

10: vi.out← vi.out ∪ {σn}
11: wn.in← wn.in ∪ {σn}
12: wn.bm ←MOD BRATLEY NEXT (wn)
13: if wn.bm ̸= null then
14: vn ← GET REGULAR V ERTEX(wn.bm)
15: return (vn, 0)

16: else
17: return (null, 1)

18: wi ← V[0].PD
19: while wi ̸= null do
20: wn.bm ←MOD BRATLEY NEXT (wn)
21: if vn ̸= null then
22: vn ← GET REGULAR V ERTEX(wn.bm)
23: return (vn, 0)

24: wi ← wi.PD

25: return (null, 3)

26: function GET REGULAR VERTEX(wn.bm)
27: vn ← new regular vertex with vi.e = vi.l = wn.bm.t
28: σn ← new edge with σn.s = wn, σn.d = vn, σn.T = wn.bm.T f

29: wn.out← wn.out ∪ {σn}
30: vn.in← {σn}
31: return vn
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Algorithm 16 Fixation graph generation algorithm

Input: a set of TT tasks T, a set of ET tasks E
Output: start times S or null

1: function FIXATION GRAPH GENERATION(T, E)
2: vr ← new regular vertex with vr.e = vr.l = 0 and vr.in = vr.out = ∅
3: V ← {vr}
4: i← 0
5: while true do
6: [vf , ST ]← FIXATION PHASE(V)
7: if ST = 3 then ▷ No solution found
8: return null
9: if ST = 2 then ▷ All jobs are finished with no deadline misses

10: return GATHER START TIMES(V)

11: if ST = 1 then ▷ No decision vertex created
12: V ex ← EXPANSION PHASE(V)

13: if ST = 0 then ▷ Decision vertex created
14: V ex ← EXPANSION PHASE({vf})
15: V ← MERGE PHASE(V ex)

16: function GATHER START TIMES(V)
17: S ← empty start times
18: wi ← V[0].PD
19: while wi ̸= null do
20: wi.bj ← last vertex returned by MOD BRATLEY NEXT (wi)
21: while wi.bj .best ̸= null do
22: σi ← wi.bj .best
23: Tx,y ← σi.T
24: wi.bj ← σi.s
25: Sx,y ← wi.bj .t

26: wi ← wi.PD

27: return S
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5.4.11 An exact algorithm

There are two issues that need to be addressed in order to make this algorithm exact.
First, the algorithm needs to find all possible times, where a TT job may begin execution.
Second, the modified Bratley algorithm needs to account even for non-optimal ways of
fixing TT jobs. Although we have yet to come up with a scalable solution to the second
problem, we have an idea of how to solve the first one.

The first problem may be solved by changing the fixation phase, so that it flags
times, where an ET job is executing in some scenario. This information can be gathered
when generating the fixation graph. For every edge σi where σi.E.cmax > 1 and both
σi.s and σi.d are non-dead regular vertices, no TT jobs may be fixed in time range
[tEC + 1, tLC +σi.E.cmax− 1], where tEC is the earliest time a job σi.E becomes eligible
during EXPANSION PHASE(σi.s) and tLC is the latest time a job σi.E is eligible
during EXPANSION PHASE(σi.s). Note that for work-conserving policies, once
a job stops being eligible in the expansion phase, it may not become eligible again.
Therefore there is only one such time tEC and tLC .

Once there exists an unflagged time tNF such that tNF ≤ max{vj .l | vj ∈ Vi}
then a TT job may be fixed at time tNF . Using this approach, the fixation phase may
need to work with vertices on multiple levels. In the fixation graph in Figure 5.4 on level
V2 = {v3, v4, v5} an unflagged time tNF = 4 would be found. However, the newly created
decision vertex would not have parent vertices v3, v4, v5 but parent vertices v2, v4, v5.
Additionally, vertex v3 would have to be removed from the graph. The fixation phase
would also need to return multiple vertices instead of just one.
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Chapter 6

ET+TT solution evaluation

In this section, we evaluate the algorithms described in Chapter 5. Once again, we are
doing empiric measurements on randomly generated instances. The measured algorithms
were implemented using Java 8. These are the relevant specifications of the computer
the benchmarking was done on:

• CPU: 2600Mhz, 14 cores, 14 threads

• Memory: 516GB, DDR4

Unlike in Chapter 4, multiple tests ran at the same time on one CPU. Each test ran
on a single core.

6.1 Instance generation

An algorithm that generates random instances was already presented in Chapter 4.
This algorithm generates instances with only ET tasks. Therefore, we created a mod-
ified version of the algorithm, which generates random instances with only TT tasks.
The algorithm is almost equivalent to generating ET tasks, removing the release jitter,
execution time variation, and priority. It also takes the same arguments as the ET task
generation algorithm, except it no longer takes arguments for release jitter and execu-
tion time variation as well as minimum and maximum priority. The result of the TT
task generation algorithm is then combined with the result of the ET task generation
algorithm to create an instance with both ET and TT tasks. For each instance the seed
used for generating TT tasks always differed from the seed used for generating ET tasks.

