Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computers

The Architecture Transformation of
FelSight Faculty Application

Bc. Adam Kohout

Supervisor: Ing. Jan Zidek

Field of study: Open Informatics
Subfield: Software Engineering
May 2022

ii

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNIi A STUDIJNi UDAJE
4 ™
PFijmeni: Kohout Jméno: Adam Osobni Eislo: 474670

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

L Specializace: Softwarové inzenyrstvi
J

Il. UDAJE K DIPLOMOVE PRACI

Nazev diplomové prace:

Transformace architektury aplikace FelSight

Nazev diplomové prace anglicky:

The architecture transformation of FelSight faculty application

Pokyny pro vypracovani:

1) Seznamte se s problematikou softwarovych architektur v oblasti softwarového inzenyrstvi a definujte tento pojem.
Popiste jejich prakticky vyznam a motivaci pro pouziti v ramci vyvoje aplikaci.

2) Provedte reSersi existujicich pfikladl architektur ¢asto pouzivanych v praxi a porovnejte je.

3) Analyzujte problém transformace architektury existujici aplikace v€etné motivace a moznych uskali.

4) Popiste zvolenou fakultni aplikaci pro podporu vyuky a provedte analyzu stavajici monolitické architektury. Uvedte
motivaci pro jeji transformaci a navrhnéte novou architekturu, do které ma byt pivodni architektura pfevedena.

5) Soucasti prace bude i pfesny postup transformace, véetné jednotlivych kroku.

6) Implementujte PoC (proof of concept), ktery ovéfi vhodnost feSeni. Popiste potencialni praktické dusledky pro budouci
vyvoj v ramci tohoto feSeni.

Seznam doporucené literatury:

[1]1 ISO/IEC/IEEE 42010:2011. Systems and software engineering — Architecture description. Switzerland: IEEE, 2011.
10.1109/IEEESTD.2011.6129467. Dostupné také z: https://ieeexplore.ieee.org/servlet/opac?punumber=6129465

[2] BASS, Len, Paul CLEMENTS a Rick KAZMAN. Software architecture in practice. 3rd ed. Upper Saddle River, NJ:
Addison-Wesley, 2013. ISBN 978-032-1815-736.

[3] RICHARDS, Mark. Software Architecture Patterns. Sebastopol, CA: O'Reilly, 2015. ISBN 978-1-491-92424-2.

[4] BUCCHIARONE, Antonio, Nicola DRAGONI, Schahram DUSTDAR, Stephan T. LARSEN a Manuel MAZZARA. From
Monolithic to Microservices: An Experience Report from the Banking Domain. IEEE Software. 2018, 35(3), 50-55. ISSN
0740-7459. Dostupné z: doi:10.1109/MS.2018.2141026

Jméno a pracovisté vedouci(ho) diplomové prace:

Ing. Jan Zidek Centrum znalostniho managementu

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 12.01.2022 Termin odevzdani diplomové prace: 20.05.2022

Platnost zadani diplomové prace: 30.09.2023

Ing. Jan Zidek podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)

CVUT-CZ-ZDP-2015.1 Stranalz?2 © CVUT v Praze, Design: CVUT v Praze, VIC

ll. PREVZETi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramenu a jmen konzultant(je tfeba uvést v diplomové praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 Strana 2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I want to express my sincere thanks to
my supervisor Ing. Jan Zidek for his help
by giving me valuable advice throughout
the writing of this thesis. I would also
like to acknowledge the consultation assis-
tance provided by the architecture team
of the Center of Knowledge Management
headed by Bc. Tomas Malinkovic¢. Lastly,
I extend my appreciation for the continu-
ous support given by my family.

Declaration

I hereby declare that I have completed
this thesis on my own and that all the
used sources are included in the list
of references, in accordance with the
Methodological instructions on ethical
principles in the preparation of university
theses.

In Prague, May 20, 2022

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné a ze jsem uvedl
veskeré pouzité informacni zdroje v
souladu s Metodickym pokynem o do-
drzovdni etickych principd pri priprave
vysokoskolskiyjch zdvérecnych pract.

V Praze dne 20. 5. 2022

Be. Adam Kohout

Abstract

The thesis covers the topic of software
architectures and the problem of trans-
forming the architecture of an existing ap-
plication. In the research part, the topic
is introduced together with its history and
motivating factors. Then, several exam-
ples of common architectures in practice
are presented. Research also includes cri-
teria and methods for designing software
architecture, attributes that characterize
the quality of architecture, and the archi-
tecture transformation process. The prac-
tical part of the thesis covers the architec-
tural transformation of FelSight, the fac-
ulty application for students and teach-
ers of FEE. This part includes a detailed
description of the current monolithic ar-
chitecture and structure of the applica-
tion. The subsequent analysis identifies
significant features of FelSight. The final
chapter proposes the migration process of
a chosen feature into a separate microser-
vice. The feasibility of the approach is
eventually evaluated and demonstrated in
a proof of concept (POC) implementation.

Keywords: software architecture,
architectural style, monolithic
architecture, FelSight application,
microservices

Supervisor: Ing. Jan Zidek

vi

Abstrakt

Diplomovéa préace se zabyva softwarovymi
architekturami a problematikou trans-
formace architektury existujici aplikace.
V resersni ¢asti je toto téma nejprve pred-
staveno a jsou uvedeny i historické okol-
nosti véetné motivace. Dale je predsta-
veno nékolik piikada architektur, které se
bézné v praxi aplikuji. Reserse se také
zabyva kritérii a metodami navrhu ar-
chitektur, atributy popisujici kvalitativni
aspekty architektur, a procesem transfor-
mace architektury. Prakticka ¢ast prace
resi transformaci architektury aplikace
FelSight — fakultni aplikace urcené pro
studenty a vyucujici FEL. Tato ¢ast ob-
sahuje podrobnéjsi popis stavajici monoli-
tické architektury aplikace a jeji struktury.
Nésleduje analyza, v ramci které jsou iden-
tifikovany vyznamné funkcionality, které
mohou uzivatelé FelSightu pouzivat. Po-
sledni kapitola predstavuje postup pro mi-
graci vybrané funkcionality do samostatné
mikrosluzby. Proveditelnost postupu je na-
konec vyhodnocena and demonstrovana v
ramci proof of concept (POC) implemen-
tace.

Klicova slova: softwarova architektura,
architektonicky styl, monoliticka
architektura, aplikace FelSight,
mikrosluzby

Preklad nazvu: Transformace
architektury aplikace FelSight

Contents

Part |
Theoretical Part

1 Introduction

1.1 Preface
1.2 Motivation
1.3 Thesis Structure

2 Software Architectures

2.1 Definition.....................
22 History ...
2.3 Motivation

2.4 Architectural Styles vs. Design

Patterns

2.5 Common Examples of

Architectures....................

2.5.1 Layered Architecture

2.5.2 Service-Based Architecture . ..

2.5.3 Event-Driven Architecture ..
2.5.4 Pipeline Architecture

3 Designing a Software

Architecture

3.1 General Criteria of the Decision
Process........ L.
3.1.1 The Domain...............
3.1.2 Data Architecture..........
3.1.3 Project Team and Internal

Process Knowledge

3.1.4 External Factors

3.2 Decisions to Make
3.2.1 Monolithic, or Distributed

Architecture

3.2.2 Data Location
3.2.3 Technology Stack

3.3 Design Methodologies
3.3.1 Attribute-Driven Design
3.3.2 Domain-Driven Design.

3.4 Software Quality Attributes
3.4.1 Availability
3.4.2 Modifiability
3.4.3 Performance...............
3.4.4 Testability
3.4.5 Security

4 Software Architecture
Transformation Process
4.1 Motivation

10
11

13

13
13
13

14
14
14

15
15
15
15
15
17
19
19
19
20
20
21

23
23

vii

4.2 Monolith Decomposition
Approaches
4.2.1 Strangler Pattern
4.2.2 UI Composition Pattern

25

4.2.3 Branch by Abstraction Pattern 26

4.3 General Recommendations

Part Il
Practical Part

5 FelSight Application
5.1 Application Introduction
5.2 Original Architecture..........
5.2.1 Presentation Layer
5.2.2 Business Layer.............
5.2.3 Persistence and Database
Layers
5.3 Original Project Structure
5.3.1 Web Module
5.3.2 EJB Module
5.3.3 EAR Module
5.4 Build and Deployment
5.4.1 Build Process..............
5.4.2 Application Server and
Database
5.4.3 Topology
5.5 Motivation for Architecture
Transformation

6 Analysis and Design of the New
Architecture
6.1 The Vision...................
6.1.1 Transformation Approach ...
6.1.2 Aspects Influenced by the
Transformation................
6.1.3 Summary
6.2 Transformation Process Outline
6.2.1 Phase 1...................
6.22Phase 2...................
6.3 Analysis Steps................
6.4 Feature Overview
6.4.1 Events and Tasks
6.4.2 Groups
6.4.3 Searching
6.44Rooms....................
6.4.5 Timetables
6.4.6 Notifications
6.4.7 Building Plans.............

28

6.4.8 Moodle Evaluation (Grades). 44

6.4.9 Food Menu................ 44
6.5 Actions, Entities and Relations . 45
6.5.1 Actions 45
6.5.2 Entities 45
6.5.3 CRUD Matrix 45
6.6 The Proposed FelSight
Microservice Architecture 47
7 POC Implementation 51
7.1 Purpose and Scope of the POC . 51
7.2 Migration Process 51
7.2.1 API Definition............. 52
7.2.2 Service Implementation 54
7.2.3 Integration with the Monolith 57
7.3 Development Workflow 60
7.3.1 CI Pipeline and the GitLab
Package Registry 60
7.3.2 Practical Example 61
7.4 Security 62
7.5 Solution Summary and Evaluation 63
8 Conclusion 65
Bibliography 67
Appendices
A Nomenclature 73
B Software Used in the
Implementation 75
B.1 Technologies 75
B2Tools 76
C Screenshots 77

D Contents of the Attached CD 85

viii

Figures
2.1 Layered architecture with four
layers. [11]
2.2 Structure of a simple service-based
architecture (SOA type). [3]....... 9
2.3 Components of an event-driven
architecture with the mediator
topology. [11]................... 10
2.4 A simple structure of the pipeline
architecture with pipes and

filters. [3] ..o 11
3.1 Decomposition in ADD. [16] ... 17
3.2 Identifying bounded contexts in

the domain. [13] 18
3.3 Separated bounded contexts with

their own models. [13] 18

4.1 Basic steps of strangler
pattern. [22].......... 25
4.2 Inbound calls to the migrated
component are coming from within

the monolith itself. [22] 26
4.3 Steps 1 and 2 of branch by

abstraction pattern. Adapted

from [22] ...l 27

4.4 Steps 3 a 4 of branch by abstraction
pattern. Adapted from [22] 27
4.5 Final step of branch by abstraction

pattern. Adapted from [22] 28
5.1 Timetables page in FelSight. ... 32
5.2 Structure of the original FelSight

project with three modules. 33
5.3 EAR structure overview........ 36
5.4 Deployment diagram of the original

project....... ... i 38

6.1 Schematic illustration of As-Is and
To-Be states of FelSight’s

architecture. 41
6.2 FelSight services and their
dependencies. 49

7.1 Extract from the OpenAPI
specification file — operation for
retrieving a list of rooms. 53

ix

7.2 Extract from the OpenAPI
specification file — definitions of Room
and RoomArray schemas.......... 54

7.3 Updater model used by FelSight. 56

7.4 The process of building the
microservice project. 58

7.5 Changes made in code by applying
the branch by abstraction pattern. 59

7.6 Development workflow of the
proposed solution. 62

C.1 Microservice project starting
configuration in the Spring Initializr
tool. ... 7

C.2 Server stub getRooms generated
by the spring OpenAPI Generator. 78

C.3 Override of the method stub
getRooms, originally declared in the
generated class RoomApi (Figure
C.2) o 79

C.4 RoomServiceClient Java class
with the new implementation
retrieving data from the

microservice.o ... 79
C.5 DTO Java class generated by the
spring OpenAPI Generator. 80

C.6 Interface that is used by
MapStruct as an input to generate

mapper implementations. 81
C.7 The GitLab CI/CD pipeline
configuration file. 82

C.8 init_repo.gradle initialization
script with the repository
configuration. 83

C.9 Gradle task definition for the
server stub generation from the
specification file. 83

Tables

6.1 CRUD matrix.
6.2 CRUD matrix with features
distinguished by colors.

46

Part |

Theoretical Part

Chapter 1

Introduction

. 1.1 Preface

Today’s software, especially in the enterprise world, is becoming more complex.
It must not only fulfill all specified functional requirements — i.e. what
the system can do — but also comply with qualitative requirements such as
security. Designing, developing, and maintaining applications while satisfying
all of these demands is not an easy task. Moreover, as an application
grows in complexity, the need for an organized structure arises. This is
necessary, especially in cases where the application is expected to have
multiple functional components, distinguished by their purpose, that need
to communicate mutually. As a result, the architecture of the application is
established (either explicitly, or implicitly).

. 1.2 Motivation

Being concerned with software architectures is important because it helps
developers grasp the overall complexity of the application. Although this
might not be apparent or essential for trivial applications with a small
codebase, the ability to structure software meaningfully is useful and universal.

Software architecture also has an influence on multiple aspects of a software
project. It should help in communication among stakeholders as a special
kind of language. This is because it describes the structure and behavior of
the application without going into the technical details of the implementation.

Modern software evolves at a high rate and applications are required to ac-
commodate the changes and additions required by customers. However, older
applications might not be suitable for such accommodation. The root cause
of the issue could be the legacy architecture that the application has been
using since its inception. For example, it may no longer be possible to easily
manage the complexity of the application, and incorporating further additions
can become increasingly difficult. This could imply the need for a restruc-
turing in the form of an architectural transformation, e.g. to break down
the application’s domain into smaller sections that are easier to comprehend
and organize.

1. Introduction

. 1.3 Thesis Structure

The first part of the thesis introduces software architectures together with
several definitions of this term. It briefly connects the topic with its history
and mentions the main motivation points. Next, two terms, architectural style
and design pattern, are described together and the main difference between
them is explained. Then, several examples of architectural styles are provided.
Design patterns are not, however, further examined, as they are not the focus
of this thesis.

The next chapter examines the problem of designing a software architecture.
This includes the decision criteria, important questions to ask, and two
methods that can be used to design architectures. The chapter is concluded
with some examples of software quality attributes — properties that are useful
for defining and measuring the quality of a designed architecture.

The thesis then continues with an analysis of the task of transforming
an existing architecture into another one. First, several typical reasons
for migrating an architecture are mentioned. In particular, this chapter
focuses primarily on decomposing a monolithic architecture. Therefore, three
approaches that can be used as a guide for this process are introduced.
The last part of the chapter mentions some general recommendations for
migrating architectures.

The following practical part of the thesis is concerned with the problem
of the architectural transformation of FelSight, the faculty web applica-
tion for students and teachers of the Faculty of Electrical Engineering at
the Czech Technical University. The introductory chapter briefly introduces
the application. Then its current monolithic architecture solution is intro-
duced. In addition, the main modules and the build and deployment processes
of the application are described. It is also explained why architecture is worthy
of transformation.

In the second chapter of the practical part, the analysis and design of
a new architecture are carried out. These activities are based on the idea
of decomposition. Individual business areas of the application are identified
and associated based on user actions. The result of the analysis is a collection
of independent units — potential candidates for microservices.

The analysis is followed by the implementation of the proof of concept
(POC), covered in the final chapter. The purpose of the POC is to demonstrate
the migration process of a smaller business area of FelSight. Therefore,
one of the candidates in the collection is chosen. Subsequently, the steps
of the migration process are presented. Each of the steps is individually
explained in detail with encompassing activities. POC results are evaluated
by discussing how the presented solution affects team collaboration. Part of
the discussion is a description of the expected workflow when the solution
is applied in practice. The chapter is concluded with a brief discussion of
the topic of security with a focus on the authentication of microservices.
In this part, a suitable authentication model is suggested for potential use in
the future FelSight microservice architecture.

