
Název:

Student:

Vedoucí:

Studijní program:

Obor / specializace:

Katedra:

Platnost zadání:

Zadání bakalářské práce

Demo aplikace pro ověření funkčnosti ClientPortal API

Daniil Poletaev

Ing. Jan Trdlička, Ph.D.

Informatika

Webové a softwarové inženýrství, zaměření Softwarové

inženýrství

Katedra softwarového inženýrství

do konce letního semestru 2022/2023

Pokyny pro vypracování

1) Seznamte se s Client Portal API pro komunikaci uživatelské aplikace s Interactive

Brokers.

2) Navrhněte a implementujte aplikaci pro iPadOS, která bude demonstrovat funkčnost

tohoto API. Aplikace by měla umět:

 a) přihlásit se na účet u Interactive Brokers,

 b) zobrazit informace o účtu,

 c) načíst a zobrazit popis různých zadaných instrumentů (Forex páry, akcie opce, ...),

 c) načíst historická i reálná data těchto instrumentů a vhodným způsobem je zobrazit,

 d) zadávat obchodní příkazy a zobrazit jejich přehled.

3) Aplikaci otestujte a porovnejte vlastnosti Client Portal API s původní Trader

Workstation (TWS) API.

Elektronicky schválil/a Ing. Michal Valenta, Ph.D. dne 15. října 2021 v Praze.

Bachelor’s thesis

Demo application for verifying the
functionality of the ClientPortal API

Daniil Poletaev

Department of Software Engineering
Supervisor: Ing. Jan Trdlička, Ph.D.

May 9, 2022

Acknowledgements

I want to thank my supervisor Ing. Jan Trdlička, Ph.D. for supervising my
work and giving beneficial advice, which helped immensely in my bachelor’s
thesis. I also really appreciate my family and friends for helping me, support-
ing me during my studies, and believing in me. Without their care, it would
be tough for me to cope with all the hardships of studying. I also want to
thank all the professors of Czech Technical University who taught me a lot of
practical skills, which I use and will continue to use in my life.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 9, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Daniil Poletaev. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Poletaev, Daniil. Demo application for verifying the functionality of the Client-
Portal API. Bachelor’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2022.

Abstract

This bachelor’s thesis aims to implement a mobile demo application on iOS
to show features of relatively new technology Interactive Brokers ClientPortal
API. The demo application allows users to use Interactive Brokers’ services,
such as buying, selling, and analyzing investment instruments. I suggested
the application architecture, designed interfaces, implemented functionality,
and tested the final application. Based on this demo application, investors
and traders can create their own, custom, application for iOS gadgets

Keywords Interactive Brokers API, Client Portal API, Interactive Brokers
IOS, Client Portal API iOS, Mobilńı aplikace pro iOS, iOS mobilńı aplikace,
demo iOS mobilńı aplikace

vii

Abstrakt

Ćılem této bakalářské práce je vyvinut́ı mobilńı demo aplikace pro iOS/i-
PadOS, d́ıky které lze ukázat vlastnosti relativně nové technologie Interactive
Brokers ClientPortal API. Demo aplikace umožňuje uživatel̊um využ́ıvat služby
populárńıho amerického makléře Interactive Brokers, nakupovat, prodávat a
analyzovat investičńı nástroje. V rámci práce byla navržena architektura a roz-
hrańı aplikace, které byly následně implementovány a otestovány. Na základě
této demo aplikace mohou následně investoři a obchodńıci vytvářet vlastńı
aplikace pro zař́ızeńı iOS/iPadOS.

Kĺıčová slova Interactive Brokers API, Client Portal API, Interactive Bro-
kers IOS, Client Portal API IOS, Mobile app for iOS, iOS mobile app, demo
iOS app

viii

Contents

Introduction 1

Thesis aim 3

1 Interactive Brokers API Overview 5
1.1 Interactive Brokers (IB) . 5
1.2 IB Trader Workstation (TWS) 5

1.2.1 Trading Workstation API (TWS API) 6
1.3 Financial Information eXchange (FIX) 7
1.4 Client Portal API . 7
1.5 Overall Comparison . 7

2 User interface frameworks for iPadOS/iOS 9
2.1 React Native . 9

2.1.1 Advantages . 9
2.1.2 Disadvantages . 10

2.2 Swift . 10
2.2.1 UIKit . 10

2.2.1.1 Advantages . 11
2.2.1.2 Disadvantages 11

2.2.2 SwiftUI . 11
2.2.2.1 Advantages . 11
2.2.2.2 Disadvantages 11

2.2.3 Why I’ve choosen SwiftUI 11
2.3 iOS, iPadOS programming difference 12

3 Analysis 13
3.1 Existing solutions . 13
3.2 Requirements . 13

3.2.1 Functional requirements 13

ix

3.2.1.1 Authentication 13
3.2.1.2 User information 14
3.2.1.3 Real-time market data of instruments 14
3.2.1.4 Historical data of instruments 14
3.2.1.5 Making orders 14
3.2.1.6 Viewing transaction 14

3.2.2 Nonfunctional requirements 14
3.2.2.1 Operating system 14
3.2.2.2 Programming language 14

3.3 Use cases . 14

4 Architecture and design 15
4.1 Architecture . 15

4.1.1 Model-View-Controller Architecture (MVC) 15
4.1.2 Model-View-ViewModel Architecture (MVVM) 16

4.2 Design . 16
4.2.1 Views . 17
4.2.2 Model layer . 18
4.2.3 ViewModel layer . 20

4.3 User interface . 20
4.3.1 Login screen . 20

4.3.1.1 Why are there two different variants of login? . 21
4.3.2 Home screen . 22
4.3.3 Account screen . 22
4.3.4 Portfolio screen . 23
4.3.5 Ticker screen . 23
4.3.6 Search screen . 24
4.3.7 Trades screen . 24
4.3.8 Transaction screen . 25

4.3.8.1 Confirmation screen 25

5 Implementation 27
5.1 Setting up Client Portal API gateway 27
5.2 Configuration of project . 28

5.2.1 Dependency injection & mocking responses 29
5.2.2 Live previews . 30
5.2.3 Security limitations . 31

5.3 Authorization . 33
5.3.1 Is there OAuth protocol? 33
5.3.2 Authorization sheet . 34

5.4 Getting data . 36
5.4.1 Getting data from REST API 36
5.4.2 Getting data from socket 38

5.5 Processing data . 40

x

5.6 Making graphs . 42
5.7 Loading animation . 43

6 Testing 45
6.0.1 Unit tests . 45
6.0.2 UI tests . 49
6.0.3 Coverage . 51
6.0.4 Continues Integration 52

Conclusion 53

Bibliography 55

A Acronyms 59

B Existing iOS app 61

C Use case diagram 63

D WebSocketService class usage 65

E Contents of enclosed CD 67

xi

List of Figures

1.1 Trader Workstation Interface [1] 6

4.1 MVC design patterns: traditional and Apple’s [2] 16
4.2 MVVM Model [2] . 16
4.3 Two variants of login screens . 21
4.4 Safari cookies must be enabled . 22
4.5 Home and Account screens . 23
4.6 Portfolio and Ticker screens . 24
4.7 Search and Trades screens . 25
4.8 Transaction and Confirmation screens 26

5.1 Live preview in Xcode . 30
5.2 Gateway authorization page . 33

B.1 Official application from App Store [3] 61
B.2 Official application from App Store [3] 62

C.1 Use case diagram for Client Portal API demo app 63

xiii

List of Tables

1.1 API Feature Comparison [4] . 8

6.1 Test coverage table . 51

xv

Introduction

Nowadays, more and more people have started investing in stocks, options, and
other investment instruments worldwide. Investing 50 years ago and today is
different. Past investors had to meet face–to–face with the broker each time
they wanted to buy or sell their portfolio positions. Thanks to the technologies
of today’s world, all people have the opportunity to invest within a few clicks,
not only on their computers but also on their mobile gadgets. Today a trader
can buy an option while riding the subway to work. Moreover, even though
there are a lot of mobile applications for brokers, more professional investors
and traders often try to build custom applications suitable for their needs.

My motivation is to create a demo application of ClientPortal API pro-
vided by one of the most popular brokers in the United States and worldwide
so that enthusiastic market players can build their custom applications refer-
encing this one.

In this bachelor’s thesis, I suggest an architecture, design, implement and
test mobile iOS application and the ClientPortal API. This demo application
communicates with real-world Interactive Brokers API - so with the help of
this demo application, investors can buy, sell and analyze investment instru-
ments provided by this broker.

In the first chapter, I research information about Interactive Brokers and
describe and compare all of their existing API solutions. In the second chap-
ter, I describe different technologies used for building iOS apps, point out their
advantages and disadvantages, and choose solutions for making the applica-
tion. In the third chapter, I analyze existing solutions, provide functional and
non-functional requirements, and use case diagram. In the fourth chapter, I
compare the two most popular programming architectures used for program-
ming iOS applications, choose one of them and describe the application’s
presentation layer. In the fifth chapter, I describe the implementation of busi-
ness logic in the app, applying the principles and technologies I described in
previous chapters. In the final, sixth part, I describe the testing process of
the application.

1

Thesis aim

The primary aim of this bachelor thesis is to create a demo iOS/iPadOS
application demonstrating the functionality of relatively new Client Portal
API technology provided by Interactive Brokers. Based on this demo project
every trader will be able to create a custom trading application, which will
satisfy his or her needs.

The research part aims to analyze existing solutions, compare different API
technologies provided by Interactive Brokers, and describe the advantages and
disadvantages of technologies used for developing iOS/iPadOS apps.

The practical part aims to propose an application, design functional and
non-functional requirements and user interface, choose and compare architec-
tures, implement a responsive mobile application and cover it with automated
tests.

