
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Implementation of the new module into the Dronetag Mobile

app in Flutter for planning, managing and coordinating drone

fleets

Albert Moravec

Ing. Lukáš Brchl

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

There is currently a lack of applications on the market that would allow drone pilots to

conveniently manage and coordinate several aircraft within a single organization (drone

fleet management). Most of the solutions are focused on only one drone manufacturer,

have insufficient flight planning capabilities, or are simply overpriced. This thesis aims to

utilize existing building blocks of the Dronetag Mobile app that already offers some

drone coordination-related functionalities and extend for organization and fleet

management use.

- Research, analyze and compare existing drone fleet management solutions.

- Define the functionalities of the planned fleet management module and design the

backend extensions.

- Implement the functionalities in the Flutter framework in accordance with the latest

trends.

- Test the application with real pilots, evaluate the results and suggest its future

improvements.

Electronically approved by Ing. Michal Valenta, Ph.D. on 23 February 2022 in Prague.

Bachelor’s thesis

Implementation of the new module into
the Dronetag Mobile app in Flutter for
planning, managing and coordinating
drone fleets

Albert Moravec

Department of Software Engineering
Supervisor: Ing. Lukáš Brchl

May 12, 2022

Acknowledgements

I would like to thank my family and friends for their constant support through-
out my studies. I would also like to thank my supervisor Ing. Lukáš Brchl for
always being there to discuss or help with every matter.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. I further
declare that I have concluded an agreement with the Czech Technical Univer-
sity in Prague, on the basis of which the Czech Technical University in Prague
has waived its right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act. This
fact shall not affect the provisions of Article 47b of the Act No. 111/1998 Coll.,
the Higher Education Act, as amended.

In Prague on May 12, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Albert Moravec. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Moravec, Albert. Implementation of the new module into the Dronetag Mobile
app in Flutter for planning, managing and coordinating drone fleets. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Abstrakt

Tato práce se soustředí na analýzu, návrh, implementaci a testování řešení pro
správu dronů. Řešení by mělo umožňovat seskupení dronů a pilotů v rámci or-
ganizace a koordinaci letů s více piloty. Jsou vybrána a následně analyzována
existující řešení a zhodnoceny jejich silné a slabé stránky. Dále je analyzována
vnitřní funkčnost platformy Dronetag pro pochopení omezení kladených na
vyvíjené řešení. Znalost fungování platformy Dronetag a silné a slabé stránky
analyzovaných existujících řešení jsou poté použity pro analýzu nového řeše-
ní správy dronů. Dále je proveden návrh a implementce potřebných rozšíření
platformy Dronetag. Rozšíření backendu je implementováno v jazyce Python
za použití frameworku Django, rozšíření mobilní aplikace s použitím framewor-
ku Flutter. Na závěr je funkční prototyp testován reálnými piloty za použití
definovaných testovacích scénářů. Výstup z tohoto testování je poté využit
k návrhu dalších vylepšení uživatelského zážitku a chování implementovaného
řešení.

Klíčová slova bezpilotní létání, správa dronů, Flutter, Django, Python,
Dronetag

vii

Abstract

This bachelor’s thesis focuses on analyzing, designing, implementing and test-
ing drone fleet management solution. Fleet management solution should allow
grouping drones and pilots into organizations and coordination of flights with
multiple pilots involved. Existing fleet management solutions are selected
and their analysis is then performed, assessing their strengths and weaknesses.
Current Dronetag platform inner workings are analyzed for proper understand-
ing of system constraints put on the developed solution. Strengths and weak-
nesses of the analyzed platforms and knowledge of the Dronetag platform is
then applied for fleet management solution analysis. Needed extensions to the
Dronetag platform are then designed and implemented. Backend extension is
implemented in Python using the Django framework, mobile application ex-
tension then uses the Flutter framework. Finally, the working prototype is
tested by real pilots using defined test scenarios. Output from execution of
these scenarios is then used to propose further user experience improvements
and behavior changes.

Keywords drones, fleet management, Flutter, Django, Python, Dronetag

ix

Contents

List of Listings xix

Introduction 1
Motivation . 2
Objectives . 2

1 Related Work 5
1.1 FlyFreely Platform . 5

1.1.1 Registration Process . 5
1.1.2 Personnel . 6
1.1.3 Aircraft . 7
1.1.4 Missions . 7
1.1.5 Field App . 8
1.1.6 Conclusion . 8

1.2 DroneLogbook Platform . 9
1.2.1 Personnel Management 9
1.2.2 Customers and Projects 10
1.2.3 Inventory . 10
1.2.4 Missions . 10
1.2.5 Flights . 12
1.2.6 Conclusion . 12

1.3 Other Platforms . 13

2 Dronetag Platform 15
2.1 Platform Introduction . 15
2.2 Usage Overview . 15

2.2.1 Aircraft and Device Creation 15
2.2.2 Flight . 16
2.2.3 Fleet Management Support 16

xi

2.3 Architecture . 16
2.4 Django Backend . 18

2.4.1 Aircraft App . 21
2.4.2 Device App . 21
2.4.3 Flight App . 21
2.4.4 User App . 21

2.5 Flutter Mobile Application . 22
2.5.1 Flutter Framework . 22
2.5.2 State Management . 23
2.5.3 Dependency Injection 24
2.5.4 Application Structure 25

3 Analysis 27
3.1 Functional Requirements . 27
3.2 Non-Functional Requirements 29
3.3 Use Case Analysis . 29

3.3.1 Actors . 29
3.3.2 Use Cases . 31
3.3.3 Use Case Model . 32
3.3.4 Use Case Coverage . 32

4 Design 37
4.1 Backend Extension . 37

4.1.1 Domain Model . 37
4.1.2 Modules . 38

4.2 Mobile Application Extension 39
4.2.1 Service Layer . 40
4.2.2 Repositories . 40
4.2.3 Features . 41
4.2.4 Global Layer . 41

5 Implementation 43
5.1 Backend . 43

5.1.1 App Initialization . 43
5.1.2 Models . 44
5.1.3 Endpoints . 44
5.1.4 Views . 45
5.1.5 Serializers . 46
5.1.6 Permissions . 47

5.2 Mobile Application . 48
5.2.1 Features . 48
5.2.2 Repositories and Backend Communication 49

5.3 Mobile Application Limitations 50

xii

6 Evaluation 51
6.1 Backend . 51

6.1.1 Unit Testing . 52
6.2 Mobile Application . 53

6.2.1 User Test Scenarios . 53
6.2.2 User Testing Output . 55

6.3 Future Work . 56

Conclusion 59

Bibliography 61

A User Interface Prototypes 65

B Acronyms 73

C Contents of Enclosed SD Card 75

xiii

List of Figures

1.1 Add Aircraft Form (FlyFreely) . 6
1.2 Create Mission Form (DroneLogbook) 11

2.1 Current Dronetag Platform Architecture 17
2.2 Current Dronetag Backend and Live Service Architecture 19
2.3 Current Domain Model . 20
2.4 Mobile Application Structure . 25

3.1 Actor Generalization Example . 30
3.2 Organization Use Case Model . 33
3.3 Mission Use Case Model . 34

4.1 Updated Domain Model . 38

5.1 Cubit State Hierarchy . 49

A.1 Create Organization Process Prototypes 66
A.2 Organization Detail and Management Prototypes 67
A.3 Organization Asset Management Prototypes 68
A.4 Organization Members Screen Prototype 69
A.5 Team Detail Screen Prototype . 70
A.6 Team Add and Edit Prototypes . 71
A.7 Organization Mission Prototypes 72

xv

List of Tables

3.1 Use Case Coverage . 35

xvii

List of Listings

5.1 Organization App Configuration 43
5.2 Mission Pre-Save Signal Handler Example 44
5.3 Endpoint Path Registration . 45
5.4 Organization Members View . 46
5.5 Organization Ownership Permission Class 47
5.6 Cubit Load Organization Method Example 49
5.7 Update Organization Backend Call 50

6.1 application programming interface (API) Test Example 53

xix

Introduction

In recent years, drones have become increasingly popular among hobbyists and
also in the commercial sector. According to the United States Federal Aviation
Administration, the number of registered drones for commercial use increased
from 12,000 registered units in 2016 to 488,000 in 2020 [1]. Companies have
started to use drones to simplify tasks that have traditionally been difficult
without them. Drones (and their operators) quickly became a necessity for
technical inspections in high and hard-to-reach places, but also made place
for themselves in agriculture, movie industry and photography as well.

Airspace prior to the expansion of drones to masses was tightly regulated
by national aviation agencies. After drones became more popular, it became
clear that additional regulation must be implemented to ensure civil and mili-
tary aviation safety, alleviate privacy concerns, and prevent accidents. In the
context of the European Union, this effort led to the creation of U-space∗,
which is a set of rules and systems that allow safe use of all types of drones
and coordination with other types of aircraft. Since the required regulation
needs to be discussed and implemented on both national and international
levels, implementation progress is rather slow; however, it is beginning to
take shape and should allow safer drone usage in the near future. At the core
of this new regulation is mandatory drone registration for pilots and certain
types of drones depending on their type and equipment they carry, as well
as mandatory flight plan approval for flights inside restricted zones (e.g. city
centers, airports). At the moment, the flight plan approval system is not yet
in operation, but the infrastructure that will allow it is being built.

With increased drone usage in professional business, another problem
arises. Apart from submitting flights for approval for more than one pilot at
once, companies may want to coordinate job assignment for multiple drones
and their pilots in one place and even supervise them in real time. After the
flights themselves are completed, companies might want to collect and eval-

∗More information on https://www.sesarju.eu/U-space

1

https://www.sesarju.eu/U-space

Introduction

uate data, such as detailed flight trajectory, distance flown, and flight hours
accumulated for pilots and flight equipment. It would be natural to com-
bine the mandatory flight plan registration process, data collection, and job
coordination into one package.

This work will focus on designing the drone fleet management solution on
top of the existing Dronetag platform. The final solution should allow for
easy flight planning for multiple pilots, device management for organizations
deploying drones, and review of historical data.

This thesis is divided into eight parts. The introduction will present the
scope and goals of this thesis. In the first chapter, existing fleet management
solutions will be presented and discussed. In the second chapter, current
state of the Dronetag platform will be presented. In the third chapter, the
preconditions and requirements of the proposed fleet management solution will
be analyzed. In the fourth chapter, the proposed fleet management solution
extensions to the Dronetag platform will be designed. In the fifth chapter,
the solution will be implemented on top of the existing Dronetag platform
backend in Python and the accompanying mobile app written using the Flutter
framework. The sixth chapter will present the results of prototype testing with
real pilots and their remarks on the presented solution and propose further
improvements. The conclusion will then summarize the results of this thesis.

Motivation
The main motivation for choosing this thesis was my previous experience with
the Flutter framework and the opportunity to work on a project that uses it.
The second factor was the fact that I could shape the newly defined product
domain together with other members of the Dronetag team and have relatively
free hand on how the development is led. Importantly, the output of this
thesis is a real and usable product that is going to impact the corporate drone
market.

Objectives
The goal of this thesis is to analyze, design, and implement a fleet management
solution suitable for organizations consisting of multiple drones and pilots.

First, similar existing solutions will be discussed and evaluated. Taking
into account existing solutions, a possible fleet management system solution
will be analyzed and designed according to the requirements and expected use
cases. An analysis of the existing Dronetag platform and its inner workings
will also be performed.

Using the knowledge acquired previously, the fleet management backend
extension will be designed and implemented in Python on top of the existing
Dronetag platform and properly tested. Following the backend implementa-

2

Objectives

tion, an extension of the Dronetag mobile application will be designed and
implemented. The resulting prototype will then be evaluated by real drone
pilots, and further improvements will be suggested.

3

Chapter 1
Related Work

In this part, two fleet management solutions will be presented. FlyFreely [2]
and DroneLogbook [3] will be described in detail, their workflow will be shown,
and each platform’s pros and cons will be assessed. Finally, the reason for
omitting other solutions will be explained.

