
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

NuttX RTOS CAN Bus Driver for Espressif
ESP32C3

Bc. Jan Charvát

Supervisor: Ing. Pavel Píša, Ph.D.
May 2022



ii



MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

478159Personal ID number:Charvát  JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Open InformaticsStudy program:

Computer EngineeringSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

NuttX RTOS CAN Bus Driver for Espressif ESP32C3 

Master’s thesis title in Czech:

Driver sběrnice CAN pro systém NuttX na mikrokontroléru ESP32C3 

Guidelines:

CAN bus and CAN FD are still dominant technology for interconnection of electronic control units and peripherals in
automotive for channels requiring moderate data rates and reliability (BroadR-Reach and ETHERNET is used for demanding
communications, LIN for low cost ones). Teams of our faculty participate on CAN technology support and development
with industry and carmakers for decades and this topic is related to the continuation and extension of these projects as
well as to their connection to the Rapid Control Applications Development tools.
1. Familiarize with CAN bus technology, NuttX RTOS and ESP32C3 RISC-V base microcontrollers.
2. Implement CAN/TWAI driver for ESP32C3 RISC-V architecture based chip which follows requirements for inclusion
into NuttX operating systems.
3. Prepare project for submission of the developed drivers to the NuttX operating system mainline.
4. Prepare documentation and demonstration of the CAN driver function (for example use driver for pysimCoder based
control application, On Board Diagnostic protocol and or to run it in QEMU emulator).

Bibliography / sources:

1. Patterson, D. A., and J. L.: Computer Organization and Design RISC-V Edition, The Hardware Software Interface, 2nd
ed. Morgan Kaufman, 2021, ISBN: 9780128203316
2. CAN bus CTU FEE Projects page https://canbus.pages.fel.cvut.cz/
3. NuttX operating system project https://github.com/apache/incubator-nuttx
4. OCERA Real-Time CAN project http://ortcan.sourceforge.net/
5. QEMU CAN bus support https://github.com/qemu/qemu/blob/master/docs/can.txt
6. Open Technologies Research Education and Exchange Services ORG Wiki https://gitlab.fel.cvut.cz/otrees/org/-/wikis/home

Name and workplace of master’s thesis supervisor:

Ing. Pavel Píša, Ph.D.    Department of Control Engineering  FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission:   __________Date of master’s thesis assignment: 03.02.2022

Assignment valid until:
by the end of summer semester 2022/2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Pavel Píša, Ph.D.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1



III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1



Acknowledgements
I would like to thank Ing. Pavel Píša
Ph.D. for tutoring and the time he kindly
devoted to my thesis. I am profoundly
grateful to my family, which gave me in-
valuable help whenever I needed it. My
sincere thanks to Espressif and NuttX rep-
resentatives for providing the hard-ware
and helping me at the beginning. Special
thanks to my girlfriend, for all the love
and support she gave me throughout my
studies.

Declaration
I declare that this thesis has been
composed solely by myself and that it
has not been submitted, in whole or in
part, in any previous application for a
degree. Except where states otherwise by
reference or acknowledgment, the work
presented is entirely my own.

In Prague, 11. 5. 2022 .......................

v



Abstract
The main task of the work was to write
a CAN bus interface driver on ESP32C3
microcontrollers for the NuttX real-time
operating system. This thesis begins with
a theoretical part, which analyses CAN
bus technology, NuttX RTOS and one
of the newest RISC-V boards, ESP32C3-
devkit. The implementation part had a
long-term goal to contribute to NuttX
mainline by implementing a TWAI (CAN)
driver. This part illustrates how the devel-
opment operates under the NuttX RTOS
and provides a step-by-step explanation
of all the procedures that led to creating
a functional TWAI driver. The process of
contributing to a large project such as the
NuttX is demonstrated. The result of this
thesis is the driver source code, which was
accepted to the NuttX mainline. The last
section presents meticulous testing and
describes the techniques used.

Keywords: CAN bus, NuttX, driver,
Espressif, ESP32C3, SJA1000

Supervisor: Ing. Pavel Píša, Ph.D.
Praha 2
Karlovo náměstí 13
E-7a

Abstrakt
Hlavním úkolem práce bylo napsání ovla-
dače rozhraní sběrnice CAN na mikro-
kontroleru ESP32C3 pro systém reálného
času Nuttx. V teoretické části práce je
čtenář seznámen s technologií sběrnice
CAN, operačním systémem NuttX, jejich
použitím na mikrokontrolérech ESP32C3
a jedním z nejnovějších čipů založených
na RISC-V architektuře uvnitř ESP32C3-
devkit. Hlavní implementační cíl práce byl
přispět do vývoje NuttX implementací
CAN (TWAI) driveru. Tato část ukazuje,
jak vypadá vývoj pod operačním systém
NuttX a postupně ukazuje všechny kroky,
které vedly k vytvoření funkčního TWAI
driveru. Je ukázán proces začlenění pří-
spěvku do většího projektu jako je NuttX.
Výsledkem této práce je zdrojový kód dri-
veru, který byl přijat do hlavní vývojové
větve systému NuttX. Poslední sekce uka-
zuje důkladné testování a popisuje tech-
niky při něm použité.

Klíčová slova: sběrnice CAN, NuttX,
driver, Espressif, ESP32C3, SJA1000

Překlad názvu: Driver sběrnice CAN
pro systém NuttX na mikrokontroléru
ESP32C3

vi



Contents
Nomenclature 1
1 Introduction 3
2 CAN 5
2.1 History . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Physical level . . . . . . . . . . . . . . . . . 6
2.3 Logical Link Control . . . . . . . . . . . 6
2.4 Medium access control . . . . . . . . . 7
2.5 Bit stuffing . . . . . . . . . . . . . . . . . . . 7
2.6 Error Detection . . . . . . . . . . . . . . . 8

2.6.1 Error states . . . . . . . . . . . . . . . . 8
2.7 Bit Timing . . . . . . . . . . . . . . . . . . . . 8

2.7.1 Bit Composition . . . . . . . . . . . . 9
2.7.2 Example . . . . . . . . . . . . . . . . . . . 9

3 ESP32C3 RISC-V microcontroller 11
3.1 ESP32C3 DevKit . . . . . . . . . . . . . 11
3.2 Espressif SDK . . . . . . . . . . . . . . . . 12

3.2.1 Download ESP-IDF . . . . . . . . 12
3.2.2 ESP-IDF Hello world . . . . . . . 13
3.2.3 ESP-IDF TWAI . . . . . . . . . . . 14

3.3 RISC-V architecture . . . . . . . . . . 14
4 NuttX RTOS 15
4.1 NuttX advantages and comparison 15
4.2 Configuration . . . . . . . . . . . . . . . . 16
4.3 Directory Structure . . . . . . . . . . . 17
4.4 Basic work with RTOS . . . . . . . . 17
4.5 CAN Support . . . . . . . . . . . . . . . . 18
4.6 ESP32-C3 Support . . . . . . . . . . . . 18
5 Development in NuttX on
ESP32-C3 21
5.1 Start of Cooperation with Espressif

Team. . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 NuttX License . . . . . . . . . . . . . . . . 21
5.3 Coding style . . . . . . . . . . . . . . . . . 22
5.4 Related work . . . . . . . . . . . . . . . . . 23

5.4.1 ESP-IDF TWAI . . . . . . . . . . . 23
5.4.2 LinCAN . . . . . . . . . . . . . . . . . . 24
5.4.3 lpc17-40 CAN . . . . . . . . . . . . . 24

5.5 Debugging . . . . . . . . . . . . . . . . . . . 24
5.5.1 Debug prints . . . . . . . . . . . . . . 25

5.6 CAN Configuration on NuttX . . 25
5.7 API for the lower half of the

character driver . . . . . . . . . . . . . . . . 26
6 Driver development 27
6.1 Controller registers . . . . . . . . . . . . 27

6.2 Driver Integration . . . . . . . . . . . . 28
6.3 TWAI driver options . . . . . . . . . . 28
6.4 TWAI Setup . . . . . . . . . . . . . . . . . 29

6.4.1 Reset . . . . . . . . . . . . . . . . . . . . . 29
6.4.2 Acceptance filters . . . . . . . . . . 30
6.4.3 Bit Timing . . . . . . . . . . . . . . . . 30
6.4.4 Leaving Reset state . . . . . . . . 30
6.4.5 Interrupt setup . . . . . . . . . . . . 31

6.5 TWAI Shutdown . . . . . . . . . . . . . 31
6.6 TWAI Transmission . . . . . . . . . . . 32

6.6.1 TWAI TX enable . . . . . . . . . . 32
6.6.2 TWAI TX empty and TX

ready . . . . . . . . . . . . . . . . . . . . . . . . 32
6.6.3 TWAI Send . . . . . . . . . . . . . . . 32
6.6.4 TWAI TX interrupt . . . . . . . . 33

6.7 TWAI Reception . . . . . . . . . . . . . 33
6.7.1 TWAI RX enable . . . . . . . . . . 34
6.7.2 TWAI RX interrupt . . . . . . . . 34

6.8 IOCTL . . . . . . . . . . . . . . . . . . . . . . 34
6.9 TWAI Configuration . . . . . . . . . . 35
6.10 Contribution . . . . . . . . . . . . . . . . 35

6.10.1 Pull request . . . . . . . . . . . . . . 35
7 Testing 37
7.1 Latency tester . . . . . . . . . . . . . . . . 39

7.1.1 Connection . . . . . . . . . . . . . . . . 40
7.2 Motor control . . . . . . . . . . . . . . . . 42
7.3 Results . . . . . . . . . . . . . . . . . . . . . . 44

7.3.1 LaTester . . . . . . . . . . . . . . . . . . 44
7.3.2 Demonstration of the TWAI

driver function with PysimCoder 45
8 Conclusion 47
8.1 Future implementation goals . . . 47
References 49
A Detail results from LaTester 53

vii



Figures
2.1 CAN frame detail [5] . . . . . . . . . . . 5
2.2 CAN Bus Physical Layer [6] . . . . . 6
2.3 Bit stuffing [7] . . . . . . . . . . . . . . . . . 7
2.4 Bit composition [7] . . . . . . . . . . . . . 9

3.1 ESP32-C3 DevKitM-1 version 1
RISC-V [13] . . . . . . . . . . . . . . . . . . . . 11

3.2 ESP32-C3 DevKitM-1 version 1
RISC-V with description[?] . . . . . . 12

4.1 Driver layout [28] . . . . . . . . . . . . . 18

7.1 Pin connection via jumper and
connection to oscilloscope . . . . . . . . 37

7.2 Oscilloscope confirmation of
correct timing parameters for bitrate
500 Kbps . . . . . . . . . . . . . . . . . . . . . . 38

7.3 Connection with MZ APO board
for thorough testing . . . . . . . . . . . . . 39

7.4 Original connection for LaTester
application . . . . . . . . . . . . . . . . . . . . . 40

7.5 Modified connection for LaTester
application with ESP32-C3 . . . . . . 41

7.6 Comparison of latencies in correct
and inverse priority settings . . . . . . 42

7.7 Connection of whole motor control
application including TWAI
peripheral for CAN communication
[9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.8 The physical connection of whole
motor control application, including
TWAI peripheral on ESP32-C3 for
CAN communication in laboratory 44

