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Abstract

The thesis focuses on the communication of the TPM security chip on the
LPC bus. The aim is also to develop an FPGA design to capture this com-
munication. In the theoretical part of the thesis, the structure of the TPM
chip is described, and its most notable use cases are presented, along with
basic information about the LPC bus. In the practical part, an FPGA design
which filters only TPM related data from the LPC bus is developed. The
data captured by tapping the LPC bus are then sent via the serial line and
saved to a text file. Subsequently, the data are analyzed, and it is discovered
that, when certain conditions are met, BitLocker Volume Master key can be
found between the fetched data. This key can be used to decrypt the drive of
the targeted machine. This way, an evil maid type attack is carried out. The
attacker who got hold of a target machine can thus read previously encrypted
data from the drive. The FPGA design is loaded into a physical board Basys3.
Before connecting the FPGA to a real LPC bus, the design and implementa-
tion are tested, at first using simulation and after that, Arduino is utilized to
mimic the behavior of an LPC bus.

Keywords trusted platform module, low pin count bus, FPGA, volume
master key, BitLocker, Verilog, Arduino, Basys3
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Abstrakt

Práce se zaměřuje na komunikaci bezpečnostńıho čipu TPM po sběrnici LPC
a vývojem FPGA designu pro jej́ı odposlech. Ve své teoretické části shrnuje
strukturu a nejd̊uležitěǰśı př́ıpady užit́ı bezpečnostńıho čipu TPM a základńı
informace o sběrnici LPC. Praktická část je věnována návrhu hardwaru
v FPGA pro zachyceńı komunikace na LPC sběrnici a filtraci dat týkaj́ıćıch
se pouze TPM. Data zachycená odposlechem sběrnice se následně pošlou přes
sériovou linku a ulož́ı do textového souboru v čitelné podobě. Poté proběhne
jejich analýza a je zjǐstěno, že se zde za určitých podmı́nek nacháźı i kĺıč Vo-
lume Master Key nástroje Bitlocker. Tento kĺıč se dá použ́ıt dešifrováńı disku
zař́ızeńı, na kterém je odposlech prováděn. T́ımto zp̊usobem je prakticky pro-
veden útok typu evil maid, kdy útočńık, který se zmocnil ćılového zař́ızeńı,
dokáže přeč́ıst z disku zašifrovaná data. Navržený FPGA design je nahrán
a spuštěn na fyzické desce Basys3. Design a implementace jsou před použit́ım
na reálné LPC sběrnici otestovány jak simulaćı, tak pomoćı platformy Ar-
duino, která zde napodobuje chováńı sběrnice.

Kĺıčová slova trusted platform module, low pin count bus, FPGA, volume
master key, BitLocker, Verilog, Arduino, Basys3
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Introduction

Nowadays, most people and businesses use electronic devices to complete their
daily tasks. They use various programs and digital platforms for this purpose,
accessing them either locally or remotely. In both of these cases, the software
is used by a particular user working on a concrete device.

It would be desirable to prove that the operations performed by these
applications are trusted. In other words, the software is not malicious, the
user is trustworthy, and, most importantly, the configuration state of the entire
device is genuine.

This is the moment when a hardware chip is suitable. It might not have
been well known to a typical user that there is a piece of hardware dedicated
strictly to security purposes inside their computer.

That has probably changed, as Microsoft recently released a new version of
their operating system, Windows 11. To upgrade, the device is now required
to contain the Trusted Platform Module 2.0 (TPM 2.0) chip.

Although the focus is mainly on personal computers in the implementation
part of this thesis, the use of the TPM is not limited to them. It can be used in
smartphones, tablets, gaming consoles, televisions, or in-car computers with
various operating systems.

TPM helps these devices by performing cryptographic operations and adds
a factor of physical security. During some types of attacks, an attacker could
try to obtain data from the memory of a computer, which may contain secret
information, such as passwords or encryption keys. The TPM adds protection
against these attacks by being separate from the memory and taking care of
these secrets itself. It also helps protect against the injection of malicious code
into the memory. Ransomware, which is a term that has recently been heard
a lot in the news, can be mentioned as an example.

The TPM is a separate hardware component, so it must be connected to
the rest of the system somehow, that is via the LPC bus. What are the data
that are sent from and to the TPM? Since it is a security module, is it possible
to obtain some interesting or even private information after capturing these
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Introduction

data? In this thesis, the answer is shown to be yes, when certain conditions
are met.

With the requirement mentioned above, the TPM becomes more relevant,
and its existence becomes even more important in the present day. It is
interesting to look into its features deeper and explore its implementation
in greater detail. It is also an opportunity to present this information to
a professional audience without an expertise in hardware security in digestible
form, since there are not many technical sources with reasonable depth of
information describing the TPM.

The main goal of the thesis is to develop a solution that reads the TPM
traffic from a low pin count bus and presents it in a human-readable form
on the user’s computer. Subsequently, the obtained data are analyzed. The
desired output is a properly tested FPGA design capable of filtering the TPM
related data and outputting them via a serial line.

2



Chapter 1
Theoretical Background of
Trusted Platform Module

The main concepts of trusted platform module (TPM) chip are introduced in
this chapter, along with its most significant use cases. It also involves a simple
overview of the LPC bus and Windows Bitlocker, which is one of the use cases
of TPM. As will be shown in the following chapters, it deserves a more detailed
description in context with the practical part of the thesis.

TPM is a security chip introduced by the Trusted Computing Group, who
is also the author of its specification. The idea behind creating such a chip is
to enhance security at the hardware level.

The TPM can perform various cryptographic operations, it provides mul-
tiple use cases where software solution is not sufficient or trusted. It can be
used to generate and store cryptographic keys and certificates. One of the
main features is ensuring the platform’s integrity by measuring the boot code
during the boot phase of the system. More detail on use cases of TPM will be
provided later in this chapter. In addition, it serves as a technology for device
authentication using a unique RSA key that is burned into the TPM chip. [4]

TPM works as a passive device which receives commands, processes them,
and returns responses. The discrete TPM is typically connected to the moth-
erboard via the SPI or LPC bus. This thesis addresses the LPC connection
and focuses at the data that are flowing through the bus into the TPM. Later
in the thesis, it is revealed that some confidential data of Windows Bitlocker
can be retrieved from the LPC-TPM communication.

1.1 Structure of TPM

The Trusted Platform Module chip consists of three main sections, crypto-
graphic processor, non-volatile, and volatile memory. All computation takes
place in the cryptographic processor, which performs essential cryptographic

3



1. Theoretical Background of Trusted Platform Module

operations, such as encrypting, decrypting, and data signing. It is also capable
of producing data hashes and generating RSA key pairs. A random number
generator is also present. [17]

Non-volatile memory

Endorsement key (EK)

Storage root key (SRK)

Volatile memory

Attestation keys (AK)

Loaded keys

Platform configuration  
registers (PCR)

RSA key generator

Random number generator

Encryption-decryption-
signature engine

Hash engine

Cryptographic Processor

I/O

Figure 1.1: The TPM chip structure consists of three pieces. The cryp-
tographic processor performs essential cryptographic computation, the non-
volatile and volatile memory are used for storing keys and loading measured
values into PCRs. SPI or LPC interface is present to communicate. [1]

The non-volatile memory contains the endorsement and storage root keys,
their significance is discussed in a section about the key hierarchy (1.3).

The attestation keys are also discussed in this section. They reside in
volatile memory together with the platform configuration registers, which also
have a dedicated section (1.4).

1.2 Cryptographic Processor Capabilities

There are multiple algorithms that the TPM 2.0 cryptographic processor can
use. The encryption-decryption engine is capable of utilizing both symmetric
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1.3. Key Hierarchy in TPM

algorithms, including AES with key sizes of 128 or 256 bits, and asymmet-
ric ciphers, including elyptic curve cryptography (ECC) along with the RSA
algorithm.

The hash engine was able to compute only the SHA-1 hash in TPM 1.2.
Since the algorithm has been cryptographically broken, it has been deprecated
in the TPM 2.0 specification, and multiple newer hash functions are now
supported, including SHA-3 or SHA-512.

The random number generator is also present in the cryptographic pro-
cessor. It serves as a source of randomness for TPM, it is utilized to generate
nonces1 and keys, as well as to provide randomness in cryptographic signing.
Software can also make use of a secure RNG present in the TPM by inter-
acting with the TPM’s API (more information on TPM API is provided in
section 1.6). [1], [5]

1.3 Key Hierarchy in TPM

Three types of encryption keys can be found inside a TPM chip. The RSA
key pair that is fundamental to the TPM is Endorsement key (EK). It is per-
manently present in the TPM from the time of manufacture, and its private
part never leaves the chip. EK practically serves as a TPM identifier. Addi-
tionally, a TPM typically provides an endorsement certificate, which is stored
in the TPM’s internal memory. This certificate is signed by the manufacturer,
which ensures that the TPM chip is genuine. [7], [5]

However, the Endorsement key pair is used only in a limited number of
procedures, as there would be a possibility of identifying the device with its
continuous usage. [7] Therefore, for routine transaction, there are Attestation
keys (AK). Their purpose is to sign data to prove that they come from a true
TPM. That means there has to be also a method to prove that a particular
AK originates from a genuine EK. This can be done by using an Attestation
Certificate Authority or encrypting AK with EK (or another AK ) and, there-
fore, associating it with the endorsement hierarchy. Simply put, AK can be
treated as an alias for EK. Typically, a service or application that needs to
use EK can use AK dedicated to this service in particular. [5], [6]

Another important feature is protecting TPM keys created by applications.
The Storage Root Key (SRK) participates in that. It is the primary key of the
owner hierarchy, which means that all the generated keys used for signing and
encrypting are derived from SRK. It is then possible to verify that a key truly
originates from a particular TPM owned by a concrete entity. When a new
user takes ownership of the TPM, new SRK is created. [8], [7]

1“A nonce is a random or semi-random number that is generated for a specific use. It is
related to cryptographic communication and information technology (IT). The term stands
for ”number used once” or ”number once” and is commonly referred to as a cryptographic
nonce.” [34]
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1. Theoretical Background of Trusted Platform Module

1.4 Platform Configuration Registers

Platform configuration registers (PCR) act as a way to measure the state of
software. Both the software itself and its configuration data are included in
the measurement. The recorded values can be then read or a signed report of
their state, called an attestation, can be generated. It is possible to use the
measured data, for example, to detect an unpermitted change of the platform
state during the boot phase.

What does it mean to perform a measurement? The values recorded into
the registers are obtained as hashes of the data that form the current platform
state, e.g. the Master Boot Record. In TPM 1.2, the SHA-1 hash function
was the only supported. Now, with version 2.0, the hash algorithm is not
strictly defined and can be changed.

An important attribute of PCRs is the method of updating their records.
The calculation is called extend. Instead of a simple hash of the currently
measured state, it is extended to the previously saved value and subsequently
hashed.