3

Chapter 1
Interactive Brokers API

Overview

In this chapter, I describe ClientPortal API and compare it with other tech-
nologies provided by the Interactive Brokers to communicate with their ser-
vices.

1.1 Interactive Brokers (IB)

Interactive brokers are one of the most popular brokers used worldwide. ”In-
teractive Brokers is ideal for institutional investors and sophisticated, active
traders who want a robust trading platform and access to a long list of asset
classes.” [5]

By the Investopedia, this broker is top-rated among lots of nominations
such as: ”Best Online Broker for Advanced Traders”, ”Best Online Broker
for Day Trading”, ”Best Broker for Low Margin Rates”, ”Best Broker for
Fractional Shares”, ”Best Online Broker for Non-U.S. Investors” and many
more. [6]

The company’s history starts in 1977, when the Chairman of the Interac-
tive Brokers Group, Thomas Petterffy, bought a seat on the American Stock
Exchange. Soon in 1995, Interactive brokers created their first platform and
provided access for their customers to buy and sell their financial assets. [5]

As of nowadays, the primary mission of IB remains unchanged: ”Create
technology to provide liquidity on better terms. Compete on price, speed, size,
diversity of global products and advanced trading tools.” [5]

1.2 IB Trader Workstation (TWS)

TWS is the trading platform provided by Interactive Brokers for market en-
thusiasts, who want to take additional control of the features of trading and

5

1. Interactive Brokers API Overview

investing. With the help of this powerful interface, traders can automate their
trading strategies, and get market data and information about their account
balance and portfolios. Moreover, with the help of this platform, investors
can buy and sell over 150 different worldwide markets. [1]

Furthermore, TWS provides access to over 100 order types and trading
algorithms and helps traders manage their risk.[1]

On the listing below you can take a look, at what the TWS interface looks
like.

Figure 1.1: Trader Workstation Interface [1]

1.2.1 Trading Workstation API (TWS API)

TWS also allows traders to create custom applications and connect them to
the workstation to take additional control and use advanced trading tools.
It supports many different programming languages, such as C++, C#, Java,
Python, ActiveX, RTD, DDE, and many more. With the help of TWS API
developers can get up-to-minute market data, and trade different financial
instruments worldwide including stocks, options, futures, currencies, bonds,
and funds. [1]

Moreover, TWS API allows getting real-time news from leading services,
world-class analyst research, financial information on thousands of companies,
and event calendars. [1]

6

1.3. Financial Information eXchange (FIX)

1.3 Financial Information eXchange (FIX)

”The Financial Information eXchange (FIX) is a vendor-neutral electronic
communications protocol for the international real-time exchange of securities
transaction information.” [7]

FIX protocol is mostly used for B2B communication to improve business
messages and transaction flow. It was created by a non-profit firm to ensure,
that this protocol is in the public domain. [7]

Interactive Brokers also provides this protocol, but only for firms. FIX API
technology allows creating trading systems with a high speed of processing
transactions. [8]

1.4 Client Portal API

Client Portal API is the newest technology offered by Interactive Brokers
nowadays. It provides a modern technologies for fast and easy communication
with Interactive Brokers. [8]

This API provides more detailed information about user’s account such
as portfolio, balances, statements, transaction history and even notifications.
Some of this information can not be fetched using other provided technologies.
It also allows traders to analyse market and history data of stocks, options,
futures, etc. [9]

The big advantage of this technology is that developers can fetch data from
server not only with REST API, but also with sockets, which are crucially
important for real-time information, which is being updated within seconds.

Via REST API traders can get account, contract, balances, ticket infor-
mation and market and history data. Also via this interface, developers can
buy and sell financial instruments and track orders’ statuses.

Via WebSocket API developers can access real-time market and history
data, track orders, get profit and loss information and watch after accounts’
notifications. [10]

To start using ClientPortal API no additional libraries required. Only the
gateway must be downloaded and started.

1.5 Overall Comparison

In the last section of this chapter, I will compare all the technologies offered
by Interactive Brokers, and the best comparison is the table of all features of
different APIs.

7

1. Interactive Brokers API Overview

Table 1.1: API Feature Comparison [4]

API Feature Comparison
Feature TWS API Client Por-

tal API
FIX CTCI

Place Trades + + +
User Authentication + +
OAuth +
View Positions + +
View Orders + + +
Profit and Loss + +
Market Data + +
Tick by Tick Data +
Real-Time Drop Copy +
News +
Account List + +
Security Definition + +
Aggregate User Support +

In my bachelor’s thesis, I will mainly describe the features of the Client
Portal API and how it can be used to build custom mobile applications.

8

Chapter 2
User interface frameworks for

iPadOS/iOS

There are some different technologies with which iOS applications can be built.
Some of them are: Swift, React Native, Flutter, and Xamarin.

In this chapter, I am going to compare two of these technologies: cross-
platform technology - React Native and Swift - technology to build native
applications running on iOS.

2.1 React Native

React Native is a cross-platform technology that allows developers to write
code once for different platforms such as Android, iOS, and Web. It was
released by Facebook and gained popularity in the last few years.

Even if it seems that React Native is used to build non-complex appli-
cations, many big firms such as Instagram, Facebook, and Skype have some
modules/screens implemented in this technology.

2.1.1 Advantages

Build once - use in Android, iOS, or Web. React Native can be built
only once for different operational systems. Only one team is needed to build
iOS and Android applications.

Big ecosystem. There is a vast ecosystem where developers can find
almost any package they need. It helps speed up the development process
because programmers won’t need to write some module when they can import
them.

Fast-reloading on any changes. While making some changes app au-
tomatically refreshes within a few seconds. There is no need to rebuild the
application each time the text or some feature is being changed.

9

2. User interface frameworks for iPadOS/iOS

Less expensive. As only one team is needed, React Native apps can
be less expensive than native applications, but this depends on the app’s
complexity.

It can be used in an existing project. There is no need to rewrite the
whole application if it already exists. React Native can be imported and used
in existing applications.

2.1.2 Disadvantages

Hard to debug. It is harder to debug applications because no debugger can
show the change in real-time.

It may be dependent. React Native apps can become a nightmare if
more and more packages are being added to the app. Some of those packages
use other packages, which may lead to some problems while upgrading some
packages. Furthermore, most of the modules are being developed by enthu-
siasts, which sometimes don’t have time to update and fix existing packages,
which can be full of bugs.

Performance problems. When an app grows more and more complex,
React Native applications can show a significant difference in performance
compared to native applications.

2.2 Swift

Swift is a relatively new programming language designed by Apple and re-
leased on June 14, 2014. Before Swift, most of the native applications for
Apple gadgets were built using Objective-c language. As Apple states: ”Swift
is the result of the latest research on programming languages, combined with
decades of experience building Apple platforms.” [11] This programming lan-
guage was built specifically for building iOS, iPadOS, macOS, tvOS, and
watchOS native applications.

As of 2022, building apps for iOS on Swift is divided into two frameworks -
SwiftUI and UIKit. Both of these frameworks offer lots of advantages as well
as disadvantages. But the good thing about these frameworks is that they
can complement each other. A developer can add some modules written in
SwiftUI for an existing app built on UIKit and vice versa.

2.2.1 UIKit

UIKit is the predecessor to SwiftUI. UIKit was publicly released in 2008 and
helped Swift gain popularity. The significant difference between UIKit is that
this framework is more visual-based, meaning that programmers can build
UIScreen using something like a constructor.

10

2.2. Swift

2.2.1.1 Advantages

Consistent experience. Building apps using UIKit offers a consistent ex-
perience among all gadgets.

Easy to find a solution As UIKit was publicly released in 2008, it already
has some best practices formed, and developers can easily find a solution to
their problems on the internet.

2.2.1.2 Disadvantages

Views are expensive. View in UIKit is much more expensive than views in
SwiftUI. This leads to resuing views, which sometimes can be challenging.

It may soon be deprecated. As of now, SwiftUI is more supported for
newer versions of iOS.

2.2.2 SwiftUI

SwiftUI is a new framework that Apple released in 2019 with iOS 13.

2.2.2.1 Advantages

Live previews. Live changes can be previewed while developing the UI
screen. This speeds up the development process, as there is no need to restart
the app after each change.

Less code needed. There is less code needed to write the SwiftUI app
against of UIKit app.

Better supported. Starting from iOS 13, SwiftUI is better supported
for the newer versions of iOS.

2.2.2.2 Disadvantages

Only starting from iOS 13. SwiftUI support only gadgets with iOS 13 or
greater, which leaves phones with older iOS without support.

Small ecosystem. It can be tough to find a solution to a problem be-
cause SwiftUI is a new framework with some issues no one has faced before.
Furthermore, best practices are not yet formed.

Some features are not available yet. Some features are not yet avail-
able in SwiftUI. So, probably, there will be a need to implement some modules
written on UIKit. For example, WebView is not implemented in SwiftUI.

2.2.3 Why I’ve choosen SwiftUI

SwiftUI is a new technology that Apple is forcing. I think that shortly most
of the iOS apps will be built on SwiftUI. Furthermore, SwiftIU is great for
building demo applications because it allows to create UI screens using live

11

2. User interface frameworks for iPadOS/iOS

preview fastly. Also, some experience with the Reactive framework React
Native will let me quickly get used to SwiftUI.

2.3 iOS, iPadOS programming difference

The task of my bachelor’s thesis is to create an application for iPadOS. One
thing I want to point out is that iOS and iPadOS applications are mostly
being developed the same way.

Because I did not have any physical iPad available, I mostly tested the ap-
plication on a physical iPhone and virtual iPhone and iPad, so the application
is mentioned to be available for both platforms: iOS and iPadOS.