7.9 The final layout of the control
application in PysimCoder and
visible output from the CAN bus [9] 45

A.1 ESP latency profile: flooding - bus
speed 125000 - 100 messages . . . . . 54

A.2 ESP latency profile: flooding - bus
speed 500000 - 100 messages . . . . . 55

A.3 ESP latency profile: flooding - bus
speed 1000000 - 100 messages . . . . 56

A.4 ESP latency profile: flooding - bus
speed 125000 - 1000 messages . . . . 57

A.5 ESP latency profile: flooding - bus
speed 500000 - 1000 messages . . . . 58

A.6 ESP latency profile: flooding - bus
speed 1000000 - 1000 messages . . . 59

A.7 ESP latency profile: flooding - bus
speed 125000 - 10000 messages . . . 60

A.8 ESP latency profile: flooding - bus
speed 500000 - 10000 messages . . . 61

A.9 ESP latency profile: flooding - bus
speed 1000000 - 10000 messages . . 62

A.10 ESP latency profile: one by one -
bus speed 125000 - 100 messages . . 63

A.11 ESP latency profile: one by one -
bus speed 500000 - 100 messages . . 64

A.12 ESP latency profile: one by one -
bus speed 1000000 - 100 messages . 65

A.13 ESP latency profile: one by one -
bus speed 125000 - 1000 messages . 66

A.14 ESP latency profile: one by one -
bus speed 500000 - 1000 messages . 67

A.15 ESP latency profile: one by one -
bus speed 1000000 - 1000 messages 68

A.16 ESP latency profile: one by one -
bus speed 125000 - 10000 messages 69

A.17 ESP latency profile: one by one -
bus speed 500000 - 10000 messages 70

A.18 ESP latency profile: one by one -
bus speed 1000000 - 10000 messages 71

viii



Tables
7.1 Bittiming parameters based on

frequency . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Measured NuttX latencies,

messages sent one at a time. 3200
messages were sent. . . . . . . . . . . . . . 41

7.3 Measured NuttX latencies,
messages sent a flood mode. 3200
messages were sent. . . . . . . . . . . . . . 41

ix





Nomenclature

Acronym Meaning

ABS Anti-lock Braking System
ANSI American National Standards Institute
API Application Programming Interface
BRP Baud Rate Prescaler
CAN Controller Area Network
CRC Cyclic Redundancy Check
CSMA Carrier Sense Multiple Access
CTU Czech Technical University
ECU Electronic Control Unit
EFF Extended Frame Format 29-bit
ESP Electronic Stability Program
FD Flexible Data Rate
FEE Faculty of Electrical Engineering
FIFO First In, First Out
HW Hardware
ID Identifier
IRQ Interrupt Request
ISA Instruction Set Architecture
ISR Interrupt Service Routine
MAC Medium Access Control
MPU Memory Protection Unit
RO Read-only
POSIX Portable Operating System Interface
PS1 Phase Segment 1
PS2 Phase Segment 2
RTOS Real Time Operating System
RTR Remote Request
RW Read-write
RX Reception
SFF Standard Frame Format 11-bit
SJW Synchronisation Jump Width
SDK Software Development Kit
SMP Symmetric Multi-Processing

1



............................................
Acronym Meaning

SOC System on Chip
SOF Start of Frame
SW Software
TX Transmission
WO Write-only
WSL Windows Subsystem for Linux

2



Chapter 1
Introduction

This thesis aims to implement a TWAI (CAN) driver for NuttX RTOS,
allowing CAN bus network communication for the ESP32C3-devkit board.
The ESP32C3 microcontrollers are based on the modern open-source RISC-V
architecture. CAN bus is still the dominant technology for interconnecting
electronic control units and peripherals in the automotive industry for chan-
nels requiring moderate data rates and reliability. It is a quickly improving
technology; an example can be CAN FD as a response to the necessity of send-
ing more data in a similar time quantum and with identical characteristics.
The TWAI network controller architecture is based on the classic SJA1000
CAN 2.0 controller model.

The analysis part of this thesis introduces reader in field of the technolo-
gies used and the individual projects. This section also focuses on acquiring
deeper understanding of each project’s installation and development process.
Most of the information about CAN mentioned in the analysis is utilized in
the implementation part. The knowledge used further in the thesis includes
medium access control, bit timing, and the principle of acceptance filters,
see Chapter 2. The ESP32C3 Chapter 3 introduces hardware used in the
thesis and demonstrates the usage of Espressif SDK. The analysis part is
concluded by an introduction of NuttX RTOS in Chapter 4, its advantages
and a comparison with similar projects. To be able to develop a CAN driver,
it is necessary to know the basic rules for a particular project, the directory
structure, or existing CAN support. Related work in CAN character device
drivers is broad. Several examples are described in Chapter 5, showing where
it is possible to take inspiration.

The main implementation goal of this thesis is the TWAI (CAN) driver,
which can control the TWAI controller on the ESP32C3 board. The driver
must be able to set parameters for communication, prepare a chip to connect
to a live network, and finally communicate. It is possible to observe this
communication on the other station by monitoring tools. The development
process is described step by step in Chapter 6. The process started with
obtaining registers definitions from the manufacturer and integrating the new
driver into the NuttX driver structure. Then implementation part of the

3



1. Introduction .....................................
TWAI driver took place, such as TWAI setup and functions for transmission
or reception. The last Chapter 7 describes the testing, where several methods
were used to verify the functionality at high load or to measure the individual
latencies.

This project is open-source under Apache 2.0 license, corresponding to
the whole NuttX. My focus on the CAN bus stems from my participation
in one external company project, which delivers utilities for trains where
CAN communication is used. Furthermore, working with CAN was a part of
my Bachelor thesis[10]; it successfully contributed to the QEMU mainline to
implement a CAN FD communication bus and a CAN FD capable controller
model[11].

4



Chapter 2
CAN

CAN is a networking technology often used in the automotive industry. It is
a part of distributed systems in trains and most vehicles, where a CAN bus
connects the necessary sensors and control units - ECUs[21]. For example,
critical infrastructure connected by the CAN can be an engine, the steering
wheel position or braking assistants such as ABS or ESP. As for non-critical,
we can mention seats position, parking assistant, et cetera. The thesis will
discuss the physical layer in the outline of this section, focusing mainly on
the link layer: for instance, media access control, acceptance filtering and
acknowledgements. The application level, such as the CANopen, is out of the
scope of this work.

Figure 2.1: CAN frame detail [5]

2.1 History

The Bosch company standardised the CAN in the 1980s as a relatively simple
communication protocol which can provide reliable and priority-based com-
munication that is cheap[2]. Another advantage lies in on.board diagnostics,
which is widely used for early failure detection through the OBD-II connector.
The first version of the standard provided an 11-bit identifier and a load of
maximally 8 bytes per message. However, industry development and the
increasing number of sensors and control units require a network connection
for more defined messages. The response came in 2003 in the form of ISO
11898-1:2003; the CAN 2.0 enables using an extended 29-bit message identifier
with the remaining data load as its predecessor. The most significant change
came with the CAN FD in 2015, where FD stands for a flexible data rate. In
brief, the flexible data rate means that the data part of the frame is sent at a
higher bit rate than the rest of the frame. Because of this change, the data

5



2. CAN ........................................
part increased from maximal 8 bytes to 64 bytes[3]. The standard introduced
indirect mapping for the data length code to preserve backward compatibility
with the older frame format; the result is that not each combination of data
bytes length is possible, but a higher payload in a similar time is provided.

2.2 Physical level

This section discusses how individual bits are transmitted on the bus. A part
of the definition includes transmission speed, bit timing, synchronisation, and
signalling levels. The physical layer consists of twisted pair cabling, which
improves the shielding from external electromagnetic disturbances. The first
wire is CANL, and the second wire is CANH; the logic value on the bus is
evaluated as CANH - CANL (differential voltage). Connection is provided
by OR logic functionality. Signalling levels are divided into dominant state,
termed logic 0, and recessive state, termed logic 1. Each station (node)
implements a logical AND.

0 0 01 1 1 1 1 0 0 00 1 1 1

Recessive Voltag

Dominant Voltag

Dominant Voltag

Driver Logic

2.5V

5V

0V

CAN Hi

CAN Lo

Figure 2.2: CAN Bus Physical Layer [6]

2.3 Logical Link Control

Logical Link defines how to inform about overloading of some stations and
allow filtering for received frames. The acceptance filter mechanism occurs
during a reception and before the incoming frame is stored in the received
FIFO. It filters frames based on their frame ID. Consequently, it reduces
the load from a single station and decreases demands on its performance
because not every message on the bus must be processed from a FIFO buffer.
The acceptance filter comprises two bitwise requirements, where at least one
needs to be fulfilled; it results in an accepted message. The acceptance mask
determines which bits are ignored in comparison to frame ID. Regarding bits
which are considered, these are compared with the acceptance code[12].

6



................................ 2.4. Medium access control

2.4 Medium access control

The main idea is that each station (node) is equal to others during communi-
cation - peer to peer and frames are broadcasted. Identification is based on
unique frame IDs, independently of specific nodes. Lower ID means higher
priority on the bus; the exact principle is described below. In case of an error,
the station should retransmit the frame. MAC prevents destructive collisions
and defines how long the station will wait for transmission. If the station
wants to start communication, it is necessary to detect Idle State on the bus,
which means 11 recessive bits - logic 1. The CAN bus runs the CSMA/CR
protocol, where CR stands for collision resolution [7]. Each station starts to
transmit bits from frame IDs and reads the state on the bus simultaneously.
Logical 0 as a dominant state always wins against logical 1; if the station
sends 1 to the bus and reads 0, it loses the arbitration and immediately
stops transmitting. This process determines the node with the lowest ID,
which is then allowed to continue transmission. The CAN standard features
a mechanism to request a specific frame. The principle is to send zero data
length frame with wanted ID and set the RTR bit occurring immediately
after frame ID to logic zero. As a response to the RTR frame, required data
should arrive.

2.5 Bit stuffing

The CAN bus does not have a wire for a clock, which means there is no fixed
clock. Synchronisation is made on the bit-level during falling and rising edges.
The bit stuffing is a mechanism that forces the transceiver to add an opposite
bit to 5 identical continuous bits.

Figure 2.3: Bit stuffing [7]

7



2. CAN ........................................
2.6 Error Detection

On the bus, continuous error detection is performed at every station. Splitting
errors into two classes is possible depending on when they occur - during
transmission, or during reception. The first controlled rule is to read the same
logic state as the station sends. The only exception is a lost arbitration, where
another station has a lower ID and therefore wins; this leads to the necessity
to stop transmitting by the lost station. During receiving, it is checked
whether the mechanism of bit stuffing is respected. After reception of almost
the whole frame, CRC is calculated from the data part and compared with
CRC in the frame, and it must correspond. At least one other station must
confirm the reception of the frame during the ACK bit; otherwise, an Error
Frame is sent. When any station notices an Error Frame, the mechanism is
that an Error Frame breaks the bit stuffing rule, and then it replies with its
Error Frame. It ensures the propagation of error to the whole bus.

2.6.1 Error states

Error measurement consists of error counters in each station; there is one
for transmission and one for reception. When the station notices any errors
mentioned above, the corresponding counter increases (0, 1, 8), and these
counters are then dynamically modified according to bus communication rules.
The most common state during communication is an Error Active State. If
one counter exceeds 127, the state is changed to Error Passive State: this is
a state where the station generates six ones instead of an Error Frame and
cannot influence other stations. The counter can be decremented if another
frame is transmitted or received correctly. The Upper bound for any station
is 255. Passing leads to a Bus-off State. The station gets wholly disconnected
from the bus and cannot affect or read communication until passing several
intraframes. Disconnection of the possibly broken station allows the rest of
the stations to stabilise. Thus, the minimum for reconnecting to the network
is 128 sequences of intraframes (at least 11 ones).

2.7 Bit Timing

The CAN bus is lacking clock signal shared among the stations. Therefore,
there has to be a designed algorithm to keep the communication and frequency
synchronised. It requires a stable and robust solution because it should
function in 20 years old car. During this time, the system is exposed to
vibrations, electromagnetic fields, or degradation of internal oscillators in
each station. A transmission of several stations at once can serve as a sample
arbitration; this leads to the necessity to keep each bit synchronised. The
CAN distinguishes between two types of synchronisations, and both perform
on recessive to the dominant edge. The Hard Synchronisation occurs only at
the start of the frame (SOF) after the bus is in Idle State. On the other hand,
Resynchronisation is executed on every other edge during communication.