1.1 FlyFreely Platform
FlyFreely is a platform specialized in fleet management and general drone
operation in the context of an organization [4]. It offers a free starter plan for
evaluation and individual flight planning and tracking, as well as paid plans
divided into three tiers depending on the size of your business and feature
requirements [5].

It should be noted that the platform is specifically tailored to Australian
drone regulations and offers additional features when used inside of Australia.
There is also support for the United States regulations, and the United States
is also the jurisdiction under which all operations outside of supported areas
fall.

1.1.1 Registration Process

When first visiting the FlyFreely platform, the user is required to go through
an on-boarding process. During this process, a role within an organization is
chosen (depending on whether the user is directly involved in flight operations
or in administrative), and then the user can choose to either join an existing
organization or create a new one. In case a new organization is created, the
on-boarding process continues, and the organization’s name, jurisdiction, and
aviation operations authority under which the company operates is chosen.
For unsupported countries, “Generic / Unlisted” jurisdiction has to be chosen
and generic operations authority has to be created.

5

1. Related Work

Figure 1.1: Add Aircraft Form (FlyFreely)

After completing all necessary steps, the operations dashboard containing
everything related to the organization is shown. The core functionality covers
the management of missions, drones, and organization personnel. The drone
maintenance process, batteries and other additional drone equipment, location
templates for mission planning purposes, organization documents, and useful
links can also be managed, but these additional features will not be covered in
further detail, as they were deemed unnecessary or replaced with alternative
functionality in the final fleet management solution.

1.1.2 Personnel

Adding a new organization member starts with an e-mail invitation and role
assignment. Roles give specific responsibilities; for example, allow members
to plan missions, manage personnel, and observe or fly as a pilot in a mission.
Once the person joins the organization, they are visible under the “Orga-
nization Personnel” tab. For pilots, a pilot license issued by organization’s
overseeing authority can be uploaded; however, when using generic operations
authority (generally, when your local authority is not supported), file upload
is disabled and not required. The pilot detail view also shows mission flight
history and even allows manual log entry creation.

6

1.1. FlyFreely Platform

1.1.3 Aircraft

Creating a new aircraft is done using the form shown in Figure 1.1. To create
a new aircraft, the name and type of aircraft are required. There is a large
amount of predefined drones and other kinds of remotely piloted aircraft, and
also the ability to create custom aircraft type in case a predefined one is not
available. In addition to this required information, data like serial number,
historical flight time, or call sign can also be added. When the aircraft is
created, the user can upload manuals for the aircraft or add local authority’s
registration documents for the aircraft, similarly to pilot registration. Existing
aircraft have a maintenance log and a flight log similar to the pilot flight log.
Flights can also be added manually, or for Da-Jiang Innovations (DJI) drones
they can be synced directly from DJI’s cloud platform. The current status that
determines whether the aircraft is suitable for flight, requires maintenance, or
is retired is also tracked.

1.1.4 Missions

Missions are at the center of the FlyFreely platform, and the features described
above are directly related to them. To create a mission, users must go through
the four steps shown in the mission creation dialog.

First, there is the “Objectives” step where the mission name, objectives
description, and mission location can be filled in. The mission location can be
loaded from a previously created location template or drawn directly on the
map. Upon clicking the “Draw Flight Area” button, another dialog containing
a map and a set of drawing tools is shown. Drawing tools are divided into
four categories – areas, markers, lines, and corridors. Polygons or corridors
of the flight area can be marked as flight or no-flight zone, danger zone, or
area of interest. Markers can be designated as points of interest, starting or
landing points, or observer points. Lines can optionally be set as flight lines.
The absolute minimum that has to be drawn is the flight zone polygon, which
designates the area where pilots will be able to operate. Once the drawing is
finished, the flight plan has to be named after which it can be saved.

After filling in all the information in the “Objectives” step, the “Resources”
step becomes available. Here, it is required to enter mission type (test, train-
ing, or commercial) and a mission workflow defined by the organization’s
operations authority. After that, one or more aircraft have to be selected, and
pilot in command of the mission has to be chosen. Optionally, additional crew
members can be added along with additional notes for the crew.

Next up the “Mission planning” step must be completed. Here, the mis-
sion’s planned time, duration, and visual line-of-sight operation mode, either
visual line of sight (VLOS), extended visual line of sight (EVLOS), or beyond
visual line of sight (BLOS) have to be entered. Optionally, maximum flight
altitude, additional contact information, used radio frequencies, and related

7

1. Related Work

documents can be added.
After filling in all the necessary information, a dialog is shown informing

the user that the mission can optionally be executed from the “Field App”
mobile application.

1.1.5 Field App
FlyFreely “Field App” is a mobile application made specifically for the exe-
cution of missions on site. When opened, the user is presented with a list
of current, canceled, and completed missions. The user can also enter an
“Airspace Check” view with a map showing flight zones in the area. The in-
formation is very detailed in Australia and New Zealand, but globally only
restricted areas, airports, and heliports are shown.

When an active mission is available, it can be selected and executed. To
execute a mission flight, a pilot, an aircraft, and a battery pack must be
selected. After confirming the configuration, flight tracking is started. There
is no support for real-time aircraft position tracking, so the application only
starts tracking flight time and allows viewing mission information. When the
flight ends, the pilot can review the flight time, edit it, or insert additional
flights manually. The pilot can then fly again or end the mission, and a
recapitulation screen is shown.

1.1.6 Conclusion
FlyFreely provides a solution for the management of virtually every aspect
of drone operations in an organization. It presents a concept of mission that
allows organization members to organize and cooperate on a task. The plat-
form also provides a wide range of supporting features related to personnel
management, asset management, and other aspects. These features will also
be considered for the final solution. The mobile app for field operation also
provides improved user experience, as flights can be started without the need
of a computer.

Positives:
• multiple pilots and aircraft in a single mission;

• complex organization asset management;

• advanced flight area drawing tools;

• battery management;

• maintenance workflows.

8

1.2. DroneLogbook Platform

However, there are also some negative aspects. The whole platform is
built with legal aspects of drone operation in mind, but currently only sup-
ports Australia and New Zealand, with limited support for the United States
regulations. Other regions have to use an unintuitive workaround to use the
platform. The whole platform is also very complex and hard to use at times,
due to the large number of steps the user has to do to perform certain oper-
ations. Certain features seem even excessive and unnecessary for drone fleet
operation. Finally, the functionality of the mobile app is quite limited at the
time and no flight trajectory tracking is provided.

Negatives:
• heavy dependence on jurisdiction and regulations;

• unintuitive mission creation process;

• limited functionality of the Field App.

1.2 DroneLogbook Platform
DroneLogbook [3] is a mature and widely known platform among pilots, pri-
marily used to maintain a personal flight log.

When creating an organization within DroneLogbook, the user first has to
create a personal account. The process of creating an organization is then very
simple – choosing the “Organization” section in the side menu and filling in
the organization name and the field of activity in which the company operates.
The organization is created immediately and receives an identifier (ID) which
can be shared with other DroneLogbook users to join the organization. Users
must bear in mind that organization members can no longer perform personal
flights, and every new flight will be recorded under the organization. For
this reason, it is mostly desirable to create a new account for organization
use, even though the user can leave the organization to be able to perform
personal flights again.

After creating an organization, the user becomes its administrator, and
new options appear in the user interface. The most important of all available
functions are “Inventory”, “Personnel”, “Flights”, and “Plan mission”. Addi-
tional sections “Projects”, “Maintenance”, “Inspections”, and “Incidents” are
also available, but will not be covered in detail.

1.2.1 Personnel Management
Under personnel management, organization members can be added or modi-
fied. Adding a new member this way immediately creates a new account for
them, which means that users with an existing account they wish to use in the
organization must join using organization ID instead of being added manually.

9

1. Related Work

After creating or inviting a new user, organization roles can be assigned, giv-
ing access to various fleet management options within the organization. Skills
and skill ratings can also be assigned to individual users in the section “Skills”
with an optional expiration date for the assigned skill.

Pilots in the organization need to have a pilot role assigned to them to
be able to set them as pilots in organization flights. In addition, pilot license
and allowed types of aircraft can be assigned to each pilot; however, this
information does not affect functionality in any way, apart from being visible
on the pilot’s profile.

1.2.2 Customers and Projects
Organizations can create their own customer database with basic information
(name, address, and description). Existing customers can be assigned to a
project during creation. Projects serve as a container for one or more re-
lated flights and additional information, such as project documentation, flight
incidents, and time flown.

1.2.3 Inventory
Inventory is a place for management of the assets of the organization. Here
drones, batteries, and additional equipment can be registered under the orga-
nization ownership. Kits can then be created to tie the aforementioned assets
together.

1.2.4 Missions
Missions are an organizational unit that group multiple flights in one place,
usually expected to span only one day.

The mission creation form (shown in Figure 1.2) is almost identical to the
“Manual Detailed Form” used to add manual flight log entries, hinting that
missions might be implemented as an extension of current flight functional-
ity. The process consists of 5 separate steps where most of the input data
is optional. The first “Mission” section requires basic information, mission
name, date, duration, flight type (commercial, hobby, test, etc.), and visual
operation type (VLOS, BLOS, and other advanced types are available). Apart
from the required data, mission can optionally be assigned to a project and
customer and additional legal compliance information can be added.

In the next “Personnel” step, pilots, ground support, and other members
of the mission are added. The assignment of a pilot is limited to only one
“main” pilot. Other members of the mission must be assigned as a ground
support crew or “others”. This limitation likely stems from missions being
derived from single flight; however, it does not affect ability to assign flights
from other organization members, even those not listed as mission crew, to
mission.

10

1.2. DroneLogbook Platform

Figure 1.2: Create Mission Form (DroneLogbook)

In the third “Drone & Equipment” step at least one drone has to be selected
for the mission, and additional drones can optionally be added. Only the
selected primary drone can be checked for availability, displaying a schedule
with planned missions or flights for the selected drone. Necessary equipment
and carried payload can also be specified here.

Fourth “Safety” step can optionally specify what safety measures must be
taken during the mission.

The fifth “Weather” step allows the user to manually or automatically fill
in the relevant weather data for the mission.

Upon filling in all the necessary information and clicking “Save”, the user
is taken to a separate screen where the mission flight area can be defined.
Here a map with a side bar containing drawn entities is displayed, and the

11

1. Related Work

user can use line, polygon, or point tool to draw into the map. The map data
defined here can act as a guide for the pilots when in flight, but do not have
any direct connection to mission flights themselves. The confirmation of the
area finishes the mission creation process.

When the mission is created, it appears in the organization calendar, and
the organization assets used in the mission are marked as in use (so that they
can be looked up based on their availability for other missions). When mission
is over, it has to be finalized manually, at which point the user can select logged
flights that belong to the mission. Any logged organization flight that occurred
during the mission time window can be added here without taking other flight
parameters into account. Mission flights cannot be planned as part of the
mission; they can only be added when (or after) the mission is finished. This
behavior is consistent with how flights are handled in DroneLogbook – they
are usually added once concluded and are not planned beforehand.

1.2.5 Flights

Individual flights can be added to DroneLogbook in multiple ways. There are
two manual flight creation methods (simplified or detailed); however, auto-
matic data upload from other cloud platforms (or manual data upload from
exported log files) is usually preferred, as DroneLogbook integrates with many
drone manufacturer cloud platforms.

The detailed manual mode is almost identical to mission planning and will
not be further described. The simplified mode allows creating flight using a
single dialog by filling in name, date and time, flight type, location, drone,
and battery used. Operation mode (VLOS, BLOS, etc.), project, customer,
and equipment can be optionally entered as well.

Automated flight creation can be done by uploading a flight log file (a wide
range of formats is accepted) or by syncing with an external service (Autel
Sync, DJI Sync and Skydio Sync are currently supported).

