
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Using an embedded QP solver for
automotive applications

Tomáš Rutrle

Supervisor: doc. Ing. Tomáš Haniš, Ph.D.
May 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

478067Personal ID number:Rutrle TomášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Using an embedded QP solver for automotive applications

Master’s thesis title in Czech:

Využití vestavěného QP solveru pro automotive aplikace

Guidelines:

The goal of the thesis is to develop and implement a Simulink based framework, which will allow the user to solve quadratic
problems on embedded hardware using automotive grade bus like CAN and CAN FD. The thesis will address following
points:
1. Familiarization with the topic of quadratic programming, automotive grade communication and embedded hardware
2. Analysis of representative automotive grade communication solutions
3. Adaptation of an existing QP solver and its deployment
4. Realization of baseline and improved communication logic and verification of the workings of the embedded QP solver
5. Utilization of the embedded QP solver in the MPC domain, analysis and presentation of acquired results

Bibliography / sources:

[1] J. B. Rawlings, D. Q. Mayne, M. M. Diehl. Model predictive control: theory, computation and design, 2nd ed., Nob Hill
Pub, 2019
[2] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid Systems, 1 edition. Cambridge, New
York: Cambridge University Press, 2017
[3] R. De Andrade, K. N. Hodel, J. F. Justo, A. M. Laganá, M. M. Santos and Z. Gu, "Analytical and Experimental
Performance Evaluations of CAN-FD Bus," in IEEE Access, vol. 6, pp. 21287-21295, 2018, doi:
10.1109/ACCESS.2018.2826522.
[4] J. Nocedal and S. Wright, Numerical Optimization, 2nd edition. New York: Springer, 2006

Name and workplace of master’s thesis supervisor:

doc. Ing.Tomáš Haniš, Ph.D. Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 28.01.2022

Assignment valid until:
by the end of summer semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
doc. Ing. Tomáš Haniš, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements
I want to express my gratitude towards
my family for enabling and supporting me
throughout the course of my studies, for
which I will always be grateful.

Furthermore, another thank you be-
longs to my supervisor, friends, and col-
leagues for the guidance regarding this
thesis.

Declaration
I, Tomáš Rutrle, hereby declare that this
thesis is a product of my own work and
that to the best of my knowledge all
information sources have been listed in
accordance with the methodical instruc-
tions for observing the ethical principles
in the preparation of a university thesis.

Prague, May 2022

v

Abstract
The main focus of this thesis is on the
development of a framework for an ex-
ternal quadratic program solver utilizing
the CAN and CAN FD communication
buses. To begin with, the deployment of
two quadratic solvers onto a controller is
presented. Further, an embedded applica-
tion is developed to handle bus communi-
cation, memory management, and solver
calling. To utilize the external solver,
Matlab & Simulink based CAN and CAN
FD interfaces are implemented to allow
for real-time simulation in the hardware-
in-the-loop configuration. Both the em-
bedded application and the interfaces are
tested for functionality and performance
with a focus on the time it takes the frame-
work to solve quadratic problems of vari-
ous sizes. Finally, two automotive-related
model predictive control demos are pre-
sented, employing the external solver in-
terface and showcasing its capabilities.

Keywords: Quadratic programming,
QP, Embedded solver, CAN, CAN FD,
Optimal control, MPC, External solver,
Vehicle control

Supervisor: doc. Ing. Tomáš Haniš,
Ph.D.
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Control Engineering

Abstrakt
Hlavním cílem této práce je vývoj rámce
pro externí solver kvadratických problémů
využívající CAN a CAN FD sběrnice. V
první řadě je představen mikrokontroler,
na který jsou nasazeny dva různé solvery.
Dále je pro kontroler vyvinuta vestavěná
aplikace, která obstarává komunikaci přes
sběrnici, správu paměti a obsluhu solverů.
Na druhé straně jsou navrhnuta a im-
plementována dvě prostředí v programu
Matlab & Simulink, jedno pro CAN a
druhé pro CAN FD sběrnici. Tato pro-
středí pak slouží k přístupění externího
solveru a umožňují simulaci v reálném
čase v konfiguraci "hardware-ve-smyčce".
Obě prostředí jsou důkladně otestována
spolu s aplikací v kontroleru a je prove-
dena řada měření testující dobu, kterou
celý rámec potřebuje k vyřešení kvadra-
tického problému v závislosti na velikosti
daného problému. Na závěr jsou předve-
dena dvě dema využívající modelového
prediktivního řízení a vyvinutého exter-
ního solveru k optimalizaci formulovaných
problémů.

Klíčová slova: Kvadratické
programování, QP, Vestavěný solver,
CAN, CAN FD, Optimální řízení,
Modelové prediktivní řízení, Externí
řešič, Řízení vozidla

Překlad názvu: Využití vestavěného QP
solveru pro automotive aplikace

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Thesis goals 2
1.3 Thesis outline 2
2 Theoretical analysis 3
2.1 Quadratic programming 3

2.1.1 Quadratic program definition . 3
2.1.2 Convex quadratic programming 4

2.2 Model predictive control 5
2.2.1 Dynamic models 6
2.2.2 Discrete model optimal control 6
2.2.3 Unconstrained linear MPC . . . 7
2.2.4 Constrained linear MPC 8
2.2.5 Receding horizon control 13

2.3 Automotive grade communication
buses . 14
2.3.1 Local interconnected network 15
2.3.2 Controller Area Network 17
2.3.3 Controller Area Network

Flexible Data-Rate 22
3 Embedded solver ECU setup 27
3.1 ECU hardware 27
3.2 OSQP solver deployment 29

3.2.1 Code generation 30
3.2.2 Generated code deployment . 31

3.3 CGNP solver deployment 32
4 CAN bus based interface 35
4.1 CAN messages definition 35
4.2 Embedded application CAN

interface . 38
4.3 Matlab & Simulink CAN interface 40

4.3.1 Matlab based CAN interface 40
4.3.2 Simulink based CAN interface 42

5 CAN FD bus based interface 47
5.1 Developing the CAN FD interface 47
5.2 Testing the CAN FD interface . . 50
6 HIL MPC showcase 55
6.1 Lateral dynamics control 55
6.2 Predictive cruise control 60
7 Conclusion 63
Bibliography 65

vii

Figures
2.1 Basic MPC horizon preview 13
2.2 MPC with control horizon and

input blocking 13
2.3 Distribution of vehicle subsystems

based on their requirements, adopted
from [12] . 14

2.4 Local interconnected network
frame, adopted from [13] 15

2.5 QP size and send time dependency
using the LIN bus with bit-rate of 20
kbit/s . 16

2.6 Controller Area Network
arbitration phase state diagram,
adopted from [16, 17] 17

2.7 Controller Area Network
arbitration phase state diagram,
adopted from [15] 19

2.8 An example of arbitration process
between two nodes on the controller
network area bus 19

2.9 Controller Area Network data
frame, adopted from [15, 16, 18] . . 20

2.10 QP size and send time
dependency using the CAN bus with
bit-rate of 500 kbit/s 22

2.11 Controller Area Network Flexible
Data-Rate frame for standard 11 bit
ID length, adopted from [19, 21] . . 23

2.12 QP size and send time
dependency using the CAN FD bus
with various data filed sizes and bit
rates of 500/2000 kbit/s 25

3.1 Basic overview of the embedded
QP solver setup 27

3.2 Basic overview of the printed
circuit board hosting the TC387
microcontroller, designed and
developed by Garrett Motion Inc.
and ADWITECH systems s.r.o. . . . 28

3.3 Photos of the custom made printed
circuit board used for the purposes of
this project . 29

3.4 QP problem data propagation in
the embedded application when using
the OSQP solver 32

3.5 Data structures used by the CGNP
solver . 33

4.1 Solver setup CAN message
definition . 36

4.2 Problem data CAN message
definition . 36

4.3 Result data CAN message
definition . 37

4.4 Solver debug information CAN
message definition 38

4.5 Control logic of the embedded
application utilizing the CAN
communication interface 39

4.6 Results calculated by the CGNP
solver for one hundred random QP
problems of size thirty four, obtained
via the Matlab CAN interface 41

4.7 Results calculated by the OSQP
solver for one hundred random QP
problems of size thirty four, obtained
via the Matlab CAN interface 42

4.8 Concept of the Simulink CAN
interface for the external QP solver 43

4.9 The final Simulink CAN interface
for the external QP solver 43

4.10 An example of outputs of the
MB_CAN_logic Matlab System™used
as the main control block of the final
CAN Simulink interface 44

4.11 Simulink CAN interface inner
logic . 44

4.12 Results calculated by the CGNP
solver for one hundred random QP
problems of size thirty four, obtained
via the Simulink CAN interface . . . 45

4.13 TNS for one hundred QP
problems using the CAN Simulink
interface, disregarding the QP solver
time consumption 46

4.14 Dependency of the average TNS
on the QP problem size 46

5.1 The final Simulink CAN FD
interface for the external QP solver 49

viii

5.2 Outputs using the Simulink CAN
FD interface, comparison between
sending the full matrix H vs. sending
its upper triangular part 51

5.3 Dependency of the average TNS on
the QP problem size and the
'Send symmetric Hessian' option
for the CAN FD interface, 500 kbit/s
arbitration and 2 Mbit/s payload bit
rate . 51

5.4 Dependency of the average TNS on
the QP problem size and the
'Constant Hessian' option for the
CAN FD interface, 500 kbit/s
arbitration and 2 Mbit/s payload bit
rate . 52

5.5 Dependency of the average TNS on
the QP problem size and the
'Constant Hessian' option for the
CAN FD interface 53

6.1 The HIL configuration used for the
MPC demos . 55

6.2 Simple single track vehicle model,
adopted from [32] 56

6.3 Tracking of the lateral velocity
with bounded input and prediction
horizon of twenty samples for
reference trajectory A 57

6.4 External QP solver information for
the lateral velocity tracking for
reference trajectory A 58

6.5 Position and heading of a single
track vehicle model tracking the
lateral velocity reference 58

6.6 Tracking of the lateral velocity
with bounded input and prediction
horizon of twenty samples for
reference trajectory B 59

6.7 External QP solver information for
the lateral velocity tracking for
reference trajectory B and different
settings of the QP solver warm
starting option 59

6.8 Predictive cruise control HIL
simulation with a prediction horizon
of length fifty and focus on
minimizing the tracking error 61

6.9 Predictive cruise control HIL
simulation with a prediction horizon
of length fifty and focus on
minimizing the torque input 61

ix

Tables
2.1 CAN and CAN FD frame

efficiencies defined as a number of
"useful" data bits divided by the
number of total frame bits, note that
only fixed bit stuffing is assumed . 25

4.1 Characteristics of the defined CAN
messages . 35

5.1 Characteristics of the defined CAN
FD messages 47

6.1 Lateral dynamics single track
model parameters 57

x

Chapter 1
Introduction

1.1 Motivation

Historically, vehicles were considered to be mechanical systems. To improve
performance or efficiency, car manufacturers would add cylinders to the
combustion engine or make the car’s body more aerodynamic. Only in
recent decades, with the rise of digitalization, have vehicles transformed into
exhaustively complex digital systems, which rely on software no less than on
properly tuned suspension. With the current trends of the automotive industry
to push for emission reduction and safety improvements, the development cycle
of new vehicle models is not only about deploying new hardware components
but also about optimizing the software controlling these components. But with
the increasing complexity of the system, the need for sophisticated control
strategies, which ensure reliable operation of the whole plant, increases as
well. For that reason is model based predictive control (MPC) popularized in
the automotive industry [1].

It is not uncommon for a modern vehicle to be equipped with a number
of systems that would benefit from model based predictive control. These
systems can be anything from battery management to cruise control. However,
equipping all of them with the hardware and software necessary to run the
MPC controller could prove time and money inefficient. Since both linear
and non-linear MPCs are eventually reformulated as quadratic optimization
problems, centralizing the task of solving these problems may be an elegant
solution to this issue. Furthermore, developing a dedicated external quadratic
program (QP) solver presents several other advantages. Firstly, it would
decrease the computational requirements on the system controllers, as the
demanding task of QP optimization would be performed on external hardware.
Moreover, deploying and maintaining the embedded QP solver would be
simplified as well, since any updates and improvements to the software would
directly affect only one controller in the vehicle.

1

1. Introduction
1.2 Thesis goals

The goal of the thesis is to develop and implement a Simulink based framework,
which will allow the user to solve quadratic problems on embedded hardware
using automotive grade bus like CAN and CAN FD. The thesis will address
following points:. Familiarization with the topic of quadratic programming, automotive

grade communication and embedded hardware. Analysis of representative automotive grade communication solutions. Adaptation of an existing QP solver and its deployment. Realization of baseline and improved communication logic and verification
of the workings of the embedded QP solver. Utilization of the embedded QP solver in the MPC domain, analysis and
presentation of acquired results

1.3 Thesis outline

This thesis will be divided into five main chapters, excluding the introduction
and conclusion. Chapter number two will consist of research on thesis-
related topics, such as quadratic programming, linear model based predictive
control, and automotive-grade field buses. How does receding horizon control
reformulate into a QP, and what communication bus to use to transmit the
QP problem to an external controller? This will be followed by a chapter that
deals with the presentation of the selected microcontroller and the deployment
of two QP solvers onto the said controller. The next chapter will focus on the
development of a CAN bus based interface, both on the side of the embedded
application and the side of personal computer running Matlab & Simulink.
First tests and measurements will be performed, showcasing the workings
of the deployed solvers and the newly developed interface. Chapter five will
then be similar in its content as the making of a CAN FD based interface
will be showcased. This time more focus will be on the interface performance
testing and subsequent presentation of acquired results. Last but not least,
the final chapter will present MPC demos running in a hardware-in-the-loop
(HIL) configuration to display the functionality of the developed external QP
solver framework.

2

Chapter 2
Theoretical analysis

2.1 Quadratic programming

Mathematical optimization has always been a subject of great interest for
mathematicians. Newton’s iterative method for locating roots of real contin-
uous functions, the Lagrange multiplier method used for finding optima of
constrained functions, or the simplex method used for solving linear programs,
all play an essential role in the current state of mathematical optimization.
Quadratic programming as we know it has its root in the 1950’ and was
popularized f.e. by the Economist and Nobel prize laureate Harry Markowitz
who formulated the portfolio optimization problem as a quadratic program
[3]. As of today, QP is the most prominent method for solving non-linear op-
timization problems and is applied in many areas such as computer graphics,
signal and image processing, investment optimization, and optimal control
theory.

2.1.1 Quadratic program definition

A general linear quadratic program, i.e. an optimization problem with
quadratic cost function and linear constraints, can be written as follows.

min
x

1
2x⊺Hx + f⊺x

s.t. Ex = e
Ax ≤ a

(2.1)

Where x ∈ Rn is the optimization vector and H ∈ Rn×n with f ∈ Rn

denote the quadratic and linear parts of the cost function. The constraints
are then defined in two categories, firstly the equality constraints, E ∈ Rm1×n

and e ∈ Rm1 , secondly the inequality constraints, A ∈ Rm2×n and a ∈ Rm2 .