8



..................................... 2.7. Bit Timing

2.7.1 Bit Composition

Each bit is decomposed into smaller pieces, defined as a Time Quantum
Tq, determined by the oscillator. Because of that, a Bit Time is given as a
multiplication of a number N and a Time Quantum.

Tq ∗ N = Tb (2.1)

For each Tq within the bit, it is possible to assign a segment for a certain
purpose. The first segment of the bit is always the Synchronisation Segment,
and it lasts only 1 Tq. Here should come the edge of a bit in the optimal
case. The following segment is called the Propagation Segment, and it
balances a communication delay between the two farthest nodes. The rest is
divided into Phase Segment 1 and Phase Segment 2, which define the sample
point’s exact position, where the sample is evaluated. The PS1, together
with the Propagation Segment, can be prolonged; this is the case when the
Synchronisation Segment arrives later from the bus. In this case, the bit
length is longer by the same number of Tqs, which takes a delay on the
expected vs actual bit start. This mechanism leads to Resynchronisation, and
the station is synchronised for the following communication with the same
transmitter. The inverse process works if the Synchronisation Segment occurs
earlier than expected; the exact Tq number must be subtracted from PS2.

Figure 2.4: Bit composition [7]

2.7.2 Example

For further calculation, it is possible to assume the speed of electric signal
propagation as five ns per meter, and one Tq is 100 ns. One of the standard
distributions is 20 Tqs for a bit, then 100 * 20 equals 2000 ns; this stands for
bitrate 500 of Kbits per second. If the Propagation Segment is chosen to be
10 Tq long and the Phase Segment 1 to be 5, the equation is 100 ns * 15 equals
1500 ns per bit. In this instance, the worst case is the need to propagate
information in both directions. It results in two times shorter reaction time,
meaning 750 ns. The explanation is that the station will transmit a recessive
bit; this information needs time to travel to the farthest node. When the
signal arrives, it is a valid sequence that the most distant node starts to
send the dominant bit simultaneously, and this information needs time to
propagate backwards.

100 ns * 20 T_q = 2000 ns -> 500 Kbit per second
100 ns * 15 T_q = 750 ns
750 ns % 5 ns/m = 150 m

9



2. CAN ........................................
This calculation leads to a possible 150 meters cable length in this optimal

case. In practice, latencies on both sides for the transmitter, receiver, and
other disturbances have to be added. In summary, it is possible to reach half
the length of the cable ( 75 m) for this case.

10



Chapter 3
ESP32C3 RISC-V microcontroller

It is a RISC-V single-core microcontroller, an ultra-low-power and highly
integrated SoC by Espressif. It means that it is a completely integrated
system in a single package. The processing parts, memory and modems are
manufactured together. The modems integrated on the chip are Wi-Fi and
Bluetooth 5. The next advantage of SoC is a lower amount of necessary
space and power consumption. For example, several onboard security features
include a secure boot and flash encryption with AES-128/256.

Figure 3.1: ESP32-C3 DevKitM-1 version 1 RISC-V [13]

3.1 ESP32C3 DevKit

A development kit has been provided to develop the NuttX driver by the
Espressif company. It has module ESP32-C3-MINI-1 with Wi-Fi and Blue-
tooth 5[16]. The board contains address space divided into 800 KB of internal
memory space for instructions, 800 KB of internal memory space for data,

11



3. ESP32C3 RISC-V microcontroller............................
1016 KB of peripheral address space, 8 MB of external memory for instruc-
tions, and 8 MB of external memory for data, 480 KB for DMA. Altogether
800 KB of internal memory and up to 16 MB of external memory, and 35
peripherals, including TWAI.

Figure 3.2: ESP32-C3 DevKitM-1 version 1 RISC-V with description[13]

3.2 Espressif SDK

ESP-IDF is an official development framework[15]; it is prepared for the whole
ESP32 SoC family containing several boards. It enables the programming
of specific boards, as well as their debugging, and helps make development
easier. It can be found as an open-source on GitHub in several versions;
more information is provided in the installation section about versions and
releases[14].

3.2.1 Download ESP-IDF

First, it is necessary to download ESP-IDF [17] - the official development
framework for ESP32. It is available at the git repository. Nevertheless, online
and offline installers are prepared, and they are very convenient because they
solve all the prerequisites and linking problems[19]. If the development
framework is already installed, staying up to date on the newest version is
recommended. This series of commands requires to be run every once in a
while.

cd %IDF_PATH%
git pull
git submodule update --init --recursive

It is also possible to change between stable or release versions.

12



.................................... 3.2. Espressif SDK

git pull
git fetch
git checkout vX.Y.Z

Finally, finish switching by the same commands as are used for updating.

3.2.2 ESP-IDF Hello world

After successful installation, it is time to run the first program. This process
has good documentation on Espressif websites under the appropriate chip
and version selection. Start with running ESP-IDF CMD in the top hierarchy
location of installed ESP-IDF in the file system. It should be accessible by
running this command.

cd %IDF_PATH%

Here we can find file export.bat, which temporarily adds all the necessary
tools to the environment variables. The ESP-IDF folder features prepared
examples, including hello-world. It can be copied out of the hierarchy with
the command xcopy.

xcopy /e /i
%IDF_PATH%\examples\get-started\hello_world hello_world

Go to the newly created hello-world folder and run the command, which
induces the download of all necessary dependencies and prepares the project
to run.

idf.py set-target esp32c3

For this simple program, nothing else needs to be done, only ascertain which
port a device is using - for example, through device manager - and run.

idf.py -p PORT flash monitor

Application builds and flashes onto the chip; monitor command shows output
on the serial line. An identical working procedure could be applied for a
similar example called blink, which should turn the LED on and off. One
more example can be recommended and is hidden under the following path.

cd %IDF_PATH%\examples\wifi\getting_started\softAP

After running this command, it is possible to connect to ESP32 via WIFI,
e.g. on a mobile phone.

A potential problem to be careful of – if it is the first program on
the board - it is possible that a bootloader is missing - the bootloader and
partition tables should be present in a flash[20]. Both corresponding files
are located, for example, here on Espressif GitHub. They are marked as
NuttX specialised, but they are the same as ESP-IDF’s examples are using
by default. Then it is enough to run this command with correct paths to
binary files.

13



3. ESP32C3 RISC-V microcontroller............................
esptool.py --chip esp32c3 --port PORT --baud 921600 write_flash

0x0 bootloader-esp32c3.bin
0x8000 partition-table-esp32c3.bin
0x10000 hello_world.bin

The example above flashes hello-world binary, and on the top of that also
loads a new bootloader and partitions tables. Now the board ought to be
entirely wiped out and ready to run the selected program.

3.2.3 ESP-IDF TWAI

This work’s target is CAN bus development, so it is reasonable to find and
try the TWAI examples to ascertain whether they are running correctly.

cd %IDF_PATH%\examples\peripherals\twai

Several projects are at disposal in this directory. However, these examples
require additional hardware to be run. For two of them, it is sufficient to
have a small jumper for the connection of two neighbouring pins. The third
example requires another board, and each extra board requires its external
CAN transceiver – therefore, this example will not be tested. TWAI self-test
has to be configured the same way as all examples before. It is recommended
to check correct pin settings in:

idf.py menuconfig

It should be configured to pins number 2 for transmitting and number 3 for
receiving. These two pins have to be connected to valid testing results.

idf.py -p PORT flash monitor

An identical configuration is valid for the second example, TWAI alert and
recovery. It tests the ability to recognise an error on the bus (cause the bus
off state) and reconnect the device again. Both tests mentioned above are
correctly concluded if written on the console - driver uninstalled; it means
that the testing sequence ends successfully.

3.3 RISC-V architecture

Firstly, it is necessary to explain the term ISA; Instruction Set Architecture
is a model of registers and code instructions[1]. Each architecture, such
as Intel x86 or ARM, has its ISA. This abstract model set is licensed; the
manufacturer must pay to produce hardware based on these ISAs. RISC-V
has an open-source license and was developed and maintained by specialists
in computer architecture. It is possible to have a 32-bit or 64-bit system.
RISC-V is RISC architecture equivalent to ARM.

14



Chapter 4
NuttX RTOS

NuttX is a real-time operating system targeting an embedded environment.
Its main philosophy is to keep a small footprint but provide broad standard
compliance for sample POSIX and ANSI standards. NuttX is highly config-
urable, which means that a project could retain only the desired components.
The small footprint is accomplished by compiling and including only the
features used into an executable file and many other mechanisms. In other
words, each peripheral or any other part can be added or removed from the
build before compilation due to its modularity[22]. Kconfig system stands
for configuration purposes, similarly to Linux. The building system used
after configuration from Kconfig is GNU makefiles. Development is currently
run under The Apache Software Foundation and Apache License 2.0. NuttX
comes with RTOS features such as exceptional schedule management for
sharing resources - it is fully preemptive. It has task priorities with the
possibility of priority inheritance or Symmetric Multi-Processing, and for
multithreading semaphores, pthreads or mutexes. RTOS determines that the
system must pass multiple strict conditions, and each critical event has its
defined maximum realisable time.

4.1 NuttX advantages and comparison

The NuttX can be used in embedded systems due to its miniature footprint,
and therefore it is optimal for low-cost microcontrollers with a small FLASH
and RAM. Nevertheless, NuttX is also convenient for modern microcontrollers,
where the size of the FLASH is counted in megabytes because more features
can be applied. It is possible to mention a configurable protected build with
MPU providing protected memory access. MPU creates kernel and user mode
access, where kernel-mode remains unlimited, but user-mode can have limited
register access or machine instructions[23].

Another advantage lies in an approach to the file system because it keeps
comparable to more extensive systems such as Linux. The file system boots
in a pseudo root file system, but there is a possibility of mountable volumes
enabling utilising the same techniques that are usually used on Linux via the
mount() function. NuttX is not dependent on any file system and implements

15



4. NuttX RTOS.....................................
functions such as open, close, read, write or IOCTL calls. Furthermore, even
small application has a device driver supporting structure. The compatibility
leads to possible mitigation of code written and validated on Linux with few
or no adjustments to run on NuttX.

A project with a similar aim is Zephyr RTOS which targets embedded
environments. Zephyr originates from the Wind River Company and has
good documentation[24]. Another example of such a project may be Mbed
OS, commonly used in embedded applications. It has an RTOS core, provides
clean API to C++ applications, and is more straightforward[25].

4.2 Configuration

A complete list of commands explained in detail is available in the NuttX
configuration[26]. It will only be described briefly hereinafter. An already
prepared configuration could simplify the first steps of configuring NuttX
because it sets the basic settings, which may be hardware-dependent. For
this purpose, a script called configure.sh is prepared in the tools directory.
This script needs an argument composed of a board name - target hardware -
connected by a colon with a configuration name.

./tools/configure.sh esp32c3-devkit:nsh

NSH configuration fits the best because it leads to a simple application with
NuttShell using serial standard input and output. It also helps in terms of
the testing purpose for the first run on a particular device.

Manual configuration is done with Kconfig language, which is also used
in Linux. It is organised as a collection of configurable options in a tree
structure, where dependencies are considered. As a result, they affect the
visibility of individual records. Logical units are stacked and follow the exact
syntax. Final configuration windows consist of several Kconfig files around a
system[27].

make menuconfig

NuttX can export a newly created configuration in two ways. The first
automated way makes the .config file during the compilation. It contains all
configurable options and their values; it stores all information because some
default values can change during NuttX development. The second way is
calling the command, which produces a compressed configuration file named
defconfig, including only changed parameters from the default value.

make savedefconfig

All configuration files, called by the configure.sh script, are in the form of
the compressed file as defconfig.

