
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Implementation of the new module into the Dronetag web

application for planning, managing and coordinating drone

fleets

Michal Skipala

Ing. Lukáš Brchl

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

There is currently a lack of applications on the market that would allow drone pilots to

conveniently manage and coordinate several aircraft within a single organization (drone

fleet management). Most of the solutions are focused on only one drone manufacturer,

have insufficient flight planning capabilities, or are simply overpriced. This thesis aims to

utilize existing building blocks of the Dronetag web platform that already offers some

drone coordination-related functionalities and extend for organization and fleet

management use.

- Research, analyze and compare existing drone fleet management solutions.

- Define the functionalities of the planned fleet management module and design the user

interface.

- Implement the functionalities with state-of-the-art web technologies and in

accordance with the latest trends.

- Test the application with real pilots, evaluate the results and suggest its future

improvements.

Electronically approved by Ing. Michal Valenta, Ph.D. on 8 February 2022 in Prague.

Bachelor’s thesis

Implementation of the new module into
the Dronetag web application for planning,
managing and coordinating drone fleets

Michal Skipala

Department of Software Engineering
Supervisor: Ing. Lukáš Brchl

May 12, 2022

Acknowledgements

I would like to thank all my friends and family for being supportive about my
thesis. I would particularly like to thank my supervisor Ing. Lukáš Brchl for
all the time he gave me during our consultations. Lastly, I would also like to
thank the whole Dronetag team.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 12, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Michal Skipala. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Skipala, Michal. Implementation of the new module into the Dronetag web
application for planning, managing and coordinating drone fleets. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2022.

Abstract

This bachelor thesis focuses on design and implementation of a fleet man-
agement module to existing application Dronetag using modern frontend web
technologies – mainly TypeScript and React. The module allows users to form
organizations, manage the organization, and plan missions.

The thesis is divided into smaller specific goals. First, we conduct research
in which existing solutions on the market are analyzed and their advantages
and disadvantages are listed. The following chapter Module Analysis puts
focus on software requirements and use cases and defines what the module
should do. Module Design chapter places a lot of emphasis on graphic and
software design, describes the architecture, and provides a high-level overview
of the designed solution. The implementation part of the thesis explains spe-
cific implementation decisions, introduces the libraries used in the project,
and elaborates on more advanced components. The last chapter describes the
testing process and provides a report on actual testing with real pilots and
users. The last section of the chapter suggests future improvements to the
module.

Keywords drone, fleet management, React, web application, front end, pi-
lot, JavaScript, TypeScript, Dronetag

vii

Abstrakt

Tato bakalářská práce se zaměřuje na implementaci modulu pro správu flotily
do existuj́ıćı aplikace Dronetag použit́ım moderńıch frontend webových tech-
nologíı – převážně TypeScript a React. Tento modul umožňuje uživatel̊um
zakládat organizace a plánovat mise.

Práce je rozdělena na několik podčást́ı. Nejprve přicháźı rešerše, kde jsou
analyzována existuj́ıćı řešeńı na trhu a shrnuta jejich pozitiva a negativa.
Následuj́ıćı kapitola se zaměřuje na softwarové požadavky a př́ıpady užit́ı,
které by měl modul splňovat. Kapitola Module Design klade d̊uraz na gra-
fický a softwarový návrh, popisuje architekturu a dává popis řešeńı na vysoké
úrovni abstrakce. Implementačńı část mé práce vysvětluje spoustu konkrétńıch
rozhodnut́ı a představuje knihovny, které byly pro vývoj modulu použity.
Posledńı kapitola popisuje proces testovańı a poskytuje report z testováńı
s opravdovými piloty a uživateli aplikace. Posledńı sekce této kapitoly pak
navrhuje vylepšeńı a změny, které by bylo vhodné realizovat do budoucna.

Kĺıčová slova dron, správa flotily, React, webová aplikace, front end, pilot,
JavaScript, TypeScript, Dronetag

viii

Contents

Introduction 1
Motivation . 1
Objectives . 2

Main Objective . 2
Specific Objectives . 2

1 Existing Solutions 3
1.1 AirHub . 3
1.2 DJI FlightHub Enterprise . 7
1.3 Other Solutions . 10

2 Module Analysis 11
2.1 Dronetag . 11
2.2 Dronetag Web Application Overview 12
2.3 Application Architecture . 15
2.4 Web Application Technology Stack 16
2.5 Functional Requirements . 20
2.6 Nonfunctional Requirements . 22
2.7 Use Cases . 22

3 Module Design 25
3.1 Graphic Prototype . 25
3.2 Organization Module Design 31
3.3 Organization Component Design 32

3.3.1 Pages . 34
3.3.2 Containers . 34

4 Implementation 39
4.1 Data Synchronization . 39
4.2 Memoization . 40

ix

4.3 Refactoring . 41
4.4 UI Components . 41
4.5 Forms . 42
4.6 Dialogues . 42
4.7 Map . 42
4.8 Mission Plan Model . 43
4.9 Mission Planning Components 44

5 Testing and Feedback Evaluation 47
5.1 Testing . 47

5.1.1 User Testing Process . 47
5.1.2 Test Scenarios . 48

5.2 Testing Report . 52
5.3 Future Improvements . 52

Conclusion 55

Bibliography 57

A Graphic Prototype 61

B Acronyms 65

C SD card contents 67

x

List of Figures

1.1 AirHub Dashboard [2] . 5
1.2 AirHub Maintenance Detail [2] . 6
1.3 AirHub Flight Detail [2] . 6
1.4 DJI FlightHub Statistics [5] . 8
1.5 DJI FlightHub Mission Planner [5] 9
1.6 DJI FlightHub Live [5] . 9

2.1 Dronetag Flight Planner [7] . 13
2.2 Dronetag Device Detail [7] . 14
2.3 Dronetag Flight Detail [7] . 14
2.4 Dronetag Current Architecture . 16
2.5 Virtual DOM [24] . 18
2.6 React Lifecycle [27] . 20

3.1 Organization Members Page . 26
3.2 Organization Mission Detail Page 27
3.3 Old Mission Planner Page, Step One 28
3.4 Old Mission Planner Page, Step Two 28
3.5 New Mission Planner Page, Step One 29
3.6 New Mission Planner Page, Step Two 29
3.7 Edit Mission Activity Diagram . 30
3.8 Create Mission Activity Diagram 31
3.9 Dronetag Front End Component Graph 33
3.10 Dronetag Page Diagram . 35

4.1 Mission Pilots Accordion Component 44
4.2 Mission Map Component . 45
4.3 Mission Plan Step Two component 46

A.1 Organization Aircraft Page . 61
A.2 Organization Teams Page . 62

xi

A.3 Organization Teams Add Members Page 62
A.4 Organization Devices Page . 63
A.5 Organization Settings Page . 63
A.6 Organization Missions Page . 64
A.7 Organizations Create Page . 64

xii

List of Tables

2.1 Use Case Model . 24

xiii

Introduction

Number of companies that use drones on a daily basis is growing rapidly.
Drone missions are becoming more complicated, and it is not an easy task to
carry them out in an organized manner.

There are many types of missions that companies need to carry out. Rang-
ing from geographical mapping, such as capturing an area of ground for survey
or construction work supervision, to dangerous tasks such as fire fighting, ac-
cident investigation, or cave exploration, it is becoming harder to control, and
missions can no longer be flown by eye alone. These missions are usually
carried out by a team of professional drone pilots.

There is a market demand for a web application that would serve drone
pilots as a tool to manage their large drone fleets, plan complex missions, and
review them retrospectively.

Motivation

I chose to work on this thesis because it is a perfect opportunity to apply my
knowledge of software engineering on a real project. Dronetag is a successful
project, and its products are used by numerous drone pilots all around the
world. The number of companies that use drones to fulfill their business case
is increasing every day, but there are few software solutions on the market for
managing drone fleets and planning drone missions.

Another reason was to gain valuable experience in state-of-the-art frontend
web technologies. I am very interested in this area of software development,
and there are not many opportunities to go in-depth on this problem domain
while studying. I believe that this thesis could not only meet the increasing
demand for a comprehensive drone fleet management tool but also work as a
study material for aspiring frontend React web developers. I will be happy to
explain all the important aspects of this JavaScript library and present what
I consider to be the cleanest and most modern React software architecture.

1

Introduction

Objectives

Due to the wide scope of this thesis, there are smaller specific goals that
collectively fulfill the main objective.

Main Objective

The thesis aims to develop a module into the existing Dronetag application.
The module will allow users to form organizations. In these organizations,
users will be able to share their aircraft, Dronetag devices, and plan various
drone missions. This module will fit into the existing Dronetag code base and
follow the best practices of React frontend web development.

Specific Objectives

1. Research, analyze, and compare existing drone fleet management solu-
tions on the market and describe their strengths and weaknesses.

2. Define the functionalities of the planned fleet management module and
design the user interface, applying software engineering concepts and
following best practices.

3. Implement the defined functionalities with state-of-the-art web technolo-
gies in accordance with the latest trends.

4. Test the application with real pilots, evaluate the results and feedback,
suggest its future improvements.

2

Chapter 1
Existing Solutions

This chapter will focus on the analysis of existing drone fleet management
solutions on the market. Each solution will be analyzed, evaluated, and its
strong and weak points will be listed.

1.1 AirHub

AirHub is the first analyzed platform. It is an all-in-one solution offering
two applications: Drone Operation Center for the web and Ground Control
App for the mobile. The following sections will focus on the Drone Operation
Center and its functionalities.

Pricing

AirHub [1] is a commercial platform that offers different functionality depend-
ing on your subscription plan. The functionalities of the AirHub enterprise
tier were demonstrated to me by an AirHub employee on a video call.

Free tier allows the user to view the airspace zone, weather forecasts, advi-
sories, permission forms, use the mission planner in the mobile app, and
write notes. Users can manually log flights from the mobile app, fly with
Da-Jiang Innovations (DJI) drones, and manage personal documents.

Pilot tier unlocks additional features such as creating checklists, Unmanned
Traffic Management (UTM) connection, logging incident, seeing media
on the map, flight analytics, file and asset management. It costs 10 euro
per month.

Enterprise tier provides access to all functionality of the platform: auto-
mated flights, live video stream, team management, team documents,
and live airspace management. The price is not fixed and potential
customers must contact AirHub for negotiations.

3

1. Existing Solutions

Features

Drone Operation Center offers many features compared to other drone web
platforms on the market even in the free tier.

Dashboard is the main page of the web application. It shows live airspace,
incidents, user profile, user activity in the form of notifications, mainte-
nance, recent media, and media on the map. See image 1.1.