6.2 Brute force evaluation (No jitter)

We generated a single dataset Db
1 which contains 5600 instances with both ET and TT

tasks. The TT tasks were generated with arguments 1 ≤ AE ≤ 20, Aη = 200, Aτ = 50,
AU = 0.4, AU

s = 300, AU
a = 0.1, AP

d = AP
r = 0.4, AP = 0. The ET tasks were

generated with arguments AE = 10, Aη = 200, Aτ = 40, AU = 0.4, AU
s = 300, AU

a = 0.1,
AP

j = AP
c = 0.3, AP

d = AP
r = 0.4, AP = 0, Ap

min = 1, Ap
max = 3.
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To summarize, each instance has 10 ET tasks with both release jitter and execution
time variation and the number of TT tasks is variable between instances from 1 to 20
TT tasks. The hyperperiod of the instance is only 200. The number of possible TT
task fixation combinations increases drastically with a higher hyperperiod. This means
that the run time of the brute force algorithm would be exceedingly high for higher
hyperperiods even for a very low number of tasks. To show how the number of tasks
affects the run time we have chosen a very low hyperperiod.

6.2.1 Results

The resulting run times for the brute force algorithm with an overlap check and fixation
without jitter on dataset Db

1 can be seen in Figure 6.1. The distribution of instance
schedulability can be seen in 6.2. The scheduling was performed under the CP policy.
The algorithm was terminated if its run time exceeded 1 hour.

As can be seen in the figures, the brute force algorithm often ends in a timeout
even for 10 TT tasks, but sometimes finishes within the 1-hour time limit even for 20
TT tasks. Due to the fact that the hyperperiod and utilization was fixed for all tasks,
instances with a few TT tasks had TT jobs with large execution times. On the other
hand, instances with many TT tasks had jobs with small execution times.

6.3 Brute force run time and fixation graph schedulability
evaluation (fixation with jitter)

We generated a single dataset Db
2 which contains 11200 instances with both ET and TT

tasks. The TT tasks were generated with arguments 1 ≤ AE ≤ 5, Aη = 100, Aτ = 25,
AU = 0.35, AU

s = 300, AU
a = 0.1, AP

d = AP
r = 0.3, AP = 0. The ET tasks were

generated with arguments AE = 3, Aη = 100, Aτ = 20, AU = 0.35, AU
s = 300, AU

a = 0.1,
AP

j = AP
c = 0.5, AP

d = AP
r = 0.3, AP = 0.5, Ap

min = 1, Ap
max = 3.

To summarize, each instance has 3 ET tasks with both release jitter and execution
time variation and the number of TT tasks is variable between instances from 1 to 5
TT tasks. Brute force fixation with jitter is more time demanding than fixation without
jitter because the combinatorial explosion increases with the number of jobs instead of
the number of tasks. Due to this fact, the dataset Db

2 contains arguably simpler instances
than dataset Db

1.

Both the brute force algorithm with overlap check and the fixation graph generation
algorithm were run on dataset Db

2. The brute force algorithm was fixing TT tasks with
jitter.

6.3.1 Results

The resulting run times on dataset Db
2 for the brute force algorithm can be seen in Figure

6.3 and for the fixation graph generation algorithm in Figure 6.5. The distribution of
instances schedulability for the brute force algorithm can be seen in Figure 6.4 and for
the fixation graph generation algorithm in Figure 6.6. The scheduling was done under
the EDF-FP policy. The brute force algorithm was terminated if its run time exceeded
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Figure 6.1: Run times of the ET+TT brute force algorithm on dataset Db
1. The top

chart shows run times based on the number of tasks. The bottom chart shows run times
based on the number of jobs.
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Figure 6.2: The number of schedulable, non-schedulable, and timeout instances for
dataset Db

1. The top chart shows instances based on the number of tasks. The bot-
tom chart shows instances based on the number of jobs.
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All in-
stances

BF Time-
out only

BF Schedu-
lable only

BF Non-
Schedulable
only

BF Timeout 4159 4159 0 0

BF Schedulable 4494 0 4494 0

BF Non-Schedulable 2547 0 0 2547

FG Schedulable 6644 2250 4394 0

FG Non-Schedulable 4556 1909 100 2547

Table 6.1: Results of the Brute force (BF) and fixation graph (FG) algorithms schedu-
lability.

1 hour. Additionally, the schedulability of the instances between the two algorithms can
be seen in Table 6.1. The fixation graph generation algorithm found a solution in 97.8
% of instances where a solution exists.