16



.................................. 4.3. Directory Structure

4.3 Directory Structure

The file system hierarchy is similar to Linux, it features the description of
the necessary folders for further work. The first and the most relevant folder
visible in the NuttX root directory is called arch and contains architecture-
specific code. It is logically divided by the target architecture. For this thesis,
arch/risc-v and then arch/risc-v/src/esp32c3 directories are the appropri-
ate way to move. The essential parts of the drivers or chip-specific register
definitions are defined here. It is also the location of Kconfig responsible
for setting parameters for specific peripheral or functionality of the target
hardware. Finally, this section also features a makefile which includes config-
ured peripherals or functions into a build. Back in the root NuttX directory,
there is the boards folder with logic supporting individual boards. According
to the system requirements, the driver initialisation and bring-up logics are
for the ESP32C3-devkit on the path boards/risc-v/esp32c3/esp32c3-devkit.
This significant folder includes adding above mention logic to a compilation
by modifying the corresponding makefiles and calling the setup function
prepared for a particular driver. The rule is valid for source files, but one
more directory called configs is prepared on this path, and there are several
configurations for setting up NuttX from scratch.

Furthermore, the folder accessible from the top of the directory structure
is driver. This section incorporates general NuttX drivers that are not
hardware-dependent, including the upper half of the CAN driver. The final
item mentioned here is the tools directory, including a configuration script or
a script for checking the coding style.

4.4 Basic work with RTOS

The NuttX follows POSIX standard, which means that NuttX supports
pthreads. Each task is running in a container called process, which consists
of a thread. Basically, when a task is started, it runs its own thread with
default priority 100. An example of creating a new thread follows.

pthread_t thread;
pthread_create(&thread, NULL, thread_func, NULL);

This sequence creates a thread with a default priority, and the thread runs a
function named thread-func. The priority can be changed while the thread
is running using the following command.

pthread_setschedprio(pthread_self(), 110);

Threads with different priorities can be used for peripheral priority boost.
This topic is discussed more in detail in the Testing part of this thesis.

17



4. NuttX RTOS.....................................
4.5 CAN Support

CAN has the weal support in the NuttX RTOS. It distinguishes between
Character Device Drivers and Specialized Device Drivers. CAN as a character
device driver provides only low-level support for communication between
stations and offers an approach as a device in the /dev directory. The driver is
logically split into two parts. The upper-level general driver provides software
FIFO for reception and transmission, API for the user-space applications,
and the lower-level driver functions, which the architecture-specific part of
the driver must implement. It connects to the low-level driver via callbacks
and provides functions to user-space applications. By contrast, the lower-level
driver, which is hardware-dependent, provides direct communication with the
CAN IP core. Direct communication means initial configuration, working
with hardware reception FIFO, transmission FIFO or transmission buffer,
depending on hardware design. Another point of view is offered by SocketCAN
because it has an approach as the network device which implements a network
stack[4]. The next difference is that the user-space application is connected
via a Socket Layer. This approach provides benefits in the possible access of
multiple applications to one CAN device simultaneously.

Figure 4.1: Driver layout [28]

4.6 ESP32-C3 Support

The NuttX has already integrated a vast amount of functionality to support
the ESP32-C3 board by Espressif. There is prepared a toolchain for compila-

18



.................................. 4.6. ESP32-C3 Support

tion or debugging by SiFive[29]. It creates an ELF file that must be processed
by esptool.py to the ESP32-C3 compatible image and then flashed to the chip.
NuttX uses the same bootloader and partition tables for its run delivered with
ESP-IDF SDK. The advantage is that this process of uploading bootloader
and partition tables can only be done on the first upload; afterwards, only
an image file is needed. There is only the ESP32-C3 DevKit board at the
time of writing. However, most of the periphery is accessible and is easily
and quickly configurable. Easy access is reasonable because several working
model configurations for different peripherals are saved in defconfigs. The
same applies to application examples in the apps repository that are prepared.
The most straightforward is to use the NSH configuration and connect to
the serial link via micro-USB or via Tx and Rx pins to use bidirectional
communication with the NuttX shell.

19



20



Chapter 5
Development in NuttX on ESP32-C3

Using the Linux operating system during NuttX development is not the only
option, but it is the most natural environment. In the case of this thesis,
WSL 2 with Ubuntu-20.04 functioned appropriately. ESP-IDF and NuttX
feature many build-in examples that can be run to get familiar with the
board and with the operating system for embedded devices. Both projects
are open-source, and the code is available on GitHub. This chapter illustrates
the optimal workflow during contribution to NuttX, and the requirements
are explained.

5.1 Start of Cooperation with Espressif Team

On the second of November, a meeting took place with Espressif and NuttX
RTOS developers on university premises. Firstly, representatives gave a
presentation about their companies, and then the projects they were working
on were introduced. The second part of the meeting on Karlovo Namesti in
CTU FEE discussed future possibilities of collaboration and the goals of this
thesis. Espressif had already provided two ESP32-C3 boards several weeks
prior to their arrival, so it was possible to get familiar and test some examples.
The last part involved something of a workshop, where problematic parts were
consulted together directly at the computer. The consultation included the
possibility of debugging on ESP32C3 and some compilation problems with the
NuttX example. As a result of the meeting, more ESP32C-C3 RISC-V boards
and control register definitions were provided, which served as a necessary
element for further development.

5.2 NuttX License

NuttX’s long-term philosophy is to be an open-source project under no
restrictive and copyleft license. The project has been developed for long time
under the BSD license, mainly under the BSD 3 and 4 clauses[30]. The BSD
is not considered a copyleft. It means that anybody has a right to use, modify
and share the code from projects with this license. Moreover, a modified
source code, thanks to the relaxed rules, is not required to be open-source

21



5. Development in NuttX on ESP32-C3 ..........................
and does not forbid sub-licensing. The actual licence used in the NuttX is
Apache 2.0 License, which is also a permissive license[31]. It is compatible
with the formerly used BSD license and was initially very similar to Apache
1.0. Subsequently, Apache 2.0 separated itself from BSD in the relaxation of
conditions and now directly determines the rules of patenting the code, which
results from the code under the Apache license. It adds the necessity to list
modification notes. Another difference is the advantage of using arbitrary
files by other projects without changing any word in the headers. All the
work resulting from this thesis is published under the Apache 2.0 license.

5.3 Coding style

For developers wanting to contribute to a project of such a size, coding style
must be determined. NuttX has its own strict rules for coding style, and
they are different from the style used, for example, in Linux or QEMU, which
both use a highly similar coding style. NuttX source tree includes scripts
inside the /tool directory, which can check most problems with written code
according to the official rules. The component that checks the file is the
nxstyle program, but there also exists a program called checkpatch ”: it
is a universal tool because it can check whole patches. Common mistake
encountered were incorrect padding, too long lines, or the necessity for the
exact style of comments in the code, which differ between line comments
and multiline comments. A simple example of the coding style with the if
condition is as follows:

#ifdef CONFIG_ESP32C3_TWAI0
if (port == 0)

{
/* Enable power to the TWAI module and
* Enable clocking to the TWAI module
*/

modifyreg32(SYSTEM_PERIP_RST_EN0_REG, 0,
SYSTEM_TWAI_RST_M);

modifyreg32(SYSTEM_PERIP_CLK_EN0_REG,
SYSTEM_TWAI_CLK_EN_M, 0);

}
#endif

Here is an example of calling the script for a newly developed driver.

./nxstyle -v 1 ../arch/risc-v/src/esp32c3/esp32c3_twai.c

or

./checkpatch.sh -f ../arch/risc-v/src/esp32c3/esp32c3_twai.c

22



.....................................5.4. Related work

Empty output means that most mistakes are solved, but something may be
found manually during a pull request. For example, padding of function
parameters that do not fit into one line length has to start in the same
position as the first parameter of the line above, but the script will not find
this problem; an example follows.

esp32c3twai_set_acc_filter(TWAI_ACCEPTANCE_CODE,
TWAI_ACCEPTANCE_MASK, true);

5.4 Related work

Prior to writing the driver, it is reasonable to analyse the related work,
which would show the right approach to future development. ESP-SDK has
a functional driver with working examples enabling data transfer; it is an
essential source of knowledge about the proper mechanism and approach to a
CAN IP core on the ESP32-C3 board. This implementation should correspond
to the official technical reference manual provided by Espressif[32]. Another
one from the interesting sources is LinCAN, written for Linux and capable
of supporting RT-Linux, written by Pavel Pisa. LinCAN is appropriate for
this thesis because it includes Philips SJA1000 support and has solved the
problem of bus timing well. Another elemental source must be found in NuttX
RTOS; it contains many implementations of the hardware-dependent side
of the driver. After a discussion with the thesis supervisor, the arm-based
board named lpc17-40 was selected. This board supports CAN and includes
model driver implementation under NuttX RTOS.

5.4.1 ESP-IDF TWAI

ESP-IDF provides a functional implementation of the TWAI driver on the
ESP32-C3 board. The driver is divided into three layers; the lowest layer is
hardware-dependent for the ESP32-C3 microcontroller. The control registers
of the TWAI IP core are in the memory-mapped peripheral (I/O) region, and
the driver uses a technique of accurately mapped structure, where each bit
corresponds to the register layout. It is a different approach from the one
intended for use in the newly developing NuttX driver. However, it shows
set values and can be double-checked against the documentation to verify
whether everything corresponds. Among other available information, it can
be discovered that there are combinations of modes for sending the messages,
parsing received messages and vice versa, and finally, bus timing settings. It
is necessary to consider that the ESP32-C3 technical reference manual is still
in a preliminary state. The middle HAL layer is common for more ESP32
family microcontrollers and composes the driver handling into a logical block
as the initialisation part. Here is a well readable sequence of commands
recommended by Espressif for control registers. For example, we can mention
the initialisation part, which firstly sets a reset state and reset error counters.
The last part of the driver provides user-space public functions for using

23



5. Development in NuttX on ESP32-C3 ..........................
the TWAI peripheral. This includes the functions for receiving and sending
messages.

5.4.2 LinCAN

The LinCAN driver is one of the first attempts to unify the Linux kernel
CAN drivers subsystem for more vendor interfaces[33]. It has started to be
developed and designed before a SocketCAN implementation by Volkswagen
Pengutronix. The LinCAN is based on a character driver; it registers a
character device. It implements multiple FIFO queues for different priorities
of sent messages. The LinCAN supports SJA1000 and Intel CAN controllers.

LinCAN provides a relatively well-elaborated mechanism to compute bit
timing according to the parameters of the specific controller[34]. It calculates
the Time Quanta, Synchronisation Segment, TS1 and TS2 for different con-
trollers. SocketCAN later adopted the mechanism for all Linux supported
controllers.

SJA1000 is a simple CAN controller developed by Philips (NXP)[35].
It provides a single TX buffer for sending the message. There is a FIFO
queue based on the byte granularity for the input, so incoming messages are
recorded into this FIFO. The capacity of FIFO is relatively small (64 bytes).
It can be optimally distributed between short or long messages.

5.4.3 lpc17-40 CAN

lpc17-40 is an ARM architecture based microcontroller with an exemplary
implementation of CAN driver under NuttX RTOS. This microcontroller has
two CAN cores, unlike ESP32-C3, which has only one. Nevertheless, it is
reasonable praxis to write the code as general as possible so that it will take
into consideration the future possible addition of more cores in the ESP32
SoC family. Therefore, this microcontroller is an excellent candidate to be
the NuttX side model for the newly developed driver. The structure of the
driver is comparable to the developed new driver, so that more information
can be found in the driver development section. The CAN driver for stm32 is
very similar, but with even more functionality provided ; for example, this
driver implements IOCTL calls.

5.5 Debugging

During development, it is essential to have tools and techniques to debug
the code, to be able to trace a bug and repair it. ESP32-C3 does not have
visual output onboard, such as an LCD or several LEDs. Therefore, most
of the debugging time is concentrated on the serial line. Here are some
options which a programmer has at their disposal, such as print debugging
and debugging using JTAG. A problem with writing more complex code, for

24



............................. 5.6. CAN Configuration on NuttX

example, a driver, has to be implemented an extensive part of the driver for
basic functionality like receiving or transmitting.