Library allows the user to add his drones. The user can specify basic infor-
mation: name, model, manufacturer, serial number, weight, registration,
firmware version, and picture. After clicking on the drone, the user can
see detailed information including general information, logbook (past
flights), maintenance, documents, and statistics. In addition to drones,
the user can manage his batteries, equipment, checklists, documents,
and media in the library.

Logbook lists the user’s flights that were flown with the AirHub application.
The user can export the flights to PDF and CSV or import the flights
from a DJI drone. It has a search bar and allows users to filter flights
by date. After clicking on the flight, a flight detail pops up, revealing
all the important information about the flight. See image 1.3

Live airspace page shows a full-screen map with active mission sidebar.

Incidents is the page where the user can view incidents and filter them by
date, status, and type. Incidents have a name, description, location,
investigator, reporter, related flight and status.

Maintenance page allows the user to add a maintenance action and list past
maintenance. The user needs to select an asset and fill in the mainte-
nance details: inspection name, deadline, costs, technician, and notes.
On the maintenance edit page, the maintenance status can be set from
planned to in progress, completed, partially completed, or postponed.

Teams is a feature that is only available to enterprise users. The page al-
lows eligible users to form and manage teams. Team members have the
following roles: administrator, pilot, observer, and payload operator.
The detail shows the flight statistics aggregated over the whole team:
amount of flights, average flight time, and total flight time.

Flight planning allows the user to plan flights by selecting a flight area and
naming the flight. It is possible to add team members into the flight
and select a drone from the library to fly with.

4

1.1. AirHub

Evaluation

AirHub is a modern looking application, and the Drone Operation Center is
able to help many companies carry out their drone missions. With compre-
hensive flight statistics and features such as team management, maintenance
logging, and a powerful library that can track many different types of assets,
it is a very universal solution for drone fleet management.

Strong Points

• Clean and modern looking user interface,

• Working solution for organization fleet management,

• Handling asset maintenance in the application could be very useful to
companies,

• Application provides team statistics.

Weak Points

• Library page handles too much asset management,

• Assigning roles directly to team members is not very flexible,

• No option for ”teams within a team”,

• Team management only in enterprise tier.

Figure 1.1: AirHub Dashboard [2]

5

1. Existing Solutions

Figure 1.2: AirHub Maintenance Detail [2]

Figure 1.3: AirHub Flight Detail [2]

6

1.2. DJI FlightHub Enterprise

1.2 DJI FlightHub Enterprise

DJI FlightHub [3] was released in 2017, but it seems that the majority of
the focus was on the development of FlightHub 2 with a planned release in
2022/2023.

Installation

DJI FlightHub Enterprise is an application that needs to be installed on a
server. To install the application, the user needs to set up Ubuntu Server 16.04
and install it there. A detailed tutorial can be found at the DJI FlightHub
Download Center [4].

Pricing

DJI FlightHub Enterprise is a commercial platform that offers three levels of
subscription. More detailed pricing can be found on the DJI website [3].

Basic allows the user to bind up to 5 drones with all features and is priced
at $99 USD per month or $999 USD annually.

Advanced allows the user to bind up to 10 drones with all features, with the
price reaching $299 USD per month or $2999 USD annually.

Enterprise allows binding of more than 10 drones and provides the ability
to integrate data into a private cloud. The price is not specified and is
subject to negotiation.

Features

Live operations section shows the drone location in real-time, and a live
video of up to 4 drones on one page. See image 1.6.

Data statistics allows the user to look at team or pilot statistics: flight time,
travel distance, top distance, top speed, and more. The user can also
see the flight routes. See image 1.4.

Mission planning is the page where users create missions. It is possible to
plan a waypoint mission – set waypoints, aircraft speed and altitude,
and points of interest, specifying more information for each waypoint,
such as yaw or gimbal control – or a mapping mission. See image 1.6.

Team management section enables the user to create members and teams.
Members can be administrators, captains, and pilots. Administrators
invite other captains and pilots to the team. Captains can only invite
pilots. Both administrators and captains can access the FlightHub En-
terprise platform, while pilots can only execute missions, enable the live

7

1. Existing Solutions

function, upload data, bind devices, and view information in the mobile
application.

Evaluation

DJI FlightHub Enterprise could be an interesting drone fleet solution for com-
panies that need to automate their drone missions. The application allows
users to fly only with DJI drones, which could be a dealbreaker for many
companies, the installation is difficult, and the user interface is not intuitive.

Strong Points

• Working fleet management solution,

• Waypoint missions – interesting concept and an efficient way to autom-
atize simple and repetitive missions.

Weak Points

• User interface does not look modern,

• Very difficult to configure for users without IT knowledge,

• Could be too expensive for a smaller company,

• Very limited supported aircraft (DJI Matrice series).

Figure 1.4: DJI FlightHub Statistics [5]

8

1.2. DJI FlightHub Enterprise

Figure 1.5: DJI FlightHub Mission Planner [5]

Figure 1.6: DJI FlightHub Live [5]

9

1. Existing Solutions

1.3 Other Solutions

There are other drone fleet management solutions on the market, but they
were left out of this thesis due to the limited available information on the
features of the solutions and unsuccessful requests for a demo, which would
make the analysis very limited. To see more drone fleet management platforms
analyzed, refer to thesis ”Implementation of the new module into the Dronetag
Mobile app in Flutter for planning, managing and coordinating drone fleets”
by Albert Moravec to appear in 2022, where two other interesting drone fleet
management platforms will be analyzed.

10

Chapter 2
Module Analysis

In this chapter, the Dronetag platform will be introduced, the planned module
will be analyzed, the software requirements will be defined, and specific use
cases will be listed. To correctly specify the functionalities of the planned
module, it is necessary to first analyze the existing Dronetag platform. The
next section will introduce Dronetag and describe each of the application
building blocks and technologies that were used.

2.1 Dronetag

Introduction

Dronetag [6] is a team of enthusiastic developers, aviation experts, and elec-
trical engineers. The project came to life in 2018 at the Space Technology
Hackathon. In the following years, Dronetag has kept growing and is now
offering an all-in-one solution for drone pilots.

Products

The main product offered by Dronetag is Dronetag Mini device. It is a small
device that can be mounted onto any drone and identifies the drone in the
air. It works by getting the drone coordinates from Global Positioning Sys-
tem (GPS), Global Navigation Satellite System (GLONASS), Galileo, and
European Geostationary Navigation Overlay Service (EGNOS) satellites and
sending the coordinates and drone ID to the central system using mobile net-
work. The device communicates with the surrounding devices via Bluetooth.

Dronetag also offers a web application and multi-platform mobile app.
These platforms were designed primarily for a single user or a small team,
and they are not that convenient for large organizations.

11

2. Module Analysis

Drone Fleet Management

The objective of this thesis is to develop a module for the existing Dronetag
application that would extend it. The module will embody a drone fleet
management and mission planning solution for large organizations. This thesis
focuses mainly on the desktop web platform. The core functionalities of the
existing web application will be described in the following section.

2.2 Dronetag Web Application Overview

The main functionalities of the web application are flight planning, asset man-
agement, and flight data manipulation. The following sections will demon-
strate the existing features of the application.

Aircraft management

The application allows the user to manage his drones. The user can add a
drone and specify the name, model, weight, aircraft class, and endurance.
Users can view their drones in a filterable list, edit their properties, or remove
them entirely. Aircraft are used mainly for flight planning and filtering flights
by aircraft.

Device management

Users can add their own Dronetag devices. The devices are linked to user
accounts by their serial number. In the list view, the devices are shown as
clickable cards. Clicking on a device opens the device detail page.

The detail shows the serial number and current status: connectivity infor-
mation and battery life. It is possible to edit the device name or remove it
from the account. See image 2.2.

Flights

The user can view all past, planned, and canceled flights in the Flights section.
The flights can be filtered by type, device, or aircraft. The flight detail shows
the flight information, and past flights reveal the flight path of the drone. See
image 2.3.

Settings

The user is able to change his credentials, default aircraft, identification, pro-
file details, User interface (UI) preferences, notifications and Application pro-
gramming interface (API) keys in the Settings section.

12

2.2. Dronetag Web Application Overview

Flight Planner

The main feature of the application is the planning of drone operations in
Flight Planner. Flight planning is accomplished by setting a take-off point
and drawing a flight region, which can be a polygon or a circle drawn on the
map. The flight region describes the boundaries of the flight.

After drawing the flight region, there are multiple things that need to be
assigned:

• Height range – lower and upper altitude of the flight,

• Aircraft – aircraft used for the flight,

• Device – Dronetag device used for the flight,

• Start and finish dates – planned start date and finish date,

• Flight visibility – public or private,

• Operation mode – Visual line of sight (VLOS) or Beyond visual line of
sight (BVLOS),

• Operation category – open, specific, or certified.

Once the flight plan is completed, the Dronetag application checks for
possible collisions with other flight plans. If no collisions are found, the flight
is created. See image 2.1.

Figure 2.1: Dronetag Flight Planner [7]

13

2. Module Analysis

Figure 2.2: Dronetag Device Detail [7]

Figure 2.3: Dronetag Flight Detail [7]

14

2.3. Application Architecture

2.3 Application Architecture

Dronetag application consists of a backend service, PostgreSQL [8] database,
live service, frontend web application and mobile app. The services together
form the Dronetag platform and communicate with each other. To see a visual
representation, please refer to image 2.4. Since the thesis focuses mainly on
the web application, the services and the mobile app will only be referenced
and briefly described in the following sections.

Backend Service

Backend service was written in Python [9] using Django [10], Django REST
framework [11] and Celery [12]. The main responsibility of the service is to
handle requests coming from the frontend web application, mobile app, and
live service. It also provides access to the Dronetag database and handles the
database manipulation.

Live Service

Live service serves as a real-time data provider, broker, and distributor. The
service is used for data interchange between Dronetag devices and client
components via Hypertext Transfer Protocol (HTTP) Representational state
transfer (REST) and Websocket technologies. It enables clients to display fre-
quently changed data (telemetry data, device update, current status) in real
time, effectively, and with low latency.

Mobile App

Mobile app is a multi-platform mobile application for iOS and Android. It
is written in Dart [13] using the Flutter [14] framework and UI toolkit. The
architecture uses the BloC [15] library for the state management of the app.
It communicates with the back end via the HTTP REST protocol.

Web Application

The web application was written mainly in TypeScript using the React library.
It communicates with backend service and live service via the HTTP REST
protocol. The technologies that were used to build the web application will
be described in more detail in the next section.