Chapter 2

Software Architectures

First, it is important to define the term software architecture and clarify
the meaning of this term in the field of software development and its motiva-
tion. There are multiple architectures, and they can be distinguished from
each other by different characteristics, such as structure, or number of parts
they are comprised of. A few of the examples that can often be encountered
in practice are introduced in the last part of this chapter.

B 2.1 Definition

The ISO/IEC/IEEE 42010 standard, which deals with descriptions of archi-
tectures in the field of software engineering, defines the term architecture as
follows:

“<system> fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and in the
principles of its design and evolution” [1]

On the basis of this definition, architecture is simply a collection of charac-
teristics of a given system altogether with its components and relationships.
Furthermore, the evolution and design techniques used in the development
are also considered important.

The term is perceived similarly by the group of three authors Len Bass,
Paul Clements, and Rick Kazman in their book Software Architectures in
Practice. They describe the software architecture of a system as a set of
structured elements whose existence in the system should be taken into
account. These structures are again made up of smaller software components
and are identified by their characteristics and relationships among them. [2]

For a software architect, this term can also represent some blueprint and
the so-called roadmap for the development of a new system. Under these
formulations, we can imagine the said system structure (i.e. architectonic
styles, see Section 2.4), its characteristics (for example, reliability, performance,
or security), but also conventions and principles established in a project team.
Conventions determine restrictions and rules that a resulting system should
comply with (e.g. in a layered architecture, only neighboring layers are

5

2. Software Architectures

allowed to communicate). On the other hand, principles serve as a guide to
achieve the required characteristics of the system. [3]

To answer the question of why we should care about software architectures,
it is useful to describe how this concept was actually born and how people
started to get acquainted with it in the first place.

B 22 History

In the late 1950s of the last century, common, repetitive patterns in machine
codes started to emerge and programmers realized that these patterns can
be defined by a series of mathematical symbols. Until this point, programs
were written by storing individual machine instructions manually in memory.
However, this discovery of abstraction made it possible to automate this
process and generate low-level code on behalf of the programmer. It also
significantly simplified software development, but also opened the door to
writing more complicated programs in a modularized and organized manner.
As a result, the first high-level programming languages began to rise. [4]

In the meantime, the analogy with abstracting all of the repetitive patterns
away started to find its purpose among system architects. Similarly, different
methods of systematic organizing were developed with the motivation of
hiding the implementation within the components of the system. [4]

One of the first references about the architecture of software was mentioned
by Ian P. Sharp at the NATO Conference on Software Engineering Techniques
in 1969. Sharp emphasized that software should not only be described by
its functional specifications (i.e. the functions a system must perform, as
defined by the ISO/IEC/IEEE 24765 standard [5]) but also by how it was
designed. [6]

It was not until the 1990s that the topic of software architectures started to
catch on as a discipline on its own. Different types of notation for describing
architectures of software were invented and new job positions for software
architects started to emerge. Today, the importance of software architectures
is widely acknowledged. [6]

. 2.3 Motivation

As mentioned in the previous section, describing an architecture of software
can help in conceiving unnecessary implementation details, which is useful for
the validation of a whole system at a much higher level. There are, however,
many more motivational factors, and they can be considered beneficial from
both technical and business (or management) viewpoints. An example is
given for each of the sectors in the following two paragraphs.

From a technical standpoint, designing an architecture not only includes
capturing individual components but also predicting the system’s qualities
and specifying its implementation constraints. Another part of this process
is the fact that it documents early decisions that are difficult to change

6

2.4. Architectural Styles vs. Design Patterns

in the future [2]. This relates to evolution, which represents an adaptation of
a system to new conditions. However, it should be noted that violations of
the existing architecture and insensitivity to the architecture are the main
causes of a system’s resistance to potential changes. [7]

Specifying an architecture should also be useful for the business sector of
a project. Given that complexities and technicalities are omitted at this level,
this form of the specification is still decently comprehensible, especially for
non-technical people. Thus, it helps to improve communication among all
people involved in the project — i.e. the stakeholders. [2]

B 2.4 Architectural Styles vs. Design Patterns

The above mentioned definitions are rather abstract. Therefore, it is rele-
vant to explain what software architectures practically mean when they are
implemented in a real-world scenario.

In practice, there are two terms closely related to the design of systems,
architectural styles and design patterns. Although analogously similar, they
are not identical.

Architectural styles are concerned with the organization of components
within the system. When designing a system, architects typically utilize
multiple styles (or their usable aspects) to achieve the attributes required by
the customer. These styles can be divided into several groups based on their
specific usages. For example, when considering the structure of an application,
one can opt for the layered architecture (described in Subsection 2.5.1) where
parts are separated based on their functional purpose. [8, 9]

Design patterns aim to address problems that occur repetitively in software.
This is also a characteristic of architectural styles. However, the main
difference is that design patterns are concerned with much smaller parts
of the system. Commonly, they are used within one or multiple styles on
a program/process level. An example of a design pattern is Facade pattern
whose purpose is to provide a single interface for executing multiple operations
that would otherwise have to be executed individually by the client. [10]

In terms of designing and developing systems, both concepts complement
each other. However, this thesis is concerned with the design at the system
level rather than with the design at the process level. For this reason,
the design patterns are not discussed in the following parts.

. 2.5 Common Examples of Architectures

There are a significant number of solutions for common problems in the field
of software architectures. These styles can be used as a guide when designing,
if not implementing them directly in a new system.

This section introduces several frequently used types of architecture.

7

2. Software Architectures

B 2.5.1 Layered Architecture

One of the most widely used types is layered architecture, which is given by
the fact that it reflects conventional communication concepts in traditional
systems such as web applications.

The structure of this architecture is quite straightforward. As the name
suggests, individual components are depicted as horizontal layers positioned on
top of each other. Every layer has its own purpose and typically communicates
only with the neighboring layers.

Using the aforementioned web application as an example, its structure
would, in most practical cases, comprise of four layers with their own roles:

1. Presentation layer. Represents an interface for handling user actions.
2. Business layer. Logic and behavior are usually driven by business rules.

3. Persistence layer. Responsible for establishing communication with
the database(s).

4. Database layer. Responsible for storing data. Includes databases of any
type.

The communication flow together with the layers is shown in Figure 2.1.
The flow is typically initiated by a request that originates from the user.
The request is then transmitted via individual layers, processed by them
based on their internal implementation, and passed on to the next layer. It is
important to note that, in this case, the request cannot skip any layer of
the architecture (which is labeled with the word “CLOSED” for every layer).
However, it is not a required property of this architecture type.

All the information mentioned in this section, including the figure itself, was
taken from the book Software Architecture Patterns by Mark Richards. [11]

Request

Presentation Layer [Component] [Component] [Component] CLOSED
Business Layer [Component] [Component] [Component] CLOSED
Persistence Layer v [Component] [Component] [Component] CLOSED

Database Layer v . . ‘ ‘ CLOSED

Figure 2.1: Layered architecture with four layers. [11]

2.5. Common Examples of Architectures

B 2.5.2 Service-Based Architecture

Another, conceptually different, example is an architecture whose basic build-
ing blocks are called services. Such an architecture is called service-based.

Two of the most popular service-based architecture subtypes are service-
oriented architecture, abbreviated SOA, and microservices architecture. Both
have some unique characteristics; however, the main trait they have in common
is that the components are usually distributed as separate deployable units.
This distinguishes them from the layered architecture, where most of the layers
are part of one unit (even though they are still separated into their own
objects by their functions).

Given that the services run independently in their own separate environ-
ments, it is necessary to define a specific communication protocol among
them so that they can exchange data via a network. For this need, there are
standardized and widely adopted solutions based on the HT'TP protocol, such
as Representational State Transfer (REST) or Simple Object Access Proto-
col (SOAP).

When it comes to naming at least one difference between SOA and mi-
croservices, one of the most prominent ones would be related to component
sharing. SOA aims for extensive sharing across multiple services, whereas
microservice architecture is characterized by having rather a separate instance
of dependency for each service making them more autonomous. A good ex-
ample would be a database: In Figure 2.2 there are four services that are
called by the user interface. They are connected to one master database
that is shared by them. In microservices architecture, each of the services
would be connected to their own separate one, i.e. four services result in four
databases.

The book Microservices vs. Service-Oriented Architecture by the author
Mark Richards [12] was used as the source of information for this particular
architecture example.

[User Interface]
Conporet Gonporen) Gorporen) (D)

Wldig

Database

Figure 2.2: Structure of a simple service-based architecture (SOA type). [3]

2. Software Architectures

B 2.5.3 Event-Driven Architecture

The third architecture type example is event-driven architecture. This style
addresses how messaging is carried out among individual components. In par-
ticular, it describes how the events occurring in the system are handled by
individual components. There are two basic variants based on the topology
of the architecture, mediator, and broker topologies. [11, §]

The event-based architecture with the mediator topology consists of four
component types, namely event queue, event mediator, event channel and
event processor. First, when an event (e.g. a request) is generated by the client,
it is sent to the event queue, where it waits for further processing. The event
mediator then receives the event via the queue and generates new events
that represent operations needed to be performed based on the original
event. These are communicated individually and asynchronously with event
processors via event channels. The entire communication process is depicted
in Figure 2.3. [11]

The broker topology, on the other hand, typically makes use of decen-
tralized event processing. In particular, the event mediator in the previous
variant is replaced by broker. The events are then distributed directly across
the processors through the broker with the contained event channels. [11]

Event
Queue

Event Mediator

Event Event Event
Cha{mel Channel Chaimel
Event Processor Event Processor Event Processor Event Processor Event Processor

(module) (module) (module) (module) (module) (module) (module) (module) (module) (module)
(module) (module) [module) (module) (module) (module) (module) (module) (module) (module)

Figure 2.3: Components of an event-driven architecture with the mediator
topology. [11]

10

2.5. Common Examples of Architectures

B 2.5.4 Pipeline Architecture

Finally, the last example is pipeline architecture, also called pipe-and-filters
architecture.

As the alternative name suggests, the components of this architecture are of
two principal types, pipes and filters. The structure is rather straightforward:
The filters are joined together, the pipes being the communication channel
between them. In common scenarios, pipes are one-way channels and have one
source and one target point, i.e. output data from one filter flows to another
filter as input data. This is shown in Figure 2.4. Filters act as independent
components without any state, which means that input data is processed and
output data of the process are forwarded to the next filter.

A filter can be one of the four types — producer, transformer, tester,
or consumer. The producer is the starting point of the data flow. It does
not accept any data; it only outputs data and initiates the whole process.
Any intermediate filter in the chain can either be transformer, or tester.
The transformer optionally changes the received data and directs it to another
filter. The tester accepts the data and optionally outputs the data according
to one or more tested criteria. At the terminating point, there is the consumer
that only accepts data as the final result of the whole process. Should the result
be persisted for later use, it can be saved e.g. into a database.

The great advantage of this architecture is the simplicity and modular-
ity of the solution. However, it is not well suited for scalable and elastic
applications due to its monolithic properties.

All the information mentioned in this example comes from the book Funda-
mentals of software architecture: an engineering approach by Mark Richards
and Neal Ford [3].

i Pipe i Pipe _

Pipe

Figure 2.4: A simple structure of the pipeline architecture with pipes and
filters. [3]

11

12

Chapter 3

Designing a Software Architecture

When making decisions regarding a system’s architecture, it is essential
to consider numerous aspects. This chapter addresses them and introduces
general recommendations for designing the architecture of a system and
choosing an appropriate architectural style.

. 3.1 General Criteria of the Decision Process

There are several factors to consider when designing a new architecture.
They include solid understanding of the project domain, specification of data
architecture, team and internal process knowledge and external factors. [3]

B 3.1.1 The Domain

It is essential that an architect becomes familiar with the domain covered by
the project. By domain we mean the subject area for which the system is
built, i.e. the scope of the problem the software is designed to solve. [3, 13]

Knowledge of the domain is important because it determines business
needs and it is the core reason the software is developed in the first place.
Being acquainted with it means understanding the problem and thus creating
a proper solution for it in the form of software. The discipline concerned with
designing software with primary focus on the domain is called domain-driven
design (DDD). It is discussed in detail in Subsection 3.3.2. [13]

B 3.1.2 Data Architecture

For software, it is a common scenario to work with data (in an arbitrary
form). In addition to software architectures, there are also data architectures.
In essence, this type of architecture is concerned with the way in which data
are stored and used. Similarly to software architectures, data architectures
provide a high-level view of the system. Although this discipline is not
the main focus of the thesis, it is still highly relevant. An architect must
be familiar with it to ensure proper use and manipulation of data within
the system (e.g. database structure). [3, 14]

13

3. Designing a Software Architecture

B 3.1.3 Project Team and Internal Process Knowledge

Another factor that can influence the decision (and its consequences) while
designing software architectures are internal processes in the project team.
Team members should be aware of the fact that the established project
management practices and methodologies can also have significant impact on
the ability to use particular architectural styles. [3, 2]

Two different project management models/techniques — Waterfall and
Agile — are a good example. The Waterfall model can be visualized as
a one-way process flow through individual project phases, which take place
only once. On the other hand, the concept of Agile project management is
based on iterations in which every project phase is repeated. This means
that the software is frequently released in smaller parts, and it is more
flexible in terms of potential future changes. On the contrary, the Waterfall
model specifies everything from the beginning without the possibility of easily
making changes in the future, and this might not be ideal for the evolution
of the architecture. [3, 2]

B 3.1.4 External Factors

There are also influential factors coming from the external environment, that
is outside the project team. One of the examples could be deciding what cloud
provider to use. The main factors in this case are typically price, the range
of features and customer support. Another incentive can show up within
the organization when it is, for example, acquired by another company and
the team is forced to choose specific software and services, usually owned or
promoted by the acquiring company. [3]

. 3.2 Decisions to Make

Additionally, an architect must make important decisions that are based
on the criteria mentioned in the previous subsection. The most important
questions to be asked are [3]:

® Should the architecture be monolithic, or distributed?
® Where the data should be located?

® What technology stack should be used?

Note that the list summarizes a few examples of important decisions that
have an influence on the future development of the architecture. In practice,
the list would include many more questions.

The following subsections describe the listed questions in detail.

14

3.3. Design Methodologies

B 3.2.1 Monolithic, or Distributed Architecture

An architect should assess whether the quality attributes required to be met
are valid for the whole system or only for some of its parts. The answer to
this problem could also guide them to answering the question of whether
to choose an architecture that is its own part, or is divided into multiple
pieces. The former — the monolithic architecture — could be suitable for
a unified set of characteristics, the latter could be better for multiple groups
of characteristics. [3]

B 3.2.2 Data Location

As already mentioned in Subsection 3.1.2, the architect should also be con-
cerned with data storage and with its usage. This problem logically follows
from the previous question. In the monolithic architecture, the data would
be typically stored in a (relational) database. Then the application is usually
able to connect to it directly. If, however, the architecture is distributed,
the data would be accessible via independent components. It is the architect’s
task to decide which components should have this responsibility and how
the data should be accessed. [3]

Bl 3.2.3 Technology Stack

In the end, any architecture is implemented in the chosen technology. Al-
though technology should remain independent of architecture, it may still
have an impact on quality attributes, development process, and documen-
tation. Real-world examples show that the technology choice can be driven
by its cost (e.g. introduction of cheaper technology), by its effectiveness
or the features (e.g. component-based technology allowing code generation
directly from the specification). [15]

It must be noted that architects/developers might not be able to decide
whatsoever due to earlier decisions made by someone else. However, if such
decision is possible, the architect should be aware of possibilities available
to them and they should consider its advantages and drawbacks and also its
compatibility with the existing technology currently used. [2]

B 33 Design Methodologies

Although the concrete architecture design process is unique based on the given
situation, having a universal strategy on how to approach this problem might
be helpful. This section presents two methods that architects can use to help
them along the way.