Furthermore, without a loss of generality it will be assumed that H is a
symmetric matrix [5].
Proof. To prove this it can be shown, that replacing any matrix H with the
symmetric matrix 1

2(H + H⊺) will not affect the value of the cost function.

3

2. Theoretical analysis
Since x⊺Hx ∈ R:

x⊺Hx = x⊺
(2H

2 + H⊺ − H⊺

2

)
x

= x⊺
(H + H⊺

2 + H − H⊺

2

)
x

= x⊺
(H + H⊺

2

)
x + 1

2x⊺Hx − 1
2x⊺H⊺x

= x⊺
(H + H⊺

2

)
x + 1

2x⊺Hx −
(1

2x⊺H⊺x
)⊺

= x⊺
(H + H⊺

2

)
x

(2.2)

2.1.2 Convex quadratic programming

General set S ∈ Rn is said to be convex if for any two points x, y ∈ S
the straight line connecting these points lies entirely within S. Formally,
αx+(1−α)y ∈ S ∀α ∈ [0, 1]. Similarly, the function f : A −→ B is convex if
the domain of the function A is a convex set and for any two points x, y ∈ A
the following is true:

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y) ∀α ∈ [0, 1] (2.3)

For numerical optimization the concept of convexity is extremely useful as
a local minimum of a convex function on a convex subspace is also its global
minimum. For reference see the topic of convexity (page 7) in [2].
Proof. Let us define f : A −→ B as a convex function with a convex domain
A. Furthermore, x∗ ∈ A is the local minimum of f . By definition of local
minimum, an open neighborhood N exists s such that f(x∗) ≤ f(n) ∀n ∈ N .
For any arbitrary point y ∈ A we can take the linear combination
z = (1 − α)x∗ + αy and say that as α approaches 0, z approaches x∗ which
implies z ∈ N . Therefore, for α −→ 0:

f(x∗) ≤ f(z)
f(x∗) ≤ f((1 − α)x∗ + αy)
f(x∗) ≤ (1 − α)f(x∗) + αf(y)

αf(x∗) ≤ αf(y)
f(x∗) ≤ f(y)

(2.4)

This shows that for a convex problem the local minimum is also the global
minimum as f(x∗) ≤ f(y) ∀y ∈ A.

Whether the general QP problem as defined in 2.1 is a convex problem or
not depends on both the cost function and the linear constraints. The cost
function itself generally consists of a sum of two terms - quadratic and linear.
As for the linear term, f⊺x is convex for any f ∈ Rn, whereas the quadratic

4

................................2.2. Model predictive control

form x⊺Hx is convex only for a positive semidefinite matrix H. For such
(symmetric) positive semidefinite matrix the following is true:

x⊺Hx ≥ 0 ∀x ∈ Rn ⇐⇒ ∀ eig(H) ≥ 0 (2.5)

In short, the cost function of a general quadratic program is convex on Rn

as long as H is positive semidefinite, page 8 [2].

As for the QP constraints described by the linear equations and inequations,
this is where the topic of convexity analysis becomes more complicated. Firstly,
the set of feasible solutions described by these constraints must be non-empty.
As an example, if the problem presents two equality constraints x = 1 and
x = 2, the problem cannot be solved. Secondly, no constraints should be
redundant. Again, out of these two inequality constraints x ≤ 1 and x ≤ 2
is the second one redundant. These two requests imply certain limitations
towards the matrices A and E. For that reason, an expanded, more limiting
definition of a QP program is often presented in the literature. The equality
constraint matrix E ought to be of dimension m1 × n where m1 ≤ n and
rank(E) = m1, i.e. the constraints are linearly independent. Similarly, for
the inequality constraint matrix A. This ensures that the set of feasible
solutions is an n-dimensional polyhedron which is always convex, see page 451
in [2]. Note that some methods exist to deal with problems with redundant
constraints, but the feasibility set must be non-empty in any case, as per
page 491 in [2].

To summarize a QP is said to be a convex problem as long as the quadratic
cost function matrix H is positive semidefinite and the problem constraints
limit the set of feasible solution to a polyhedron.

2.2 Model predictive control

The roots of model based predictive control can be tracked to the early 1960’
when the renowned mathematician Rudolf E. Kalman presented the Linear
Quadratic Regulator and subsequently the Linear Quadratic Gaussian (LQG)
controller for stochastic systems. Although a powerful tool in theory, LQG
presented several drawbacks which prevented it from mass adoption in the
control industry. For example, the lack of input/state constraints handling,
no way to incorporate process non-linearities, or no robustness guarantees
[4]. Developed from the same theory of optimal control, model predictive
control is a universal control methodology used to optimize the performance
of an arbitrary system under constraints. This section will describe the basic
concepts of MPC as well its ties to the concept of quadratic programming
discussed in the previous section "Quadratic programming".

5

2. Theoretical analysis
2.2.1 Dynamic models

The core idea behind MPC is to use a dynamic model of a system to predict
its behavior and, based on that prediction, propose the best control decision.
Unlike input/output based regulators, models and the ability to simulate
them are key for the performance of model based controllers. A general
non-linear system can be described by the following equations:

dx
dt

= f(x, u, t)

y = g(x, u, t)
x(t0) = x0

(2.6)

Where x ∈ Rn is the state of the system, u ∈ Rm the input and y ∈ Rp

the output [6]. Note that it is generally assumed that the input, state and
output are functions of time unless specified otherwise.

A specific class of models especially useful in control engineering is the
linear state space model of a system:

dx
dt

= A(t)x + B(t)u

y = C(t)x + D(t)u
x(t0) = x0

(2.7)

Where A(t) ∈ Rn×n is the state transition matrix, B(t) ∈ Rm×n describes
the effect of input on the state dynamics, C(t) ∈ Rp×n is the output matrix
and finally D(t) ∈ Rp×m is the direct link between input and output of the
system omitting the state dynamics. For state matrices independent on time
is such linear model called the linear time invariant state space model.

As MPC is used with discrete time models a discrete time LTI model can
be defined similarly to its continuous time counterpart:

xk+1 = Axk + Buk

yk = Cxk + Duk

x0 = given
(2.8)

2.2.2 Discrete model optimal control

To begin with, the problem of optimal control in discrete time system will
be defined. Lets assume the goal is to optimally regulate a model described
by some discrete time function - i.e., find such sequence of inputs that will
guide the state of the system to the origin optimally according to a criterion
function J(x, u).

6

................................2.2. Model predictive control

min
x1...xN ,u0...uN−1

J(x, u) = Φ(xN) +
N−1∑
k=0

L(xk, uk)

s.t. xk+1 = f(xk, uk)
x0 = given
xlb ≤ xk ≤ xub

ulb ≤ uk ≤ uub

(2.9)

When looking at the criterion function J(x, u) one could propose to incor-
porate the terminal cost function Φ(xN) into the sum but it is generally a
useful practice to to define the terminal cost independently. Another thing to
consider is whether the final state xN is free and penalized within J(x, u) (as
shown in 2.9) or whether xN is fixed and therefore one of the optimization
problem constraints [7].

2.2.3 Unconstrained linear MPC

Inspired by 2.9 the optimal regulation of a linear system with quadratic cost
function can be defined. Note that this section, together with the following
section "Constrained linear MPC" is based on the following materials [5, 7].
For now, the constraints on states and inputs will be omitted and addressed
later.

min
x1...xN ,u0...uN−1

J(x, u) = x⊺
N PxN + 1

2

N−1∑
k=0

(
x⊺

kQxk + u⊺
kRuk

)
s.t. xk+1 = Axk + Buk

x0 = given

(2.10)

In this formulation, the matrices P, Q, R are weights that tune the final
controller. Do I allow for slower regulation by increasing the input cost and
thus limiting the action amplitude, or do I prefer to regulate the system as
fast as possible by penalizing the state error more than the input cost? And
how much do I care about the final state? For reasons which will emerge later,
it is required that P, Q are symmetric real positive semi-definite matrices
and R is symmetric real positive definite.

It still holds that the goal of this optimization problem is to find u∗, x∗

that would minimize the cost function and thus optimize the state trajectory
of the system. One approach to solve this problem is to reformulate it in a
way such that the cost function J(x0, u) is only a function of inputs and the
initial state. In literature this is referred to as batch or sequential approach.
First, let us rewrite the cost function in matrix form.

7

2. Theoretical analysis

J(x, u) = x⊺
0Qx0 +

 x1
...

xN


⊺



Q 0 · · · · · · 0
0 Q 0 · · · 0
... 0
...

... Q 0
0 0 · · · 0 P


︸ ︷︷ ︸

Q̄

 x1
...

xN



+

 u0
...

uN−1


⊺ R 0

. . .
0 R


︸ ︷︷ ︸

R̄

 u0
...

uN−1


︸ ︷︷ ︸

u

(2.11)

And similarly the discrete state space equation.

 x1
...

xN

 =


B 0 · · · 0

AB B · · · 0
...

...
AN−1B AN−2B · · · B


︸ ︷︷ ︸

S̄

 u0
...

uN−1

 +

 A
...

AN


︸ ︷︷ ︸

T̄

x0 (2.12)

By plugging 2.12 into 2.11 the final form of the cost function is obtained.

J(x0, u) = 1
2u⊺ 2(R̄ + S̄⊺Q̄S̄)︸ ︷︷ ︸

H

u + x⊺
0 2T̄⊺Q̄S̄︸ ︷︷ ︸

F⊺

u + x⊺
0(Q + T̄⊺Q̄T̄)x0︸ ︷︷ ︸

c = const.

= 1
2u⊺Hu + x0F⊺u + c

(2.13)

And finally to obtain the optimal control sequence u∗ the gradient of the
cost function with respect to u will be calculated and solved for setting it
equal to zero.

∇uJ(x0, u) = Hu + Fx0 (2.14)

Hu + Fx0 = 0 =⇒ u∗ = −H−1Fx0 (2.15)

This leaves us with the conclusion that the unconstrained linear MPC with
a fixed finite horizon is simply a linear state feedback.

2.2.4 Constrained linear MPC

The main benefit of MPC its capability to handle input and state/output
constraints. Given the optimal control problem as defined earlier in 2.10 more

8

................................2.2. Model predictive control

constraints will be added in form of lower and upper bounds of states and
inputs.

ulb ≤ uj ≤ uub, j = 0...N − 1
xlb ≤ xi ≤ xub, i = 1...N

(2.16)

These can be rewritten in matrix form as follow.

ulb
...

ulb


︸ ︷︷ ︸

Ulb

≤

I
. . .

I


 u0

...
uN−1

 ≤

uub
...

uub


︸ ︷︷ ︸

Uubxlb
...

xlb


︸ ︷︷ ︸

Xlb

≤

I
. . .

I


︸ ︷︷ ︸

Ī

 x1
...

xN


︸ ︷︷ ︸

x

≤

xub
...

xub


︸ ︷︷ ︸

Xub

(2.17)

Substituting for x from 2.12 and rewriting.

Ulb ≤ Īu ≤ Uub

Xlb ≤ Ī
(
S̄u + T̄x0

)
≤ Xub

(2.18)

We can now formulate the final constrained optimization problem using
the results obtained in 2.13 and 2.18.

min
u

1
2u⊺Hu + x0F⊺u

s.t.
[

Ulb

Xlb − ĪT̄x0

]
≤

[
Ī
S̄

]
u ≤

[
Uub

Xub − ĪT̄x0

]
x0 = given

(2.19)

This quadratic problem finally formulates the task of finding an optimal
control sequence u∗ for regulating some linear discrete-time system with
constrained inputs and states. It is clearly an instance of a generic QP formu-
lation defined in the previous section (see 2.1). The first row of constraints
represents the box constraints of inputs defined directly, and the second row
represents the affine constraints of inputs derived from constraints on system
states.

Output constraints

It is often beneficial to enforce constraints onto the outputs instead of the
states of the system. This can be achieved via small modification to the

9

2. Theoretical analysis
previous derivation. As in 2.18 we begin by defining the constraints in the
following form.

ylb ≤ yi ≤ yub, i = 1...N (2.20)

Rewriting as a matrix equation.ylb
...

ylb


︸ ︷︷ ︸

Ylb

≤

I
. . .

I


 y1

...
yN

 ≤

yub
...

yub


︸ ︷︷ ︸

Yub

(2.21)

Since yk = Cxk, by using the state space equation 2.12 the vector of
outputs can be rewritten using the system matrices and inputs.

 y1
...

yN

 =


CB 0 · · · 0

CAB CB · · · 0
...

...
CAN−1B CAN−2B · · · CB


︸ ︷︷ ︸

M̄

 u0
...

uN−1

 +


CA

...
CAN


︸ ︷︷ ︸

N̄

x0 (2.22)

Combining the last two equation 2.21 and 2.22 the output constraint
inequality can be formulated as follows.

Ylb ≤ Ī
(
M̄u + N̄x0

)
≤ Yub (2.23)

Finalizing the formulation, the quadratic program representing input and
output constrained optimal control problem is presented.

min
u

1
2u⊺Hu + x0F⊺u

s.t.
[

Ulb

Ylb − ĪN̄x0

]
≤

[
Ī

M̄

]
u ≤

[
Uub

Yub − ĪN̄x0

]
x0 = given

(2.24)

Output tracking

Until this point, the obtained results were derived for the system regulation
problem, which is guiding the system’s states to the origin. More often than
not is the actual use case the so-called output tracking - the task of controlling
the system in such a way that the outputs follow a set trajectory. Excluding
a few necessary modifications, the approach to reformulating the tracking
problem as a quadratic program is almost identical to the regulation problem.
Only the key idea and results will therefore be presented and the reader will
be referred to several sources for more detailed derivation.

10

................................2.2. Model predictive control

To begin with, the quadratic cost function of the optimization problem
must be reformulated. Given the output yk and the reference trajectory rk

the tracking error ek can be defined.

ek = rk − yk = rk − Cxk (2.25)

The goal is then to minimize the tracking error as well as the inputs. But
in order to formulate the new cost function correctly, the control increment
∆uk = uk − uk−1 must be introduced. This is due to the reason that
generally, to drive ek to zero, the system inputs are not zero. But a cost
function minimizing both the error ek and the inputs uk does not take this
into account, and it would therefore fail to provide an input trajectory leading
to zero tracking error. By introducing ∆uk as the new input signal, the
previous input uk−1 = xu

k will be introduced as a new state variable of the
system. This leads to the following augmented state-space equations.

[
xk+1
xu

k+1

]
=

[
A B
0 I

]
︸ ︷︷ ︸

Â

[
xk

xu
k

]
︸ ︷︷ ︸

x̂k

+
[
B
I

]
︸︷︷︸

B̂

∆uk

yk =
[
C 0

]
︸ ︷︷ ︸

Ĉ

[
xk

xu
k

] (2.26)

Using this augmented system the unconstrained optimization problem of
linear system tracking can be defined.

min
x̂1...x̂N ,∆u0...∆uN−1

J(x̂, ∆u) =
(
rN − Ĉx̂N

)⊺
P

(
rN − Ĉx̂N

)
+ 1

2

N−1∑
k=0

[(
rk − Ĉx̂k

)⊺
Q

(
rk − Ĉx̂k

)]

+ 1
2

N−1∑
k=0

(
∆u⊺

kR∆uk

)
s.t. x̂k+1 = Âx̂k + B̂∆uk

x̂0 = given

(2.27)

Utilizing the same sequential approach as in section "Constrained linear
MPC" the problem 2.27 can be reformulated into the following form [5, 8, 9].