15

2. Module Analysis

Backend

HTTP/REST API

Django Back End

Frontend

TCP

PostgreSQL DB

Redis TCP

HTTP/REST API

Live Service
HTTP/REST API

TCP

CoAP

DeviceWebMobile application

Figure 2.4: Dronetag Current Architecture

2.4 Web Application Technology Stack

In this section, the technologies used on the front end will be introduced and
thoroughly analyzed. The planned module will be built on these technologies
to integrate correctly into the existing codebase.

JavaScript

JavaScript [16] is a compiled, interpreted Just in Time (JIT) programming
language. It supports object-oriented, imperative, and declarative styles. The
language standards are defined in ECMAScript 2023 [17], which also serves as
a comprehensive and detailed JavaScript documentation.

JavaScript is mainly used to add behavior and special effects to HyperText
Markup Language (HTML) and Cascading Style Sheets (CSS) web pages. It
enables the user to interact with the web page.

There are many libraries and frameworks built on top of JavaScript, which
help programmers develop complex and multi-layered web applications while
still allowing the developer to maintain a clean and extensible architecture.

TypeScript

TypeScript [18] is a strongly typed programming language that builds on
JavaScript, adds additional syntax, and provides JavaScript with type infer-

16

2.4. Web Application Technology Stack

ence. It is preferred to use TypeScript instead of plain JavaScript because
the type inference prevents many bugs that could possibly be caused by de-
velopers. It is widely supported by JavaScript libraries and runs anywhere
JavaScript runs. Some of the main advantages of using TypeScript instead of
plain JavaScript include:

• Static typing – makes it impossible for a declared typed variables to
change its type, which prevents a lot of errors that could be hard to be
find and reveals many bugs before compilation,

• Type inference – which provides helpful code suggestions based on the
type of variable or object and eliminates the need to jump back and
forth between files to check the type,

• Object-oriented concepts – TypeScript extends JavaScript by adding
important Object Oriented Programming (OOP) concepts, such as in-
terfaces.

React

React [19] is a free and open-source JavaScript library for building web appli-
cations and user interfaces. The core concept of React is separation of concerns
by building the program from loosely coupled units called components. Re-
act works perfectly with TypeScript, which enables static type checking to
prevent possible problems related to types.

Since React is not opinionated about the build and structure of the appli-
cation, every developer writes React programs a bit differently, which might
seem chaotic. It is important to maintain a consistent architecture throughout
the codebase when working in team.

React is the main library used to build the Dronetag front end and it is
necessary to explain its main concepts. The following sections will further
elaborate on the React library.

JSX

JavaScript XML (JSX) [20] is a syntax extension to JavaScript that allows
writing HTML within JavaScript code. JSX is an expression and becomes
JavaScript at runtime. That enables the use of JSX inside if statements and
for loops, assigning it to variables, returning it from functions, and accepting
it as a function argument, providing great flexibility.

The structure of JSX looks very similar to HTML but allows embedding
JavaScript expressions into HTML, such as ternary operators. That is very
useful for conditional rendering. While it is not necessary to use JSX in React,
it is widely used and recommended. JSX produces React elements that are
later rendered into Document Object Model (DOM).

17

2. Module Analysis

DOM

DOM [21] defines a standard for accessing documents. HTML DOM is a
programming interface and object model for HTML. It is constructed as a
tree of objects. It is used to get, change, add, or delete HTML elements to a
web page.

Virtual DOM

Virtual DOM [22] is a virtual representation of the actual DOM kept in mem-
ory. Every time the state of the React application changes and the DOM
needs to be updated, the Virtual DOM is updated instead. The Virtual DOM
is then compared to the browser DOM, the difference between them is com-
puted, and the Virtual DOM calculates the best possible method to make the
desired change to the DOM. This process significantly increases web perfor-
mance because it ensures minimal manipulation with the actual DOM.

React listens to changes in its components using the observer pattern [23]
and finds out which Virtual DOM objects have changed. The performance is
significantly better compared to manipulating the DOM directly. Image 2.5
helps visualize the concept of the Virtual DOM.

Figure 2.5: Virtual DOM [24]

18

2.4. Web Application Technology Stack

React Components

React applications are built by splitting the program into independent, loosely
coupled and reusable pieces of code called components [25]. Components
accept props as an argument. There are two types of components:

Function components – plain JavaScript functions that accept a single ar-
gument called props with data that the components need and return a
React element,

Class components – JavaScript ES6 classes that extend React.Component.
These components have a state and provide component lifecycle methods
described in the following section.

There are stateful and stateless React components. Stateless components
are mostly used only to render the data passed down to them. Stateful com-
ponents usually handle business logic and store data in a local state.

Every React component must act like a pure function. That means it needs
not to change its props, and the output value should be the same for the iden-
tical input. There are ways to implement stateful logic to function components
without violating this rule using React Hooks that will be described later in
this chapter.

React Component Lifecycle

Each component in React has a lifecycle [26]. The lifecycle is divided into
three phases:

• Mounting – when the component is put into the DOM,

• Updating – when the component is updated and a change occurs in its
state or props,

• Unmounting – happens when the component is removed from the DOM.

See image 2.6 for a graphic demonstration.

React Data Flow

React has a unidirectional data flow [28]. The state can only be passed down
the component tree, and any changes in a parent component should only affect
its children. If the state of a parent component needs to be changed from its
child, it is possible to ”lift the state up” [29] by passing down a function from
the parent component. The state change happens inside of the parent, and
the child only ”initiates” the change.

19

2. Module Analysis

Figure 2.6: React Lifecycle [27]

React Hooks

React Hooks [30] were introduced in React 16.8 in 2019. They allow the use
of state in function components and provide the ability to reuse complex logic
between components. Hooks are very useful for local state management, data
fetching, and isolating complex business logic. There are important rules that
Hooks should always follow:

• Call Hooks at the top level before any returns,

• Call Hooks from React functions, not from JavaScript functions,

• Do not call hooks conditionally or inside loops.

React heavily depends on the order of the Hook calls, and these rules make
sure that the Hooks are called in the same order in every render.

2.5 Functional Requirements

This section will describe the functional requirements of the fleet manage-
ment module. These requirements will define the expected fleet management
functionalities and behavior. The requirements presented in this section are a
combination of current Dronetag user requests, research of existing solutions
on the market, and discussion between the author and other members of the
Dronetag team developing the application.

Functional requirements [31] describe the intended behavior of the system.
You could imagine this behavior as tasks, services, or functions that the system
needs to perform.

20

2.5. Functional Requirements

As Wiegers [32] had written:

”Software developers don’t implement business requirements or user
requirements. They implement functional requirements, specific
bits of system behavior.”

Due to this reason, it is extremely important to correctly capture the func-
tional requirements. Any further development directly depends on them.

FR01 Organization Management

Any user that is not in an organization will be able to create a new organiza-
tion. The user who creates an organization will become its owner. The owner
will be able to change the organization name and description, change the
global organization settings, and delete the organization. If the organization
is deleted, all of the organization data will be lost.

FR02 Organization Asset Management

Any member of the organization will be able to transfer his aircraft or device
to the ownership of the organization. Any member will also be able to transfer
any organization aircraft or device into his ownership.

FR03 Organization Member Management

Any organization member will be able to invite new members to the organi-
zation using their email address. The invited user will be able to accept or
decline the invitation via a direct link or in the Dronetag web app in case
they already have an account and are not a member of an organization. Any
organization member will be able to leave the organization. Any organization
member can be removed from the organization by the organization owner. If
organization member leaves the organization, all of his data related to the
organization will be lost.

FR04 Organization Team Management

Team is a list of selected organization members. Any organization member
will be able to create a team, rename the team, add other members of the
organization to the team, or delete the team.

FR05 Mission Management

Any organization member will be able to create a mission. The member who
created the mission will become the mission creator and mission coordinator.
The mission coordinator can add members to the mission, remove members

21

2. Module Analysis

from the mission, and assign pilot and coordinator roles to members in the
mission. The mission coordinator will be able to see all flight plans of the
mission and assign or edit flight plans to all mission pilots. The mission
coordinator cannot be removed from the mission. The mission member with
pilot role will be able to create and delete his own mission flight plan. The
mission pilot will not be able to edit the mission plan or any other flight plans.
Mission member that is neither pilot nor coordinator will be able to view the
mission, but will not be able to make any changes to the mission.

2.6 Nonfunctional Requirements

Nonfunctional requirements [33] describe the global requirements on develop-
ment, operational costs, performance, reliability, maintainability, portability,
and robustness that the final solution is expected to meet. They play a critical
role during system development and have considerable influence on design and
implementation decisions. All of them have to be accounted for, which is why
they will be given a code and description.

NFR01 Functionality will be available via HTTP REST API

To ensure that the application communicates correctly with the back end, it
will use the HTTP protocol and respect the REST constraints.

NRF02 Functionality will be divided into multiple components

Separation of concerns is an important concept that every scalable enterprise
application should follow. The application will be split into multiple compo-
nents, each of them focused on one thing.

2.7 Use Cases

Use cases [31] define a set of interactions and actions between external actors
and the system. Actors are all parties outside the system that interact with
the system.

A use case is initiated by the actor with a particular goal that he wants to
reach. The use case is completed when the goal is reached. We can think of
the use case as the sequence of interactions between the actor and the system
that is needed to complete the use case.

Use cases allow for a more detailed and accurate description of the desired
outcome. They are used to capture functional requirements in detail and
provide an easier way to verify that all the requirements have been taken
into account. Use cases are usually written in an easy-to-understand and
structured narrative, making it easier for users to verify them. See table 2.1
for a use case model of the module.

22

2.7. Use Cases

Due to the large number of use cases and their nature being mostly simple
CRUD operations, they will merely be listed.

Organization Management

UC01 Create organization

UC02 Rename organization

UC03 Delete organization

UC04 Leave organization

Organization Asset Management

UC05 View organization assets

UC06 Transfer asset to organization

UC07 Transfer asset from organization

Organization Member Management

UC08 View organization members

UC09 Invite member to organization

UC10 View pending invitation

UC11 Accept invitation to organization

UC12 Decline invitation to organization

Organization Team Management

UC13 Create team

UC14 Rename team

UC15 View team members

UC16 Add team member

UC17 Remove team member

23

2. Module Analysis

Mission Management

UC18 Create mission

UC19 Edit mission

UC20 Assign flight plan to mission pilot

UC21 View missions

UC22 Delete mission

Requirements
Use Case FR01 FR02 FR03 FR04 FR05

UC01 +
UC02 +
UC03 +
UC04 +
UC05 +
UC06 +
UC07 +
UC08 +
UC09 +
UC10 +
UC11 +
UC12 +
UC13 +
UC14 +
UC15 +
UC16 +
UC17 +
UC18 +
UC19 +
UC20 +
UC21 +
UC22 +

Table 2.1: Use Case Model

24

Chapter 3
Module Design

This chapter will focus on the design of the planned module. The first section
will introduce a graphic prototype that captures the pages of the module. The
following sections will emphasize the software design of the module.