B 3.3.1 Attribute-Driven Design

Introduced in 2000, originally named Architecture Based Design and later re-
named to Attribute-Driven Design (ADD), this method works with the assump-

15

3. Designing a Software Architecture

tion that designing architectures is not straightforward because of the detail
lacking in business requirements in the beginning. It is intended for building
architectures at a high level of abstraction in early stages of development.
This allows for uncertainty in the requirements which are yet to be elaborated
in the future. [16, 17]

In 2006, the method and its steps were revised to make it clearer and easier
for architects to use. The core procedure itself, however, remains unchanged.
The method uses the idea of recursive decomposition and works with a list
of requirements and constraints as input: functional and quality attributes.
In summary, the steps of the method are as follows [16, 17, 18, 2

1. Choose one element of the system to be designed.

2. For the chosen element, find all attributes with a potential
impact on the architecture. Typically, these attributes are related
to modifiability, performance, availability and security. [2]

3. For the chosen element, create a design solution satisfying
the attributes identified in the previous step. This is the es-
sential step of the method. It includes choosing a pattern, the allocation
of responsibilities to individual child elements and defining their inter-
faces. [18]

4. Test that the attributes were satisfied, refine them, if needed,
and select remaining requirements and constraints as the input
to the next iteration. The refinement here refers to assignment of
the requirements to the potential child elements in further decomposi-
tions. [18]

5. Repeat steps 1—4 until all requirements and constraints have
been satisfied.

The general process of ADD is shown in Figure 3.1. In every iteration,
a (sub)system is split into several parts and these are split (decomposed) again
in further iterations. During the process, software templates at each level
are created. Every software template defines behavior and responsibilities of
a software element of a given type and interaction with the rest of the sys-
tem. Software templates’ purpose is to provide reusable parts in the system.
A common example of a software template is a logging service. [16]

16

3.3. Design Methodologies

System

Conceptual
subsystems Templates

Conceptual
components Templates

<____.,_______
<
<

Concrete
components

Key

———~<> Aggregation
—> Inheritance

......... P Evolvesinto

Figure 3.1: Decomposition in ADD. [16]

Bl 3.3.2 Domain-Driven Design

The second design method, Domain-Driven Design (DDD), is based on
a different concept. It stresses the importance of business domain as the core
reason for developing a software product. The premise is that in order to come
up with a proper solution to a problem, one must have a solid understanding
of the problem first. This is necessary especially when the domain for which
the implemented solution implemented is complex. [13]

The central idea of DDD is the domain model, which serves as a guide for
both analysts and developers. To make it realizable in practice, a shared
language that is understandable to all must be established, the so-called
Ubiquitous Language. This language encompasses the unified terminology
describing a given domain and helps everyone across the team communicate
thanks to explicitly defined terms. These ideas grouped together are known
as Model-Driven Design. [13]

DDD also acknowledges the fact that maintaining a single model is difficult
— especially in complex projects — and it addresses the need for distinguishing
areas containing similar concepts from other areas within the model. These
areas are called bounded contexts and are usually defined by their responsibil-
ities. In the e-commerce example, shown in Figure 3.2, a product (domain)
can be referred to in multiple contexts (subdomain), i.e. in pricing context

17

3. Designing a Software Architecture

(e.g. prices of the product for different types of customers) or inventory
context (e.g. stock information about the product). In practice, this means
that the product is defined multiple times but in different contexts based on
the responsibilities they are assigned, as shown in Figure 3.3. [13] Given the re-
semblance, this concept could be utilized — for example — in a microservices
architecture.

Domain Model

————— _——
— —~ - ~

-7 TN “ Sates O
/ Marketing \ ()
\) Contekt
N Context . Y |-
~ _ -
7 . -_ TS
P Product ;7 Fulfillment ~
-’ -~ N C)
/" Procurement v oLontext
\ S—— -7
. Context
~ -~ -~ —— -
~——_—_ - = ~ S . >
// S Pkicing \J
i Inventory \\(ionteit/

\ ’ - -
/ ~ -
~ _ _ -

Subdomains N

Figure 3.2: Identifying bounded contexts in the domain. [13]

— ~

s ~
- ~ 7 Sales Context™
7 . N / \
,” Marketing "\
/ Context

| \
| |
\ /
\ /
\ 2
AN 7/
ST~

Domain Concepts |

\
e N in Context ‘\ /J
)/ Procurement\\ \ /
I Context \ AR o
- T T~ I~ -
~T~_ -

P ~

7 \\
// Fulfillment
/ Context

\

| s ~ - .. ~
, + Inventory ® Y/ Pricing "\
/ L Context \\

Domain Model

Figure 3.3: Separated bounded contexts with their own models. [13]

18

3.4. Software Quality Attributes

B 3.4 Software Quality Attributes

When developing a system, functional requirements / attributes are usually
taken into consideration thoroughly. They define what the system can do
in terms of its features. Nevertheless, poor performance, maintainability, or
scalability are common reasons for redeveloping a system. These examples
are the second type of properties, collectively called quality attributes. [2]
The ISO/IEC/IEEE 24765 standard defines the term quality attribute as
“feature or characteristic that affects an item’s quality” or “requirement that
specifies the degree of an attribute that affects the quality that the system
or software must possess”. [5] Satisfying particular quality attributes is as
important as satisfying the functional ones and they should not be neglected
because they can be influenced by the architecture. For this reason, it is
essential to consider them during the architecture design process. [2, 19]
This section introduces some of the common quality attributes.

B 3.4.1 Auvailability

Availability is an ability of a system to “perform its required function at
an agreed instant or over an agreed period time”. [5]

This metric is usually expressed as a percentage of the time the system
is available to the user, including only the period during which the system
should be operational. This is important because it does not include planned
unavailability, such as system maintenance. It is a common requirement
specified in service-level agreement (SLA) documents. [2, 5, 19]

For example, as a part of the Firebase service, Google specifies hosting
and realtime database availability in the SLA as follows (as of December 26,
2021):

Firebase will use commercially reasonable efforts to make Firebase
available with a Monthly Uptime Percentage (defined below) of at
least 99.95%, in each case during any monthly billing cycle (the “Ser-
vice Commitment”). [20]

B 3.4.2 Modifiability

Whether it is adding a few novel features or migrating to the new technology,
software is always dynamic and changing. Modifiability quality attribute
determines how easily a system can be changed without introducing defects.
In order to analyze them, an architect should know what in the system might
change, what probability that the change will take place is, who will be
affected by it (who is responsible for implementation of the changes) and
what the cost of the change will be. Answering to these questions helps with
the estimation of the risk and cost of hypothetical changes. The cost includes
both money and time. [2, 5]

There are three primary techniques for increasing modifiability of the system
that help reduce the cost of the change:

19

3. Designing a Software Architecture

® Decrease size of a component.
® Reduce coupling between components.

® Increase cohesion of a component.

Decreasing the size of a component typically means splitting it into two
smaller parts. The reasoning behind this action is the assumption that
the modification of the larger component will be costly due to the multiple
responsibilities it has. The purpose of reducing coupling between two compo-
nents is rather intuitive: If component A subjected to change is loosely coupled
to component B, component B is less likely to also be noticeably affected by
the change. Increasing the cohesion of components in a system is related to
assigning responsibilities to them. Two different responsibilities should be
covered by two different components. This prevents the responsibilities from
affecting each other by the change. [2]

B 3.4.3 Performance

Another important metric to care about is performance of the system, in
particular its response times and throughput. Performance is crucial especially
in web-based systems where users initiate up to millions of requests in a short
time span via their web browser. In this scenario, the required performance
can be expressed as a constraint e.g. requests the system can process in
a minute. [2, 19]

Common strategies for improving system performance are controlled de-
mand for resources and resource management. Examples of controlled re-
source demand techniques include event prioritization, overhead reduction,
and resource efficiency increase (by using efficient algorithms). Appropriate
resource management models include techniques like increasing the number
of resources, concurrent processing, caching, or resource scheduling. [2]

B 3.4.4 Testability

In the ISO/IEC/IEEE 24765 standard, testability is generally defined as
“extent to which an objective and feasible test can be designed to determine
whether a requirement is met”. [5]

Testing is one of the main parts of the typical project life cycle and
helps verify functionality and identify system faults. The testability quality
attribute describes the ease with which a fault in the system can be discovered
by a test. The better the testability, the sooner the fault is discovered. [2]

One of the main tactics for ensuring better testability is system state
observation and control. Common approaches of this tactic are recording
the state causing the fault in order to recreate it, isolating the tested instance
of the system from the real environment (usually achieved by virtualization)
and using assertions in different part of code in order to test expected values
against actual ones. [2]

20

3.4. Software Quality Attributes

B 3.45 Security

Security is a rather complex topic that deals with the challenge of protecting
data in the system from unauthorized access. The system must also be able
to provide the data to authorized users and other systems. [2]

Security of systems is characterized by three core properties:

® Confidentiality,
® Integrity,

® Availability.

Confidentiality refers to the fact that data in the system are protected from
unauthorized access. Integrity is the ability of the system to prevent data from
unauthorized tampering and the ability to detect such manipulation. Finally,
availability describes the ability of the system to be available to provide its
functionality for legitimate use despite a potentially ongoing attack. [2]

Security covers much more, however, it is not the major topic of this thesis.

21

22

Chapter 4

Software Architecture Transformation
Process

This chapter explores the task of using the existing software architecture to
convert it into a different one. It puts emphasis especially on the case of
converting a monolithic architecture to SOA or microservices architecture.

The chapter begins by mentioning several motivational factors for migrating
an existing architecture to a different one. Then it presents three approaches
that can be combined together to proceed with the migration (i.e. decom-
position) of monolithic architecture. Finally, the chapter is concluded with
several general recommendations for migration of the architecture.

B 4.1 Motivation

The need to modify the architecture of an existing system or replace it with
an entirely new one can be motivated by multiple factors [3]:

8 Migrating to newer technology. Today’s technology evolves at a great
pace. Keeping up with the latest or at least still relatively new trends
might be beneficial for an organization. However, potential benefits
should first be analyzed before making technological changes.

® Emerging of new possibilities. Relating to the previous bullet, the or-
ganization should also consider all the options and tools available to
achieve a goal. A widely adopted example is Docker — developers and
architects became aware of its advantages and started migrating their
applications to virtual environments, i.e. containers.

8 Volatility in the domain. The project domain is also subject to
future changes. Most often, this is given by the business’ evolution, and
while it does not necessarily mean restructuring the whole architecture,
the application can be significantly affected by it.

8 Experience. Incentives that motivate architectural change can also be
driven by observations from the past. These driving observations are
often negative (i.e. bad experience) and shape an architect’s view of styles

23

4. Software Architecture Transformation Process

and their suitability in different scenarios. As a result, an architect also
reflects on their previous experiences when designing a new architecture.

® External stimuli. Motives can also be external and do not have
to relate to the development itself. For example, the choice of tools and
migration can be constrained by licenses bought by the organization
in the past.

There is no universally applicable solution to every problem. Before
proceeding, it is crucial to have the decision rationally justified — i.e. why
the change should take place. In addition, all possible benefits and drawbacks
associated with the change should be considered.

After thinking everything through thoroughly, one can start preparing
for the change. The rest of this chapter considers the case of transforming
a monolithic application to SOA /microservices architecture.

B 22 Monolith Decomposition Approaches

Transforming a monolithic application into microservices implies the need for
analysis of the existing architecture and identification of its parts mapped
and eventually decomposed into individual microservices. Several patterns
can be used to decompose a monolithic architecture.

B 4.2.1 Strangler Pattern

Introduced by the software engineer Martin Fowler [21], the strangler fig ap-
plication is a way of safely rewriting an existing application in a gradual
manner, one part at a time.

The name of the pattern refers to parasitic strangler fig species which seeds
in other tree’s branches. The fig grows slowly and wraps around the host tree
until it reaches the ground where it roots. The host tree is eventually killed,
while the fig becomes an independent tree on its own. [22]

The same happens when the pattern is applied in software engineering.
The existing system acts as a fundamental support for the new architecture.
As the new architecture progressively develops and grows in size, it “wraps”
the original application architecture. Eventually, the old architecture is
replaced by the new one in its entirety. [22]

Strangler pattern consists of three main steps, as shown in Figure 4.1:

1. Identify part of the old architecture to map to the new architecture.
2. Map the part to the new architecture.

3. Redirect all calls of the part from the old architecture to the new archi-
tecture.

The process of identifying a part to be migrated always depends on the con-
text and is based on the architect’s assessment. For this purpose, DDD,
mentioned in 3.3.2, can be used. [22]

24

4.2. Monolith Decomposition Approaches

Existing | Existing ; Existing call
aall 1oall] redirected
Monolith : Monolith : Monolith
S 2 /. N R2
] 1 :] [}] 1 :] |] 1
FunEtionaIity 1 T -] Exis-ting _
to move | Functionality I | functionality
] moved To I [leftin place
: microservice :
Step 1 1 Step2 | Step3
Identify assetto move | Move asset] Redirect calls
1 |

Figure 4.1: Basic steps of strangler pattern. [22]

Mapping the identified part means implementing it in the new architec-
ture (e.g a microservice). Specifically, this could mean copying or rewriting
the existing code. [22]

Finally, after finishing the new implementation, existing calls and depen-
dencies can be redirected from the old architecture to the new one. [22]

The main advantage of this approach lies in its flexibility. During the mi-
gration, both architectures coexist side by side making the system functional
during the whole process. Therefore, migration can be done not only in
an incremental manner, but also can be paused or arbitrarily reversed by
redirecting calls back to the old architecture. [22]

B 4.2.2 Ul Composition Pattern

The concept of incremental migration can also be applied to the user interface
(UI), the user interacts with directly, e.g. in a web browser. The UI composi-
tion pattern can be used for the purpose of developing and testing new visuals
or it can be utilized alongside the strangler pattern, where parts of a web
portal are redirected one by one to the newly developed microservices. [22]
In the case of Ul the composition can be of the following two types [22]:

8 Page composition,

8 Widget composition.

In the page composition, the migrated unit is a whole web page. A good
use case is the introduction of new visuals to users. If a web application is
made up of multiple web pages, one (or some of them) can be redesigned while
the rest of the portal remains intact. This can be done for less important
sections of the web portal where a possible failure would not affect users
negatively, and the changes can be easily rolled back. [22]

In widget composition, the migrated unit is part of a single web page.
The use case is analogous to the one in page composition. The general idea here
is that a page can also be split into multiple independent parts. For example, a
web-based news outlet can display on its home page sections related to different
topics — politics, sport, culture, traveling, etc. Originally, all sections used

25

4. Software Architecture Transformation Process

one monolithic service to obtain the appropriate data. During migration,
individual sections can start redirecting their calls one by one to their own
respective microservices. Again, this can be done incrementally, which helps
developers migrate the whole infrastructure smoothly and carefully. [22]

B 4.2.3 Branch by Abstraction Pattern

Unfortunately, the strangler fig pattern does not work well in cases where the
inbound calls come from within the existing system. Given the example illus-
trated in Figure 4.2, if we tried to migrate the component User Notifications to
its own microservice, redirecting the incoming calls made by the components
Invoicing and Payroll would require modification of the monolith (which
could be an unwanted disruptive action). [22]

Inbound calls

| Monolith

l Invoicing Payroll

Inventory
Management o -
_________ Calls we want to intercept
{ areinside the monolith

Figure 4.2: Inbound calls to the migrated component are coming from within
the monolith itself. [22]

To overcome this problem, the branch by abstraction pattern can be used.
It is based on having two implementations (old and new) temporarily during
the migration. Then, by using abstraction, it is possible to easily switch
between them. [22]

The monolith still has to be modified, but the modifications are not
disruptive, and the behavior is not changed until the new implementation is
ready to be switched over. [22]

The pattern consists of five steps [22]:

1. Create an abstraction of the migrated functionality.

2. For all clients using the migrated functionality, switch their calls to
the newly created abstraction.

3. Create a new implementation of the abstraction.
4. Switch the abstraction to use the newly created implementation.
5. Remove the old implementation.