Calculation of n-th PCR value: PCR[n] = Hash(PCR[n]||Argument)
By the use of this operation, one of the main PCR tasks is fulfilled. The

history of the measurements is recorded, and due to the non-reversibility of
hash functions, there is no way to set a measurement back to a desired state
by an adversary. [1], [3]

1.5 TPM Use Case Scenarios

A selection of the most common applications of a TPM will be listed in this
section.

1.5.1 Device Identification

The existence of a unique private key for each TPM chip can be utilized to
identify a particular device. There is a possibility to use the machine equipped
with TPM as an authentication factor of ownership. This can be useful, for
example, in larger organizations. It is often desired to only allow access to
their system to certain machines. [1]

For authentication purposes, a factor of knowledge represented by a PIN
can also be useful. Thus, the machine can be used as a smart card. Therefore,
anyone who knows the PIN and has access to this machine can be authorized
to perform certain operations. Specific use cases can be, for example:

• VPN identifying a user or machine before granting access to a network

• User signing or decrypting e-mail

• User authorizing a payment [1]

6



1.5. TPM Use Case Scenarios

1.5.2 Data Encryption

The TPM has an encryption-decryption engine included in its structure. It is
very useful for encrypting or decrypting cryptographic keys used by various
pieces of software. This way, they can be safely stored in memory and then
decrypted by the TPM. The engine is also capable of cryptographic signing2,
which is an essential feature of the TPM used in its many applications, such
as PCR reports, to name one.

The presence of the engine enables a lot of important features, including
file and folder encryption on a device, full disk encryption (used for example
by Windows BitLocker), encryption of passwords for a password manager, or
encryption of files stored remotely. [1]

1.5.3 Key Management

A very large portion of TPM usage involves dealing with cryptographic keys.
A key can come to reside in a TPM in three ways: generating it on its own
using a seed, using an RNG, or importing a key into the TPM. [1] Letting the
TPM generate a key can be advantageous because of its isolation from the
rest of the system, thus preventing tampering attempts.

When a user or process already possesses a key, wrapping a key by the TPM
might be desirable. It is a process of encrypting a key so that it can only be
decrypted by the TPM, and therefore not exposing it to other components,
software, processes, or users. [2]

Another feature that can be utilized is sealing the key to a TPM. When
a key is sealed, it is wrapped and tied to a certain plaform state, that is,
measured values stored in PCRs. When the state of the platform changes,
the key is no longer accessible and this action is irreversible. That is why,
for example, updating BIOS can be tricky as it changes the platform state.
Windows BitLocker, for example, uses the technique of sealing. [1], [7]

It would be desirable to store the generated keys securely. This can be
done either in non-volatile memory inside the TPM or by storing them on
a hard drive and wrapping them by encrypting the keys with self-generated
public key and later decrypting them with the private key that never leaves
the TPM. [1]

1.5.4 Anti-Hammering

Another topic worth mentioning is the anti-hammering lockout policy defined
in the TPM 2.0 standard. Naturally, it is desired to prevent dictionary attacks
against TPM authorization.

2“Cryptographic digital signatures use public key algorithms to provide data integrity.
When you sign data with a digital signature, someone else can verify the signature, and can
prove that the data originated from you and was not altered after you signed it.” [35]
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1. Theoretical Background of Trusted Platform Module

The lockout activates after 32 authorization failures. Each 10 minutes, one
of these failed attempts is restored and added to a list of available attempts.
That means, after 320 minutes without a failed attempt, the list goes back to
the same state as in the beginning, that is 32 attempts. If a failure occurs in
between, the failure also counts and an attempt is deducted for 10 minutes.[2]

1.5.5 Measured Boot

The process of measured boot provides a platform integrity check. Each part
of the boot process chain performs a measurement of the code of the following
process. The PCR registers are reset to zero with each power-on and each
measured value. After the boot, it is possible to verify whether the platform
state requirements are met. Also, as mentioned earlier, the measured PCR
values can be used for sealing to the platform state. Specifically, after a boot,
certain values are present in the PCR registers. When some data are sealed
to these values, the PCR registers have to hold the same values for the data
to be later unsealed successfully. [5], [7]

The first part of the chain has to be a trusted piece of code, as it cannot
be measured by any previous process. This code can reside in the TPM, but
it can often be found in the BIOS boot block. [7]In a diagram 

BIOS  
boot  
block 

BIOS 
OS  

loader OS Application 

TPM 

Hardware 

Root of trust in 
integrity 
measurement 

Root of trust in 
integrity reporting 

measuring 

Extend PCR 

•   After boot, PCRs contain hash chain of booted software 

•   Collision resistance of SHA1 (?)  ensures commitment 

Figure 1.2: Each process of the boot phase measures the following process by
extending PCR registers in the TPM. [9]

1.5.6 Windows BitLocker

A perfect example of how the TPM chip can be utilized is Windows BitLocker.
It is a feature integrated in Windows operating systems first introduced in

8



1.5. TPM Use Case Scenarios

Windows Vista. It is used to encrypt the data stored on a hard drive. It adds
protection against unauthorized access, for example, when the device or the
sole hard drive gets stolen or lost. [19]

BitLocker uses the TPM to check the platform state during the boot phase.
If there is no problem, the disk data are decrypted and the Windows operating
system boots up.

There are multiple authentication modes in which Bitlocker operates:

• TPM only - Disk data are decrypted immediately after the platform
state check is successful. The user does not interact with Bitlocker in
any way. This is the default configuration most users employ.

• TPM + PIN - Aside from the successful verification of the state of the
platform, the user has to enter a special BitLocker PIN for the drive to
be decrypted.

• TPM + startup key - Instead of a PIN, the user inserts a flash drive
with the correct startup key and the drive is decrypted.

• TPM + PIN + startup key - This configuration combines the three
methods above. [20]

Regarding decryption, the key that is used for it has to be stored some-
where. There are two keys that serve this purpose, full volume encryption key
(FVEK) and volume master key (VMK). Both are stored on the drive itself,
and both are encrypted.

FVEK is the key that is used directly to encrypt the raw disk data. It is
encrypted by volume master key, which is sealed to the TPM. Therefore, as
described earlier, the TPM decrypts the key only if the PCR measurements are
correct. After that, it sends the unencrypted key to the OS boot manager,
which decrypts FVEK and then the data.

To sum it up, the following phases need to occur during boot so that the
disk data can be successfully decrypted:

1. The platform state is successfully validated by the TPM.

2. If enabled, PIN or startup key are correctly inserted.

3. VMK is unsealed from the TPM which sends it to the OS boot manager,
there it is used to decrypt the FVEK.

4. Disk data can be decrypted using the FVEK. [21], [23]

It is important to note that unsealed volume master key has to go through
the LPC bus.

9



1. Theoretical Background of Trusted Platform Module

1.6 TPM Software Stack

To make use of the TPM as a software developer, it is much more convenient
to use an API than raw communication to interact with the TPM. A program
can call the TPM to utilize its features, such as key wrapping or generating
a random number. There is a specification defined by the TCG defining TPM
Software Stack and the hierarchy of APIs.

TCG TSS System Level API and TCTI Specification 

Page 10 TCG PUBLISHED Family "2.0" 

24 January 2020 Copyright © TCG 2013-2020 Level 1.0, Revision 18  

2 TCTI Introduction 

The TPM command transmission interface (TCTI) handles all the communication to and from the lower 

layers of the TSS software stack.  For instance, different interfaces are required for local hardware TPMs, 

firmware TPMs, virtual TPMs, remote TPMs, and software TPM simulators.  

NOTE: There are two different interfaces to TPMs:  the legacy TIS interface and the command/response 

buffer (CRB). 
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Figure 2: Using TCTI to Connect to Various Target TPMs 

 

2.1 TCTI Target Systems 

   The TCTI API is designed to be used in a large range of computing devices from highly embedded 

systems to server OSes.   

Figure 1.3: Layers of the TPM software stack (TSS) from the highest to the
lowest level of abstraction. [11]

TPM API Layers

The highest layer, Feature API (FAPI), is designed to provide TPM features
at the highest level of abstraction. It is meant to be mapped one-on-one with
TPM commands, however, not all corner cases are included. Some default
selections of algorithms and values implemented. [1], [10]

The System API (SAPI) enables the use of all the TPM features, but
it also comes with more complexity than the FAPI. Above the SAPI sits
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the Enhanced system API (ESAPI). This layer extends SAPI and provides
simplification to some features, such as session management. [1]

Below these layers, there resides the TPM Command Transmission Inter-
face (TCTI). It is the layer used to transmit TPM commands and receive
responses. Binary streams can be sent and received via TCTI. [1], [10]

The TPM Access Broker (TAB) is responsible for synchronization of pro-
cesses that access the TPM. It ensures that multiple processes accessing the
TPM do not interfere with each other. [10]

Another daemon, Resource manager, takes care of the TPM context. Due
to the small capacity of the TPM memory, there is a limitation in resource
loading. The RM works similarly to a virtual memory manager and swaps
TPM objects and sessions in and out of memory. [1], [10]

1.7 Low Pin Count Bus

The Low Pin Count (LPC) is a protocol for an interface between low-bandwidth
devices and their connection to the CPU developed by Intel. It replaced their
Industry Standard Architecture (ISA)3. The LPC operates using a minimum
of 7 signals, with 4 bits for the data. That is noticeably less compared to ISA,
which contains approximately 40 pins. Also, the data transfer frequency is
higher (33 MHz) compared to 8 MHz. The LPC bus provides CPU connec-
tion, for example, to TPM or redundant BIOS. [12], [13]

LPC specification requires seven signals:

• Four serial LAD signals for carrying multiplexed data including cycle
type, cycle direction, chip selection, address, data, and wait times

• One LCLK clock signal of 33 MHz provided by the host

• One LFRAME to indicate the start or stop of a transaction

• One LRESET to perform bus resets [12]

.
The LPC bus defines two terms - host, which is the part of the interface

connected to the CPU, and peripheral, which is a separate device, such as
a chip or an embedded controller. For example, TPM is a peripheral in terms
of the LPC bus. LPC enables Direct Memory Access (DMA), memory reads
and writes, or standard input and output reads or writes. There are multi-
ple types of transaction cycles for these types of operations. [18] In section
2.3.1.1, the TPM transaction, which is similar to the standard input-output
transaction, is described in great detail.

3“An earlier hardware interface for connecting peripheral devices in PCs. ISA accepted
cards for sound, display, hard drives, and other devices. Originally called the ”AT bus” and
introduced with the IBM PC AT in 1984, the AT/ISA bus extended the PC bus from 8 to
16 bits.”
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Chapter 2
Analysis & Design

2.1 Overview of Target Functionality

The goal of the implementation part is to create an FPGA design that will
filter the data coming from the LPC bus. The FPGA will be connected to the
bus and all LPC data will be flowing into it. These data will be processed by
the FPGA, so that the output includes only communication with the TPM.
The output will flow to a computer via serial line. A Python script will be
running on this computer and listening on the serial port. It will save the
captured data to a file in a human-readable format, so that it can be used for
further analysis.