1.2.6 Conclusion

DroneLogbook is a go-to platform for many people due to its maturity and
wide range of supported data sources for flight imports, making it easy to
log flights even without supporting real-time tracking by the platform itself
(unlike the Dronetag platform, which will be covered later). It provides conve-
nient and easy-to-use tools for organizing flights and allows tracking of various
operational data without overwhelming the user. However, the relationship
between missions and flights seems very confusing and complicated to under-
stand properly. That is mainly because flights are completely separated from
the mission and are only added after the mission is finished, and also because
all of the mission data, apart from date and time, do not have to correspond

12

1.3. Other Platforms

to the flight data – mission region, members, and aircraft are only informative
and can differ from actual flight data.

This possible data inconsistency is also visible in other parts of the plat-
form, showing that the features were probably implemented incrementally
without proper integration into the system. One such example would be
“Projects”, where the customer for the project can be selected; however, when
creating a mission or flight, the project and the customer are selected sepa-
rately and independently of each other.

Positives:
• wide range of supported flight data;

• easy to use user interface;

• pilot’s approved aircraft model tracking;

• multiple pilots, aircraft and flights allowed under mission.

Negatives:
• mission flights cannot be planned in advance;

• consistency issues with mission flights;

• mission data are only informative;

• personal flights not allowed when in organization.

1.3 Other Platforms
Fleet management platforms other than FlyFreely and DroneLogbook were
also considered for further analysis, but were left out because paid subscrip-
tions were required for access and a demo request was ignored or declined.
For certain considered platforms, it was also recognized that they only work
with very specific hardware or are made for a single specific field of operation
rather than general fleet management.

Michal Skipala analyzed other significant platforms in his analysis of the
Dronetag fleet management solution [6].

13

Chapter 2
Dronetag Platform

This section presents the Dronetag platform, its principles, functionality, and
internal design. This thesis’ primary goal is to extend this platform, which is
why the platform, its internal design, and features related to fleet management
are going to be described in detail.

2.1 Platform Introduction
The core of the Dronetag platform is drone in-flight identification and real-time
tracking. Dronetag achieves this by using a small and lightweight battery-
powered box attached to a drone. This box (“device” from now on) then
sends real-time data to the Dronetag platform during flight. By using the
device, pilots can make any drone comply with the new European regulation
that requires all drones to identify themselves during flight and also enjoy the
added value of being able to track their drone in real time [7].

2.2 Usage Overview
Currently, users can use the Dronetag platform to view information about
other’s flights and plan and execute their own flights. To be able to plan a
flight, the user must have an aircraft and a device registered on the Dronetag
platform.

2.2.1 Aircraft and Device Creation

The creation of aircraft is a very simple process. When creating a new aircraft,
the user has to fill in its name, and then he can select the aircraft model from
a predefined list or fill in the aircraft weight, class, and endurance manually
(values can be overridden even when a predefined model is selected).

15

2. Dronetag Platform

Device registration is also very simple – after providing a device serial
number and a name, the device is assigned to the user’s account and can be
used.

2.2.2 Flight
With the aircraft and device registered, a flight can be planned by clicking
“Plan a new flight” button in the map view. A set of planning steps appears
on the right. By clicking on the map, a take-off point is set, and then the
desired flight region is defined by drawing either a circle or a polygon and
setting flight height range. Then in the “Date & Time” step, start and end
time of the flight can be set. In the “Identification” step, an aircraft and a
device with which the pilot will fly are selected. In the last “Flight Properties”
step, visibility (allowing everyone to view the telemetry data), operation mode,
and operation category can be set. After clicking the “Briefing” button, a card
with a flight overview is shown and the flight can be confirmed.

Flights can, however, be created by pressing a button on the device which
automatically creates a new flight with default device configured for that par-
ticular user. If a pre-planned flight is found when the device button is pressed,
the planned flight is started instead of creating a new one.

When in a flight, Dronetag can be configured to send notifications to the
pilot about potentially dangerous events. That can, for example, mean leaving
designated flight region or someone else entering your region or flying in close
proximity to you.

Planned or past flights are listed on user’s flight list screen. Detail of ended
flight shows flight trajectory which can be replayed using recorded telemetry
data.

2.2.3 Fleet Management Support
Currently, Dronetag does not offer any fleet management capabilities and only
supports single pilot flights with one aircraft and device being used at a time.
There was an attempt to partially implement fleet management functionality
in the backend, preparing for future expansion, but these parts will be omitted
in the description for clarity, as the implementation will be done from scratch.

2.3 Architecture
The Dronetag platform consists of the following parts:

• Frontend

– React Web App
– Flutter Mobile App

16

2.3. Architecture

• Backend

– PostgreSQL Database
– Django Backend
– Live Service
– Constrained Application Protocol (CoAP) Proxy
– Redis

• Devices

Backend

HTTP/REST API

Frontend

TCP

Postgresql DB

Redis

HTTP/REST API

CoAP Gateway

TCP

HTTP/REST API

Live Service

TCP

Django backend

CoAP

DeviceWebMobile application

Figure 2.1: Current Dronetag Platform Architecture

The primary platform data storage is PostgreSQL [8] relational database
(called “database” onward), which stores all persistent data. This database is
connected to the Django [9] backend (called just “backend”) which provides
application programming interface (API) for most of the user-facing function-
ality via Hypertext Transfer Protocol (HTTP). The API is designed with
Representational State Transfer (REST) principles [10] in mind. The back-
end also defines and manages the persistent data being stored in the database.
The frontend and mobile application can retrieve and manipulate the data
using the backend HTTP REST API.

The devices communicate only with the Live Service using the CoAP proto-
col. This communication is translated by the CoAP proxy to standard HTTP

17

2. Dronetag Platform

REST API requests that the Live Service handles. The Live Service and the
backend then communicate using each other’s HTTP REST API, this way the
Live Service can request flight start or end and the backend can request all
the telemetry data when the flight is finished. Additionally, the Live Service
provides Websocket connection which allows frontend and mobile application
to ingest telemetry data in real time without having to contact the backend.

Both backend and Live Service make use of Redis as an all-purpose storage
for short-lived data (for caching purposes, etc.).

As this thesis’ goal is to extend the backend part and implement new
functionality in the mobile app, the Django backend and the Flutter mobile
app will be now presented in further detail.

2.4 Django Backend
Dronetag backend HTTP API is based on the Django framework, a web appli-
cation framework written in the Python programming language. Django is
described as a framework that makes it possible to create web applications
from concept to working solution in a matter of hours. It takes care of common
development tasks, like user authentication or content administration [11].

Python is an interpreted, object-oriented, high-level program-
ming language with dynamic semantics. Its high-level built in data
structures, combined with dynamic typing and dynamic binding,
make it very attractive for Rapid Application Development, as well
as for use as a scripting or glue language to connect existing compo-
nents together. Python’s simple, easy to learn syntax emphasizes
readability and therefore reduces the cost of program maintenance.
Python supports modules and packages, which encourages program
modularity and code reuse. [12]

Other external libraries are used to make API development easier (only
the most relevant to fleet management implementation are listed):

• Celery – manages scheduling and execution of planned tasks [13],

• Django REST Framework – simplifies development of REST API
using Django framework [14],

• Sendgrid – facilitates e-mail deilivery [15]

• Shapely – provides utility features for working with geospatial data [16],

• Spectacular – generates standardized REST API schema for documen-
tation [17].

18

2.4. Django Backend

Backend
 Live Service

Common

Users

Flights

Aircrafts

Devices

HTTP

REST API
Devices

Telemetry

REST API

Websocket

Figure 2.2: Current Dronetag Backend and Live Service Architecture

Using the Django framework and additional libraries, REST API is able to
provide convenient features, like filtering based on Uniform Resource Locator
(URL) query parameters, paging for more efficient loading, and automated
endpoint documentation generation, without having to write large amounts
of custom code or complicated configuration, as most of the functionality is
provided out-of-the-box.

The API consists of a set of modules (which will be called “apps” from
now on, following the Django terminology). Each app is responsible for small
subsets of API and encapsulate functionality that is closely related (except
for the “common” module, which contains shared functionality that other
modules can use). Most apps follow the same code structure:

• migrations – directory containing automatically generated database
transformations that are applied when the data structure changes,

• templates – directory containing HTML templates,

• admins.py – contains definition of administration forms available to
Dronetag administrators,

• apps.py – contains app configuration,

• fields.py – contains definitions of model fields specific to the app,

• mixins.py – contains class extensions shared among app classes,

• models.py – contains data definitions, constraints, and validation rules
upon which the database schema is generated,

19

2. Dronetag Platform

• permissions.py – defines access policies for the application views,

• serializers.py – contains input and output data models and validation
rules,

• tasks.py – contains Celery tasks,

• urls.py – defines available endpoints and views that handle them,

• utils.py – contains supporting functionality,

• views.py – contains modules that handle API requests for defined end-
points.

There are currently more than 10 apps present, but only the following apps
relevant to fleet management will be described:

• Aircraft

• Device

• Flight

• User

Figure 2.3: Current Domain Model

Each app defines its set of data models. These data models can form
relationships with other models in the same app or even a different app. The
simplified data model in Figure 2.3 describes the most important entities and
their properties and relationships.

20

2.4. Django Backend

2.4.1 Aircraft App

This app contains all the application functionality regarding aircraft man-
agement. Available prefilled aircraft vendors and models are defined here.
It provides API endpoints to list owned aircraft, create new aircraft or re-
move existing ones, and retrieve and update information on owned aircraft. It
also allows listing predefined aircraft vendors and their models for the aircraft
creation process.

2.4.2 Device App

This app defines the representation of devices in the Dronetag platform. It han-
dles the device registration process and allows listing, modifying, and deleting
owned devices. Functionality that allows the device itself to update its own
data (through Live Service) is also implemented. Finally, the device status
history can be uploaded or retrieved.

2.4.3 Flight App

This app contains code which is crucial to the usability of the entire platform.
The flight and telemetry representation, as well as the endpoints that allow
flight planning, listing, or deletion, are defined here. The flight start request
from the device is implemented here as a dedicated endpoint that looks up a
planned flight or creates a new one if none is found and sets it to an in-progress
state. Public endpoint for identifying flight by announced device identifier is
also implemented here. Flight telemetry data are processed here as they are
uploaded by the Live Service, and they can also be exported to file for further
processing.

The app also defines tasks that are run after the flight is finished – flight
distance calculation and flight thumbnail image generation (this image shows
a quick flight area and trajectory overview to the user) – and a cleanup task
that marks expired flights as canceled if a planned flight is never executed.

2.4.4 User App

The User app is built on top of an existing Django functionality that provides
user management out of the box. Basic user is extended with additional fields,
such as the default aircraft or identifier assigned by the aviation authority
(unmanned aircraft system (UAS) operator ID). Apart from standard user
management functionality – user listing, registration, password reset, or e-mail
validation – this module also handles tracking of allowed flight hours per month
(in coordination with the Flight app) and also handles user mobile notification
preferences.

21

2. Dronetag Platform

2.5 Flutter Mobile Application
Platform functionality is provided to the user through the Dronetag web appli-
cation or the Dronetag mobile application. This section will cover the mobile
application in detail.

Dronetag mobile application is available for the Android and iOS oper-
ating systems and provides functionality similar to the web application with
additional focus on flight operation, allowing the user to start a new flight
immediately and observe detailed flight information.

2.5.1 Flutter Framework
Dronetag mobile app utilizes the Flutter framework, “an open source frame-
work by Google for building beautiful, natively compiled, multi-platform appli-
cations from a single codebase” [18]. Flutter and the applications that use it
are written in the Dart programming language [19].

