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Abstract
Space Filling Forests are a family of
sampling-based multi-goal motion plan-
ning algorithms. The first objective of
this work is to extend it for single-goal
planning in Euclidean spaces, for Dubins
car and Dubins airplane, and for plan-
ning with polynomial trajectories. The
second challenge is to propose a novel
multi-goal path planner for Dubins vehi-
cles. First, existing algorithms for motion
planning were analyzed and compared
with Space Filling Forest, and approaches
for multi-goal path planning were studied.
Subsequently, the proposed algorithms
were implemented in Open Motion Plan-
ning Library and in a custom library of
planning algorithms. These implementa-
tions were then compared with existing
sampling-based algorithms. The bench-
marks showed, that the Space Filling For-
est algorithms for single-goal planning
are suitable for environments with nar-
row passages, where they outperform clas-
sic planners, but they are not so success-
ful in spacious high-dimensional spaces.
Similar results were achieved with the
new multi-goal algorithm, which found
mediocre tours in mediocre times, but was
able to link hard-to-connect cities. Space
Filling Forests might therefore be an in-
teresting alternative to classic planners.

Keywords: motion planning,
sampling-based motion planners, Space
Filling Forest, Open Motion Planning
Library, robotics, Dubins vehicle,
polynomial trajectories

Supervisor:
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Abstrakt
Tato práce se zabývá rodinou algoritmů
“Space Filling Forest” navrženou pro plá-
nování pohybu mezi více cíli. Jedním ze
záměrů práce je rozšířit tuto rodinu o plá-
nování pro jeden cíl v Euklidovských pro-
storech, pro Dubinsovo auto i Dubinsův
letoun, a pro plánování na polynomiál-
ních trajektoriích. Dalším záměrem je pak
navrhnout novou metodu pro plánování
pohybu mezi více cíli pro Dubinsova vozi-
dla. Algoritmy Space Filling Forest byly
nejprve analyzovány a porovnány s jinými
algoritmy pro plánování pohybu. Zároveň
byly studovány postupy pro plánování cest
mezi více cíli. Následně byly navržené me-
tody implementovány v knihovně “Open
Motion Planning Library” i ve vlastní
knihovně plánovacích algoritmů. Obě im-
plementace pak byly porovnány s ostat-
ními plánovači. Tyto testy ukázaly, že
nově navržené algoritmy plánování pro
jeden cíl jsou vhodné v prostředích s úz-
kými průchody, kde překonaly klasické
plánovače, ale nejsou příliš úspěšné ve vel-
kých vícedimenzionálních prostorech. Po-
dobných výsledků dosáhl i navržený plá-
novač cest mezi více cíli – nalezené cesty
byly délkově a časově průměrné ale umož-
nil propojení těžce přístupných cílů. Navr-
žené algoritmy tak mohou být zajímavou
alternativou k existujícím plánovačům.

Klíčová slova: plánování pohybu,
vzorkovací plánovače pohybu, Space
Filling Forest, Open Motion Planning
Library, robotika, Dubinsovo vozidlo,
polynomiální trajektorie

Překlad názvu: Vzorkovací techniky
plánování pohybu
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Chapter 1
Introduction

In the recent years, new technology and robots have started to significantly step into our
lifes. However, none of it would be possible without solving one of the crucial problems of
robotics: how to transform high-level specification of human motion tasks to a sequence of
simple instructions how to move. This is what algorithms for “motion planning” solve.

Figure 1.1: Growth of the space filling forest for multi-goal motion planning with Dubins airplane
in Dense 3D environment

A basic task of motion planning consists of planning of a collision-free path or sequence of
moves from a point A to another point B on a plane. However, motion planning also includes

1



1. Introduction .............................................
more complex tasks like planning in higher dimensions, for robots or robotic arms with many
degrees of freedom, planning in uncertainty, i.e., in an unknown environment or with noisy
data from sensors, or planning for robots with kinodynamic constraints, e.g., Dubins car or
Dubins airplane.

Even though some basic motion planning task might be solved in polynomial time
(Euclidean shortest path problem in 2D with polygonal obstacles [1]) and some of the tasks are
NP-hard (Euclidean shortest path problem in polyhedral environment [2]), motion planning is
generally PSPACE-complete [3]. The most difficult part of the problem is finding all possible
collision-free positions of the robot in space.

This field of robotics has been the focus of researchers since the second half of the 20th
century. Many motion planning algorithms have been developed during this research from
those that focus on simple tasks in low-dimensional environments, to complex algorithms for
robots with kinodynamic constraints in high-dimensional environments.

Early methods, such as the retraction method or visibility graphs, were based on purely
geometric features of the problem. Therefore, they were especially suitable for low-dimensional
problems. In 1990s sampling-based methods were introduced to cope with high-dimensional
systems with many degrees of freedom. The latest published motion planning algorithms
from the family of the sampling-based algorithms are “Space Filling Forest” [4] and “Space
Filling Forest Star” [5], further also denoted by “SFF algorithms”.

start

goal

Path

A
B

CD

A
B

CD

start

goal

TourInput

Input

X

Figure 1.2: Single-goal (top) versus multi-goal (bottom) motion planning

2



................................................ 1.1. Goals
1.1 Goals

Both algorithms are designed for “multi-goal” motion planning, i. e., planning of a tour
between given points of interest. One of the main challenges of this work is the extension
of these algorithms also for single-goal motion planning, i. e., for finding a path between
a given start and a goal point, and compare it with existing single-goal motion planners. The
difference between single-goal and multi-goal motion planning is depicted in Figure 1.2.

The classic workflow of single-goal motion planners is shown in Figure 1.3 and is as
follows: a roadmap, tree, or multiple trees that contain given start and goal points are created
first. Subsequently, a path connecting the start and goal points is extracted from this graph.
The path may consist of straight-line segments or more complex curves, such as Dubins
curves. Before deploying on a real robot, the path is usually also transformed to a trajectory
using some external trajectory generator, where time and robot dynamics are also taken into
account.

start

goal

start

goal

start

goal

start

goal

Input Expansion Path Trajectory

Figure 1.3: Classic workflow of the single-goal motion planners

For the SFF algorithms the same principles are applied. In addition, state-of-the-art
planning on polynomial trajectories is also implemented. In this way the graph is expanded
with smaller subtrajectories with respect to the time and robot dynamics of the robot, so the
trajectory is obtained in the end directly. This process is illustrated in Figure 1.4.

start

goal

start

goal

start

goal

Input TrajectoryExpansion

Figure 1.4: Workflow of planning on polynomial trajectories

The second challenge of this work is to propose a novel multi-goal motion planning
algorithm based on SFF for planning with Dubins curves. The current approach for solving
this problem, shown in Figure 1.5, is to find a path for each pair of points to be visited using
single-goal motion planning methods. Then the Travelling Salesman Problem is formulated as
finding the shortest tour from the lenghts of found paths. After its solution the paths forming
the final tour are selected according to the obtained results.

3



1. Introduction .............................................
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Figure 1.5: Classic workflow of the multi-goal motion planning for a robot with kinodynamic
constraints

The proposed approach is to grow multiple trees with Dubins curves in SFF manner and
extract paths from connected trees. Subsequent steps are similar to the classic approach, i. e.,
a Traveling Salesman Problem is formulated, solved and the final tour is contructed from the
selected paths. This simplified workflow is visualized in Figure 1.6.
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Figure 1.6: Proposed novel workflow of the multi-goal motion planning for a robot with kinody-
namic constraints using space filling forest
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........................................... 1.2. Thesis structure

1.2 Thesis structure

The organization of this thesis is as follows: Chapter 2 defines the fundamental terms related
to motion planning, followed by an analysis of single-goal motion planning, its state-of-the-art
algorithms and methods dealing with constrained robots in Chapter 3. In Chapter 4 introduces
multi-goal motion planning methods along with a definition and an overview of the Travelling
Salesman Problem and similar combinatorial problems related to multi-goal planning.

Then, in Chapter 5, the Space Filling Forest algorithm and its variant are discussed. The
following Chapter 6 deals with the implementaion of the proposed algorithms both in the
Open Motion Planning Library as well as in the custom library, together with an overview of
techniques and libraries used.

Both implementations of SFF-based algorithms were benchmarked and compared using
resources described in Chapter 7. Results of these benchmarks are analysed in detail in
Chapter 8 for single-goal planners and in Chapter 9 for multi-goal planners.

5
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Chapter 2
Motion planning

One of the most ancient motion planning problems is the “Piano Mover’s Problem”. Having
a precise model of a house and a piano, the goal is to move the piano out of one room
to another without hitting any wall or other obstacle [6]. This problem is proven to be
PSPACE-complete [3].

Even though the majority of research of motion planning focuses on robotics, where the
motion planning problems have been studied since the late 1960s for both robotic manipulators
[7] and mobile robots [8], the scope of applications is much wider. The algorithms might be
deployed e. g., for solving puzzles [6], car assembly [9] or protein research in biology [10].

Motion planning methods solve the problem only on the basis of geometry, i. e., the
dynamics and time are usually not considered. Algorithms which take such limitations into
account and assign path to the time domain are usually referred to as “trajectory planning”
algorithms. They might be built on the solution of motion planning algorithms — trajectories
are constructed on the resulting path waypoints [6, 11]. Such an approach is called “decoupled”.
Its main advantage is its modularity, e. g., it is possible to use different motion planners with
the same trajectory generator. However, sometimes is is advantegeous to solve both problems
at once, such as trajectories can produce unfeasible trajectories, as described in Section 3.4.