Live previews available in SwiftUI really helped to maintain responsive
design as all the changes in code are being updated on the screen within
seconds and a few screen previews with different sizes can be watched at the
same time. I added iPad 4th Generation and iPhone 12 for live previews to
maintain responsive design in my application. For more information, please,
take a look at section 5.2.2.

12

Chapter 3
Analysis

In this chapter, I will analyze existing solutions and define the requirements
and use cases of the application that will be implemented.

3.1 Existing solutions

With the help of the research, I found only one application for iOS that is built
to communicate with Interactive Brokers Services. It is an official mobile app
provided by IBKR. Please take a look at appendix figures B.1 and B.2.

3.2 Requirements

”Requirements Engineering is a requirement process carried out with an en-
gineering level of rigor. Requirements Engineering includes all aspects of re-
quirements gathering and maintenance.” [12]

Requirements in software engineering are usually divided into two kinds
functional and non-functional.

Some of the functional and non-functional requirements are based on the
assignment, and some of them are based on the analysis of existing software -
IBKR for iOS.

3.2.1 Functional requirements

Functional requirements are technical requirements, including features, capa-
bilities, and security. Those requirements mainly describe the real behavior
of software applications. [13]

3.2.1.1 Authentication

User can log in to the application to a production and paper(demo) account.

13

3. Analysis

3.2.1.2 User information

User can look at information about account on the separate tab.

3.2.1.3 Real-time market data of instruments

User can access real-time market data of the financial instrument, which will
be refreshed within 1 second.

3.2.1.4 Historical data of instruments

User can access historical data of instruments, such as graphs, 52 weeks low
and high, average volume, etc.

3.2.1.5 Making orders

User can buy and sell financial instruments.

3.2.1.6 Viewing transaction

User can take a look at transactions made within a scope of 24 hours.

3.2.2 Nonfunctional requirements

Non-functional requirements are all other requirements that are not related
to behavior. For example, does the project need documentation or what pro-
gramming language software should be written on.

3.2.2.1 Operating system

The application supports operating systems iPadOS and iOS starting from
iOS 13.

3.2.2.2 Programming language

The application is written on the newest Swift programming language version
- Swift 5.

3.3 Use cases

In this demo application, there is only one role - user. Please take a look at
the figure C.1 in appendix for use case diagram.

14

Chapter 4
Architecture and design

In this chapter, I will describe the app’s architecture, compare the two most
popular architectures for iOS mobile development, and show and describe the
presentation layer of the application.

4.1 Architecture

The exemplary architecture can significantly simplify the process of developing
an application, testing it, and its further maintenance.

As of today, there are many different architectures that can be choosen
for the project. Usually, choosen architecture depends on the programming
language, operational system, and client requirements.

For iOS development in SwiftUI are primarily used 2 kinds of architecture:
MVC and MVVM.

4.1.1 Model-View-Controller Architecture (MVC)

MVC was introduced in 1979 by Trygve Reenskaug during his work at Xerox.
The main idea of that pattern is to separate applications into three different
layers: Model layer - to store and manage data, View layer - to represent data
to the user, and Controller layer - to handle user interactions. With the help of
this separation, MVC allows developers to write maintainable and structured
applications. The main drawback of this pattern was that each of the three
layers is linked to the other two layers, reducing the reusability of objects.
Because of that, Apple decided to change the traditional pattern just a little,
as shown in Figure 4.1. This decision solved the problem of reusability.[2]

15

4. Architecture and design

(a) The traditional MVC design pattern (b) Apple’s MVC design pattern

Figure 4.1: MVC design patterns: traditional and Apple’s [2]

Nevertheless, sometimes controllers become more and more massive, which
becomes hard to test and maintain. This is called a Massive View Controller
Problem. This problem states that if the controller is longer than 150 lines of
code, there is a problem.

4.1.2 Model-View-ViewModel Architecture (MVVM)

This design pattern was introduced in the 1980s to solve the limitation prob-
lems of the MVC pattern. MVVM pattern reduces the complexity of the code
and maximizes testability and reusability. MVVM introduced a new layer
ViewModel, which is needed to prepare data for the View layer.

Basically, this pattern states that if some data from the Model needs to
be presented on the View, View will ask ViewModel to prepare data for it,
and ViewModel will access data from the Model layer. MVVM stands for
Model-View-ViewModel.

Figure 4.2: MVVM Model [2]

4.2 Design

In this section, I divide project in to separate layers according to MVVM
pattern, as well as show and describe designed screens of the application.

16

4.2. Design

4.2.1 Views

The view is the layer where all representative pages are stored. For each view,
there is a ViewModel, which helps to communicate with the model layer.

• Home View - Initial screen, where the user gets to when he or she
opens an app. Consists of overall data: account performance graph, top
three portfolio positions, and daily gainers tickets are coming from the
screener. For more information, look at subsection 4.3.2.

• Account View - Screen, which contains the primary information about
the user’s account. For more information, look at subsection 4.3.3.

• Portfolio View - Screen containing the user’s portfolio, P&L ratio, cash
balances, and cash power. For more information, look at the subsection
4.3.4.

• Ticket View - Screen containing ticket information, like history and
market data. For more information, look at the subsection 4.3.5.

• Search View - Screen, where users can search for tickets. For more
information, look at the subsection 4.3.6.

• Trades View - Screen, containing all user’s orders. For more informa-
tion, look at the subsection 4.3.7.

• Transaction View - Screen, where the user can buy or sell a financial
instrument. For more information, look at the subsection 4.3.8.

Each view is stored under the Views folder, and almost for each view, there is
another folder because most of the views are separated on components, as it
is easier to maintain, and those components could be reused in the future as
well. For example Portfolio View is divided in components:

• Portfolio View

• Cash Balances component

• Portfolio Header component

• Cash Balances Row component

• Portfolio List Item component

17

4. Architecture and design

4.2.2 Model layer

In this section, I describe a Model layer of the app. First of all model layer is
divided into a few pieces. The first one is data models, where all data models
are stored.

• Account Model - Account models are used to encode POST bodies
and decode responses in AccountApiService.

• Home Model - Models used are to encode POST bodies and decode
responses in HomeApiService.

• Portfolio Model - Portfolio models are used to encode POST bodies
and decode responses in PortfolioApiService.

• Ticket Model - Ticket models are used to encode POST bodies and
decode responses in TicketApiService.

• Transaction Model - Transaction models are used to encode POST
bodies and decode responses in TransactionApiService.

• Trades Model - Transaction models are used to encode POST bodies
and decode responses in TradesApiService.

The second one is repositories. Repositories are used to process data coming
from API.

• Account Repository - repository, that processes and returns data
coming for AccountViewModel.

• Home Repository - repository, that processes and returns data coming
for HomeViewModel.

• Portfolio Repository - repository that processes and returns data
coming for PortfolioViewModel.

• Ticket Repository - repository that processes and returns data coming
for TicketViewModel.

• Search Repository - repository that processes and returns data com-
ing for SearchViewModel.

• Transaction Repository - repository that processes and returns data
coming for TransactionViewModel.

• Trades Repository - repository that processes and returns data com-
ing for TradesViewModel.

The third one is services. Services directly make an API call to different
endpoints.

18

4.2. Design

• Account API Service - Service, which calls account information end-
points and pass data down to repositories.

• Home API Service - Service, which calls endpoints to get data, which
is being used on HomeView.

• Portfolio API Service - Service, which calls endpoints to get portfolio
data of user.

• Ticket API Service - Service, which calls endpoints to get market and
history data of ticket.

• Search API Service - Service, which calls endpoint for searching a
ticket.

• Transaction API Service - Service, which calls endpoint for making
an order (buying and selling financial instruments).

• Trades API Service - Service, which call endpoint to get all user’s
orders.

• Web Socket Service - Service, which connects to socket and recieves
real-time socket information.

All of the services, besides WebSocketService, have their folder. There are
three files in those folders - protocol, production API service, mock API
service, which implement services protocol, and simulated models, where all
testable mocked responses are located.

So-called protocols describe the API services. Protocols in SwiftUI are like
interfaces in other programming languages. They describe methods without
implementing them. Protocols help to write more reusable and testable code.

For mocked models, I decided to use real responses, which are being sent
from the server, and store them in additional JSON files, which are being
situated under the folder MockJSON. In mocked models, JSON responses are
being decoded.

For example, the structure of the folder AccountApiService includes files:

• AccountApiServiceProtocol.swift

• AccountApiService.swift

• MockAccountApiService.swift

• MockAccountModels.swift

19

4. Architecture and design

4.2.3 ViewModel layer

In this section, I describe the ViewModel layer of the application. ViewModels
are extremely important in architecture. ViewModel is like an intermediary
layer between the View and Model layers. Through ViewModels View layer
interacts with the Model layer to get and send data. Almost every view, has
it’s own ViewModel.

• Account ViewModel - Intermediary layer between Model layer and
AccountView.

• Home ViewModel - Intermediary layer between Model layer and HomeView.

• Portfolio ViewModel - Intermediary layer between Model layer and
PortfolioView.

• Ticket ViewModel - Intermediary layer between Model layer and
TicketView.

• Search ViewModel - Intermediary layer between Model layer and
SearchView.

• Transaction ViewModel - Intermediary layer between Model layer
and TransactionView.

• Trades ViewModel - Intermediary layer between Model layer and
TradesView.

• Environment ViewModel - ViewModel, which is being used across
few Views.

4.3 User interface

In this section, I will show user interfaces and describe their expected behavior.

4.3.1 Login screen

Since login is being made through the gateway, which needs to be started
locally, I made a few variants of the login screen. The first one redirects the
user to SFSafariView to the Interactive Brokers login page if the gateway is
started through a secured HTTPS protocol. Look at figure 4.3 (a).