Dart is a client-optimized language for developing fast apps on
any platform. Its goal is to offer the most productive programming
language for multi-platform development, paired with a flexible ex-
ecution runtime platform for app frameworks. . . . Dart also forms
the foundation of Flutter. Dart provides the language and run-
times that power Flutter apps, but Dart also supports many core
developer tasks like formatting, analyzing, and testing code. [20]

Dronetag chose Flutter for multiple reasons. Because Flutter applications
can run on both Android and iOS with a single codebase [19], there is no need
to develop two separate applications for each platform, significantly reducing
development costs by reducing development time and reducing the burden of
having to support two applications. Flutter also supports hot-reload when
developing the application, which means that the application does not have
to be recompiled when code is changed and only the relevant part is replaced
directly in the running application [19] which also saves a lot of time in de-
velopment. Another important attribute of Flutter is its performance when it
comes to user interaction. Flutter draws each component of the user interface
on its own canvas instead of relying on native implementations, allowing bet-
ter portability between different platforms and better rendering performance
[21]. Writing platform-specific code is still possible and native features can
be used easily using “Method channels” which bridge native and Dart/Flutter
code [21].

Flutter uses a modern approach to define and control the user interface.

In most traditional UI frameworks, the user interface’s initial
state is described once and then separately updated by user code at
runtime, in response to events. One challenge of this approach is

22

2.5. Flutter Mobile Application

that, as the application grows in complexity, the developer needs to
be aware of how state changes cascade throughout the entire UI. . . .
Flutter, along with other reactive frameworks, takes an alternative
approach to this problem, by explicitly decoupling the user interface
from its underlying state. . . . you only create the UI description,
and the framework takes care of using that one configuration to
both create and/or update the user interface as appropriate. [21]

This means that the user interface, on an abstract level, is defined as a
function of the application state, which is evaluated when the state changes,
returning the user interface representation for that particular state. This
approach allows for a number of different programming paradigms to be used
when building Flutter applications. Composition is the primary paradigm
used by Flutter in the description of user interface (UI).That is because UI in
Flutter is represented by elements with a narrow scope of behavior that are
composed to create one functional whole [19].

Another important paradigm is functional programming. Since every wid-
get can be described as a function receiving state and returning its represen-
tation in UI, it is very easy to compose widgets or perform various transfor-
mations utilizing functional programming techniques [19].

2.5.2 State Management
As mentioned in the previous section, the user interface is a function of the
application state. To avoid re-rendering the whole application every time
there is a change in the application state, it is necessary to split the state
into smaller parts. Since state changes can come from different sources, it is
desirable to manage them in one place. It is also a good practice to separate
the application’s business logic that drives application state changes from the
presentation layer where the state is processed into the user interface. This
is handled using the business logic component (BLoC) pattern and the Bloc
library that implements this pattern.

“This design pattern helps to separate presentation from business logic.
Following the BLoC pattern facilitates testability and reusability. This pack-
age abstracts reactive aspects of the pattern allowing developers to focus on
writing the business logic.” [22]

The term BLoC describes both the pattern and a component that main-
tains the state and utilizes the pattern. The rules for the implementation of
the BLoC pattern were defined by its author, Paolo Soares [23].

BLoC Rules:
• Input/outputs are simple sinks/streams only.
• All dependencies must be injectable and platform agnostic.

23

2. Dronetag Platform

• No platform branching is allowed.
• The actual implementation can be anything if rules 1-3 are

followed.

Widget Rules:
• Each “complex enough” widget has a related BLoC.
• Widgets do not format the inputs they send to the BLoC.
• Widgets should display the BLoCs state with as little format-

ting as possible.
• If you do have platform branching, it should be dependent on

a single bool state emitted by a BLoC.

The Bloc library used in the Dronetag mobile application helps to utilize
the BLoC pattern and makes development faster and easier, and also allows
better code reuse and better testability [24]. To simplify the usage of BLoCs
for cases where simple function calls would be sufficient to change the state,
a cubit was integrated into the Bloc library, providing the same interface as
the full-featured BLoC, but without the need to define input and output data
streams and transformation of input events into new state [25].

Correctly defined cubit consists of state type, which defines the data that
the cubit will provide to the user interface, initial state and methods that can
be called from outside to transition to new state. The cubit then exposes a
stream where new states are emitted. The user interface then listens for new
data in the stream [26].

2.5.3 Dependency Injection
The application consists of multiple components that are divided into mul-
tiple layers and depend on each other. According to dependency inversion
principle (DIP), the dependencies of the source code should refer only to ab-
stractions, not to concrete modules. This is because every change to abstract
interface requires changes in its concrete implementation, but changing con-
crete implementation does not always lead to a change of abstract interface.
Therefore, relying on interfaces rather than concrete modules reduces volatil-
ity, and developers should always look to make abstract interfaces as stable
as possible [27].

To achieve complete decoupling of the abstract interface and concrete im-
plementation, a service locator is used. Service locator is a globally avail-
able registry where concrete implementations of services are registered and
from which they can be retrieved upon request [28]. Service locator in the
Dronetag application is provided by the GetIt library [29]. On application
startup, a factory producing the concrete implementation or a singleton pro-
viding the concrete implementation is registered for each abstract interface.

24

2.5. Flutter Mobile Application

Flutter mobile app

Features

Repositories

Services
Backend API

Live Service APILive Service WebSocket

Firebase Notifications

Aircraft Repository

User Repository Flight Repository

Device Repository

common

signup

profiledashboard

onboarding

Global
DI ContainerMain View

Router Configuration

signin

Figure 2.4: Mobile Application Structure

Components that utilize these abstract interfaces can then request concrete
implementations from the service locator without directly depending on them
[29].

Most components in the Dronetag mobile application require their depen-
dencies during instantiation (as a constructor parameter) rather than request-
ing them from the service locator by themselves. This approach effectively
turns the service locator into a container for constructor injection where depen-
dencies are resolved based on the constructor parameters [28]. The constructor
injection approach produces an even more flexible architecture, as components
necessarily do not have to be instantiated with dependencies from the service
locator, but can also be instantiated with dependencies provided using other
means or a combination of both.

2.5.4 Application Structure

This section will describe the internal structure of the mobile application.
Figure 2.4 shows a simplified diagram showing identified application layers
(some modules have been omitted for clarity). The architecture can be divided
into the following 4 layers:

Services provide lowest level of abstraction above the data sources used in
the application. Modules in this layer provide means of communication
with external data sources outside of the application and expose specific

25

2. Dronetag Platform

methods that the application can use to retrieve or send data to the
data source.

Repositories contain modules for each standalone resource that the applica-
tion can manipulate. Each module contains methods for manipulating
the resource using modules from the services layer.

Features contain modules that reflect the structure of the user interface.
Each feature module contains a single screen or a set of closely related
screens, widgets that are used exclusively on those screens, and BLoCs
(more precisely cubits) for those screens. Each BLoC handles part of
the state of the feature in the application and provides methods that
the user interface or external sources can call to trigger state change.
These methods make use of the services and repositories layers to re-
trieve the data necessary for the transition to the new desired state.

Global handles the configuration and start process of the application, the reg-
istration of components into the service locator for dependency injection,
and the configuration of the router and the registration of the available
routes, so that the user can transition between the application screens.
Additionally, the global application state is defined and managed on this
layer. The global state is divided into multiple BLoCs exposed using the
application context.

All layers make use of data models that are defined in the models package.
These models provide data representation used across the application.

26

Chapter 3
Analysis

This section will describe fleet management functionality, its functional and
non-functional requirements, and identified use cases. The requirements will
define the expected fleet management behavior and will also affect design and
implementation decisions. The presented solution analysis comes from current
Dronetag user requests, previously analyzed existing solutions, and discussion
between the author and other members developing the Dronetag platform.

3.1 Functional Requirements
The functional requirements listed below describe the specific functionality
expected from the final solution. Individual requirements are given a code
and a short description.

The proposed features try to maintain two key principles. First of all,
the solution should constrain user actions as little as possible. Second, there
should be as little excessive functionality as possible.

FR01 Organization management
A user without an organization will be able to create an organization. The
user who created the organization will become its owner. The owner will be
able to change the organization name, description, manage global parameters,
and delete the organization. Deleting an organization will result in irreversible
deletion of all data related to the organization.

FR02 Organization asset management
Any organization member will be able to transfer his aircraft or device to
organization ownership. Aircraft and devices owned by the organization will
not be available for personal flights. Any member will also be able to transfer
any organization aircraft or device into his ownership.

27

3. Analysis

FR03 Organization member management
Any organization member will be able to invite new members to the orga-
nization using their e-mail address. The invited user will be able to accept
the invitation via a direct link or in the Dronetag web app if they already
have an account and are not a member of an organization. Any member can
leave the organization. Any member can be removed from the organization
by the organization owner. Leaving the organization irreversibly deletes all
data related to the member.

FR04 Organization team management
Team will be a named list of selected organization members. Any organization
member can create a team. Any member can also rename a team, add other
organization members into a team, or delete a team.

FR05 Mission management
Any organization member will be able to create a mission. The member that
created the mission will become the mission owner and the first member with
coordinator privileges. The owner retains coordinator privileges even if he is
not a member of the mission or is not designated as the mission coordinator
explicitly. Coordinators will be able to rename the mission or delete it, assign
start and end time, and designate mission area.

FR06 Mission member management
Mission coordinator will be able to add members to the mission, remove mem-
bers from the mission, and assign pilot and coordinator roles to members in
the mission.

FR07 Mission flight planning
Coordinator will be able to create, view, edit, or remove all flight plans of
every mission pilot. Mission will consist of multiple flight plans, zero or one
for each mission pilot. The flight area of these flight plans must be entirely
inside of the mission area.

The mission pilot will be able to view flight plans of other mission pilots,
but will be able to only create, edit, or remove his own flight plan.

FR08 Mission flight execution
Mission pilots will be able to execute the planned flight at the specified time
in the same way as with a personal flight.

28

3.2. Non-Functional Requirements

3.2 Non-Functional Requirements
Non-functional requirements describe technical requirements that the final
solution is expected to meet. All of them have to be accounted for in the
design and implementation, which is why they will only be given a code and
description.

NFR01 Functionality will be available via HTTP REST API
The functionality will be available via HTTP protocol and API will be built
using REST principles.

NRF02 Functionality will be available in the mobile
application
Users will be able to view organization and mission details in the Dronetag
mobile application.

NRF03 Functionality will be divided into multiple components
Solution functionality will be logically divided into multiple components so
that the application remains maintainable and extendable.

3.3 Use Case Analysis
Modeling system use cases consists of defining actions that a user can perform
and defining user roles under which the user will be able to perform these
actions. This type of model requires analyzing the application from the user’s
point of view, which helps to understand the system as a whole and uncover-
ing potentially missed features that the system might require for functioning
properly.

The use case model defined here is partially based on preexisting mobile
application design (see Appendix A) that defined part of the user workflow
regarding fleet management. It was decided that this preexisting design will
be reused and adapted to correspond to defined functional requirements. For
this reason, the use cases were mostly taken from the application design. The
original mobile application design was created by Marián Hlaváč and adapted
by Michal Skipala.

3.3.1 Actors
In this section, the actors in the system and their relationship will be identified
and described.

29

3. Analysis

User

Pilot

Figure 3.1: Actor Generalization Example

An actor is something or someone that interacts with the target
system to produce an observable result. . . . Actor models the roles
of real users using the system for different purposes or systems
that interact with the software system, such as border system that
receives input from the main system. [30]

Most of the roles in the system are specialized cases of a general role,
Dronetag user. This is described by generalization relationship. In Figure
3.1 an example of a relationship between pilot and user shows that user is
a generalization of pilot. This notation describes that pilot can perform the
same actions as user, however, user cannot perform the same actions as pilot
unless he is an instance of pilot himself.

The following actors were identified:

• User without organization – standard Dronetag user which is not a
member of any organization,

• Organization member – standard user in an organization,

• Organization owner – user that created the organization of which he
is a member of,

• Mission owner – user in an organization who created the mission,

• Mission member – user in an organization who is a member of the
mission,

• Mission pilot – member of a mission in which he is designated as a
pilot,

30

3.3. Use Case Analysis

• Mission coordinator – member of a mission in which he is designated
as a coordinator,

• Timed task executor – system component that automatically starts
planned missions.