Analyzing 
PC 

Target
machine

TPM

 
LPC bus

CPU 

All LPC 
data

FPGA Only TPM 
data

Serial  
interface

Handling 
Python 
script

Figure 2.1: The FPGA board connects to the LPC bus and receives all the
LPC data on the input. It acts as a filter and outputs only TPM related data
via serial interface.
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2.2 FPGA Introduction

The key component used in this work is the FPGA (field-programmable gate
array). It is a set of integrated circuits consisting of programmable logic
gates, memory, and other parts. [15] The board can be programmed and
optimized for a particular workload, which is an advantage compared to a piece
of software running on a CPU, as it is noticeably faster.

In this work, I will be using a Basys3 design kit. It is based on an FPGA
Artix 7 (xc7a35tcpg236-1). It is a kit that is used in one of the courses at our
faculty, so it was convenient to borrow it for this thesis. Also, its parameters
are completely sufficient for the implementation part.

Figure 2.2: The final design of the implementation part will be loaded onto
the Basys3 FPGA board, which is shown in this picture. [16]

2.2.1 Reason for Choosing FPGA

In the assignment, it is explicitly stated to use an FPGA to capture the TPM
data. There is a reason for that, as other methods of sniffing the data exist.
To mention one, it would be possible to obtain all data (not only related to
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TPM) from the bus using a logic analyzer4. Analysis and filtration could then
be performed using a visualization of the signals or an analyzing script on
a computer.

However, there could be problems with the use of the analyzer. For exam-
ple, not every visualizing and interpreting software supports the LPC protocol,
therefore, it could be necessary to modify the software. Moreover, the ana-
lyzer may have a slow sample rate5, which results in some of the data not
being captured correctly.

Using the FPGA, it is possible to filter the relevant data on the fly by only
designing a state machine that defines which data to send to the serial line
and which to ignore. It has another advantage, being that there is no need for
any analyzing script that would analyze and interpret all the LPC data after
capturing. This responsibility is transferred to the FPGA.

2.2.2 FPGA Development Environment

For developing the FPGA design, it was decided to use the Vivado design
suite. It is a program for the synthesis6 of FPGA designs that are written in
an HDL (hardware description language). Aside from synthesis, it also allows
highlighting of source code, provides an interface to generate a bitstream7

specifically for any selected FPGA board, and also helps to program the target
board with the generated bitstream. Finally, it can be useful to test the design
with the simulation feature, where the developer can view the behavior of the
signals. This way, it is possible to debug the code before loading it into the
FPGA. Vivado has been chosen because it is used during one of the university
courses at CTU.

The gist of programming the FPGA is a source code written in a HDL.
Two of the most known HDLs are VHDL and Verilog. For the thesis, I chose
Verilog as I have at least a small experience with this language. I cannot say
the same thing about VHDL. Vivado supports both languages, so this is not
an issue.

4“A logic analyzer verifies that the digital circuit is working and helps you troubleshoot
problems that arise. The logic analyzer captures and displays many signals at once, and
analyzes their timing relationships.”[14]

5“The sample rate is how often a logic analyzer samples all of its channels.” [38]
6“Logic synthesis is the process of automatic production of logic components, in partic-

ular digital circuits.” [39]
7A binary file defining behavior of a specific FPGA board.
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2.3 Modules of the FPGA Design

There are three main components that have to be developed and assembled
together for the final design. The idea is that the components are designed
and developed separately before being connected together via their input and
output interface.

• Filtration finite state machine (filtration FSM) - It is the main logic of
the design that decides which data flowing from the LPC bus are TPM
related, therefore sent to the output, and which are ignored.

• FIFO - It takes care of asynchronous clock frequencies of the FPGA
and the LPC bus. Also, it stores the data received from filtration FSM
before sending them to output via UART transmitter.

• UART transmitter - This component reads the filtered data from FIFO
and transmits them from the FPGA to the computer via serial line.

UART 
TRANSMITTER FIFO FILTRATION 

FSM

LPC 
bus

33 MHz
100 MHz 33 MHz

FPGA
Serial 
line

Figure 2.3: The input clock frequency from the LPC bus is around 33 MHz.
The filtration FSM works on this frequency and the FIFO expects it to write
data with 33 MHz. FIFO’s read frequency is 100 MHz, which is coming
from the FPGA internal clock. It expects the transmitter to read using this
frequency.

2.3.1 Filtration Finite-State Machine Module

As mentioned above, the filtration FSM module acts as the main logic to
detect TPM communication on the LPC bus. The input signals come directly
from the LPC bus, it is enough to process 6 of them - 4 LAD bits, 1 LFRAME
signal, which indicates the start or stop of a transaction, and finally 1 LCLK
clock signal with frequency around 33 MHz.

To create a correct state machine, it is necessary to look into the LPC
communication protocol and, most importantly, determine how this protocol
is used by the TPM transactions. The purpose of the state machine is to
handle the transactions and send the data bytes to the output.
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LAD 4 bits

FILTRATION 
FSM 

LFRAME

LCLK 33 MHz

data 8 bits

Figure 2.4: The filtration finite-state machine takes three inputs directly from
the LPC bus. It also works at LPC clock frequency of 33 MHz.

2.3.1.1 TPM on LPC Protocol

Each LPC transaction cycle starts in the same way. The LFRAME signal is
set to low, and at the same time, a start value is visible on the LAD input.
By the start value, a peripheral device that uses the LPC bus can determine
whether the upcoming cycle applies to it. [18]

Protocol Overview

R

251289-001 19

4.2.1.12 Start of Cycle

The various cycles all start in a common way:

1. The host asserts LFRAME# for one or more clocks and drives a START value on LAD[3:0].
Upon observing LFRAME# active, all peripherals stop driving the LAD[3:0] signals, even if in the
middle of a transfer.

At the beginning of a cycle, the host is permitted to keep LFRAME# active for more than one
consecutive clock and even change the START value. The peripheral must always use the last
START value when LFRAME# was active. For example, if LFRAME# is active for two
consecutive clocks, the peripheral should ignore the value during the first clock and only use the
second.

2. Peripherals monitor LAD[3:0] when LFRAME# is active for the appropriate START value. If
a peripheral recognizes the START value, it should attempt to decode the rest of the cycle. If a
peripheral does not recognize a particular START value, it may ignore the rest of the cycle until
LFRAME# goes active again.

3. After the final START value is driven, and when the host is ready to begin the cycle, the host
de-asserts LFRAME#. The peripheral must use the START value driven when LFRAME# is de-
asserted.

Figure 2 shows the typical timing for LFRAME#. Figure 3 shows the timing where LFRAME# is
active for more than one consecutive clock.

Figure 2: Typical Timing for LFRAME#
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Figure 3: Extended Timing for LFRAME#
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Figure 2.5: Typical timing of an LPC transaction is shown here.
The LFRAME signal is set to low in the start cycle of a transaction.

[18, Figure 2]

Looking into the Client Platform TPM Specification, the protocol used by
the TPM can be seen. There are two possible operations with the TPM on
the bus, read and write. Also, as the specification states, both TPM read
and write operations resemble the standard LPC I/O operations. The start
value for TPM transactions is 0101, which will be important to reflect in the
implementation of the finite-state machine. [17]

There are several more fields to be read after the start signal, which to-
gether form an LPC transaction. Their description is as follows:

• CYCTYPE + DIR - indicates the type of cycle and its direction. In this
particular case, it is only necessary to remember that 0000 means TPM
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TCG PC Client Platform TPM Profile Specification for TPM 2.0 
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1. If a TPM implements an LPC interface as the method of connecting to the chipset, it SHALL implement the 

LPC bus per the requirements of the LPC Interface Specification.  A link may be found to the specification in 

Section 10 References. 

2. If a TPM implements an LPC interface, the TPM MAY use the LPC CLKRUN# protocol for mobile platforms. 

3. If a TPM implements an LPC interface, the TPM SHALL be designed such that the LPCPD# pin may be 

strapped high to disable the LPCPD# protocol. 

7.3.1 LPC Locality Cycles for TPM Interface 
Start of informative comment 

This section only applies to TPM implementations using the LPC interface. 

This specification defines two TPM specific LPC cycles, TPM-Write and TPM-Read, which were added for 
communication between the chipset and the TPM.  This was done to prevent simple hardware attacks using a device 
on the LPC bus that decoded I/O or memory cycles using the previously defined START field.  Cycles using the normal 
memory read/write or I/O read/write START field to the following ranges are not decoded by the TPM.  On the LPC 
bus, apart from the START field, these cycles are identical to I/O cycles. These locality cycles are an additional 
indication to the TPM (beyond addressing) that the cycles are intended for the TPM as locality commands.  These 
commands can only be generated by a trusted process, e.g. the chipset. 

See Section 6.2.1 TPM Locality Levels for rules and restrictions on using the standard vs. Locality LPC cycles. 

By definition, the Locality None level is lower than Locality 0. 

End of informative comment 

1. If the TPM supports Locality None and Locality None is the active locality, any TPM access request from 

Locality 0-4 is a higher locality priority.  In this case, the TPM SHALL respond to Locality 0-4 register writes 

to TPM_ACCESS_x.requestUse and TPM_ACCESS_x.Seize per the requirements documented in Section 

6.5.2.4 Access Register. 

7.3.1.1 TPM-Write LPC Locality Cycle 

start of informative comment 

Table 43 shows the TPM-Write locality cycle format.  It resembles the existing LPC I/O write. 

If the CPU attempts to write more than 1 byte at a time to the TPM, the chipset must break this up into multiple cycles 
of 1 byte each to consecutive addresses. 

End of informative comment 

Table 43 — LPC Locality Cycle TPM-Write for Accessing the TPM 

Field Value for Bits [3:0] Description 

START 0101 Previously this was a reserved value.  It is now allocated for TPM-
Write and TPM-Read locality cycles. 

CYCTYPE + DIR 0010 Same as used for standard LPC I/O Write 

ADDR See Description Four nibbles.  Same as the standard LPC I/O Write. 

DATA-Low DIGEST low nibble  

DATA-High DIGEST high nibble  

TAR  Standard LPC TAR 

SYNC  Standard SYNC field for an I/O Write 

TAR  Standard LPC TAR 

 

Table 2.1: TPM Write cycle on the LPC bus.

[17, Table 43]
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7.3.1.2 TPM-Read LPC Locality Cycle 

Start of informative comment 

Table 44 shows the TPM-Read locality cycle format.  It resembles the existing LPC I/O read. 

If the CPU attempts to read more than 1 byte at a time to the TPM, the chipset must break this up into a series of 1-
byte reads to consecutive addresses. 

End of informative comment 

Table 44 — LPC Cycle TPM-Read for Accessing the TPM 

Field Value for Bits [3:0] Description 

START 0101 Previously this was a reserved value.  It is now allocated for TPM-
Write and TPM-Read. 