J(x̂0, ∆u) = 1
2∆u⊺Ĥ∆u +

[
x̂⊺

0 r⊺0
]

F̂⊺∆u (2.28)

Where ∆u = [∆u0, ..., ∆uN−1]⊺ and F̂, Ĥ are matrices obtained during
the derivation. Adding the constraints on inputs, states and outputs is again
similar to the approach presented on the mpc regulation problem and results
in inequality affine constrained QP.

11

2. Theoretical analysis
Transforming affine constraints into box constraints using slack
variables and softening

Given an MPC problem formulation with constrained states or outputs, the
final quadratic program generally has affine constraints as per the results
presented in 2.24 and 2.19. Such a problem is already solvable using today’s
solvers, but it could be beneficial to transform the affine constraints to obtain
a purely box constrained QP as such a problem is generally easier to solve
and supported by a greater number of solvers. Furthermore, relaxing the
hard state/output constraints increases the odds of finding feasible solutions
for the cost of some constraint violations [10].

The approach to this transformation is following. Given a generic box and
affine constrained QP problem

min
x

1
2x⊺Hx + f⊺x

s.t. xlb ≤ x ≤ xub

alb ≤ Ax ≤ aub

(2.29)

where x ∈ Rn×1 and A ∈ Rm×n, introduce a new vector of slack variables
ζ ∈ Rm×1. These variables will then be constrained by the lower and upper
bounds alb, aub and the cost function will be extended by a new element as
follows.

J(x, ζ) = 1
2x⊺Hx + f⊺x + 1

2(Ax − ζ)⊺W(Ax − ζ) (2.30)

The matrix W ∈ Rm×m is a new weight pushing the new problem to respect
the original affine constraints. Note that it makes sense to select W diagonal
either with constant diagonal elements or with varying elements depending
on the "importance" of individual constraints. Rewriting 2.30 results in.

J(x, ζ) = 1
2x⊺Hx + f⊺x + 1

2 (x⊺A⊺WAx − ζ⊺WAx − x⊺A⊺Wζ + ζ⊺Wζ)
(2.31)

And after rewriting the cost function in vector form the transformation of
the QP problem can be finalized.

min
x,ζ

[
x⊺ ζ⊺

] [
H + A⊺WA −WA

−A⊺W W

] [
x
ζ

]
+

[
F⊺ 0⊺

] [
x
ζ

]

s.t.
[
xlb

alb

]
≤

[
x
ζ

]
≤

[
xub

aub

] (2.32)

This QP problem finally represents the transformation of the original
affine constrained problem 2.29 into a box and soft constrained problem.
Getting rid of these affine restrictions is at the cost of larger number of
optimization variables (n + m instead of n) and potential violation of the
original constraints.

12

................................2.2. Model predictive control

2.2.5 Receding horizon control

With the obtained result, the general approach of MPC regulation can now
be described. At each time step, the current state of the system is obtained.
This current state can be denoted as an initial state at time t0 = 0 as an
LTI system is assumed. Given x0, the QP problem is formulated, solved, and
the optimal input trajectory u∗ is obtained. As a next step, the first input
u0 is applied to the system, and in the next time step, the whole process is
repeated. This strategy is often referred to as receding horizon control. See
figure 2.1 for an illustration of a single MPC regulation step.

FuturePast

1 2 NN-1

Calculated
optimal input

Predicted state

Figure 2.1: Basic MPC horizon preview

FuturePast

1 2

Calculated
optimal input

Predicted state

3 4 5 6 8

Figure 2.2: MPC with control horizon and input blocking

Control horizon and input blocking

The most computationally and memory demanding step of the receding
horizon control is solving a new quadratic problem at each time step. Given
the prediction horizon N and the number of inputs m, the QP optimizes over

13

2. Theoretical analysis
N × m variables, and it is up to the designer to select N large enough for
acceptable controller performance but small enough to keep the dimensionality
of the QP within reasonable bounds.

In order to reduce said dimensionality, one strategy is to define so called
prediction horizon Np and control horizon Nu such that Nu ≤ Np. The
problem is then reformulated in such way that the input is assumed constant
after Nu steps which reduces the number of optimization variables. Another
approach is to introduce input blocking. Not only is a constant input assumed
after the control horizon but further blocks are defined within the control
horizon in which is the input again deemed constant. Best explained with a
simple example (see 2.2), let’s assume Nu = 7, Np = 9 and input is blocked
via the following strategy ublocks = [1, 1, 2, 3], where ublocks denotes the length
of blocks (sample vise) over which ∆u = 0. Note that

∑
ublocks = Nu.

2.3 Automotive grade communication buses

With the first two sections of this chapter describing the concept of quadratic
programming and its use in model predictive control, this section will focus
on another key topic of this thesis, automotive grade bus communication. As
the number of electronic control units in a vehicle grew, the need to replace
their point-to-point connections with more space and cost-efficient solutions
increased. This is where the concept of a fieldbus comes in. A fieldbus is
a distributed computer network that allows multiple nodes (ECUs) to be
connected to said bus and exchange messages with each other, thus removing
the need for designated connections between individual pairs of nodes [11].
Typically, multiple communication buses operate in a vehicle simultaneously,
interconnecting vehicle subsystems based on their needs and importance. The
following figure 2.3 shows an example distribution of vehicle subsystems with
regards to their communication speed and safety requirements.

Control data Low priority
data

Infotainment
data

Safety critical
data

Engine

Transmission

Battery
management

.

.

Climate
control

Door locks

Seat control

.

.

Cameras

GPS

Radio

.

.

Steer / brake
by wire

Driver
assistance
systems

.

.

Figure 2.3: Distribution of vehicle subsystems based on their requirements,
adopted from [12]

Throughout the years, a large number of automotive field buses have been
developed. For example, the Media Oriented System Transport (MOST)

14

......................... 2.3. Automotive grade communication buses

network is used for infotainment data transmission due to its high bandwidth.
On the other hand, it only supports the ring network topology and is therefore
not suitable for more safety critical data [12]. Another popular solution is the
FlexRay communication bus. Suitable for sensitive data due to its inherent
redundant and deterministic properties, its main disadvantage is the need
for all nodes to be made completely aware of the whole network topology.
This makes designing a network using FlexRey more complicated than using
some alternatives [12]. For the usecase of this project, three other automotive
buses will be described in more detail.

2.3.1 Local interconnected network

Local interconnected network (LIN) typically operates over the Low priority
data shown in figure 2.3. Some other usecases include temperature, light and
rain sensors reading, headlights control and a number of other functions. An
individual LIN bus message (frame) is shown in the following picture 2.4. It
consists of the following fields:.Break: Start of frame notification for all bus nodes. Sync: Predefined bit sequence used for bit rate synchronization. ID: Identifier, some messages are meant only for some nodes.Payload: Actual data content of the frame.Checksum: Used to validate the payload contents (sometimes including

the ID as well)

Break

14 / 20 bits

Sync

8 bits

ID

8 bits

Payload

0-64 bits

Checksum

8 bits

Break

14 / 20 bits

Sync

8 bits

Break

14 / 20 bits

Sync

8 bits

Header Tail

Figure 2.4: Local interconnected network frame, adopted from [13]

The main advantages of the LIN bus are [13]:. Low-cost and simple solution. Single wire with vehicle chassis acting as ground.Master slave configuration - option to add and remove slave nodes without
affecting other slave nodes, up to sixteen slave nodes. Checksum error detection. Collision avoidance using time divided media access

15

2. Theoretical analysis
On the other hand, LIN bus also has several disadvantages. Mainly its low

bit-rate of maximum 20 kbit/s and small payload size in a single frame which
is at most 8 bytes [12]. Remember that the scope of this project includes
using a communication bus to send a full box constrained QP problem as
defined in 2.32 and subsequently receive its solution. The slow communication
speed of the LIN bus thus poses a serious problem. To illustrate this, let’s do
some simple calculations.

QP sending time using the LIN bus

Given the number of optimization variables nvar, the total number of numeric
values ntot within a box constrained QP can be determined as follows.

ntot = nH + nF + nlb + nub + nx0 = n2
var + 4nvar (2.33)

Where nH , nF , nlb, nub, nx0 denote the number of numeric values corre-
sponding to individual parts of the box constrained QP problem. To reduce
ntot, two assumptions will be made. Firstly, H is symmetric and only its
upper triangular part needs to be sent, therefore nH = nvar(nvar + 1)/2.
Secondly, the initial condition x0 is not known and therefore not transmitted
as well. These assumptions result in:

ntot = nvar(nvar + 1)
2 + 3nvar (2.34)

2 25 50 75 100

n
var

0

5

10

15

S
e
n
d
 t
im

e
 [
s
]

Box QP send time using LIN bus

Figure 2.5: QP size and send time dependency using the LIN bus with bit-rate
of 20 kbit/s

Additionally, these numeric values will be represented using the 32 bit
long single precision floating point format, and only these values will need
to be transmitted via the bus. Given the payload size of 64 bits and the
total size of the frame, which is 108 bits (as per 2.4), it can be reasoned
that to transmit two elements of the QP problem takes precisely 108 bits of
information. Finally, taking into account the maximum bit rate of the LIN
bus, the dependency between the QP size and the sending time is plotted in

16

......................... 2.3. Automotive grade communication buses

the following figure 2.5. Note that this figure represents an upper estimate as
an ideal scenario is assumed where the bus works at 100% all the time and
no overhead information is transmitted.

By looking at this dependency it is obvious that using LIN bus is basically
infeasible for the purposes of this project as the communication speed would
simply be too slow for any reasonable controller.

2.3.2 Controller Area Network

Controller Area Network (CAN) is another example of a frequently used
automotive grade communication bus. Since its initial release by Robert Bosch
GmbH.™ in the late 1980s, several versions of the CAN specification were
developed, and it went on to become the most widely used communication
network in the automotive industry [14]. To refer to the in-vehicle systems
distribution discussed previously in 2.3, CAN is typically used for the control
and safety critical data applications due to its robustness and higher bit
rate of up to 1 Mbit/s. It has not been popularized only in the automotive
industry but in other industries as well, such as aviation, ship industry and/or
robotics.

In this thesis, the CAN 2.0 specification will be discussed, sometimes
referred to as high speed CAN. Referring to the seven-layer Open Systems
Interconnection (OSI) model, the CAN 2.0 specification is defined for the
two "lowest layers" - the physical layer and data link layer, both defined in
their respective ISO standards [16]. In a typical embedded application, the
implementation of CAN bus bypasses the connection between application
and data link layers to maximize the performance and minimize the resource
overhead. Alternatively, including the rest of the OSI layers within the
application requires a higher layer protocol such as CANopen or SAE J1939
[17]. An overview is shown in the following figure 2.6.

Data link

Physical

Application software

Presentation

Session

Transport

Application

Network

Without higher
layer protocol

Physical connection
Electrical characteristics
Bit timing, synchronization, ...

Error detection, recovery
Acknowledgment, filtering
Bit stuffing, ...

Integrated on
CAN

controller

CANopen, ...

Figure 2.6: Controller Area Network arbitration phase state diagram, adopted
from [16, 17]

17

2. Theoretical analysis
CAN bus arbitration

Unlike the LIN bus, CAN is not a master-slave standard and is instead a
multi-master bus, meaning that any node can initiate data transfer on its own
initiative. Typically, networks operating in the multi-master configuration
have to implement some form of data collision detection and recovery. The
CAN standard solves this issue of data collision by defining a so-called
arbitration phase at the beginning of each message, see 2.9. In case two
or more nodes start transmitting simultaneously, the network automatically
gives exclusive access to the node transmitting the highest priority message,
which is detected by the remaining nodes.

The main idea behind the arbitration process could be described as follows.
The bus finds itself either in a dominant or recessive state at all times. During
the frame transmission, a zero bit sets the bus to the dominant state a one
bit sets it to the recessive state. Furthermore dominant state always overrides
the recessive one in case of simultaneous transmitting. Practically, the state
of the bus is determined by the logical AND operation where all nodes’ inputs
give the final state of the bus, note that nodes in listening mode can be
viewed as outputting recessive bits [15].

Given this property of the CAN bus, the logic behind giving access to
the most important node/frame is straightforward. If multiple nodes begin
transmitting a frame at the same time, the frame transmitting the message
with the highest priority (lowest ID) gets access. This is best explained with
the following state diagram 2.7.

Figure 2.8 shows an example of the arbitration. Two nodes begin trans-
mitting simultaneously, meaning their start of frame bits overlap. Following
that, both begin transmitting the IDs of their messages, beginning with the
most significant bit. The first two bits match, so no collision is detected. On
the other hand, during the third bit window, the first node notices that it
transmitted a recessive bit, but the bus is in a dominant state, thus meaning
another node is transmitting a higher priority message. The first node enters
listening mode and tries to transmit its frame from the beginning once the
second node is finished with its transmission. As long as each message is
labeled with a unique ID, lower ID messages are always transmitted first.

18

......................... 2.3. Automotive grade communication buses

Check if bus is idle

Transmit SOF

Transmit next
arbitration bit

yes

no
Transmitted bit

==

Bus state

yes

Arbitration phase
done?

yes

Transmitted
dominant bit?

Transmit the rest

no
Error

no

Figure 2.7: Controller Area Network arbitration phase state diagram, adopted
from [15]

0

1

0

1

SOF 11 10 9

Node 1

Node 2

0
Bus

1

Receive

Continue transmitting

ID bits

Figure 2.8: An example of arbitration process between two nodes on the
controller network area bus

19

2. Theoretical analysis
CAN bus data frame

The previous subsection dealt with the issue of CAN bus arbitration which
utilizes a dedicated part of the data frame. The CAN frame as a whole is
shown in the figure 2.9 and it consists of the following slots:

SOF

1 bit

ID

11 / 29 bits

RTR

1 bit

Control

6 bits

Payload

0-64 bits

CRC

16 bits

ACK

2 bits

EOF

7 bits

Header Tail

Arbitration phase

Figure 2.9: Controller Area Network data frame, adopted from [15, 16, 18]

. SOF: Dominant bit indicating the start of frame. ID: Message identifier used for arbitration and message filtering, two
CAN 2.0 specifications are used, defining either 11 or 29 bit long ID.RTR: Remote transmission request, set to dominant for data request
frame and recessive for data frame.Control: Control section contains three parts. Identifier extension bit: Dominant for 11 bit ID, recessive for 29 bit

ID. Data length code (DLC), 4 bit code declaring the size of the payload
(0-8 bytes). 1 reserved bit, defined as a dominant.Payload: Actual data contents.CRC: 15 bit long cyclic redundancy check plus recessive bit delimiter.ACK: 1 bit long acknowledgment slot plus recessive bit delimiter. The acknowledgment during the frame transmission works as follows.
First the sender sets the ACK bit as recessive. Once a listening node
detects this, it overwrites the bus to the dominant state. This is
again detected by the sending node to which it indicates successful
acknowledgment [18].. EOF: 7 bit long recessive slot indicating the end of frame

20

......................... 2.3. Automotive grade communication buses

CAN bus robustness

As aforementioned, in the automotive setting is the CAN bus heavily utilized
in safety-critical applications. This is due to its robustness both on physical
and protocol levels. Physically the bus is realized as a balanced differential
medium using a twisted pair with 120Ω characteristic impedance, which offers
high noise immunity [18]. The protocol itself includes several error detection
mechanisms.