The second variant shows an alert, indicating that the user is not logged
in and providing steps to authenticate. This screen will be displayed if a user
is not logged in and the gateway is started through HTTP protocol. Look at
figure 4.3 (b).

20

4.3. User interface

(a) Login SFSafariView through HTTPS (b) Login alert through HTTP

Figure 4.3: Two variants of login screens

4.3.1.1 Why are there two different variants of login?

Apple monitors the security of developed applications. It is tough to open un-
secured web pages via SFSafariView or WebView. Of course, it can be opened,
but Safari does not allow cookies for unsecured web pages. If an unsecured
web page is being opened, Safari alerts that cookies must be enabled.

Unfortunately, Client Portal API uses cookies to authenticate. When an
unsecured web page is being opened through SFSafariView or WebView, the
fields for entering username and password are hidden, and the user can’t log
in. Look at figure 4.4.

The chrome browser works differently, and the user can see those fields,
but we cannot guarantee that the user has downloaded the Chrome browser
from App Store before.

21

4. Architecture and design

Figure 4.4: Safari cookies must be enabled

4.3.2 Home screen

This is an overall screen with basic account information. On that screen, users
can access account performance, take a look at the graph representing their
investment and get the top three portfolio positions and five daily gainers at
the bottom. Please take a look at figure 4.5 (a).

4.3.3 Account screen

On the account screen, users can overview basic account information, such as
account type, name, id, and base currency. Please take a look at figure 4.5
(b).

22

4.3. User interface

(a) Home Screen (b) Account Screen

Figure 4.5: Home and Account screens

4.3.4 Portfolio screen

On the portfolio screen, users can look at all of their currently opened posi-
tions, cash balances and primary account information, and daily P&L ratio.
Please take a look at figure 4.6 (a).

4.3.5 Ticker screen

On the ticker screen, users get up-to-date information about the ticker they
selected before on the ticker screen. Information on this screen is coming from
WebSockets. Thus market data is being refreshed within seconds. Please take
a look at figure 4.6 (b).

23

4. Architecture and design

(a) Portfolio Screen (b) Ticker Screen

Figure 4.6: Portfolio and Ticker screens

4.3.6 Search screen

On the search screen, users can type and find stocks they are interested in.
By clicking on found stock, the ticker screen will be opened. Please take a
look at figure 4.7 (a).

4.3.7 Trades screen

Users can look at orders made during the day and check orders’ statuses on
the trades screen. Please take a look at figure 4.7 (b).

24

4.3. User interface

(a) Search Screen (b) Trades Screen

Figure 4.7: Search and Trades screens

4.3.8 Transaction screen

By clicking buy/sell at the ticker screen, users are redirected to the transaction
screen. On the transaction screen, they can buy or sell financial instruments.
Please take a look at figure 4.8 (a).

4.3.8.1 Confirmation screen

By clicking submit button on the transaction screen, the confirmation screen
opens. On that screen, users need to confirm the transaction they made before.
If the transaction is approved, they are redirected to the orders screen. Please
take a look at figure 4.8 (b).

25

4. Architecture and design

(a) Transaction Screen (b) Confirmation Screen

Figure 4.8: Transaction and Confirmation screens

26

Chapter 5
Implementation

This chapter will describe the technical implementation of the iOS demo mo-
bile application. I will point out the most critical aspects of the development
process, such as authorization, getting and processing data from the server,
dealing with security nuances, and describing open source packages used for
the project.

5.1 Setting up Client Portal API gateway

Before we can start using Interactive Brokers API, we need to set up a gateway.
Here are the steps to set it up:

1. Download and unzip the gateway from the official Intractive Brokers
web site

2. Take a look at gateway configuration file. You can adjust it by your
needs. I will only describe basic configurations, which I used in the
project.

a) For HTTP protocol, change variable listenSsl to false. When lis-
tenSsl is true, it will start the gateway through HTTPS protocol.

b) You can change the certificate. If you think about deploying a
gateway to the server, it is a good idea. Do not forget to change
the variable ”sslCert” (certificate file name, which is stored under
gateway /root folder) and ”sslPwd” (certificate password used for
the creation of the certificate).

c) Do not forget to add allowed IP addresses under allow otherwise
you will get the error: ”Access denied”.

3. In terminal navigate to the directory of unzipped gateway and run com-
mand:

27

https://www.interactivebrokers.co.uk/en/trading/ib-api.php#api-software
https://www.interactivebrokers.co.uk/en/trading/ib-api.php#api-software

5. Implementation

a) To start gateway on windows run: ”bin\run.bat root\conf.yaml”.
b) To start gateway on Mac/Unix run: ”bin/run.sh root/conf.yaml”.

4. Authenticate with username and password to start getting data from
endpoints. [9]

1 ip2loc: "US"
2 proxyRemoteSsl: true
3 proxyRemoteHost: "https://api.ibkr.com"
4 listenPort: 5000
5 listenSsl: true
6 svcEnvironment: "v1"
7 sslCert: "vertx.jks"
8 sslPwd: "mywebapi"
9 authDelay: 3000

10 portalBaseURL: ""
11 serverOptions:
12 blockedThreadCheckInterval: 1000000
13 eventLoopPoolSize: 20
14 workerPoolSize: 20
15 maxWorkerExecuteTime: 100
16 internalBlockingPoolSize: 20
17 cors:
18 origin.allowed: "*"
19 allowCredentials: false
20 webApps:
21 - name: "demo"
22 index: "index.html"
23 ips:
24 allow:
25 - 192.*
26 - 131.216.*
27 - 127.0.0.1
28 deny:
29 - 212.90.324.10

Listing 1: Gateway configuration

5.2 Configuration of project

In this section, I will describe practices I used for configuring projects to max-
imize the productivity of the developing process, such as mocking responses,

28

5.2. Configuration of project

dependency injections and live previews of UI views, and telling a few nuances
related to security settings.

5.2.1 Dependency injection & mocking responses

Fowler firstly introduced the term Dependency Injection in 2004. After that,
DI containers spread all over popular frameworks, including Java Spring frame-
work and Google Guice. [14]

In other words, dependency injection is a pattern we use while developing
an application. It reduces coupling between components as well as saves us
from repeating boilerplate factory creation code over and over again. [15]

Dependency injection moves the initialization of dependent objects away
from the component. Thus those dependent objects are being initialized and
passed to the component. This technique also helps in testing because we
can pass mocked objects to the component. For example, we can pass mock
API services and test the behavior of applications and units on those services
instead of using productions services.

Based on the PortfolioView.swift, I show how I use DI in the application.
Take a look at the listing below.

1 struct PortfolioView: View {
2 @StateObject var portfolioViewModel: PortfolioViewModel
3 @EnvironmentObject var environmentModel:

EnvironmentViewModel↪→

4

5 // Dependency injection through initializer
6 init(portfolioViewModel: PortfolioViewModel?) {
7 _portfolioViewModel = StateObject(wrappedValue:

portfolioViewModel ?? PortfolioViewModel(repository:
nil))

↪→

↪→

8 }
9 // ...

10 }

Listing 2: PortfolioView.swift

I moved the initialization of needed variables to the initializer in which
I can pass either initialized variables or nil. If nil is passed, the initializer
creates new default instances of required variables.

Mainly, I pass non-null instances to components only for testing and live
previews.

29

5. Implementation

5.2.2 Live previews

In subsection 2.2.2.1, I pointed out that one of the most significant advantages
of SwiftUI is live previews. It means that Xcode can show up-to-date previews
while developers create custom Views. Each time code changes, Xcode auto-
matically reloads the preview and shows new changes up on the screen. There
is no need to build an application and run it.

Furthermore, it allows customizing those previews by choosing a back-
ground and color scheme and permanently changing the device. In addition
to this, multiple devices can be added for the preview simultaneously.

My assignment stated that I had to implement an application for iPad OS.
Still, I had only an iOS mobile phone, so I decided to add simultaneously two
devices - iPhone 12 and iPad Air 4th generation and watch every change on
both of them simultaneously. Please look at figure 5.1 below to see what it
looks like in a development environment, and take a look at the listing 3 to
view the implementation of the preview in code.

Figure 5.1: Live preview in Xcode

30

5.2. Configuration of project

1 struct AccountView_Previews: PreviewProvider {
2 static var previews: some View {
3 // Mock environment model
4 let environmentModel =

MockedAccountModels.mockedEvnironmentModel↪→

5 Group {
6 AccountView().environmentObject(environmentModel)
7 .onAppear(perform: {
8 environmentModel.fetchData()
9 })

10 .background(CustomColor.lightBg)
11 .environment(\.colorScheme, .dark)
12 // Set preview device
13 .previewDevice(PreviewDevice(rawValue: "iPhone 12"))
14

15 AccountView().environmentObject(environmentModel)
16 .onAppear(perform: {
17 environmentModel.fetchData()
18 })
19 .background(CustomColor.lightBg)
20 .environment(\.colorScheme, .dark)
21 // Set preview device
22 .previewDevice(PreviewDevice(rawValue: "iPad Air

(4th generation)"))↪→

23 }
24 }
25 }

Listing 3: Live Preview of Account View

5.2.3 Security limitations

Apple looks after the security of the application written for iOS and iPadOS.
Default apple security does not allow fetching endpoints through HTTP or
HTTPS protocols with an unverified or self-signed certificate.

As of nowadays, unfortunately, the Client Portal API gateway comes with
an expired certificate. As it is stated on the official pages FAQ: ”Since the
gateway is running on your premises the certificate needs to be created/self-
signed by you, or officially signed by a 3rd party. The gateway is similar to
another web server such as Tomcat which doesn’t provide a certificate along
with the release.” [16]

It does not make sense, as this gateway is mostly running on localhost,
making it hard to get a signed certificate. Because of that, I implemented

31

5. Implementation

CustomURLSession delegate, which inherits swift protocol URLSessionDele-
gate.