CYCTYPE + DIR 0000 Same as used for standard LPC I/O Read 

ADDR See Description Same as for TPM-Write 

TAR  Standard LPC TAR 

SYNC Standard Standard SYNC field for an I/O Read 

DATA-Low DIGEST low nibble  

DATA-High DIGEST high nibble  

TAR  Standard LPC TAR 

 

7.4 SPI Hardware Protocol 
Start of informative comment 

There were several goals that guided architecture of SPI hardware protocol and flow control for the TPM.  These 
assumptions are as follows: 

• The TPM must have a dedicated SPI ChipSelect# (CS#). 

• Only the chipset is allowed to assert the TPM CS# signal.  This means further that the TPM’s CS# can only 
be connected to the south bridge. 

• The SPI protocol should not break existing drivers or Software. 

• The TPM Interface Specification 1.21 defines all registers as having a size of 4 bytes or less.  This register 
size is maintained for compatibility with Software.  This applies to the _TPM_Hash_Start/_Data/_End 
functions, which may be generated by hardware because the TPM’s data register is only 4 bytes.  No additional 
registers are defined for registers that might be greater than 4 bytes.  Future definitions of Software may 
support 8-byte or 64-byte data registers.  The SPI flow control and protocol are defined to allow for 8-byte and 
64-byte data transactions in case they are added later.  This allows for future improvements in SPI throughput.  
An example would be a 64-byte data register at offset 0x80.  The 4-byte data register is always implemented 
and available to Software to maintain backwards compatibility. 

Note that the TPM-specific-accesses, defined for the LPC bus (TPM-Read and TPM-Write cycles) are not required 
for SPI. 

In the future there may be uses where large amounts of data, for instance 4kB, need to be passed to the TPM. 

End of informative comment 

7.4.1 Clocking 
Start of informative comment 

Table 2.2: TPM Read cycle on the LPC bus.

[17, Table 44]

read and 0010 means TPM write.

• ADDR - indicates which address of the peripheral device is being ac-
cessed. For the implementation, it is necessary to know that this field is
4 clocks wide (so the address is 16 bits long).

• TAR - turn-around field is 2 clocks wide. Control is transferred to the
peripheral during these 2 clock cycles.

• SYNC - this field is used to wait for the peripheral device. The width
of this field can differ depending on the peripheral. What is important,
the LAD signal contains 0000 when the operation is completed.

• DATA-Low and DATA-High - 4 bits of data (1 nibble) are sent through
the LAD input. Both fields are one cycle wide. Together, these two
fields combine one data byte related to one LPC transaction. In the
finite state machine, both nibbles are assembled, sent to the output,
and written to the FIFO at the end of each transaction. [17], [18]

18



2.3. Modules of the FPGA Design

2.3.1.2 Transaction Abort Mechanism

It is also necessary to consider the fact that an LPC transaction can be
aborted. This situation typically occurs when a peripheral drives the LPC
bus and the transaction is waiting for a SYNC signal. This might take a long
time, and in that case, the transaction has to be aborted. However, the abort
is not limited to this situation, it can happen during any transaction field.

The LFRAME signal indicates the abort of a transaction. It is driven high
and stays high for at least 4 clock cycles. Also, the value of LAD switches to
1111 during the 4 clock cycles. After that, the LFRAME signal stays high
for one clock cycle and a new transaction can begin. [18]

Any data that were read or written during an aborted transaction should
not be taken into account. Therefore, in the filtration finite-state machine
module that handles LPC transactions, it is important to write the data after
ensuring that the transaction is completed successfully.

2.3.2 First In First Out Module

This module is very important in the design as it solves two major problems.
As can be seen in the FPGA design (figure 2.3), two different clock domains
meet here. The LPC bus runs on a clock with a frequency of around 33 MHz,
whereas the Basys3 clock frequency is 100 MHz.

For crossing the two clock domains, FIFO (first in, first out buffer) is used.
The data are written there from the finite-state machine with clock frequency
of 33 MHz obtained from the LPC bus. The data are then read by the UART
transmitter that runs on the 100 MHz clock.

Moreover, the FIFO stores the data after receiving it from the filtering
finite-state machine. This feature is needed because the UART transmitter
takes a while to transmit a byte, and more data can be received from the FSM
during the transmission of only one byte.

It is also necessary to consider possible overflow of the FIFO. In this case,
there is an advantage that the write clock domain is slower than the read
clock domain. Therefore, the overflow does not become an issue that quickly.
However, because of the speed of the UART transmitter, it can still occur.
In that case, the data will not be complete. To delay the point of possible
overflow, transmitting a byte over the UART should be as fast as possible. As
will be seen in the testing part, if the focus is on the right data, there is no
reason to worry about overflow.

As can be seen in the FIFO diagram (2.6), there are also signals that
indicate full and empty status. They will help maintain the basic rule when
dealing with FIFOs: Never read from an empty FIFO and never write to a full
FIFO.
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Empty
FIFO

Clk 100Mhz

Data 8 bits

Read enable

Clk 33.3Mhz

Data valid

Data 4 bits

WRITEREAD

Empty Full

Figure 2.6: The FIFO has three inputs for data write. The filtration FSM per-
forms the data write at the LPC bus clock frequency. The UART transmitter
is responsible for reading the data at the frequency of the Basys3 board.

2.3.3 UART Transmitter Module

The universal asynchronous receiver-transmitter (UART) serves for sending
data to other devices, in this case a computer with a Python script. Since it
is only necessary to send data from the FPGA to a computer, the only part
that needs to be implemented is the transmitter.

data 8 bits

UART 
TRANSMITTER transmit

clk reset

txd

Figure 2.7: The UART transmitter outputs the data via the txd signal. It
receives a byte of data as an input and a transmit signal to activate the
transmission.
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The UART sends individual bytes separately by sending bits one by one.
At first, it sends a start bit (0), then 8 bits to form a byte, starting from the
least significant bit, and stop bit (1) at the end of a byte.

An important thing to consider is baud rate. It determines the rate at
which the data are transmitted. It is measured in bits per second, and both
parties (i.e. receiver and transmitter) have to set the same baud rate.

On Windows operating systems, where the Python script that processes
the data will be running, the UART interface is called the COM port.
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Chapter 3
Implementation

As mentioned in the analysis, the intended approach is to implement each
module separately and connect them together later via their input and output
interface. As described later in this chapter, this method is only partially
successful. Slight adjustments were necessary to allow the modules to work
together properly.

It is worth reminding that the source code is written in the Verilog hard-
ware description language.

3.1 Implementing the Design Modules

3.1.1 Filtration Finite State Machine Module

Implementing the finite-state machine is fairly straightforward. It is only
necessary to turn this state machine diagram (3.1) into a source file written
in Verilog by defining all the states and using a case statement. Each case
behaves as demonstrated in the diagram which is designed according to the
LPC protocol described in section 2.3.1.

By definition, it is a Mealy finite-state machine. The output signals are
data and data valid. The data valid signal is driven high only in the FTAR2
state, which is the final state, therefore it is safe to say that the transaction
completed successfully and was not aborted, as described in section 2.3.1.2.

As seen in the diagram, the type register saves the value read in the TYPE
field, and when the FSM comes to the ADDR4 state, it is decided what the
next state is according to this register. If the value is 0000, it will move to the
branch for reading, if 0010, it will continue with the write sequence. If none
of these values were read, the FSM goes back to the IDLE state.

The finite-state machine can be modified to read a given address by chang-
ing the parameter tpm address. By default, it is set as 24hex value, the reason
why this address is chosen as default is described in section 5.1. In each of
the ADDR states, the corresponding parts of the tpm address parameter and
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IDLE

TYPE

~LFRAME  
and LAD = 0101

ADDR1 

ADDR2

ADDR3

ADDR4

WDATA 
LOW

TYPE = WRITE

WDATA 
HIGH

WTAR1

WTAR2

WSYNC

RTAR1

RTAR2

RSYNC

RDATA 
LOW

RDATA 
HIGH

FTAR1

FTAR2

TYPE = READ

LAD = 0000

LAD = 0000

TYPE = 0000 (read) 
or 

TYPE = 0010 (write)

OPERATION parameter 
not matching TYPE

DATA[3:0] := LAD

DATA[7:4] := LAD

DATA[3:0] := LAD

DATA[7:4] := LAD

DATA_VALID := 1

DATA_VALID := 0

TYPE := LAD

Figure 3.1: Diagram of filtration FSM.LFRAME and LAD are the inputs.
The FSM behaves according to the TPM on LPC protocol (section 2.3.1.1).
It reacts only to TPM transactions and returns the data written or read to the
TPM during the transaction. In the last state, it sets the data valid output
high to indicate that the transaction completed successfully with correct data.
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the address in the LPC transaction are compared, and if the address does not
match, the FSM returns to the IDLE state.

The FSM changes its states on the negative edge of the clock. According
to the LPC specification, the host and the peripheral device operate on the
positive clock edge. This results in a small delay when the LFRAME and
LAD signals change. At the time the negative clock edge is triggered, the
data are stable and the FSM can operate with the values (figure 2.5).

If it is necessary to focus on one operation only, the read or write branch
can be ignored similarly to the address. It is only necessary to set the operation
parameter accordingly.

Moreover, another condition that must be taken into account is the abort
mechanism. In the source code, there is a condition that detects the abort
mechanism according to the analysis (2.3.1.2). If the LFRAME signal is
driven low and the FSM is not in the IDLE state, the transaction abort is
detected and the FSM is reset to the IDLE state. Note that the data are not
transmitted, as the data valid signal is high only in the final FTAR2 state.

3.1.2 First In First Out Module

For the purpose of this thesis, it is expected that FIFO behaves as a stan-
dard first in, first out. No additional logic is needed inside the FIFO and
its functionality is similar to a lot of projects. Therefore, using an already
implemented standard FIFO is a reasonable choice. The fact that the design
is developed in Vivado is advantageous. The design suite provides a library of
intellectual property (IP) modules that are ready to use. No coding is needed,
it is only necessary to configure the module to the behavior that is expected.
In the IP library, a customizable FIFO is available. The configuration is set
to match the needs mentioned in the analysis.

Table 3.1: Configuration settings of the FIFO IP module.

The configuration properties in figure 3.1 show all the parameters of the
FIFO. The key aspect there is clocking scheme, where it can be seen that
the clocks are independent, which satisfies the need for 33 MHz on the input
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and 100 MHz on the output. Therefore, this configuration solves the issue
of two clock domains. As mentioned in the analysis, it is a symmetric FIFO,
therefore the write width and read width are the same, both being 8 bits.