Using the cyclic redundancy check, the listening nodes simply do not
acknowledge proper frame reception during the acknowledgment slot. Fur-
thermore, as described in the previous subsection "CAN bus data frame", the
frame has several predefined slots with recessive bits, which also aids with
error detection. On a lower level, the transmitting nodes also check for the
state of the bus after a bit has been transmitted. If the bus state does not
correspond to said bit an error is raised. Note that this mechanic is disabled
during the arbitration and acknowledgment slots for obvious reasons. Finally,
as the CAN protocol does not use a return to zero bit representation, bit
stuffing was introduced. In case five same level consecutive bits are transmit-
ted, a bit of opposing logic level is "stuffed" into the frame. This ensures that
if the transmitting node gets stuck transmitting a constant logic level the
receiving nodes detect this and respond with an error frame. Bit stuffing is
disabled during the seven bit long EOF phase [18, 14].

QP sending time using the CAN bus

Given the popularity, robustness, and typical use cases of the CAN bus, it
seems like a good candidate for the purposes of this project. Similarly, as in
section 2.3.1 let’s create a simple plot demonstrating the relationship between
the size of a box constrained QP nvar and the ideal time it would take the
CAN bus to transmit such QP. Again, the number ntot of single-type float
values needed to be sent is given by this equation 2.34. As shown in the
structure of the CAN frame, see 2.9, one frame can hold two of these values,
each at 32 bits, and the total length of the frame is 108 bits using the standard
11 bit ID frame. In reality, the total number of frame bits can be higher due
to the bit stuffing mechanic.

Excluding the end of the frame identifier, the length of the frame becomes
101 bits. Given this, the maximum number possible of stuffed bits is 25,
which increases the total size of the frame to 133 bits. Assuming a 500 kbit/s
bit rate, the following figure shows the ideal box QP sending times for both
the 108 and 133 bit long CAN bus frames. Although these time values are
highly optimistic due to a number of reasons, it seems that the higher bit rate
of the CAN bus could allow for the usage of this protocol for the purposes of
this project.

21

2. Theoretical analysis

2 25 50 75 100

n
var

0

0.2

0.4

0.6

0.8

S
e

n
d

 t
im

e
 [

s
]

Box QP send time using CAN bus

Best case

Worst case

Figure 2.10: QP size and send time dependency using the CAN bus with bit-rate
of 500 kbit/s

2.3.3 Controller Area Network Flexible Data-Rate

Despite its popularity, the classical CAN protocol began to be insufficient
for the needs of the fast-evolving automotive industry. With the limited bit
rate of 1 Mbit/s and the payload size of a single frame being eight bytes, car
manufacturers would have to look elsewhere for a faster and more efficient
solution. When increasing the communication speed of the CAN protocol,
there are two issues. Firstly, the payload size of a single CAN frame could be
increased and could potentially transfer more than two bytes of data. But
with an unchanged bit rate, longer frames would block the bus for a longer
time, and safety-critical data could be therefore delayed [19].

The second issue arises by trying to increase the bit rate itself. But even
here is the classical CAN bus limited due to its arbitration and message
acknowledgment specifications. The key problem is that the network must be
set up in such a way that during a single bit time window is the "information
wave" able to propagate between the two physically furthest nodes back and
forth. Otherwise, the frame collision during the arbitration phase or message
acknowledgment could be missed. Given the limits imposed by the finite
speed of light, for 1 Mbit/s bit rate is the maximum length of the CAN bus
wiring forty meters, and even less is used in practice [19]. Both of these
issues are addressed in the newer CAN FD protocol specification, presented
by Bosch in 2012 and ISO standardized in 2015 [21].

CAN FD bit rate switching

The main idea behind the CAN FD protocol was to introduce two bit rates and
switch between them during a single frame transmission. As explained earlier,
the bit rate is only really limited during the arbitration and acknowledgment
phases of the CAN frame. So why not increase the communication speed, at

22

......................... 2.3. Automotive grade communication buses

least during the transmission of the payload? This is exactly what CAN FD
specifies. The protocol divides its frame into three main sections, see 2.11.
The header, payload, and tail where the header and tail are transmitted using
the so-called arbitration bit rate - the same factors limit this bit rate as in the
classical CAN protocol, maximum 1 Mbit/s. The payload is then transmitted
using the faster payload bit rate, utilizing the fact that during the payload
phase, the information flows purely in a single direction. The payload bit
rate is at most 5 Mbit/s, although even higher values might be feasible [19].

CAN FD bus data frame

The CAN FD frame is similar to the one of the standard CAN but several new
fields were added due to the increased complexity of the protocol. A single
frame is shown in the following figure 2.11. Note that this frame structure
takes into account the standard 11 bit identifier length, for a 29 bit identifier
is the header of the frame slightly modified.

SOF

1 bit

ID

11 bits

IDE

1 bit

Header

Tail

FDF

1 bit

res

1 bit

BRS

1 bit

ESI

1 bit

RRS

1 bit

DLC

4 bits

Data

0-64 Bytes

SBC

4 + 2 bits

CRC

18 / 22 + 4 / 5 bits

ACK

2 bits

EOF

7 bits

Payload

+ FSB

Figure 2.11: Controller Area Network Flexible Data-Rate frame for standard 11
bit ID length, adopted from [19, 21]

The meaning of some of the individual fields within the data frame has
already been explained in the "CAN bus data frame" subsection, only the
new fields will therefore be further described [19, 20]:.RRS: Remote request substitution, replaces the RRT bit from the CAN

protocol, defined as always dominant. IDE: Identifier extension bit, dominant for standard ID, recessive for
extended ID. FDF: Defined as recessive, in CAN frame this bit is dominant (called
the reserve bit)

23

2. Theoretical analysis
. res: Reserved bit, defined as dominant.BRS: Bit rate switch, dominant denotes no bit rate switching, recessive

signalizes the use of different payload bit rate. ESI: Error state indicator, transmitted dominant by error active nodes,
recessive by error passive nodes. Error state is a new robustness mechanic introduced by the CAN

FD protocol. Each node within the CAN FD network is initialized
as error active. Each node has two inner counters, the transmit
and receive error counter. These counters are increased/decreased
according to a set of rules but once a certain value is surpassed
the node is set to error passive. When the counters increase even
further, the node becomes silent [22]..DLC: Data length code, encoded by four bits, therefore the data lengths

corresponding to the code are: {0, .., 8, 12, 16, 20, 24, 32, 48, 64}. SBC: Stuffed bit counter, counts the number of stuffed bits before the
CRC field for improved error detection.CRC: Cyclic redundancy check plus CRC delimiter bit, CRC length is
either 17 bits for data of lengths up to 16 bytes, or 21 bits for longer
data. FSB: Fixed stuff bits, to further improve error detection the frame
specifies several slots with stuffed bits, the value of these bits is the
opposite of the previous bit

QP sending time using the CAN FD bus

As in the previous cases of CAN and LIN protocols, given the knowledge
about the structure of the data frame and bit rates of the CAN FD bus, some
upper estimation about the sending times of a box constrained QP can be
made. The setup will be similar as previously in "QP sending time using
the CAN bus. The 11 bit identifier and 64 byte data field will be assumed
which leads to 577 bit long frames (for simplicity, only fixed stuffing will be
assumed), each having the capacity to transmit up to 16 single type float
values.

For the CAN FD protocol, it is needed to take the dual bit rates into
account. Each frame has a certain number of bits to be transmitted using
the arbitration speed and another number of bits to be transmitted using the
payload speed. To calculate the total time, it would take the bus to transmit
this frame, an "average" bit rate can be obtained as follows:

Average bit rate = Total number of bits
Payload bits

Payload bit rate + Arbitration bits
Arbitration bit rate

(2.35)

24

......................... 2.3. Automotive grade communication buses

The following figure 2.12 then shows the ideal sending times of variously
sized box constrained QP problems with 500 kbit/s arbitration bit rate and 2
Mbit/s payload bit rate. The figure was plotted for CAN FD frames with
different data field sizes to visualize how the sending time decreases with the
growing length of the data field.

As a side note, it is interesting to compare the sending times using the
standard CAN bus (see figures 2.10 and 2.12) and using the CAN FD bus
with 8 bytes long data field. Although the bit overhead of "non-data" bits is
larger in the case of CAN FD, and one could argue that in this sense is the
standard CAN more efficient, the higher payload bit rate of CAN FD still
ensures that the sending times are approximately twice as fast. For larger
data fields (12 bytes and more) is the CAN FD not only faster but also more
efficient than the standard CAN, as shown in the table 2.1.

Data bytes [-] 8 12 16 20 24 32 48 64
CAN frame eff. [%] 0.59 - - - - - - -
CAN FD frame eff. [%] 0.52 0.61 0.68 0.71 0.75 0.80 0.85 0.88

Table 2.1: CAN and CAN FD frame efficiencies defined as a number of "useful"
data bits divided by the number of total frame bits, note that only fixed bit
stuffing is assumed

2 25 50 75 100

n
var

0

0.05

0.1

0.15

0.2

0.25

0.3

S
e
n
d
 t
im

e
 [
s
]

Box QP send time using CAN FD bus

64 B

48 B

24 B

16 B

8 B

Figure 2.12: QP size and send time dependency using the CAN FD bus with
various data filed sizes and bit rates of 500/2000 kbit/s

25

26

Chapter 3
Embedded solver ECU setup

With the previous chapter discussing the theoretical background of the three
key topics of this thesis, this chapter will focus on the setup of the embedded
QP solver. The main idea of the project is quite simple. Take some two
ECUs, the first one will generate arbitrary QP problems and send them
to the second ECU. The second board will then solve these problems and
transmit their solution to the original sender. For the purposes of this
thesis, the ECU sending the problems will be a desktop computer running
Matlab & Simulink, whereas the system hosting the QP solver will be an
automotive grade embedded controller described further in an upcoming
section. Furthermore, the communication will be realized using the CAN and
CAN FD bus. A basic overview of this setup is visualized in the following
figure 3.1.

Matlab

&

Simulink

Embedded

QP solver
CAN (FD)

Figure 3.1: Basic overview of the embedded QP solver setup

3.1 ECU hardware

The controller used for this project is the TC387 32 bit single-chip micro-
controller developed by Infineon Technologies™. It offers a high-performance
architecture along with advanced features for connectivity, security, and
functional safety. It is therefore suited for a wide range of automotive ap-
plications, including the control domain and data fusion applications. Some
of the specific systems utilizing this controller are air-bag system, braking
system, active suspension control, and others [23]. The main features of the
controller are listed below [23]:

27

3. Embedded solver ECU setup
. Four TriCore™ cores running at 300 MHz. Both fixed and floating point representation supported on all cores. 10 MB Flash memory (Error-Correcting Code protected). 1.5 MB static RAM memory (Error-Correcting Code protected). Peripherals: Ethernet, CAN (FD), FlexRay, LIN, I2C, Up to ASIL-D/SIL3 safety requirements supported. AUTOSAR 4.2 supported

To use the microcontroller for development purposes, a custom printed
circuit board was ordered by Garrett Motion Inc. and manufactured by
ADWITECH systems s.r.o. The final PCB shown in picture 3.3 hosts not only
the controller itself but also a power management unit, peripheral transceivers
plus connectors, and other supporting circuitry. The basic overview of this
PCB is shown in the presented block diagram 3.2.

TC 387

Ethernet

Transciever

RJ45

Connector

I2C + SPI

Connector

CAN

Transciever

Standard

CAN 9

Connector

DAP

Connector

Power

Management

12-24 V

DC IN

Board A

Board B

Interface signals
Internal signals
Power signals

Figure 3.2: Basic overview of the printed circuit board hosting the TC387 mi-
crocontroller, designed and developed by Garrett Motion Inc. and ADWITECH
systems s.r.o.

28

............................... 3.2. OSQP solver deployment

(a) : Top view of the PCB (b) : Custom case for the PCB

Figure 3.3: Photos of the custom made printed circuit board used for the
purposes of this project

3.2 OSQP solver deployment

The first QP solver to be deployed onto the embedded system is the OSQP
(Operator Splitting solver for Quadratic Programs) solver developed at the
University of Oxford and published as an open-source project in 2020 under
the Apache 2.0 license. It is a general-purpose solver for convex QPs based
on the alternating direction method of multipliers (ADMM). The main
advantage of this solver is its robustness, where the solver algorithm places
no requirements on the problem formulation. Such requirements could be the
definiteness of the quadratic cost function term or the linear independence
of the problem constraints as discussed in the introductory section "Convex
quadratic programming" [24]. Another aspect important for the use case of
this thesis is the support of the deployment of the source code onto embedded
hardware. OSQP offers an embedded code generation software package that is
able to generate an "embedded ready" source code from a specific QP problem
formulation based on the OSQP algorithm. The generated code supports
updating of the problem parameters during runtime and offers a number of
configuration options to fine-tune the performance of the generated solver
[25].

The inner workings of the OSQP solver will not be described in this thesis
as the background of numerical optimization is quite extensive and outside
the scope of this project. To see a detailed description and derivation of the
OSQP algorithm, including examples and benchmarking, please refer to the
original paper [24]. The solver solves a convex QP problem in the already
familiar form:

min
z

1
2z⊺Hz + f⊺z

s.t. alb ≤ Az ≤ aub

(3.1)

29

3. Embedded solver ECU setup
Where H ∈ Rn×n is positive semi-definite and A ∈ Rm×n defines the
potentially affine linear constraints. Furthermore, individual elements of
alb, aub ∈ Rm can be defined as ±∞ [26].

3.2.1 Code generation

The source of the OSQP solver is written in C, but a number of official
interfaces are supported, including Python, Julia, and Matlab. As the aim
is to generate a parameterized and embedded ready C code, an interface
supporting code generation will be selected. For that reason, the solver will
be deployed using the Matlab interface.

Following the user documentation [26], the setup of the Matlab interface for
OSQP is straightforward. Firstly, clone the official OSQP Matlab repository
(available at [27]) and secondly, build the interface by calling the make_osqp.m
function. This generates an osqp_mex.mexw64 binary file callable from
Matlab, which acts as a wrapper for the OSQP source functions. Note that
both CMake™ and Matlab supported C compiler are needed for the build
step. At this point is the OSQP solver fully accessible within the Matlab
environment via the osqp.m object handle, which in itself calls the mex binary
wrapper. As an example, a solution to a given QP problem can be obtained
as follows.