Unlike dynamics, prior knowledge of the shape and location of the robot as well as the
spatial arrangement of the environment is essential for motion planning. Such knowledge
might come directly from user or might be obtained through sensing [12].

Before stepping into particular algorithms, it is important to define basic terms as well as
the motion planning problem itself.

2.1 Basic terms

Let W be “world” or “workspace”, i. e., the operational space where the motion will be
planned. Generally, W = R2 for 2D space or W = R3 for 3D space. As stated by La Valle
[6], the world typically contains two entities, a) robots, bodies (subsets of the world) to be
controlled by the plan of motions, and b) obstacles, subsets of the world that are permanently
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2. Motion planning ...........................................
occupied.

Let A be a robot opearating in W, and B1, . . . ,Bj obstacles. For these holds true

A ⊂ W, (2.1)
Bi ⊂ W, ∀i ∈ {1, . . . , j}, (2.2)
O =

⋃
∀i∈{1,...,j}

Bi, (2.3)

where O represents the “obstacle region”, i. e., an union of spaces occupied by the obstacles.
Next, let q be the robot configuration. “Configuration” is a specification of position and

orientation of the coordinate frame of the robot A with respect to the coordinate frame of the
world W [12]. Configuration space C is then defined as the set of all possible configurations q
of robot A. More precisely, configuration space of the robot is a “manifold” of dimension n,
where n is the number of degrees of freedom of the robot [6]. The term A(q) denotes a subset
of W occupied by A in the configuration q.

For a rigid body in 2D space, the configuration must represent the position of the robot
and its rotation. The configuration space is therefore equal to

C = R2 × S, (2.4)

where S is the manifold of 2D rotations.
For a rigid body in 3D space, the configuration space is a 6-dimensional manifold,

C = R3 × S3, (2.5)

where the three dimensions specify the position of the robot and remaining three dimensions
its rotation.

In order to obtain a motion which is safe for traversal by robot A, collisions with obstacles
must be avoided. Such a motion must be composed of configurations from subset Cfree of
configuration space C called “free space”,

Cfree = {q ∈ C | A(q) ∩ O = ∅} . (2.6)

Please note that the Cfree space is an open set, as the robot can move infinitely close to
an obstacle, but cannot touch it (i. e., have exactly one common point). Set that contains
configurations of the robot, which touches an obstacle, is also denoted by “closure” of the free
space cl(Cfree).

Similarly, set Cobs of configurations of the robot that collides with any obstacle is called
“obstacle region”,

Cobs = {q ∈ C | A(q) ∩ O 6= ∅} , (2.7)
C = Cfree ∪ Cobs. (2.8)

8



............................................. 2.1. Basic terms

(a) : Single-goal planning (b) : Multi-goal planning

Figure 2.1: Comparison of single-goal and multi-goal planning (generated by SFF* algorithm)

Every description of a motion planning problem should include a definition of two
important configurations qinit and qgoal, i. e., the initial and the desired final position of the
robot. The collision-free “path” τ connecting these two configurations is then defined as

τ : [0, 1]→ Cfree, (2.9)

where τ(0) = qinit and τ(1) = qgoal, therefore qinit, qgoal ∈ Cfree.

The complete motion planning algorithm must provide a continous path without collisions
as defined in (2.9), or correctly state that no feasible solution exists.

There can be either one goal configuration — in this case the problem is called as single-
goal planning problem — or multiple goal configurations, called in a similar way as multi-goal
planning problem. In the latter case a set of goal locations is given and the task is to find
the shortest tour through these locations. Under the term “tour” is meant a closed path
that visits each goal exactly once [13]. The difference between single-goal and multi-goal
motion planning is depicted in Figure 2.1 — while only one path from the initial to the goal
configuration is computed in the problem shown in the figure on the left, in the picture on
the right, multiple paths between cities are connected into one tour. This problem together
with approaches to its solution, will be defined later in Section 4.2.

Most of the presented motion planning algorithms consist of two fundamental steps: at
first they transform (or approximate) the problem into a graph search problem and, secondly,
find the shortest path using some graph search algorithm. This can be solved by classic
algorithms as Breadth-First Search (BFS), Depth-First Search (DFS), Dijkstra algorithm, or
using probably the most widely used algorithm today, A* algorithm [14].
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2. Motion planning ...........................................
2.1.1 Description of rotation in 3D spaces

The description of the object´s rotation in 3D space is more complex than in 2D space, because
there are several ways to represent the orientation of the robot. Most used representations of
3D rotations are rotation matrices, Euler angles and unit quaternions.

Rotation matrices are 3× 3 orthonormal matrices with an unit determinant. They are
the most natural way to represent orientation in space, though there are several issues linked
with their usage. Most serious issues are the space requirements on computing systems and
numerical precision issues, when using floating point arithmetics. In addition, it is not easy to
define the distance between two matrices and interpolate between them, which are common
operations required in path planning [15].

Another option is the yaw–pitch–roll formulation, also called “Euler angles”. Threedimen-
sional body can be rotated about three orthogonal axes — x, y, and z. Yaw is the rotation
about the z-axis, pitch is the rotation about y-axis and roll is the rotation about x-axis. The
order in which particular rotations are performed is crucial because different order leads
to different final orientation of the body in space [6]. In addition, one orientation can be
represented by multiple different sets of angles, some of them even by an infinite number of
sets of angles — these are called “gimbal locks”. This causes serious issues with sampling,
distance measurement and interpolation between sets of Euler angles [15].

The most suitable representation of rotations in 3D space for motion planning are the
“unit quaternions”. A quaternion is an imaginary number in the form a + bi + cj + dk

where a, b, c, d ∈ R and i2 = j2 = k2 = ijk = −1. Quaternion is considered as unit when
a2 + b2 + c2 + d2 = 1. As shown by Euler, an arbitrary orientation can be achieved by a single
rotation about a single axis [16]. The corresponding unit quaternion is in the form

Q = (w,x,y, z) =
(

cos θ2 , vx sin θ2 , vy sin θ2 , vz sin θ2

)
, (2.10)

where v = (vx, vy, vz) is the axis of rotation and θ is the angle of rotation. The quaternion
algebra offers an easy way to accumulate angles, interpolate between them and sample [15, 16].
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Chapter 3
Related works for single-goal motion planning

As mentioned in the previous chapter, the motion planning problems might be divided
according to the number of goal configurations into single-goal problems and multi-goal
problems. The first category of problems is discussed in this chapter. First, the oldest basic
approaches are presented, followed by more modern sampling-based methods for solving high-
dimensional problems. Last but not least techniques for single-goal planning with kinodynamic
constraints are introduced as well as trajectory planning with polynomial trajectories.

3.1 Basic algorithms

This section discusses the basic approaches to solving single-goal motion planning problems.
Most of them work only in special cases, i. e., in environments with additional constraints.
It can be 2D spaces with polygonal obstacles and a point or disc-shaped robot. Although
relatively old and primitive, they are still applicable to some of today´s problems because
they are stable and robust. Based on their general methodology, they can be divided into
three main categories: roadmaps, methods based on cell decomposition and potential field
methods [12, 11].

“Roadmap” of an environment is a network of one-dimensional lines or curves lying in
Cfree or cl(Cfree). The resulting path consists of a subpath connecting qinit with a point A
on the roadmap, another subpath connecting qgoal with a point B on the roadmap, and the
path on the roadmap connecting points A and B. [12, 11] Multiple possibilities are known for
constructing a roadmap of n-dimensional environment, two of which will be briefly introduced
— visibility graph and retraction.

The visibility graph, as introduced by Lozano-Peréz [17], is an undirected graph G(N, L),
where N is the union of the vertices of all obstacles and positions of the start and goal
configurations of the robot. The set of edges L is the set of all links (ni, nj) such that
ni, nj ∈ N and the straight line connecting them does not overlap any obstacle. So these lines
thus do not lie in Cfree but in cl(Cfree). An example of a visibility graph and the resulting
path is depicted in Figure 3.1a. This definition only applies to a point robot, otherwise the
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3. Related works for single-goal motion planning...............................
shape of the robot must be approximated by a disc or polygon and obstacles must be inflated.
The roadmap is then constructed on the inflated set of obstacles.

The retraction approach introduced in [18] for disc-shaped robots, later extended in [19],
builds on the idea that the safest way to move the body through an environment with obstacles,
is to keep it as far as possible from any obstacle, i. e., equidistant from at least two obstacles
all time. This idea was apparently introduced in [20] and leads to construction of “Voronoi
diagrams”. These can be constructed in Θ(n logn) time [21] and for polygonal environments
they consist of linear or parabolic line segments.

As the name of another general approach, “cell decomposition”, suggests, these methods
subdivide a given environment into smaller regions called cells. These cells can then be
transformed into a “connectivity graph” that can be searched using standard graph search
methods. The connectivity graph usually consists of midpoints of borders of two adjacent
cells and/or of centroids of the cells. Graph nodes can then be connected by an edge only if
they belong to adjacent cells or even to the same cell [12, 11]. Another option is to directly
use the vertices and borders of the cells. The resulting path consists, as in the roadmap
approach, of subpaths connecting the initial and goal configurations with the connectivity
graph, and a path on the connectivity graph.

In general, there are two main methods of space decomposition — exact decomposition
and approximate decomposition.

Exact decomposition methods divide the free space of the environment exactly, i. e.,
the union of the resulting cells equals the same free space. One such method is trapezoidal
decomposition, where the environment is divided into trapezoidal and triangular cells [12],
as shown in Figure 3.1b. Another option is to utilize triangulation methods and divide
the environment into triangles [22], as shown in Figure 3.1d. One of the advantages of
triangulation is the ability to improve the path quality by refining the division. For both
methods, polygonal obstacles are required.