3.3.2 Use Cases
This section will describe the business functionality that an actor will be able
to use in the system.

A use case is one instance of how an actor would use a software
system to activate a business function that is a service offered by
the system and to produce a result. With use cases it is possible to
specify all services offered to users by the system when use cases are
related to actors these directly specify functionality of the system.
[30]

Each use case maps to one or more actors in the system. Due to the
nature of the system, most use cases correspond to standard create, read,
update, delete (CRUD) operations. View operation use cases encompass both
listing and detail information viewing, and manage operation use cases group
both edit and delete operations, excluding cases where these operations are
listed separately.

• Organization management

– UC01 Create organization
– UC02 Manage organization
– UC03 Leave organization
– UC04 Delete organization
– UC05 Change organization preferences

• Organization asset management

– UC06 View organization assets
– UC07 Transfer assets

• Organization member management

– UC08 View organization members
– UC09 Remove organization members
– UC10 Invite user to organization
– UC11 Resolve organization invitations

31

3. Analysis

• Organization team management

– UC12 View teams
– UC13 Create team
– UC14 Manage team
– UC15 View team members
– UC16 Manage team members

• Mission management

– UC17 View missions
– UC18 Create mission
– UC19 Manage mission
– UC20 Change mission preferences

• Mission coordination

– UC21 View mission members
– UC22 Manage mission members
– UC23 Assign mission member roles
– UC24 View mission flight plans
– UC25 Create mission flight plan
– UC26 Edit mission flight plan
– UC27 Delete mission flight plan

• Mission execution

– UC28 Start mission
– UC29 End mission
– UC30 Execute mission flight

3.3.3 Use Case Model
Using the information in the previous sections, actors were associated with
corresponding use cases that they will be able to execute in the system. For
clarity, this model has been split into two parts, one part shown in Figure 3.2,
focusing on organization, asset, and team management, and the other part
shown in Figure 3.3, focusing on mission planning and execution.

3.3.4 Use Case Coverage
Functional requirements of a complete system should cover every defined use
case. To validate that the system was analyzed and designed correctly, use
cases are checked to have at least one corresponding functional requirement
that covers them. This validation is shown in Table 3.1.

32

3.3. Use Case Analysis

Figure 3.2: Organization Use Case Model

33

3. Analysis

Figure 3.3: Mission Use Case Model

34

3.3. Use Case Analysis

Functional Requirements
Use Case FR01 FR02 FR03 FR04 FR05 FR06 FR07 FR08
UC01 ∗
UC02 ∗
UC03 ∗
UC04 ∗
UC05 ∗
UC06 ∗
UC07 ∗
UC08 ∗
UC09 ∗
UC10 ∗
UC11 ∗
UC12 ∗
UC13 ∗
UC14 ∗
UC15 ∗
UC16 ∗
UC17 ∗
UC18 ∗
UC19 ∗
UC20 ∗
UC21 ∗
UC22 ∗
UC23 ∗
UC24 ∗
UC25 ∗
UC26 ∗
UC27 ∗
UC28 ∗
UC29 ∗
UC30 ∗

Table 3.1: Use Case Coverage

35

Chapter 4
Design

This chapter will describe the steps taken when designing the fleet manage-
ment solution, extending the current Dronetag backend and mobile applica-
tion. As the business logic for the solution will be implemented in the back-
end part of the Dronetag platform, the domain model extension will first be
presented. Afterwards, the design of new modules and extension of existing
modules covering the new functionality will be discussed.

4.1 Backend Extension

Given the functional requirements in the analysis presented previously, most of
the functionality is to be implemented as an addition to the existing Dronetag
backend. The fact that the fleet management solution must be integrated
into an existing system had consequences on the design and implementation
decisions made. Newly added modules have to make use of existing function-
ality without making any significant changes to it unless absolutely necessary,
since each such change would require a thorough analysis of impact on current
platform operation.

With this in mind, the goal is still to integrate the solution into the existing
infrastructure as tightly as possible, reusing the existing functionality as much
as possible. This is why a certain amount of change to existing modules is
expected for successful integration.

4.1.1 Domain Model

The first step in designing the fleet management solution analyzed in the
previous chapter was to define new entities in the system. The newly added
entities and their relations are visualized in Figure 4.1.

37

4. Design

Figure 4.1: Updated Domain Model

4.1.2 Modules
The second step after defining new entities that extend the system is their
division into modules. The current Dronetag backend has its functionality
divided into multiple apps, structurally isolating the functionality not only
on a business logic level, but also on the application logic level. All modules
together still form a monolithic system and can depend on each other, but
each app is trying to achieve high cohesion and low coupling by following the
single-responsibility principle at the module level [31]. This principle had to
be respected when defining new modules for the system.

To correctly determine the scope of each module, it was also necessary
to consider current modules in terms of their granularity. As the platform is
being actively developed by the Dronetag team, it was necessary to coordinate
the design with their expectations on each module’s scope to make sure the
scope is not too broad or too narrow (producing too many small modules or
too few large modules) and consistent with current practices.

After discussing possible options with the team, it was decided to split
the newly implemented functionality into 3 modules, each taking care of one
aspect of fleet management.

• organization – This module will be responsible for creating and man-

38

4.2. Mobile Application Extension

aging the organization entity itself. Operations for creating, updating,
and deleting organization will be implemented here. Additionally, this
module will be responsible for the management of organization members
and their invitations, providing endpoints for listing organization mem-
bers and invitations, as well as endpoints for removing members from
the organization, inviting new members, and resolving invitations.

• mission – This module will take care of the organization missions do-
main. Basic mission management, such as creating, editing, and deleting
missions, will be implemented here. Adding and removing mission mem-
bers and assigning roles to them will also be in the scope of this module.

• team – This module will handle the retrieval and management of teams.
That includes listing, creating, editing, and deleting teams, as well as
listing, adding, and removing team members.

In addition, existing modules will be modified to handle additional func-
tionality related to fleet management.

• aircraft – This module will additionally be responsible for aircraft
ownership transfer to and from an organization.

• device – Ownership transfer to and from an organization will have to
be handled in this module, similarly to the aircraft module. Addi-
tionally, special handling in case of organization deletion has to be also
implemented here.

• flight – The flight module will be extended to support mission flight
planning. This way, current flight functionality will not be significantly
disrupted, and mission flight execution will be the same as personal flight
execution.

• users – The users module will newly handle organization invitations for
users who are not members of any organization.

4.2 Mobile Application Extension
The next step after designing and implementing the backend part of the fleet
management solution is the design and implementation of the newly provided
functionality into Dronetag mobile application. Once again the design and im-
plementation had to follow Dronetag architectural practices and code style to
allow easy cooperation across the whole codebase, new functionality included.

The application architecture in Chapter 2.5.4 provided clear guidance on
how to properly extend the application.

39

4. Design

4.2.1 Service Layer
As described previously in Chapter 2.5.4, the service layer communicates di-
rectly with external data sources used in the application. Since fleet man-
agement is provided entirely by the Dronetag backend and is exposed using
REST API, only the BackendApiRestClient had to be modified to provide
access to new or updated HTTP endpoints.

4.2.2 Repositories
The repository layer groups functions for manipulating resources by resource
type rather than data source. In most cases, each resource has applicable
CRUD operation calls implemented on this layer and additionally provides
non-standard operations if there are any. To properly extend this layer, new
resources and modified functionality for existing resources had to be identified
to design new repositories and modify existing ones. All newly implemented
or updated operations are based on the changes described above, since all of
them will be provided by BackendApiRestClient.

It was decided that 3 new repositories with the following functionality will
be created to cover the fleet management functionality.

• Organization repository

– read, create and update∗ operations for organization;
– organization members list and remove operations;
– organization invitations list and create operations;
– organization preferences read and update operations.

• Mission repository

– missions list and mission detail retrieval operations;
– mission members listing.

• Team repository

– teams list, create, update, and delete operations;
– team members list, add, and remove operations.

Apart from adding new repositories, existing repositories have to be up-
dated for the new functionality as well. These updates closely resemble the
backend changes that had to be done. The Device repository and Aircraft
repository will additionally need to cover new ownership transfer capability
and also allow filtering assets (aircraft or devices) by organization or user that
owns them. The Flight repository also had to be modified to allow filtering
listed flights by mission.

∗It was decided that delete operation will not be available in mobile application.

40

4.2. Mobile Application Extension

4.2.3 Features
The feature modules provide a user interface that allows the user to use the
functionality of the Dronetag platform. This is why features, unlike repos-
itories and services, are designed according to the user interface prototype
rather than the backend API. The user interface defined in the feature mod-
ules then displays and allows the user to manipulate the resources defined in
the repositories.

The current feature modules in the Dronetag mobile application are built
around a small feature scope that is available to the user. They usually consist
of a screen or a small set of screens that the user is able to view in the
application and code that handles data fetching and user input handling for
those specific screens. Feature modules are described in more detail in Chapter
2.5.4.

It was decided that the new functionality will be split into the following
5 modules:

• organization – This module will be responsible for showing basic orga-
nization information to the user (screens shown in Figure A.2).

• organization_assets – This module will be responsible for screens dis-
playing organization assets and transfer of assets to or from organization
(contains screens in Figure A.3).

• organization_creation – This module will only contain the organiza-
tion creation process shown in Figure A.1 (designed similarly to existing
onboarding feature package).

• organization_members – This module will contain the list of organiza-
tion members (screen shown in Figure A.4).

• mission – This module will only be responsible for mission functionality,
specifically listing missions and displaying detail of an existing mission,
as shown in Figure A.7. In the future, this module could also be ex-
panded with additional mission functionality, such as managing mission
notifications and other preferences.

• team – This module will be responsible for displaying existing teams and
managing teams and their members (partial prototypes shown in Figure
A.5 and A.6).

4.2.4 Global Layer
To properly integrate previously designed modules into the application, it was
necessary to modify two components that provide global functionality. New
repositories and BLoCs had to be registered in the service locator to make

41

4. Design

them available for dependency injection. Then additional routes representing
new screens were added to the router configuration, making them available
for navigation across the application.

42

Chapter 5
Implementation

This chapter will focus on implementation of the design described in the pre-
vious chapter. It will be split into two parts, the first part describing backend
implementation and the second part describing mobile application implemen-
tation.

5.1 Backend
Chapter 4.1 described necessary changes to the existing Dronetag backend
structure. This section will describe the steps taken to implement new mod-
ules, some of the changes to existing modules, and important details of the
implementation itself.

5.1.1 App Initialization
The first necessary step was to create new apps described in Chapter 4.1.2
according to the preexisting structure, which was described in Chapter 2.4.
Once the structure was established, it was necessary to register each app so
that it is properly initialized on backend startup. Django apps are identified
and registered using their name defined in the apps.py source file (Listing 5.1
shows configuration of the organization app). The apps are then registered in
the backend settings directory by adding the application name to the list of
installed apps.

from django.apps import AppConfig

class OrganizationConfig(AppConfig):
name = "backend.organization"

Listing 5.1: Organization App Configuration

43

5. Implementation

@receiver(pre_save, sender=Mission)
def mission_before_change(sender, instance, *args, **kwargs):

check_mission_flight_altitudes(instance)
check_mission_flight_regions(instance)

Listing 5.2: Mission Pre-Save Signal Handler Example

5.1.2 Models
The next step after creating and registering all new modules was the definition
of data models. As shown in Figure 4.1, models can form relationships with
other modules, which is why models had to be created at once, so that all
models are available and usable for relationship definitions.

Data models are represented by Python classes which inherit from the
django.db.models.Model class. Each model class field defines a database
column that will be created in the database. Model fields can be configured
to set database column constraints (e.g. nullability, default value) or configu-
ration of constructed model instances, for example, inverse relation name for
fields representing relation.