% Init the osqp object handle
osqp_obj = osqp;
% Setup the QP problem with default solver settings
osqp_obj.setup(H, f, A, lb, ub);
% Obtain the solution
result = osqp_obj.solve();

Listing 3.1: Using the Matlab environment to solve a QP problem using the
OSQP solver

Now the code generation feature of the Matlab OSQP package will be
used to obtain a parametrized source code ready to be deployed onto the
embedded controller. The final code will be library free, without dynamic
memory allocation, and possibly division-free [27]. The downside of no
dynamic memory is that the deployed solver will only be able to solve QP
problems of predefined size, and the problem will be pre-allocated. To solve
a differently sized QP, the embedded source code has to be regenerated and
redeployed.

A second issue is that the solver operates over sparse H matrix representa-
tion, meaning that the memory pre-allocated for the hessian is also dependent
on the number of zero elements within the matrix. The consequence of this
is that even if another QP is of the dimension the source code was generated
for unless the new hessian has an identical sparsity pattern, the deployed
solver will not be able to solve such a problem. Again leading to the need for
regeneration and redeployment of the solver. From a practical standpoint this

30

............................... 3.2. OSQP solver deployment

does not pose a critical issue at the moment as many applications utilizing
QPs, such as linear model predictive control, operate with a fixed QP problem
dimension and constant cost matrix H.

As for the code generation itself the Matlab OSQP package offers several
options to configure the final code, the key options are:. 'parameters': Specify either 'vectors' or 'matrices' to select

whether only the vectors or both vectors and matrices of the QP problem
will be parametrized during runtime. 'FLOAT': Set to true to use single-precision types, false to use double-
precision types. 'LONG': Set to true to use long long integers, false to use standard
integers. 'mexname': Name of the executable .mexw64 file used for calling the
generated source code

Finally, to followup on the example 3.1, generating and testing the code is
done in the following fashion.

% Generate the source code and build the mex binary
osqp_obj.codegen(target_directory, 'parameters', 'matrices', ...

'FLOAT', true, 'LONG', false, 'mexname', 'my_osqp_mex')
% Test the code by calling the solve function
[x, y, status, iter, runtime] = my_osqp_mex('solve');

Listing 3.2: Using the Matlab environment to generate an embedded ready
OSQP source code

This generates an embeddable library into the target directory where the
problem specified during the osqp setup is hard-coded into the source files to
ensure no dynamic memory allocation is needed.

3.2.2 Generated code deployment

In the previous subsection "Code generation" the process of obtaining an
embedded friendly source code was described. Deploying the solver onto
the hardware is then simply a matter of copying the generated library into
the controller source project and using the well-documented C application
programming interface (API) [28]. All the solver information, including
solver settings, problem data, and optimization results, is stored within a
"OSQPWorkspace workspace" C structure. This structure is generated in
Matlab during the code generation phase and is defined as global. The
interface also supplies all necessary functions to update and solve individual
QP problems. An example of how to work with the deployed OSQP solver
within the embedded application follows. Note that for the use cases of this
project, neither the matrix H nor A will need to be updated for the OSQP
solver during runtime.

31

3. Embedded solver ECU setup
/* Include the necessary header files */
include "osqp.h"
include " workspace .h"

void OSQP_Update_and_Solve (){
/* Update the individual vectors of the QP problem */
osqp_update_lin_cost (& workspace , &f_new);
osqp_update_lower_bound (& workspace , & lb_new);
osqp_update_upper_bound (& workspace , & ub_new);

/* Result available at (& workspace)->solution ->x */
osqp_solve (& workspace);

}

Listing 3.3: Calling the generated OSQP solver from the embedded application

To bridge the gap between the main application and the OSQP API
functions, a storage structure OSQP_storage is created. The QP problem
will be first fully defined within this storage, and only if all data is received
will the OSQP workspace be updated, see figure 3.4. This is done to utilize
the API update functions, which can only update the individual QP vectors
all at once but, on the other hand, run a number of feasibility checks before
updating the actual problem in the OSQP workspace.

Main

application

OSQP

API

Main

application

OSQP

Storage

QP update

logic

Single call

update & solve

Result

Figure 3.4: QP problem data propagation in the embedded application when
using the OSQP solver

3.3 CGNP solver deployment

The second solver to be deployed onto the controller is the Combined Gradient
and Newton Projection (CGNP) QP solver. Originally presented as a part of
a dissertation thesis at Czech Technical University in Prague [29], its current
form along with its source code are now intellectual property of Garrett
Motion Inc. For that reason will this solver be treated purely as a black box
function for the purposes of this project. The CGNP solver solves QPs in the
box constrained form:

min
z

1
2z⊺Hz + f⊺z

s.t. zlb ≤ z ≤ zub

(3.2)

32

............................... 3.3. CGNP solver deployment

It was developed to be an efficient embedded solver for the use cases of
model predictive control. Deploying it onto the controller is, therefore, even
simpler than in the case of the OSQP solver, as the source code is by design
library and dynamic memory free. The CGNP solver offers two important
advantages over the OSQP solver.

Firstly, one of the input arguments of CGNP is the QP problem size. This
means that as long as enough memory is pre-allocated for the solver, by simply
feeding the solver information about the current problem dimensions, QP
problems of varying sizes can be solved without any need for code regeneration
and redeployment. Secondly, CGNP does not operate with the cost function
matrix H in its sparse representation, and it is therefore much simpler to
update not only the individual vectors of the QP problem but also the
quadratic cost function term itself. Note that the second point is discussed
as advantageous in this case, but the sparse representation used by OSQP is
well-founded when it comes to memory efficiency.

Similarly, as in the case of OSQP, to properly implement the CGNP solver
into the main embedded application, three structures will be defined. The
CGNP_U structure will hold all the input data of the QP problem, CGNP_Y
the output data of the QP solver, and CGNP_tmp_mem allocates temporary
memory used by the solver during runtime, for the content of these structures
see figure 3.5.

max iterations

QP size

CGNP_U

iterations

exit flag

active constraints

CGNP_Y

Scalars and
vectors used by
CGNP during
runtime

CGNP_tmp_mem

Figure 3.5: Data structures used by the CGNP solver

The following code snippet 3.4 shows a (simplified) example of how the
CGNP solver will be called from the main application, taking the input
structure with the problem definition and updating the output structure with
the obtained solution.

33

3. Embedded solver ECU setup
/* Necessary includes */
include " QPSolverLib .h"

void CGNP_solve_call (){
/* Zeroing -out memory , resetting flags , ... */
CGNP_initialize (& CGPN_Y , & CGNP_tmp_mem);

/* Main solver function call */
CGNP_Y . iterations = QPSolve (& CGPN_U , &CGPN_Y ,

& CGNP_tmp_mem);
}

Listing 3.4: An example of using the CGNP solver in the embedded aplication

34

Chapter 4
CAN bus based interface

The previous chapter dealt with the deployment of two QP solvers onto
the embedded system. The next step will be to implement a CAN bus
based communication channel between a desktop computer running Matlab
& Simulink and the controller. This channel will then be used to test the
individual solvers and to verify their functionality. Furthermore, a baseline
communication scheme will be presented, which will act as a simple proof
of concept solution showing that the controller can indeed be used as an
external QP solver. The following sections will deal with the definition of
custom CAN messages, implementation of the CAN communication logic
into the controller, and finally the development of both Matlab and Simulink
interfaces used for connecting to the controller.

4.1 CAN messages definition

To begin with, the individual messages to be used for the purpose of CAN
communication will be described. The workings of the CAN protocol and the
complete structure of the CAN bus data frame were described previously in
section "Controller Area Network". Four messages will be defined in a CAN
database, each serving a different purpose in the communication scheme. The
main properties of these four messages are then shown in the following table
4.1.

Name ID format ID decimal DLC Transmit node
TxSetup 11 bit 1 8 Desktop PC
TxData 11 bit 2 8 Desktop PC
ResultData 11 bit 4 8 Controller
SolverDebug 11 bit 5 8 Controller

Table 4.1: Characteristics of the defined CAN messages

Solver setup message "TxSetup"

The first message will be used to update tunable parameters on the side of
the embedded solvers. Note, that the setup message does not need to be

35

4. CAN bus based interface................................
transmitted in order for the system to work properly, as default settings are
hard-coded within the embedded application. The contents of the message,
shown in figure 4.1, are defined over the available eight payload bytes.

Reserve WarmStart MaxIter SolverSelect PrblmSize

1 - 4 5 6 7 8

Name

Byte #

Datatype float32 uint8 uint8 uint8 uint8

Figure 4.1: Solver setup CAN message definition

Where the individual data fields have the following meaning.. Reserve: Four bytes are reserved for possible future use.WarmStart: Flag indicating whether the solver uses the optimal solution
of the previous problem as a starting point for the new problem.MaxIter : Maximum number of allowed QP solver iterations. SolverSelect: Flag which selects the solver to be used for the next QP
problem, 0 - CGNP, 1 - OSQP. PrblmSize: Size of the next QP problem, used only by CGNP as OSQP
does not support varying QP problem sizes

QP problem data message "TxData"

The second message is defined to transmit the actual problem data - cost
function and bounds. In this case is the limitation of eight byte long payload
really obvious. As an individual single-precision value occupies four bytes,
the remaining four bytes will hold some additional information about the
transmitted value. Therefore, by using the CAN protocol, it is possible to
transmit only one numerical value per a complete CAN message. With this
in mind, the structure of the message is presented in figure 4.2.

Data HozlPosn VertPosn PrblmVar TaskID

1 - 4 5 6 7 8

Name

Byte #

Datatype float32 uint8 uint8 uint8 uint8

Figure 4.2: Problem data CAN message definition

With the following meaning of the individual parts of the payload:. Data: Single-precision numerical value, part of the QP problem definition

36

............................... 4.1. CAN messages definition

. HozlPosn: Denotes the horizontal position of the numerical value within
the vector or matrix defining the QP problem, for a column vector this
value is always one. VertPosn: Denotes the vertical position of the numerical value within
the vector or matrix defining the QP problem. PrblmVar : Numerical value denoting the part of the QP problem to
which the numerical value corresponds, H =⇒ 0, f =⇒ 1, xlb =⇒ 2,
xub =⇒ 3. TaskID: Value used for transmitting commands to the controller, it
practically marks the final data message and signalizes the controller to
calculate and transmit the result. 1: Update the stored QP problem with the newly received value. 2: Update, solve and transmit the result as soon as possible. 3: Update, solve, transmit the result and finally transmit the

SolverDebug message discussed later ("Solver information message
"SolverDebug"")

QP problem result message "ResultData"

The next message will be configured to transmit the result of the optimization
from the controller back to the sender. It is mostly identical to the previous
TxData message and its contents, shown in figure 4.3, will not be therefore
explained in detail.

Data HozlPosn VertPosn isLastMsg Reserve

1 - 4 5 6 7 8

Name

Byte #

Datatype float32 uint8 uint8 uint8 uint8

Figure 4.3: Result data CAN message definition

Solver information message "SolverDebug"

Finally the last message that needs defining will be used to obtain the solver
information from the controller after a problem has been solved. Similarly as
the setup message, requesting the debug solver information is optional and
can be disregarded to minimize data flow over the CAN bus. The individual
fields of the payload can be seen in the upcoming figure 4.4.

37

4. CAN bus based interface................................

SolverStatus Iterations SolvTime Reserve1 Reserve2

1 2 3 - 6 7 8

Name

Byte #

Datatype uint8 float32 uint8 uint8uint8

Figure 4.4: Solver debug information CAN message definition

Where:. SolverStatus: Unsigned integer representing the status returned by either
the CGNP or OSQP solver. CGNP: 1 - optimal solution found, 0 - suboptimal solution found. OSQP: 1 - optimal solution found, for the meaning of other constants

please refer to one of OSQP’s headers constants.h, note that the
transmitted value is offset by 10 to transmit negative flag values
via the uint8 datatype. Iterations: Number of performed solver iterations. SolvTime: Time (in seconds) it took the optimization algorithm to reach

its termination

4.2 Embedded application CAN interface

With the previous section describing the structure of the CAN messages
that will be used for communication between the controller and Matlab,
the implementation of the controller CAN interface follows. Firstly, to
interact with the CAN interface, the MCMCAN software module supplied by
Infineon will be used [30]. It supports both classical CAN and CAN FD and
offers complete node configuration, including operation bit rate, message ID
acceptance filter, and message received interrupt priority.

Decoding CAN messages

When a message with the correct ID is received, an interrupt is raised, calling a
callback function. Within this function, the payload of the message is read and
stored into dedicated storage consisting of two uint32 variables. To translate
this data into the individual values defined by the specific CAN message, a C
union will be used. As an example, take the message described in the previous
subsection "QP problem data message "TxData"". The individual variables
of this messages will be defined within a standard structure. Furthermore,
a union will be initiated where an instance of this structure will share its
memory with the two uint32 values read by the CAN node, see 4.1. Finally,
by storing the received data into canRxMsgData.uintData the real values of
the message can be accessed in canRxMsgData.canMsgData. Note that to
transmit a CAN message, the same approach is used.

38

.......................... 4.2. Embedded application CAN interface

/* Typedef for " TxData " CAN message */
typedef struct canMsgDataStruct {

float32 fData;
uint8 HozlPosn ;
uint8 VertPosn ;
uint8 PrblmVar ;
uint8 TaskID ;

} canMsgDataStructT ;

/* Union to transform between raw data and specific values */
typedef union canMsgDataUni {

canMsgDataStructT canMsgData ;
uint32 uintData [2];

} canMsgDataUniT ;

/* Create an instance of the union */
canMsgDataUniT canRxMsgData ;

Listing 4.1: Decoding a CAN message in the embedded application using C union

Application logic overview

In this stage is the embedded application able to receive, decode plus transmit
CAN messages, and call the QP solvers to solve a defined problem. The logic
of the final application utilizing the CAN interface is shown in the following
block diagram 4.5.

System Idle SolverSetup

 received

Update solver
settings

TaskID == {1,2,3}

TxData

 received

TaskID == {2,3}

Update QP
problem

TaskID == 1

Call the QP
solver Send the result

TaskID == 2

Send the result
and solver
information

TaskID == 3

Figure 4.5: Control logic of the embedded application utilizing the CAN com-
munication interface

39

4. CAN bus based interface................................
4.3 Matlab & Simulink CAN interface

With the controller side of things finished, the next step is to create a Matlab
& Simulink interface, which will be able to communicate via the CAN bus
properly and utilize the controller as an external QP solver. To interconnect
the controller with a PC, a USB to CAN converter will be used, namely
Kvaser Leaf Pro HS v2 [31]. An advantage of this device is that it is directly
supported by Mathworks’ Vehicle Network Toolbox, leading to straightforward
utilization of Matlab’s build in CAN and CAN FD functionality.

4.3.1 Matlab based CAN interface

The first step of the development process of the final interface will be to verify
the workings of the embedded system by creating a simple demo purely in
Matlab. This is to create an easy to debug code that will test the functionality
of the controller within the Matlab environment. A generic example of how
to use the developed API is shown in the following code listing.

% Initialize the interface object handle
mb_can = MB_CAN_sys();
% Start the CAN channel, bitrate in bit/s
mb_can.start_can_channel(bitrate);
% Optional: Update the external solver settings
mb_can.send_solver_setup(PrblmSize, SolverSelect, MaxIter, ...