However the exact methods are not always appropriate, e. g., due to the complexity of
the environment. In such cases, it is possible to deploy approximate methods of environment
decomposition. In these methods, the union of the resulting cells does not equal free space of
the environment, but it is still a subset of free space [12]. A typical method is a decomposition
to small squares or rectangles of the same size (forming a grid, e. g., as in Figure 3.1c) or
even multiple sizes (recursive decomposition of cells containing boundaries of free space and
obstacle region). The second variant is also called “quadtree” decomposition (2D space) or
“octree” decomposition (3D space), because the environment decomposed using these methods
might be represented by a tree of degree 4 (or 8 respectively) [23, 11].

Depending on the resolution of cells, these algorithms might not be “complete”, as defined
in Chapter 2. i. e., do not return a valid solution even if some exists. However, for sufficiently
fine resolution, the algorithms are able to find such a solution, so these methods are called
“resolution complete”.
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(a) : Visibility graph (b) : Trapezoidal decomposition

(c) : Grid-based decomposition (d) : Triangulation

Figure 3.1: Overview of selected basic motion planning methods

One of the major disadvantages of the aforementioned methods is their inefficiency in
high dimensions, i. e., in motion planning for robots with a high number of degrees of freedom
(DOF), e. g., robotic manipulators. Although some of them might be capable of such a task,
execution would be slow. To overcome this issue, methods using “potential fields” have been
proposed [24, 25]. Their main principle is simple and intuitive:

“The manipulator moves in a field of forces. The position to be reached is attractive
pole for the end-effector, and obstacles are repulsive surfaces for the manipulator parts.” [24]
Therefore, a potential function must be defined, the direction of motion is then determined
using the negated gradient of this function.

The main disadvantage of the aforementioned approach is the existence of local minima
in environments with concavely shaped obstacles. Several methods have been proposed to
overcome this issue: Barraquand et al. [25] present a method filling-up the attractor for low-
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3. Related works for single-goal motion planning...............................
dimensional spaces when the local minimum is reached (Best-First Planner) and a “random
walk” method for high-dimensional spaces (Randomized Path Planner). Other authors test
wall following [26] or using functions with one local minimum only — the so-called harmonic
functions [27]. However, the process of finding of such a method is quite complicated.

Another problematic part of this approach is the design of a potential function that
involves many heuristic parameters that need to be tuned for a specific environment [6].

3.2 Sampling-based motion planning

Sampling-based motion planners are designed to solve high-dimensional problems for robots
with many DOF. The main idea is not to construct the entire configuration space C, but
instead to randomly discretize it and use a collision checker (a function or simply “black
box”), which decides whether the sampled configuration belongs to Cfree. A similar principle
is also used by the Best-First Planner and the Randomized Path Planner [25] to avoid the
construction of complex potential functions that guarantee collision-free motion of the robot.
This approach also allows planning regardless of the shabe of the robots and obstacles. Thus,
the environment might contain non-convex polyhedra, 3D triangles etc. [6].

The problem with the completeness of the algorithm arises again with sampling-based
algorithms. For a small number of samples or unevenly distributed samples, the algorithm
might not find any valid solution. However, the sampling-based algorithms with random
sampling, that are dense in infinity with probability one, are defined as “probabilistic complete”.
This means the probability that the algorithm will not find a solution, even if some exists,
converges with increasing number of samples to zero in infinite time [28].

3.2.1 Asymptotically optimal methods

The sampling-based methods described in the following sections provide, in their elementary
versions (sPRM/RRT/EST), a feasible solution to the motion planning problem, if any exists,
for the umber of samples growing to infinity. But what if the path planning problem requires
finding optimal path, i. e., the one with the shortest length among all other feasible paths? The
optimality was already researched on a theoretical basis in [2]. The authors concluded that the
problem is very difficult because it “has both a combinatorial and an algebraic character,” [2].
Practical approaches based on common sampling-based algorithms are presented by Karaman
and Frazzoli [29], who also define the term “asymptotic optimality” of the motion planning
algorithm.

For a complete definition of asymptotic optimality, the reader is advised to read [29].
Basically, the probability that an asymptotically optimal planner finds the optimal solution,
if there is any robustly feasible solution, converges to one when the number of samples
(or iterations of the algorithm) rises to infinity. The probabilistic completeness of such an
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algorithm is clearly a necessary condition, but it is not a sufficient condition.

3.2.2 Probabilistic Roadmaps

One of the planners utilizing the previously described principles was named “Probabilistic
Roadmaps” (PRM) and was proposed by Kavraki et al. [30]. The planning process is divided
into two phases: the learning phase and the query phase.

During the learning phase, a probabilistic roadmap is built by “repeatedly generating
random free configurations of the robot and connecting these with some simple but very
fast (...) local planner,” [30]. In this way, a graph is constructed, the vertices of which
correspond to sampled configurations and its edges to collision-free path segments between
them. Absence of collisions is just guaranteed by the local planner. In the subsequent query
phase, graph searching methods are utilized to find the path between arbitrary initial and
goal configurations. This is done in a similar way as for the roadmaps in Section 3.1. The
roadmap is reusable, therefore, there can be more query phases with different start and goal
positions. PRM therefore falls to the “multi-query planners” category.

Algorithm 1 Probabilistic roadmaps — learning phase [30]
Input: W — environment
Input: Nmax — number of samples
Input: k — maximum number of neighbours
Output: R(V,E) — probabilistic roadmap

1: V ← ∅
2: E ← ∅
3: while |V | ≤ Nmax do
4: q ← random configuration in W such that, isFree(q) holds true
5: Nq ← k-nearest neighbors of q
6: V ← V ∪ {q}
7: for ∀n ∈ Nq in order of increasing distance from q do
8: if not SameComponent(q,n) and isFree(q,n) then
9: E ← E ∪ {(q, n)}
10: return R

The original algorithm for roadmap construction is described in Algorithm 1. First, an
empty roadmap is initialized. Then the following steps are repeated until the size of the
roadmap equals the required number of samples. A random configuration q in the environment
is sampled, which is then checked for collisions with obstacles using aforementioned techniques.
If q is in free space, it is added to the roadmap and the set of k-nearest neighbors is found.
The samples in this set are ordered with increasing distance from q. Edge connecting q with
some neighbor n is created if and only if both q and n do not lie in the same connected
component1 and the path between them is free. The resulting structure is a tree or a collection
of trees.

1This might be determined using the Union-Find structure.
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3. Related works for single-goal motion planning...............................
One of the problems with the original algorithm is the fact that its probabilistic com-

pleteness has not yet been proved. Therefore, an alternative version, simplified PRM (sPRM),
was introduced in [31]. The main difference between PRM and sPRM is the relaxation of the
condition regarding the non-connected vertices in the same component. The final structure
of this version of the algorithm can be described as a common graph with loops. However,
because the length of the loops is non-negative, classic graph algorithms might still be used
for searching in query phase.

As is evident from Algorithm 1, there are 2 parameters of PRM/sPRM that need to be
set. Namely the number of samples in the roadmap N and the number of nearest neighbors
k. Figures 3.2 show how these parameters might change form of the roadmap as well as the
length of the final path. In both cases, a direct ratio applies — the higher the number of
samples the shorter the resulting path and the higher the number of nearest neighbors the
shorter the resulting path. However, it should be noted that higher N and higher k lead to
longer graph construction times.

Another possible modification is a change in the method of sampling. As suggested by
Geraerts et al. [32], instead of fully random points, random sampling on a grid with resolution
of increasing size might be used. Or as an upgrade one can use so-called Halton or Hammersley
point sets with better coverage than the grid [33, 32]. Such a quasi-random algorithm was
named Q-PRM. It has been shown to improve behavior of PRM in complex environments
with narrow passages [33].

Advanced sampling methods, such as Gaussian sampling, also deal with narrow passages
and obstacles. Two points are randomly sampled, between which the distance is selected
according to the Gaussian distribution. If exactly one of them lies in Cfree, it is added to the
set of samples. Obstacle-based techniques have a similar behavior, where a point sampled
in Cobs moves in a random direction until it becomes free. However, as the authors of [32]
conclude, these methods should target only particular areas of the workspace with narrow
passages.

Planning with kinodynamic constraints

Although both PRM and sPRM algorithms were originally designed for classic Euclidean
spaces with paths represented by straight lines, the algorithm might also be adapted for
planning with constrained robots. Instead of straight lines, more complex path segments
might be used to connect the sampled points in the learning phase. The main disadvantages,
unlike other planners, are high computational demands and higher sensitivity to the initial
number of sampled nodes. In such cases, a higher number of sampled nodes might lead to
longer final paths.
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(a) : N = 200, k = 10 (b) : N = 5000, k = 10

(c) : N = 1000, k = 10

(d) : N = 1000, k = 5 (e) : N = 1000, k = 20

Figure 3.2: Comparison of influence of different settings for sPRM
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Asymptotically optimal version — PRM*

The asymptotically optimal version of the PRM algorithm is denoted by “PRM*” [29]. It is
based on sPRM method and, unlike its original version, specifies only the radius of searching
for the nearest neighbors of the node, or the number k for its “k-nearest neighbors” variant.
This optimal k = kPRM∗ number equals

kPRM∗ > k∗PRM∗ = e

(
1 + 1

d

)
log(n), (3.1)

where d is the dimensionality of the problem and n is the number of sampled nodes. For
simplicity kPRM∗ = 2e log(n) always applies. Axample of PRM* algorithm solution is depicted
in Figure 3.3.