3.1.3 UART Transmitter Module

Aside from the clock and reset inputs, the transmitter component has a data
input, which is exactly 1 byte wide, and a transmit input. When the transmit
input indicates high, the data are loaded into the component and transmitted
through the txd output bit after bit.

data 8 bits

UART 
TRANSMITTER transmit

clk reset

txd

Figure 2.7: The UART transmitter outputs the data via the txd signal. It
receives a byte of data as an input and a transmit signal to activate the
transmission

The implementation of the transmitter consists of 2 parallel operation
sections, one being a finite state machine managing the logic of the transmitter.
The other part takes care of the transmission logic and synchronization with
the serial receiver.

The FSM sets management signals for the logic section:

• load - the data input is to be loaded and transmitted

• clear - transmission of one byte is completed

• shift - transmission of one bit has been finished, next one is up

3.1.3.1 Logic and Synchronization

The main purpose of the logic section is to take care of synchronization with
the serial receiver. As described in the analysis, the baud rate has to be
the same between the receiver and the transmitter. When implementing the
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transmitter, it is necessary to know how many clock cycles are needed to
transmit one bit. In other words, the txd output has to maintain the same
value for a certain number of clock cycles to transmit the bit successfully. The
amount has to be determined using this formula8:

ncycles = frequencyHz/baudrate

The signals received from the FSM are processed only when the trans-
mitter is in synchronization with the receiver (code snipped A.1). For every
clock cycle, counter increases by one. When the value reaches the NCYCLES
threshold, the values of other signals and registers can be changed.

The goal is to transmit a byte as quickly as possible, so the baud rate
should be as high as possible. In this particular case, the baud rate is set to
115200 bits per second. It is a value supported by the Windows COM port,
and when we use the formula above, the number of cycles needed to transfer
one bit is 869. To use a different baud rate, it is only needed to change the
NCYCLES parameter.

The shift reg register stores the data, transmit counter stores the amount
of bits already transmitted. According to the signals described above, which
are indicated by the FSM, the corresponding operations are carried out. The
soure code of the logic and synchronization part of the UART transmitter
module can be viewed in the appendix (A.1).

3.1.3.2 Transmission Finite State Machine

The state machine is fairly simple, it operates with two states - idle and
transmit. When the machine is in the state idle, it waits for the transmit
input to be triggered. When that happens, it sets the load signal up, so that
the data input is loaded into the shift reg. After that, the state changes to
transmit.

While in the transmit state, the shift signal is indicated. This way, each
time the transmission of one bit is completed, the right-shift operation is
carried out with the shift reg register. The next bit then moves to the offset
0 and is sent to the output via txd.

After the transmission of all bits is complete, it is desired to clear the
transmit counter register and change the state back to idle. The source code
of the FSM can be found in the appendix (A.2).

3.2 Connecting the Modules Together

After developing the three modules one by one separately, it is necessary to
connect them together and complete the whole design. The final top module
looks as shown in the diagram (3.2).

8The basys3 clock frequency is 100MHz. If the baudrate is 9600 bits per second, the
number of cycles is 10417.
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FINAL MODULE LAD 4 bits

LFRAME 

LCLK 

clkreset

txd

Figure 3.2: The final module has three inputs from the LPC bus, alongside
with the clock signal from the FPGA board and a reset signal. It processes
the input values and outputs the correct TPM data via the txd UART output.

For testing purposes, it was reasonable to first connect the UART trans-
mitter with the FIFO. After making sure that this component works, it could
be treated as one module and connected to the filtration FSM.

In both of these cases, some slight adjustments had to be made for the
modules to function properly together to fulfill the goal functionality of the
design.

3.2.1 Connecting the Transmitter and the FIFO

To connect these two components, it is first necessary to know how the FIFO
works, more specifically, how the data are read from it, so that they are loaded
into the transmitter properly.

As mentioned in the analysis section (figure 2.6), the FIFO provides
a read enable input signal. To read the data, this signal must be held high for
one clock cycle. In the next clock cycle, the desired byte appears on the data
output. What is important to keep in mind is the fact that it should not be
read from an empty FIFO.

Taking into account the separate UART transmitter module, there is only
the txd output. There is no other output signal that could be used as the
read enable input of the FIFO. Therefore, it is necessary to add one. The
signal should be driven high when a transmission of one byte is completed.
Because of the FIFO interface, this signal must be held high only for one clock
cycle, otherwise it would read more than one byte from the FIFO. Moreover,
it has to be synchronized in such a way that the data coming from the FIFO
are already present on the input at the moment when the transmitter is in
sync with the receiver. During this clock cycle, the data input is loaded into
shift reg.
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FIFO

transmit 

UART 
TRANSMITTER 

read 

data 8 bits data 8 bits

read_enable

~empty

Figure 3.3: A new read signal is introduced in the connection of transmitter
and FIFO. It is driven high one cycle before synchronization between serial
receiver and transmitter occurs.

To achieve this, a read signal is introduced in the UART transmitter. It is
driven high exactly one cycle before the synchronization occurs. It can only be
done when the load signal is up, otherwise a transmission is still in progress.

counter <= counter + 1;
done <= 0;
if ( counter == NCYCLES - 2) // One cycle before we indicate
begin //sync , we want to read data from FIFO

if(load)
begin

read <= 1;
end

end

Code snippet 3.1: The read signal is only driven high when the load signal
is active and one cycle before synchronization occurs. This is a code snippet
from the transmitter.v file
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Adding the read signal is the only adjustment that has to be made. The
transmit input corresponds to the negation of the empty output of the FIFO.
When the transmit signal is turned low, the FSM in the transmitter remains in
the idle state and does not load any data. Therefore, if the FIFO is empty and
the empty signal is held high, the transmitter will not read from the FIFO.

3.2.2 Completing the Final Module

The final step of the FPGA design is to connect the two completed modules.
The FIFO and the transmitter are already connected, so they can be treated
as one module. After its connection with the Filtration FSM, the FPGA
design is complete and a final module is created.

In this case, it is not important that, aside from FIFO, there is also a trans-
mitter present in the previously created module. The input signals of the
module correspond to the FIFO input signals and the Filtration FSM only
needs to interact with the FIFO.

Regarding the FIFO, this time it is necessary to understand the writing
process. As described earlier, the FIFO has a data valid input. When it is
asserted, the value of the data input is loaded into the FIFO. The data valid
signal has to be driven high for exactly one clock cycle to write one byte of
data.

Filtration FSM already satisfies this condition. As described earlier, the
data obtained during an LPC transaction are asserted at the data output,
and the data valid signal is driven high only in the FTAR2 state, which is one
clock cycle long.

UART TRANSMITTER  
+  

FIFO

full

FILTRATION FSM
data valid

data

LFRAME

LAD 4 bits

Clock 100 MHz

txd

Clock 33 MHz reset

Figure 3.4: Connection between the transmitter and FIFO module and the
filtration FSM creates the final module. One new signals are added, full signals
to condition the data valid signal .

Just as it was necessary to prevent reading from an empty FIFO, it is also
the case with writing into a full FIFO. Therefore, another small adjustment
must be made. The FIFO provides a full output. This signal connects to a new
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input in the filtration FSM. In the source code, only one condition is added.
In the FTAR2 case, the assertion of the data valid signal is conditioned with
the incoming full signal being driven low.

S_FTAR2 :
begin

if (∼full)
begin

data_valid_reg <= 1; // Added for writing to FIFO
end
state <= S_IDLE ;

end

Code snippet 3.2: Code snippet from fsm lpc.v file, which contains the code
of filtration FSM. This snippet shows the condition of data valid signal in the
FTAR2 state.

3.3 Processing the Serial Data

To receive the data and write them to a file or any other output in the desired
way, it is necessary to write a short script. For this purpose, the Python
programming language with the serial package is utilized. The Serial object
has to be initialized properly with the baud rate of 115200, one stopbit, and
with the size of eight bits. Then, the script just reads the received bytes and
prints them onto the console and into the text file. The complete script is
listed in the appendix (A.3).
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Chapter 4
Simulation & Testing

Each of the three modules described in previous sections (transmitter, FIFO
and filtration FSM ) has to be tested to make sure it works properly. At first,
a module is tested separately, and after connecting it with other component,
the newly created module also goes through testing. This is very important,
if the testing took place after assembling more components together and some
errors occurred, it would not be clear which component caused the issue.

Firstly, Vivado simulation is used for simple behavioral testing. After
that, the design is tested on the physical board in two stages - with internally
generated input and externally generated input using Arduino UNO board9.

4.1 Behavioral Simulation Using Vivado

The most convenient solution to test each module separately is to use the
behavioral simulation feature provided by Vivado. There are multiple advan-
tages, all signals of all used components can be viewed and inspected to a great
detail. The simulation also loads very quickly. Performing the synthesis and
loading the generated bitstream into a physical FPGA board takes a few min-
utes, whereas the behavioral simulation is completed in a matter of seconds.
Thanks to this, it can even be used for debugging during the implementation.

Data for each simulation are defined in special files called testbenches.
There exists a separate testbench file for the simulation of each module. In
these files, it is possible to instantiate the modules and define custom input
values.

9“Arduino is an open-source electronics platform based on easy-to-use hardware and
software. Arduino boards are able to read inputs - ... - and turn it into an output. You
can tell your board what to do by sending a set of instructions to the microcontroller on the
board. To do so you use the Arduino programming language (based on Wiring), and the
Arduino Software (IDE), based on Processing.” [30]. Detail information about Arduino is
out of scope of this thesis, more can be learned at www.arduino.cc
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Each module needs a clock input that is normally generated by an oscillator
on a physical board. For simulation purposes, the clock signal can be easily
generated in Verilog. It is possible to set a desired frequency, as shown in the
code below (code snippet 4.1). In the simulation of the FIFO and filtration
FSM modules, clock signals are generated at both 100 and 33 MHz. The
transmitter expects only one clock input, which originates from the Basys3
board, therefore its frequency is 100 MHz.

parameter c_CLOCK_PERIOD_NS = 10;
parameter c_CLOCK_SLOW = 30;

always
#( c_CLOCK_PERIOD_NS /2) clock_100 <= ! clock_100 ;

always
#( c_CLOCK_SLOW /2) clock_33 <= ! clock_33 ;

Code snippet 4.1: Code snippet used in testbench files to generate two clock
signals.

4.1.1 Simulating the Filtration Finite State Machine

To test this module, it is necessary to fabricate various LPC transactions ac-
cording to the protocol described in the analysis (section 2.3.1). The situations
that need to be simulated are as follows:

• A correct TPM transaction with matching addresses, both read and
write.

• A TPM transaction in which the addresses do not match.

• A configuration that utilizes only the read or write branch.

• A transaction that is not related to TPM.

• A transaction with invalid TYPE value.

• A transaction where the abort mechanism is activated.

In the testbench, the module is instantiated and input and output signals
are defined. It is only necessary to periodically change these signals as if they
originated from an LPC bus.