3.1 Graphic Prototype

When designing a web application, it is very helpful to create wireframes.
Wireframes visualize page layout, functionalities, and intended behavior. Gra-
phic prototype on the other hand, features the styling, fonts, colors, and other
visual aspects of the page, as well as the functionalities and behavior.

Due to the complexity of this module, it was concluded that a graphic
prototype would be more appropriate compared to wireframes and should be
the first step to take during the software design of the module. The following
subsections will showcase the graphic design of the selected pages. The inter-
active graphic prototype was made with a powerful prototyping tool Adobe
XD [34]. The graphic prototype was made right after gathering the functional
requirements. It helped visualize all the possible use cases, and revealed many
edge cases that the software design had to later account for.

Aircraft Page

User should be able to see aircraft that belong to the organization and transfer
aircraft between his account and the organization. It was decided to imple-
ment the transfer functionality in the Aircraft Edit Page. See image A.1.

Teams Page

User should be able to view organization teams, add a new team, add orga-
nization members to the team, remove organization members from the team,
and edit the team. See image A.2 and image A.3.

25

3. Module Design

Members Page

The first page the user should see is a list of members. It is the default page
after you switch to organization from the side bar. The user should be able to
invite new members to the team, and the organization owner should be able
to remove other members from the organization. See image 3.1.

My Organization
Organization is lorem ipsum dolor sit amet, to fly with your lorem

All

Invite a new member

10...54321

richard.nixon@gmail.com Invitation sent on 7 Oct 2020

Barack Obama Member

MemberDonald Trump

George Bush Organization owner

Name

SettingsDevicesAircraftsMissionsTeamsMembers

Figure 3.1: Organization Members Page

Devices Page

User should be able to see the devices that belong to the organization and
transfer the devices between his account and the organization. It was decided
to implement the transfer functionality in the Device Edit Page, which is
already implemented. See image A.4.

Settings Page

Organization owner should be able to delete and edit organization details such
as name, description, and preferences. The user should be able to leave the
organization and check the organization settings. See image A.5.

Missions Page

User should be able to see a list of planned, current, and past missions. Mission
should present its basic information – start date, end date, number of pilots,
and name of the coordinator. See image A.6.

26

3.1. Graphic Prototype

Mission Detail Page

User should be able to view a mission detail of a past mission. Mission detail
should show all relevant mission information to the user. See image 3.2.

Saturday Evening’s Mission

Mission Detail

00:32:14

Planned Flight Start

Today, 19:00:00

Planned Flight End

Today, 20:00:00

Duration

57m 11s

50.124547, 18.457566 117m 2.7 m/s

Export to CSV Export to KML Delete mission

Flight Started

Today, 19:09:22

Flight Finished

Today, 19:51:22
10...54321

George Bush Flight plan

Donald Trump Flight plan

Barack Obama Flight plan

Mission crew Flight plan overlap

Enabled

Notification settings

Proximity alerts

Flying out of flight plan

Figure 3.2: Organization Mission Detail Page

Create Organization Page

User will be able to create an organization if he is not a member of any
organization. On this page, the user will also see all the invitations to existing
organizations and will be able to either decline or accept these invitations.
See image A.7.

Mission Planner Page

User should be able to plan a mission. The process of creating a mission is
a complicated User experience (UX) problem and will be explained in the
following sections. Due to this reason, mission planning had to be split into
two steps. Designing the mission planner with these capabilities was very
difficult. To see my original draft, refer to images 3.3 and 3.4.

Dronetag team decided to cooperate with UI/UX professionals from com-
pany StrideXL [35] to design a user-friendly mission planner with the spec-
ified functionality. After a few iterations and collective meetings, StrideXL
designed a simple and intuitive mission planner. See images 3.5 and 3.6. In
the following sections, the new mission planner will be used.

27

3. Module Design

My Organization
Organization is lorem ipsum dolor sit amet, to fly with your lorem

Sunday afternoon flight

Mission name

Mission planning

+ Add crew

28 Jul, 19:00:00

Start

28 Jul, 20:30:00

Finish

Now +10 min +30 min

Date & Time

Barack Obama Pilot Coordinator Assign flight plan

Donald Trump Pilot Coordinator Change flight plan

George Bush Pilot Coordinator Change flight plan

Mission crew

Mission flight plan

Change flight plan

Sunday afternoon flight

Mission name

Select team

Briefing

Find member

SettingsDevicesAircraftsMissionsTeamsMembers

Step 1 Step 2 Step 3

Figure 3.3: Old Mission Planner Page, Step One

Flight Planner

Assign

George Bush

Cancel and returnImport region

Flight Region

Circular Polygon

Shape

Clear

Height range

80m 600m

Check for airspace conflicts

Pilot details

Barack Obama

12 completed missions

Name

Experience

Role for this mission

Pilot

Hide all mission fight plans

Pilot Flight Region

Circular Polygon 6 points

Shape

Clear

Height range

80m 600m

Richard Nixon

Pilot flight plans

Barack Obama

Donald Trump Plan assigned

George Bush Plan assigned

Show 8 more

Figure 3.4: Old Mission Planner Page, Step Two

28

3.1. Graphic Prototype

Mission Planning

Sunday afternoon flight

Mission name

28 Jul, 19:00:00

Start

Find Members

28 Jul, 19:00:00

Finish

+ Add members

Date & Time

Mission

Mission crew

JaGeorge Bush x

Next

New mission Mission plans Summary

Mission crew

Barack Obama Pilot Coordinator

Donald Trump Pilot Coordinator

George Bush Pilot Coordinator

Figure 3.5: New Mission Planner Page, Step One

Mission flight region

My Organization
Organization is lorem ipsum dolor sit amet, to fly with your lorem

SettingsDevicesAircraftsMissionsTeamsMembers

Sunday afternoon flight

Now you can manipulate and resize the area and move the takeoff point.

500 radius

Take-off point

Pilots flight regions

George Bush

Shape Radius

500

Height range

80m 100 m 400 m 600m

49.7082061N, 16.1031383E

Barack Obama Create plan

Flight region

Identification

None

Device

Our Mavic 2

Aircraft

Donald Trump Create plan

Clear plan Confirm plan

ConfirmCancel planBack

New mission Mission plans Summary

Figure 3.6: New Mission Planner Page, Step Two

29

3. Module Design

New Mission

In the first step, the user will fill out a form containing general information
about the mission: mission name, planned start date, planned end date. The
user will also add all the organization members that should be involved in the
mission and assign them their roles for the mission. See image 3.5.

Mission Plans

In the second step, the user will create a mission plan by drawing a shape on
the map and providing the height range of the mission, defining the ”mission
region”. The process is visualized in the activity diagram 3.8. After confirming
the mission plan, the mission creator will be able to assign a flight plan to
every pilot in the mission by drawing a shape on the map, specifying the
height range, and selecting an aircraft and device for the pilot. This process
is also visualized in diagram 3.8. The mission creator does not have to assign
any flight plans to pilots.

Mission Edit Page

User will be able to view a planned mission. If he is a coordinator, he will have
the ability to clear or create the mission plan. Clearing a confirmed mission
plan will delete the mission. The coordinator will be able to clear or create
any flight plan. Clearing a confirmed flight plan deletes the flight. If the user
is a mission pilot, he will be able to clear or create his own flight plan. If he is
neither pilot nor coordinator, he will be able to see the mission and flight plans
without changing them. The process is visualized in the activity diagram 3.7.

View mission mission

role

action

Select mission
plan

Select flight

plan

action

Create mission

Clear mission

plan

action Create flight

Clear flight

plan

Select own

flight plan

Neither pilot nor coordinator

Pilot

Coordinator

Organization member

Figure 3.7: Edit Mission Activity Diagram

30

3.2. Organization Module Design

Mission creator

Select mission

region shape

Draw circle
Circle

Draw polygon

Polygon

Assign height range

Confirm mission

Shape

Create mission

Mission coordinator / pilot

Select flight

region shape

Draw circle
Circle

Draw polygon

Polygon

Assign height range Set take off point

Shape

Assign flight plan to

mission pilot

Set aircraftSet device

Confirm flight plan

Figure 3.8: Create Mission Activity Diagram

3.2 Organization Module Design

Software architecture and design in React is a very challenging subject. React
is a library and does not force developers to write applications in a certain
way as frameworks would normally do. It offers freedom that comes at a cost.
The design of the module is crafted to be clean, scalable, intuitive, readable,
and follows the SOLID principles, explained by Robert C. Martin [36]:

SRP stands for The Single Responsibility Principle, meaning that ”each soft-
ware module has one, and only one, reason to change”. Since the ob-
jective of the thesis is to develop a module, it is possible to further
apply this principle onto the files: each source file should have only one
responsibility. The SRP was fulfilled as our module is composed from

31

3. Module Design

independent components and each of the components is responsible for
only one thing.

OCP or The Open-Closed Principle, which says that the module should be
crafted in a way that the behavior of the system should be changed
by adding new code, rather than changing the existing code. Simple
extensions to the module should not require massive changes in the code
that was already written. Our design follows this principle by making
sure that the lowest-level UI components are only dependent on the
data that they receive, and not on the business logic that manipulates
the data.

LSP stands for The Liskov Substitution principle and suggests ”building soft-
ware systems from interchangeable parts, those parts must adhere to a
contract that allows those parts to be substituted one for another”. In
the context of our module it means that components should be inter-
changeble, which is fulfilled as long as their contract (the props they
receive) is respected.

ISP which means The Interface Segregation Principle, advises the developers
that they should not depend on things they do not use. The data passed
between the components in our module is minimalized.

DIP or The Dependency Inversion Principle, which says that the source code
dependencies should refer only to abstractions and not actual imple-
mentations. In the context of React, that means that the complex logic
should not be implemented directly in the component but imported.
Since the module makes use of imported hooks that encapsulate the
business logic into small and reusable components, the principle was
adhered to.

3.3 Organization Component Design

The web application is split into pages that compose it: Account, Aircraft,
Devices, and Flights. Each of these pages has its own:

• types or models representing the data,

• repository that servers as a layer between the container’s business logic
and API that sends REST HTTP requests to back end and other ser-
vices,

• hooks handling complex business logic,

• components rendering the UI on the web.

32

3.3. Organization Component Design

The module will be designed in a similar fashion. It seems very natural to
follow this architecture and add a new block called Organization that would
be responsible for fleet management. The image 3.9 shows a simple overview
of the components that compose the web application.