6.4 Fixation graph run time evaluation (fixation with jit-
ter)

We generated a single dataset Db
3 which contains 10080 instances with both ET and TT

tasks. The TT tasks were generated with arguments 1 ≤ AE ≤ 60, Aη = 10000000,
Aτ = 1000000, AU = 0.25, AU

s = 300, AU
a = 0.1, AP

d = AP
r = 0.2, AP = 0. The ET tasks

were generated with arguments AE = 20, Aη = 10000000, Aτ = 1000000, AU = 0.25,
AU

s = 300, AU
a = 0.1, AP

j = AP
c = 0.3, AP

d = AP
r = 0.2, AP = 0, Ap

min = 1, Ap
max = 3.

To summarize, each instance has 20 ET tasks with both release jitter and execution
time variation and the number of TT tasks is variable between instances from 1 to 60
TT tasks. The hyperperiod is also exceedingly large to show that the heuristic algorithm
can handle large hyperperiods, unlike the brute force algorithm.

The evaluated implementation of the fixation graph generation algorithm does not
keep dead vertices in memory. Unlike all previous measurements, the maximum available
memory the application can use is 16GB, instead of the usual 4GB.

6.4.1 Results

The resulting run times for the fixation graph generation algorithm on dataset Db
3 can

be seen in Figure 6.7. The fixation graph generation algorithm was terminated if its run
time exceeded 1 hour. In case the algorithm exceeded the maximum allowed memory
requirements, it was terminated. These instances are labeled as Memout.

The fixation graph generation algorithm has much higher memory requirements than
the schedule graph generation algorithm. This is due to the fact that the schedule graph
generation algorithm needs to keep only two levels of the schedule graph in memory,
while the fixation graph generation algorithm is keeping all levels of the fixation graph.
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Figure 6.3: Run times of the ET+TT brute force algorithm on dataset Db
2. The top

chart shows run times based on the number of tasks. The bottom chart shows run times
based on the number of jobs.
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Figure 6.4: The number of schedulable, non-schedulable, and timeout instances for
ET+TT brute force algorithm on dataset Db

2. The top chart shows instances based
on the number of tasks. The bottom chart shows instances based on the number of jobs.
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Figure 6.5: Run times of the fixation graph generation algorithm on dataset Db
2. The

top chart shows run times based on the number of tasks. The bottom chart shows run
times based on the number of jobs.
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Figure 6.6: The number of schedulable, non-schedulable, and timeout instances for the
fixation graph generation algorithm on dataset Db

2. The top chart shows instances based
on the number of tasks. The bottom chart shows instances based on the number of jobs.
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Figure 6.7: Run times of the fixation graph generation algorithm on dataset Db
3. The

top chart shows run times based on the number of tasks. The bottom chart shows run
times based on the number of jobs.

70



Chapter 7

Conclusion

This thesis formulated a problem of scheduling non-preemptive event-triggered and time-
triggered tasks on a uniprocessor. We have described a brute force algorithm that
implements an ET schedulability test for any scheduling policy. The policies we used
were EDF-FP, P-RM, CP, and CW. Then we described an ET schedulability test that
uses a schedule graph, first for work-conserving and then non-work-conserving policies.

We compared our approach to that of [12] in terms of run time and our implemen-
tation was faster by an order of magnitude. Additionally, our approach is exact even
for non-work-conserving policies. We also measured the schedulability and run times of
the schedule graph generation algorithm on different policies. The EDF-FP policy was
the fastest but the worst in terms of schedulability. The P-RM and CP policies were
around twice as slow as the EDF-FP policy and provided a slightly higher schedulability.
The CW policy was around 4 times slower than the EDF-FP policy but had the highest
schedulability rate. Additionally, the schedulability of CW policy was unaffected by an
increasing amount of release jitter and execution time variation, unlike all other policies.

The second part of the thesis describes and evaluates algorithms for finding a valid set
of start times for TT tasks. We described an exact brute force algorithm and a heuristic
algorithm that may return false negatives. This heuristic algorithm is a modified version
of the schedule graph generation algorithm.

We evaluated the run times of the brute force algorithm with and without fixation
jitter. In the case of fixation without jitter, the brute force algorithm ran for longer than
1 hour for instances with 10 TT tasks in 40% of instances and for instances with 20 TT
tasks in 80% of instances. In the case of fixation with jitter, the brute force algorithm
ran for longer than 1 hour for instances with 3 TT tasks in 30% of instances and for
instances with 4 TT tasks in 70% of instances. The heuristic algorithm found a solution
in 97.8% of instances, where a solution existed. Finally, the heuristic algorithm was
generally able to solve instances of 20 TT tasks and 20 ET tasks in a matter of seconds.
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Appendix A

A discrepancy in schedule graph
generation algorithm proposed by
M. Nasri and B. Brandenburg

To demonstrate an error in the scheduling of non-work-conserving policies in [12], we
present an instance that yields different results for our approach and the approach of
[12]. This instance contains 4 ET tasks whose properties can be seen in Table A.1.
The loose Gantt chart of the instance can be seen in Figure A.1. The instance will be
scheduled under the P-RM policy.