In the first step, an abstraction of the operations of the migrated functional-
ity is created. This abstraction is then implemented by existing functionality.
The purpose of this step is to create a generic interface for any client that

26

4.2. Monolith Decomposition Approaches

uses the migrated functionality without the need to rely on a specific imple-
mentation. The switch of all client components (Invoicing and Payroll) from
implementation to abstraction is made in the second step. Both steps are
shown in Figure 4.3. [22]

Invoicing | Payroll | Elnvmcmg
-—ns--
notifications |
. _abstraction_ ; e
¢ “EXisting user -
% notifications :I t
2 functionality_ s MPIEMEN'

Step 1

Monolith

r%e-réq

Notifications 0
Abstraction

[Implements
+ “Existing User” s
+ Notifications §
¢ Functionality_s

. Payroll

Monolith

Step 2

Figure 4.3: Steps 1 and 2 of branch by abstraction pattern. Adapted from [22]

The third step is concerned with the creation of a separate reworked im-
plementation using the new microservice. This step is done independently
of other developers who work on the old functionality that exists along-
side the new implementation. After this step, the clients still use the old
implementation, while the new implementation is still being worked on. There-
fore, no changes in the behavior of the existing system have yet been made.
Only when the reworked functionality is considered finished, a switch of
the abstraction over to the new implementation can be done in the next,
fourth, step. Once the switch has been made, all clients can also start using
it via the abstraction. The process done in steps 3 and 4 is depicted in
Figure 4.4. [22]

Invoicing

S L
+ “Existing user o
s notifications §

A

User
) notifications i
. _abstraction_ J

Payroll

;'- ervice- H
provided user =

+ functionality_ s | notifications
Active Inactive
implementation implementation
Monolith
Step 3

Workin progress
A

notifications
service

Invoicing

A

User
) notifications i
. _abstraction_ J

Implements _ _

I ¢ “Existing user " e
v s notifications §
» functionality e

Usen Active

implementation

Active
implementation
switched

Payroll

1 Sewvice-]
provided user =
notifications
----------- LT |
Inactive
implementation
«

User
notifications
service

Step 4

Monolith

Figure 4.4: Steps 3 a 4 of branch by abstraction pattern. Adapted from [22]

At this point, it is possible to freely switch between both implementations
and make any rollback if necessary.

27

4. Software Architecture Transformation Process

Ultimately, when the new implementation is considered ready, the old
implementation can be removed. This is shown in Figure 4.5 as the fifth and
final step of the branch by abstraction pattern. [22]

Additionally, the abstraction can also be removed as an optional sixth
step. [22]

Before After
! Invoicing . Payroll | " Invoicing . | Payroll |
| User T ;o User—
notifications) notifications H

. _abstraction | . _abstraction J

Implements

- Ee?vﬁg -'; User :' - ?e_ﬁl@e? - ': User
pro%(ﬁie guser notifications) pro;/_lf?e g user g notifications
A SIS service PRSI service

r
|

. Active ~ Inactive
implementation implementation
Monolith Monolith

Step 5
Figure 4.5: Final step of branch by abstraction pattern. Adapted from [22]

. 4.3 General Recommendations

When migrating to SOA or microservices-based architecture, it is advisable
to follow some general principles. This section summarizes them.

#® There is no universal way for migrating architectures. Every
decision carries its own trade-offs, and it is up to the architect to consider
the possible advantages and drawbacks. Different approaches can be
suitable for different scenarios and depend on the current context. [22]

8 During the migration, try to avoid making changes in the cur-
rent behavior. New functions and bug fixes should be performed after
the migration is finished. This is motivated by making the rollbacks
from the new architecture to the old architecture as smooth as possi-
ble. If the new architecture incorporated new features and/or bug fixes,
a rollback could potentially take these features away from customers and
reintroduce the bugs. [22]

® Implement log aggregation. It is advisable to aggregate logs of differ-
ent services in one place. This can profoundly improve any future debug-
ging. A commonly used implementation is the so-called ELK stack which
includes the combination of three components — Elasticsearch, Logstash,
and Kibana — allowing collection and visualization of the logs. [22]

28

Part 11

Practical Part

29

30

Chapter 5
FelSight Application

The first chapter of the practical part introduces the FelSight application,
which is the subject of architectural transformation. Furthermore, the project
of the application’s current implementation is analyzed. The analysis includes
a description of the existing architecture, the structure of the project, and
the technology used. In the final part, the motivation for refactoring of
the existing project is presented.

B 51 Application Introduction

FelSight is a web application designed primarily for students and teach-
ers of the Faculty of Electrical Engineering (FEE) of the Czech Techni-
cal University in Prague. The application is being developed in the Cen-
ter of Knowledge Management at the CTU and is available at https:
//felsight.fel.cvut.cz/welcome.xhtml.

It serves as a support tool for its users during studies and offers a variety of
features. The most prominent feature is the page with timetables, as shown
in Figure 5.1. Here, the user can view their enrolled courses in the current
semester together with their own events and tasks.

The set of features also includes viewing time availability of rooms that
can be used for studying, semester overview with public events, special mode
for customizing timetable, and much more.

31

https://felsight.fel.cvut.cz/welcome.xhtml
https://felsight.fel.cvut.cz/welcome.xhtml

5. FelSight Application

Timetables (s cus < O
Tt ko) ¢ 260402052021 >
MON BAM3GSWA [BAM3GESW [| BAM3GESW [| BAM3GSWA [
11001230 1245-1415 1430-1600 1615-17.45
24, KNES0T KNESD! KNES10 KNE328
TUE BAMOTTAL D BAM35KO D Bam3sko 0O
0815-1045 11451415 1430-1600
274 203209 203309 241130
BAMOTTAL O
WED 1430-1600
24, T2
THU Bavsoviz 0 [Bamseviz @

11:00-1230 1245-1415
204, KNE301 KNE3ZT

3
°8
28

=}

FRI

04,

Figure 5.1: Timetables page in FelSight.

B 5.2 Original Architecture

Being the typical web application, the architecture of FelSight follows common
layered pattern, similar to the one depicted in Figure 2.1.

B 5.2.1 Presentation Layer

The presentation layer represents the front-end of the application. In the case
of FelSight, here, the front-end is a collection of web pages.

As the user interacts with the page and performs different actions, requests
are initiated and sent to the server for further handling by the business layer.

B 5.2.2 Business Layer

The requests sent from the front-end are handled by its designated invoked
method. The method contains logic that defines how the request should be
processed.

Common scenarios of request processing include actions such as communi-
cation with the database, invocation of a remote API via REST, or simply
updating the inner state of the server. Usually, these actions are combined
within one request.

B 5.2.3 Persistence and Database Layers

In cases where communication with the database (i.e. the database layer)
is performed, the persistence layer is used. It ensures connectivity to
the database and data mapping between this layer and the database layer.
The mapping is necessary because of the two different representations
on each side. In the database layer, data are represented as tables, and in
the persistence layer, entity objects (Java objects) are used for this purpose.

32

5.3. Original Project Structure

Finally, the persistence layer also provides an interface for operations such
as reading, creating, updating, and deleting data stored in the database. This
creates an abstraction for a developer without the need to use tools such as
SQL to manipulate the data in the database directly.

B 53 Original Project Structure

The original project consists of three modules — the web module, the EJB
module, and the EAR module — as shown in Figure 5.2. This section describes
each of these sections together with the technology used within them.

FELSIGHT PROJECT

Web module

EJB module

EAR module

Figure 5.2: Structure of the original FelSight project with three modules.

B 5.3.1 Web Module

First of the modules is the web module. Its purpose is to provide HTML, CSS
and JS files for interpretation by the web browser on the client’s side.

However, because the data displayed on the web page are unique to each
user, HTML files must be generated first. In FelSight, this is accomplished
on the server by JSF (JavaServer Faces), the framework for building modular
web pages using XHTML (Extensible HTML) files based on custom XML
tags (syntactically similar to HTML tags).

An XHTML file serves as a template for a whole web page or just a part
of it — a component. When the user requests a page via the web browser,
the related XHTML files are evaluated into a resulting HT'ML file which is
subsequently sent to client. The important part of the framework are Java
beans, ordinary Java classes or interfaces. Beans are accessible from XHTML
files and can be used to call their methods to retrieve data and use them in
places in the template where the methods were called.

In terms of CSS files, the FelSight project uses LESS, a CSS preprocessor
which allows a developer to use advanced syntax and features that are not part

33

5. FelSight Application

of the original CSS specification. LESS files are compiled by the preprocessor
into equivalent CSS files that a web browser can interpret.

Regarding JavaScript, to reduce the number of files sent over the network,
the files are merged into one. This single file is then sent to the client.

Beans can hold the state related to the currently logged user and can
implement its own logic. However, it is common for the request to require
interaction with the database or with a remote service to retrieve the data.
Such logic should not be implemented inside the beans, as they should handle
logic related to front-end only, like updating the mentioned state. Any other
logic (i.e. closer to the back-end) should be separated. This is what the EJB
module, which provides complex functionalities and interfaces, is used for.

B 5.3.2 EJB Module

The second — and the largest — module is the EJB module. EJB (standing
for Enterprise Java Beans) is a way of building server applications in Java.
One of the fundamental features are the components that allow developers
to modularize the application. The components can be composed into a
larger one with the help of dependency injection, a mechanism of instantiating
specifically annotated fields of a class with the correct implementation. This
process and the lifetime of the components, also known as beans, is managed
by the container on behalf of a developer.

EJB module encompasses server-related functions which are provided to the
web module via its designated methods. Two of the most significant functions
are persistence layer and a collection of REST API clients for accessing data
of selected remote services needed to display on FelSight’s front-end.

As already mentioned in the Subsection 5.2.3, persistence layer mediates
communication with the database and exposes a simple-to-use interface to
the rest of the code. In the case of FelSight, this is achieved by using
the Java Persistence API standard (JPA) together with the EclipseLink
provider. In order to work with the data retrieved from the database, it is
mapped to corresponding Java entity classes (typically, a table in the database
corresponds to one Java entity class with the columns mapped to individual
fields of the entity class).

FelSight accumulates and displays data to the user from other sources than
the database. As a matter of fact, majority of the education-related data
(e.g. courses, semester enrollments etc.) is originally retrieved from remote
services and subsequently saved in the database or put in the cache for later
access. Such services are, for example, KOSapi (CTU’s student information
system data — KOS) or Sirius API (data reflecting exceptions in timetables
such as the national holidays). The data is retrieved via the REST API by
a dedicated client in the EJB module.

In addition to the two previous features, the module also provides more
functionalities such as sending email or running periodic jobs to update
the database. However, these features will not be further elaborated on.

34

5.4. Build and Deployment

B 5.3.3 EAR Module

The only purpose of the last module is to package the first two modules,
the web module and the EJB module. The rationale behind this process is to
create a single file for easy deployment on the application server. The resulting
file is also known as enterprise application archive, thus being abbreviated as
EAR.

EAR module itself does not contain any code and only has a file with
a Gradle task definition for the application’s build process, described in
the following section.

B 54 Build and Deployment

This section summarizes how the original FelSight project is built and deployed
in its runtime environment.

B 5.4.1 Build Process

Before deploying the application, it should first be built from the source code.
To simplify the process of building the whole application, the project uses
Gradle as its build system. As indicated in Subsection 5.3.3, the result of
the build process is one archive (EAR) file that encapsulates the compiled
web and EJB modules.

The process starts by running the Gradle task defined in the EAR module
in the file build.gradle. The web and EJB modules also contain their own
build.gradle file with their dependencies and tasks and are built recursively.

After the build process, the resulting EAR file contains both compiled
modules in a form of compressed archives, with WAR and JAR extensions
for the web and EJB modules, respectively. WAR file contains XHTML
files together with the compiled and bundled LESS and JS files and bean
classes with libraries. The result of the compilation of the EJB module is
the mentioned JAR file with the library dependencies located in the separate
1lib directory. The general structure of the generated EAR archive can be
seen in Figure 5.3.

35

5. FelSight Application

EAR
WAR JAR
XHTML Compiled Java
source code

e —
CSS (compiled '
from LESS)

e

Bundled |S

S

<<import>>

P —
Compiled Java lib
source code

.
Dependencies JAR libraries
—

Figure 5.3: EAR structure overview.

B 5.4.2 Application Server and Database

After building the entire application, it can be deployed. In the case of
FelSight, the application runs on Payara application server.

Apart from hosting applications, the application server, where the EAR is
run, also takes care of other responsibilities. For example, it uses the JDBC
interface to communicate with the database and manages pools of reusable
connections to conserve resources. It is also possible to define custom JNDI
resources. The application can then look up a given resource based on its ID
dynamically and use it during the run-time.

Additionally, in order for the application to startup correctly, a running
instance of PostgreSQL database server is expected to be available. In the
Payara administration console, the proper credentials for database access
must be configured.

B 5.4.3 Topology

In summary, the deployment schema of the original project could be imagined
as three core parts connected in a linear topology, as illustrated in Figure 5.4.
This corresponds to the layered pattern, each layer being delineated by
the dotted boundaries.

The client’s web browser (presentation layer) communicates with the appli-

36

5.5. Motivation for Architecture Transformation

cation server (business layer) via HTTP. The application, packaged inside
the EAR file and hosted on the server, receives and processes incoming
requests.

Access to the database is carried out between the database server and
the application server only — the client is not participating in this communi-
cation directly in any way. Connection is achieved by JDBC. Furthermore,
table data fetched from the database are mapped onto entity objects in
the application. This is achieved by the persistence layer located in the EJB
module, which also provides a convenient interface for executing operations
over the database.

Note that the diagram does not illustrate the physical devices on which
the browser and both servers are run. In reality, the application and database
server could run either on different machines, or they could share one. For sim-
plicity, remote services called by the application are left out of the diagram.

. 5.5 Motivation for Architecture Transformation

Although there is a particular separation of concerns given by the layered
architectural pattern, the layers themselves incorporate a significant amount
of code, making the architecture effectively monolithic.

This is true especially in the case of the business layer. Being composed
of many business areas, the domain of FelSight is complex, and due to
the lack of separation of those areas, the project results in a lot of clustered
code. Demarcating the identified parts of the application would decompose
the project into smaller parts, making it easier to handle the overall complexity.

Another example of tight coupling that can be observed in the current
architecture, as shown in Figure 5.4, is the fact that the persistence layer is
actually part of the EJB module. This means that — from the point of code
structure — it is also a part of business layer.

Decomposing the application into logical pieces is one of the fundamental
steps in the process of designing new microservice architecture which is
covered in the next chapter.

37

5. FelSight Application

- Presentation layer

<<web browser>>

<<artifact>> @ <<artifact>> @
HTML files CSS files

<<artifact>>
‘ J5 files s ‘

‘Business layer HTTP

<<application server>>
Payara

- ~

EAR module E

<<manifest>>

Web module

J\ <<artifact>> @

T EAR file

EJB module

<<database server>>
PostgreSQL

I

Figure 5.4: Deployment diagram of the original project.

38

Chapter 0

Analysis and Design of the New
Architecture

After the introduction of the application’s current deployment configuration
and the motivation for its modification, it is possible to proceed to the details
of the transformation.

. 6.1 The Vision

Before starting with analysis and design, it is important to have a general
idea of the current application’s state and the final result of the transforma-
tion. Having a clear picture of the future helps to describe the fundamental
differences between As-Is and To-Be states influencing the surrounding envi-
ronment, e.g. stakeholders. Moreover, it should introduce justifications as to
why the change should take place at all.