Aircraft DevicesAccountFlights

Services

Back End
REST API

Live Service
REST API

Organization

Redux Store

Figure 3.9: Dronetag Front End Component Graph

It is easier to understand the module design after getting familiar with
these terms:

Page is a top-level component that renders static elements that should not
change and wraps the containers that further divide the application
into logical blocks. Static elements usually include the navigation bar,
header, and footer.

33

3. Module Design

Container is usually a child of a page or another container. It handles asyn-
chronous calls to other services, business logic, and renders other con-
tainers or presentational components.

Presentational component should accept all the data it needs as props
and render the UI.

3.3.1 Pages

Organization module is composed of 4 pages: Organization Page, Create Or-
ganization Page, Create Mission Page, and Edit Mission Page. These pages
serve as wrappers around the corresponding containers, responsible for show-
ing the navigation side bar and styling the page. Each page is responsible
for:

• Organization Page renders a container depending on a tab that the user
is currently on. There are multiple tabs: Members (default), Teams,
Aircraft, Devices, Missions, and Settings,

• Create Organization Page renders Organization Create Container,

• Create Mission Page renders Mission Planner Stepper Container,

• Edit Mission Page renders Mission Plan Edit Container.

For a visual representation, see diagram 3.10. Note that it is not an activity
diagram, just a visual representation.

3.3.2 Containers

In this section, we will analyze the containers that each page renders. The
containers have a simple lifecycle:

1. Define the local state of the component and retrieve data from other
services (hooks),

2. Define functions to handle business logic and local state management
(handlers),

3. Handle the loading and error status of asynchronous requests (condi-
tions),

4. Render other containers or presentational components and pass them
needed data (return).

Each container retrieves data either from the backend service or from the
Redux store using selectors.

34

3.3. Organization Component Design

is user in

organization

Render Members

Container

Render Missions

Container

Render Aircraft

Container

Render Organization

Page

Render Device

Container

Render Teams
Container

Render Settings

Container

Render Mission

Create Page

Render Organization
Empty and Organization

Invitations Container

No
selected tab

Yes

Aircraft

Device

Settings

Teams

MissionsMembers

Render Organization

Create Page

Render Mission

Edit Page

Render Organization

Create Container

Create
organization

button clicked
action

Click on

planned mission

Click on plan

new mission

Render Mission Plan

Edit Container

Render Mission
Planner Stepper

Container

Figure 3.10: Dronetag Page Diagram

Organization Create Container

This container is responsible for rendering a form with the organization name
and description. It also handles the form submission logic and call to create
an organization.

Organization Members Container

Organization Members Container retrieves organization members data from
the back end and holds information about dialogues and pagination in its
local state. It renders Member List component and a button to invite users
to the organization. It also checks if current user is the organization owner
and passes the information to the Member List component.

Organization Aircraft Container

Organization Aircraft Container recovers aircraft data from back end. It ren-
ders Aircraft List component and handles pagination. It also renders a button
that navigates the user to his own aircraft.

Organization Devices Container

Organization Devices Container works analogously to the Aircraft Container
described above.

35

3. Module Design

Organization Settings Container

Organization Settings Container retrieves details about the organization from
the back end and checks if the current user is the owner of the organization.
It renders an edit form to the organization owner and organization details
to other organization members. It will also render a button, either a leave
organization button to regular members or a delete organization button to
the organization owner.

Organization Missions Container

Organization Missions Container gets mission data from the back end, renders
Mission List component, handles the pagination, and renders a button to plan
a new mission. After clicking on a mission, the user will be redirected to the
Edit Mission Page. After clicking on a button to plan a new mission, the user
will be redirected to Create Mission Page.

Mission Planner Stepper Container

Mission Planner Stepper Container handles the stepping mechanism of the
Mission Planner and renders the Mission Plan Step One Container or the
Mission Plan Step Two Container, depending on the current step.

Mission Plan Step One Container

Mission Plan Step One Container retrieves the organization members data
from the back end and renders a form that the user needs to fill to create
a Mission Draft, which is an object that holds the necessary static informa-
tion needed to create an actual mission: name, start date, end date, mission
members and their roles corresponding to the mission.

Mission Plan Step Two Container

Mission Plan Step Two Container handles the back end calls and business
logic behind the actual mission planning and pilot flight planning. It creates
the initial Mission Plan and Flight Plans from the Mission Draft and holds
them in a local state.

It then retrieves aircraft and device data from the back end and passes
them down to the components responsible for selecting the aircraft and device.

It handles mission or flight plan submit and clear logic. When a plan is
submitted, an HTTP POST request is sent to the back end and the mission
plan or flight plan is then persisted.

It renders two important components: Mission Pilots Accordion and Mis-
sion Map. These components will be explained in detail in the chapter devoted
to implementation.

36

3.3. Organization Component Design

Mission Plan Edit Container

Mission Plan Edit Container works similarly to the Mission Plan Step Two
Container, but the initial stage is different, since we need to recreate the flight
and mission plans.

It gets information about the existing mission and its mission members in
its props. From this information, the container is able to recreate the Mission
Draft and fetch the existing Flights from the back end.

The container then creates the mission plan and flight plan objects out of
the mission and flight plan information retrieved from back end, and stores
these recreated mission and flight plans in the local state of the container.

From this point onward, the logic is analogous to the Mission Plan Step
Two Container.

37

Chapter 4
Implementation

In this chapter, the more advanced implementation details and implementa-
tion challenges of the module will be explained: used React libraries, data
synchronization, UI rendering, form and dialogue handling, memoization, and
refactoring. Then we will dig deeper into the actual components and algo-
rithms behind mission planning.

4.1 Data Synchronization

Data synchronization includes fetching, caching, synchronizing, and updating
the server state. Our module has four layers of abstraction over data fetching:

• Queries and Mutations – React Query Hooks that handle backend calls
in containers and provide the data and status information,

• Repository – middle layer responsible for conversions between camel case
and snake case, parsing the response headers, and data mapping,

• REST API – collection of requests to REST Client,

• REST Client – the last layer responsible for actual backend calls using
the global fetch method from JavaScript Fetch API [37].

React Query

React Query [38] is a powerful data fetching library for React. It has three
core concepts:

Queries are React Query Hooks used for data fetching. Each query needs a
Promise-based method and a unique key that are used to refetch the data
and cache them in the Query Client. The query returns an object that
has 4 mutually exclusive states: isLoading, isError, isSuccess, and isIdle.
Depending on the state, the object holds the data or error information.

39

4. Implementation

Mutations are React Query Hooks used to create or update the server data
and perform side effects. Mutations also return an object with the same
states as queries and provide us with the data or error information.
Very important feature of mutations is the lifecycle options: onMutate,
onError, onSuccess, and onSettled. These functions handle the asyn-
chronous logic and allow us to execute our own logic that depends on
the current state of backend calls.

Query invalidation provides methods used to handle cached data in the
Query Client. A common use case is marking cached query results that
depend on other data as stale when the other data changes.

React Query library has out-of-the-box solutions for many advanced and com-
plex concepts such as parallel data fetching, dependent queries, infinite queries,
window focus refetching, or query batching. It also has first-class support for
TypeScript, provides powerful debugging web tools, and requires minimal con-
figuration.

4.2 Memoization

Memoization is an optimization technique used in programming to improve
performance by storing information that is expensive to calculate. Whenever
the same information is requested, it is only returned from the store instead
of being calculated all over again.

In the context of a React application, it is used to optimize performance
of the application by preventing unnecessary rendering. Whenever a parent
component is changed, there are difference checks run on every child even if
there were no changes to their props. We can prevent this difference check by
using memoization. It is realized by making use of three functions:

React.memo is a higher order component that wraps the component that
is memoized. By default, it performs a shallow equality check on props,
but it is possible to create a custom equality check function and pass it
to React.memo as an argument.

React.useMemo is a hook that returns a memoized value. It takes a factory
function and a dependency array, recalculating the value only if the
values in the dependency array change.

React.useCallback is a hook that returns a memoized callback. It works
similarly to React.useMemo and is used to help memoized components
that accept functions as props.

In the module, memoization had to be implemented to improve Mission
Planner performance.

40

4.3. Refactoring

4.3 Refactoring

Refactoring plays a critical role in the software implementation and there was
a lot of work spent on refactoring the module. Fowler’s [39] definition of
refactoring states the following:

”Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the code
yet improves its internal structure. It is a disciplined way to clean
up code that minimizes the chances of introducing bugs. In essence
when you refactor you are improving the design of the code after
it has been written.”

In React, the components tend to get heavy very quickly. Heavy compo-
nents are hard to read, break the SOLID principles and they tend to slow
the module down, because it gets challenging to optimize the components
properly.

To demonstrate how refactoring helped make the code of the module
cleaner, let us look at Mission Pilots Accordion component. At first, the
component was directly responsible for rendering the mission accordion and
all the accordions for mission pilots. The logic handling the selection of the
aircraft, device and height range was implemented in the Mission Plan Step
Two Container. While the application worked, it had a critical impact on:

• readability of the code – Mission Plan Step Two Container kept growing
in size with each addition to the Mission Pilots Accordion,

• performance – a change in a single flight plan caused re-rendering of all
the accordions instead of re-rendering a single isolated component.

Similar changes were made to Mission Map component, which originally
rendered all of its drawn regions on the map instead of delegating the respon-
sibilities to specific and isolated components. Refactoring is a very important
part of writing a maintainable, clean, readable and performant code.

4.4 UI Components

The UI design of the web application is very important to users. User interface
should be clean, intuitive and look modern. The module makes use of a
powerful UI suite, Material UI.

Material UI

Material UI (MUI) [40] library provides numerous styled React components
used to present data to the user. The library is mostly used for styling and

41

4. Implementation

overriding the provided components by defining custom styles and using the
className prop of each MUI component.

In the module, the CSS styles are specified in an object that we pass to
createStyles callback, which is called inside of the makeStyles function. Each
MUI component is then assigned its style by setting the className prop to
the desired object that holds the style information.

4.5 Forms

Forms are present in almost every user-oriented web application. They provide
a way to catch user input and submit it elsewhere. Forms need a way to
validate the fields, show error messages, and submit themselves. In React,
this can become complicated and verbose very quickly. The module makes
use of Formik library to mitigate these issues.

Formik

Formik [41] is a React library that provides an easy way to build, validate and
submit forms with minimal API. It also has first-class support for TypeScript
and MUI, the UI library used in the module.

Formik form accepts initial values (usually the data model), validation
schema, and a callback to be executed when submitting the form. Each form
field is defined and given an ID corresponding to the object keys in the initial
values. Other functionality like updating the values can be left on Formik
to handle, but it is possible to use the provided methods to customize the
behavior.