”URLSessionDelegate is a protocol that defines methods that URL session
instances call on their delegates to handle session-level events, like session life
cycle changes.” [17]

Basically, it helps to override the default behavior of the session life cycle. I
used it to change the behavior of interacting with HTTP or self-signed HTTPS
servers, allowing such connection without throwing an error.

I created custom URLSessionDelegate class, which allows fetching from
unsecure protocols. Take a look at the listing below.

1 // Custom URLSessionDelegate for handling
2 // unsecure API calls
3 class CustomUrlSessionDelegate: NSObject, URLSessionDelegate {
4 func urlSession(_ session: URLSession, didReceive challenge:

URLAuthenticationChallenge, completionHandler: @escaping
(URLSession.AuthChallengeDisposition, URLCredential?) ->
Void) {

↪→

↪→

↪→

5 completionHandler(.useCredential, URLCredential(trust:
challenge.protectionSpace.serverTrust!))↪→

6 }
7 }

Listing 4: Custom URLSessionDelegate

After that, I created the class DataManager. All APIServices inherit this
class and make API calls through URLSession instance, which is initialized in
DataManager. Please take a look at the listing below.

1 class DataManager: NSObject {
2 let session: URLSession = URLSession(configuration:

URLSessionConfiguration.default, delegate:
CustomUrlSessionDelegate(), delegateQueue:
OperationQueue.main)

↪→

↪→

↪→

3 // ...
4 }

Listing 5: DataManager.swift

Disclaimer: Connecting to an unsecured server is only allowed while
developing an application. Apple won’t let publish an app to the App Store.

32

5.3. Authorization

5.3 Authorization

In this section, I am going to describe the authorization process. The autho-
rization process is a bit complicated because of Apple’s security limitations.
For more information about security limitations, please take a look at subsec-
tion 5.2.3.

In order to start getting responses from endpoints, the user needs to au-
thenticate to Interactive Brokers through the started gateway. For that user
needs to go to the web page. The web page address depends on the config
file. For more information about config files, take a look at section 5.1. The
default address of local gateway is https://localhost:5000.

By going to that web page in the browser, the user can log in to his or
her account and start getting responses from the server. The web page is
provided by the Interactive Brokers gateway. The content of the login web
page is shown in the figure below.

Figure 5.2: Gateway authorization page

5.3.1 Is there OAuth protocol?

On the comparison table 1.1, which was taken from the official Interactive
Brokers’ web page, it was said that Client Portal API supports OAuth.

33

5. Implementation

OAuth is the protocol that was created by a small community of develop-
ers. They wanted to solve the common problem of enabling access to protected
resources between various websites. The first version of that protocol was re-
leased in October of 2007. [18]

”OAuth introduces a third role to the traditional client-server authenti-
cation model: the resource owner.” [18] The main idea of that protocol is
that clients can share server resources with another third-part service without
sharing their actual credentials. [18]

When I started to write implementation, I thought it would be possible
to authorize Interactive Brokers with the help of the OAuth protocol. Still,
when I contacted IB service, they said that OAuth works only for companies,
such as financial advisors.

5.3.2 Authorization sheet

There are two different variants of login, which I already described in sub-
section 4.3.1. In this subsection, I will describe the technical nuances of the
authorization process through the HTTPS protocol.

First of all, in ContentView, I check if the user is already authorized. It
is done by calling the endpoint in the onAppear method. ”onAppear method
adds an action to perform when this view appears.” [19] Take a look at the
listing below.

1 .onAppear(perform: {
2 self.environmentModel.getIServerAccount{ (data,

error) in↪→

3 if (error != nil) {
4 self.showingAuthorizationSheet = true
5 }
6 }
7 })

Listing 6: ContentView onAppear method

If getIServerAccount returns an error, showingAuthorizationSheet is be-
ing changed to true, and a sheet is being popped up above the application’s
content.

That sheet conditionally renders content based on whether the gateway is
started through HTTP or HTTPS protocol.

If the gateway is started through HTTPS protocol, the Safari browser is
opened inside that sheet. Only text appears if the gateway is being started
through HTTP protocol, asking the user to authorize manually. Please, look
at the listing below, which shows an implementation of the authorization sheet.

34

5.3. Authorization

1 struct AuthorizationSheet: View {
2 @Environment(\.dismiss) var dismiss
3 @EnvironmentObject var environmentModel:

EnvironmentViewModel↪→

4 @State var errorAgain = false
5

6 var body: some View {
7 // Conditional rendering based on protocol
8 if DataManager().API_URL.starts(with: "https") {
9 SFSafariViewWrapper(url: URL(string:

"https://\(APIConstants.COMMON_BASE_URL)")!)↪→

10 } else {
11 VStack {
12 // ...
13

14 Text("You are not logged in or server is not
started. Please, login by going to:")↪→

15 .font(.title2)
16 .padding(10)
17 .accessibility(identifier:

"loginErrorStaticText")↪→

18 // ...
19 }
20 // ...
21 }
22 }
23 }

Listing 7: Authorization sheet

Nowadays, there is no WebView or SafariView implemented in SwiftUI. I
had to write a custom SafariViewWrapper component, which uses the UIKit
SafariServices package and transforms it for use in SwiftUI. To use SFSa-
fariViewWrapper, only the URL must be passed to an instance of this struct.
Please take a look at the listing below.

Unfortunately, SFSafariViewController only opens the web page in the
application and does not allow tracking. Because of this, whenever users
log in to their accounts, they will need to manually close the authorization
sheet, pressing ”Done” at the left-top corner. Whenever the ”Done” button
is pressed, the application will try to get a response from getIServerAccount
after 3 seconds of closing the sheet. If there is an error, the authorization
sheet will be displayed again for the user.

35

5. Implementation

1 struct SFSafariViewWrapper: UIViewControllerRepresentable {
2 let url: URL
3 func makeUIViewController(context:

UIViewControllerRepresentableContext<Self>) ->
SFSafariViewController {

↪→

↪→

4 return SFSafariViewController(url: url)
5 }
6 func updateUIViewController(_ uiViewController:

SFSafariViewController, context:
UIViewControllerRepresentableContext<SFSafariViewWrapper>)
{

↪→

↪→

↪→

7 return
8 }
9 }

Listing 8: SFSafariViewWrapper

5.4 Getting data

This section will describe the process of getting data from Interactive Brokers
using REST API and WebSockets.

5.4.1 Getting data from REST API

Most of the information is being fetched in the application via REST API. It
is the basic information, where the continuous update is not that important.

I have used REST API to fetch account information, get daily gainers,
place orders, search for contracts and get portfolio information.

As was described in section security limitations, I created a custom URLSes-
sionDelegate to allow requests from HTTP and unverified or self-signed HTTPS
protocol. All API services inherit the class DataManager, where the session
is initialized with a custom delegate. Inheriting from DataManager allows me
to use URLSession instance in all API services without further initialization
of this instance in all of the services.

For example, please take a look at the function fetchAccount listed below.
This function gets account information, decodes it, and sends it down to the
repository for processing. Before decoding the response, I always check if the
it was successful.

36

5.4. Getting data

1 func fetchAccount(completion: @escaping ([Account]) -> ()) {
2 guard let url = URL(string:

self.API_URL.appending("/portfolio/accounts")) else
{

↪→

↪→

3 // returned if URL is incorrect
4 return
5 }
6 let task = self.session.dataTask(with: url) { data, _,

error in↪→

7 guard let data = data, error == nil else {
8 return
9 }

10 do {
11 // Decodes JSON response to swuft object
12 let accounts = try

JSONDecoder().decode([Account].self, from:
data)

↪→

↪→

13 DispatchQueue.main.async {
14 completion(accounts)
15 }
16 } catch {
17 // prints error if there was
18 // decoding error
19 print(error)
20 }
21 }
22 task.resume()
23 }

Listing 9: fetchAccount function

For decoding, I created data transfer objects used for serialization and
deserialization of JSON. Basically, they describe expected responses with their
properties and the types of those properties.

In swift, data transfer objects are mostly being created with the same
property names as coming from the responses. Swift automatically knows
how to decode such data.

For responses, where property names start with unusual characters or num-
bers, I had to additionally add CodingKeys for decoding.

For example, please, take a look at Account DTO in the listing below.

37

5. Implementation

1 struct Account: Codable, Identifiable {
2 let id: String
3 let accountId: String
4 let accountVan: String
5 let accountTitle: String
6 let displayName: String
7 let accountAlias: String?
8 let accountStatus: Decimal
9 let currency: String

10 let type: String
11 let tradingType: String
12 let ibEntity: String
13 let faclient: Bool
14 let clearingStatus: String
15 let covestor: Bool
16 let parent: AccountParent
17 let desc: String
18 }

Listing 10: Account Data Transfer Object

5.4.2 Getting data from socket

Even though most of the data is being fetched through REST API, getting
data from a socket is essential for an application with updated information
every second or even faster. In application, sockets are used to get up-to-date
information about stocks and other contracts. This information changes fast
and should be reliable, so users can evaluate the price, volume, or further
contract information and decide whether they would buy/sell this financial
instrument.

Before we can start getting messages from the server via a socket connec-
tion, there is a need to authorize. To authorize, the session value needs to
be sent to the server. This session value can be obtained from the endpoint
/tickle.

To work with sockets, I wrote the class WebSocketService. The listing
below shows the main methods used to realize socket connection between client
and server. Function ”sendRepeatedly” sends a message with a 1-second delay,
and function ”listenForMessages” waits for messages from the server.