B 6.1.1 Transformation Approach

Regarding As-Is state, FelSight is a monolithic application with a single code-
base. Reiterating the main point of Section 5.5, one of the present difficulties
of this architecture is the large amount of code concentrated in one place.
This makes usability, readability, and the overall organization of the codebase
difficult. Having this problem suggests the need for an architectural change.

Following the previous paragraph, the general idea is to identify individual
business functions and treat them as independent components. Therefore,
the general approach to transformation is to view the application as a collec-
tion of independently deployable components that communicate with each
other. The configuration of components, described in the previous paragraph,
can then be regarded as the To-Be state.

Furthermore, the functionality of each component should be limited to
its designated feature only. This improves the scalability of the component.
Furthermore, changes made to one component have little or no influence on
other components of the architecture. [23]

39

6. Analysis and Design of the New Architecture

B 6.1.2 Aspects Influenced by the Transformation

It is important to mention that the eventual transformation process also
influences three aspects, equivalent to the following questions:

Where is the application logic located?
® Where is the application’s data stored?

® Who is assigned a particular part of the application?

B Application Logic and Data Storage

In the current (As-Is) state, the application’s logic and data are stored in
one place; logic related to individual features is part of a single program
(running process), and the data are stored in a single database (server).
On the other hand, when transformed into independent parts, logic and
data are related to their assigned features only and are physically isolated
from each other (To-Be). This is depicted in Figure 6.1 with blue and violet
elements. Eventually, logic related to a given feature only uses data from
that identical feature. The components of this configuration communicate
with each other via a dedicated protocol (typically REST API) while still not
interfering with others due to physical isolation of code.

B Team Work

The third aspect affected by the change is the team that works on the project.
When working on a single codebase, project team members should be assigned
tasks so that collisions with other members’ tasks are minimized. This might
not be an easy task, and in some cases collisions are unavoidable anyway.
However, with the features distinctively separated from each other, assigning
tasks to members is transparent and imposes no conflicts, again due to
the physical separation of code.

This makes a strong case for developers working on front-end and back-end
simultaneously (related to the same feature). In the As-Is state, the FelSight
application couples its front-end code with its back-end code (given by
the nature of JSF). While there is some separation provided by bean classes
between front-end and back-end, code for both sides is still contained within
one project, allowing anyone to change anything unnecessarily. If front-end
and back-end parts are physically separated (including the back-end itself
being split into smaller pieces), it will be possible to assign team members
to individual components, and thus define the scope of their responsibilities
bounded by the component itself. This is illustrated in Figure 6.1 with yellow
elements.

40

6.2. Transformation Process Outline

TRANSFORMATION PROCESS

%

8 Application logic

% Data storage

(:; Project team

Figure 6.1: Schematic illustration of As-Is and To-Be states of FelSight’s archi-
tecture.

B 6.1.3 Summary

In summary, the vision of transforming FelSight’s architecture is based on its
feature-wise breakdown. This carries the ability to prevent code expansion in
one place and make development much more flexible and structured.

The transformation influences three aspects — application logic, data storage,
and teamwork. The first two aspects are tightly connected, as the application
logic works with data that bring added value.

Finally, teamwork is also strongly influenced by the process. In the As-Is
state, team members work together on a single code base where any member
can be affected by any other member by conflicting changes. In the To-Be
state, however, teamwork is spread across multiple components (different
applications), preventing any conflicting changes by different members and
making it easier to define the responsibilities of each member that are scoped
by the corresponding feature.

. 6.2 Transformation Process QOutline

Given that FelSight is a complex application, the entire process of completely
transforming its monolithic architecture into a new architecture will span
a longer period of time.

To ensure that the process is systematic, it is broken down into two phases.

41

6. Analysis and Design of the New Architecture

B 6.2.1 Phasel

The first phase is focused on the analysis and identification of individual
components. Following the previous section, the identification is based on
the features of FelSight.

The components identified in this phase are candidates for independent
deployable units. These units are expected to be part of the final microservice
architecture. In addition, one or multiple components could serve the purpose
of other applications developed in the Center of Knowledge Management at
the CTU.

The identification and analysis are covered mainly by the practical part,
while also supported by the POC project, being the part of the thesis evalu-
ating the analysis results.

The steps of the first phase are described in Section 6.3.

B 6.2.2 Phase 2

In the second phase, the transformation itself takes place. It requires several
actions and decisions to be performed for each potential microservice. In gen-
eral, they include the scope definition of the service (functionality, operations),
design of the service’s database model, development of the service, including
its REST API, and migration of any existing data from the original FelSight
database to the database of the service, if necessary.

This thesis will not cover this phase because of its extensiveness. Therefore,
it is estimated that this phase will continue for a more extended period of
time, possibly years, until the transformation process is finished.

B 6.3 Analysis Steps

Being based on a feature-wise breakdown into individual components, the ini-
tial analysis consists of the following general steps:

1. Identify existing business features directly usable by users.
2. Describe actions for each identified business feature.
3. Identify relations between actions and entities used by business features.

4. Based on the identified relations in the previous step, find candidates
for services. If there is an entity used by more than one service (has
multiple relations), it is a candidate for being its own separate service.

. 6.4 Feature Overview

This section summarizes the features, FelSight users can use. A feature might
not necessarily have to be a candidate for a future microservice.

42

6.4. Feature Overview

B 6.4.1 Events and Tasks

Events are one of the key features of FelSight. Based on the user’s ability to
interact with an event, they can be regarded as external or custom events.

External events are usually public events held by the university or important
points in time during an academic year. These events themselves can only be
read and cannot be modified in any way by the user.

Custom events, on the other hand, can be created, read, modified, and
deleted by the user they are tied to.

Tasks are a special type of event. Similar to custom events, they can also
be managed by users. Both external and custom events can be viewed in
the timeline, sidebar, and in the Semester overview section.

B 6.4.2 Groups

Users of FelSight can create groups and invite other selected users. The pur-
pose of this feature is to allow users (e.g. classmates) to share timetables with
each other. Moreover, users in a group can create shared events (seen only by
members of a group the shared event is a part of) as a way of arranging private
meetings (e.g. for the purpose of working on a school project together).

Invited users must first accept the invitation if they want to be part
of the group to which they were invited, or they can choose to decline
the invitation.

Any user can create a group. However, only group owners can modify or
delete a group they originally created.

B 6.4.3 Searching

The searching feature is spread over multiple sections of FelSight and includes
a variety of entities that can be queried, namely people, courses, rooms, and
groups.

For particular entities, specific filters can be used. For example, in the ad-
vanced course search, courses can be filtered by semester, time period, number
of credits, department, and teacher.

B 6.4.4 Rooms

Rooms represent another important type of entity in FelSight. They are used
mainly in combination with courses and the Study rooms section.

Study rooms can be used to view rooms available to students for self-
studying during the times when no teaching takes place (according to the of-
ficial schedule). Users can also see whether a room is currently occupied due
to an ongoing teaching session. This makes it easier to find a vacant room
without the need to look up the official teaching schedule for that room.

43

6. Analysis and Design of the New Architecture

B 6.4.5 Timetables

Timetables are one of the core features of FelSight, along with events. They
make use of some other features already mentioned above. In FelSight, there
are two sections related to timetables (excluding the Study rooms section,
which — in terms of functionality — is related to rooms, rather than timetables).

Users can use the Timetables section to manage custom views of (shared)
events and courses. Views are created based on different criteria, such as
rooms, people, and groups. Multiple views can be combined together or
hidden on demand. The default view includes students’ enrolled courses and
events arbitrarily added by the user.

The second section is Timetable Creation Mode. Students can use it to
search for any course and add it to their timetable alongside their enrolled
courses in their default view. Adding courses, however, does not have the effect
of official enrollment in the course and is relevant only for viewing the courses
in FelSight timetables.

B 6.4.6 Notifications

Notifications are another example of a cross-cutting feature of FelSight. Their
purpose is to notify the user of a wide range of different events that occur
throughout the application. A notification can be an alert about an upcoming
exam, a group invitation, a public event, or a modification of an event, task,
or group.

Thus, notifications must be based on some action related to a certain entity.

B 6.4.7 Building Plans

FelSight also incorporates a section with the plans of three locations where
teaching at FEE takes place. The feature is realized by including an external
front-end component to a page within FelSight. The component communicates
with its dedicated external service separated from the FelSight application
logic.

B 6.4.8 Moodle Evaluation (Grades)

One of the latest FelSight features is the integration of faculty Moodle grades.
This feature allows students to view the grades given by teachers through
the official faculty Moodle website directly inside FelSight. Grades are read-
only and cannot be created, nor modified in any way within the application.
The feature already exists as its own microservice.

B 6.49 Food Menu

Finally, FelSight users can also view daily menus for different CTU canteens.
Data are read-only as well and are also provided by a separate service, similar
to the Moodle Evaluation service.

44

6.5. Actions, Entities and Relations

. 6.5 Actions, Entities and Relations

Having identified all important business features, the next two steps involve
summarizing all user actions and tracking all entities directly affected by
those actions.

The results of the two steps are summarized in Table 6.1. This table is
described in detail in Subsection 6.5.3.

B 6.5.1 Actions

Actions are based on the features identified in Section 6.4 and represent
operations on data that can be initiated by users in the application.
Typically, actions are one of the four basic operations on data (i.e. entities)
— create, read, update and delete — abbreviated as CRUD. Users, however, do
not always have permission to perform all four types of operations. In fact,
a considerable amount of operations in FelSight are read-only.
Important user actions are shown in the left column of Table 6.1.

B 6.5.2 Entities

In most cases, features correlate with entities of the same or similar name.
Typical examples include events, rooms, or groups. However, it does not
imply that an action is always isolated from other entities.

A large number of entities are connected to other entities. For example,
a custom event can have a group (shared event), a person, or a room assigned
to it. For this reason, performing an operation on the original entity (the cus-
tom event) could affect an entity linked to it (e.g. when assigning a group to
the custom event).

Nevertheless, most entities originate from external sources. Usually, these
entities are read via APIs like KOSapi or Sirius API in bulk and are saved
by FelSight in the local database for quick access. Information from these
two sources is often used in combination with other entities in FelSight, but
it is never modified per se. This is because FelSight does not allow such
modifications, and it would not be reasonable to modify the entity in the
first place (as its information comes from the external system). For example
— from the FelSight user’s view — it would not make sense to alter names of
courses or codes of rooms.

The relevant entities are shown in the upper part of Table 6.1.

B 6.5.3 CRUD Matrix

Due to the high connectivity of the entities, actions often affect more than one
entity through transitivity. Using the example with custom event creation,
since a custom event in FelSight can have a group, a room, or a person
assigned to it, these additional entities must be retrieved first so that the user
can, e.g. choose a proper value from the available list.

45

6. Analysis and Design of the New Architecture

Each action can influence any number of available entities. In order to
visualize all existing relations among actions and entities, a tool called CRUD
matriz was chosen.

Proposed in Information Systems Planning Guide and published by IBM
in 1978, the CRUD matrix is a table that enumerates entities and operations
(originally called data classes and processes) used in a system. Entities and
operations are arranged in horizontal and vertical directions, respectively.
To indicate a relation between an entity and an action, one or more of
the letters C, R, U or D can be placed in the appropriate cell of the matrix.
Originally, in IBM’s publication Information Systems Planning Guide, only
the letters C' and U would be used. C' would indicate the data creation by
a process, while U would indicate usage of the data by a process. [24]

Nevertheless, all four letters are rather used today (with the same meanings,
as explained above in Subsection 6.5.1). CRUD matrix for the actions and
entities identified in the FelSight application is represented by Table 6.1.

For example, when creating a group, its members must be chosen. Therefore,
it is necessary to retrieve the information about them contained by Person
entity. Furthermore, when a group is created, a notification about the group
invitation is created and sent to all members.

Additionally, the following facts about the matrix shown below must be
noted:

®m A task is a type of an event with a course assigned to it. In order to
highlight this fact, it is represented as a separate row in the matrix.

B The matrix includes only the most important and relevant entities.
In FelSight, however, the number of entities used is much larger.

® Actions related to the Food Menu feature are omitted, as its entities
(e.g. Canteen) are not related in any way to other entities in FelSight.
However, it will still be considered in the final architecture configuration.

Action Entity
Event Group | Room | Person | Course | Notification

CRUD a custom event | CRUD R R R C
CRUD a task CRUD R C
Read an external event R
CRUD a group CRUD R C
Read a room R
Searching R R R R
Managing timetables R R R R R
RU a notification R R RU
Read course grades R

Table 6.1: CRUD matrix.

46

6.6. The Proposed FelSight Microservice Architecture

B 66 The Proposed FelSight Microservice
Architecture

The final step of the analysis is to find candidates for components in the re-
sulting microservice architecture. The previously designed Table 6.1 can be
used for this.

In this case, the chosen approach involves a summary of features (or,
more precisely, actions relating to particular features) using a given entity.
If an entity is used by more than one feature (i.e. it is used by any other feature
than by its own corresponding feature), it should be chosen as a candidate
for a separate service.

The reasoning behind this approach is that an entity that is used repeatedly
in different contexts should be extracted into its own service, as it can then
be used independently by any other service that requires it as a dependency.
As a result, this increases the scalability and reusability of the individual
components in the system and also eliminates the need to reimplement
the functionality every time it is required by any service.

After highlighting the actions of individual features, as shown in Table 6.2,
it can be seen that every entity is used by more than one feature. For example,
Person entity is used by event (green), group (blue), searching (purple), and
timetable management (red) features.

Action Entity
Event Group | Room | Person | Course | Notification

CRUD a custom event | CRUD R R R C
CRUD a task CRUD R C
Read an external event R
CRUD a group CRUD R C
Read a room R
Searching R R R R
Managing timetables R R R R R
RU a notification R R RU
Read course grades R

Table 6.2: CRUD matrix with features distinguished by colors.

This yields the following entity-based candidates: event, group, room,
person, course, and notification services.

In addition, there is also a special case of a feature-based candidate —
timetable management. It is related to many entities. However, there is
no entity such as “Timetable”. This is because a timetable is a collection
of different entities linked together. Since it does not belong to any other
service, it should exist as a service on its own.

After including the already existing services — i.e. Moodle Evaluation and
Food Menu services — the full list of candidates is following:

® Event Service,

® Group Service,

47

6. Analysis and Design of the New Architecture

® Room Service,

® Person Service,

® Course Service,

® Timetable Service,

® Notification Service,

® Moodle Evaluation Service,
® Food Menu Service.

It is important to note that a feature does not necessarily have to be
transformed into its own corresponding microservice. An example of this
case is the Searching feature, which consists only of read-only operations
on different entities (which can be implemented by individual entity-based
services) and does not provide any additional functionality.

The generic schema in Figure 6.2 illustrates the dependencies of the indi-
vidual services enumerated above. For example, Fvent Service requires data
from Group Service, if the event is shared in a group created by a user in
FelSight. Food Menu Service represents the special case in which there is no
relation (in terms of data) to other services, since the data originate only
from its own subdomain.

All services form a particular cluster of FelSight back-end microservices,
each covering a specific part of the application’s domain. The services are
invoked by a separate front-end application (as depicted in Figure 6.2).
However — in contrast to back-end services — it is not decomposed into
individual business areas and is de facto represented by one service.

In the following chapter, one of the services on the list is chosen and its
implementation is demonstrated in the three-step migration process.

48

6.6. The Proposed FelSight Microservice Architecture

: FelSight microservices
a group's timetable
(view %) :
a user's timetable
r view
courses taught in a chosen room i i
I— € o Room Service Person Service
a room assigned shared a member
to a custom event event of a group
Timetable Service — anitem Event Service BT Group Service
in a timetable view event

notification
event/task was
created/modified/deleted

notification
group invitation

a course assigned
to a task

parallels of a chosen course
view

Course Service Notification Service

a course assigned
o a grade

Moodle Evaluation

Service Food Menu Service

Requests to services

FelSight Front End

Figure 6.2: FelSight services and their dependencies.