WarmStart);
% Finally, solve a QP problem
solution = mb_cab.solve_qp(PrblmSize, GetSolverDebug, H, f, lb, ...

ub, |z_opt_ref|);

Listing 4.2: Calling the external QP solver via custom Matlab interface, using
the CAN bus

See that the final argument z_opt_ref of the solve function is optional
and is used to supply a reference solution to obtain a relative error between
the reference solution and the solution received from the external solver. The
output structure solution consists of the following fields, of which the mean-
ing should be self explanatory: 'z_opt_mb', 'rel_err', 'Iterations',
'SolvTime' and 'SolverStatus'. Note that in case GetSolverDebug is
set to zero, the solver debug message is not received from the controller, and
only the solution itself is returned.

Embedded system functionality verification

To test the system, randomly generated QP problems will be used for now.
When generating such a problem, two conditions must be met. Firstly,
ensuring that the cost function matrix H is positive semi definite is necessary,
and secondly, the lower and upper bounds of the box constrained QP problem
ought to be feasible. A reference solution will be obtained using Matlab’s

40

........................... 4.3. Matlab & Simulink CAN interface

quadprog solver and the relative error between the reference solution z∗
ref

and the received solution z∗
mb will be calculated as follows.

Relalitve error =
∥z∗

ref − z∗
mb∥2

∥z∗
ref ∥2

(4.1)

To begin with, the deployed CGNP solver will be tested with no warm
starting and fifty allowed iterations. One hundred random QPs of thirty four
variables were sent to the controller, and the returned results are shown in
the following figure 4.6. From the obtained results, it seems that the CAN
interface is indeed working well, both on the side of the controller and Matlab.
All problems were solved optimally as per the SolverStatus flag, and the
relative error of the received solutions is well within tolerable bounds.

External CGNP solver results, QP size = 34

QP problem

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

R
e

la
ti
v
e

 e
rr

10-5

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

It
e

ra
ti
o

n
s

0 10 20 30 40 50 60 70 80 90 100

4

6

8

10

S
o

lv
T

im
e

10-3

0 10 20 30 40 50 60 70 80 90 100
0

1

2

S
o

lv
e

rS
ta

tu
s

Figure 4.6: Results calculated by the CGNP solver for one hundred random QP
problems of size thirty four, obtained via the Matlab CAN interface

A similar experiment will be repeated for the OSQP solver with the
exception that the random problems will have constant cost matrix H due
to reasons explained in section "OSQP solver deployment". The number of
allowed iterations for the OSQP solver will also be increased to one hundred.
See figure 4.7 for the results. Again, positive results were obtained as the
relative error of the solutions is minimal, and the SolverStatus reports
either "QP problem solved (12)" or "maximum iterations reached (8)".

41

4. CAN bus based interface................................
External OSQP solver results, QP size = 34

QP problem

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

R
e

la
ti
v
e

 e
rr

10-6

0 10 20 30 40 50 60 70 80 90 100
70

80

90

100

It
e

ra
ti
o

n
s

0 10 20 30 40 50 60 70 80 90 100
0.04

0.05

0.06

S
o

lv
T

im
e

0 10 20 30 40 50 60 70 80 90 100
8

10

12

S
o

lv
e

rS
ta

tu
s

Figure 4.7: Results calculated by the OSQP solver for one hundred random QP
problems of size thirty four, obtained via the Matlab CAN interface

4.3.2 Simulink based CAN interface

With the previous section verifying the functionality of the controller and the
deployed QP solvers, the next step is to develop a functional plug-and-play
Simulink interface that would allow the user to utilize the controller as an
external QP solver. The Simulink Desktop Real-Time™ toolbox will be
used for this purpose. It provides a real-time kernel for simulating Simulink
models on a Windows desktop computer. Furthermore, it includes special
library blocks for I/O devices allowing for CAN and CAN FD communication
integration and precise timing of the message transmit/receive logic. The
main idea is to develop a masked subsystem model with several inputs and
outputs that would be configurable and would handle all of the communication
logic. This concept is shown in 4.8.

Interface model design

The "brain" controlling this model will be a System Object™ called
MB_CAN_logic. Simulated in discrete steps and driven by a configurable
clock, this object will determine the status of the system, controlling the
sending and receiving of messages, updating data indices, etc. To configure
the clock period of the system, the following reasoning was used. Given a

42

........................... 4.3. Matlab & Simulink CAN interface

CAN bus bit rate of 500 kbit/s and the worst-case size of the CAN data
frame being 133 bits (discussed in section "QP sending time using the CAN
bus"), the bus should be able to transmit a whole frame every ∼ 2.7 × 10−4

seconds. Setting the clock period to a higher value (for example, 3 × 10−4

seconds) should therefore leave enough time for any overhead during the data
transmission.

External solver
CAN interface

Masked subsystem

Communication
logic

System settings

Solver
information

System
status

Figure 4.8: Concept of the Simulink CAN interface for the external QP solver

The functionality of the MB_CAN_logic system is best visualized by ex-
amining its outputs. An example can be seen in the figure 4.10 where a
QP problem of 34 variables is to be solved. The most important output
property is the system status (shown in the first subplot) which controls when
and what part of the QP problem is currently being sent, when to expect a
result and solver debug messages, or when to send the solver setup message.
Furthermore, the system outputs the horizontal and vertical indices used for
selecting individual numerical values from the problem’s vectors and matrices.
Finally, TaskID corresponds to the property of the same name described in
"QP problem data message "TxData"".

(a) : Imported CAN interface block
as seen in Simulink

(b) : Configurable block parameters

Figure 4.9: The final Simulink CAN interface for the external QP solver

See figure 4.9 for the final form of the Simulink CAN bus interface. Utilizing
the aforedescribed MB_CAN_logic system the inner structure of the interface

43

4. CAN bus based interface................................
is visualized in the block diagram 4.11.

MB_CAN_logic system outputs

Time [s]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Sending H

Sending f

Sending lb

Sending ub

Receiving result

Receiving debug

Sending setup

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

20

40

R
o
w

 i
d
x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

20

40

C
o
lu

m
n
 i
d
x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

1

3

T
a
s
k
ID

Figure 4.10: An example of outputs of the MB_CAN_logic Matlab System™
used as the main control block of the final CAN Simulink interface

Status

MB_CAN_logic

Clock

Data select
Indices, Task ID

Switch

Case

Data send

Enabled subsystem

Data receive

Enabled subsystem

Solver info

Setup send

Enabled subsystem

Triggered subsystem

Figure 4.11: Simulink CAN interface inner logic

44

........................... 4.3. Matlab & Simulink CAN interface

CAN interface testing

With the Simulink CAN interface finalized, the next step will be to test the
performance of the HIL system. Similarly, as in previous subsections, one
hundred random problems will be solved via the Simulink interface. The
simulation is set up in such a fashion that a new problem is sent right after
the solution of the previous one is received, and the problems should therefore
be solved as fast as possible. The results confirming the proper workings of
the system can be seen in the following figure 4.12.

Simulink CAN interface CGNP solver results, QP size = 34

Time [s]

0 5 10 15 20 25 30 35 40 45

10
-5

10
-3

R
e

la
ti
v
e

 e
rr

0 5 10 15 20 25 30 35 40 45
0

20

40

60

It
e

ra
ti
o

n
s

0 5 10 15 20 25 30 35 40 45
0

0.01

0.02

S
o

lv
T

im
e

0 5 10 15 20 25 30 35 40 45

0

1

S
o

lv
e

rS
ta

tu
s

Figure 4.12: Results calculated by the CGNP solver for one hundred random
QP problems of size thirty four, obtained via the Simulink CAN interface

Besides verifying the functionality of the developed interface, an experiment
will be conducted to measure the time between two consecutive problems
being solved - Time to Next Solution (TNS). In other words, how will the
theoretical computation of the communication speed fare against the measured
empirical results? To begin with, figure 4.13 shows TNS for the previous
simulation 4.12. Note that to disregard the performance of the QP solvers,
the time spent solving the actual problem was subtracted from these values.
The average TNS measured over the one hundred problems is very close to the
expected time, which was calculated using the knowledge about the number
of total messages and the frequency of message transmissions.

45

4. CAN bus based interface................................

0 10 20 30 40 50 60 70 80 90 100

QP problem

0.4230

0.4235

0.4240

0.4245

0.4250

T
im

e
 [

s
]

 Average time between two consecutive solutions

Measured time

Average time

Expected time

Figure 4.13: TNS for one hundred QP problems using the CAN Simulink
interface, disregarding the QP solver time consumption

Similarly, the second figure 4.14 visualizes the dependency of the TNS on
the size of the QP problem. With the increasing number of optimization
variables, the size of data to be transmitted grows exponentially, and the
usefulness of the interface decreases. For information sake, the QP solver
computation time was plotted as well to see the ratio between the optimization
time and the overall time it took the system to present a solution. To improve
upon these results, a second interface utilizing the CAN FD communication
bus will be presented in the following chapter.

5 10 20 35 50 70 90

QP problem size

10
-4

10
-3

10
-2

10
-1

10
0

T
im

e
 [

s
]

 Time between solutions vs problem size

Average time

Expected time

Average SolvTime

Figure 4.14: Dependency of the average TNS on the QP problem size

46

Chapter 5
CAN FD bus based interface

As shown in the last section,"CAN interface testing" utilizing the CAN
interface for the external solver may only be feasible for small problems
and/or relatively slow use cases. For fifty optimization variables, the setup
took almost a second on average to return a correct solution, which may be
too slow for many applications. The goal of this chapter will be to follow up
on the systems developed in the previous chapter by utilizing the faster and
more efficient CAN FD field bus. Furthermore, new features will be presented
to speed up the system further.

5.1 Developing the CAN FD interface

As the previous chapter thoroughly presented the implementation process of
the CAN interface, the development of the new CAN FD interface will be
described in less detail as the approach is very similar.

CAN FD messages

Firstly, several CAN FD messages will be defined to transmit data between
the controller and the desktop computer, see table 5.1.

Name ID format ID decimal DLC Transmit node
SolverSetup 29 bit 13 8 Desktop PC
SolverDebug 29 bit 21 8 Controller
FullHess 29 bit 10 15 Desktop PC
TriuHess 29 bit 12 15 Desktop PC
FullVec 29 bit 11 15 Desktop PC
Result 29 bit 20 15 Controller

Table 5.1: Characteristics of the defined CAN FD messages

The first two messages SolverSetup and SolverDebug will play the same role
as in the case of the CAN communication interface. That is to update the
settings of the external QP solver such as iterations and warm starting and
to transmit the information provided by the QP solver after the optimization,
f.e. exit flag or the number of performed iterations. The following messages

47

5. CAN FD bus based interface
FullHess and TriuHess are defined for transmission of the hessian data H.
To maximize the frame efficiency, the size of the payload is set to sixty four
bytes which allows each message to transmit fourteen numerical values. The
FullHess message is used for sending the whole matrix, i.e. all of its n × n
values where n is the number of optimization variables, whereas the TriuHess
message is configured for the transmission of only the upper triangular part of
H. Finally, messages FullVec and Result are for transmitting the vector parts
of the QP problem definition to the controller and the found solution back
to the sender. Both of these messages can transmit up to fifteen individual
single type values.

Matlab interface

After defining the structure of the individual messages, the next step will be
the development of a Matlab interface to test the basic functionality. Similar
to the CAN API, the usage of the new interface is shown in the following
code snippet 5.1.

% Initialize the interface object handle
mb_canFD = MB_CAN_FD_sys();
% Start the CAN FD channel, bitrate (br) in bit/s
mb_canFD.start_can_channel(arbitration_br, payload_br);
% Optional: Update the external solver settings
mb_canFD.send_solver_setup(PrblmSize, SolverSelect, MaxIter, ...

WarmStart);
% Finally, solve a QP problem
solution = mb_cabFD.solve_qp(PrblmSize, GetSolverDebug, H, f, ...

lb, ub, |z_opt_ref|, |SendTriuHess|);

Listing 5.1: Calling the external QP solver via custom Matlab interface, using
the CAN FD bus

See that as flexible data rate is used, specifying both the arbitration and
payload bit rates is necessary for setting up the channel. Furthermore a new
optional argument SendTriuHess was added to the solve function. It is a
flag determining whether the whole matrix H should be sent or whether to
send only its upper triangular part, which is the default option.

Simulink interface

Finally, the main focus of this chapter will be a Simulink based CAN FD
interface for the external QP solver. Following the same approach as presented
in the previous chapter, the final model will be a configurable block with inputs
and outputs as presented in figure 4.9. Controlled by a Matlab System™ at
a given frequency, this system will present a number of new features, and
improvements in comparison to the baseline CAN interface, which will be
discussed in following the following section.

48

........................... 5.1. Developing the CAN FD interface

(a) : Imported CAN FD interface
block as seen in Simulink

(b) : Configurable block parameters

Figure 5.1: The final Simulink CAN FD interface for the external QP solver

For the developed model see figure 5.1. With identical inputs and outputs
as the CAN interface the only difference visible to the user will be the block
configuration options. Divided into three tabs these options have the following
meaning.

Block settings. 'Constant Hessian': When selected the system assumes a constant
cost matrix H throughout the simulation and transmits the hessian data
only once to reduce communication overhead.. 'Send symmetric Hessian': When selected the interface only sends
the upper triangular part of the cost matrix. 'Send only changed vectors': When selected, each time a new QP
problem ought to be transmitted to the external solver, the model
automatically sends only the parts of the problem (matrix / vector vise)
that have changed since the previous QP problem.

Solver settings. 'Request solver debug information': When selected the SolverDe-
bug message containing the "post optimization" information is requested
by the interface.. 'Send solver setup message': When selected the SolverSetup mes-
sage is transmitted configuring the external QP solver, otherwise default
settings are used to solve the QP problem.. Furthermore, this tab allows to select the preferred QP solver, iterations
and warm starting.

49

5. CAN FD bus based interface
Sending scheme. 'Busy send': The model operates in "busy" mode, meaning that each

time a problem solution is received, the next problem begins to be
transmitted right away. Note that this is not the preferred use case
when deploying the interface into some larger model, since the user loses
control over the timing of the solver interface. On the other hand, if the
model is built around the interface, this option guarantees the fastest
possible simulation.. 'At input change': The transmission of a new problem is triggered
by a change of one of the input vectors.

5.2 Testing the CAN FD interface

With the interface developed, this section will focus on the testing of its
functionality and performance. To begin with, a simple sanity check will
be performed. Similarly, as before, one hundred random problems of size
thirty four will be solved, but instead of just comparing the solutions to
their reference, a cross-check will be done to compare the controller outputs
for the 'Send symmetric Hessian' option. The expectations are that the
external solver outputs will be identical regardless of these settings since only
the upper triangular part of a symmetric hessian is necessary to solve the
problem. Results of these experiments are shown in figure 5.2 and confirm
the proper workings of both the system itself by returning a solution with
minimal error and the system settings by returning identical outputs for both
simulations.