For this purpose, a two-dimensional register is established. Multiple test
vectors are stored there. Each test vector is 52 bits wide, which corresponds
to 13 4-bit LAD values. Each 4-bit value represents one field of the LPC
protocol.
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for( i = 13; i > 0; i = i - 1 )
begin

@( posedge clock );
#5;
if(i == 13) begin
LFRAME = 0;
end
else begin
LFRAME = 1;
end
LAD = test_cases [j][ (i*4 - 1) -: 4];

end

Code snippet 4.2: The code snippet shows a test step of the filtration FSM.
Each iteration represents one LPC transaction field and updates the input
data for the filtration FSM as set in the particular test step.

A for loop iterates through each of these test vectors. As mentioned in
3.1.1, the data on the bus are valid slightly after the rising clock edge. That
is the reason for the 50 ns delay. The LFRAME signal is driven low at the
beginning of each transaction. The behavior of the module signals can be
inspected in the simulation window. After the simulation is run, a waveform
window opens up as shown in the following picture. There, the behavior of
the module signals can be inspected in great detail.

Figure 4.1: A waveform window opens after running a simulation. All the
simulated signals can be inspected there.

Figure 4.2: The waveform window can be zoomed in. This image shows the
signals in course of one LPC transaction.
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4.1.2 Simulation of FIFO

Simulating the single FIFO is performed mainly to confirm the anticipated
behavior, with the FIFO being just a configurable module from the IP library.
It is sufficient to establish two clock domains and write and read a few bytes
of data. In the waveform window of the simulation, it is then possible to check
whether the configuration is correct and the FIFO behaves as expected. The
code sample from a testbench shows a writing and reading of 1 byte.

// Write
@( posedge s_Clock );
data_in = 8’ b01010101 ;
data_valid = 1;
@( posedge s_Clock );
data_valid = 0;
// Read
@( posedge s_Clock );
read_en = 1;
@( posedge r_Clock );
read_en = 0;

Code snippet 4.3: Writing of one byte into a FIFO is performed by triggering
the data valid signal for one clock cycle. Subsequently, the same byte is read
from the FIFO by triggering the read en signal for one clock cycle.

4.1.3 Simulation and Testing of UART Transmitter

There are multiple factors to observe in the transmitter simulation. The main
one is the correctness of the data that are being transmitted. It is visible from
the waveform in the txd signal. However, one has to know the number of clock
cycles necessary to transmit one bit. Without that, it may be difficult to dis-
tinguish particular bits that are transmitted via the txd output. That is also
another aspect of the simulation. It is necessary to check whether a bit main-
tains its value for the correct number of clock cycles due to synchronization
with the serial receiver.

4.2 Functional Testing on Basys3 Board

After the behavioral simulation of all components is complete, it is time to test
the design on physical hardware. First, it is necessary to test the transmitter
to ensure that the outputs of other modules that connect to the transmitter
are correct. It is very important because the correct evaluation of further
testing is strongly based on the output data coming via the serial line from
the Basys3 board.
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Only the three modules that include the transmitter module will be tested
on physical hardware, the transmitter itself, the FIFO connected to the trans-
mitter and the final module. It would be possible to generate input data into
the other separate components, however, there is no easy method to evaluate
the output and behavior of the modules.

In addition to writing the source code for the modules, to run the design
on the board, it is necessary to define a constraint file. In these files, the
inputs and outputs defined in the module are paired with specific ports on the
FPGA board.

Figure 4.3: There are several ports on the Basys3 board that are used in
the design. [29] The switches (number 5) are used for testing the serial line
communication (4.2.1), the usb output (number 13) serves as the serial output
for the txd signal, the pmod pins (number 2) serve as LPC bus inputs (4.3.1)
and a button (number 7) is used as a reset input throughout multiple modules.

4.2.1 Testing the Serial Line Communication

To provide input, switches and buttons (5 and 7 in the 4.3 scheme) on Basys3
are used. Each switch represents one bit of the data input and sets the value
that will be sent through the UART to the Python script. Two buttons
represent the transmit input and the reset input. The clock input is provided
by the internal Basys3 clock. For better button functionality, a debouncing
module was used.[28] Below are the constraints used for reset and transmit
outputs.
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set_property PACKAGE_PIN U18 [ get_ports reset]
set_property IOSTANDARD LVCMOS33 [ get_ports reset]
set_property PACKAGE_PIN T18 [ get_ports transmit ]
set_property IOSTANDARD LVCMOS33 [ get_ports transmit ]

Code snippet 4.4: Example of setting constraints for ports. In this example,
the inputs reset and transmit are assigned to two buttons.

After clicking the transmit button, a series of values presented in hexadec-
imal form is displayed in the terminal as output from the Python script. They
are also saved to a text file. The values are correct, thus both the transmitter
module and the Python script playing the role of serial receiver work correctly.

4.2.2 Creating a Slow Clock Module

Because the design operates with two clock domains and the external clock
signal is not yet available, it is necessary to create a module that will provide
the slower signal for testing purposes. The Basys3 has only one 100 MHz
oscillator, so it is necessary to create a small module that will convert this
signal into a lower frequency.

The slow clock input does not have to be a perfect 33 MHz signal like the
LPC clock, because it is an external input and the design will adapt to the
incoming frequency. The only requirement for the clock is to be slower than
100 MHz, so the FIFO does not fill up that quickly.

In the custom clock module, there is only one input, clk, which is the
regular clock input, and one output clk out which is the slow clock. The
output is driven high in one of five cycles of the input clock, resulting in
a frequency of 20 MHz when used on the Basys3.
module custom_clock (input clk , output clk_out );

reg [3:0] counter = 0;
reg clk_slow = 1;
always @( posedge clk)
begin

counter <= counter +1;
if( counter == 4)
begin

counter <= 0;
clk_slow = ∼clk_slow ;

end
end
assign clk_out = clk_slow ;

endmodule

Code snippet 4.5: Module generating a clock signal 5 times slower than the
input clock signal.
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4.2.3 Testing the FIFO and Transmitter

To test that the FIFO and transmitter connected module also works well on
the board, some data writes and data reads must be performed. It is then
possible to check all the transmitted data as the output of the Python script
on the command line or in the file which is generated.

For the purposes of testing of this module, a data generator was created.
This module contains a data register which is incremented in each clock cycle.
Its maximum value is 255. Every fifth clock cycle, the data valid signal is
triggered and the value in the register is therefore written into the FIFO. This
continues until the FIFO is full.

always @( posedge clk) begin
if(full) begin

write <= 0;
end
counter <= counter +1;
data <= data + 1;

if( counter == 4)
begin

if(write) begin
data_valid <= 1;

end
else begin

data_valid <= 0;
end
counter <= 0;

end else begin
data_valid <= 0;

end
end

Code snippet 4.6: Code of a module that generates sample data to test the
FIFO and transmitter connected module. A counter is incremented in each
cycle, and every five cycles, a data valid signal is driven high to write to FIFO.
The writing stops once FIFO fills up.

The FIFO and transmitter module is instantiated in the internal test fifo.v
file, together with the FIFO data generator and the slow clock module de-
scribed earlier. The slow clock is utilized as the clock input of the data gen-
erator, as the data have to be written into the FIFO using the slower clock
domain.
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4.2.4 Testing the Final Design

The final design on the Basys3 board is tested here. Again, three modules
are instantiated in the design file. The slow clock are used once again to
imitate the LPC clock, the final module is instantiated and, finally, an LPC
data generator was created.

This module initializes multiple constant values, which simulate LPC be-
havior similarly to the final module simulation. However, for the purpose of
synthesis, different approach has to be taken to set the output data in the cor-
rect order and time. The test values are again stored in the test cases register,
and the for loop from the filtration FSM testbench is rewritten in a different
way, using an always block and two counters, counter cases and counter fields,
to control the state of the data presented to output.

always @( posedge LCLK) begin
if ( counter_cases < 4) begin
if ( counter_fields == 13) begin

LFRAME = 0;
end else begin

LFRAME <= 1;
end
if ( counter_fields == 1) begin

counter_fields <= 13;
counter_cases <= counter_cases + 1;

end else begin
counter_fields <= counter_fields - 1;

end
LAD <= test_cases [ counter_cases ][( counter_fields *4 -1) -:4];
end
end

Code snippet 4.7: Similar test input generator as in code snippet 4.1.1. Each
iteration represents one LPC transaction according to the test vector.

Five test transactions were run, with only two of them being valid - one
read and one write. Therefore, two captured values should be seen in the
output of the script, 0x3c and 0x28.

Figure 4.4: Output of the Python script. The data are generated by the
internal test module and successfully transmitted via the serial line.
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The same output can be also found in the output text file, therefore the test
is successful. The final module consisting of filtration FSM, FIFO and UART
transmitter is therefore tested while loaded onto the FPGA board together
with a special module that generates input for the final module.

4.3 Testing the Design with Arduino

Before connecting the FPGA board to a real LPC bus, it is convenient to
test not only the design itself but also the connection of the pins and their
assignment to the right input. For this purpose, the Arduino UNO board is
used. Its output pins are connected to the input pins of the Basys3 board
with wires. Arduino imitates the output of an LPC bus, therefore the FPGA
behaves exactly the same as if it were connected to a real bus.

Another advantage of using Arduino for testing is that the input values
can be controlled and changed very quickly. Defining new test values directly
in the Verilog code as shown in the previous section is not that convenient,
mainly because the synthesis has to run again every time the data are changed.
This takes a few minutes, whereas loading the code into Arduino takes just
a few seconds.

4.3.1 Wiring Arduino and Basys3 Together

As described in previous chapters, there are 5 inputs and 1 output in the top
module. The output (txd) is already tested properly, so the focus is on the
inputs.

FINAL MODULE LAD 4 bits

LFRAME 

LCLK 

clkreset

txd

Figure 3.2: The final module has three inputs from the LPC bus, along with
the clock signal from the FPGA board, and a reset signal. It processes the
input values and outputs the correct TPM data via the txd UART output.

The clk input is connected to the inner 100 MHz clock of Basys3 in the
same way as in the internal testing part. A button on the FPGA serves as the
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reset input. Therefore, there are the three main inputs left for the Arduino
to provide.

The LFRAME and LCLK are only one-bit signals, whereas the LAD is
4 bits wide. 6 output and input wires are therefore necessary to connect the
two boards.

There are 14 digital pins present on the Arduino UNO, it is necessary to
define which of them will serve which input. The pins 4-7 act as the LAD
inputs, respectively, from the least to the most significant bit. LFRAME input
comes from the pin 8 and LCLK from the pin number 2.

Now, it is necessary to connect them to the Basys3 board. The Basys3
board contains 4 pmod headers, in each header there are 12 pins - 2 power
supplies, 2 ground, and 8 data pins. It is possible to map each of the individual
pins to an input of a module.