38

5.4. Getting data

1 class WebSocketService: AsyncSequence {
2 private var stream: AsyncThrowingStream<Element, Error>?
3 private var continuation: AsyncThrowingStream<Element,

Error>.Continuation?↪→

4 private let socket: URLSessionWebSocketTask
5 let session: URLSession = URLSession(configuration:

URLSessionConfiguration.default, delegate:
CustomUrlSessionDelegate(), delegateQueue:
OperationQueue.main)

↪→

↪→

↪→

6 // Initialization
7 init(url: String, session: URLSession =

URLSession(configuration:
URLSessionConfiguration.default, delegate:
CustomUrlSessionDelegate(), delegateQueue:
OperationQueue.main)) {

↪→

↪→

↪→

↪→

8 socket = session.webSocketTask(with: URL(string: url)!)
9 stream = AsyncThrowingStream { continuation in

10 self.continuation = continuation
11 self.continuation?.onTermination = { @Sendable

[socket] _ in↪→

12 socket.cancel()
13 }
14 }
15 }
16 // Waiting for messages
17 private func listenForMessages() {
18 socket.receive { [unowned self] result in
19 switch result {
20 case .success(let message):
21 continuation?.yield(message)
22 listenForMessages()
23 case .failure(let error):
24 continuation?.finish(throwing: error)
25 }
26 }
27 }
28 // Sending messages with a delay
29 func sendRepeatedly(message: String) {
30 DispatchQueue.global().asyncAfter(deadline: .now() + 1)

{ [self] in↪→

31 send(message: message)
32 }
33 }
34 }

Listing 11: WebSocketService 39

5. Implementation

Using the WebSocket class the socket connection can be easily established
and maintained in the ViewModels. Please take a look at the appendix for
usage of WebSocket class. TickeViewModel establishes a connection with the
socket.

First of all function loadTickerInfo is being called, which authorizes the
user with session obtained from /tickle endpoint. After authorization, request
containing contract id (conid) and required fields needs to be sent to start
getting ticker information. There is a huge list of all available fields of ticker
information. You can take a look at them at the swagger under the /iserver/-
marketdata/snapshot endpoint.

Function retrieveMessages waits for messages from the server. Once the
message is being recieved this method decodes the response and refreshes
information about the ticket, which is then being presented on the View layer.

Whenever the user leaves the screen, the connection is closed.
Usually, the ticker information response returned from the socket connec-

tion does not have all the required fields, which were sent in the request.
This can lead to overwriting some properties of the ticker information object
to null. To avoid this problem, I created an extension that helps to com-
bine ticker information. Basically, this extension gets decoded response and
appends only properties with non-nullable values to the existing instance of
ticker information. Please take a look at the listing below.

1 extension TickerInfo {
2 func combine(newTicket: TickerInfo) -> TickerInfo {
3 let high = newTicket.high ?? self.high
4 let low = newTicket.low ?? self.low
5 // All other properties the same way
6 // Return TickerInfo instance with appended properties
7 }
8 }

Listing 12: TickerInfo combination extension

5.5 Processing data

Once the API service fetches and decodes the response, data is passed to the
repository for data processing.

Some of the repository methods only return decoded responses. For exam-
ple, please take a look at the listing below. Method searchForNameSymbol is
used to find contracts by name or symbol. It returns a list of found contracts
with such a name. There was no need to process and reformat this data. Be-
cause of that, this function passes down to the ViewModel decoded response
without further processing.

40

https://interactivebrokers.github.io/cpwebapi/swagger-ui.html

5.5. Processing data

1 final class SearchRepository: SearchRepositoryProtocol {
2 // ...
3 func searchForNameSymbol(value: String, completion:

@escaping ([SearchTicket]) -> ()) {↪→

4 self.apiService.searchForNameSymbol(value: value) {
tickers in↪→

5 completion(tickers)
6 }
7 }
8 }

Listing 13: Search for name or symbol repository function

Even though some repositories’ functions return decoded responses, most
of the repositories’ methods process data to get the correct format. For ex-
ample, please take a look at the listing below. Function fetchTopPositions
gets data about accounts’ opened positions, filters it in ascending order, and
returns the top three positions to present them on HomeView.

1 func fetchTopPositions(completion: @escaping ([Position]) ->
Void) {↪→

2 self.accountApiService.fetchAccount { accounts in
3 self.portfolioApiService.fetchPositions(accountID:

accounts[0].accountId) { positions in↪→

4

5 let filtered = positions.sorted {
6 $0.position ?? 0 > $1.position ?? 0
7 }
8 var slicedPositions: [Position]
9 if (filtered.count > 3) {

10 slicedPositions = Array(filtered[0...2])
11 } else {
12 slicedPositions = positions
13 }
14 if (positions.count == 0) {
15 completion(positions)
16 }
17 completion(slicedPositions)
18 }
19 }
20 }

Listing 14: fetchAccountPerformance function

41

5. Implementation

5.6 Making graphs

Graphs are essential for such an application. Graphs are used for presenting
the account’s performance and financial instrument price history. Charts are
helpful for traders to make correct decisions related to the specific contract.
Whether it is the best time to buy/sell a financial instrument.

I decided to use SwiftUI Stock Charts [20] to present a price graph in my
application. I added this open-source package to my project, and I was able
to use it right after that.

For example, of SwiftUI Stock Chart package usage, please, take a look at
the listing below. TicketGraph is a component that displays a price graph in
TicketView.

1 import SwiftUI
2 import StockCharts
3

4 struct TicketGraph: View {
5 @Binding var tickerInfo: TickerInfo?
6 @Binding var graphData: [Double]
7 @Binding var dates: [String] // format: yy-MM-dd
8

9 var body: some View {
10 VStack {
11 LineChartView(
12 lineChartController:
13 LineChartController(
14 prices: self.graphData, dates:

self.dates, downtrendLineColor:
CustomColor.graphBlue, dragGesture:
true

↪→

↪→

↪→

15)
16)
17 }
18 .padding(.horizontal, 10)
19 .frame(width: UIScreen.screenWidth, height: 200,

alignment: .center)↪→

20 .background(CustomColor.lightBg)
21 }
22 }

Listing 15: TicketGraph component

42

5.7. Loading animation

5.7 Loading animation

To make the application more user-friendly, I added loaders while data is being
fetched from the server.

I added the ActivityIndicatorView open-source package [21], which has
about ten predefined types of loaders. Please, look at the usage example
below.

1 struct HomeView: View {
2

3 // Initialization
4

5 var body: some View {
6 ScrollView(showsIndicators: false) {
7 ZStack {
8 VStack(alignment: .center) {
9 // Content on top of which

10 // loading is displayed
11 }
12 ActivityIndicatorView(isVisible:

\$homeViewModel.isLoading, type:
.scalingDots)

↪→

↪→

13 .foregroundColor(Color.white)
14 .frame(width: 80, height: 50, alignment:

.center)↪→

15 }
16 }
17 // ...
18 }
19 }

Listing 16: ActivityIndicatorView example

43

Chapter 6
Testing

Nowadays, software testing is essential as a part of the software development
process, and tests are widely accepted in the industry. However, the size and
complexity of the software application steadily grow, and the development
time decreases. Sometimes developers do not have time for writing tests,
which leads to bugs and legacy code, which is hard to maintain in the future.
[22]

In this chapter, I describe the testing of the application and the testing
techniques used for testing the application.

All tests are divided into two different tests - Unit tests and UI tests.

6.0.1 Unit tests

Unit tests are pieces of code that test specific, small areas of software. Unit
tests are the most critical tests in software testing. Unit tests make the life of
developers more manageable. They help avoid legacy code, build well-designed
software and help maintain it in the future. [23]

In my application, I mainly focused on Unit tests because they test the
application’s business logic. I started by testing small pieces of code, usually
methods, of a higher application level and steadily continued to the lowest
layer - ViewModels. With the help of Swift protocol and dependency injection,
I created mocks of API services, which implement the protocol of API service.
In the example below, you can take a look at AccountAPIServiceProtocol.swift
file.

45

6. Testing

1 protocol AccountApiServiceProtocol {
2 func fetchAccount(completion: @escaping ([Account]) -> Void)
3

4 func getAccountPerformance(accountIds: [String], freq:
String, completion: @escaping ((PerformanceResponse?,
NetworkError?)) -> ())

↪→

↪→

5

6 func getAccountAllocation(accountId: String, completion:
@escaping (AllocationResponse) -> ())↪→

7

8 func getAccountSummary(accountId: String, completion:
@escaping (AccountSummary) -> ())↪→

9

10 func getPnL(completion: @escaping (PnLModelResponseModel) ->
())↪→

11

12 func getIServerAccount(completion:
@escaping((IServerResponse?, NetworkError?)) -> ())↪→

13

14 func tickle(completion: @escaping (TickleResponse) -> ())
15

16 func getCurrentBalance(acctIds: [String], completion:
@escaping (PASummaryResponse) -> Void)↪→

17 }

Listing 17: AccountApiProtocol.swift

Mostly those mocked API services return a real-world response, decoded
from JSON files, which are stored under the folder MockJSON. For example,
below, you can see mock account models.

1 enum MockedAccountModels {
2 static let account: [Account] = Bundle.main.decode(type:

[Account].self, from: "AccountResponse.json")↪→

3

4 static let performanceResponse: PerformanceResponse =
Bundle.main.decode(type: PerformanceResponse.self, from:
"PerformanceResponse.json")

↪→

↪→

5 // ...
6 }

Listing 18: MockAccountModels.swift

46

The purpose of the Mock API service is to return mock models and pass
them down to repository layers. For more natural behavior, I made a delay
of 0.5 seconds before the response is returned because it can take up to a few
seconds to fetch those responses from the endpoint.