4.6 Dialogues

Dialogues are handled by the MUI library. Each dialogue accepts information
about its state (open/closed) and a callback that handles the confirm logic as
props. Dialogues usually render a ”go back” button that closes the dialogue,
and a submit button that fires the callback passed to it.

The module uses eight dialogues. The dialogs are used for safety and
informational reasons. They prevent users from accidentally performing de-
structive actions like deleting an organization or a mission, and serve as an
informative overview before creating a mission or a flight.

4.7 Map

The module uses react-map-gl [42] library to load an interactive map. It is
based on Mapbox GL JS [43], which is a JavaScript library for building and
customizing an interactive map using Mapbox’s modern mapping technology.

42

4.8. Mission Plan Model

Map is a React component that accepts props used to control the map
such as mouse events, latitude, longitude, or zoom.

It is possible to ”draw” onto the map by rendering components as chil-
dren of the Map component. Any React component can be used, but it is
recommended to use the components from react-map-gl library. The most
frequently used components are:

• Marker – component that accepts longtitude, latitude and other useful
props such as drag and click events, offsets, or anchor, and serves as a
wrapper around a component or icon,

• Layer – component that creates a map layer. Layer requires a style; we
can choose from multiple Mapbox layer styles like fill, line, symbol, and
many others,

• Source – component that creates a map source from multiple source
objects such as a vector or geojson. Can contain Layers as its children.

4.8 Mission Plan Model

Mission Plan is a type that represents a mission plan. It encapsulates the
following properties:

• Shape – defines the geometric shape of the plan, can be either NotSe-
lected, Polygon, or Circle,

• HeightRange – an array of two integers representing the lower and upper
altitude of the plan,

• PolygonRegionInfo – an object that holds information concerning Poly-
gon Region,

• CircularRegionInfo – an object that holds information concerning Cir-
cular Region,

• Color – string that represents color of the plan,

• Confirmed – a boolean that marks the plan as confirmed.

Mission plan and flight plans are stored in the local state of Mission Plan Step
Two and Mission Plan Edit containers. These plans serve as the source of
truth, and the containers pass them down the component tree with functions
used to mutate the plans. Whenever a flight region is dragged on the map,
the corresponding flight plan gets updated and every components that accepts
the flight plan as props gets re-rendered.

43

4. Implementation

4.9 Mission Planning Components

In this section, the components responsible for mission planning will be ex-
plained in more detail.

Mission Pilots Accordion

Mission Pilots Accordion is a component responsible for rendering Mission
Accordion and Pilot Accordion components. It holds information about the
expanded accordion in its local state, and expanding an accordion changes
the selected plan in the Mission Plan Step Two Container or Mission Plan
Edit Container. It also defines functions used to select the shape of a plan
region, assign height range to a plan, or select an aircraft or a device to a
flight plan. It passes these functions to its children, Mission Accordion and
Pilot Accordion components.

To see a visual representation of the component, see image 4.1.

Figure 4.1: Mission Pilots Accordion Component

44

4.9. Mission Planning Components

Mission Accordion

Mission Accordion renders Shape Select and Height Select components, but-
tons to clear or confirm the mission plan, and general information about the
state of the plan. Accordion is disabled for non-coordinators during mission
plan editing, as clearing the plan would remove the mission and its flights.

Pilot Accordion

Pilot Accordion is built similarly to Mission Accordion, but it also renders
Aircraft Select and Device Select components.

Mission Map

Mission Map is a component that renders the React Map component from the
react-map-gl library. It holds viewport in its local state, which defines the
position on the map. It defines functions to handle map clicking, viewport
changes, and mouse movement. It renders Polygon Region, Circular Region,
and Takeoff Marker components.

For the visual representation of the component, see image 4.2.

Figure 4.2: Mission Map Component

45

4. Implementation

Polygon Region

Polygon Region renders Source components calculated from the plan’s poly-
gon region information and Layer components that graphically represent these
Source components. The component defines functions that are used to ma-
nipulate Region Points and Region Midpoints components. It also renders
drawing instructions that guide the user while drawing the plan.

Region Points

Region Points component renders a Marker for each polygon region point.

Circular Region

Circular Region is similar to Polygon Region, but renders a Circular Region
Center Marker and Circle Resize Point which are used to move or resize the
Circular Region.

Overview

The components described in the sections above are children of the Mission
Plan Step Two Container or Mission Plan Edit Container, communicate with
each other and mutate the mission plan and flight plans stored in the local
state of the corresponding containers. To see the full picture of the Mission
Plan Step Two Container, refer to image 4.3.

Figure 4.3: Mission Plan Step Two component

46

Chapter 5
Testing and Feedback

Evaluation

The last chapter will focus on the last objectives of the thesis: testing the
application with real pilots, evaluating the results, and suggesting future im-
provements. In the following sections, each of these topics will be further
elaborated on.

5.1 Testing

Testing plays a crucial role in the software development. The definition from
The Art of Software Testing [44] states:

”Software testing is a process, or a series of processes, designed to
make sure computer code does what it was designed to do and, con-
versely, that it does not do anything unintended. Software should
be predictable and consistent, presenting no surprises to users.”

Since the testing process of the web application was not previously defined, it
was decided that testing the code in a form of unit or integration tests would
be out of scope of the thesis. To ensure that the module works correctly, the
application was tested on pilots familiar with the Dronetag, and users that
had never seen the application before.

5.1.1 User Testing Process

The process of user testing was designed to be as close as possible to a real
user experience. The users were instructed to perform specific tasks without
any external guidance, which made sure the use cases were tested, as well as
the user interface, and the application as a whole.

47

5. Testing and Feedback Evaluation

5.1.2 Test Scenarios

Specific test scenarios will be described and labeled in this section.

TC01 Organization Creation

The first test scenario tests FR01 2.5. The user who is not a member of any
organization is told:

”You are a leader of a drone fleet in your company and you
want to create an organization for your department. The name of
the organization will be ’Dronefleet Organization’ and the descrip-
tion will state ’Organization that plans complex drone operations’.”

This test verifies that:

• User is able to find the organization section from the main page,

• User is able to create an organization with a specific name and descrip-
tion.

TC02 Organization Management

The second test scenario tests FR01 2.5. The user who is an organization
owner is told:

”You want to rename the newly created organization to ’Drone-
fleet Company’ and change the description to ’Company that plans
complex drone mission’.”

This test makes sure that:

• User is able to find the organization settings,

• User is able to edit the organization.

TC03 Organization Member Management 1

This scenario tests FR03 2.5. The user is told:

”Your task is to invite your two colleagues, John and David
with emails ’john@email.com’ and ’david@email.com’ to your or-
ganization. After that, sign out, sign in again as John and join
the organization.”

This test verifies the following:

• User is able to invite other users to the organization by their email,

• User is able to join an organization he was invited to.

48

5.1. Testing

TC04 Organization Member Management 2

This scenario tests FR03 2.5. The user is told:

”While signed is as John, try to remove any user from the orga-
nization. Change the organization name to ’Corrupted company’.
After that, try to delete the organization. Then sign out and sign
in back to your account.”

This test verifies the following:

• Organization member that is not the owner of the organization cannot
remove any organization members,

• Organization member that is not the owner of the organization cannot
edit or delete the organization.

TC05 Organization Asset Management

This test scenario tests FR02 2.5 and states:

”You have two drones and a Dronetag device saved on your
account. Check your organization aircraft and transfer these two
drones to your organization. Then check your organization devices
and transfer the device to your organization. After that, transfer
one of the aircraft back to your personal account.”

This test ensures that:

• User is able to view organization aircraft,

• User is able to transfer his aircraft to organization,

• User is able to transfer organization aircraft to his account,

• User is able to view organization devices,

• User is able to transfer his device to organization,

• User knows where to look for organization assets and personal assets.

TC06 Mission Planning

In this test scenario, FR05 2.5 is put to the test. The user is told:

49

5. Testing and Feedback Evaluation

”Your task is to plan a mission named ’Geographical survey’.
The mission will take place tomorrow from 14:00 to 15:30. There
will be three people involved in this mission: You, John, and Dave.
You and John will be pilots, Dave will not be flying but he will be a
coordinator. John will not be a coordinator. The mission will take
place at Stromovka park, so you will create a polygonic mission
plan over the entire Stromovka park. The altitude will be 80 to
150 meters.”

This test case verifies that:

• User knows how to start planning a mission,

• User is able to specify the mission name and planned date,

• User is able to add organization members to the mission,

• User is able to set the roles of the mission members,

• User is able to create a mission plan region over a specified area,

• User is able to set mission altitude.

TC07 Mission Flight Planning

This test scenario takes place immediately after TC6 and also tests FR05 2.5.
The user is told that:

”You will be flying in the eastern half of the mission plan and
you will be taking off in the middle of the eastern half. You should
fly in range of 90 to 120 meters. You will be flying with aircraft
named ’DJI Ph4’ and Dronetag device named ’Dronetag Mini 1’.”

This test covers the following:

• Mission creator is able to create his flight region within a specified mis-
sion plan region,

• Mission creator is able to place a take-off marker in a specified location,

• Mission creator is able to set the height range of the flight plan to be
different from the mission plan’s height range,

• Mission creator is able to find and select the correct aircraft for his flight,

• Mission creator is able to find and select the correct device for his flight,

• Mission creator is able to create a valid flight plan.

50

5.1. Testing

TC08 Planned Mission Edit Pilot

The following test scenario tests FR05 2.5 and the user gets the following
instructions:

”Sign in as John and find a planned mission called ’Geograph-
ical Survey’. Try to clear the mission plan and edit the other flight
plans. Then create a flight plan region that covers the western part
of the mission plan region. It should not intersect with any other
flight plans. You will be taking off from the center of the flight
plan region and you will be flying at altitude of 100 to 110 meters.
You can select any aircraft or device that you want to fly with.”

This test ensures that:

• Mission pilot is able to view a planned mission,

• Mission pilot knows how to edit a planned mission,

• Mission pilot cannot edit or delete the mission plan or any other flight
plans except for his own,

• Mission pilot is able to create the specified flight plan.

TC09 Planned Mission Edit Not Coordinator Or Pilot

This test scenario tests FR05 2.5 and the user receives the following instruc-
tions:

”Sign in as Dave and view a planned mission called ’Geograph-
ical Survey’. Try to clear the mission plan and every flight plan.”

The test scenario ensures that:

• Organization member that is neither a pilot nor a mission coordinator
can view a mission,

• Organization member that is neither a pilot nor a mission coordinator
cannot edit the mission plan or any of the flight plans.