Figure 4.5: Scheme of one pmod head on Basys3 board. It contains 12 pins
including 8 data pins, 2 power (3.3V) pins and 2 ground pins. [29]

Two pmod heads are utilized for connecting the inputs, JA - the upper left
header (number 2 on the Basys3 scheme) and JC - the bottom right header.
The LAD pins are connected to pins 1-4 of the JA header, the LFRAME is
connected to the pin number 7. The clock is connected to pin number 3 in the
header JC, because there are few pins capable of handling an external clock
input. Moreover, it has to also be connected to the P side of the clock-capable
input pin, because the clock is a single-ended input10, which took some time to
figure out. Naturally, the ground pins of the two boards have to be connected.
Constraints must be set to assign ports to matching inputs and outputs.

10This topic is out of scope of this thesis, some details can be found at omega.com [31]
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set_property PACKAGE_PIN J1 [ get_ports LAD[0]]
set_property IOSTANDARD LVCMOS33 [ get_ports LAD[0]]

set_property PACKAGE_PIN N17 [ get_ports { clk_33 }]
set_property IOSTANDARD LVCMOS33 [ get_ports { clk_33 }]

Code snippet 4.8: Snippet of a constraint file. The first two lines describe the
assignment of the pmod pin number 1 to the least significant bit of the LAD
input. The remaining lines assign the clock input to the clock capable pin.

Figure 4.6: Connection of Arduino and Basys3. The Arduino pins for LAD
and LFRAME outputs are connected directly to pmod pins of the Basys3
board. The LCLK output is connected to another pmod head containing
a clock capable pin, while also connecting to an LED. The LED is present
just to indicate that the clock is active.

4.3.2 Programming the Arduino

After connecting the Arduino and Basys3 boards, it is necessary to program
the Arduino to produce the correct values similar to the LPC bus. An im-
portant topic is the clock. As described earlier, the LPC clock frequency is
around 33 MHz. It is not possible to produce this frequency because the in-
ternal clock of the Arduino operates on a 16 MHz signal. Fortunately, this
exact frequency is not needed. The clock from the LPC bus is an external

43



4. Simulation & Testing

input, so the FPGA design behaves the same way at any frequency.
The only difference is the time it takes for the FIFO to fill up. Because

the clock is slower on the Arduino than on the LPC bus, it only slows down
the process and the test data size is not that large to fill the FIFO anyway.

Regarding the clock signal, another advantage of using Arduino is the
ability to dynamically control the clock frequency, even slow it down to the
point where it is observable which values are sent into the FPGA board in
real time (for example, after setting the clock frequency to one second).

To generate the clock, an oscillator on the Arduino ATmega328P microchip
was used. Multiple frequencies can be generated and for the testing purposes,
8 MHz or 1 Hz clock can be selected. While operating with the 1 Hz clock, it
is possible to view the data processing slowly and, for example, set the LAD
and LFRAME signals as outputs on the Basys3 LEDs. A function that reacts
to the clock is established and desired test values are written there to the
digital output pins on the Arduino. The source code of the clock generators
and the testing function can be found in the appendix (A.4, A.5 and A.6,
respectively).
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Chapter 5
Forensics of Captured Data

There are various applications that can utilize the TPM chip. However, an il-
lustrative example of such software is the previously mentioned Windows Bit-
locker. It is used by a very large number of users who may not even know
about it because it is configured on Windows operating systems by default.

Within the process of unsealing a key, it has to be read from the TPM and
travel through the LPC bus. This exact process is performed by BitLocker
during the boot phase, where volume master key (VMK) is unsealed. While
researching sources for this thesis, a blog publication was discovered that
discussed this idea [37]. Together with the supervisor, it was decided to explore
it and confirm that VMK can be indeed sniffed11 from the LPC bus. The data
sample regarded in this chapter was provided by Filip Štěpánek [24].

5.1 Configuration of FPGA Design

When there is a specific piece of data that is intended to be read from the LPC
bus, it is useful to take advantage of the parameters provided before loading
the design onto a physical board. In this case, only the read branch is used,
as the unsealed key is read from the TPM by Bitlocker. Another parameter
that can be set is tpm addr, where it can be specified which address to focus
on for data capture.

Choosing the Correct Address

As described in section 2.3.1.1, the address consists of 16 bits. That is a lot of
possible addresses. To find the right one, it is necessary to examine the TPM
Client Specification ([17]). There, in section 6.5.2.2.2, it is stated that “when
a command completes, the TPM puts the results into the data FIFO, which is
read via the TPM DATA FIFO x register”.

11“Sniffing is when packets passing through a network are monitored, captured, and some-
times analyzed.” [36]
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5. Forensics of Captured Data

There is no need to know how the commands are processed. It is assumed
that a command for unsealing the VMK is invoked by BitLocker, performed
by the TPM, and the key is loaded into the TPM DATA FIFO x register.

After further inspection of the specification, it is revealed that there are
five of these registers, each belonging to a different locality (0-4). In this case,
the data belong to locality 0, therefore, to the TPM DATA FIFO 0 register.
As described in section 3.2 of the specification, locality 0 regards the static
root of trust and measurement (SRTM), which is used during the boot phase
before the OS is loaded. That is when the VMK unsealing takes place.

According to Table 19 in the specification, TPM DATA FIFO 0 can be
accessed in the address range of 0027h to 0024h (h meaning hexadecimal). As
written in the note, however, these addresses are aliased into one in the TPM,
therefore it is enough to read only the 0024h address.

When configuring the FPGA design, the tpm addr parameter is therefore
set to 0024h.

5.2 Searching for the VMK

After setting the correct parameters, loading the design onto a physical board,
connecting it to the LPC bus, and capturing the data during the boot phase,
it is necessary to inspect the text file that contains the captured data and find
volume master key. To achieve that, it is necessary to know what to look for,
thus look into the structure of the VMK.

5.2.1 Structure of the VMK on the LPC Bus

The Bitlocker drive encryption (BDE) format specification is publicly available
on Github. It was created by Joachim Metz by combining public work on the
specification and analyzing test data. [22]

The data that are sent from the TPM in the process of unsealing the
VMK resemble the full volume encryption (FVM) key, with standard FVE
metadata entry header. [23], [22] The format is described in the BDE format
specification, sections 5.4 and 5.3, respectively.

Knowing this, it is necessary to create a byte sequence to look for in the
captured data. According to the specification, the key structure should look as
indicated in the table below. The expected values are written in hexadecimal
form.
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5.2. Searching for the VMK

Size Expected value Description
Metadata header 2 00 2C Data size in bytes

2 xx xx Entry type
2 00 01 Value type
2 xx xx Version

Key 4 00 00 20 0[0-5] Encryption method
32 ... Key value

Table 5.1: This table shows the expected structure of the VMK between cap-
tured data. The following list describes the individual fields of the metadata
header and the key.

Description of individual fields:

• Data size - Contains the sum of sizes of all fields, which is 44 decimal
or 2C hexadecimal.

• Entry type - It is not clear which data should be in this field, other
fields will be used to determine the key.

• Value type - Here, according to section 5.3.2 in the BSD specification
the value should be 1, as the key is already decrypted.

• Version - In this field, values may vary.

• Encryption method - The VMK uses AES-CCM 256 bit encryption,
therefore, according to section 5.2.1, the value can range from 20 00 to
20 05 hexadecimal.

• Key - The VMK itself is located in this field.

It is important to note that the header data are stored in little-endian,
therefore for each field, the least significant byte is transferred first through
the LPC bus. Therefore, the desired byte sequence of the header should look
like this: 2C 00 xx xx 01 00 xx xx 0[0-5] 20 00 00, where x stands for an
unknown value.

5.2.2 Finding the VMK Between Captured Data

While searching for the VMK header, the 0x2C data size served as a point
of reference. There were 23 0x2C entries in the captured data chunk, so it
was possible to go through them manually. The majority of these entries were
surrounded by values that did not match the VMK header at all. Finally, only
one entry corresponded to the header.

The hexadecimal VMK value found between the data sample is:
f5 c0 83 bd f9 61 cf a0 9a ea a9 6d a3 e2 7a 1d 45 78 71 e0 1e 99 72 ab d7
3b d3 a3 e5 d7 30 2b
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... 
0x2e 
0x0 
0x2c 
0x2c 
0x0 
0x5 
0x0 
0x1 
0x0 
0x0 
0x0 
0x3 
0x20 
0x0 
0x0 
0xf5 
0xc0 
0x83 
...

VMK header

Other data

VMK

Figure 5.1: The VMK was found between the captured data from the LPC
bus. The header corresponds with the anticipated structure.

5.3 Conclusion of the Forensic Analysis

Considering all the sections above, it is possible to perform an evil maid12

attack. After extracting volume master key, it is possible to decrypt and
mount the disk. A tool called Dislocker [26] can be utilized, it supports drive
decryption after providing VMK, so it is not necessary to decrypt FVEK
manually.

It is important to mention that certain conditions must be met for the
attack to work. First, the targeted Windows machine must operate with
a discrete TPM chip that communicates with the motherboard using the LPC
bus.

Second, the Bitlocker has to be configured in the TPM only authentication
mode. The chances are fairly high for this to be the case, as it is the default
Bitlocker configuration.

Most importantly, the adversary has to get hold of the device so that they
can probe it in somewhat laboratory conditions. In terms of tools, it is only
necessary to possess an FPGA and solder some wires.

12“An evil maid attack is an act of hacking a device through physical access. The name
refers to a scenario where a hotel employee compromises a laptop, smartphone, or tablet left
in a room.”[25]
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5.4. Mitigation

5.4 Mitigation

There are multiple methods to prevent this attack. The simplest one is to
change the Bitlocker configuration and use the PIN or the startup key authen-
tication mode alongside the TPM. As mentioned earlier, the volume master
key is not released to the bus before entering the second authentication factor.

While this thesis was being written, an article addressing the issue with this
attack was published. It reported about new security features implemented by
Microsoft for Windows 11. One of the features is the usage of a new security
chip called Pluton, which implements the TPM functionality directly into the
central processing unit. It mitigates this exact type of attack, as there is no
bus connection between the TPM and the motherboard. [27]
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Conclusion

The goals of the thesis were to provide an introduction to the trusted platform
module, implement an FPGA design to capture only TPM related data from
the LPC bus, and analyze these data.

In the first part of the thesis, important theoretical information about
the functionality and design of the trusted platform module was presented,
as well as some basic information about the LPC bus and BitLocker. In the
analysis part, the modules necessary to create the device were identified. The
UART interface and protocol was described and a serial line transmitter was
implemented. Moreover, the LPC protocol specification was examined and
reflected in the design of a finite-state machine with the purpose to obtain
only TPM related data from the LPC bus.

Multiple problems were encountered during the implementation part. Even
before starting to work on the implementation, the setup of the development
environment took a lot of time and effort. Another challenge that came was
to cross the two clock domains, which could be solved using FIFO. Connect-
ing the modules was also interesting, the intention of designing the modules
separately and connecting them afterwards was only partially successful, as it
was necessary to perform small, yet noticeable adjustments in the modules.