5.5.1 Debug prints

NuttX has a wide scale of debug features, and debug options are divided
into three levels. It is hierarchically based, which means that the next debug
level could be enabled only after the previous one. When general debug
output is enabled, it is possible to choose which peripherals will have the
right to write to the console device, for example, the NuttShell in the serial
console. The CAN peripheral has defined its own debug functions, which
prints the intended message and adds the function’s name that triggered
this print. The top-level is Error output in the CAN environment used by
function canerr—example of usage.

canerr("ERROR: Unsupported port: %d\n", port);

It continues with Warnings level.

canwarn("Remote request not implemented\n");

The last level is Informational Debug Output; most of the information is
hidden here, and it is possible to use it to check the correct behaviour of the
driver.

caninfo("%08" PRIx32 "<-%08" PRIx32 "\n", addr, value);

One of the techniques is to print the address and the content of a particular
register if it is written to it or read from it. In general, Debug prints affect
exact timing and, in extreme cases, also the behaviour. A partial solution can
be offered by a possibility to create a new thread, which will periodically read
and print the content of every critical register. The thread might have lower
priority, and it should not influence the driver workflow. Then the content of
the registers can be analysed and possibly find a miss-configuration or other
error.

5.6 CAN Configuration on NuttX

NuttX is a highly modular system and emphasises a small footprint. These
rules are also valid for CAN driver support. It has several configuration
possibilities, and each affects the exact size of the can message or code, which
goes to compilation. The default configuration corresponds to standard CAN
2.0A, where standard frames are used with 11 bits ID. The header includes an
identifier in uint16-t type, 4 bits for data length code, and a one-bit specifies
remote request. The data part consists of an 8 bytes buffer because the
data length code is a value between 0 - 8. In this case sizeof() function
returns a size of 3 plus 8 bytes for the CAN message. If configuration enables
CAN extended IDs (CAN 2.0B), the driver is required to be able to store

25



5. Development in NuttX on ESP32-C3 ..........................
29-bit identifiers; this leads to the necessity to use the uint32-t type. This
configuration results in a size of 5 plus 8 bytes of the CAN message. The
most remarkable change comes with enabling CAN FD because the data
buffer has to be lengthened to 64 bytes, and the header needs three state bits
in addition. Combined with extended IDs, it gives 6 bytes in the header and
64 bytes in the data part. The difference between the lowest message size (11
bytes) and the highest configurable size (70 bytes) is visible. The NuttX uses
an ingenious macro system for this functionality, which enables keeping the
image as small as possible. The demonstrated rules are also valid for the code
itself; therefore, a maximum of the unused code is delimited from the build.

5.7 API for the lower half of the character driver

The backbone connection between the upper and lower half of the driver
is the structure called can-dev-s. It contains several state information or
other data required by the upper half driver, but the most important for the
lower half driver developer are structcan-ops-s ∗ cd-ops; and void ∗ cd-priv;
structures. In terms of interfacing, the cd-ops structure is fixed, as it contains
several central functions that the lower half driver must support. Here is the
list of these functions; a more detailed description is in the implementation
part, where each function must be implemented.

dev_reset(dev)
dev_setup(dev)
dev_shutdown(dev)
dev_txint(dev,enable)
dev_rxint(dev,enable)
dev_ioctl(dev,cmd,arg)
dev_remoterequest(dev,id)
dev_send(dev,m)
dev_txready(dev)
dev_txempty(dev))

The second important structure is in cd-priv – it contains the whole state
and essential information for the lower half driver. By definition, void* is
without a fixed structure, and how this structure will be defined is entirely
determined by the lower half. The structures above provide API for the
upper half driver. Three functions are propagated in the opposite direction.
The first, a function can-register, is called after the CAN initialisation part,
and this function takes the parameter of the newly created can-dev-s. The
second function, can-receive, is required after reading a message from the
HW FIFO. This function’s purpose is to copy the message to the SW FIFO.
The last one, can-txdone, is called when the CAN controller contains the
queueing of outgoing messages feature. This functionality is not compatible
with ESP32-C3, and it is therefore not necessary to use that last function in
this project.

26



Chapter 6
Driver development

This chapter is the central component in the practical part of this thesis. It
describes the sequential process of developing the TWAI (CAN) driver for the
NuttX operation system. The work started by obtaining controller register
definitions provided by Espressif. The next step was to integrate the new
driver into the whole NuttX system. It comprised the correct configuration
in the Makefile structure and added a driver init call to the board bring-up
section. A part of integration was also understanding the Kconfig language to
provide users with several possible TWAI (CAN) communication parameter
configurations. And the final stage was the driver development itself.

6.1 Controller registers

In terms of the controller registers, the definitions were not ready at the time;
therefore, manual interaction was needed from the Espressif side. Fortunately,
the ESP32-C3 controller register definitions were generated immediately from
a similar ESP32-S2 chip’s CSV and necessary changes were made. The
suggested source of register level documentation is in the Technical Reference
Manual in the TWAI registers section, where all registers are described in
their entirety. During the driver development process, it was recommended
to double-check the layout of the bits, but no problem was detected. The
resulting header file had to conform to formatting NuttX conventions like all
other files. This code is architecture-specific and belongs to the hardware
folder specified for register definitions. Register position is set by #define in
the position of the base address chosen for the TWAI peripheral plus register
offset. Example for TWAI status register and its definition:

#define TWAI_STATUS_REG (DR_REG_TWAI_BASE + 0x8)

A Group of several macros with the same structure also define individual
fields within the specific registers. It could be shown as an example on the
register field for checking whether the packet prepared in data registers is
complete. The first definition helps one-bit fields to decide the ifcondition
for yes-no state recognition without any additional shifting.

#define TWAI_MISS_ST (BIT(8))

27



6. Driver development ..................................
The following #define sets the same register field’s maximal value in the
correct place within the register.

#define TWAI_MISS_ST_M (TWAI_MISS_ST_V << TWAI_MISS_ST_S)

The subsequent line defines maximal value.

#define TWAI_MISS_ST_V 0x00000001

The last line defines the shift within the register.

#define TWAI_MISS_ST_S 8

6.2 Driver Integration

Before the driver itself could be written, the whole structure for correct
inclusion into the build must be added. This directs attention to NuttX
boards section, where the function esp32c3-bringup() is located. If CAN is
enabled, the entry point to initialise the whole peripheral is there. Function
esp32c3-twai-setup(); is called from the bringup section and tries to initialise
the TWAI driver and register it. Makefile includes the file esp32c3-twai.c
into build with its function esp32c3-twai-setup. The condition below is only
fulfilled if CAN is enabled in the configuration.

ifeq ($(CONFIG_CAN),y)
CSRCS += esp32c3_twai.c

endif

The setup function connects the upper and lower driver and their data. The
initialisation of TWAI is the first function called from the lower driver, and it
returns can-dev-s containing the necessary functions implemented inside. The
structure is passed to the upper driver in the can-register function. Because
ESP32-C3 has only a single TWAI core, it is automatically registered as can0
(twai0).

6.3 TWAI driver options

Kconfig system is used to set the parameters, as in the whole NuttX RTOS.
The path is:

System Type -> ESP32-C3 Peripheral Support -> TWAI (CAN) 0

It has to be enabled, then occurs settings:

System Type -> ESP32-C3 Peripheral Support ->
-> TWAI driver options

28



.....................................6.4. TWAI Setup

The first two options are for TX and RX pins. It can be an arbitrary GPIO
pin, according to Espressif’s datasheet. The idea is to provide default values,
wherever necessary, to have an immediately runnable configuration after the
TWAI driver is enabled. The following four parameters belong to bus timing.
More than one approach is possible in this instance. The user can be given
complete control over all the parameters of bus timing. However, it is not
trivial to set these parameters correctly, so at least some checks can be added
in order to ensure that the parameters are in suitable intervals and meaningful.
A similar approach as in Linux was chosen here in this project. It means that
the user is asked only for the specification of bitrate and a sample point ratio.
It is expected to have the sample point in an interval of 1 - 100, and the
algorithm calculates all the necessary parameters. The other two bus timing
parameters are SJW, which limits the number of Time Quanta corrections
during bit Resynchronisation, and Sampling, which decides whether the bus
is sampled three times. The last parameter, which was recently added and is
not even in the mainline[38], can enable external clock pinout. It is called
CLKOUT, it can be assigned to arbitrary unused GPIO, and it will provide
an available 40 MHz clock source for testing or control.

6.4 TWAI Setup

The first step that must be taken is to turn on the clock for the TWAI
controller. This step is combined with a reset signal to the controller. How to
recognise a problem with the clock on a controller? The most straightforward
way is to write to the R/W register and try to read the same value; if it
does not match, it could be a clock problem. Another initial responsibility
of the TWAI driver is setting up GPIO pins for transmission and reception.
Both are set as IO pins through an alternative function on the pins set in the
configuration section. Below is an example of setting the TX pin.

esp32c3_gpio_matrix_out(CONFIG_ESP32C3_TWAI0_TXPIN,
TWAI_TX_IDX, 0, 0);

esp32c3_configgpio(CONFIG_ESP32C3_TWAI0_TXPIN,
OUTPUT_FUNCTION_1);

Optional parameter CLKOUT in configuration determines if it is set external
clockout pin. After this general part of setting, reset of TWAI driver is called.

6.4.1 Reset

It is necessary to disable interrupts and the simultaneous register values
change by entering the critical section. A critical section is mainly for
the case that interrupts routine is called simultaneously, which can lead to
potential undefined behaviour. After this step, the TWAI controller can be
put into the Reset state, where it cannot access the bus. It means that the
TWAI is disabled and ongoing transmissions stopped. For TWAI controller
interrupts, it is sufficient to disable it by writing zero to the corresponding

29



6. Driver development ..................................
register. During the Reset state, some registers could have different access
rights. For example, TX and RX Error Counter Registers could be mentioned
because it is possible to write into them only in the Reset mode. Both
counters are reset to zero. Nevertheless, these registers are read-only in the
Operation mode. Before leaving the Reset mode, the Acceptance filters and
bit timing constants need to be set. More information is provided in the
sections below.

6.4.2 Acceptance filters

The next step, which must be processed under the Reset state, is setting
acceptance filters. Incorrect settings can lead to confusion as the controller
will not be receiving data from the CAN bus, and any errors will not be
reported. Default control register order must be changed during Reset mode
for acceptance filter settings. The first four Data registers are mapped for
acceptance code and the second four for acceptance mask. The default values
for being able to accept all messages on the bus are 0x0 for the acceptance
code and 0xffffffff for the acceptance mask. Constants are used now,
but this functionality can be extended by adding user-configurable acceptance
filters.

6.4.3 Bit Timing

The setting of bit timing is dependent on the frequency of the peripheral clock.
TWAI Controller is connected to the APB-CLK according to the Technical
Reference Manual. The communication frequency of TWAI is calculated
based on APB-CLK, which can be obtained from the timing function.

int esp32c3_clk_apb_freq(void)

The remaining parameters influencing the baud rate are calculated in a bit
timing algorithm. It is a combination of a prescaler and both segments. See
the example in the CAN chapter. The algorithm for finding a feasible solution
for bit timing constants distribution is based on Doc-tor Pisa’s previous work
on LinCAN driver and other work related to CAN bit timing. The algorithm
finds the value for the baud rate prescaler and total Time Quanta for Time
Segments. BRP must lie within an interval of possible division; the same
applies to Time Segments. After a feasible solution is found, the layout for
the sample point location is selected according to the user’s configuration.
The sample point as the function parameter is between 0 - 100 as a percentage
distribution for a given bit. The last part of the bit timing function is to
set calculated values into two bit-timing registers. The setting of bit timing
registers is possible only in Reset mode; they are read-only otherwise.