49

50

Chapter 7
POC Implementation

The final chapter covers the POC implementation. First, the purpose
and scope of the POC are outlined, together with the steps taken during
the process. The last part of the chapter presents a possible future develop-
ment workflow associated with the approach proposed by the POC. Finally,
the chapter discusses possible security approaches in the future development
of the FelSight microservice architecture.

B 71 Purpose and Scope of the POC

The POC aims to demonstrate the migration process of a minor part of
the original architecture.

On a higher level, this means choosing one of the components identified
in Section 6.6, implementing its microservice, and linking it to the original
monolithic application. This approach supports incremental migration (based
on the strangler pattern described in Subsection 4.2.1).

Following the previous paragraph, two outputs result from the implemen-
tation:

® Microservice, implemented for the chosen feature.

® Modified original FelSight project, connected to the implemented mi-
croservice, using its exposed interface.

The newly implemented microservice provides primary data on the CTU
rooms. The data retrieved from the service are read-only, keeping implemen-
tation simple while still demonstrating the migration process that applies to
other identified services.

The rest of this chapter discusses the details of microservice implementation
and its integration with the original monolithic project.

B 72 Migration Process

The methodology proposed in this POC implementation consists of several
essential steps. The process was designed with an emphasis on the automation

o1

7. POC Implementation

and distribution of reusable artifacts. This allows smoother integration with
other projects, specifically front-end and other services.
The steps can be briefly described as follows:

1. Define API of the service.
2. Implement desired functionality of the service.
3. Integrate the service with the monolith via REST API client.

It should be noted that the third step is mainly for the purpose of demon-
strating how the service, implemented in the second step, can be used by
other applications. It is assumed that in the future the front-end of FelSight
will be rewritten with the usage of modern front-end frameworks or libraries
(most likely React), which is not covered by the thesis. Therefore, an existing
code is modified to demonstrate the communication between the front-end
and back-end.

Each of the three steps is described in detail in the following sections.
Screenshots accompanying second and third steps can be found in Appendix C.

Bl 7.2.1 API Definition

Before starting with the implementation of any service, it is crucial to have
an idea of the operations and data that it should provide.

The service is expected to provide data represented in JSON data format.
This widely used text-based format is convenient for transferring data provided
by REST API services.

For an accurate description of the service’s interface, the OpenAPI Specifi-
cation is used. This standard provides a universal and human-readable way
of describing APIs. Additionally, by being language-agnostic, it is possible
to define expected functionality before choosing the target programming
language. Finally, thanks to its universality, OpenAPI Specification is perfect
for use with code generators (POC makes use of this possibility). [25]

B Operations

In the case of the room data service, its API specification (in YAML format)
defines two read-only operations. The first operation returns a list of rooms,
whereas the second operation can be used to find data about a specific room,
identified by the room code.

The definition of the first operation is shown in Figure 7.1. It is identified by
the URL path /rooms and GET HTTP method. In addition to the descriptive
properties tags, operationId and parameters, the operation also accepts
three optional parameters. These can be used for filtering and paging purposes
(in order to limit potentially unnecessary data sent over the network per
request).

Most importantly, each operation must specify the nature of its response.
OpenAPI Specification enforces this by the obligatory responses property.

52

7.2. Migration Process

This property allows enumerating all possible HT'TP response status codes
together with the data schemas that the operation can return. [25]

paths:
Jrooms:
get:
tags:
- room
operationId: getRooms
summary: Returns a collection of rooms
parameters:
- $ref: '#/components/parameters/limitQueryParam’
- $ref: '#/components/parameters/offsetQueryParam’
- name: forSelfStudy
in: query
description: Whether the rooms returned are available to students
required: false
schema:
type: boolean
example: true
responses:
200:
description: OK
content:
application/json:
schema:
$ref: '#/components/schemas/RoomArray’

Figure 7.1: Extract from the OpenAPI specification file — operation for retrieving
a list of rooms.

Bl Data Schemas

One of the essential features of OpenAPI Specification is the definition of
data schemas that can be reused repeatedly throughout the specification file.
Schemas are defined in a separate schemas section and can be referenced
from other places in the file by $ref.

For a successful response, the service is expected to return a list of rooms.
Here, a successful response refers to an HT'TP “200 OK” response, defined
by the 200 property in the responses section in Figure 7.1. Data should be
returned in JSON format and the schema used in the response is RoomArray.

As shown in Figure 7.2, RoomArray is a user-defined schema and represents
an array of Room objects (also defined as a separate schema). A Room is
defined as an object with attributes such as code, name, and locality. Some
attributes also refer to other schemas (defined in the same specification file);
however, these will not be covered.

53

7. POC Implementation

After creating the API specification file, it can be used with code generators.
This is covered in the next step.

Room:
type: object
properties:
capacityForExamining:
type: integer
capacityForTeaching:
type: integer
code:
type: string
locality:
type: string
forSelfStudy:
type: boolean
name:
$ref: '#/components/schemas/LanguageField’
division:
$ref: '#/components/schemas/Division’
avallability:
$ref: '#/components/schemas/AvailabilityArray’
access:
type: string
type:
type: string
RoomArray:
type: array
items:
$ref: '#/components/schemas/Room’

Figure 7.2: Extract from the OpenAPI specification file — definitions of Room
and RoomArray schemas.

B 7.2.2 Service Implementation

The second step of the migration process is the implementation of the new
service. It is the most time-consuming step, despite the fact that it primarily
involves moving existing logic. This is due to the fact that it is required to
define and implement the service’s API logic, identify all sources of the data
and integrate them with the service, and determine whether the service needs
its own dedicated data storage.

In the case of FelSight architecture migration, decisions regarding these
aspects are mainly based on the current implementation of the monolith.
Additionally, the technologies used in the implementation of the service are

o4

7.2. Migration Process

discussed along the way. The basis of the implementation of the room service
is a Spring Boot application, based on Spring, the popular Java framework.

However, given that the original application was implemented in Java
EE, there are some differences that have to be taken into account during
the migration process. Annotations are a good example — e.g. @Inject used
in Java EE shall be replaced with @Autowired in Spring.

For quick project configuration, the web tool Spring Initializr was used
to generate all necessary baseline files. [26] The configuration can be seen in
Figure C.1.

B Controller Layer

In order to expose RESTful service’s operations, the controller layer must be
defined. This implies defining all said operations, including their parameters
and responses, right in the code. However, in this case, the specification file
created in the first step is used to generate these definitions (also known as
stubs) which are subsequently imported into the code. Generating server stubs
from the specification allows developers to include functional REST endpoints
without the need to write them manually in the target programming language.
The generated stub for the operation getRooms (defined by the specification,
as shown in Figure 7.1) can be seen in Figure C.2.

In the room service project, the generated stubs are used to include a custom
logic via polymorphism — inheritance, in particular. Specifically, the logic of
the method getRooms is overridden by implementing the generated interface
RoomApi (the method getRooms is part of), as shown in Figure C.3. This
approach also influences the project structure and the build process, discussed
below.

Bl Data Sources

It is common for microservices to communicate with other external services
and use their data. In FelSight, room data is aggregated from two different
external sources — KOSapi (whose documentation is available from [27]) and
a CTU webpage with a list of rooms, available to student for study purposes
beyond the officially scheduled teaching sessions (available from [28]).

Therefore, the room service project implements HTTP clients for the invo-
cation of these two services and aggregates the retrieved data. The data are
then provided to applications calling the service through operations at the
controller layer.

B Database and Resource Updaters

In a simple scenario, data could always be obtained from external sources
and returned within each call. However, making HTTP requests to external
services during every incoming request imposes additional overhead and
lengthens the overall processing time of the request. Furthermore, such

55

7. POC Implementation

HTTP requests are unnecessary when the data do not change frequently and
the application is not required to provide real-time data.

For this reason, the back-end of FelSight stores the data in its own database
and sends it to a client every time a particular web page is visited. However,
the database does have to be periodically updated in order to provide fresh
data. Therefore, FelSight employs components called updaters, responsible for
periodic updating of stored data. Updaters are activated every day, preferably
during low-traffic times (e.g. after midnight), to retrieve fresh data from
external sources and subsequently use them to keep entries in the database
up-to-date. The same pattern applies to the corresponding service that uses
the PostgreSQL database to store room data. The updater model described
above is depicted in Figure 7.3.

Service
-
~— Scheduled
updater

Database / N\
[]

External

Client application REST Service

C.D When a scheduled update is launched,
retrieve data from an external service.

@ Store the retrieved data into the database.

For every incoming request, return the data
@ from the database (instead of calling
the external service).

Figure 7.3: Updater model used by FelSight.

56

7.2. Migration Process

B Project Structure

Regarding the structure, the project consists of two core modules — app and
specification.

The purpose of the specification package is to separate the generation
of server and client code from the rest of the project. Initially, the package
contains a single OpenAPI specification file latest.yaml, parts of which are
shown in figures 7.1 and 7.2. The Gradle build file in this package contains
custom task definitions that can be used to generate server and client source
code.

The project is configured in such a way that the app module depends on
the specification module. When the project is built, Gradle first gener-
ates the server source code from the specification by running the Gradle
task generateApiJavaServer. The task uses the OpenAPI Generator Gra-
dle Plugin (available from [29]) which provides granulated configuration of
the generator. For example, it is possible define name of the packages with
the generated sources or name patterns of Java classes. The task definition is
depicted in Figure C.9. In the next step, the generated code is compiled and
packaged into a JAR file. Finally, the app module, using the JAR file as its
dependency, is built. The entire build process of the project is illustrated in
Figure 7.4.

The app module contains multiple base packages that contain the source
code of the service. The most significant packages include db (database
entities and operations using Spring Data JPA), external (the two HTTP
client implementations discussed in Section Data Sources), rest (controller
layer), and update (updaters). The module can be built, packaged into
a single JAR file, and eventually deployed.

B 7.2.3 Integration with the Monolith

Following the implementation of the service is the step of its integration
with the original project. In short, integration with the existing project
means switching data sources; instead of reading from its large database,
the monolith will retrieve room data from the running service via HTTP
requests.

B Service Client Library

The straightforward solution would be to implement an HTTP client with
the help of a Java library for making HTTP requests. This solution, however,
has two drawbacks.

First, it requires the implementation of methods to call individual operations
exposed by the service together with all their parameters and response objects
defined by the specification. As a result, a considerable amount of boilerplate
code is created in the process. The second disadvantage emerges when
a microservice is used by more than one application. The client has to be
reimplemented in the source code of each application using the service.

o7

7. POC Implementation

app specification

OA Generator +

Compiled and paCRagEd specification (latest.yaml)

service (JAR)
Gradle | > Generated
task stubs + DTOs
® -

Included as a dependency < |- I_/I:I Compiled and packaged
in build.gradle generated code (JAR)

1) Runa Gradle task using OpenAPI Generator Gradle plugin
“~ and the specification file as its input.

Build the specification module by compiling the generated code.

In build.gradle file of the app module, include the compiled code:

implementation project(':specification')

Build the app module.

Figure 7.4: The process of building the microservice project.

Both drawbacks can be eliminated by having a separate client library for
the service. Every application that intends using the service can download it
and use it as a dependency. The library hides the details of the implementation
of the HT'TP client in the interface that it provides.

The client library for the room service is generated from the specification,
similarly to the server part. Furthermore, the generated code is packaged and
published in the GitLab package registry, so it can be downloaded by other
applications. All of these actions are performed by the GitLab pipeline. Both
the package registry and the pipeline are part of the same GitLab repository,
where the room service project is stored. This process is part of the proposed
development workflow, discussed in Section 7.3.

o8

7.2. Migration Process

B Call Redirection

The final part of the migration process presented as part of the POC illustrates
how the previously implemented service can be called from an application. For
these purposes, the code from the original FelSight project is used. However,
this requires that existing calls be redirected to the running instance of
the room service.

In the original project, the room data is currently retrieved directly from
the database using the class RoomSession. The new implementation is
provided by the class RoomServiceClient using the generated client library
code. The source code for this class is shown in Figure C.4. The class
extends the generated RoomApi class providing the method getRooms with
three parameters, as defined in the specification file (Figure 7.1).

While it is possible to change the implementation class where needed (by
using RoomSession or RoomServiceClient directly as a type of variable),
the better approach is to redirect the call by using the branch by abstraction
pattern, discussed in Subsection 4.2.3. The classes now implement a new
RoomClient interface, declaring a method with one or more methods originat-
ing from the old implementation — RoomSession. The code where the methods
are called then refers to the interface, rather than to the implementation
classes.

Figure 7.5 illustrates how the class model is altered when the branch by
abstraction pattern is applied. With this model, it is possible to switch
between implementations without the need to modify the type of the variable.

g Y
<<Interface>>
RoomClient

‘ + filter(String, String, Boolean): List<Room>

A

RoomSession
BRANCH BY

ABSTRACTION

+ filter(String, String, Boolean): List<Room>

RoomSession RoomServiceClient

RoomSession roomSession RoomClient roomClient

Concrete implementation Abstraction (interface) used in
class used in the code the code

Figure 7.5: Changes made in code by applying the branch by abstraction pattern.

The abstracted method here is called filter, accepts three arguments and
returns a list of Room entities. To minimize the amount of modification of
the old code, the method declaration at the interface level must be identical
to that in the original implementation class (RoomSession).

The new implementation class (RoomServiceClient) needs to be adapted
to the existing declaration (now moved to the interface), i.e. it must accept
the identical set of arguments and must have the same return type. This
fact might be troublesome, since the room data retrieved from the service

99

7. POC Implementation

are represented by a different class — a DTO class, generated as a part of
the client library — that cannot be used as a return value. The DTO Java
class generated by the OpenAPI Generator is shown in Figure C.5.

The DTO class has to be mapped to the target class first. To avoid having
to manually implement the attribute mappings, the tool MapStruct was used.
This library generates the necessary implementation for method signatures
and proper annotations provided by the user.

Figure C.6 shows two interface methods for converting a RoomDTO ob-
ject to a Room object and for converting lists of objects of these two types.
The implementation class, generated by MapStruct, is then used when call-
ing the mapping methods on the interface. The RoomServiceClient class
can now the return the compatible type declared in the RoomClient inter-
face by calling the mapper method fromDto on the interface RoomMapper
(Figure C.4).

This last step of integrating the new service with the monolith successfully
completes the migration process of a minor business feature.

B 73 Development Workflow

With the migration process fully covered, it is useful to describe the possible
development workflow in the development team.

The core part of the workflow is the specification file; it is the single source
of truth when it comes to documenting APIs. The main advantage of this
approach is centralization. Furthermore, when used in combination with code
generation tools and versioning supported by pipelines and package registries,
the workflow brings another benefit of smoother incorporation of changes.
GitLab, where the source code of the original FelSight project is hosted, offers
both options for setting up pipelines and managing package registries (which
are also employed in the workflow).

B 7.3.1 CI Pipeline and the GitLab Package Registry

GitLab pipelines allow developers to automate a wide range of actions to
support continuous integration and deployment (CI/CD) practices. A common
example is an automated compilation and a test run whenever code changes
are pushed to the repository by a developer. One of the advantages is better
detection of errors in early development phases. GitLab Package Registry
provides means of sharing various packages, such as Maven or NPM packages.
Other projects with access to the registry can then download the published
packages and use them as dependencies. [30, 31]

The GitLab CI/CD pipeline for the room microservice project is defined
in the file .gitlab-ci.yml (as shown in Figure C.7) and consists of four
stages in the determined order: Build App, Generate Client, Build Client,
and Publish Client.

During the stage Build App, the app module is built using the com-
mand gradle clean build that launches the process depicted in Figure 7.4.