However, what is not shown in the figure is the average time it takes the
interface to present a solution to the current QP problem disregarding the QP
solver computation time, i.e. TNS. By transmitting only n(n + 1)/2 values of
H instead of all n2 values, sending the hessian should take up to 50% less
time as n −→ ∞. How this projects into the TNS reduction is shown in the
figure 5.3, where the average TNS over one hundred random problems was
measured. Firstly, see that for the QP problem of size five, there is no visible
difference in the average times. That is due to the reason that a single CAN
FD frame transmitting hessian data can carry at most fourteen values, as
mentioned in "CAN FD messages". But for n = 5 that means transmitting
two frames regardless of the 'Send symmetric Hessian' option. On the
other hand, for n ≥ 10, the average TNS difference becomes more and more
pronounced as the quantity of data contained within H scales quadratically
with the problem size and sending the hessian data eventually takes up the
majority of the communication time. To conclude, the worth of sending the
upper triangular part of the cost matrix H only increases with the growing
number of optimization variables.

50

............................. 5.2. Testing the CAN FD interface

CAN FD simulink interface, 'Send symmetric Hessian' option testing

QP problem

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3
R

e
la

ti
v
e
 e

rr
10-5

Full H

Triu H

0 10 20 30 40 50 60 70 80 90 100

5

10

15

It
e
ra

ti
o
n
s

Full H

Triu H

0 10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

S
o
lv

T
im

e

10-3

Full H

Triu H

Figure 5.2: Outputs using the Simulink CAN FD interface, comparison between
sending the full matrix H vs. sending its upper triangular part

5 10 20 35 50 70 90

QP problem size

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
im

e
 [

s
]

 Time between solutions vs problem size

Average time Full H

Average time Triu H

Average SolvTime

Figure 5.3: Dependency of the average TNS on the QP problem size and the
'Send symmetric Hessian' option for the CAN FD interface, 500 kbit/s
arbitration and 2 Mbit/s payload bit rate

51

5. CAN FD bus based interface
After showcasing the benefit of not sending duplicate data contained within

a symmetric matrix, what about not sending the hessian at all? This is the
use-case typical for linear MPC as the hessian is constant throughout the
runtime of the regulation. Whether constant H ought to be assumed is by
the interface controllable by the 'Constant Hessian' parameter. When
selected, the interface only sends the matrix H data once with the first QP
problem. For the following problems, only the vector parts are updated,
which should significantly speed up TNS. The time reduction achieved for
H = const. is shown in the following figure 5.5. Similarly, as before, no
significant difference between the times for sizes five and ten is visible. This
is again caused by the definition of the CAN FD messages and how much
data each frame can carry. For these two problem dimensions, the amount of
transmitted bytes are identical, which is a small disadvantage of defining the
data frame to be of maximum size.

5 10 20 35 50 70 90

QP problem size

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

T
im

e
 [

s
]

 Time between solutions vs problem size

Average time Triu H

Average time const H

Average SolvTime

Figure 5.4: Dependency of the average TNS on the QP problem size and the
'Constant Hessian' option for the CAN FD interface, 500 kbit/s arbitration
and 2 Mbit/s payload bit rate

Finally, to further visualize how the TNS differs for the three options (full,
upper triangular, and constant H), one more figure will be presented, see 5.5.
The first subplot shows the absolute average time in seconds between two
consecutive solutions plotted against the number of optimization variables.
The second subplot than scales this data to show the differences between the
three options relative to the slowest measurement. As an interesting result,
by not having to send the hessian data, the TNS is reduced by up to an order
of magnitude when compared to the baseline performance of sending the full
hessian.

52

............................. 5.2. Testing the CAN FD interface

Comparison of TNS for Full, Triu and Const H

QP problem size

5 10 20 35 50 70 90

10-2

10-1
A

b
s
.

ti
m

e
 [

s
]

Full

Triu

Const

5 10 20 35 50 70 90
0

0.5

1

R
e

l.
 t

im
e

Full

Triu

Const

Figure 5.5: Dependency of the average TNS on the QP problem size and the
'Constant Hessian' option for the CAN FD interface

53

54

Chapter 6
HIL MPC showcase

After finalizing the development and testing of the whole external QP solver
framework, the final part of this thesis will focus on using the framework
in an MPC control loop utilizing the Hardware-in-the-Loop (HIL) testing
methodology. The approach will be to simulate the plant and construct the
QP problems in the real-time Simulink model and use the CAN (FD) interface
to solve these problems with the embedded solver. The obtained result will
then be used as the system input in the next time step, as is typical for the
"Receding horizon control". This is visualized in the following figure 6.1.

Plant
simulation

QP
Construction

Solver
interface CGNP / OSQP

TC387
Simulink Desktop Real-timeTM

CAN (FD)

Figure 6.1: The HIL configuration used for the MPC demos

Using this configuration, two automotive related demos will be presented.
The first one is based on a linear lateral dynamics vehicle model, and the
second one is based on a longitudinal cruise control model.

6.1 Lateral dynamics control

To begin with, the model describing the lateral dynamics of a single track
vehicle will be presented. The model is adopted from [32], for detailed
derivation of the upcoming equations please see the listed source.

Consisting of two states x = [vy, rz]⊺, where vy is the lateral velocity and rz

the yaw rate of the vehicle, and a single input u = δ, where δ is the steering
angle of the front wheel, the dynamics are described by the following state
space model corresponding to the form presented in 2.7.

55

6. HIL MPC showcase

Figure 6.2: Simple single track vehicle model, adopted from [32]

v̇y(t)

ṙz(t)

 = −

 cr+cf

mvx

cf a1−cra2
mvx

+ vx

cf a1−cra2
Izvx

cf a2
1+cra2

2
Izvx


vy(t)

rz(t)

 +

 cf

m

cf a1
Iz

 δ(t) (6.1)

The parameters of the plant, visualized in 6.2, have the following meaning:.m - Vehicle mass [kg]. vx - Longitudinal velocity [m · s−1]. Iz - Moment of inertia about the z axis [kg · m2]. a1, a2 - Distances between the center of gravity and wheels [m]. cr, cf - Cornering stiffness of front and rear tire [N · rad−1]

For the needs of this thesis is the selection of the numerical values of the
parameters done arbitrarily as long as the system is stable. To see the values
used for the following simulations, refer to table 6.1. The goal will be to track
the lateral velocity of the vehicle by controlling the steering angle under some
(hard) input constraints. The process of reformulating the generic constrained
optimal control task into a box constrained QP problem was described in
detail in the chapter "Theoretical analysis", specifically the section "Model
predictive control". The derivation of the controller will, therefore, not be
described here. Note that as the system 6.1 is a continuous time state space
model, it will need to be discretized before designing the MPC controller with
a sample time Ts which will be equal to the real-time HIL simulation period.

56

............................... 6.1. Lateral dynamics control

m [kg] vx [m · s−1] Iz [kg · m2] a1, a2 [m] cr, cf [N · rad−1]
1400 8 500 1.5 2000

Table 6.1: Lateral dynamics single track model parameters

The model dynamics, along with the QP construction logic, will be imple-
mented in a SingleTrack_sys Matlab System™. This system will have two
inputs ∆δ and vy,ref , several outputs, including the QP problem matrices or
model outputs, and finally, several tunable parameters, including the MPC
weight matrices, length of prediction horizon or initial conditions of the model.
As the system only has a single input and only input bounds are assumed,
the resulting size of the QP problem will be equal to the prediction horizon.
For the upcoming simulations, the following parameters will be used. Model
sample time Ts = 0.1s, prediction horizon set to Np = 20, running error
weight Q = 20, terminal error weight P = 5 and finally the input increment
weight R = 1000.

The first test can be viewed as a sort of obstacle avoidance maneuver, which
will force the vehicle to drift sideways. To see the reference trajectory of the
lateral velocity and the performance of the MPC controller running in a real-
time HIL simulation utilizing the Simulink CAN FD interface, refer to figure
6.3. As shown, the controller performs well by tracking the velocity reference
and preemptively reacting to the reference changes, all whilst respecting
the input bounds. The red dots marking several samples throughout the
simulation will be addressed later.

Figure 6.3: Tracking of the lateral velocity with bounded input and prediction
horizon of twenty samples for reference trajectory A

See the following figure 6.4 for the information about iterations and opti-

57

6. HIL MPC showcase
mization times of the embedded solver during the HIL simulation. During the
test, the QP solver successfully solved all of the presented QP problems and
returned their solution in time for the MPC controller to apply the optimal
input at each sample.

Figure 6.4: External QP solver information for the lateral velocity tracking for
reference trajectory A

To further visualize the simulated maneuver, a simple figure 6.5 will be
plotted, showing the trajectory of the vehicle relative to the origin, together
with the heading of the vehicle. See the afore-described figure 6.3 for the times
at which the vehicles were plotted. As requested by the reference trajectory,
the vehicle is drifting sideways in the positive y direction and then in the
negative.

0 50 100 150 200 250 300 350

x [m]

-20

0

20

40

60

y
 [
m

]

Position and heading of the vehicle

Figure 6.5: Position and heading of a single track vehicle model tracking the
lateral velocity reference

Similarly, for information sake, a second simulation will be run with different
reference trajectory and control input bounds. See figures 6.6 and 6.7 for the

58

............................... 6.1. Lateral dynamics control

results. Furthermore, the comparison was plotted for enabling and disabling
the warm starting of the external solver. As expected, this only affects the
iterations and optimization times but the input and output trajectories of
the simulated model are identical in either case.

Figure 6.6: Tracking of the lateral velocity with bounded input and prediction
horizon of twenty samples for reference trajectory B

Figure 6.7: External QP solver information for the lateral velocity tracking
for reference trajectory B and different settings of the QP solver warm starting
option

59

6. HIL MPC showcase
6.2 Predictive cruise control

The second linear MPC demo will showcase the use case of a predictive cruise
controller with additional unmanipulated input in the form of road grade.
This time the model and QP problem construction implementation will not
be within the scope of this thesis as the demo falls under Garrett Motion’s
intellectual property. The HIL testing approach (presented in 6.1) will still
be identical as for the previous demo, only the steps of plant simulation and
QP construction will be replaced with the new system. The cruise controller
is based on a simplified longitudinal vehicle model adopted from [33]. For
the logic behind obtaining the following equation, please refer to the original
paper. For a small angle ϕ can the longitudinal vehicle dynamics be described
as follows.

dv(T, v, ϕ)
dt

= β1T + β2v2 + β3ϕ + β4 (6.2)

Where T is the torque applied directly to the driven wheels, v the longi-
tudinal velocity of the vehicle, ϕ the road grade and the parameters βi are
estimated to represent a given vehicle. To obtain the discrete time state
spaced model, the equation 6.2 will firstly be linearized in the operating
point vop = 15ms−1, ϕop = 0% and Top given for steady state, and secondly
discretized for Ts = 0.2s.

As for the MPC setup itself, to formulate the QP problems during the
simulation, Garrett Motion’s framework called QP Builder will be used. By
specifying the MPC weights, reference trajectories, and individual input/out-
put limits, the framework will build the box constrained QP problems based
on these specifications. Like previously for the "Lateral dynamics control",
bounds will be introduced to limit the maximal and minimal input. Further-
more, the tracked velocity will be (soft) constrained as well to define some
region of tolerance for the controller. The framework also allows to define
input blocking, described in section "Control horizon and input blocking"
as well as output error evaluation points (output error is evaluated only at
specific samples in the prediction horizon) to reduce the final QP problem
dimensionality.

Finally, two MPC simulation results running in HIL mode will be presented.
In both cases was the length of the prediction horizon set to Np = 50, and
the problem was defined such that the QP problem had n = 53 optimization
variables. See figure 6.8 for the first controller performance. In this case
were the weights configured such that the tracking error was of the highest
importance. The actual vehicle velocity matched the reference whenever
possible and has remained within the constrained bounds even with the
reduced torque limit around the 20 seconds mark. Subsequently, figure 6.9
showcases the same maneuver with slightly different MPC weight settings.
In this case was the focus more on minimizing the torque input which comes
at the cost of imperfect velocity tracking. On the other hand, the actual

60

................................6.2. Predictive cruise control

velocity still stays within the user defined bounds except for the 25 second
mark, where the lower bound is slightly violated. This can happen however,
as the optimization is formulated as a box constrained QP, and the output
limits are therefore softened.

Predictive cruise control, focus on reference tracking

Time [s]

0 5 10 15 20 25 30 35 40
12

14

16

18

V
e

lo
c
it
y
 [

m
/s

]

V

Ref

0 5 10 15 20 25 30 35 40
0

200

400

T
o

rq
u

e
 [

N
m

]

0 5 10 15 20 25 30 35 40
-2

0

2

4

R
o

a
d

 g
ra

d
e

 [
%

]

Figure 6.8: Predictive cruise control HIL simulation with a prediction horizon
of length fifty and focus on minimizing the tracking error

Predictive cruise control, focus on minimal torque

Time [s]

0 5 10 15 20 25 30 35 40
12

14

16

18

V
e

lo
c
it
y
 [

m
/s

]

V

Ref

0 5 10 15 20 25 30 35 40
0

200

400

T
o

rq
u

e
 [

N
m

]

0 5 10 15 20 25 30 35 40
-2

0

2

4

R
o

a
d

 g
ra

d
e

 [
%

]

Figure 6.9: Predictive cruise control HIL simulation with a prediction horizon
of length fifty and focus on minimizing the torque input

61

62

Chapter 7
Conclusion

With its current heading, the automotive industry is predicted to undergo
large-scale changes regarding its software and electronic/electrical (E/E) ar-
chitectures. Driven by several trends, such as e-mobility, autonomous driving,
and connected vehicle(s), the E/E architecture is evolving from a distributed
system into a more domain centralized and eventually vehicle centralized
architecture [34]. In this spirit, this thesis presented the development of
an external QP solver framework, which can be utilized by model based
predictive controllers in the automotive setting. The main goals of this thesis
were to deploy an embeddable QP solver onto a controller and develop a
Matlab & Simulink based interface for this solver by utilizing an automotive
grade communication bus.

To begin with, the topic of quadratic programming and its use in linear
MPC was presented. This was followed by a discussion on topic of automotive
field buses, specifically the LIN, CAN and CAN FD buses. Their basic
concepts were presented along with their advantages and disadvantages for
the use case of transmitting QP definitions. The outcome of this section was
the decision to utilize CAN and CAN FD communication for this project.

After analyzing the problem from a theoretical standpoint, the next step
was to deploy two QP solvers onto the selected AURIX™ controller. Firstly,
the open-source OSQP solver, which posed the issue of not being able to solve
varying-sized QP problems without redeployment, and secondly, the CGNP
solver. Furthermore, the rest of the embedded application was developed to
handle CAN(FD) communication, memory management, and solver handling.
With the embedded side of things finalized, the next step was the development
of the Matlab & Simulink interfaces. Initially, the CAN based interface
was presented, but due to the inherited communication speed limitations,
its main goal was to verify the functionality of the deployed solvers and
the embedded application. Further, a second CAN FD based interface was
developed. Several measurements were performed to showcase the dependency
of expected communication times on the QP problem size and a number of
user tunable options. These results were positive and showed that with the
correct configuration, this framework could solve QP problems at a relatively
high frequency. This CAN FD external solver interface built for Simulink

63

7. Conclusion......................................
Desktop Real-Time™ was the main product of this part of the project.

Finally, to display the framework’s capabilities, two linear MPC demos in
the HIL configuration were presented. The first demo, based on a simple single
track vehicle model, utilized MPC to track the lateral velocity of the vehicle
with the steering angle as a bounded input. The formulated QP problems,
while of smaller dimension, were solved without any issues and therefore
the controller performed as expected. The second demo, predictive cruise
control, introduced another MPC related features, such as input blocking
and output limits. Again, the external solver framework worked well, and
the MPC controller managed to track the reference trajectories.