Figure 3.3: PRM* algorithm

3.2.3 Rapidly-exploring Random Trees

Unlike PRM, a planner based on a randomized data structure called Rapidly-exploring random
tree (RRT) is a “single query” planner. As its name suggests, the tree in Cfree grows, rooted
in the initial configuration, towards the goal configuration. Therefore, it cannot be used
for multiple queries — a new tree must grow for each. However, it is more appropriate for
planning problems where the robot’s motion is constrained, e. g., it can only move along
curve-shaped paths or under other kinodynamic constraints. The RRT concept was first
introduced by La Valle [34].

18



.................................... 3.2. Sampling-based motion planning

Algorithm 2 Rapidly exploring Random Trees, with goal biasing
Input: W — environment
Input: qinit, qgoal — initial and goal configurations
Input: Nmax — maximum number of iterations
Input: d — expansion step
Input: b — goal bias
Output: T (V,E) — tree grown from qinit towards qgoal

1: V ← qinit

2: E ← ∅
3: for i = 0 . . . Nmax do
4: if Random(0,1)≤ b then
5: qrand ← qgoal

6: else
7: qrand ← random configuration in W
8: qnear ← nearest neighbor of qrand in T
9: qnew ← configuration in distance d from qnear towards qrand

10: if IsFree(qnear, qnew) then
11: V ← V ∪ {qnew}
12: E ← E ∪ {(qnear, qnew)}
13: if distance of qnew from qgoal is lower than d and isFree(qnew, qgoal) then
14: E ← E ∪ {(qnew, qgoal)}
15: break
16: return T

The flow of the algorithm is as follows: the exploration tree T of robot configurations
starts with one vertex, qinit. In each iteration, a random configuration qrand is sampled (this
position might even be blocked by an obstacle) and its nearest neighbor qnear ∈ T is found.
Then a new configuration qnew is created at a distance d from qnear towards qrand, where d
is a fixed parameter. If qnew and the path from qnear to qnew lie in the free space, qnew and
its connection with qnear are added to T . Execution ends when a configuration sufficiently
close to qgoal is found or when the maximum number of iterations is exceeded. Due to the
probabilistic completeness of the RRT, there is no guarantee that the path does not exist at
all, even if the maximum number of iterations is reached.

Algorithm 2 records the described procedure with further improvement of “goal bias-
ing” [35]. Instead of constantly choosing a purely random configuration qrand, the goal
configuration qgoal is chosen as qrand with some small probability b. In this way, the algorithm
can yield sparser trees in less time because the tree is partially steered towards qgoal.

The importance of choosing appropriate parameters d and b is also highlighted in Fig-
ures 3.4. It should be clear from Figures 3.4a, 3.4b and 3.4c that a smaller value of d does
not necessarily lead to shorter paths. On the contrary, it leads to longer computational
times. The parameter should only be adjusted to pass through possible narrow passages.
Figures 3.4c, 3.4d and 3.4e confirm previous statements about tree density depending on the
goal bias b — the greater the bias b, the sparser the tree. However, as Figure 3.4e shows,
high bias might prolong the path, or even no path might be found at all, especially in more
complex environments with many obstacles in the line of sight between the start and the goal
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configurations. High bias also has a negative influence on runtime, as many samples lie in the
obstacle region.

One of the other natural modifications is to grow simultaneously two exploring trees at
the same time, one from qinit (Tinit) and one from qgoal (Tgoal). The trees are constructed
alternately, either by using the same qrand for both trees [36] or by generating a unique one for
each tree [35]. The interconnection of trees might be quite problematic, the original algorithm
in [36] ends when one of the configurations of Tinit gets close enough to any configuration
of Tgoal. Alternatively, it is possible to continue the exploration, register candidates for
connections and select the best after several iterations. The bidirectional approach should not
only be faster, but should also deal with goals in appertures. A tree usually expands from
such an apperture easier than it expands “into” the apperture.

Planning with kinodynamic constraints

The described method works well for a point robot in common Euclidean spaces. For
constrained robots, the algorithm should be slightly modified: instead of creating qnew as
a configuration at a distance d from qnear, all possible actions from qnear are executed and
the one with the final position closest to qrand is chosen. This action might be additionally
integrated over a small time step ∆t to obtain qnew. The rest of the algorithm is the same as
for classic RRT with the exception of the local planner, which must reflect the constraints
considered. An example of planning with kinodynamic constraints, respectively the resulting
roadmap and the path of the robot, are depicted in Figure 3.5.

Asymptotically optimal version — RRT*

The authors of [29] also propose an algorithm called “Rapid-exploring Random Graph” (RRG).
Unlike PRM*, this graph is built incrementally, i. e., nodes are sampled and added to the
graph continuously. This is the same as with the RRT algorithm along with the sampling
technique. Unnlike RRT, cycles are allowed in the graph (i. e., the roadmap does not form
a tree) — after adding the sampled node q, the k-nearest neighbors of q are found and
connected to q if there is a collision-free path between them. The constant k = kRRG is
defined as

kRRG > k∗RRG = e

(
1 + 1

d

)
log(n), (3.2)

where d is the dimensionality of the problem and n is the actual number of nodes in the
graph. Note that the number increases as the graph expands. As with kPRM∗, the term
kRRG = 2e log(n) always applies.

However, using graphs instead of trees means increased demands on the storage of
datastructures. It would therefore be beneficial to simplify the resulting RRG to a tree. Such
an algorithm is denoted by RRT* [29]. The RRT* tree is de facto RRG without cycles. The
expansion phase is the same as for RRT, the parent of the newly sampled node is determined
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(a) : d = 0.2, b = 0 (b) : d = 5, b = 0

(c) : d = 1, b = 0

(d) : d = 1, b = 0.1 (e) : d = 1, b = 0.95

Figure 3.4: Comparison of the effect of different settings for RRT
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Figure 3.5: RRT with kinodynamic constraints

from its k-nearest neighbors, where k = kRRT∗ = kRRG, so the feasible path from the tree
root trough the selected node is the shortest possible. Figure 3.6 shows the functionality of
the RRT* algorithm.

3.2.4 Expansive Space Tree

Another motion planning algorithm, the “Expansive Space Tree” [37], is also based on the
expansion of the tree T (V, E), as in the case of RRT, and therefore also falls into the category
of single-query motion planners. Unlike RRT, new configurations are sampled directly within
a given distance from some configuration q ∈ V and are added to the graph when a collision-
free connection to q is available. The selection of q from V is random, even though nodes in
less crowded areas (typically at graph boundaries) are more likely to be selected for expansion.

The detailed process of EST is described in Algorithm 3. The algorithm starts with
a graph T with one vertex, qinit. In each iteration, a random configuration from T is picked
with probability 1/w(q), where w(q) is a function of density of T in neighborhood of q. In the
original algorithm [37], w(q) is defined as “the number of sampled nodes in the tree that lie
in Nk,” where Nk is the set of k-nearest neighbors of q. The probability 1/w(q) is therefore
higher in less explored areas and lower in sufficiently dense areas. Around this configuration,
K random configurations with maximum distance d from q are sampled, and the function w
is calculated for each new configuration. The configuration qn is retained with a probability
1/w(qn) and is added to the tree only when it lies in free space and can be connected with

22



.................................... 3.2. Sampling-based motion planning

Figure 3.6: RRT* algorithm

Algorithm 3 Expansive Space Tree
Input: W — environment
Input: qinit, qgoal — initial and goal configurations
Input: Nmax — maximum number of iterations
Input: d — maximum distance between samples
Input: K — number of configurations to sample in the neighborhood
Output: T (V,E) — tree grown from qinit towards qgoal

1: V ← qinit

2: E ← ∅
3: for i = 0 . . . Nmax do
4: q ← random configuration from V , picked with probability 1/w(q)
5: Nk ← K random configurations in W with maximum distance d from q

6: for ∀qn ∈ Nk do
7: calculate w(qn), retain qn with probability 1/w(qn)
8: if isFree(q, qn) then
9: V ← V ∪ {qn}
10: E ← E ∪ {(q, qn)}
11: if distance to qgoal ≤ dand isFree(qn, qgoal) then
12: E ← E ∪ {(qn, qgoal)}
13: break
14: return T
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parent configuration q. Execution ends when new configuration in T can be connected with
the goal configuration qgoal or maximum number of iterations Nmax is exceeded. As with
RRT, achieving Nmax does not guarantee the non-existence of any path from qinit to qgoal
due to the probabilistic completeness of the algorithm.

The authors of [37] also propose a bidirectional approach. One tree is expanded from qinit

and one tree is expanded from qgoal. The expansion phases of both trees alternate regularly.
For tree incterconnections, the same rules might be applied as for RRT, although the trees in
the original algorithm are joined by the first possible connection.

3.3 Planning for Dubins vehicle

All the planners mentioned until now were connecting robot configurations with straight
line segments. It concerned 2D as well as 3D problems. In fact, most robots cannot move
on such trajectories, or at least the movement is not optimal (e. g., the robot has to stop
and adjust its direction). Of course, it is also possible to transform a planned path into
a trajectory in the robot controller, although such a path may lose its optimality or even
become infeasible. Therefore, it is plausible to take such limitations and robot’s model into
account in the planning phase and to adjust the shape of the used path segments.