In addition to fields, validation rules can also be defined programmatically
for each model. Django models even allow defining table-wide constraints
on models, meaning that validation rules can also be expressed using SQL
queries if necessary. Table-wide constraints were used in the implementation
to enforce a single owner for each device or aircraft. The check enforces that
both user and organization cannot be set as owners at the same time.

An important feature of Django models is signal dispatching. Each model
instance sends a signal before and after it is saved or deleted. These signals
can be listened to by any registered app, allowing other parts of the system to
react to data changes when necessary. Data change handlers can be decoupled
from the model definition, which reduces code complexity of the model itself
and allows for better separation of concerns.

One example of signal usage is the mission change handler – when mission
changes, it is necessary to validate that all flights still fulfill mission constraints
and raise validation exception in case they do not (example of such handler
is shown in Listing 5.2). Another perfect usage of signals was scheduling of
delayed tasks that are to be run when mission is created or updated.

5.1.3 Endpoints
After defining the database schema, it was necessary to define HTTP end-
points that will be responsible for manipulating previously defined entities.
Endpoints are defined for each app in the urls.py file where each route is
assigned to a single view class. When an HTTP request is received, Django
looks up the responsible view and calls the appropriate handler. Whether

44

5.1. Backend

urlpatterns = [
re_path(
r"^$",
OrganizationCreateView.as_view(),
name="list_create",

),
path(
r"<uuid:org_id>", OrganizationByIdView.as_view(),
name="organization",

),
and others...

]

Listing 5.3: Endpoint Path Registration

the view handles particular HTTP method is entirely dependent on the view
implementation and is not handled by the router, as seen in Listing 5.3. This
approach pushes more responsibility onto the views, but makes it harder to
implement individual HTTP handlers as they have to be implemented inside
a single view class, which is not always desirable.

5.1.4 Views
Each view handling HTTP requests had to be implemented in the views.py
file of each module. The Django REST Framework (DRF) library was
used for view implementation, reducing the amount of code necessary for
standard REST endpoints to an absolute minimum. Views are implemented as
classes inheriting from GenericAPIView which defines the standard behavior
for REST API views. Implementation of each HTTP verb handler is inherited
from GenericAPIView children, for example, the ListCreateAPIView class
which provides the GET handler returning a list of entities and the POST handler
for creating a new entity.

The view behavior is configured using the following attributes:

• queryset – database entities upon which the view will operate,

• permission_classes – list of classes that determine the view and entity
access policy,

• serializer_class – class defining the input and output data structure
and handling,

• lookup_url_kwarg – name of the path parameter that contains the pri-
mary entity identifier;

45

5. Implementation

Additionally, filtering and ordering behavior can also be configured using
view attributes. Since attributes are defined statically and do not depend on
the received request, it is also allowed to override attributes with methods
(for example, queryset can be overridden by the get_queryset method, as
shown in Listing 5.4). Since methods are called on specific instance of the
view, they receive the whole request context and can operate on request data,
allowing to filter the queryset depending on user or select serializer class based
on HTTP verb that is being handled.

class OrganizationMembersView(
LoggingMixin,
OrganizationMixin,
ListAPIView

):
"""
Implementation of /organizations/{org_id}/members
"""

permission_classes = [permissions.IsAuthenticated, IsMember]
serializer_class = OrganizationMemberSerializer

filter_backends = [OrderingFilter]
ordering_fields = "__all__"
pagination_class = LimitOffsetPaginationHeaders

def get_queryset(self):
organization = self.get_object(IsMember())

return organization.members.all()

Listing 5.4: Organization Members View

5.1.5 Serializers
An important aspect of request handling are serializers. Serializer classes
define input and output data models which might differ from backend data
models. Serializer definitions are very similar to model definitions as serializer
fields are defined as class attributes. However, to further reduce the amount of
code necessary, serializers can be derived from models, defining all the model
fields automatically instead of having to define them by hand.

Serializer fields can be marked as read-only to prevent writing to certain
model fields, but still return them in response data. The input data can
also be programmatically validated in serializers. This allows multiple input

46

5.1. Backend

class IsOwner(permissions.BasePermission):
def has_object_permission(self, request, view, obj):

Read access for organization members
if request.method in permissions.SAFE_METHODS:

return request.user in obj.members.all()

if request.user:
return obj.owner == request.user

return False

Listing 5.5: Organization Ownership Permission Class

definitions and validation rules for one data model. Such an approach is used
for handling personal and mission flights, where mission flights use different
serializers with different required fields and validation rules, but creating the
same type of resource as personal flight.

Serializers also handle the process of creating or updating a model instance,
so that the view only looks up existing resource, instantiates the serializer, pro-
vides input data to the serializer, and returns the serializer output. In case ad-
ditional steps are necessary, all the methods can be overridden to add custom
behavior. For more complicated logic, entire request handlers are overridden
with custom logic, only reusing bits of GenericAPIView functionality.

5.1.6 Permissions

Views were first implemented without taking user permissions into ac-
count, which simplified testing the initial implementation and reduced possi-
ble surface for errors. After the initial implementation was completed, per-
mission classes and other means of enforcing correct behavior were imple-
mented and added to the views. Almost all views check that the current
user is authenticated to use the platform. This check is used for all use
cases where a regular user can be the actor, and it is implemented using
the permissions.IsAuthenticated permission class provided by Django.

For more specific permission checks where membership or ownership mat-
ters, custom permission classes are implemented. An example of a permission
class that checks the ownership of an organization is shown in the Listing 5.5.
Permission classes define rules for views by defining the has_permission
method, which has access to request context, but does not know which resource
is being accessed. For this reason, permission can be granted or revoked based
on user data or input data, but not based on attributes of the resource being ac-
cessed. For resource access permissions, the has_object_permission method
has to be implemented. This method is called when get_object method is

47

5. Implementation

called in view to retrieve the resource. The resource object is passed to the
has_object_permission handler, where access permission can be granted or
revoked based on the attributes of the resource object.

5.2 Mobile Application
During design of the mobile application extension the process progressed from
the bottom layers of the application upward. The implementation started from
the top, implementing user interface first and lower-lever functionality later.
Not only did this approach feel more natural from the developer’s point of view,
but it also limited the amount of unnecessary or unused code because all the
code written stemmed from what was directly available to the application’s
end user.

5.2.1 Features

The mobile application UI is divided into feature modules, and since the mod-
ules do not depend on each other, it was not necessary to implement them all
at once. For each module, the first step was to implement the screens and lay
out the widgets so that the user interface corresponds to the user interface
prototype shown in Appendix A. This first implementation did not use any
external data and only showed static content without any state management
being used in this phase.

With screens and widgets in place, it was necessary to implement cubits
that provide state and external input handling logic for each screen and their
widgets. As mentioned in Chapter 2.5.2, each cubit requires a state type
and an initial state. Dronetag team decided to use abstract class as a base
state type with concrete subclasses defining different possible states the screen
can have. An example of this hierarchy is shown in Figure 5.1. All cubits
used for fleet management implementation use this type of hierarchy, as it
allows for easy handling of loading and error states. The initial state of cubits
utilizing this hierarchy is usually the state representing the loading phase, as
the screen is expected to call cubit’s data fetch method upon being displayed,
transitioning to the loading state anyway.

Implementation of user and external input handling which affects screen
state is also defined in cubits. The user interface is expected to call cubit
methods to handle user input and produce state changes that lead to changes
in the UI. For example, when the user wants to update current organization
data using the pull-to-refresh mechanism, the loadOrganization method is
called, and OrganizationLoadInProgress state is emitted using the emit
method. To enforce handling of all the state logic inside the cubit, the emit
method is marked as protected. This ensures that it is only called within cubit
methods, as required by the BLoC pattern.

48

5.2. Mobile Application

Figure 5.1: Cubit State Hierarchy

Future<void> loadOrganization() async {
emit(OrganizationLoadInProgress());

try {
final organization =

await repository.fetchOrganization(id);

emit(OrganizationLoadSuccess(organization));
} catch (exception) {

emit(OrganizationLoadFailure(exception));
}

}

Listing 5.6: Cubit Load Organization Method Example

5.2.2 Repositories and Backend Communication
Implementing the repositories and the extension of the service layer was very
simple and straightforward, as all new functionality was part of the REST
API communication layer. For this reason, all the implemented changes in
the services layer occurred in the BackendApiRestClient class, and the new
endpoint calls were implemented the same way as the existing API calls. The
repositories then simply grouped the newly created API calls according to the
design defined in Chapter 4.2.2.

49

5. Implementation

Future<Organization> updateOrganization({
required String id,
required String name,

}) async {
final response = await request(
HttpMethod.put,
'organizations/$id',
jsonBody: {

'name': name,
},
authenticated: true,

);

return convertToObject(
response,
(o) =>

Organization.fromJson(o as Map<String, dynamic>),
);

}

Listing 5.7: Update Organization Backend Call

5.3 Mobile Application Limitations
During functional analysis, it was recognized that performing some of the fleet
management features in the mobile application made little to no sense. An
example of such functionality is mission planning, especially mission region
and flight region planning, which requires more precise control and can be
done more conveniently on a computer rather than on a smartphone. Mis-
sion planning is expected to be done beforehand and usually requires the
coordinator to draw multiple flight areas, which would be inconvenient on a
smartphone. For this reason, it was decided that for now the mobile appli-
cation will focus mainly on displaying organization and mission information,
while the Dronetag web application will focus on active management.

Additionally, it became apparent that the mobile prototype does not cover
everything necessary for the proper implementation and presentation of the
fleet management solution to the user. After consulting the supervisor, it was
decided that designing user interface is out of scope of this thesis and that the
functionality of the mobile application will be reduced accordingly.

50

Chapter 6
Evaluation

This chapter will describe the processes used for evaluation of the backend
implementation and the implementation of the mobile application, and dis-
cussion of future extensions to the developed solution. The first section will
talk about the backend testing processes that were used to evaluate the im-
plemented solution. The second section will then explain the user testing
methodology used for the mobile application and the reason why automated
testing was not used. The third part will then propose possible improvements
and additions that could be developed in the future.

6.1 Backend
After implementing the backend part of the solution, it was necessary to val-
idate that the implementation correctly follows the requirements defined in
Chapter 3. This validation was done using a combination of two methods,
automated testing and manual validation of functionality using applications
that utilized the newly implemented features.

In [32] Steve McConnell defined the following test categories:

Unit testing is the execution of a complete class, routine, or
small program that has been written by a single programmer
or team of programmers, which is tested in isolation from the
more complete system.

Component testing is the execution of a class, package, small
program, or other program element that involves the work of
multiple programmers or programming teams, which is tested
in isolation from the more complete system.

Integration testing is the combined execution of two or more
classes, packages, components, or subsystems that have been
created by multiple programmers or programming teams. This

51

6. Evaluation

kind of testing typically starts as soon as there are two classes
to test and continues until the entire system is complete.

System testing is the execution of the software in its final con-
figuration, including integration with other software and hard-
ware systems. It tests for security, performance, resource loss,
timing problems, and other issues that can’t be tested at lower
levels of integration.

Before the implementation of the fleet management solution, the Dronetag
platform featured a limited number of automated tests for its existing func-
tionality. These tests would most likely be classified as unit tests. Tests falling
under other category, especially automated integration or system tests, were
not recognized in the codebase and for this reason only unit testing was used
for automated validation of code.

6.1.1 Unit Testing
The Django framework provides the necessary functionality and tooling for
convenient unit testing of application code [33]. The DRF library then also
provides tools for easier testing of REST API part of the backend [34].

The structure of tests themselves was laid out according to the recom-
mended Django testing practices [33] and the existing conventions used by
the Dronetag team. This lead to creation of separate test modules for each
functional module in each new app (e.g. test_views.py, test_models.py).
Much of the testing setup needed was reused from existing code in the common
module. Since the common module had also provided test data for all the back-
end unit tests, it was necessary to add new test data for fleet management
there.