To conclude, I believe that the goal of developing and implementing a
Simulink based framework, which will allow the user to solve quadratic
problems on embedded hardware using an automotive grade communication
bus, was achieved.

Future work

As for the future steps, which would follow up on this thesis, three main
goals come to mind. Firstly, modify the embedded application such that QP
problem reception from multiple nodes is supported, i.e. solve QP problems
for several controllers. Another task would be to implement automotive
Ethernet based communication to increase the communication bandwidth
further. Finally, while the topic of this thesis was to develop an external QP
solver framework, the controller could support any other number of control
related functions, such as filtration or state estimation.

64

Bibliography

[1] GlobeNewswire by notified (2021, June). Garrett Motion Launches Predic-
tive Control Software with Hyundai Motor Company. Garrett Motion Inc.
Retrieved May 8, 2022, from https://www.globenewswire.com/news
-release/2021/06/17/2248951/0/en/Garrett-Motion-Launches-Pre
dictive-Control-Software-with-Hyundai-Motor-Company.html

[2] J. Nocedal and S. Wright (2006). Numerical Optimization, 2nd edition.
New York: Springer

[3] Cottle, R.W., Infanger, G. (2010). Harry Markowitz and the Early History
of Quadratic Programming. In: Guerard, J.B. (eds) Handbook of Portfolio
Construction. Springer, Boston, MA. Retrieved May 2, 2022, from https:
//doi.org/10.1007/978-0-387-77439-8_8

[4] Qin, Joe & Badgwell, Thomas. (1997). An Overview Of Industrial Model
Predictive Control Technology. AIChE Symposium Series. 93

[5] Bemporad, A. (2022, March). Linear MPC. Model predictive control.
Retrieved May 2, 2022, from http://cse.lab.imtlucca.it/~bempora
d/mpc_course.html

[6] J. B. Rawlings, D. Q. Mayne, M. M. Diehl (2019). Model predictive
control: theory, computation and design, 2nd ed., Nob Hill Pub

[7] Z. Hurák (2021, March). Discrete-time optimal control - direct approach.
Lecture 3 on Optimal and Robust Control at CTU in Prague. Retreived
May 2, 2022, from https://moodle.fel.cvut.cz/course/view.php?i
d=5716

[8] Z. Hurák (2017, March). Introduction to Model Predictive Control (MPC)
- reference tracking. Lecture 3 on Optimal and Robust Control at CTU in
Prague. Retreived May 2, 2022, from https://www.youtube.com/watc
h?v=GnFaLl7qwco&t=2s&ab_channel=aa4cc

[9] Alberto Bemporad, Manfred Morari, Vivek Dua, Efstratios N. Pistikopou-
los (2002). The explicit linear quadratic regulator for constrained sys-
tems.Automatica, Volume 38, Pages 3-20. Retreived May 2, 2022, from

65

https://www.globenewswire.com/news-release/2021/06/17/2248951/0/en/Garrett-Motion-Launches-Predictive-Control-Software-with-Hyundai-Motor-Company.html
https://www.globenewswire.com/news-release/2021/06/17/2248951/0/en/Garrett-Motion-Launches-Predictive-Control-Software-with-Hyundai-Motor-Company.html
https://www.globenewswire.com/news-release/2021/06/17/2248951/0/en/Garrett-Motion-Launches-Predictive-Control-Software-with-Hyundai-Motor-Company.html
https://doi.org/10.1007/978-0-387-77439-8_8
https://doi.org/10.1007/978-0-387-77439-8_8
http://cse.lab.imtlucca.it/~bemporad/mpc_course.html
http://cse.lab.imtlucca.it/~bemporad/mpc_course.html
https://moodle.fel.cvut.cz/course/view.php?id=5716
https://moodle.fel.cvut.cz/course/view.php?id=5716
https://www.youtube.com/watch?v=GnFaLl7qwco&t=2s&ab_channel=aa4cc
https://www.youtube.com/watch?v=GnFaLl7qwco&t=2s&ab_channel=aa4cc

7. Conclusion......................................
http://cse.lab.imtlucca.it/~bemporad/publications/papers/au
tomatica-mpqp.pdf

[10] Dale E. Seborg, Thomas F. Edgar, Duncan A. Mellichamp, Francis J.
Doyle III (2016, September). Process Dynamics and Control. Chapter
20, Model Predictive Control. Section 20.4.2, MPC with Inequality Con-
straints. Retreived May 2, 2022, from https://folk.ntnu.no/skoge/v
gprosessregulering/papers-pensum/seborg-c20ModelPredictive
Control.pdf

[11] Nolte, Thomas & Hansson, Hans & Lo Bello, Lucia. (2005). Automo-
tive communications-past, current and future. Emerging Technologies
and Factory Automation, 2005. ETFA 2005. 10th IEEE Conference on.
10.1109/ETFA.2005.1612631.

[12] Correa Colt (2020, September). Automotive Networking Technologies.
Intrepid Control Systems presentation. Retreived May 2, 2022, from
https://cdn.intrepidcs.net/events/Webinars/Automotive_Netwo
rking_Technologies_20200910.pdf

[13] CSS Electronics (2022). LIN Bus Explained - A Simple Intro [2022].
Retreived May 2, 2022, from https://www.csselectronics.com/pages
/lin-bus-protocol-intro-basics

[14] Rohit Mathur, Ritesh Saraswat, Gunjan Mathur (2014). An Analytical
Study of Communication Protocols Used in Automotive Industry, IJERT
ETRASCT – 2014 (Volume 2 – Issue 03)

[15] W. Voss (2018, November). Controller Area Network (CAN Bus) -
Bus Arbitration. Copperhill technologies. Retreived May 2, 2022, from
https://copperhilltech.com/blog/controller-area-network-can-
bus-bus-arbitration/

[16] CSS Electronics (2022). CAN Bus Explained - A Simple Intro [2022].
Retreived May 2, 2022, from https://www.csselectronics.com/pages
/can-bus-simple-intro-tutorial#top-4-benefits-can

[17] W. Voss (2020, April). The Benefits Of Controller Area Network - CAN
Bus - For Embedded Application. Copperhill technologies. Retreived May
2, 2022, from https://copperhilltech.com/blog/the-benefits-of-
controller-area-network-can-bus-for-embedded-applications/

[18] S. Corrigan (2002, August). Introduction to the Controller Area Network
(CAN). Texas Instruments Application report. Retreived May 2, 2022,
from https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1647
764164724&ref_url=https%253A%252F%252Fwww.google.com%252F

[19] CSS Electronics (2022). CAN FD Bus Explained - A Simple Intro [2022].
Retreived May 2, 2022, from https://www.csselectronics.com/pages
/can-fd-flexible-data-rate-intro

66

http://cse.lab.imtlucca.it/~bemporad/publications/papers/automatica-mpqp.pdf
http://cse.lab.imtlucca.it/~bemporad/publications/papers/automatica-mpqp.pdf
https://folk.ntnu.no/skoge/vgprosessregulering/papers-pensum/seborg-c20ModelPredictiveControl.pdf
https://folk.ntnu.no/skoge/vgprosessregulering/papers-pensum/seborg-c20ModelPredictiveControl.pdf
https://folk.ntnu.no/skoge/vgprosessregulering/papers-pensum/seborg-c20ModelPredictiveControl.pdf
https://cdn.intrepidcs.net/events/Webinars/Automotive_Networking_Technologies_20200910.pdf
https://cdn.intrepidcs.net/events/Webinars/Automotive_Networking_Technologies_20200910.pdf
https://www.csselectronics.com/pages/lin-bus-protocol-intro-basics
https://www.csselectronics.com/pages/lin-bus-protocol-intro-basics
https://copperhilltech.com/blog/controller-area-network-can-bus-bus-arbitration/
https://copperhilltech.com/blog/controller-area-network-can-bus-bus-arbitration/
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial#top-4-benefits-can
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial#top-4-benefits-can
https://copperhilltech.com/blog/the-benefits-of-controller-area-network-can-bus-for-embedded-applications/
https://copperhilltech.com/blog/the-benefits-of-controller-area-network-can-bus-for-embedded-applications/
 https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1647764164724&ref_url=https%253A%252F%252Fwww.google.com%252F
 https://www.ti.com/lit/an/sloa101b/sloa101b.pdf?ts=1647764164724&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro
https://www.csselectronics.com/pages/can-fd-flexible-data-rate-intro

...................................... 7. Conclusion

[20] Bosch (2012, April). CAN with Flexible Data-Rate. Specification version
1.0

[21] Mach Systems (2015, December). CAN FD - nová verze CAN protokolu.
Retreived May 2, 2022, from https://www.machsystems.cz/novinky/2
015/can-fd-nova-verze-can-protokolu

[22] Kvaser (2018, April). Kvaser CAN Protocol Course: CAN Error Handling
(Part 8). Retreived May 2, 2022, from https://www.kvaser.com/lesso
n/can-error-handling/

[23] Infineon Technologies. AURIX™ Family – TC38xQP. Retreived May 2,
2022, from https://www.infineon.com/cms/en/product/microcontr
oller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-
tc3xx/aurix-family-tc38xqp

[24] Stellato, B. and Banjac, G. and Goulart, P. and Bemporad, A. and
Boyd, S., "OSQP: an operator splitting solver for quadratic programs",
Mathematical Programming Computation, volume 12, 2020

[25] Banjac, G. and Stellato, B. and Moehle, N. and Goulart, P. and Bem-
porad, A. and Boyd, S., "Embedded code generation using the OSQP
solver", IEEE Conference on Decision and Control (CDC), 2017

[26] Bartolomeo Stellato, Goran Banjac (2021). OSQP User documentation
- The solver. University of Oxford. Retreived May 2, 2022, from https:
//osqp.org/docs/solver/index.html

[27] Bartolomeo Stellato, Goran Banjac (2021). OSQP User documentation
- Code generation. University of Oxford. Retreived May 2, 2022, from
https://osqp.org/docs/codegen/index.html

[28] Bartolomeo Stellato, Goran Banjac (2021). OSQP User documentation -
Interfaces - Official - C - Main solver API. University of Oxford. Retreived
May 2, 2022, from https://osqp.org/docs/interfaces/C.html#sub
level-api

[29] O. Šantin (2016, August). Numerical Algorithms of Quadratic Program-
ming for Model Predictive Control. CTU in Prague. Retreived May 2,
2022, https://dspace.cvut.cz/handle/10467/65525

[30] Infineon Technologies. MCMCAN_1 for KIT_AURIX_TC397_TFT
MCMCAN data transmission. AURIX™ TC3xx Microcontroller Training,
presentation. Retreived May 2, 2022 https://www.infineon.com/dgdl/
Infineon-AURIX_TC3xx_MCMCAN_1_KIT_TC397_TFT-Training-v01_00-
EN.pdf?fileId=5546d46274cf54d50174da20a6242215

[31] Kvaser. Kvaser Leaf Pro HS v2. Retreived May 2, 2022, https://www.
kvaser.com/product/kvaser-leaf-pro-hs-v2/

67

https://www.machsystems.cz/novinky/2015/can-fd-nova-verze-can-protokolu
https://www.machsystems.cz/novinky/2015/can-fd-nova-verze-can-protokolu
https://www.kvaser.com/lesson/can-error-handling/
https://www.kvaser.com/lesson/can-error-handling/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc38xqp
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc38xqp
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/aurix-family-tc38xqp
https://osqp.org/docs/solver/index.html
https://osqp.org/docs/solver/index.html
https://osqp.org/docs/codegen/index.html
https://osqp.org/docs/interfaces/C.html#sublevel-api
https://osqp.org/docs/interfaces/C.html#sublevel-api
https://dspace.cvut.cz/handle/10467/65525
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_MCMCAN_1_KIT_TC397_TFT-Training-v01_00-EN.pdf?fileId=5546d46274cf54d50174da20a6242215
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_MCMCAN_1_KIT_TC397_TFT-Training-v01_00-EN.pdf?fileId=5546d46274cf54d50174da20a6242215
https://www.infineon.com/dgdl/Infineon-AURIX_TC3xx_MCMCAN_1_KIT_TC397_TFT-Training-v01_00-EN.pdf?fileId=5546d46274cf54d50174da20a6242215
https://www.kvaser.com/product/kvaser-leaf-pro-hs-v2/
https://www.kvaser.com/product/kvaser-leaf-pro-hs-v2/

7. Conclusion......................................
[32] The F1 Clan (2020, December). Vehicle dynamics: The dynamic vehicle

model. Retreived May 2, 2022, https://thef1clan.com/2020/12/23/v
ehicle-dynamics-the-dynamic-bicycle-model/

[33] Santin, O., Pekar, J., Beran, J., D’Amato, A. et al. (2016). Cruise
Controller with Fuel Optimization Based on Adaptive Nonlinear Predictive
Control. SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 9(2):262-274

[34] Burkacky, O., Deichmann, J., Stein, J.P., (2019). Automotive software
and electronics 2030 - Mapping the sector’s future landscape. McKinsey
& Company. Retreived May 8, 2022, https://www.mckinsey.com/ind
ustries/automotive-and-assembly/our-insights/mapping-the-a
utomotive-software-and-electronics-landscape-through-2030

68

https://thef1clan.com/2020/12/23/vehicle-dynamics-the-dynamic-bicycle-model/
https://thef1clan.com/2020/12/23/vehicle-dynamics-the-dynamic-bicycle-model/
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/mapping-the-automotive-software-and-electronics-landscape-through-2030

	Introduction
	Motivation
	Thesis goals
	Thesis outline

	Theoretical analysis
	Quadratic programming
	Quadratic program definition
	Convex quadratic programming

	Model predictive control
	Dynamic models
	Discrete model optimal control
	Unconstrained linear MPC
	Constrained linear MPC
	Receding horizon control

	Automotive grade communication buses
	Local interconnected network
	Controller Area Network
	Controller Area Network Flexible Data-Rate

	Embedded solver ECU setup
	ECU hardware
	OSQP solver deployment
	Code generation
	Generated code deployment

	CGNP solver deployment

	CAN bus based interface
	CAN messages definition
	Embedded application CAN interface
	Matlab & Simulink CAN interface
	Matlab based CAN interface
	Simulink based CAN interface

	CAN FD bus based interface
	Developing the CAN FD interface
	Testing the CAN FD interface

	HIL MPC showcase
	Lateral dynamics control
	Predictive cruise control

	Conclusion
	Bibliography