In 2D, one such robot is a simple car. A simple car is an example of a non-holonomic
vehicle. Namely, it has 3 degrees of freedom (x, y, θ), even though only its speed u and
direction of the wheels (steering angle) φ can be changed. Note that at a constant steering
angle, the car would follow a circular trajectory with perimeter ρ. The distance between
the front and rear axles is L and the direction of the wheels φ is also limited to the range
(φmin, φmax) (e. g., wheels turned at 90◦ would block the car). The angles are typically
symmetrical, φmin = −φmax. Also note that the maximum of the steering angle implies the
minimum turning radius ρmin. The model of a simple car is also depicted in Figure 3.7. The
motion of a simple car can be described by 3 motion equations [6]:

ẋ

ẏ

θ̇

 =


u · cos θ,
u · sin θ,
u
L tanφ

 . (3.3)

Assume that u ∈ {0, 1} (the car is either stopped or has a constant forward velocity) and
there is a minimum turning radius ρmin, which implies the maximum steering angle. Such
a model is called “Dubins car” [6].

As Dubins [38] proved, the optimal trajectory for a Dubins car is a continuously dif-
ferentiable curve consisting of a maximum of three parts, each part being either a straight
line (S–segment) or an arc with radius ρmin, oriented to the left (L–segment) or to the right
(R–segment). All possible combinations, reffered to as “Dubins maneuvers” are therefore

LSL, RSR, LSR, RSL, RLR, LRL.
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L

ρ

θ

ϕ

(x, y)

u

Figure 3.7: Model of a “simple car”

Each segment is parametrized. The boundary L or R curved segments are specified by the
central angle of the corresponding circle segments, φs and φe, φs, φe ∈ [0, 2π). The middle L
or R curved segment is similarly specified by the central angle of the corresponding circle
segment φc, φc ∈ (π, 2π) (must be greater than π, otherwise another kind of Dubins maneuver
would be optimal [6]). The straight segment is characterized by its length L, L ≥ 0. The
optimal Dubins maneuver for a specific initial and goal configurations might be found after
calculating all 6 possible Dubins maneuvers and choosing the shortest of them or by following
precise guidelines determined by the relative position of the initial and goal configuration, as
described in [39].

The are numerous libraries for computation of the optimal Dubins maneuver for given
configurations, one of which is “opendubins”2 also used to solve more complex Dubins vehicle
problems (Generalized Dubins Interval Problem for solving of Dubins Traveling Salesman
Problem with Neighborhoods) [40].

3.3.1 Dubins Airplane Model

All the principles described apply only to 2D. Even Dubins in [38] proved the optimality
of three-segment paths for 2D and left the question of optimality for higher dimensions
open. But with the rise of the unmanned aerial vehicles (UAVs), this had to be resolved —
the Dubins car model was extended to 3D by adding a configuration variable for altitude
and an additional constraint for maximum climb-rate. Such a model was named “Dubins
Airplane” [41]. However, as Owen et al. [42] point out, the problem is much more complex,

2Available at https://github.com/comrob/gdip.
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because for some specific altitude ranges there may be an infinite number of paths with
a minimum distance.

The relations of the inertial velocity of an UAV and its airspeed v, heading angle θ and
pitch angle (or “flight-path angle”) ψ are:

ẋ

ẏ

ż

 =


v · cos θ cosψ
v · sin θ cosψ
−v · sinψ

 . (3.4)

According to [42], the kinematic model of an UAV is consistent with commonly used
aircraft guidance models as follows:

ẋ

ẏ

ż

θ̇

 =


v · cos θ cosψC

v · sin θ cosψC

−v · sinψC
g
v tanλ,

 . (3.5)

where v is the airspeed, θ is the heading angle, ψC is the desired pitch angle, λ is the bank
angle and g is the gravitational acceleration. Note that this model does not include dynamics
of the UAV, or e. g., the windspeed.

One possible practical application, which does not take into account the climb-rate
constraint, was introduced in [43]. Classic RRT with Dubins curves as segments is expanded
from the projection of the initial configuration to the x− y plane towards the projection of
the goal angle into the same plane. The z coordinate is then additionally computed, so the
robot climbs linearly along the entire 2D Dubins path.

A more advanced method of planning is introduced in [41] and described in more detail
in [42]. Based on the altitude difference between the initial and the goal configurations, the
path is categorized as either low-altitude, medium-altitude, or high-altitude. The low-altitude
case is similar to the method introduced in [43] — first the 2D Dubins path is computed, the
ascent of the UAV is linear over the entire path. Thanks to the classification, the pitch-angle
constraint is not violated. In the high-altitude case, the difference in altitude is so great
that it is necessary to add additional helices to the path to gain altitude. In the last case,
medium-altitude, the altitude cannot be gained on a 2D Dubins path without violation of
the pitch-constraint, but after inserting full helix, the altitude would be too high. It is
therefore necessary to increase the length of the 2D path in another way, typically by inserting
another curve segment. Although only the ascent of the UAV was considered in the previous
contemplations, the situation for the descent is the same.

Another possible approach is to consider Dubins curves not only for the horizontal profile
of the path, but also for the vertical profile. This method was presented in [44]. The horizontal
Dubins path is computed first, followed by the vertical Dubins path, which is determined by
the altitudes of the initial and the goal configurations and the length of the vertical path.
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Figure 3.8: Solution of a problem for the Dubins airplane model

While the final path is not feasible, the turning radius for both profiles iteratively increases
until the pitch limit is met. An example of a solution with these 3D Dubins curves is depicted
in Figure 3.8.

3.4 Polynomial trajectories

The algorithms and methods discussed so far only concerned geometry planning without
taking into account the time and dynamics of the robot (e. g., maximum thrust or rotation
speed). Before deploying to a real robot, the resulting path must typically be transformed
into a “trajectory” by some trajectory generator that converts it to a time domain and ideally
takes these limitations into account. The on-board controller can only follow the trajectory in
the time domain. The “trajectory” is defined as:

σ : [t0, tf ]→ C, (3.6)

where C is the robot configuration space.
The final shape of the trajectory may match the shape of the original geometric path,

but this approach might be inefficient. For waypoints connected by straight lines (either in
2D or 3D), this means that the robot must stop at each waypoint and adjust its rotation,
which is inefficient and also sometimes infeasible (e. g., an airplane model). The proposed
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solution via Dubins paths might solve the feasibility problem, but the issue with efficiency in
terms of motor thrust and time still remains.

3.4.1 Minimum snap trajectories

One of the trajectory generators introduced in [45] solves the problem of optimality by
minimization of snap (second derivative of acceleration). The authors assume model of
a quadrocopter described by Newton’s equations:

mr̈ = −mgzW + u1zB, (3.7)

where m is the weight of quadrocopter, r = [x, y, z]T is the position vector, g is the
gravitational acceleration, −zW is the direction of gravitational acceleration, u1 are forces
of rotors in direction of zB. Given the yaw angle ψ, they show that dynamics of such
a quadrocopter is “differentially flat”, i. e., “the states and the inputs can be written as
algebraic functions of four carefully selected flat outputs and their derivatives,” [45]. The
four flat outputs are x, y, z, ψ. Based on these results, they propose an algorithm for
generation trajectories in the area of flat outputs and also a controller for following the
generated trajectories.

This trajectory generator has been successfully deployed in [46] in combination with
RRT* not only for 3D but also for 2D problems. This geometric planner is used to find
a collision-free path, which is then pruned to a minimum set of waypoints. These points are
connected with polynomial segments into a smooth minimum snap trajectory. This decoupled
approach is compared to the RRT* algorithm, which uses polynomial segments directly for
expansion. The main advantage of the second approach is the asymptotic convergence to
the globally optimal solution, on the contrary, the authors emphasize the importance of
a suitable choice of segment time, which must be known a priori in this case. Despite the loss
of asymptotic optimality, the decoupled approach generates higher quality trajectories in less
time [46].

The work of Richter et al. has been extended multiple times, e. g., in [47] for a local
replanner based on Informed RRT*, or in [48].

3.4.2 Minimum jerk trajectories

An alternative to the minimum snap trajectories are the minimum jerk3 trajectories introduced
in [49]. The authors assume a similar model of quadrocopter as in [45], with the total thrust
scalar f ∈ R as the control input. The quadrocopter state space has 9 dimensions because the
angular rate commands are assumed to be tracked without error. Furthermore the trajectory
generation is solved separately for each axis — their recombination is necessary only to check

3The jerk is the first derivative of acceleration.
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the feasibility of dynamics. This also means that the same algorithm might be used for both
2D and 3D trajectory generation. An example of a minimum jerk trajectory is illustrated in
Figure 3.9.

Figure 3.9: Minimum jerk trajectories as a solution of the single-goal trajectory planning

Let the state of quadrocopter for axis k be given as sk = (pk, vk, ak), then the optimal
trajectory is defined4 as a polynomial of fifth order:

s∗(t) =


α

120 t
5 + β

24 t
4 + γ

6 t
3 + a0

2 t
2 + v0t+ p0

α
24 t

4 + β
6 t

3 + γ
2 t

2 + a0t+ v0
α
6 t

3 + β
2 t

2 + γt+ a0

 , (3.8)

where s0 = (p0, v0, a0) is initial condition and α, β, γ are variables. These variables are
then determined from the function of components of the final state. The final state might be
defined either fully or partially (e. g., without specifying the final velocity).

The authors of [49] also propose an algorithm for checking the feasibility of the trajectory
in terms of dynamics, i. e., compliance with the minimum and the maximum thrust of
quadrocopter’s motors and with maximum rotation speed.

The latter trajectory generator was implemented e. g., in [50] as a local planner. For
each iteration of planning, multiple polynomial motion primitives are sampled with varying
yaw angles, final altitudes and positions, so that they evenly cover the field of view of the

4For precise derivation, please see [49]
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deployed camera. The global planner works independently on a simple voxel occupancy grid
and is based on pure breadth-first search.