1 class MockAccountApiService: AccountApiServiceProtocol {
2 func fetchAccount(completion: @escaping ([Account]) -> Void)

{↪→

3 // returns accountTestData after 0.5 seconds
4 DispatchQueue.main.asyncAfter(deadline: .now() + 0.5) {
5 completion(self.accountTestData)
6 }
7 }
8 // ...
9 }

Listing 19: MockAccountApiService.swift

This mock technique helped me to test services and other layers. The unit
test of service is straightforward. It tests that the method returns simulated
data and that the dependency injection is working.

1 class AccountApiService_Tests: XCTestCase {
2 func test_AccountApiService_fetchAccount_shouldReturnItems()

{↪→

3 let testAccount = MockedAccountModels.account
4 // Initialization of instance of

AccountApiServiceProtocol↪→

5

6 // Checks if method fetchAccount returns testAccount
7 // object, which was passed through dependency
8 // injection
9 accountApiService.fetchAccount { accounts in

10 XCTAssertEqual(accounts.count, 1)
11 XCTAssertEqual(accounts[0].accountId,

testAccount[0].accountId)↪→

12 }
13 }
14 // ...
15 }

Listing 20: AccountApiService Unit tests

47

6. Testing

Once I tested methods in API services, I continued with the testing of
repositories. I recall that the main task of repositories is to process responses
coming from the server and return ready-to-use objects with data, which can
be accessed in ViewModels.

1 class AccountRepository_Tests: XCTestCase {
2 func

test_AccountRepository_fetchAccount_shouldReturnAccountObject()
{

↪→

↪→

3 let mockedAccount = MockedAccountModels.account
4

5 // Initialization of instance accountRepository
6

7 // checks if accountRepository returns account object,
8 // not in array
9 accountRepository.fetchAccount { account in

10 XCTAssertEqual(account.accountId,
mockedAccount[0].accountId)↪→

11 XCTAssertEqual(account.type, mockedAccount[0].type)
12 XCTAssertEqual(account.accountTitle,

mockedAccount[0].accountTitle)↪→

13 XCTAssertEqual(account.accountStatus,
mockedAccount[0].accountStatus)↪→

14 }
15 }
16 // ...
17 }

Listing 21: AccountRepository Unit tests

Finally, I wrote unit tests for ViewModels. In ViewModels, I mainly tested
that the value coming from endpoints is assigned to states to present it on the
View layer. Expectations in Swift unit testing are used to test asynchronous
functions. Once expectations are fulfilled, tests are executed. Sink observes
values received by the published. [24] I use dropFirst(), because this sink is
being called while first initialization, which may cause tests to fail because
expectations will be fulfilled too early.

48

1 class AccountViewModel_Tests: XCTestCase {
2 // ...
3 func

test_AccountViewModel_fetchAccount_shouldSetAccount()
{

↪→

↪→

4 let mockedAccount = MockedAccountModels.account
5 // Initialization of ViewModel instance
6

7 let expectation = XCTestExpectation(description: "Should
return response after 0.5˜1 seconds")↪→

8

9 // fullfill expectation once accountViewModel.account is
being changed↪→

10 accountViewModel.$account
11 .dropFirst()
12 .sink { acc in
13 expectation.fulfill()
14 }
15 .store(in: &cancellables)
16

17 accountViewModel.fetchAccount()
18

19 // Expectation fullfilled start the test
20 wait(for: [expectation], timeout: 2)
21 XCTAssertTrue(accountViewModel.account != nil)
22 XCTAssertEqual(accountViewModel.account?.id,

mockedAccount[0].id)↪→

23 XCTAssertEqual(accountViewModel.account?.accountTitle,
mockedAccount[0].accountTitle)↪→

24 }
25 // ...
26 }

Listing 22: AccountViewModel Unit tests

6.0.2 UI tests

The second part of the testing software was UI tests. UI tests stand for User
Interface test. Those tests validate whether an app has desired functionality
and all features of the app work as expected. They test views and how those
views interact with business logic. Compared to unit tests, which test only
small pieces of code (units), UI tests are supposed to test the whole user
flow.

49

6. Testing

I wrote automated UI tests for a few user flows. I decided to run automated
UI tests on the mock data because there is no need for a gateway to be started.
I added three different environment variables to make it work, which can be
passed to an app before the launch.

1. -UITest unauthorized - When set to true, the app will behave as an
unauthorized.

2. -UITest isHTTP - When set to true, the app will connect to the gate-
way through HTTP protocol. If set to false, the app will connect to the
gateway through the HTTPS protocol.

3. -UITest mockService - When set to true, the app will use mock API
services.

Those environment variables can be set through Product - Scheme
- Edit Scheme in Xcode.

After adding and processing environment variables, I started to write tests
for separate user flows.

There is about four separate user flow in automated UI tests. Those flows
are described below.

1. First user flow mainly was related to authorization. Specifically, it
tested how an app reacts to an unauthorized user. If a user is connected
through HTTP protocol, it should show him an alert, asking a user to
authenticate. If a user is authorized, the app should not show a login
request to a user on the first start. I show an automated test in the
listing 23, checking that an unauthorized alert was shown to the user.

2. The second flow was related to searching for tickets. If the user types
in the search field, it should load found tickets on the screen.

3. The third flow was related to clicking on the icon near the Top port-
folio, which should redirect the user to the portfolio screen.

4. The final fourth flow was related to placing an order and buying a
financial instrument.

50

1 func
test_ContentView_unauthorizedSheet_shouldShowUnauthorizedSheet_HTTP()
{

↪→

↪→

2 let app = XCUIApplication()
3 // Pass required evnironment variables
4 app.launchEnvironment = [
5 "-UITest_unauthorized": "true",
6 "-UITest_mockService": "true",
7 "-UITest_isHTTP": "true"
8]
9 // Launch app in simulator

10 app.launch()
11

12 // Wait one second for existence of the text,
13 // which appears on alert
14 let errorText =

app.staticTexts["loginErrorStaticText"]↪→

15 let sheetOpened =
errorText.waitForExistence(timeout: 1)↪→

16 XCTAssertTrue(sheetOpened)
17 }

Listing 23: Unauthorized alert UI test

6.0.3 Coverage

My testing strategy was to test as much as possible business logic with the
help of unit tests, starting from mocking API services and continuing straight
to the lower layer of business logic - ViewModels. Furthermore, I covered
primary user flows with automated UI testing.

With the help of this testing strategy, I managed to achieve 84,2% total
test coverage. In the table below, I describe the test result in more detail.

Table 6.1: Test coverage table

Test Unit Coverage in %
UI View tests 93,8%
Unit tests ViewModels 91,33%
Unit tests Repositories 96,35%
Unit tests Services 50%
Total 84,2%

Of course, automated UI tests could not cover all code in the application,
so I also tested it manually. Manual tests helped me to identify some bugs.

51

6. Testing

6.0.4 Continues Integration

To fully use the potential of automated tests, I decided to add Continues
Integration to the project. The main idea of continuous integration (CI) is
to constantly introduce minor changes, review the code and push it to the
versioning system. Usually, continuous integration comes with automated
tests, so any deviations from the norm and bugs could be easily spotted after
the developer pushes new changes. [25]

For versioning control, I used GitLab and set up GitLab Runner, which
is running locally on my computer. Each time I push changes, the runner
compiles code, builds an application, and runs automated unit and UI tests
to identify if my new changes broke any of the features.

52

Conclusion

This thesis aimed to analyze the functionality of new API technology provided
by Interactive Brokers - Client Portal API, implement a demo application for
iPadOS/iOS, and test the final version of the software.

First of all, I proceeded with analysis, where I compared Client Portal
API with other solutions provided by Interactive Brokers, then I designed and
built the application for iOS and iPadOS, where users can log in to their ac-
counts, see account information, get historical and real-time stocks’ market
data, as well as buy and sell those financial instruments. I showed the usage
not only of REST API but also of Web Sockets, with the help of which infor-
mation can be retrieved each second. Integration with Client Portal API was
sometimes challenging, not only because this technology is relatively new and
many things are not working appropriately yet, but also because of business
logic, which needs to be well thought out, and different security nuances of
the programming for iOS. After the development, I described the testing pro-
cess of the application using the automated unit and UI tests with setting up
continuous integration.

In this work, I described the app’s engineering process so that each market
enthusiast, who wants to build a custom trade application for Interactive Bro-
kers, could take this thesis as a template or reference, read it and implement
an application that will fulfill their needs.

53

Bibliography

[1] Group, I. B. Global trading platform - IB trader workstation. Interac-
tive Brokers LLC [online], [cit. 2022-03-28]. Available from: https://
www.interactivebrokers.com/en/index.php?f=14099#tws-software

[2] Aljamea, M.; Alkandari, M. MMVMi: A validation model for MVC and
MVVM design patterns in iOS applications. IAENG Int. J. Comput. Sci,
volume 45, no. 3, 2018: pp. 377–389, [cit. 2022-04-05].