The schedule graph generated using our method can be seen in Figure A.2 and the
schedule graph generated using the method from [12] can be seen in Figure A.3.

The schedule graph generated in Figure A.3 yields a deadline miss while the schedule
graph generated in Figure A.2 does not. We believe that the issue with the approach in
[12] is that eligibility of each job Ei,j is checked only in time tE = max(vn.e, Ei,j .r

min)
as according to Definition 5 from [12]. This means that once a job stops being eligible,
it cannot become eligible again.

A.1 Accounting for differences between the approaches

As previously mentioned, we will be using the P-RM policy. Throughout the entire
schedule graph generation process, the only critical job may be job E1,1 as it is the only
job with priority p = 0. In the formulation of the P-RM policy from [12], the critical job
is the job with the lowest priority value, which in this case is also E1,1. This means that

rmin rmax cmin cmax dET τET p

E1 10 10 2 2 12 16 0

E2 0 0 1 8 8 16 1

E3 1 1 2 2 14 16 3

E4 3 3 4 4 16 16 2

Table A.1: Parameters of the demonstration instance.
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Figure A.1: A loose Gantt chart of the demonstration instance.
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Figure A.2: Schedule graph generated using our method. The algorithm does not yield
a deadline miss.
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Figure A.3: Schedule graph generated using the method described in [12]. The algorithm
yields a deadline miss.

v.tc = E1,1.d−E1,1.c
max = 10 and v.Ec = E1,1 for all vertices v where E1,1 is unfinished.

Additionally, in the formulation [12] job priority is strictly determined by p value,
i.e., by the Fixed Priority policy. To make sure that the job priority is the same as in
our case, we gave each job a unique priority value. This means that our approach will
also schedule jobs under the Fixed Priority policy.

A.2 Differences in schedule graph generation

Let us now explain both approaches of the schedule graph generation process on instance
described in Table A.1. Both approaches begin by scheduling job E2,1 as it is the only
certainly released job at time t = 0 and it also does not violate the critical time because
E2,1.c

max + t ≤ v0.t
c, i.e., 8 + 0 ≤ 10. In both cases, the expansion phase of V0 results

in a single new vertex v1 with v1.e = 1 and v1.l = 8.

Where the two approaches differ is during the expansion of vertex v1. Here, job E3,1 is
eligible at times [1, 2] and job E3,1 is eligible at times [3, 6]. Both approaches expand the
vertex v1 accordingly by creating new vertices v2 and v3. However, while our approach
concludes that job E3,1 is also eligible at times [7, 8], the approach of [12] concludes
that there are no eligible jobs in the time interval [7, 9] and job E1,1 is scheduled at its
release time t = E1,1.r

min = E1,1.r
max = 10. As mentioned, this is due to the fact that

according to [12], once a job was eligible during expansion of a single vertex, it cannot
become eligible again. In other words, according to [12] no vertex can have two outgoing
edges with the same job label. Therefore, job E1,1 is scheduled instead, which results in
a vertex v4 with v4.e = E1,1.r

min+E1,1.c
min = 12 and v4.l = E1,1.r

min+E1,1.c
max = 12.
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In our approach, vertex v4 is the result of expanding v1 with job E3,1 in time range [7, 8]
which results in v4.e = 7 + E3,1.c

min = 9 and v4.l = 8 + E3,1.c
max = 10.

This discrepancy then results in vertices v8 and v11 having different time intervals
[v8.e, v8.l] and [v11.e, v11.l] which causes a deadline miss only for the approach of [12].

A.3 Conclusion

If the online scheduler were to execute the job E2,1 at time t = 0 and then finished
execution in the time interval [7, 8], then according to the P-RM policy the only released
job which does not cause a deadline miss for the highest priority job E1,1 is job E3,1 and
therefore should be scheduled next. This corresponds to our approach, where the job
E3,1 is eligible in v1 in the time interval [7, 8].
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Appendix B

Contents of the enclosed CD

The enclosed CD contains the source code of the algorithms described in this thesis.
For installation and usage instructions please refer to the README.md file located
in a folder called ettt-scheduling. The application is also available on GitHub (https:
//github.com/redakez/ettt-scheduling) where the source code is also available. The
enclosed CD also contains the LaTeX source code of this document as well as the resulting
PDF file.
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