Another planner was presented in [51]. Similarly to [46] the authors utilize the RRT*
algorithm, more precisely its extension called “Kinodynamic RRT*”. Its principle is the
same as in the second approach of [46], i. e., they use polynomial primitives directly for tree
expansion. However, in order to decrease number of unreasonable states, the sampling is
guided by an artificial potential field. First, the position is randomly sampled in 3D and
the velocity and acceleration are confined within the cone. This cone is determined by the
direction and size of the attractive force of the potential field.
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Chapter 4
Related works for multi-goal motion planning

As mentioned in the previous chapters, the solution of the multi-goal path planning problem
typically consists of finding of paths between each pair of goals (for this category of problems
also called “cities”) and finding the best sequence of their visits. This general approach is
called “decoupled”. The first part of the task, finding paths, is solved by the single-goal
planners introduced in the previous chapter. This chapter discusses the suitability of some
sampling-based algorithms for multi-goal planning, as well as the second part of the multi-goal
planning problem. Two possible approaches to finding the correct sequence of nodes to
visit are described — solving the task as a Traveling Salesman Problem, or solving it as
an Orienteering Problem.

4.1 Sampling-based planners for multi-goal planning

The single-goal sampling-based planners can be divided, as described in Section 3.2, into
multi-query (roadmap constructing) planners and single-query (tree expanding) planners. The
only representative of the first group that was introduced is the PRM algorithm. Due to its
multi-query nature, the PRM/sPRM algorithm is more suitable for multi-goal path planning
than single-query planners. To find paths between each pair of given cities, only query phases
need to be repeated and only one roadmap constructed. An example of such paths found
using sPRM is depicted in Figure 4.1. The Travelling Salesman Problem is formulated using
the lenghts of found paths, and after solving it, i. e., after obtaining the optimal order of
nodes to visit, the corresponding paths directly form the final tour.

The multi-goal path planning with RRT is not straightforward. Of course, it is possible
to grow independent trees for each start–goal pair, but such an approach would be very
computationally and time consuming. A solution to this problem has been proposed in [52],
where multiple RRT trees are grown from all target locations, alternately in a random manner
similar to [35]. When two trees approach each other, they simply merge and grow afterwards
as one tree. An example of the roadmap and final paths between goals is depicted in Figure 4.2.
The transformation to the final tour is then the same as for the sPRM algorithm.
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Figure 4.1: Path between multiple cities found using sPRM

Figure 4.2: Paths found using Multi-T-RRT
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As far as the EST algorithm is concerned, to the best of the author’s knowledge, no
multi-goal planner has been proposed so far. Therefore, the only solution is to plan a path
for each start–goal pair.

4.2 Traveling Salesman Problem

According to [53], the TSP is “probably the most widely studied combinatorial optimisation
problem and (...) has also become a standard testbed for new algorithmic ideas.” It is basically
an extension of the classic NP-complete problem of finding the Hamiltonian circuit (the circuit
visiting each vertex exactly once) on the undirected graph G. In addition, in the assignment
of TSP, the edges are weighted (i. e., a cost function c : E(G)→ R+ is given) and the main
challenge is to find the Hamiltonian circuit with the minimum sum of cost.

Its motivation c is based on the problem of the salesman, who is obliged to visit cities
indexed from 1 to n, each of them exactly once, having to start and end in the “base” city
1, so that the distance traveled is the smallest possible [54]. This is equivalent to a linear
program

min
n∑
i=1

n∑
j=1,i 6=j

ci,jxi,j

s. t.
n∑

i=1,i 6=j
xi,j = 1, j = 1, . . . , n

n∑
j=1,i 6=j

xi,j = 1, i = 1, . . . , n

si + ci,j ≤ sj +M · (1− xi,j) i = 1, . . . , n, j = 2, . . . , n
xi,j ∈ {0, 1}, si ∈ R

(4.1)

where c is the distance matrix, xi,j = 1 when city i immediately precedes city j in the solution
(xi,j = 0 otherwise), M is a large integer (so-called “big M”) and s is a real number used to
eliminate subtours.

The most common version of the TSP is called “symmetric TSP”, i. e., the case, where the
path from A to B costs the same as the path from B to A. Moreover, when cities correspond
to points in metric space and the costs of the edges between them correspond to metric
distances, the problem is marked with “metric TSP” [53]. For this special case of metric TSP
there are several heuristics, they will be described later. Euclidean metrics are often used
— then this particular problem is called “Euclidean TSP”. An example of a solution of such
problem is illustrated in Figure 4.3.

However, when the distance from A to B differs from the distance from B to A, the problem
is classified as “asymmetric TSP” (ATSP). The assignment of ATSP might be transformed
into symmetric TSP and therefore solved by the same algorithms. The disadvantage of such
a conversion is a significant increase of cities, 2 – 3 times [53].
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(a) : City-to-city paths (b) : Final TSP solution

Figure 4.3: Result of TSP on paths found with SFF* planner

The algorithms solving the TSP have been developed for decades, starting with general
cutting plane methods in integer programming applied to the solution of TSP for 49 cities in
the USA [55], more advanced and efficient “branch & cut” methods [56], the “branch & bound”
algorithm [57], and ending with high-performance exact TSP solvers for large instances such
as Concorde [58].

For large or oppositely very small instances, it is useless and often inefficient to find the
exact solution to the problem, in which case it is advisable to use heuristics. One might easily
think of a basic greedy algorithm, where the tour starts in any city, continues to the closest
univisited one, and so on, until all cities connect to the Hamiltonian circuit [59]. However,
such an algorithm might not find a feasible tour, even when one exists.

If the problem instance falls into the category of metric TSPs, two classic heuristic
algorithms might be applied to solve the problem: the double-tree 2-approximation heuristics
based on doubling the edges of the graph’s minimum spanning tree [60], or Christofides’
3
2 -approximation algorithm combining the minimum spanning tree of the graph with minimum
weight matching of nodes of odd degree in the tree [61].

Another possible solution is to utilize the Variable Neighborhood Search (VNS) method,
a general metaheuristic for combinatorial optimization problems, including TSP [62]. Like
other heuristics, VNS is an iterative algorithm, each iteration consists of two steps: “shake”
and “local search”. During the shake step, the initial solution x changes to a random one x′ in
its neighborhood. In the local search step, solution x′ is improved to some solution x′′ using
general local search methods. If solution x′′ is better than incumbent solution x, solution x is
replaced by x′′ and the iteration continues until a certain set limit is met (e. g., the maximum
number of iterations).

One of the most powerful heuristics for the solution of TSP is Lil-Kernighan heuristic
(LKH) based on local search methods [63]. Unlike classic k-OPT local search methods for
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the solving combinatorial problems with fixed k, the parameter k is chosen adaptively to
maximize the profit of node swapping in each iteration. It can also natively solve the ATSP
problem without any need of conversion to its symmetric variant. To date, the LKH has
been improved several times and has evolved into the highly efficient Lil-Kernighan-Helsgaun
heuristic [64], which is available as a free library for non-commercial usage1.

4.2.1 Relaxation for multi-goal path planning

The authors of [65] propose a “lazy” approach to the multi-goal path planning problem.
Instead of finding paths between each pair of cities and solving the TSP in the end, the path
lengths between the cities are estimated using the Euclidean distance (i. e., all obstacles are
ignored) and the initial TSP is solved. The resulting “subpaths” are then planned using either
RRT or RRT* algorithm, the initial distance estimates are replaced by the actual path length
and the TSP solver is restarted with this modified table. This process is repeated until the
solution is stable, i. e., the solution of the final TSP consists of already expanded paths. This
method is further denoted by “Lazy TSP”.

4.3 Traveling Salesman Problem for Dubins vehicles

The Traveling Salesman Problem for tasks with straight paths and Euclidean metric (ETSP)
has already been discussed in the previous section (see Section 4.2). A modification of this
problem for Dubins vehicles is denoted by Dubins Traveling Salesman Problem (DTSP) [66].
Even though the problem of TSP for Dubins vehicles might be solved in almost the same
manner — first to solve the corresponding ETSP and convert straight paths to Dubins
maneuvers (so-called Dubins Shortest Path Problem [38]) — such a solution might even be
infeasible or suboptimal, e. g., in environments with obstacles [66].

It is usually also unnecessary to visit nodes with a particular heading. Therefore, the
heading for each node can be adjusted to make the resulting tour shorter. In such cases, the
previous decoupled approach can be used with a slight midification of solving the Dubins
Touring Problem instead of classical DSPP, as presented in [67]. Another possible heuristic
called “Alternating algorithm” was introduced in [68]. The odd-numbered edges of initial
ETSP solution are retained, the remaining are substituted with Dubins maneuvers, so the
connections of nodes are smooth.

Instead of decoupled approach, DTSP might be addressed by direct approach, as described
in [66]. For each node, k heading angles are sampled (uniformly or by informed sampling [67]),
each node can then be considered as a cluster of k points in graph G. In the next step all
k2n · (n− 1) Dubins maneuvers between configurations corresponding to pairs of points in
distinct clusters are computed. Note that the problem is asymmetric, therefore two maneuvers

1Available at http://webhotel4.ruc.dk/~keld/research/LKH-3/.

35

http://webhotel4.ruc.dk/~keld/research/LKH-3/


4. Related works for multi-goal motion planning...............................
must be computed for each pair. The final tour must lead through each cluster and visit only
one point of each cluster. This modification of TSP is known as Generalized Asymmetric
TSP (GATSP) and can be transformed to ATSP using “Noon-Bean transformation” [69].