60

7.3. Development Workflow

The subsequent steps typically involve running tests and deploying the appli-
cation; however, these actions are omitted for simplicity. After successfully
building the application, the Java client library is generated during the
stage Generate Client, using the task generateApiJavaClient. The gen-
erated code must also be compiled; this is ensured by the Build Client by
running the build command in the previously generated directory. Finally,
during stage Publish Client, the artifact (JAR package) is published to the Git-
Lab Package Registry, ready to be downloaded by other projects. The package
registry to push the artifact to is defined in the init_repo.gradle file that is
run as an initialization script. The contents of the file are shown in Figure C.8.

B 7.3.2 Practical Example

To give a practical example, assume that there are two actors in the workflow;
a developer of a service (Developer A) and a developer of a client application
using the service (Developer B). The client application can be a React ap-
plication or another Java Spring Boot application. The typical steps (also
shown in Figure 7.6) of the workflow could be as follows:

1. Developer A updates the API and increments its version in the specifica-
tion file.

2. Developer A pushes the changes to the GitLab repository.

3. Pipeline defining several consecutive jobs is launched (after the changes
have been reviewed, approved and merged to a designated branch).
The pipeline performs the following actions, all of which must pass in
order for the pipeline to finish successfully:

Builds the project and runs tests.
Deploys the service with the new API changes.
Generates and builds one or multiple client libraries for the service.

Publishes the built client libraries to the GitLab Package Registry
of the same repository. The libraries are added to the registry in
the form of packages with the incremented version.

po oo

4. Developer B wants to update their client application to support the new
version of the service. In the dependency list of the application, they
increment the version of the API client to be used.

5. The client application downloads the new version of the client library
from the GitLab Package Registry.

When Developer A makes changes to the API — i.e. edits an existing
endpoint or adds a new one with additional schemas — Developer B does
not have to manually update the HTTP client in their application, nor do
they have to create any DTO objects. Thus, for consumers, adapting to API
changes is much more convenient. Finally, this approach also benefits from
versioning, making it easier to roll back unwanted changes.

61

7. POC Implementation

Project A GitLab repository

GitLab Package Registry GitLab CI/CD pipeline
Maven packages

packes —(v)@

1.0.0 I
1.027)< = @
npm packages O
b

1.0.0 1.01 I
= 102 - Fa
® ' @

\ ®
S v
- 'P-rojectB 7.-"ﬁrojectA
Library : Specification file
dependency 4
) . ;
— e : - oy
Developer B : g i Developer A :

Figure 7.6: Development workflow of the proposed solution.

B 74 Security

The last issue that should be addressed is the security of the future FelSight
microservice architecture. There are numerous related topics that could
be covered in detail. However, the main focus of this last section is on
the authentication of communication.

In general, any communication with a service should be authenticated.
This is to check authenticity of the party initiating the connection (i.e. a front-
end application or another service). One of the approaches used at FEE is
the authentication with Keycloak.

Keycloak is an identity and access management tool. Its goal is to make
modern web applications easier to secure. Since Keycloak handles multiple
authentication-related mechanisms (e.g. storing credentials), developers do
not have to implement them on their own. [32]

If a front-end application wants to communicate with a back-end service, it
needs to fetch the required tokens from Keycloak first. Therefore, the user is
redirected to the Keycloak login page to enter their username and password.
The user is then redirected back to the original application. The front-end

62

7.5. Solution Summary and Evaluation

now sends a request containing tokens (retrieved from Keycloak as a result of
a successful login) to the back-end service. Subsequently, the service can verify
the received tokens by sending them to Keycloak, and permit the request. [32]

In the future, this approach to authentication between the front-end appli-
cation and the back-end services in combination with Keycloak is expected
to be adopted by FelSight.

B 7.5 Solution Summary and Evaluation

The migration process proposed in the POC can be used in an incremental mi-
gration of FelSight’s monolithic architecture, i.e. one business area/feature at
a time. The key concept is the OpenAPI Specification file that defines the com-
munication contract between the microservice and its clients. In addition,
the specification file is used in the OpenAPI Generator for generating server
method stubs and client libraries for a selected target language.

Comprising of three main steps, the migration of a selected business feature
from the FelSight monolith starts with the design of the new microservice’s
API. In the specification file, operations (corresponding to individual end-
points) and schemas are defined. The next step involves the implementation
of the service. Multiple aspects have to be considered; however, it makes
sense to unify them across all FelSight services, if possible, to establish cohe-
sive conventions and a unified technology stack. Nevertheless, determining
whether a database is needed and identifying data sources is service-specific
and depends on the nature of the data. The final step is to integrate the new
service into the existing codebase. Integration, in fact, means replacing the old
data source the monolith was originally using. This was shown to be feasible
with the help of the branch by abstraction pattern, which requires minimal
modification of the legacy code.

The solution also incorporates the use of GitLab features — CI/CD pipelines
and the GitLab Package Registry. In combination with the generation of
source code, the process allows smoother development owing to reusable client
libraries, shared among projects.

On a final note, the actions in the last step do not necessarily have to be
applied in the actual migration process. In the future, it is anticipated that
the front-end of FelSight will be rewritten using one of the popular front-end
libraries — React. The integration step would then involve creating a new
codebase, rather than modifying the existing code.

63

64

Chapter 8

Conclusion

The thesis covered the topic of software architectures. In particular, it
focused on the architectural transformation of FelSight, the faculty appli-
cation for students and teachers of the Faculty of Electrical Engineering at
the Czech Technical University.

In the introductory chapter, the topic of software architectures was briefly
introduced, together with its motivation for its usage in software development.

The second chapter presented several definitions of this term, briefly men-
tioned its history, and then its beneficial factors, further motivating its
purpose. The chapter also compared the terms architectural style and design
pattern and explained the main difference between them. Finally, four exam-
ples of architecture types, commonly used in practice, with accompanying
illustrations were described.

The next chapter looked at the software architecture design. In particular,
it addressed criteria to consider, decisions to make, and questions to ask when
designing architecture. Next, two existing methods supporting the design
process were presented. These methods can be used by the architect to
analyze a larger system and break it down into smaller parts. The last part
of the chapter presents attributes that describe the quality of software. Five
examples of such attributes, which are typically part of system requirements,
were mentioned.

In the last chapter of the theoretical part of the thesis, the problem of
transforming an existing software architecture into a new one was covered.
It was stressed that this task should be rationally motivated and justified.
In this context, several practical reasons for migrating an architecture were
mentioned. The chapter then enumerated three mutually related practical
patterns that can be used as a guide for decomposing a monolithic architecture.
These patterns aim to make the migration process incremental and safer by
allowing a rollback. Lastly, general recommendations for the migration of
an architecture are mentioned.

The subsequent practical part was introduced with a brief description of
FelSight, the application that was the subject of the architectural transfor-
mation. Afterward, the current architecture and project structure of this
application were described. Moreover, the process of building and deploying
was explained together with the roles of individual modules that the existing

65

8. Conclusion

application consists of. The final part presents motives as to why FelSight’s
current architectural solution is worthy of structural change.

The following chapter is concerned with the analysis and design of the appli-
cation’s new architecture. This process stems from the application’s principal
issue that it is comprised of multiple business areas. This means that any
addition of new potential features in the future increases the complexity of
the codebase. Therefore, the need for isolation of individual components
arises. In practice, this requirement implies the breakdown of FelSight’s
monolithic architecture into smaller independent units, which is well-suited
for the microservices architecture. Based on listing individual business areas
(or features) and use cases associated with them using the CRUD matrix,
the analysis yielded a collection of microservices candidates.

In the final chapter of the practical part, the POC implementation was
covered. One of the microservice candidates was chosen to practically demon-
strate the migration process of a small part of the application. Initially,
the steps of the migration process were described and the subsequent parts of
the chapter were elaborated in detail. The results of the POC implementation
have shown that the proposed process steps allow for incremental migration
from FelSight’s current monolithic architecture to microservices. The solution
makes use of an OpenAPI Specification file for the centralized definition of
the microservice’s API. The file also serves as an input to the OpenAPI Gen-
erator used during the process. Finally, the topic of security with a focus on
authentication was briefly discussed. The model involves Keycloak, an iden-
tity and access management tool suitable for authentication of front-end
applications and REST API services.

The architectural migration of FelSight is a task whose completion might
take several years. In conclusion, the POC implementation presented a foun-
dation that could be used for the future migration process.

66

Bibliography

ISO/IEC/IEEE Systems and software engineering — Architecture descrip-
tion. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC 42010:2007
and IEEE Std 1471-2000) [online]. 2011 [visited on 2021-10-30]. Available
from DOI: 10.1109/IEEESTD.2011.6129467.

BASS, Len; CLEMENTS, Paul; KAZMAN, Rick. Software architecture
in practice. 3rd ed. Upper Saddle River, NJ: Addison-Wesley, 2013. 1SBN
978-032-1815-736.

RICHARDS, Mark; FORD, Neal. Fundamentals of software architecture:
an engineering approach. First Edition. Beijing: O‘Reilly, 2020. 1SBN
978-1-492-04345-4.

GARLAN, David; SHAW, Mary. An Introduction to Software Architec-
ture. Pittsburgh, PA, 1994. Available also from: http://sunnyday.mit.
edu/16.355/intro_softarch.pdf. Technical Report CMU-CS-94-166.
Carnegie Mellon University, School of Computer Science.

ISO/IEC/IEEE International Standard - Systems and software engineering—
Vocabulary. ISO/IEC/IEEE 24765:2017(F) [online]. 2017 [visited on
2021-10—30]. Available from DoOI1: 10.1109/IEEESTD.2017.8016712.

KRUCHTEN, P.; OBBINK, H.; STAFFORD, J. The Past, Present, and
Future for Software Architecture. IEEE Software [online]. 2006, vol. 23,
no. 2, pp. 22-30 [visited on 2021-10-30]. 1SSN 0740-7459. Available from
DOI: 10.1109/MS.2006.59.

PERRY, Dewayne E.; WOLF, Alexander L. Foundations for the Study
of Software Architecture. SIGSOFT Softw. Eng. Notes [online]. 1992,
vol. 17, no. 4, pp. 40-52 [visited on 2021-11-01]. 1SSN 0163-5948. Available
from DOI: 10.1145/141874.141884.

SHARMA, Anubha; KUMAR, Manoj; AGARWAL, Sonali. A Complete
Survey on Software Architectural Styles and Patterns. Procedia Com-
puter Science. 2015, vol. 70, pp. 16-28. 1SSN 18770509. Available from
DOI: 10.1016/j.procs.2015.10.019.

67

https://doi.org/10.1109/IEEESTD.2011.6129467
http://sunnyday.mit.edu/16.355/intro_softarch.pdf
http://sunnyday.mit.edu/16.355/intro_softarch.pdf
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/MS.2006.59
https://doi.org/10.1145/141874.141884
https://doi.org/10.1016/j.procs.2015.10.019

8. Conclusion

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

SHAW, M.; CLEMENTS, P. A field guide to boxology: preliminary
classification of architectural styles for software systems. Proceedings
Twenty-First Annual International Computer Software and Applica-
tions Conference (COMPSAC’97). 1997, pp. 6-13. ISBN 0-8186-8105-5.
Available from DOI: 10.1109/CMPSAC. 1997 .624691.

MONROE, R.T.; KOMPANEK, A.; MELTON, R.; GARLAN, D. Ar-
chitectural styles, design patterns, and objects. IEEE Software. 1997,
vol. 14, no. 1, pp. 43-52. 1ssN 07407459. Available from DOI: 10.1109/
52.566427.

RICHARDS, Mark. Software Architecture Patterns. First Edition. Se-
bastopol, CA: O’Reilly, 2015. 1SBN 978-1-491-92424-2.

RICHARDS, Mark. Microservices vs. Service-Oriented Architecture.
First Edition. Sebastopol, CA: O’Reilly, 2016. 1sSBN 978-1-491-94161-4.

MILLETT, Scott; TUNE, Nick. Patterns, Principles, and Practices of
Domain-Driven Design. 1st Edition. Canada: Wrox, 2015. 1SBN 978-1-
118-71470-6.

INMON, William H.; LINSTEDT, Daniel. Data architecture: a primer
for the data scientist : big data, data warehouse and data vault. 1st
Edition. Amsterdam: Academic Press is an imprint of Elsevier, 2015.
ISBN 978-0-12-802044-9.

MUSTAPIC, G.; WALL, A.; NORSTROM, C.; CRNKOVIC, I.; SAND-
STROM, K.; FROBERG, J.; ANDERSSON, J. Real world influences
on software architecture - interviews with industrial system experts
[online]. 2004, pp. 101-111 [visited on 2021-12-13]. Available from DOI:
10.1109/WICSA.2004.1310694.

BACHMANN, Felix; BASS, Len; CHASTEK, Gary; DONOHOE, Patrick;
PERUZZI, Fabio. The Architecture Based Design Method [online].
2000, p. 61 [visited on 2021-12-14]. Available from: https://www .
researchgate . net /publication /235088008 _The _Architecture _
Based_Design_Method.

BACHMANN, Felix; BASS, Len. Introduction to the Attribute Driven
Design Method [online|. 2001, pp. 745-746 [visited on 2021-12-14]. ISBN
0769510507. Available from: https://dl.acm.org/doi/10.5555/
381473.381623.

WOJCIK, Rob; BACHMANN, Felix; BASS, Len; CLEMENTS, Paul,;
MERSON, Paulo; NORD, Robert; WOOD, William. Attribute-Driven
Design (ADD), Version 2.0 [online|. 2006, no. CMU/SEI-2006-TR-023
[visited on 2021-12-14]. Available from: http://resources.sei.cmu.
edu/library/asset-view.cfm?AssetID=8147.

GOMAA, Hassan. Software Modeling and Design: UML, Use Cases,
Patterns, and Software Architectures. 1st Edition. Cambridge University
Press, 2011. 1SBN 978-0-521-76414-8.

68

https://doi.org/10.1109/CMPSAC.1997.624691
https://doi.org/10.1109/52.566427
https://doi.org/10.1109/52.566427
https://doi.org/10.1109/WICSA.2004.1310694
https://www.researchgate.net/publication/235088008_The_Architecture_Based_Design_Method
https://www.researchgate.net/publication/235088008_The_Architecture_Based_Design_Method
https://www.researchgate.net/publication/235088008_The_Architecture_Based_Design_Method
https://dl.acm.org/doi/10.5555/381473.381623
https://dl.acm.org/doi/10.5555/381473.381623
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8147
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8147

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

8. Conclusion

Service Level Agreement for Hosting and Realtime Database [online].
2020 [visited on 2021-12-26]. Available from: https://firebase .
google.com/terms/service-level-agreement.

FOWLER, Martin. StranglerFigApplication [online]. 2000 [visited on
2021-12-28]. Available from: https://martinfowler . com/bliki /
StranglerFigApplication.html.

NEWMAN, Sam. Monolith to microservices: evolutionary patterns to
transform your monolith. First Edition. Beijing: O’Reilly, 2019. 1SBN
978-149-2047-841.

BUCCHIARONE, Antonio; DRAGONI, Nicola; DUSTDAR, Schahram;
LARSEN, Stephan T.; MAZZARA, Manuel. From Monolithic to Mi-
croservices: An Experience Report from the Banking Domain. IEEE
Software. 2018, vol. 35, no. 3, pp. 50-55. 1SSN 0740-7459. Available from
DOI: 10.1109/MS.2018.2141026.

IBM. Business Systems Planning - Information Systems Planning Guide.
Second Edition. New York: IBM, 1978.

MILLER, Darrel; WHITLOCK, Jeremy; GARDINER, Marsh; RALPH-
SON, Mike; RATOVSKY, Ron; SARID, Uri. OpenAPI Specification
v3.1.0 [online]. Linux Foundation, 2021 [visited on 2022-04-20]. Available
from: https://spec.openapis.org/oas/v3.1.0.

Spring Initializr [online| [visited on 2022-04-03]. Available from: https:
//start.spring.io/.