6.4.4 Leaving Reset state

The controller distinguishes several modes after leaving the Reset mode. Zero
is set to the Mode register in the default case; it causes regular functionality

30



................................... 6.5. TWAI Shutdown

of Operation mode, with ACK required for each message. If in TWAI driver
settings loopback is enabled, the Self-test mode is activated, and no ACK is
required. This mode can be used for testing without an external transceiver,
allowing the connection of TX and RX pins directly on the board. The last
stage in the reset process includes the Abort transmission command, which
stops all the potentially pending transmission. The command for releasing
the RX buffer ensures that RX hardware FIFO is empty and data registers do
not contain any latched frame. The last part is cleaning the overrun flag. The
last stage is performed after reset-ting the controller because the Command
register can only be modified in Operation Mode. The critical section must
be left before leaving the function.

6.4.5 Interrupt setup

The calling sequence is consistent; the user-space application calls to open the
CAN interface, and the request is propagated to the CAN upper half driver.
Here is where the SW FIFO is initialised, and the setup function of the lower
half driver is called. The TWAI driver, to be prepared for communication,
needs to enable and attach interrupts. The whole setting must be in the
critical section. Firstly, interrupts from the point of view of the IP core
require correct adjustments. By default, all interrupts provided by the TWAI
controller are enabled.

twai_putreg(TWAI_INT_ENA_REG, TWAI_DEFAULT_INTERRUPTS);

The previous step is followed by reading the actual interrupt state because
every read cleans all set interrupts. It is good practice to clear any latched
interrupt before the TWAI interface is involved in communication. Secondly,
interrupts from the point of view of the CPU must be attached. This process
consists of a request for the CPU interrupt for the TWAI peripheral with the
desired priority. Upon success, allocated CPU interrupt is obtained and can
be attached with its interrupt service routine and function argument. The
last step is to enable the CPU interrupt linked to the TWAI device.

6.5 TWAI Shutdown

TWAI shutdown is in opposition to the TWAI setup. More precisely, it
reverses the action from the Interrupt setup. If the user-space application
calls a close function on an already opened CAN interface, the CAN Close
function from the upper half CAN driver is triggered. It deallocates SW
FIFO and calls the shutdown function of the lower half driver. If the TWAI
peripheral has been assigned a CPU interrupt, it is firstly disabled. Afterwards,
all handlers are detached. In the end, all IRQ and resources associated with
the interruptions are freed.

31



6. Driver development ..................................
6.6 TWAI Transmission

The transmission is a complex process, and it will be described from a higher
to a lower layer. Transmission at the lower half driver will be described in
detail, as this was one of the leading implementation goals of this work. The
chain starts in the user-space application, where the function Write is called.
It has to be called with three parameters. The first is the file descriptor
pointing to the CAN interface, the second is the correctly filled CAN frame,
and the last is a count of bytes for an actual frame. The CAN write function
of the upper half CAN driver is triggered, and its purpose is to push the
frame in SW FIFO. If HW has an empty TX buffer, it calls the CAN Xmit,
which triggers the sending function of the lower half driver. The parameters
are a shared can-dev-s struct and a pointer to the message at the head of
the SW FIFO. The content of the frame is filled in data registers. The TX
command is set, and the frame will be sent to the bus as soon as possible.
After successful transmission to the bus TX buffer complete interrupt is raised
and can be handled by the driver logic.

6.6.1 TWAI TX enable

The upper half driver could control the TWAI TX interrupt. However, the
lower half driver implements only the possibility to disable TX interrupt
by calling the TX interrupt function. This restriction is because the TX
interrupt is automatically enabled just before a message is sent to avoid
lost TX interrupts. The function must be in the critical section because the
interrupt handler also affects the TX interrupt.

6.6.2 TWAI TX empty and TX ready

TWAI IP core implements one transmission buffer. TX empty function is
called whenever it is required to ascertain the state of the TX buffer. The
desired ability is only to respond positively if the TX buffer is empty and
negatively if the TX buffer is full. A flag, which indicates the state, is in the
Status register. Because only one TX buffer is at disposal, the TX ready
function’s behaviour is the same as the TX empty function. The TX ready
will respond differently if more TX buffers will be onboard.

6.6.3 TWAI Send

TWAI protocol is compatible with CAN 2.0; thus, the data part has between
zero and eight bytes. The data length code is checked before any data
handling. This information is directly encoded in the DLC field. TWAI driver
supports sending RTR frames, and if it is the case, the flag in the register
has to be set. The rest of the function must be in the critical section because
registers used in interrupts are also changed. For example, TX interrupts
must be enabled before sending a message. The first Data 0 register contains
frame information such as DLC and frame format. Due to the support

32



................................... 6.7. TWAI Reception

of extended frame ID, there is a different approach to the registers. The
subsequent two Data registers are set aside for the Standard ID, followed by
data bytes according to DLC. In the case of Extended ID, there are allocated
four Data registers for identifier, and the data bytes are narrowly behind
them as in the previous case. ID is split and shifted, as ESP32-C3 Technical
Reference Manual shows, mainly one byte per register. The final step is to set
a flag in the Command register signalling that data in registers are valid and
they can be sent to the bus. Here are again two modes distinguished Again,
two modes are distinguished here. In standard Operational mode, only the
TWAI-TX-REQ flag is set to allow the to start transmission. For loopback
mode, it is a different command named TWAI-SELF -RX-REQ. It is set
together with aborting a pending transmission request TWAI-ABORT -TX.
This combination allows sending a message without waiting for the ACK and
results in a single shot attempt.

6.6.4 TWAI TX interrupt

The last part of the transmission process is in the ESP32-C3 interrupt
handler. The TWAI ISR is called each time a new interrupt occurs. Reading
from interrupt registers clears all raised interrupts. The TX interrupt is
triggered when the HW TX buffer becomes empty after successful frame
transmission. In this case, no new TX interrupt is expected and all TX
interrupts can be disabled until the following transmission. In the interrupt
handler, the TWAI-TX-INT -ST -M interrupt is awaited, indicating the
finished transmission, and it can be reported to the higher half driver that
the TX buffer is again available.

6.7 TWAI Reception

The TWAI reception has similar complexity and is analogous to data trans-
mission; however, the hierarchy of called functions is the opposite. Therefore,
it will be described from a lower to a higher layer. Reception at the lower half
driver will be described in detail, as this was, together with the transmission,
one of the leading implementation goals of this work. The first part is a
reception of the frame in HW RX FIFO implemented in the controller. The
first received frame is automatically mapped on data registers, and the RX
interrupt is raised when the frame arrives. The received frame is read into
the NuttX CAN structure, and the higher half driver function CAN Receive
is called. The message is copied to the SW FIFO and waits here to be read
by the user-space application. The Read function has similar parameters as
Write, and it needs a file descriptor. The difference is in the pointer to the
frame structure, where all data will be filled, and the last parameter is the
size of the prepared buffer.

33



6. Driver development ..................................
6.7.1 TWAI RX enable

The reception logic is reliant on enabled RX interrupt. The lower half driver
provides a function which enables or disables the RX interrupt. This function
is called from the upper half driver in two cases. Firstly, it is called whenever
the CAN device is opened; the RX interrupt is enabled. Secondly, when the
CAN device is closed, the RX interrupt is disabled.

6.7.2 TWAI RX interrupt

The whole TWAI RX logic takes place in RX interrupt routine from the
point of view of the lower half CAN driver. The first newly arrived frame is
mapped on data registers by the controller, and the RX interrupt is raised.
The TWAI interrupt handler recognises raised interrupt as the TWAI RX
interrupt TWAI-RX-INT -ST -M . The ISR allocates structure for a message,
and before filling it up, it is set to zeros by the memset. Frame information
is read from Data 0 register, such as frame format, DLC or RTR flag. If the
message is an RTR frame, the flag in the message header structure is set.
Afterwards, the message ID encoded in the subsequent two Data registers
is read for the SFF, whereas for the EFF, it is in the subsequent four Data
registers. The DLC field from Data 0 register determines the number of data
registers with message data. This number is checked in the expected interval
of zero to eight, and then the message data is read. The last step is to call
the upper half driver function CAN receive and pass the structure holding
the received frame.

6.8 IOCTL

IOCTL is a system call for input/output device, aiming for a character
device driver in this case. The upper half CAN driver distinguishes several
IOCTLs, including reading and setting a bit timing values and acceptance
filters. It can be used for bus-off recovery. It is not required to support all
IOCTL calls for the lower half CAN driver. Therefore, only the IOCTL call
used in the CAN example provided by NuttX Apps is implemented. The
CANIOC-GET -BITTIMING call is used to obtain bus timing information
from the controller set during setup. It can be helpful to support this call
because it can serve as a back-check of the correct bit timing settings. The
principle of getting bit timing information is to read both timing registers
and get all communication parameters, for sample, both Time Segments or
prescaler value. The IOCTL is called with the pointer to the bit timing
structure as a parameter. The canioc-bittiming-s struct is already allocated
and is then filled with values from the registers. The user-space application
can recalculate the TWAI bitrate to verify the correct setting.

34



................................. 6.9. TWAI Configuration

6.9 TWAI Configuration

Each board has its own set of prepared configurations that serves as a starting
point for using a given peripheral or feature. The initial configuration for
building the TWAI driver configuration was NSH - the NuttShell config.
Everything can remain unchanged, and several properties must be added to
ensure correct TWAI behaviour. It is enough to enable the CAN driver and
the TWAI (CAN) 0 interface. In the configuration, it is also prepared the
CAN utility example for sending and receiving frames. For a user of NuttX,
it is enough to run a configuration script with a twai configuration, and the
board will be ready for the CAN communication.

tools/configure.sh esp32c3-devkit:twai

This configuration is at the disposal of every NuttX’s master branch in the
esp32c3-devkit directory.

6.10 Contribution

The NuttX source code development is hosted on GitHub. A GitHub account
is required to contribute to the NuttX RTOS, and then it is possible to fork
the project[36]. The development can be kept in one‘s own fork alongside
the actual version of the NuttX. The development of this driver took several
months, and some changes in NuttX directly influenced the developing code.
The changes mainly concerned header files and the renaming of some macros.
Every problem must be solved before attempting to submit changes to NuttX.

6.10.1 Pull request

The desired situation is when the implementation part is complete, the driver
is functional, and the fork is up to date with the master branch. Furthermore,
it is necessary to check all the modified and added files for the correct coding
style. In this state, the branch often contains many commits made during
the work. The rule for pull requests is to squash the commits by rewriting
commit history. It depends on reviewers if they allow single commits only or
commits divided into logical units. The contribution of this work consisted of
five commits. The first was ESP32-C3 controller register definitions provided
by Espressif located in the architecture-specific hardware section. The second
was also in the architecture-specific section, and it was the ESP32C3 TWAI
(CAN) controller driver itself. This section contained the source code for
the third commit, which included the driver into the Kconfig system and
build. The last two commits are from the NuttX boards section. One commit
provides code for initialising the peripherals at board startup, and the last
commit provides a sample configuration for the first system setup with a
functional TWAI peripheral. During reviews, a few problems occurred, but
they can be easily fixed. Predominantly, these involved coding style errors,

35



6. Driver development ..................................
which the checking script did not reveal. Another problem was with the old
keyword FAR, which was, during the implementation of this driver, removed
from all RISC-V based boards. Then the pull request was finally accepted,
and the driver has become a part of the NuttX RTOS.

36



Chapter 7
Testing

The testing part is divided into several sections. It corresponds to the time
sequence of tests performed. Firstly, the loopback mode of communication
was implemented and tested by an oscilloscope on GPIO pins two and three.
No external transceiver is needed in this mode, and the connection mediates
the jumper.

Figure 7.1: Pin connection via jumper and connection to oscilloscope

After confirmed communication on the pins, the next step was to check
the correct bus timing. Without accurate timing on the bus would not be
possible to communicate with other stations.