Consider the transformation of the described graph G(V, E) to G′(V ′, E′). The vertices
of the original graph remain the same, i. e., V ′ = V . First, all vertices corresponding to
the same cluster form a circle of length zero in G′. Then, for each edge e = (pni , pmj ) ∈ E
of clusters i and j, a new edge e′ = (qni , qm+1

j ) ∈ E′ is created — the edge still links the
corresponding pair of clusters, but not the same pair of points. The cost of each existing edge
e ∈ E is moreover increased by M , where ∑(i,j)∈E ci,j < M < + inf and ci,j are the costs
corresponding to the edge e = (i, j). The cost of each edge between a pair of unconnected
points from distinct clusters is 2M . After resolving the ATSP, the result must be converted
to the original assignment in reverse.

4.3.1 Dubins Orienteering Problem

In the TSP, all cities have to be visited during the tour. It is not necessary to visit all cities
in the orienteering problem (OP). Instead, cities are ranked with a certain score or “reward”
collected by the agent when visiting a particular city. In addition, such an agent has a limited
“travel budget” (i. e., the maximum total cost of his tour). The goal of the orienteering
problem is to maximize the total collected reward during the agent’s tour. Because TSP and
OP are combinatorial optimization problems, algorithms and methods for solving them are
very similar or even the same [70].

Orienteering problem for curvature-constrained vehicles, Dubins Orienteering Problem
(DOP), was introduced in [71]. This problem combines the classic Euclidean OP with the DTSP
to solve the OP for an UAV. The proposed method utilizes VNS metaheuristic [62] mentioned
earlier in this chapter for direct solution of the problem. The presented principles might also
be applied to the Physical Orienteering Problem (POP) [72] for complex environments with
obstacles.
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Chapter 5
Space Filling Forest

In [4], a novel sampling-based approach to multi-goal path planning was proposed. Multiple
trees expand from all goal configurations until they meet each other. Nodes for tree expansion
are randomly chosen from an open list of active frontier nodes. Each node is initially part of
this list, but is removed from it after k unsuccessful expansion attempts. In each iteration,
new node is sampled in free space at a distance d from the selected node for expansion. The
local planner verifies colissionlessness of the path between them. In addition, there must be
no node with a distance to the new node less than d. In this way, the trees cannot grow “into
themselves” and expand to unexplored areas. When two trees, Ti and Tj approach each other
so that a node from Ti is at a distance ≤ d from a node from Tj and these nodes can be
connected by a collision-free path, a path is established connecting the goals i and j going
through these nodes. An example of the resulting roadmap and final paths is depicted in
Figure 5.1.

One of the greatest advantages of SFF, thanks to its expansion techniques, unlike RRT
and PRM, is its independence on the so-called “Voronoi bias”. La Valle [34] describes this bias
as an advantage of RRT, as it allows rapid expansion into unexplored areas — with respect
to the Voronoi diagram of the RRT tree in the environment, larger Voronoi cells belong to
the boundary cells of the RRT tree. Therefore, due to uniform sampling and nearest neighbor
selection, expansion is more likely to target such a cell. However, this bias also steers the tree
into open spaces and reduces the probability of passing through narrow passages. A similar
problem has already been described for PRM with uniform sampling in Section 3.2.2.

This algorithm was further improved by Janoš et al. [5]. The open list has been replaced
by a set of priority queues — each tree has one priority queue for every other tree. Each
node of tree T is part of each priority queue belonging to T , nodes in the prority queues are
sorted according to proximity to the target goals. In each iteration, one priority queue is
randomly selected, and its top element is expanded with probability b (“goal bias”). With
probability 1 − b an expanded node is selected from this queue regardless to order in the
queue. In addition, nodes are after k unsuccessful expansions removed from all priority queues
and added to the closed list. When the priority queues are empty and the targets are still not
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Algorithm 4 Space Filling Forest Star — general overview
Input: qinit, qgoal — initial and goal configurations
Input: Nmax — maximum number of iterations
Output: T (V,E) — tree grown from qinit towards qgoal

1: V ← qinit

2: E ← ∅
3: O ← qinit . open set
4: C ← ∅ . close set
5: for i = 1 . . . Nmax do
6: if O 6= ∅ then
7: if Random(0,1) ≤ b then
8: e← node from O closest to qgoal

9: else
10: e← random node from O

11: else
12: e← random node from C

13: qnew ← expand(e,O,C) . Algorithm 5
14: if qnew = ∅ then
15: continue
16: V ← V ∪ qnew

17: E ← E ∪ {(e, qnew)}
18: if distance of qnew to qgoal ≤ d and isFree(qnew, qgoal) then
19: E ← E ∪ {(qnew, qgoal)}
20: break
21: return T

Figure 5.1: SFF for multi-goal planning
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connected, further attempts are performed to expand the nodes from the closed list until the
iteration limit is reached. Candidate pairs are also recorded for connection of two adjacent
trees, and the one pair providing the shortest path is not selected until the full expansion of
trees. This method will be further denoted by NR-SFF*.

Although this method is designed for multi-goal path planning, it can be easily modified
for single-goal planning. Instead of multiple trees, only one expands towards the goal. For
bidirectional approach, two trees might be grown (from qinit and from qgoal), in a similar way
as for RRT and EST.

The effect of settings d and b on the resulting path and the NR-SFF* roadmap is shown
in Figures 5.2. In general, the higher the “goal bias”, the less spacious the final roadmap
is — Figures 5.2d, 5.2e and 5.2c. This behavior is very advantegeous in high-dimensional
environments for its shorter expansion time. The effect on the length of the resulting path is
rather opposite. Additionally, this problem can be solved by increasing the sampling distance
(Figure 5.2b) and applying any kind of path smoothing.

An alternative to path smoothing is to utilize rewiring techniques known from the
asymptotically optimal planner RRT* (Section 3.2.3). Instead of joining the new sample qnew
to the expanded node as in the NR-SFF* algorithm, kRRG-nearest neighbors X are found.
The sample qnew is connected to the neighbor qneigh so that the length of the path from the
root of the expanded tree to qnew is as short as possible, i. e., the paths through other retrieved
neighbors would be longer. In addition, when the path from the root of the expanded tree
to some neighbor qneigh in X through qnew is shorter than the existing connection of qneigh
with the root, the existing connection of qneigh with its parent node is discarded and qneigh is
reconnected to the tree via qnew.

This algorithm was named “Space Filling Forest Star” (SFF*) and is recorded in Algo-
rithm 4. The expansion phase of selected node is then described in Algorithm 5. The flow of
both methods has already been described in the previous paragraphs. In addition, it should
be noted that the function cost(q) stands for the length of the path from the root of the
expanded tree to q and the function cost(p,q) stands for the length of the direct connection
of nodes p and q, as described in the previous paragraph.

The outputs of SFF*, the roadmaps and the resulting paths, are depicted in Figure 5.3.
As shown in Figure 5.3a, without any goal bias the final path is very close to the optimal
path, but it took significantly longer time to generate the roadmap. This roadmap is more
spacious than the roadmap in Figure 5.3b, although the final path is longer. Again, one of
the solutions is to increase the sampling distance e. g., as in Figure 5.3c.
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(a) : d = 0.2, b = 0.95 (b) : d = 5, b = 0.95

(c) : d = 1, b = 0.95

(d) : d = 1, b = 0.1 (e) : d = 1, b = 0.5

Figure 5.2: Comparison of effect of different settings for NR-SFF*

(a) : d = 1, b = 0 (b) : d = 1, b = 0.95 (c) : d = 5, b = 0.95

Figure 5.3: Tree grown by SFF* with different parameters
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Algorithm 5 Space Filling Forest Star — expansion
Parameter: W — environment
Parameter: d — distance between samples
Parameter: b — “goal” bias
Parameter: k — minimum trials before removal of a node from open list
Input: e — node to expand
Input: O — open list
Input: C — closed list
Output: qnew — expanded node

1: for i = 1 . . . k do
2: q ← random condiguration in W , in distance d from e

3: if isFree(e,q)and closest node to q in T is e then
4: qnew = q

5: break
6: if qnew = ∅ then
7: O ← O \ e
8: C ← C ∪ e
9: return ∅
10: O ← O ∪ qnew

11: X ← nearest neighbors of qnew

12: for ∀qneigh ∈ X do
13: if isFree(qneigh,qnew) and cost(qnew)>cost(qneigh) + cost(qneigh,qnew) then
14: set qneigh as parent of qnew and update its cost

15: if isFree(qnew,qneigh) and cost(qneigh)>cost(qnew) + cost(qnew,qneigh) then
16: set qnew as parent of qneigh and update its cost

17: return qnew
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Chapter 6
Implementation of the algorithms

The presented papers [4] and [5] completely cover the Space Filling Forests for multi-goal
planning in 2D and 3D Euclidean space. However, neither of them analyze or even consider
utilization of SFF-based algorithms for single-goal planning as well as the single-goal and multi-
goal planning for Dubins vehicles and planning on polynomial trajectories, i. e., trajectory
planning with consideration of vehicle’s dynamics. This gap is filled in following sections.

The algorithms were implemented both in Open Motion Planning Library [73, 74] for the
single goal planning, which is described in the first section, and in custom planning library
for the multi-goal planning and planning in complex configuration spaces, which is described
in the second section.

6.1 Open Motion Planning Library

The OMPL software project contains implementations of many algorithms for sampling-based
single-goal motion planning, including the algorithms presented in Section 3.2 — RRT, PRM,
EST with its variants — and others. All of these planners might be moreover used in various
workspaces, including 2D and 3D Euclidean space and 2D “space” for planning for Dubins
car.