The most important part of unit testing was testing of view modules of
each new app. A test case class inheriting from DRF’s APITestCase was
created for each class inside of a view module. Various test cases that validate
the functional requirements defined in Chapter 3.1 were then implemented
with the help of existing API tests. An example of such test is shown in the
Listing 6.1.

52

6.2. Mobile Application

def test_delete_unauthorized(self):
"""Unauthorize users cannot delete organization"""
url = reverse(

"organizations:organization",
kwargs={
"version": "v1",
"org_id": Organization.objects.first().id

},
)
client.force_authenticate(user=None)
response = client.delete(url)
self.assertEqual(

response.status_code,
status.HTTP_401_UNAUTHORIZED,
response.data,

)
self.assertEqual(error_unauthorized, response.data)

Listing 6.1: API Test Example

6.2 Mobile Application

The evaluation of the mobile application was performed exclusively by manual
testing done by the developer in the first phase of testing and different types
of users in the second testing phase. After consulting the supervisor, it was
decided that automated testing will not be used for the mobile application, as
Dronetag currently does not have any testing methodology implemented for
the Flutter mobile application, and performing research on testing methodol-
ogy and implementation of one would be outside of scope of this thesis.

6.2.1 User Test Scenarios

For comparability and consistency between user tests performed, a set of test
scenarios that the user will go through was created. Each scenario tests a par-
ticular use case or multiple use cases, validating that they were implemented
properly. Scenarios were performed one by one and each user was asked to
perform its listed steps. Users were observed and were not provided with any
assistance unless absolutely necessary. After each test scenario, they were
asked for feedback on user experience of the feature tested. The collected
information was then used to evaluate the necessary changes to the concept
of fleet management and the design of the mobile application UI.

53

6. Evaluation

TS01 Create organization

In this test case user is is logged in the application, starts on the application
dashboard, and is not currently member of any organization. His task is to
find where to create a new organization inside the application. Once the user
finds the form, he must create an organization named “Drone” and invite an
additional member with e-mail address m1@dronetag.cz. The test scenario
ends successfully when the user finishes the creation process and enters the
organization detail screen.

TS02 Rename organization

This test scenario starts on the organization detail screen. The user is asked
to find the screen where the organization name can be changed. When the
user successfully enters the screen, he is asked to rename the organization to
“Drone Ops” and go back to the organization detail screen. The test scenario
ends successfully when the user gets back to the organization detail screen.

TS03 Transfer assets

In this test case the user starts on the organization detail screen. His user
account currently owns two aircraft and two devices. The user is asked to
transfer aircraft named “Drone Ops Aircraft” and device named ‘’‘Drone Ops
Device” to organization ownership. Once the transfer is completed, the user is
asked to view the list of assets currently owned by the organization, at which
point the test case successfully ends.

TS04 Invite new member

In this test case, the user starts on the organization detail screen and has to
view list of current organization members. After successfully listing organiza-
tion members, the user has to invite new organization member with e-mail
m2@dronetag.cz into the organization. This test case ends when the user is
successfully invited.

TS05 View organization missions

In this test case, the user starts on the organization detail screen. The user
is asked to find a list of organization missions and identify missions which
are currently in progress. The user is then asked to open detailed information
about finished mission and identify coordinators in the mission. After that, the
user has to display the flight plan of a mission pilot who is not a coordinator.
The user is then asked to describe what he sees on the map. After that, the
user has to find the UI option to hide all flight plans at once. The test scenario
ends successfully when the user hides all the flight plans displayed using the
“Hide all flight plans” menu option.

54

6.2. Mobile Application

TS06 Leave organization

This test scenario starts on organization detail screen, where the user is asked
to leave the organization he is currently in. The test scenario ends successfully
when the user successfully leaves the organization.

6.2.2 User Testing Output
The user testing scenarios described above were designed to evaluate user
experience and uncover potential problems in the user interface design, logic
of implemented user interactions, or usage patterns that were not recognized
during analysis and design. After going through the defined scenarios with
professional pilots, experienced Dronetag users and users who had never used
Dronetag before, multiple usability issues and also a few minor bugs were
identified.

The following user experience inconveniences arisen:

• When creating a new organization, after a user is invited, keyboard is
not dismissed and covers the “Continue” button, preventing the user
from finishing the process.

• Users expect the “Save” button on “Manage organization” to take them
back to the “Organization” screen.

• “Transfer assets” button on the “Assets” screen is difficult to find for
users inexperienced with the Dronetag mobile application.

• Users generally try to find asset transfer option under that particular
asset’s detail screen outside of the organization management.

• The test subjects expected list of invited users on the “Members” screen
(this was included in the original prototype, but the implementation is
awaiting improved design).

• Experienced pilots expressed that the button to show or hide all mission
plans seems to be unnecessary and that they would at least expect it
near the mission member list.

• Users would generally like to further distinguish pilots from other mission
members.

Incorrect behavior found:

• When creating a new organization, the text field for invited user’s e-mail
does not show validation errors, even though the validation itself works
correctly.

55

6. Evaluation

• Changing the organization name would not propagate to the “Profile”
screen.

Apart from the issues mentioned above, most of the test subjects said that
the mission detail screen seemed intuitive and easy to use. The “Members”
screen functionality also seemed sufficient for users, and process for leaving
the organization felt straightforward to them.

User feedback from the user testing performed provided valuable feedback
for future user interface design iterations and will help with the development
of the platform in the future. Thanks to feedback from different types of
users, the Dronetag team can make the platform more accessible for everyone.
Testing also helped uncover incorrect behavior that was not recognized during
development.

6.3 Future Work
The implemented solution, as described in this thesis, will already provide
major usability improvement for commercial subjects using the Dronetag plat-
form, once it is generally available. Still, this is only the beginning for
Dronetag fleet management.

The development process of the fleet management solution showed a clear
vision of how the system should operate, and the implemented backend ex-
tension provides solid base upon which the platform’s commercial customer
operations can build. However, current Dronetag user interface design of the
mobile application, as well as the web application is not entirely prepared for
the rollout of fleet management to the public. The next steps should therefore
be the proper adaptation of the Dronetag design concept for the new fleet
management functionality and implementation of this new design. Properly
finalizing the design will also allow implementation of team functionality for
the mobile application.

From a functional point of view, development in the short term should
primarily focus on improving current functionality and its user experience,
not on adding new features. An exception to this would be implementation of
organization teams for the mobile application and implementation of real-time
notifications about mission events, as this feature was proposed as an addition
during initial analysis, provides great added value to end users, and already has
initial support in the implemented backend part of the solution. Additionally,
the backend architecture would benefit from separating business logic into an
entirely new layer, as fleet management added a great amount of complexity
which was sometimes difficult to handle using the current architecture.

In the long term, fleet management offers many possible ways for future
expansion, which is most likely going to be driven by customer requests, and
current fleet management design and implementation is built with this in
mind. Inspiration for new features could be, for example, taken from solutions

56

6.3. Future Work

analyzed in Chapter 1. One such feature that was discussed during solution
analysis was drone battery management, as it would allow organizations to
easily track battery wear and manage maintenance cycles, but there are many
other possible features to choose from.

57

Conclusion

A detailed analysis of existing fleet management solutions and an assessment
of their capabilities was presented. This analysis was then applied during the
design of the new fleet management solution.

After analyzing existing fleet management solutions, the current state of
the Dronetag platform was analyzed to obtain an overview of how the platform
works internally and what the constraints are for the proposed solution. This
analysis covered both a high-level overview of the entire platform and a more
in-depth analysis of the Django backend and the Flutter mobile application,
where the fleet management solution was implemented. The code structure
and conventions used were identified so that the implemented solution follows
the Dronetag team code style.

Taking into account previous analyses, Dronetag team member remarks,
and Dronetag user feedback, the new fleet management solution was analyzed,
and its requirements were collected.

The collected requirements were then used to design an extended Dronetag
backend architecture that would provide fleet management functionality. With
the required functionality and backend design available, mobile application
extensions were designed in a similar fashion. However, the scope of the
mobile application was stripped of functionality that was deemed unnecessary
at the time, for example, mission planning.

Fleet management was then implemented according to the previously de-
fined design. New modules handling designed features were created on the
backend and a new section of the Flutter mobile application was added, uti-
lizing these new backend features.

After the implementation of the solution on the backend was finished, unit
tests were written for the backend implementation. Because there was no ex-
isting testing methodology for the Flutter mobile app, automated testing was
omitted for the mobile application. The final prototype of the mobile applica-
tion was then tested with real pilots, who presented their opinions comments
about usability and possible improvements of the implemented solution.

59

Conclusion

Possible future expansion, taking feedback into account, was presented in
Chapter 6.3. Current backend implementation already supports vast majority
of required functionality, however, additional changes regarding user experi-
ence proposed by users in testing might require additional backend changes.
The scope of implemented mobile application functionality was limited, and
further expansion is planned for later date.

The designed solution provides a good base for future expansion of func-
tionality, and the implemented functionality simplifies fleet management, even
though the implementation was just a prototype that will be revised. Further
steps that would allow finalization of the solution and its availability to users
were also presented in this thesis; however, it will still take additional time for
that to happen due to involvement of external factors.

60

Bibliography

1. FEDERAL AVIATION ADMINISTRATION. FAA Aerospace Forecast
Fiscal Years 2021-2041 [online]. FAA Aerospace Forecasts, 2021. [visited
on 2022-04-24]. Available from: https://www.faa.gov/data_research/
aviation/aerospace_forecasts/media/FY2021-41_FAA_Aerospace_
Forecast.pdf.

2. FLYFREELY PTY LTD. Drone Management Platform [online]. Fly-
Freely Drone Management Platform, 2022. [visited on 2022-05-11]. Avail-
able from: https://www.flyfreely.io/.

3. DRONELOGBOOK. DroneLogbook [online]. DroneLogbook, 2022. [vis-
ited on 2022-05-11]. Available from: https://www.dronelogbook.com.

4. FLYFREELY PTY LTD. About [online]. FlyFreely Drone Management
Platform, 2021. [visited on 2022-04-24]. Available from: https://www.
flyfreely.io/about/.

5. FLYFREELY PTY LTD. Pricing [online]. FlyFreely Drone Management
Platform, 2021. [visited on 2022-04-24]. Available from: https://www.
flyfreely.io/pricing/.

6. SKIPALA, Michal. Implementation of the new module into the Dronetag
web application for planning, managing and coordinating drone fleets.
Praha, 2022. Bachelor’s Thesis. Czech Technical University in Prague,
Faculty of Information Technology.

7. DRONETAG S.R.O. Dronetag Mini [online]. Dronetag, 2022. [visited on
2022-05-06]. Available from: https://dronetag.cz/products/mini/.

8. THE POSTGRESQL GLOBAL DEVELOPMENT GROUP. Post-
greSQL: The world’s most advanced open source database [online].
Postgresql.org, 2019. [visited on 2022-05-11]. Available from: https :
//www.postgresql.org/.

61

https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2021-41_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2021-41_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2021-41_FAA_Aerospace_Forecast.pdf
https://www.flyfreely.io/
https://www.dronelogbook.com
https://www.flyfreely.io/about/
https://www.flyfreely.io/about/
https://www.flyfreely.io/pricing/
https://www.flyfreely.io/pricing/
https://dronetag.cz/products/mini/
https://www.postgresql.org/
https://www.postgresql.org/

Bibliography

9. DJANGO SOFTWARE FOUNDATION. The Web framework for per-
fectionists with deadlines [online]. Djangoproject.com, 2019. [visited on
2022-05-11]. Available from: https://www.djangoproject.com/.

10. HOGUIN, Loïc. REST principles [online]. Nine Nines, 2018. [visited on
2022-05-11]. Available from: https://ninenines.eu/docs/en/cowboy/
2.8/guide/rest_principles/.

11. DJANGO SOFTWARE FOUNDATION. Django overview [online]. Djan-
goproject.com, 2019. [visited on 2022-04-24]. Available from: https://
www.djangoproject.com/start/overview/.