KOSapi [online]. Jakub Jirtutka, 2015 [visited on 2022-05-07]. Available
from: https://kosapi.fit.cvut.cz/projects/kosapi/wiki.

Seznam uceben k vyuZiti pro studenty mimo pldnovany rozvrh [online].
Ceské vysoké uceni technické - Fakulta elektrotechnickd [visited on
2022-05-07]. Available from: https://fel.cvut.cz/cz/education/
studovny-samostudium.html.

Gradle - Plugin: org.openapi.generator [online]. Jim Schubert, 2022
[visited on 2022-05-07]. Available from: https://plugins . gradle.
org/plugin/org.openapi.generator.

CI/CD pipelines [online]. GitLab [visited on 2022-05-02]. Available from:
https://docs.gitlab.com/ee/ci/pipelines/.

Package Registry [online]. GitLab [visited on 2022-05-02]. Available from:
https://docs.gitlab.com/ee/user/packages/package_registry/.

THORGERSEN, Stian; SILVA, Pedro Igor. Keycloak - identity and
access management for modern applications: harness the power of Key-
cloak, OpenID Connect, and OAuth 2.0 protocols to secure applications.
Birmingham: Packt, 2021. 1sBN 978-1-80056-249-3.

69

https://firebase.google.com/terms/service-level-agreement
https://firebase.google.com/terms/service-level-agreement
https://martinfowler.com/bliki/StranglerFigApplication.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://doi.org/10.1109/MS.2018.2141026
https://spec.openapis.org/oas/v3.1.0
https://start.spring.io/
https://start.spring.io/
https://kosapi.fit.cvut.cz/projects/kosapi/wiki
https://fel.cvut.cz/cz/education/studovny-samostudium.html
https://fel.cvut.cz/cz/education/studovny-samostudium.html
https://plugins.gradle.org/plugin/org.openapi.generator
https://plugins.gradle.org/plugin/org.openapi.generator
https://docs.gitlab.com/ee/ci/pipelines/
https://docs.gitlab.com/ee/user/packages/package_registry/

70

Appendices

71

72

Appendix A

Nomenclature
(X)HTML (Extensible) HyperText Markup Language
ADD Attribute-Driven Design
API Application Programming Interface
CI/CD Continuous Integration / Continuous Deployment
CRUD Create, Read, Update, Delete
CSS Cascading Style Sheets
DDD Domain-Driven Design
DTO Data Transfer Object
EAR Enterprise application Archive
EJB Enterprise Java Beans
FEE Faculty of Electrical Engineering
HTTP Hypertext Transfer Protocol
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
JAR Java Archive
Java EE Java Enterprise Edition
JDBC Java Database Connectivity
JNDI Java Naming and Directory Interface
JPA Java Persistence API
JS JavaScript

73

A. Nomenclature

JSF
JSON
KOS
LESS
NATO
NPM
POC
REST
SLA
SOA
SOAP
SQL
Ul
WAR
XML

JavaServer Faces, newly Jakarta Server Faces
JavaScript Object Notation
Komponenta studium

Leaner Style Sheets

North Atlantic Treaty Organization
Node Package Manager

Proof of Concept

Representational State Transfer
Service-Level Agreement
Service-Oriented Architecture
Simple Object Access Protocol
Structured Query Language

User Interface

Web application Archive

Extensible Markup Language

74

Appendix B

Software Used in the Implementation

B.1 Technologies

Java 17 (Azul Zulu OpenJDK, build 17.0.34+7-LTS)
Gradle 7.4.1
Spring Boot 2.6.6

spring-boot-starter
spring-boot-starter-web
spring-boot-starter-webflux
spring-boot-starter-oauth2-client
spring-boot-starter-data-jpa

spring-boot-starter-validation
OpenAPI Generator — org.openapi.generator 5.3.0 (Gradle plugin)
PostgreSQL 12.7 4+ PostgreSQL Driver 42.3.3
Flyway 8.0.5
Lombok 6.4.1
MapStruct 1.4.2.Final
Other dependencies

io.swagger:swagger-annotations 1.6.5
org.openapitools:jackson-databind-nullable 0.2.2
com.fasterxml.jackson.dataformat:jackson-dataformat-xml 2.13.2
javax:javaee-api 8.0.1

javax.xml.bind:jaxb-api 2.3.1

javax.activation:activation 1.1

org.glassfish.jaxb:jaxb-runtime 2.3.0

org.jsoup:jsoup 1.14.3

75

B. Software Used in the Implementation

. B.2 Tools

® IntelliJ IDEA 2022.1

Spring Initializr

Postman 9.16.0

GitLab CI Pipeline

GitLab Package Registry

76

Appendix C

Screenshots

Project Language

oM
Spring Boot

O 2

Project Metadata

Group

Artifact

Name

Description

Package name

Packaging

NEIE]

Figure C.1: Microservice project starting configuration in the Spring Initializr
tool.

77

C. Screenshots

SrAE
* GET /rooms : Returns a collection of rooms
*
* @param 1imit Maximum number of records to return (optional)
* [@param offset Number of records to skip. To be used together with the '1imit' parom for paging.
* [@param forSelfStudy Whether the rooms returned ore avoilable to students for self-study purposes beyond
@return OK (status code 200)

*

#/
@ApiOperation(value = "Returns a collection of rooms", nickname = "getRooms", notes = "", response = RoomD
@ApiResponses(valuve = {
@ApiResponse(code = 208, message = "OK", response = RoomDTO0.class, responseContainer = "List") })
@RequestMapping(
method = RequestMethod.GET,
value = @+"/rooms",
produces = { "application/json" }
)
default ResponseEntity<List<RoomDT0>> _getRooms(@ApiParam(value = "Maximum number of records to return") @
skip. To be used together with the 'limit' param for paging.") @valid @RequestParam(value = "offset", rec
self-study purposes beyond the official teaching schedule") @Valid @RequestParam(value = "forSelfStudy”,
return getRooms(limit, offset, forSelfStudy);

// Override this method
default ResponseEntity<List<RoomDTO>> getRooms(Integer 1imit, Integer offset, Boolean forSelfStudy) {
getRequest().ifPresent(request -> {
for (MediaType mediaType: MediaType.parseMediaTypes(request.getHeader(headerName: "Accept"))) {
if (mediaType.isCompatibleWith(MediaType.value0f("application/json”))) {
String exampleString = "{ \"division\" : { \"code\" : \"code\", \"divisionType\" : \"divis
\"en\" } }, \"code\" : \"code\", \"access\" : \"access\", \"forSelfStudy\" : true, \"loce
\ravailabitity\" : [{ \"from\" : \"from\", \"to\" : \"to\" }, { \"from\" : \"from\", \"t
ApiUtil.setExampleResponse(request, contentType: "application/json”, exampleString);
break;

B
return new ResponseEntity<>(HttpStatus.NOT_IMPLEMENTED);

}

Figure C.2: Server stub getRooms generated by the spring OpenAPI Generator.

78

C. Screenshots

@RestController
@RequiredArgsConstructor
public class RoomController implements RoomsApi {

private final RoomService roomService;
private final RoomDTOMapper roomDTOMapper;

@override
public ResponseEntity<List<RoomDTO>> getRooms(Integer limit, Integer offset, Boolean forSelfStudy) {
return ResponseEntity.ok(
roomDTOMapper.toDto(
roomService.getRooms(
1imit != null ? limit : 28,
offset != null ? offset : O,
forSelfStudy

i
}
Figure C.3: Override of the method stub getRooms, originally declared in the
generated class RoomApi (Figure C.2).

@Named("roomServiceClient")
public class RoomServiceClient extends RoomApi implements RoomClient, Serializable {

private static final Logger logger = Logger.getLogger(RoomServiceClient.class.getName());

@Inject
private RoomMapper roomMapper;

@PostConstruct
private void init() {
getApiclient()

.setBasePath("http://localhost:8081"); // For local testing purpos

[
1]
w

@0verride
public List<Room> filter(String name, String location, Boolean available) {
List<Room> rooms = new ArraylList<>();
try {
List<RoomDTO> roomsFromService = getRooms(limit: 20, offset: @, forselfStudy: true);
rooms. addAlL(roomMapper. fromDto(roomsFromService))
} catch (ApiException e) {
logger.log(Level.SEVERE, msg: "Error occurred while retrieving self-study rooms", €);

return rooms;

Figure C.4: RoomServiceClient Java class with the new implementation re-
trieving data from the microservice.

79

C. Screenshots

@javax.annotation.Generated(value = "org.openapitools.codegen.languages.SpringCodegen™)
public class RoomDTO |

@JsonProperty("capacityForExamining")

private Integer capacityForExamining;

@JsonProperty("capacityForTeaching")
private Integer capacityForTeaching;

@JsonProperty("code")
private String code;

@JsonProperty("locality")
private String locality;

@JsonProperty("forSelfStudy")
private Boolean forSelfStudy;

@JsonProperty("name"
private LanguageFieldDTO name;

@JsonProperty("division")
private DivisionDTO division;

@JsonProperty("availability")
@valid

private List<AvailabilityDT0> availability = null;

@JsonProperty("access"
private String access;

@JsonProperty("type")
private String type;

Figure C.5: DTO Java class generated by the spring OpenAPI Generator.

80

C. Screenshots

[Mapper(componentModel = "jsr33e", uses = {
LanguageFieldMapper.class, DivisionMapper.class, RoomAvailabilityMapper.class
3]

public interface RoomMapper {

@EMapping(source = "forSelfStudy", target = "availableForStudents")
@EMapping(source = "availability", target = "roomAvailability")
@Mapping(target = "validity", ignore = true)

@Mapping(target = "id", ignore = true)

@EMapping(target = "transliteration”, ignore = true)
@Mapping(target = "address", ignore = true)

@Mapping(target = "parallels", ignore = true)

@EMapping(target = "roomOccupancy™, ignore = true)

@Mapping(target = "access", ignore = true)

Room fromDto(RoomDTO roomDTO);

List<Room> fromDto(List<RoomDTO> roomDTO);

@AfterMapping
default void afterMapping(@MappingTarget Room room, RoomDTO roomDTO) o
try {
room.setAccess(RoomAccessEnum. value0f(roomDT0.getAccess()));
} catch (IllegalArgumentException e) {
room.setAccess(null);

b

Figure C.6: Interface that is used by MapStruct as an input to generate mapper
implementations.

81

C. Screenshots

image: registry.gitlab.fel.cvut.cz:443/czm/infrastructure/ci-images/gradle7_jdk17_cs:latest
stages:

- Build App

- Generate Client

- Build Client

- Publish Client

variables:
GENERATED_PROJECT_DIR: "specification/build/generated/java-client"

cache:
paths:
- specification/build/generated/

build app:
allow_failure: false
stage: Build App
when: always
script:
- gradle clean build

generate client:
allow_failure: false
stage: Generate Client
when: manual
script:
- gradle specification:clean specification:generateApilavaClient

build client:
allow_failure: false
stage: Build Client
when: on_success
script:
- gradle -p $GENERATED_PROJECT_DIR build

publish client:
allow_failure: false
stage: Publish Client
when: on_success
script:
- cp init_repo.gradle $GENERATED_PROJECT_DIR
- gradle --init-script init_repo.gradle -p $GENERATED_PROJECT_DIR publish

Figure C.7: The GitLab CI/CD pipeline configuration file.

82

C. Screenshots

allprojects {
apply plugin: 'java'
apply plugin: 'maven-publish'

final DEPLOY_TOKEN_PROPERTY :String = "roomServiceDeployToken"
final DEPLOY_TOKEN_ENV_VARIABLE :String = "DEPLOY_TOKEN"

publishing.repositories {
maven {
url "https://gitlab.fel.cvut.cz/api/v4/projects/23798/packages/maven"
credentials(HttpHeaderCredentials) {
name = "Deploy-Token"
if (project.hasProperty("$DEPLOY_TOKEN_PROPERTY")) { // from ~/.gradle/grodle.properties
println "Property with deploy token found - will be used for authentication"
valve = project.property("$DEPLOY_TOKEN_PROPERTY")
} else if (System.getenv("$DEPLOY_TOKEN_ENV_VARIABLE")) {
println "Environment variable with deploy token found - will be used for authentication
valve = System.getenv("$DEPLOY_TOKEN_ENV_VARTIABLE")
} else {
throw new GradleException("Property '${DEPLOY_TOKEN_PROPERTY}' or environment variable

+
authentication {
header(HttpHeaderAuthentication)

+
}
b
+
Figure C.8: init_repo.gradle initialization script with the repository configu-
ration.
// A custom definition of a task that generates server code.

task generateApilavaServer(type: GenerateTask) {
generatorName = "spring"
inputSpec = "${projectDir}/src/main/resources/specifications/latest.yaml".toString()
apiPackage = "${group}.${restPackage}.api".toString()
modelPackage = "${group}.${restPackage}.dto".toString()
modelNameSuffix = "DTO"
outputDir = "${generatedJavaServerDir}".toString()
configOptions = [
artifactId: "${javaServerArtifactId}",
groupId: "${group}"
1
additionalProperties = [
interfaceOnly: "true",
hideGenerationTimestamp: "true",
delegatePattern: "true"

}

Figure C.9: Gradle task definition for the server stub generation from the
specification file.

83

84

Appendix D
Contents of the Attached CD

| felsight_integration.zip........... Microservice integration files
| README.tXt ..'uvvviieeeeeaann.. Description of the contents
| room_service.zip.......iiiiiiiiiiiiiienn.. Microservice project
Y o) < PP Microservice source code module
specification................. REST API specification module
README.Md .. .vvvvveeeeneannns Installation manual (Markdown)

| The_Architecture_Transformation_of_FelSight_Faculty_Application.pdf
Master thesis in PDF format

85

	Theoretical Part
	Introduction
	Preface
	Motivation
	Thesis Structure

	Software Architectures
	Definition
	History
	Motivation
	Architectural Styles vs. Design Patterns
	Common Examples of Architectures
	Layered Architecture
	Service-Based Architecture
	Event-Driven Architecture
	Pipeline Architecture

	Designing a Software Architecture
	General Criteria of the Decision Process
	The Domain
	Data Architecture
	Project Team and Internal Process Knowledge
	External Factors

	Decisions to Make
	Monolithic, or Distributed Architecture
	Data Location
	Technology Stack

	Design Methodologies
	Attribute-Driven Design
	Domain-Driven Design

	Software Quality Attributes
	Availability
	Modifiability
	Performance
	Testability
	Security

	Software Architecture Transformation Process
	Motivation
	Monolith Decomposition Approaches
	Strangler Pattern
	UI Composition Pattern
	Branch by Abstraction Pattern

	General Recommendations

	Practical Part
	FelSight Application
	Application Introduction
	Original Architecture
	Presentation Layer
	Business Layer
	Persistence and Database Layers

	Original Project Structure
	Web Module
	EJB Module
	EAR Module

	Build and Deployment
	Build Process
	Application Server and Database
	Topology

	Motivation for Architecture Transformation

	Analysis and Design of the New Architecture
	The Vision
	Transformation Approach
	Aspects Influenced by the Transformation
	Summary

	Transformation Process Outline
	Phase 1
	Phase 2

	Analysis Steps
	Feature Overview
	Events and Tasks
	Groups
	Searching
	Rooms
	Timetables
	Notifications
	Building Plans
	Moodle Evaluation (Grades)
	Food Menu

	Actions, Entities and Relations
	Actions
	Entities
	CRUD Matrix

	The Proposed FelSight Microservice Architecture

	POC Implementation
	Purpose and Scope of the POC
	Migration Process
	API Definition
	Service Implementation
	Integration with the Monolith

	Development Workflow
	CI Pipeline and the GitLab Package Registry
	Practical Example

	Security
	Solution Summary and Evaluation

	Conclusion
	Bibliography

	Appendices
	Nomenclature
	Software Used in the Implementation
	Technologies
	Tools

	Screenshots
	Contents of the Attached CD