37



7. Testing .......................................
freq bit [us] Tseg1 [-] Tseg2 [-] BRP [-]

125 Kbps 8 15 4 32
250 Kbps 4 15 4 16
400 Kbps 2.5 16 8 8
1 Mbps 2 15 4 4

Table 7.1: Bittiming parameters based on frequency

The measured values were checked for compliance with the signals on the
wires.

Figure 7.2: Oscilloscope confirmation of correct timing parameters for bitrate
500 Kbps

Linux provides robust CAN utilities for CAN communication. These Can
utilities were used for testing of TWAI driver in standard Operation Mode.
For this measurement, the MZ APO board was used. More details about this
board are in Section 7.1.1.

38



.................................... 7.1. Latency tester

Figure 7.3: Connection with MZ APO board for thorough testing

7.1 Latency tester

After simple tests with the newly developed TWAI driver, a possibility for
proper automated testing appeared. My colleague Matěj Vaslevski was
working on upgrading the Latency tester application for his Master’s thesis[8].
The Department of Control Engineering CTU FEE has been developing the
whole application for several years. The LaTester had to be slightly modified
for testing with the "ESP32C3 board". Time accuracy is in microseconds, and
the application disposes of several testing modes, all methods of testing are
described below, and all resulting graphs are included in the appendix. The
LaTester was initially developed to analyse a Linux-based CAN gateway and
its continuous testing. Two independent CAN buses are needed for testing.
The principle is as follows: The CAN bus zero generates CAN traffic and
records all messages with timestamps. In the optimal case, any board which
can run Linux serves as Gateway. This board runs a user-space application,
which copies received frames to the CAN bus one. The LaTester records
timestamps from frames on CAN bus one and pairs them with previously
sent messages. Results are logged to the file with the time differences and
statistics.

39



7. Testing .......................................

can0 can1 can2 can3

MZAPO
Gateway

Eth

Eth0

USB
Eth1

PC

MicroZed APO Board
To LAN

Console + reset

Ethernet

CAN bus 0 CAN bus 1

Figure 7.4: Original connection for LaTester application

7.1.1 Connection

The MicroZed APO board served as the PC. At least three CAN IP Cores
are required for the proper LaTester functionality. The MZ APO is based on
Xilinx Zynq 7000 SoC, and CTU has designed its layout and peripherals of
the board. It has two physical CAN IP Cores; therefore, it had to be used
CTU CAN FD IP cores designed for FPGA, and four instances were used
during testing[37]. Crossbar connected them on the FPGA. The ESP32-C3
running NuttX RTOS took over the gateway functionality. Unfortunately,
only one TWAI (CAN) port is at disposal. Therefore, the logic of the two
buses had to be changed; the newly developed idea worked with one CAN
bus and messages distinguished by its ID, not by the CAN bus. The LaTester
sent a message with ID 0xA and waited for a response with ID one less
0x9. This rule enforces the priority of transmission from Gateway to get bus
access as soon as it processes the received message. The message itself was
distinguished the same way as in default mode by increasing the number in
the data part. The MZ APO clock settings enable measuring timestamps
in CAN IP cores in nanoseconds to an accuracy of ten nanoseconds. It is
enough to consider microseconds for the "CAN" communication.

A simple program for NuttX was written, which provides the Gateway
functionality. The application was named CAN Ping and firstly opened the
CAN interface. Before it started the communication, it changed its priority to
a higher level than other programs running in NuttX (from 100 to 110). The
rest of the program cycle was to wait for reception of the frame, decrement
its ID by one and send it back to the bus. The only exception was ID
number zero, which CAN Ping ignored because LaTester used it for its time
synchronisation. As for the LaTester side. it uses standard Linux SocketCAN
driver to communicate on the bus.

40



.................................... 7.1. Latency tester

can0 can1 can2 can3

ESP32
DUT

Eth

Eth0

USB
Eth1

PC

MicroZed APO Board
To LAN

CAN bus 0

Figure 7.5: Modified connection for LaTester application with ESP32-C3

Each test has thousands of exchanged messages (3200) and can be divided
into several groups. The results are visible in the two tables below. The first
table shows measured data for a single transmission per time unit, which
means that the following message is not sent earlier than the expected response
arrives. The combination for measurement was combined from three bitrate
speeds, where 125 Kbps is widely used in automotive or 1 Mbps, the fastest
sup-ported speed by ESP32-C3. Messages with different data lengths (2, 4,
8) have been added as an additional dimension.

2 data bytes 4 data bytes 8 data bytes
bitrate avg [us] worst [us] avg [us] worst [us] avg [us] worst [us]

125 Kbps 0 0 0 0 0 0
500 Kbps 8 10 8 10 10 12
1 Mbps 10 12 10.25 12 12 14

Table 7.2: Measured NuttX latencies, messages sent one at a time. 3200 messages
were sent.

The second table shows measurements for a flood of messages. The flood
means that the LaTester tries to send each message as fast as possible.
However, it must wait before sending the next frame when a message with a
lower ID is transmitted from the NuttX. The combinations are similar to the
previous case.

2 data bytes 4 data bytes 8 data bytes
freq avg [us] worst [us] avg [us] worst [us] avg [us] worst [us]

125 Kbps 0 0 0 0 0 0
500 Kbps 132.5 286 170.3 178 246.2 250
1 Mbps 66 141 85.2 89 123.2 127

Table 7.3: Measured NuttX latencies, messages sent a flood mode. 3200 messages
were sent.

41



7. Testing .......................................
The last test was made to check the correct behaviour of threads priorities

on ESP32-C3. The wrong setting was simulated by decreasing priority to the
CAN Ping application, and the expected values should be worse than in the
correct setting. The difference was measured, and it is visible in the graph
below that latencies increased.

 1

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500  3000  3500

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency with load - show how incorrect priority affects latency

Correct priorities
Inverse priorities

Figure 7.6: Comparison of latencies in correct and inverse priority settings

7.2 Motor control

One of the suggested testing methods was to use the TWAI driver for Pysim-
Coder based control application. My colleague Dion Beqiri worked on ex-
tending Pysimcoder for vector blocks, as well as testing RISC-V board with
NuttX and pysimCoder as a Bachelor Thesis[9]. Mr Beqiri used the ESP32-
C3 with pysimCoder and NuttX to control the peripheral to demonstrate
his work. There was already an existing project for controlling a 3-phase
Permanent Magnet Synchronous Motor with RaspberryPi, which was used as
a template for a new NuttX block in pysimCoder. Then hardware was set up

42



.................................... 7.2. Motor control

by connecting individual pins of the FPGA expansion unit to the ESP32-C3
using jumper cables.

1 2
3 4

5 6
7 8
9 10
11 12

13 14
15 16
17 18
19 20

21 22
23 24
25 26
27 28

29 30
31 32
33 34

35 36
37 38
39 40

3V3

5V

GND

GPIO3

GND

SPI MOSI
GPIO7

GPIO6

GPIO2

GPIO10

GPIO5

GPIO4

7

C
A

N
H

C
A

N
L

C
TX

C
R

X

G
N

D

3v3

2 3

Tx

Rx

GND

RxD

VCC

TxD

GND

3V3

SPI MISO

CAN TX

CAN RXSPI CS

SPI CLK

CAN CLK

ESP32C3-DevKitM-1

USB-to-LVTTL

UART

RPi-MC-1

CAN

WCMCU-230

Figure 7.7: Connection of whole motor control application including TWAI
peripheral for CAN communication [9]

Furthermore, connections were made for the CAN signals to send data to a
computer. The new NuttX block created for pysimCoder then is tested using
this hardware. The block seems to work. However, there is a limitation of
the ESP32-C3: it cannot reach a high enough sampling frequency to do PID
control. Therefore feedforward simple control diagram has been constructed
for it.

43



7. Testing .......................................

Figure 7.8: The physical connection of whole motor control application, including
TWAI peripheral on ESP32-C3 for CAN communication in laboratory

7.3 Results

All tests passed successfully from the side of the TWAI driver. The TWAI
controller communicated with several independent targets, and no problem
occurred. It means that no lost messages or incorrect data were observed.
Tests focused on proper timing and flooding with messages.

7.3.1 LaTester

We encountered performance issues on the MZ APO board during a flood of
messages on higher bitrates during testing (lost thousands of messages per
test) with LaTester. Several CAN IP cores were connected to the bus, and the
number of received messages was around ten thousand per second. CAN IP
cores raised RX FIFO overflow interrupt, indicating lost messages required for
testing. The required results were achieved with several modifications, and the
final testing was not affected by the error. What improved the performance
was, primarily, the setting of the acceptance filter only for wanted ID (0x9)
from NuttX. This lower the rate of RX interrupts and filling of the RX FIFO.
The most significant improvement was made when the real-time Linux patch
was applied. It helped because it allowed increasing priority for the interrupt
handler.

44



....................................... 7.3. Results

7.3.2 Demonstration of the TWAI driver function with
PysimCoder

The whole control application worked successfully. The TWAI driver printed
the state of the motor to the serial console and data corresponding to the
movement.

Figure 7.9: The final layout of the control application in PysimCoder and visible
output from the CAN bus [9]

45



46



Chapter 8
Conclusion

The thesis goal was to analyse the driver development process and to con-
tribute with TWAI driver to NuttX RTOS. The TWAI driver for ESP32-C3
was accepted to the mainline, and the result of this work is available in NuttX
RTOS[39]. The created sample configuration demonstrates how to quickly
integrate CAN into any application running in NuttX on ESP32-C3. Part
of the sample configuration is a NuttX CAN utility application prepared for
easy functionality testing.

The first part of the analysis described CAN technology, including
its communication principles. The thesis introduced Espressif’s ESP32-C3
hardware description and its official IoT Development Framework ESP-IDF.
Principles of Character Device Drivers in NuttX were explained in detail.
For the implementation of transmission, it was necessary to know the prop-
agation of user-space application call through the general CAN driver to
the architecture-specific TWAI driver and vice versa. A Part of the work
was an installation and maintenance guide on working with Espressif’s SDK,
moreover downloading and working with NuttX.

All points from the Master’s Thesis Assignment were achieved. The
TWAI driver was successfully integrated into the NuttX. This required to
integrate the TWAI driver in the build and to extend the Kconfig configura-
tion system. The transmission and reception abilities were implemented and
tested. The TWAI driver followed requirements for inclusion in the NuttX
RTOS and passed all comments during its pull request.

The driver and its stability and throughput have been successfully tested
by a CAN latency tester based on GNU/Linux based system. Usability in
PysimCoder generated control system has been verified as well.

8.1 Future implementation goals

The general CAN driver provides IOCTL calls support in the NuttX. Im-
plementing IOCTL calls in the architecture-specific drivers is not required,
and most of them ignore this potential. In the TWAI driver, a bit-timing

47



8. Conclusion......................................
IOCTL support is implemented, but it is possible to implement the rest of
the officially supported IOCTL calls in the future extension.

Heavy CAN traffic with artificial delay in the driver "RX interrupt" re-
ceive handler may cause RX FIFO overrun. In this situation, the last message
does not fit into the RX buffer and becomes invalid. TWAI controller does
not have any mechanism for discarding the whole RX FIFO. However, the
controller has a flag if the current message mapped on Data registers is valid.
This information should be sufficient to discard this invalid message and
continue. I attempted to write a recovery mechanism, but communication
after enforced RX overflow did not recover.

CAN bus timing is a complex problem, and it is difficult to calculate all
the parameters optimally. The actual implementation in the TWAI driver
behaves similarly to the modern Linux solution. There is a potential for
improvement because rate error is the only criteria parameter for a final
solution. Adding an extension of the optimal parameter set suitable for a
particular controller could improve timing parametrisation.