12. PYTHON SOFTWARE FOUNDATION. What is Python? Executive
Summary [online]. Python.org, 2019. [visited on 2022-04-24]. Available
from: https://www.python.org/doc/essays/blurb/.

13. SOLEM, Ask. Periodic Tasks [online]. Celery 5.2.6 Documentation, 2021.
[visited on 2022-05-07]. Available from: https://docs.celeryq.dev/
en/stable/userguide/periodic-tasks.html.

14. DJANGO REST FRAMEWORK COMMUNITY. django-rest-
framework [online]. GitHub, 2022. [visited on 2022-05-07]. Available
from: https://github.com/encode/django-rest-framework.

15. SENDGRID. sendgrid-python [online]. GitHub, 2022. [visited on 2022-05-
07]. Available from: https://github.com/sendgrid/sendgrid-python.

16. GILLIES, Sean. The Shapely User Manual [online]. Shapely 1.6 documen-
tation, 2022. [visited on 2022-05-07]. Available from: https://shapely.
readthedocs.io/en/stable/manual.html.

17. FRANZEL, T. drf-spectacular [online]. GitHub, 2022. [visited on 2022-05-
07]. Available from: https://github.com/tfranzel/drf-spectacular.

18. FLUTTER. Flutter - Beautiful native apps in record time [online]. Flut-
ter.dev, 2019. [visited on 2022-04-25]. Available from: https://flutter.
dev/.

19. FLUTTER. FAQ [online]. Flutter, 2022. [visited on 2022-05-05]. Avail-
able from: https://docs.flutter.dev/resources/faq.

20. DART COMMUNITY. Dart Overview [online]. dart.dev, 2022. [visited
on 2022-04-27]. Available from: https://dart.dev/overview.

21. FLUTTER. Flutter Architectural Overview [online]. Flutter, 2021. [vis-
ited on 2022-05-05]. Available from: https : / / docs . flutter . dev /
resources/architectural-overview.

22. ANGELOV, Felix. Bloc [online]. GitHub, 2022. [visited on 2022-05-
10]. Available from: https : / / github . com / felangel / bloc / blob /
e05a8cbfbf50dce35af4a2c66a53a1416b362613 / packages / bloc /
README.md.

62

https://www.djangoproject.com/
https://ninenines.eu/docs/en/cowboy/2.8/guide/rest_principles/
https://ninenines.eu/docs/en/cowboy/2.8/guide/rest_principles/
https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/start/overview/
https://www.python.org/doc/essays/blurb/
https://docs.celeryq.dev/en/stable/userguide/periodic-tasks.html
https://docs.celeryq.dev/en/stable/userguide/periodic-tasks.html
https://github.com/encode/django-rest-framework
https://github.com/sendgrid/sendgrid-python
https://shapely.readthedocs.io/en/stable/manual.html
https://shapely.readthedocs.io/en/stable/manual.html
https://github.com/tfranzel/drf-spectacular
https://flutter.dev/
https://flutter.dev/
https://docs.flutter.dev/resources/faq
https://dart.dev/overview
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://github.com/felangel/bloc/blob/e05a8cbfbf50dce35af4a2c66a53a1416b362613/packages/bloc/README.md
https://github.com/felangel/bloc/blob/e05a8cbfbf50dce35af4a2c66a53a1416b362613/packages/bloc/README.md
https://github.com/felangel/bloc/blob/e05a8cbfbf50dce35af4a2c66a53a1416b362613/packages/bloc/README.md

Bibliography

23. SOARES, Paolo. Flutter / AngularDart – Code sharing, better together
[online]. YouTube, 2018. [visited on 2022-05-04]. Available from: https:
//www.youtube.com/watch?v=PLHln7wHgPE.

24. ANGELOV, Felix. Why Bloc? [online]. Bloc State Management Library,
2020. [visited on 2022-05-04]. Available from: https://bloclibrary.
dev/#/whybloc.

25. ANGELOV, Felix. Merge Cubit into Bloc [online]. GitHub, 2020. [visited
on 2022-05-04]. Available from: https://github.com/felangel/cubit/
issues/69.

26. ANGELOV, Felix. Core Concepts [online]. Bloc State Manage-
ment Library, 2021. [visited on 2022-05-05]. Available from: https :
//bloclibrary.dev/#/coreconcepts.

27. MARTIN, Robert C. Clean Architecture: a craftsman’s guide to software
structure and design. Prentice Hall, 2018.

28. FOWLER, Martin. Inversion of Control Containers and the Dependency
Injection pattern [online]. martinfowler.com, 2004. [visited on 2022-05-
05]. Available from: https://martinfowler.com/articles/injection.
html.

29. BURKHART, Thomas; COMMUNITY, Flutter. GetIt [online]. GitHub,
2022. [visited on 2022-05-05]. Available from: https://github.com/
fluttercommunity/get_it.

30. JALLOUL, Ghinwa. UML by Example. Cambridge University Press, Cop,
2004.

31. MARTIN, Robert C. Clean code: a handbook of agile software craftsman-
ship. Prentice Hall, 2009.

32. MCCONNELL, Steve. Code Complete. 2nd ed. Microsoft Press, 2004.
33. DJANGO SOFTWARE FOUNDATION. Writing and running tests [on-

line]. Django documentation, 2022. [visited on 2022-05-09]. Available
from: https://docs.djangoproject.com/en/4.0/topics/testing/
overview/.

34. DJANGO REST FRAMEWORK COMMUNITY. Testing [online].
Django REST framework, 2022. [visited on 2022-05-09]. Available from:
https://www.django-rest-framework.org/api-guide/testing/.

63

https://www.youtube.com/watch?v=PLHln7wHgPE
https://www.youtube.com/watch?v=PLHln7wHgPE
https://bloclibrary.dev/#/whybloc
https://bloclibrary.dev/#/whybloc
https://github.com/felangel/cubit/issues/69
https://github.com/felangel/cubit/issues/69
https://bloclibrary.dev/#/coreconcepts
https://bloclibrary.dev/#/coreconcepts
https://martinfowler.com/articles/injection.html
https://martinfowler.com/articles/injection.html
https://github.com/fluttercommunity/get_it
https://github.com/fluttercommunity/get_it
https://docs.djangoproject.com/en/4.0/topics/testing/overview/
https://docs.djangoproject.com/en/4.0/topics/testing/overview/
https://www.django-rest-framework.org/api-guide/testing/

Appendix A
User Interface Prototypes

65

A. User Interface Prototypes

Create Organization

Creating a new organization allows you to

invite other registered users and share your

devices and aircrafts with them.

Input value or placeholder

Create organization

Learn more

Add Members

Organizations are all about people. Invite

your first teammates using their e-mail

address. They will receive invitation to join.

Continue

Invite later

Add more

Input value or placeholder

Figure A.1: Create Organization Process Prototypes

66

Flights

Assets

Members

Leave organization

Manage organization

Dronetag s.r.o.

Organization

5 members

Created 2 Feb 2021

Rename Organization

Input value or placeholder

Confirm

Manage Organization

TODO

Figure A.2: Organization Detail and Management Prototypes

67

A. User Interface Prototypes

Dronetag Mini #3

dronetag mini a

mini for inspections

DJI Mavic Air

DJI Mavic Air #2

DJI Matrice M600

maticaaa

Assets

Transfer assets

Devices

Aircrafts

Move multiple devices or aircrafts into or

from organization Dronetag s.r.o.

Confirm

Transfer Assets

DJI Mavic

DJI Mavic Air

Dronetag Mini #3

Dronetag Mini #2

My Assets

Dronetag s.r.o. Assets

maticaaa

DJI Matrice M600

Dronetag Mini #3

dronetag mini a

mini for inspections

Figure A.3: Organization Asset Management Prototypes

68

Rado Pitoňák
Member

Jan Matějka
Member

someone.invited@dronetag.cz
Invitation sent on 7 Oct 2020

Lukáš Brchl
Member

Marián Hlaváč
Organization owner

Members

Change roles

Add members +

Figure A.4: Organization Members Screen Prototype

69

A. User Interface Prototypes

Teams

Teams are used to organize your

organization members into groups.

Lukáš Brchl
Member

Marián Hlaváč
Organization owner

Default Team +

Show 8 more

someone.invited@dronetag.cz
Invitation sent on 7 Oct 2020

Jan Matějka
Member

Inspectors Team +

Show 4 more

Add team +

Figure A.5: Team Detail Screen Prototype

70

Teams are used to organize your

organization members into groups.

Add Team

Create

New Team

Edit Team

someone.invited@dronetag.cz
Invitation sent on 7 Oct 2020

Lukáš Brchl
Member

Marián Hlaváč
Organization owner

Default Team

Show 8 more

Figure A.6: Team Add and Edit Prototypes

71

A. User Interface Prototypes

All Any status Any status

DeleteExport

Missions

a random flight around the park
6 Feb 2021, 12:52

6m 40sGeorge Bush 5 pilots

Bridge Inspection #94-122

7 Feb 2021, 19:19

6m 40sGeorge Bush 5 pilots

Currently ongoing flight
Started at 14:10

CURRENT George Bush 5 pilots

Today’s planned mission
8 Feb 2021, 20:00

5 pilotsPLANNED George Bush

Bridge Inspection ID ABC225

Flight Started

7 Feb, 19:19:22

Flight Finished

7 Feb,19:26:02

Mission

Duration

6m 40s

Flight plan overlap

Enabled

Show 8 more

George Bush Flight plan

Donald Trump Flight plan

Barack Obama Flight plan

Mission crew

Notification settings

Proximity alerts

Flying out of flight plan

Height range

0m – 120m

Figure A.7: Organization Mission Prototypes

72

Appendix B
Acronyms

API application programming interface.

BLoC business logic component.

BLOS beyond visual line of sight.

CoAP Constrained Application Protocol.

CRUD create, read, update, delete.

DIP dependency inversion principle.

DJI Da-Jiang Innovations.

DRF Django REST Framework.

EVLOS extended visual line of sight.

HTTP Hypertext Transfer Protocol.

ID identifier.

REST Representational State Transfer.

UAS unmanned aircraft system.

UI user interface.

URL Uniform Resource Locator.

VLOS visual line of sight.

73

Appendix C
Contents of Enclosed SD Card

readme.txt..........................description of the SD card contents
src...the directory of source codes

thesis......the directory containing LATEX source codes of the thesis
text.. the thesis text directory

thesis.pdf............................the thesis text in PDF format

75

	List of Listings
	Introduction
	Motivation
	Objectives

	Related Work
	FlyFreely Platform
	Registration Process
	Personnel
	Aircraft
	Missions
	Field App
	Conclusion

	DroneLogbook Platform
	Personnel Management
	Customers and Projects
	Inventory
	Missions
	Flights
	Conclusion

	Other Platforms

	Dronetag Platform
	Platform Introduction
	Usage Overview
	Aircraft and Device Creation
	Flight
	Fleet Management Support

	Architecture
	Django Backend
	Aircraft App
	Device App
	Flight App
	User App

	Flutter Mobile Application
	Flutter Framework
	State Management
	Dependency Injection
	Application Structure

	Analysis
	Functional Requirements
	Non-Functional Requirements
	Use Case Analysis
	Actors
	Use Cases
	Use Case Model
	Use Case Coverage

	Design
	Backend Extension
	Domain Model
	Modules

	Mobile Application Extension
	Service Layer
	Repositories
	Features
	Global Layer

	Implementation
	Backend
	App Initialization
	Models
	Endpoints
	Views
	Serializers
	Permissions

	Mobile Application
	Features
	Repositories and Backend Communication

	Mobile Application Limitations

	Evaluation
	Backend
	Unit Testing

	Mobile Application
	User Test Scenarios
	User Testing Output

	Future Work

	Conclusion
	Bibliography
	User Interface Prototypes
	Acronyms
	Contents of Enclosed SD Card