The FPGA design was first tested only with the help of the Vivado design
suite and its simulation feature. This was perfect for debugging. Another
challenge presented was to test the FPGA design on a physical board even
before having access to a real LPC bus. For this purpose, Arduino was used
to simulate the expected behavior of the data on the LPC bus. It had another
advantage, being that particular components of the final module could be
tested separately before completing and testing the final module itself. The
idea of using Arduino to simulate external inputs to test FPGA designs has
potential to be further explored and developed.

Upon researching the sources, it was discovered that, under certain condi-
tions, it could be possible to perform an evil maid attack with the developed
FPGA design, as it is possible to extract BitLocker volume master key from
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Conclusion

the data captured from the LPC bus. With this key, it is possible to decrypt
the BitLocker-protected disk.

Together with the supervisor, it was decided to explore this idea and con-
firm that the attack could be carried out, which was successful. The TPM-
related data captured from the LPC bus were analyzed and volume master key
was found. Mitigation recommendations are also mentioned in the thesis.
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[24] ŠTĚPÁNEK, Filip. Zachycená data [email]. Message to:
mandima1@fit.cvut.cz. 8 April 2022. [cit. 19 April 2022]. Personal
communication.

[25] KASPERSKY. What is an evil maid attack? Kaspersky IT Encyclo-
pedia [online]. 2022. [Accessed 19 April 2022]. Available from: https:
//encyclopedia.kaspersky.com/glossary/evil-maid/

[26] AORIMN. GitHub - Aorimn/dislocker: FUSE driver to read/write Win-
dows’ BitLocker-ed volumes under Linux / Mac OSX [online]. 2022.
[Accessed 19 April 2022]. Available from: https://github.com/Aorimn/
dislocker

[27] VIJAYAN, Jai. Microsoft Details New Security Features for Win-
dows 11 [online]. April 06 2022. [Accessed 19 April 2022]. Available
from: https://www.darkreading.com/remote-workforce/microsoft-
details-new-security-features-for-windows-11

55

https://www.intel.com/content/dam/www/program/design/us/en/documents/low-pin-count-interface-specification.pdf
https://www.intel.com/content/dam/www/program/design/us/en/documents/low-pin-count-interface-specification.pdf
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-overview
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc732774(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2008-r2-and-2008/cc732774(v=ws.10)
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-key-management-faq
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-key-management-faq
https://docs.microsoft.com/en-us/windows/security/information-protection/bitlocker/bitlocker-key-management-faq
https://github.com/libyal/libbde/blob/main/documentation/BitLocker%20Drive%20Encryption%20(BDE)%20format.asciidoc
https://github.com/libyal/libbde/blob/main/documentation/BitLocker%20Drive%20Encryption%20(BDE)%20format.asciidoc
https://github.com/libyal/libbde/blob/main/documentation/BitLocker%20Drive%20Encryption%20(BDE)%20format.asciidoc
https://www.anoopcnair.com/bitlocker-unlocked-behind-the-scenes-windows-10/
https://www.anoopcnair.com/bitlocker-unlocked-behind-the-scenes-windows-10/
https://encyclopedia.kaspersky.com/glossary/evil-maid/
https://encyclopedia.kaspersky.com/glossary/evil-maid/
https://github.com/Aorimn/dislocker
https://github.com/Aorimn/dislocker
https://www.darkreading.com/remote-workforce/microsoft-details-new-security-features-for-windows-11
https://www.darkreading.com/remote-workforce/microsoft-details-new-security-features-for-windows-11


Bibliography

[28] WONGLIK, Alex. Debonucing Button on Basys 3, Xilinx FPGA Devel-
opment Board : 6 Steps (with Pictures) - Instructables [online]. 2017. [Ac-
cessed 24 April 2022]. Available from: https://www.instructables.com/
Debonucing-Button-on-Basys-3-Xilinx-FPGA-Developme/

[29] DIGILENT. Basys 3™ FPGA Board Reference Manual [online]. 2017.
[Accessed 24 April 2022]. Available also from: https://hwlab.fit.cvut.cz/
_media/pripravky/fpga/basys3/basys3_rm.pdf

[30] ARDUINO. What is Arduino? [online]. 2017. [Accessed 25 April 2022].
Available from:https://www.arduino.cc/en/Guide/Introduction

[31] OMEGA. Differential Signal Vs Single-Ended Inputs [online]. 2019. [Ac-
cessed 25 April 2022]. Available from: https://www.omega.com/en-us/
resources/differential-or-single-ended

[32] AMANDAGHASSEI. Arduino Timer Interrupts [online]. 2021. [Ac-
cessed 25 April 2022]. Available from: https://www.instructables.com/
Arduino-Timer-Interrupts/.

[33] GAMMON, Nick. Using an Arduino as a crystal oscillator [on-
line]. 2016. [Accessed 25 April 2022]. Available from: https:
//arduino.stackexchange.com/questions/30695/using-an-arduino-
as-a-crystal-oscillator

[34] LUTKEVICH, Ben cryptographic nonce [online]. 2021. [Accessed 28 April
2022]. Available from: https://www.techtarget.com/searchsecurity/
definition/nonce

[35] WAGNER, Bill et al. Cryptographic signatures — Microsoft Docs
[online]. 2021. [Accessed 29 April 2022]. Available from: https://
docs.microsoft.com/en-us/dotnet/standard/security/
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Appendix A
Source Code Fragments

counter <= counter + 1;
read <= 0;
if ( counter == NCYCLES - 2) // One cycle before we indicate
begin //sync , we want to read data from FIFO

if(load)
begin

read <= 1;
end

end
if ( counter >= NCYCLES ) //If the counter indicates sync ,
begin // conditions change according to the state machine

counter <= 0;
state <= nextstate ;
if(load)
begin

shift_reg <= {1’b1 , data , 1’b0};
end
if(clear)

transmit_counter <= 0;

if(shift)
begin

shift_reg <= shift_reg >> 1;
transmit_counter <= transmit_counter + 1;

end
end

Code snippet A.1: Code fragment of the logic section of the transmitter. It
includes the synchronization of the baud rate and value changes conditioned
by the FSM.
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A. Source Code Fragments

case(state)
0: begin // Idle state

if( transmit ) // When transmit input is detected
begin

load <= 1; // indicate loading data into shift_reg
shift <= 0;
clear <= 0;
txd <= 1;
nextstate <= 1;

end
else begin // Not transmitting data

load <= 0;
shift <= 0;
clear <= 0;
txd <= 1;
nextstate <=0;

end
end
1: begin // Transmit state

if( transmit_counter < 10) //If data bits are remaining
begin // 10 => to transfer one byte , start and stop

load <= 0; // bits have to be aded
shift <= 1; // indicate shifting of shift register
clear <= 0; //to transfer next bit
txd <= shift_reg [0]; // Send lsb to output
nextstate <= 1;

end
else begin // when all bits are sent ,

load <= 0; // stop transmitting data
shift <= 0;
clear <= 1;
txd <= 1; // indicate that no data
nextstate <= 0; //is being transferred

end
end

Code snippet A.2: Code fragment of the finite state machine in the UART
transmitter module. When the FSM is in the idle state, it is waiting for the
transmit input to be triggered. When that happens, it sets the load signal
up, so that the data input is loaded into the shift reg. After that, the state
changes to transmit and sets the refisters for the logic section accordingly.
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import s e r i a l

s = s e r i a l . S e r i a l ( \\
’COM4’ , \\
115200 , \\
s t o p b i t s=s e r i a l .STOPBITS ONE, \\
b y t e s i z e=s e r i a l .EIGHTBITS, \\
t imeout=2)

f = open( ” r e s u l t . txt ” , ”w” )
while 1 :

i f s . i n w a i t i n g > 0 : # b u f f e r con ta ins more than
str = s . read ( 1 ) [ 0 ] # one charac t e r
print (hex( str ) + ’ ’ )
f . wr i t e (hex( str ) + ’ \n ’ )

Code snippet A.3: Code of serial receiver.py script, which handles data in-
coming from the FPGA board via the serial line. The correct baud rate of
11500 is set and the serial port where the Basys3 board is connected is the
COM4 port. The received data is then printed to the output and saved into
a text file.

void oneHz (){
TCCR1A = 0;// set entire TCCR1A register to 0
TCCR1B = 0;// same for TCCR1B
TCNT1 = 0;// initialize counter value to 0
OCR1A = 15624; // =(16*10ˆ6) / (1*1024) -1 (must be <65536)
TCCR1B |= (1 << WGM12 ); // turn on CTC mode
TCCR1B |= (1 << CS12) | (1 << CS10 );
TIMSK1 |= (1 << OCIE1A ); // timer compare interrupt

}

Code snippet A.4: This code fragment generates clock with frequency of 1 Hz
in Arduino UNO. [32]

void eightMHz (){
TCCR1A = bit ( COM1A0 ); // toggle OC1A on Compare Match
TCCR1B = bit (WGM12) | bit (CS10 ); //CTC , no prescaling
OCR1A = 0; // output every cycle
TIMSK1 |= (1 << OCIE1A );

}

Code snippet A.5: This code fragment generates clock with frequency of 8
MHz in Arduino UNO. [33]
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ISR( TIMER1_COMPA_vect ){
if (state ){

digitalWrite (LCLK ,HIGH ); // Drive LCLK HIGH
// Change LPC values
if ( firstCycle == false ){

if( fieldIndex == 0){
LFRAMELow ();

} else {
LFRAMEHigh ();

}
writeLAD ( testData [ dataIndex ][ fieldIndex ] );
fieldIndex = getNextField (
testData [ dataIndex ],
fieldIndex );

if( fieldIndex == 0 && dataIndex < dataCount - 1){
dataIndex ++;

}
}
firstCycle = false;
state = 0;

}else{
// LCLK is LOW
digitalWrite (LCLK ,LOW );
state = 1;

}
}

Code snippet A.6: This code fragment shows the function which react to clock
change. Each time, it changes the clock output signal value and if the clock
is being driven high, it also changes the output values accordingly to the test
cases. [33]
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Appendix B
Acronyms

AES Advanced encryption standard

AK Attestation key

API Application programming interface

BIOS Basic input-output system

CPU Central processing unit

DMA Direct memory access

ECC Elliptic-curve cryptography

EK Endorsement key

HDL Hardware description language

FPGA Field-programmable gate array

FSM Finite-state machine

FVEK Full volume encryption key

IP Intellectual property

ISA Industry standard architecture

LPC Low pin count

OS Operating system

PCR Platform configuration register

RNG Random number generator

RSA Rivest, Shamir, Adleman
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B. Acronyms

SPI Serial peripheral interface

SRK Storage root key

TPM Trusted platform module

UART Universal asynchronous receiver-transmitter

VMK Volume master key
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Appendix C
Contents of Enclosed SD Card

readme.txt ........................... the file with contents description
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
tpm lpc analyzer.......Vivado project with implementation sources
arduino tester.ino .................. source code of Arduino tester
captured data.txt ............... text file with captured TPM data
serial1.py...................source code of python serial line script

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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