TC10 Flight Plan Region Not in Mission Plan Region

The following test scenario tests FR05 2.5. The user is told:

”Find a planned mission called ’Boundaries Test’. Create an
arbitrary flight plan region outside of the mission plan, select any
aircraft, device, and set the take-off point inside the flight plan.
Try to confirm the flight plan. Then move the flight plan region so
that it is inside the mission plan. Confirm the flight plan.”

51

5. Testing and Feedback Evaluation

This test scenario verifies that:

• Mission pilot cannot submit a flight plan that is outside of the mission
plan region,

• Mission pilot is able to submit a correct flight plan.

5.2 Testing Report

Testing with users was realized on 27 April 2022 and 10 May 2022 on four
test subjects. Two of them were not familiar with Dronetag. The testing was
a success and revealed that the module was designed and implemented well.
The test subjects reported the following inconveniences that they encountered
during the testing:

• When drawing a polygon, it is not immediately apparent how to finish
drawing the plan,

• Sign out button should be placed directly on the navigation side bar
instead and not in User Settings,

• There is no way to add additional mission members after the mission
has been planned,

• Moving the circular region could be smoother,

• The instruction to set take-off marker is hard to spot.

The suggested solutions to some of these problems can be found in the
next chapter.

5.3 Future Improvements

The application is still a prototype. There are many things that could be
worked on and functionalities that should be added to the module. The fol-
lowing section will describe the current problems with the application and
suggest solutions to these problems.

Implement Teams Page

Problem: Teams page was designed, but there was not enough time to im-
plement it.

Suggested solution: Implement the Teams page according to the graphic pro-
totype with functionalities defined in Functional Requirements section.

52

5.3. Future Improvements

Ongoing and Past Missions View

Problem: The Missions section of the module does not differentiate between
planned, ongoing, and past missions. Clicking on a planned mission
takes the user to the Mission Edit page, and clicking on an ongoing or
past mission does not do anything.

Suggested solution: Implement the Mission Detail page according to the
graphic prototype that would present the most important metrics of a
past or ongoing mission. Add a way to filter planned, ongoing and past
missions.

Switching Between Organization and Personal Account

Problem: The Organization module resides in the navigation sidebar and
navigation between containers is handled by clicking on tabs.

Suggested solution: Enable the user to switch between organization and per-
sonal account in the navigation sidebar. The navigation sidebar would
now handle the navigation between the pages of the organization module

Add and Remove Mission Member Functionality

Problem: The user adds members to the mission in the first step of mission
planning and cannot add members to the mission after proceeding to
the next step.

Suggested solution: Add a button that would take the user back to the
first step of the mission. The user would be able to edit the mission
information including the mission members.

53

Conclusion

The objectives of the thesis were to analyze the market for existing solutions,
define the functionalities of the planned module, implement the module, test
the finished module with real pilots, and suggest its future improvements.

I managed to analyze the market and research existing drone fleet man-
agement solutions. I evaluated the platforms and listed their positives and
negatives. It gave me all the necessary information and experience to come
up with my own solution to this problem.

After many iterations, I defined the final functionalities of the planned
module for the Dronetag application. The analysis of other drone fleet man-
agement applications revealed which features I should put the most focus on
and functionalities that were not that important or interesting to the user.
The functional requirements had served me as a guideline while I was design-
ing the graphical prototype in Adobe XD.

The graphical prototype has proven to be the perfect foundation for the
implementation of the module. It made the actual implementation much easier
because I knew what the UI should look like at all times. It also helped me
identify edge cases and possible problems in the application.

It took me a long time to get familiar with the existing codebase, but it
was a great experience. I went into the depths of code that I had not written.
Once I knew the codebase inside and out, I was able to come up with the
architecture and high-level design of the module. After that I could start
implementing my precisely crafted solution.

The implementation was the heart of this thesis, and with over 8000 lines
of code, I managed to successfully implement the module and integrate it into
the existing Dronetag application. After many refactorings and changes, I de-
livered a clean code following the best practices of JavaScript, TypeScript, and
especially the React library. I used a simple, intuitive, and easily extensible
architecture.

Testing the application module with real pilots convinced me that my so-
lution fulfills the user needs for drone fleet management, but it is not perfect.

55

Conclusion

Software is all about refactoring and changes in requirements according to
feedback provided by users. I thoroughly evaluated user feedback and sug-
gested possible improvements to the module that could be done in the future.

In the end, it is important to note that the module is still a prototype
and there was not enough time to implement several designed functionalities.
There are many possible improvements that could be implemented, but that
would be out of scope of this bachelor’s thesis.

56

Bibliography

1. AIRHUB. Airhub: Drone Operations Center [online]. AirHub, 2021 [vis-
ited on 2022-04-24]. Available from: https://www.airhub.app/drone-
operation-center.

2. AIRHUB. AirHub App [online]. AirHub, 2021 [visited on 2022-05-11].
Available from: https://dashboard.airhub.app/.

3. DJI. DJI Introduces FlightHub Software To Help Enterprises Efficiently
Manage Their Drone Operations [online]. DJI, 2017 [visited on 2022-
04-24]. Available from: https://www.dji.com/newsroom/news/dji-
introduces-flighthub-software-to-help-enterprises-efficiently-
manage-their-drone-operations.

4. DJI. DJI FlightHub Download Center [online]. DJI, 2022 [visited on
2022-04-24]. Available from: https://www.dji.com/cz/downloads/
products/flighthub.

5. DJI. DJI FlightHub Enterprise User Guide [online]. DJI, 2017 [visited
on 2022-05-11]. Available from: https://dl.djicdn.com/downloads/
FlightHub/20190308/FlightHub_Enterprise_User_Guide_v1.0_EN.
pdf.

6. DRONETAG S.R.O. Dronetag - Tvoř́ıme bezpečný svět dron̊u [online].
Dronetag s.r.o., 2020 [visited on 2022-04-24]. Available from: https :
//dronetag.cz/.

7. DRONETAG S.R.O. Dronetag [online]. Dronetag s.r.o., 2022 [visited on
2022-05-11]. Available from: https://dronetag.app/.

8. THE POSTGRESQL GLOBAL DEVELOPMENT GROUP [online]. The
PostgreSQL Global Development Group, 2022 [visited on 2022-05-09].
Available from: https://www.postgresql.org/.

9. PYTHON SOFTWARE FOUNDATION. Welcome to Python.org. Python
Software Foundation, 2022. Available also from: https://www.python.
org/.

57

https://www.airhub.app/drone-operation-center
https://www.airhub.app/drone-operation-center
https://dashboard.airhub.app/
https://www.dji.com/newsroom/news/dji-introduces-flighthub-software-to-help-enterprises-efficiently-manage-their-drone-operations
https://www.dji.com/newsroom/news/dji-introduces-flighthub-software-to-help-enterprises-efficiently-manage-their-drone-operations
https://www.dji.com/newsroom/news/dji-introduces-flighthub-software-to-help-enterprises-efficiently-manage-their-drone-operations
https://www.dji.com/cz/downloads/products/flighthub
https://www.dji.com/cz/downloads/products/flighthub
https://dl.djicdn.com/downloads/FlightHub/20190308/FlightHub_Enterprise_User_Guide_v1.0_EN.pdf
https://dl.djicdn.com/downloads/FlightHub/20190308/FlightHub_Enterprise_User_Guide_v1.0_EN.pdf
https://dl.djicdn.com/downloads/FlightHub/20190308/FlightHub_Enterprise_User_Guide_v1.0_EN.pdf
https://dronetag.cz/
https://dronetag.cz/
https://dronetag.app/
https://www.postgresql.org/
https://www.python.org/
https://www.python.org/

Bibliography

10. FOUNDATION, Django Software [online]. Django Software Foundation,
2022 [visited on 2022-05-11]. Available from: https://www.djangoproject.
com/.

11. ENCODE OSS LTD. Django REST framework [online]. Encode OSS
Ltd., 2022 [visited on 2022-05-11]. Available from: https://www.django-
rest-framework.org/.

12. SOLEM, Ask. Celery - Distributed Task Queue. Ask Solem, 2021. Avail-
able also from: https://docs.celeryq.dev/en/stable/.

13. DART COMMUNITY. Dart programming language [online]. Dart Com-
munity, 2022 [visited on 2022-05-11]. Available from: https://dart.
dev/.

14. FLUTTER. Flutter - Build apps for any screen [online]. Flutter, [n.d.]
[visited on 2022-05-11]. Available from: https://flutter.dev/.

15. THE BLOC COMMUNITY. Bloc, a predictable state management li-
brary for Dart [online]. the Bloc Community, 2022 [visited on 2022-05-
11]. Available from: https://bloclibrary.dev/#/.

16. JAVASCRIPT.COM. CELEBRATING 25 years of JavaScript [online].
JavaScript.com, 2022 [visited on 2022-05-11]. Available from: https://
www.javascript.com/.

17. ECMA INTERNATIONAL. Draft ECMA-262 / April 28, 2022 [online].
Ecma International, 2022 [visited on 2022-04-28]. Available from: https:
//tc39.es/ecma262/.

18. MICROSOFT. TypeScript: JavaScript With Syntax For Types [online].
Microsoft, 2022 [visited on 2022-05-09]. Available from: https://www.
typescriptlang.org/.

19. META PLATFORMS, INC. React – a JavaScript library for building
user interfaces [online]. Meta Platforms, Inc., 2022 [visited on 2022-05-
09]. Available from: https://reactjs.org/.

20. REFSNES DATA. React JSX [online]. Refsnes Data, 2022 [visited on
2022-05-04]. Available from: https : / / www . w3schools . com / react /
react_jsx.asp.

21. REFSNES DATA. JavaScript HTML DOM [online]. Refsnes Data, 2022
[visited on 2022-05-04]. Available from: https://www.w3schools.com/
js/js_htmldom.asp.

22. SHETH, Kishan. What is Virtual DOM? DEV Community, 2021. Avail-
able also from: https://dev.to/koolkishan/what- is- virtual-
dom-how-virtual-dom-works-what-is-reconciliation-what-is-
diffing-algorithm-what-makes-react-so-fast-327a.