[3] LLC, I. B. IBKR mobile - invest worldwide. App Store [online], [cit. 2022-
04-02]. Available from: https://apps.apple.com/cz/app/ibkr-mobile-
invest-worldwide/id454558592?l=cs&platform=iphone

[4] Group, I. B. API Feature Comparison Table [online]. Interactive
Brokers LLC [online], [cit. 2022-03-28]. Available from: https://
www.interactivebrokers.com/en/trading/ib-api.php#api-software

[5] Group, I. B. About the Interactive Brokers Group. Interactive Brokers
U.K. Limited [online], Jan 2022, [cit. 2022-03-27]. Available from: https:
//www.interactivebrokers.co.uk/en/index.php?f=41347

[6] Folger, J. Interactive brokers review. Investopedia [online], Sep 2022,
[cit. 2022-04-29]. Available from: https://www.investopedia.com/
interactive-brokers-review-4587904

[7] Scott, G. Financial Information Exchange (FIX). Investo-
pedia [online], May 2021, [cit. 2022-03-28]. Available from:
https://www.investopedia.com/terms/f/financial-information-
exchange.asp

[8] Group, I. B. Trading API solutions. Interactive Brokers LLC [online], [cit.
2022-03-28]. Available from: https://www.interactivebrokers.com/
en/trading/ib-api.php#api-software

55

https://www.interactivebrokers.com/en/index.php?f=14099#tws-software
https://www.interactivebrokers.com/en/index.php?f=14099#tws-software
https://apps.apple.com/cz/app/ibkr-mobile-invest-worldwide/id454558592?l=cs&platform=iphone
https://apps.apple.com/cz/app/ibkr-mobile-invest-worldwide/id454558592?l=cs&platform=iphone
https://www.interactivebrokers.com/en/trading/ib-api.php#api-software
https://www.interactivebrokers.com/en/trading/ib-api.php#api-software
https://www.interactivebrokers.co.uk/en/index.php?f=41347
https://www.interactivebrokers.co.uk/en/index.php?f=41347
https://www.investopedia.com/interactive-brokers-review-4587904
https://www.investopedia.com/interactive-brokers-review-4587904
https://www.investopedia.com/terms/f/financial-information-exchange.asp
https://www.investopedia.com/terms/f/financial-information-exchange.asp
https://www.interactivebrokers.com/en/trading/ib-api.php#api-software
https://www.interactivebrokers.com/en/trading/ib-api.php#api-software

Bibliography

[9] Group, I. B. Clinet Portal API - Getting Started. Client Por-
tal Web API [online], [cit. 2022-04-20]. Available from: https://
interactivebrokers.github.io/cpwebapi/

[10] Brokers, I. Streaming Websocket Data. Global Trading Platform - IB
Trader Workstation — Interactive Brokers LLC [online], [cit. 2022-03-29].
Available from: https://interactivebrokers.github.io/cpwebapi/
RealtimeSubscription.html

[11] Inc., A. Swift. Apple Developer [online], [cit. 2022-04-05]. Available from:
https://developer.apple.com/swift/

[12] Gilb, T. Competitive engineering: a handbook for systems engineering,
requirements engineering, and software engineering using Planguage. El-
sevier, 2005, [cit. 2022-04-02].

[13] Larman, C. Applying UML and patterns: an introduction to object ori-
ented analysis and design and interative development. Pearson Education
India, 2012, [cit. 2022-04-03].

[14] Kocsis, Z. A.; Swan, J. Dependency injection for programming by opti-
mization. arXiv preprint arXiv:1707.04016, 2017, [cit. 2022-04-25].

[15] Esbai, R.; Erramdani, M. Model-to-model transformation in approach by
modeling: From UML model to Model-View-Presenter and Dependency
Injection patterns. In 2015 5th World Congress on Information and Com-
munication Technologies (WICT), IEEE, 2015, pp. 1–6, [cit. 2022-04-03].

[16] Brokers, I. Client Portal API FAQ. Interactive Brokers FAQ [online], [cit.
2022-04-21]. Available from: https://interactivebrokers.github.io/
cpwebapi/faq.html

[17] Inc., A. URLSessionDelegate — Apple Developer Documentation.
Apple Developer Documentation [online], [cit. 2022-04-22]. Available
from: https://developer.apple.com/documentation/foundation/
urlsessiondelegate

[18] Hammer-Lahav, E. The oauth 1.0 protocol. Technical report, 2010, [cit.
2022-04-25].

[19] Inc, A. onAppear(perform:) — Apple Developer Documentation.
Apple Developer Documentation [online], [cit. 2022-04-23]. Avail-
able from: https://developer.apple.com/documentation/SwiftUI/
AnyView/onAppear(perform:)

[20] denniscm190, D. SwiftUI Stock Charts for iOS. GitHub [online], [cit.
2022-04-24]. Available from: https://github.com/denniscm190/stock-
charts

56

https://interactivebrokers.github.io/cpwebapi/
https://interactivebrokers.github.io/cpwebapi/
https://interactivebrokers.github.io/cpwebapi/RealtimeSubscription.html
https://interactivebrokers.github.io/cpwebapi/RealtimeSubscription.html
https://developer.apple.com/swift/
https://interactivebrokers.github.io/cpwebapi/faq.html
https://interactivebrokers.github.io/cpwebapi/faq.html
https://developer.apple.com/documentation/foundation/urlsessiondelegate
https://developer.apple.com/documentation/foundation/urlsessiondelegate
https://developer.apple.com/documentation/SwiftUI/AnyView/onAppear(perform:)
https://developer.apple.com/documentation/SwiftUI/AnyView/onAppear(perform:)
https://github.com/denniscm190/stock-charts
https://github.com/denniscm190/stock-charts

Bibliography

[21] Exyte, e. A number of preset loading indicators created with swiftui.
GitHub [online], [cit. 2022-04-25]. Available from: https://github.com/
exyte/ActivityIndicatorView

[22] Klammer, C.; Kern, A. Writing unit tests: It’s now or never! In 2015
IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), IEEE, 2015, pp. 1–4, [cit. 2022-04-
28].

[23] Hunt, A.; Thomas, D. Pragmatic unit testing in Java with JUnit. The
Pragmatic Bookshelf, 2003, [cit. 2022-04-28].

[24] Inc, A. sink(receiveValue:) — Apple Developer Documentation.
Apple Developer Documentation [online], [cit. 2022-04-21]. Avail-
able from: https://developer.apple.com/documentation/combine/
publisher/sink(receivevalue:)

[25] Mohammad, S. M. Continuous Integration and Automation. Interna-
tional Journal of Creative Research Thoughts (IJCRT), ISSN, 2016: pp.
2320–2882, [cit. 2022-04-28].

57

https://github.com/exyte/ActivityIndicatorView
https://github.com/exyte/ActivityIndicatorView
https://developer.apple.com/documentation/combine/publisher/sink(receivevalue:)
https://developer.apple.com/documentation/combine/publisher/sink(receivevalue:)

Appendix A
Acronyms

IB Interactive Brokers

IBKR Interactive Brokers Group

API Application Programming Interface

MVC Model-View-Controller

MVVM Model-View-ViewModel

FIX The Financial Information eXchange

iOS iPhone Operating System

iPadOS iPad Operating System

DTO Data Transfer Object

TWS Trader Workstation

59

Appendix B
Existing iOS app

(a) Login screen (b) Home screen

Figure B.1: Official application from App Store [3]

61

B. Existing iOS app

(a) Portfolio screen (b) Ticket screen

Figure B.2: Official application from App Store [3]

62

Appendix C
Use case diagram

Figure C.1: Use case diagram for Client Portal API demo app

63

Appendix D
WebSocketService class usage

1 final class TicketViewModel: ObservableObject {
2 // Initialization
3 // ...
4 func loadTickerInfoFromSocket(conid: Int) {
5 self.repository.tickle { tickle in
6 self.stream.authorize(token:authorizeMessageStr)
7 self.stream.sendRepeatedly(message:

"smd+\(conid)+{\"fields\":\(APIConstants.STRING_FIELDS)}")↪→

8 }
9 }

10 // Waits for messages
11 func retrieveMessages() async {
12 do {
13 for try await message in stream {
14 do {
15 // Decoding and appending data
16 }
17 }
18 }
19 }
20 // Closes stream, if screen is unmounted
21 func onDisappear() {
22 self.stream.close()
23 }
24 }

Listing 24: Search for name or symbol repository function

65

Appendix E
Contents of enclosed CD

readme.txt the file with CD contents description
build...................................the directory with executables
src.......................................the directory of source codes

IBClientAPISwiftUI........................implementation sources
thesis..............the directory of LATEX source codes of the thesis

demo.......................................the directory of demo video
IBClientAPISwiftUI demo.mp4....video demonstrating functionality

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

67

	Introduction
	Thesis aim
	Interactive Brokers API Overview
	Interactive Brokers (IB)
	IB Trader Workstation (TWS)
	Trading Workstation API (TWS API)

	Financial Information eXchange (FIX)
	Client Portal API
	Overall Comparison

	User interface frameworks for iPadOS/iOS
	React Native
	Advantages
	Disadvantages

	Swift
	UIKit
	Advantages
	Disadvantages

	SwiftUI
	Advantages
	Disadvantages

	Why I've choosen SwiftUI

	iOS, iPadOS programming difference

	Analysis
	Existing solutions
	Requirements
	Functional requirements
	Authentication
	User information
	Real-time market data of instruments
	Historical data of instruments
	Making orders
	Viewing transaction

	Nonfunctional requirements
	Operating system
	Programming language

	Use cases

	Architecture and design
	Architecture
	Model-View-Controller Architecture (MVC)
	Model-View-ViewModel Architecture (MVVM)

	Design
	Views
	Model layer
	ViewModel layer

	User interface
	Login screen
	Why are there two different variants of login?

	Home screen
	Account screen
	Portfolio screen
	Ticker screen
	Search screen
	Trades screen
	Transaction screen
	Confirmation screen

	Implementation
	Setting up Client Portal API gateway
	Configuration of project
	Dependency injection & mocking responses
	Live previews
	Security limitations

	Authorization
	Is there OAuth protocol?
	Authorization sheet

	Getting data
	Getting data from REST API
	Getting data from socket

	Processing data
	Making graphs
	Loading animation

	Testing
	Unit tests
	UI tests
	Coverage
	Continues Integration

	Conclusion
	Bibliography
	Acronyms
	Existing iOS app
	Use case diagram
	WebSocketService class usage
	Contents of enclosed CD