48



References

[1] David A. Patterson and John L. Hennessy. 2017. Computer Organization
and Design RISC-V Edition: The Hardware Software Interface (1st. ed.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[2] J. Palomino, E. Cuty and A. Huanachin, "Development of a CAN Bus
datalogger for recording sensor data from an internal combustion ECU,"
2021 IEEE International Workshop of Electronics, Control, Measurement,
Signals and their application to Mechatronics (ECMSM), 2021, pp. 1-4,
doi: 10.1109/ECMSM51310.2021.9468837.

[3] G. Marcon Zago and E. Pignaton de Freitas, "A Quantitative Performance
Study on CAN and CAN FD Vehicular Networks," in IEEE Transactions
on Industrial Electronics, vol. 65, no. 5, pp. 4413-4422, May 2018, doi:
10.1109/TIE.2017.2762638.

[4] Dr. Oliver Hartkopp, The CAN networking sub-
system of the Linux kernel, https://www.can-
cia.org/fileadmin/resources/documents/proceedings/2012-hartkopp.pdf,
accessed: 2022-05-20.

[5] Dr. Oliver Hartkopp, The CAN Subsystem of the Linux Kernel,
https://wiki.automotivelinux.org/-media/agl-distro/agl2017-socketcan-
print.pdf by Oliver Hartkopp - page 2, accessed: 2022-05-19.

[6] Pavel Pisa, GNU/Linux, CAN and CANopen in Real-
time Control Applications by Pavel Pisa - page 10,
https://www.linuxdays.cz/2017/video/Pavel-Pisa-CAN-canopen.pdf,
accessed: 2022-05-19.

[7] doc. Ing. Jiří Novák, Ph.D., Computer Communication Interfaces course
on CTU FEE BE4M38KRP, Controller Area Network - Presentation,
accessed: 2022-05-19.

[8] Matěj Vasilevski - Master’s Thesis, CAN Bus Latency Test Automation
for Continuous Testing and Evaluation, May 2022

49



8. Conclusion......................................
[9] Dion Beqiri -Bachelor Thesis, Open Rapid Control Prototyping, Education

and Design Tools, May 2022, https://github.com/beqirdio/pysimCoder-
thesis-DB

[10] Jan Charvát, Model of CAN FD Communication Controller for QEMU
Emulator, https://dspace.cvut.cz/bitstream/handle/10467/87714/F3-
BP-2020- Charvat-Jan- Model-of-CAN-FD- Communication-Controller-
for-QEMU-Emulator.pdf, accessed: 2022-05-19.

[11] QEMU, CAN Bus Emulation Support,
https://www.qemu.org/docs/master/system/devices/can.html, ac-
cessed: 2022-05-19.

[12] CAN in Automation, CAN protocol implementations, https://www.can-
cia.org/can-knowledge/can/can-implementations/, accessed: 2022-05-11.

[13] Espressif Systems, ESP32-C3-DevKitM-1,
https://docs.espressif.com/projects/esp-idf/en/v4.4/esp32c3/hw-
reference/esp32c3/user-guide-devkitm-1.html, accessed: 2022-05-20.

[14] Jan Charvát, esp32c3 m1 nuttx, arcticle written during the writing of
the Maste’s Thesis, https://gitlab.fel.cvut.cz/otrees/risc-v-esp32/work-
and-ideas/-/wikis/esp32c3-m1-nuttx, accessed: 2022-05-20.

[15] Espressif Systems, Official IoT Development Framework,
https://www.espressif.com/en/products/sdks/esp-idf, accessed: 2022-05-
20.

[16] Espressif Systems, ESP32-C3-MINI-1 ESP32-C3-MINI-1U Datasheet,
https://www.espressif.com/sites/default/files/documentation/esp32-c3-
mini-1-datasheet-en.pdf, accessed: 2022-01-20.

[17] Espressif Systems, ESP-IDF Programming
Guide, https://docs.espressif.com/projects/esp-
idf/en/v4.4/esp32c3/index.html, accessed: 2022-05-20.

[18] Espressif Systems, esp-idf, https://github.com/espressif/esp-idf, accessed:
2022-05-20.

[19] Espressif Systems, ESP-IDF Windows Installer Download,
https://dl.espressif.com/dl/esp-idf/?idf=4.4, accessed: 2022-05-20.

[20] Espressif Systems, esp-nuttx-bootloader,
https://github.com/espressif/esp-nuttx-bootloader/releases, accessed:
2022-05-20.

[21] CSS Electronics, CAN BUS EXPLAINED - A SIMPLE INTRO
(2020), https://www.csselectronics.com/screen/page/simple-intro-to-can-
bus/language/en, accessed: 2022-05-20.

50



..............................8.1. Future implementation goals

[22] The Apache Software Foundation, About Apache NuttX,
https://nuttx.apache.org/docs/latest/introduction/about.html, ac-
cessed: 2022-05-11.

[23] The Apache Software Foundation, NuttX Protected Build,
https://cwiki.apache.org/confluence/display/NUTTX/NuttX+Protected+Build,
accessed: 2022-05-11.

[24] Zephyr Project, https://www.zephyrproject.org/, accessed: 2022-05-11.

[25] Mbed OS, https://os.mbed.com/, accessed: 2022-05-11.

[26] The Apache Software Foundation, Getting Started,
https://nuttx.apache.org/docs/latest/quickstart/index.html, accessed:
2022-05-11.

[27] The kernel development community, Kconfig Language,
https://www.kernel.org/doc/html/latest/kbuild/kconfig-language.html,
accessed: 2022-05-11.

[28] Wikimedia Foundation, Inc., SocketCAN,
https://en.wikipedia.org/wiki/File:Socketcan.png, accessed: 2022-
05-11.

[29] SiFive, Inc., freedom-tools, https://github.com/sifive/freedom-
tools/releases, accessed: 2022-05-11.

[30] White Source, Top 8 BSD License’s Questions Answered,
https://www.whitesourcesoftware.com/resources/blog/top-8-bsd-
licenses-questions-answered/, accessed: 2022-05-11.

[31] The Apache Software Foundation, FREQUENT QUESTIONS ABOUT
APACHE LICENSING, https://www.apache.org/foundation/license-
faq.html, accessed: 2022-05-11.

[32] Espressif Systems, ESP32-C3 Technical Reference Manual,
https://www.espressif.com/sites/default/files/documentation/esp32-
c3-technical-reference-manual-en.pdf, accessed: 2022-01-20.

[33] Pavel Pisa, Linux/RT-Linux CAN Driver (LinCAN),
https://cmp.felk.cvut.cz/ pisa/can/doc/lincandoc-0.3.pdf, accessed:
2022-05-20.

[34] Pavel Pisa, Linux/RT-Linux CAN Driver (LinCAN),
https://sourceforge.net/p/ortcan/lincan/ci/master/tree/lincan/src/c-can.c,
accessed: 2022-05-20.

[35] NXP, SJA1000 Stand-alone CAN controller,
https://www.nxp.com/docs/en/application-note/AN97076.pdf, ac-
cessed: 2022-05-20.

51



8. Conclusion......................................
[36] Jan Charát - charvj10 fork of NuttX, incubator-nuttx,

https://github.com/charvj/incubator-nuttx/tree/esp32c3-twai, ac-
cessed: 2022-01-20.

[37] CAN with Flexible Data-rate IP Core developed at Depart-
ment of Measurement of FEE CTU, CTU CAN FD IP Core,
https://gitlab.fel.cvut.cz/canbus/ctucanfd-ip-core, accessed: 2022-01-20.

[38] The Apache Software Foundation, incubator-nuttx,
https://github.com/apache/incubator-nuttx, accessed: 2022-01-20.

[39] The Apache Software Foundation, incubator-nuttx,
https://github.com/apache/incubator-nuttx/pull/6005, accessed:
2022-01-20.

52



Appendix A
Detail results from LaTester

Here is a set of graphs showing in detail the measurement results with
the LaTester. These graphs are shared output from our work with Matěj
Vasilevski.

53



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 125000 - 100 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.1: ESP latency profile: flooding - bus speed 125000 - 100 messages

54



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 500000 - 100 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.2: ESP latency profile: flooding - bus speed 500000 - 100 messages

55



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 1000000 - 100 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.3: ESP latency profile: flooding - bus speed 1000000 - 100 messages

56



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 125000 - 1000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.4: ESP latency profile: flooding - bus speed 125000 - 1000 messages

57



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 500000 - 1000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.5: ESP latency profile: flooding - bus speed 500000 - 1000 messages

58



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 1000000 - 1000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.6: ESP latency profile: flooding - bus speed 1000000 - 1000 messages

59



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 125000 - 10000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.7: ESP latency profile: flooding - bus speed 125000 - 10000 messages

60



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 500000 - 10000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.8: ESP latency profile: flooding - bus speed 500000 - 10000 messages

61



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: flooding - bus speed 1000000 - 10000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.9: ESP latency profile: flooding - bus speed 1000000 - 10000 messages

62



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 125000 - 100 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.10: ESP latency profile: one by one - bus speed 125000 - 100 messages

63



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 500000 - 100 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.11: ESP latency profile: one by one - bus speed 500000 - 100 messages

64



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 1000000 - 100 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.12: ESP latency profile: one by one - bus speed 1000000 - 100 messages

65



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 125000 - 1000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.13: ESP latency profile: one by one - bus speed 125000 - 1000 messages

66



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 500000 - 1000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.14: ESP latency profile: one by one - bus speed 500000 - 1000 messages

67



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 1000000 - 1000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.15: ESP latency profile: one by one - bus speed 1000000 - 1000
messages

68



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 125000 - 10000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.16: ESP latency profile: one by one - bus speed 125000 - 10000
messages

69



A. Detail results from LaTester ..............................

 1

 10

 100

 1000

 10000

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 500000 - 10000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.17: ESP latency profile: one by one - bus speed 500000 - 10000
messages

70



...............................A. Detail results from LaTester

 1

 10

 100

 1000

 10000

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

L
a
te

n
c
y
 p

ro
fi
le

 [
m

e
s
s
a
g
e
s
]

Time [us]

ESP Latency: one by one - bus speed 1000000 - 10000 messages

WithLoad,FrameLen2
WithoutLoad,FrameLen2

WithLoad,FrameLen4
WithoutLoad,FrameLen4

WithLoad,FrameLen8
WithoutLoad,FrameLen8

Figure A.18: ESP latency profile: one by one - bus speed 1000000 - 10000
messages

71


	Nomenclature
	Introduction
	CAN
	History
	Physical level
	Logical Link Control
	Medium access control
	Bit stuffing
	Error Detection
	Error states

	Bit Timing
	Bit Composition
	Example


	ESP32C3 RISC-V microcontroller
	ESP32C3 DevKit
	Espressif SDK
	Download ESP-IDF
	ESP-IDF Hello world
	ESP-IDF TWAI

	RISC-V architecture

	NuttX RTOS
	NuttX advantages and comparison
	Configuration
	Directory Structure
	Basic work with RTOS
	CAN Support
	ESP32-C3 Support

	Development in NuttX on ESP32-C3
	Start of Cooperation with Espressif Team
	NuttX License
	Coding style
	Related work
	ESP-IDF TWAI
	LinCAN
	lpc17-40 CAN

	Debugging
	Debug prints

	CAN Configuration on NuttX
	API for the lower half of the character driver

	Driver development
	Controller registers
	Driver Integration
	TWAI driver options
	TWAI Setup
	Reset
	Acceptance filters
	Bit Timing
	Leaving Reset state
	Interrupt setup

	TWAI Shutdown
	TWAI Transmission
	TWAI TX enable
	TWAI TX empty and TX ready
	TWAI Send
	TWAI TX interrupt

	TWAI Reception
	TWAI RX enable
	TWAI RX interrupt

	IOCTL
	TWAI Configuration
	Contribution
	Pull request


	Testing
	Latency tester
	Connection

	Motor control
	Results
	LaTester
	Demonstration of the TWAI driver function with PysimCoder


	Conclusion
	Future implementation goals

	References
	Detail results from LaTester