58

https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.django-rest-framework.org/
https://www.django-rest-framework.org/
https://docs.celeryq.dev/en/stable/
https://dart.dev/
https://dart.dev/
https://flutter.dev/
https://bloclibrary.dev/#/
https://www.javascript.com/
https://www.javascript.com/
https://tc39.es/ecma262/
https://tc39.es/ecma262/
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://reactjs.org/
https://www.w3schools.com/react/react_jsx.asp
https://www.w3schools.com/react/react_jsx.asp
https://www.w3schools.com/js/js_htmldom.asp
https://www.w3schools.com/js/js_htmldom.asp
https://dev.to/koolkishan/what-is-virtual-dom-how-virtual-dom-works-what-is-reconciliation-what-is-diffing-algorithm-what-makes-react-so-fast-327a
https://dev.to/koolkishan/what-is-virtual-dom-how-virtual-dom-works-what-is-reconciliation-what-is-diffing-algorithm-what-makes-react-so-fast-327a
https://dev.to/koolkishan/what-is-virtual-dom-how-virtual-dom-works-what-is-reconciliation-what-is-diffing-algorithm-what-makes-react-so-fast-327a

Bibliography

23. GAMMA, Erich; HELM, Richard, et al. Observer. In: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1994. isbn 0201633612.

24. PROGRAMMING WITH MOSH. Virtual DOM [online]. Programming
with Mosh, 2015 [visited on 2022-05-11]. Available from: https : / /
programmingwithmosh.com/react/react-virtual-dom-explained/.

25. META PLATFORMS, INC. Components and Props [online]. Meta Plat-
forms, Inc., 2022 [visited on 2022-05-04]. Available from: https : / /
reactjs.org/docs/components-and-props.html.

26. META PLATFORMS, INC. State and Lifecycle [online]. Meta Platforms,
Inc., 2022 [visited on 2022-05-04]. Available from: https://reactjs.
org/docs/state-and-lifecycle.html.

27. WOJCIECH MAJ. React lifecycle methods diagram [online]. Wojciech
Maj, 2019 [visited on 2022-05-11]. Available from: https://projects.
wojtekmaj.pl/react-lifecycle-methods-diagram/.

28. META PLATFORMS, INC. Thinking in React [online]. Meta Platforms,
Inc., 2022 [visited on 2022-05-04]. Available from: https://reactjs.
org/docs/thinking-in-react.html.

29. META PLATFORMS, INC. Lifting State Up [online]. Meta Platforms,
Inc., 2022 [visited on 2022-05-04]. Available from: https://reactjs.
org/docs/lifting-state-up.html.

30. META PLATFORMS, INC. Introducing Hooks [online]. Meta Platforms,
Inc., 2022 [visited on 2022-05-09]. Available from: https://reactjs.
org/docs/hooks-intro.html.

31. MALAN, Ruth; BREDEMEYER, Dana, et al. Functional Requirements
and Use Cases. Bredemeyer Consulting. 2001.

32. WIEGERS, Karl Eugene; BEATTY, Joy. Understanding User Require-
ments. In: Software Requirements, Third Edition. Microsoft Press, 2015.

33. CHUNG, Lawrence; NIXON, Brian A., et al. Non-functional require-
ments in software engineering. Springer Science & Business Media, 2012.
isbn 9781461552697.

34. Adobe XD [online]. Adobe, 2022 [visited on 2022-05-04]. Available from:
https://www.adobe.com/products/xd.html.

35. STRIDE XL, S.R.O. Stride XL [online]. Stride XL, s.r.o., 2021 [visited
on 2022-05-11]. Available from: https://www.stridexl.com/.

36. MARTIN, Robert C. Design Principles. In: Clean Architecture: A Crafts-
man’s Guide to Software Structure and Design. Pearson, 2017, pp. 57–
91.

37. KANTOR, Ilya. Fetch [online]. Ilya Kantor, 2022 [visited on 2022-05-11].
Available from: https://javascript.info/fetch.

59

https://programmingwithmosh.com/react/react-virtual-dom-explained/
https://programmingwithmosh.com/react/react-virtual-dom-explained/
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/components-and-props.html
https://reactjs.org/docs/state-and-lifecycle.html
https://reactjs.org/docs/state-and-lifecycle.html
https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
https://projects.wojtekmaj.pl/react-lifecycle-methods-diagram/
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/thinking-in-react.html
https://reactjs.org/docs/lifting-state-up.html
https://reactjs.org/docs/lifting-state-up.html
https://reactjs.org/docs/hooks-intro.html
https://reactjs.org/docs/hooks-intro.html
https://www.adobe.com/products/xd.html
https://www.stridexl.com/
https://javascript.info/fetch

Bibliography

38. LINSLEY, Tanner. Performant and powerful data synchronization for
React [online]. Tanner Linsley, 2020 [visited on 2022-05-04]. Available
from: https://react-query.tanstack.com/.

39. FOWLER, Martin; BECK, Kent, et al. Preface. In: Refactoring - Im-
proving the Design of Existing Code. Addison-Wesley Professional, 1999.

40. MATERIAL UI SAS. MUI: The React component library you always
wanted [online]. Material UI SAS., 2022 [visited on 2022-05-04]. Available
from: https://mui.com/.

41. FORMIUM, INC. Build forms in React, without the tears [online]. Formium,
Inc., 2020 [visited on 2022-05-04]. Available from: https://formik.org/.

42. URBAN COMPUTING FOUNDATION. React-Map-GL [online]. Urban
Computing Foundation, 2020 [visited on 2022-05-04]. Available from:
https://visgl.github.io/react-map-gl/.

43. MAPBOX. Mapbox GL JS [online]. 2014 [visited on 2022-05-04]. Avail-
able from: https://docs.mapbox.com/mapbox-gl-js/guides/.

44. MYERS, Glenford J.; SANDLER, Corey; BADGETT, Tom. A Self-
Assessment Test. In: The Art of Software Testing. John Wiley & Sons,
2012.

60

https://react-query.tanstack.com/
https://mui.com/
https://formik.org/
https://visgl.github.io/react-map-gl/
https://docs.mapbox.com/mapbox-gl-js/guides/

Appendix A
Graphic Prototype

This chapter will contain the graphic prototype pages that were not shown in
the previous chapters.

My Organization
Organization is lorem ipsum dolor sit amet, to fly with your lorem

10...54321

SettingsDevicesAircraftsMissionsTeamsMembers

Drone 2 Mavic Air 275 g None

Drone 1 Mavic Air 112 g None

My other mavic Mavic Air 1.3 kg None

My fancy aircraft Mavic Air 112 g Class 1 1

Name Model Weight Class

All Any model

You can always add more

Register your aircraft to your organization.

See your aircrafts

Figure A.1: Organization Aircraft Page

61

A. Graphic Prototype

My Organization
Organization is lorem ipsum dolor sit amet, to fly with your lorem

All

Add new team

10...54321

Richard Nixon

Barack Obama

Donald Trump

George Bush

Super team 1 +

Richard Nixon

Barack Obama

Donald Trump

George Bush

Super team 2 +

SettingsDevicesAircraftsMissionsTeamsMembers

Figure A.2: Organization Teams Page

My Organization
Organization is lorem ipsum dolor sit amet, to fly with your lorem

All

Add new team

10...54321

Richard Nixon

Barack Obama

Donald Trump

George Bush

Super team 1 +

Richard Nixon

Barack Obama

Donald Trump

George Bush

Super team 2 +

Add members to Super Team 1

Click the add member icon to add organization

members to your team.

Search

Rich

10...54321

Richard Dijkstra +

Richard Moore +

Richard Nixon Already added

SettingsDevicesAircraftsMissionsTeamsMembers

Figure A.3: Organization Teams Add Members Page

62

My Organization
Aircrafts are lorem ipsum dolor sit amet, to fly with your lorem

10...54321

All Any statusAny model

First Mini

Online

6

my custom special mini

with long name

Offline

Mocked Dronetag Mini

Offline

M

SettingsDevicesAircraftsMissionsTeamsMembers

You can always add more

Transfer your device to your organization

See your devices

Figure A.4: Organization Devices Page

My Organization
Everything about your account lorem ipsum dolor sit

SettingsDevicesAircraftsMissionsTeamsMembers

U.S. Presidents Drone Operations

Organization name

Update organization settings

Update

Invite permissions

Who has the rights to invite people to your

organization?

Select

Owner only

Organization name

The name of your organization

Delete Organization

Figure A.5: Organization Settings Page

63

A. Graphic Prototype

My Organization
Organization is lorem ipsum dolor sit amet, to fly with your lorem

SettingsDevicesAircraftsMissionsTeamsMembers

All Any device Any aircraft

10...54321

Sunday Afternoon Flight

25 Jul 2021, 14:27

25 Jul 2021, 17:30

3 pilots

George Bush

Start:

End:

Select

Ready for the next flight?

Plan your flight in advance

Plan a new flight

Clear filters

Monday Afternoon Flight

26 Jul 2021, 14:27

26 Jul 2021, 17:30

3 pilots

Donald Trump

Start:

End:

Tuesday Afternoon Flight

27 Jul 2021, 14:27

27 Jul 2021, 17:30

3 pilots

Richard Nixon

Start:

End:

Draft In-progress Completed

Figure A.6: Organization Missions Page

My Organization
Organization is lorem ipsum dolor sit amet, to fly with your lorem

SettingsAssetsAircraftsMissionsMembers

You're not member of an organization

Create an organization, invite members and start planning team missions.

Create new organization

Figure A.7: Organizations Create Page

64

Appendix B
Acronyms

API Application programming interface.

BVLOS Beyond visual line of sight.

CSS Cascading Style Sheets.

DJI Da-Jiang Innovations.

DOM Document Object Model.

EGNOS European Geostationary Navigation Overlay Service.

GLONASS Global Navigation Satellite System.

GPS Global Positioning System.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

JIT Just in Time.

JSX JavaScript XML.

MUI Material UI.

OOP Object Oriented Programming.

REST Representational state transfer.

UI User interface.

65

Acronyms

UTM Unmanned Traffic Management.

UX User experience.

VLOS Visual line of sight.

66

Appendix C
SD card contents

readme.txt...................the file with SD card contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
text..the thesis text directory

thesis.pdf...........................the thesis text in PDF format

67

	Introduction
	Motivation
	Objectives
	Main Objective
	Specific Objectives

	Existing Solutions
	AirHub
	DJI FlightHub Enterprise
	Other Solutions

	Module Analysis
	Dronetag
	Dronetag Web Application Overview
	Application Architecture
	Web Application Technology Stack
	Functional Requirements
	Nonfunctional Requirements
	Use Cases

	Module Design
	Graphic Prototype
	Organization Module Design
	Organization Component Design
	Pages
	Containers

	Implementation
	Data Synchronization
	Memoization
	Refactoring
	UI Components
	Forms
	Dialogues
	Map
	Mission Plan Model
	Mission Planning Components

	Testing and Feedback Evaluation
	Testing
	User Testing Process
	Test Scenarios

	Testing Report
	Future Improvements

	Conclusion
	Bibliography
	Graphic Prototype
	Acronyms
	SD card contents