The OMPL is distributed alongside a wrapper named OMPL.app that provides an user
interface, including graphical interface, for the API of OMPL. Apart from that, it also
contains the FCL library [75] for collision checking, as the pure OMPL does not embed
any [74]. Additionally, the OMPL.app offers a benchmarking module [76], which enables easy
testing of multiple planners under the same conditions. The results of benchmarks can be
plotted via “PlannerArena” web interface1 providing fast comparison of tested planners.

The implementations of NR-SFF* and SFF* algorithms are based on the existing RRT
and RRT* implementations of OMPL, and fully corresponds to the algorithms described in
Algorithm 4 and Algorithm 5. Thanks to the modularity of OMPL, most of the functions
are provided by its API, except for some specific methods for sampling, e. g., sampling in

1Interface with simple examples available at http://plannerarena.org/.
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the specific distance from a given point. No additional modifications were made also for
generation of Dubins maneuvers and corresponding planning with Dubins car, everything was
already part of the API. Two examples of final paths generated by OMPL implementation of
SFF* are visualized in Figure 6.1.

(a) : Ten runs of SFF* in Maze problem (b) : Ten runs of Dubins SFF* in Bugtrap problem

Figure 6.1: Examples of problems solved in OMPL

Due to the strict guidelines of authors of the OMPL on new code the SFF* implementation
have not been published yet. The publication would probably capture more attention of
motion planning community towards Space Filling Forests and is therefore planned in near
future.

6.2 Custom library of motion planning algorithms

Although the OMPL would be the preferred variant for implementation of all proposed
algorithms, it does not support multi-goal planning, and even for the single-goal planning its
API does not cover some of the required methods, e. g., generation of 3D Dubins maneuvers.
Even though such methods could have been implemented into the API and used thanks to
its modularity also with other planners for benchmarking, credibility of such comparison is
questionable. The correct behaviour of the planners is not guaranteed. On account of these
reasons, a custom library of single-goal and multi-goal planners was designed.

This library is based on the original library used in [5] and publicly available on GitHub2.
The original library was completely rebuilt, optimized and extended with other planners
and operational spaces. The main language is still C++, used standard is C++17, and the
source code is compiled with g++ compiler3. The code was written to be in compliance with
requirements on object oriented programming (OOP) and is therefore divided into separate

2https://github.com/ctu-mrs/space_filling_forest_star
3Available at https://gcc.gnu.org/.
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hierarchical classes encapsulating main code of the library. Additionally, to reduce copying of
the code for similar datatypes (typically structures specific for particular problem dimension),
the C++ class and function advanced templating principles were applied.

The library now allows planning with SFF, NR-SFF* and SFF* algorithms with extensions
explained later in this chapter, sPRM and PRM*, RRT and RRT* (for single-goal planning
only), Multi-T-RRT [52] (for multi-goal planning only) and Lazy TSP with RRT or RRT*
as low-level planners (for multi-goal planning only). All the single-goal planners are able to
plan in 2D and 3D Euclidean spaces (these are covered by OMPL and would not be further
tested), to plan for Dubins car (covered by OMPL too) and Dubins airplane model, as well
as to plan polynomial trajectories in 2D and 3D. All multi-goal planners are able to plan
in 2D and 3D Euclidean spaces; SFF, NR-SFF*, SFF*, sPRM, PRM* and Lazy TSP can
additionally plan for Dubins car and Dubins airplane models.

6.2.1 Input and output of the library

The type of used planner along with other settings must be specified in the input configuration
file. Its structure must comply with the YAML language4. For decoding of the file, the
yaml-cpp library5 was integrated. Precise requirements of the configuration file and list
of all possible modifications can be found in the Appendix B. Minimal specification must
in all cases include type of the planner, maximum number of iterations, robot model file,
sampling/expansion limits (or at least enabling autorange settings for problems with a map
of obstacles), at least one city and a goal for single-goal planning or at least two cities for the
multi-goal planning, distance of smallest step for the local planner, sampling distance and
maximum distance between two trees. Some output file should be also specified, as only the
progress of solution is printed out to the standard output file.

The model files (either models of input environment or robot model, or output tree and
roadmap file) comply either with OBJ standard6, or are in a custom MAP format — files
with “.tri” extension.

In the OBJ file, each row is prefixed with a character specifying type of the row. The
library recognizes 4 types of rows: “o” for object row (header with object’s name, for start of
description of a new object), “v” for vertex row (coordinates of the vertex follow), “l” for link
row (two numbers specifying order numbers of vertices in the link, i. e., graph edge) and “f”
for facet row (three numbers specifying order numbers of vertices in the facet). This type of
file is well suited for visualization in third-party software, e. g., in Blender7, into which it can
be easily imported.

4Specification and libraries available at https://yaml.org/.
5Available at https://yaml-cpp.docsforge.com/.
6Full description, history and actual standard available at https://www.loc.gov/preservation/digital/

formats/fdd/fdd000507.shtml.
7Available at https://www.blender.org/.
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The MAP file typically begins with a header with file type (Map, Roadmap, Frontiers,

etc.) and dimension of the output (2D, 2DDubins, 2DPolynom or 3D). In 2D files, a point is
defined by 2 coordinates, in 2DDubins and 2DPolynom files it is defined by 3 coordinates, and
in 3D files it is defined by 6 coordinates. The coordinates are delimited by a space. On each
row of the file, an object is specified. The object might be either a single point, a line defined
by 2 points, or a triangle defined by 3 points. The points are delimited by a space as well.
The type of the object is therefore dynamically deduced from the length of the row. This
type of file is ideal for postprocessing or visualization in custom scripts, e. g., in Python. One
of the possible implementations of script in Python language using the Matplotlib8 library for
plotting of the library’s output files is available as a part of the planning library.

6.2.2 Sampling

As all of the proposed and implemented planners are sampling-based, a module for sampling
is an important part of the library. Although the problem of sampling itself is quite specific
for particular planner, most of them share common basis — uniform sampling.

First of all it is important to notice that computer generated random numbers are not
truly random, usually some linear congruential generator is used for their generation. For
basic generators and generators with poorly chosen parameters the results might be periodic
and some regularities in samples might appear [6, 77]. One of the solutions is to use Mersenne
Twister algorithm [6, 32, 78]. For this library the Mersenne twister algorithm from the
standard C++ library was selected.

For each of the available problem dimensions, two methods had to be specified: a method
for sampling a point in the space for RRT-based and PRM algorithms and a method for
sampling a point in a given distance from its parent for all SFF-based algorithms. In both
cases, limits of the environment must be satisfied.

Sampling in space

The first method is quite straightforward for all dimensions. The position of point in both 2D
and 3D is sampled uniformly — a random number per each axis is generated — in the given
ranges of the environment.

The yaw angle for configurations of Dubins car in 2D and Dubins airplane in 3D is sampled
uniformly in range [−π, π) and the pitch angle for Dubins airplane in 3D is sampled uniformly
in the range specified by the configuration file of the problem. However, the sampling of
rotation in 3D space is different: as Kuffner [15] emphasizes, a naïve approach to sampling
using Euler angles might lead to non-uniform distribution of samples. To overcome this issue,
a special methods must be followed, or unit quaternions instead of Euler angles used. For

8Available at https://matplotlib.org/.
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this library, the latter case was applied — the rotation is given by an unit quaternion, which
is randomly sampled by the method described in [15].

The velocity for planning on polynomial trajectories has normal distribution with mean
equal to average velocity (computed from the sampling distance and segment time) and
standard deviation equal to half of the average velocity. This measure should limit sampling
of unreasonable states slowing down the movement, or oppositely of states being infeasible
due to unachievable speed. The acceleration is then sampled uniformly in given ranges —
minimum and maximum thrust. The sampling in cone similar to [51] was not chosen, because
the proposed SFF* algorithm aims more on planning in narrow passages where the search
cannot be limited only on the direction towards the goal.

Sampling in a distance from parent

The sampling in a given distance d differs for each of the dimensions. For Euclidean 2D
spaces, the polar method was implemented — a random angle is sampled and the point in the
distance d and this direction is selected if it lies in the bounds of the environment, otherwise
the procedure is repeated. When planning for the Dubins car, a temporary point P is sampled
first. Its position is determined the same way as for the Euclidean 2D space, yaw angle is
uniformly sampled in the interval [−π, π). In the next step, a Dubins maneuver is planned
to P , and the resulting point R is interpolated on this maneuver so that the length of the
segment from P to R is equal to d.

The principle of procedures for all 3D spaces is similar — a temporary point P is sampled
first, then the resulting point R is interpolated on the computed segment.

Finding position of P in the distance d in 3D leads to the uniform sampling of points
on 2-sphere [79]. Three possible sampling methods are summarized in Algorithm 6. The
most straightforward way would be to use the polar method with 2 random angles sampled
uniformly (procedure Polar-wrong). However, the distribution of points on the surface would
not be uniform — most of the points would be concentrated near poles, as the area on the
sphere corresponding to the cumulative distribution function [79] grows according to the
cosine function. This situation is depicted in Figure 6.2a. To avoid it, the random angle θ
must be sampled according to arccos distribution function (procedure Polar-right). The
angles θ and φ are interchangeable, switching of these angles would lead to non-uniform
sampling as in Figure 6.2b. Another possibility is to use so called “Muller” method, named
after its author [80]. A random point in an unit cube is sampled, this point is projected on
a unit sphere and scaled to distance d. The result is depicted in Figure 6.2c. For the planning
library, this method was selected.

The rotation of P in Euclidean 3D space is represented by an unit quaternion, as described
in [15]. This quaternion is sampled uniformly with the method given in [15]. For the planning
for the Dubins airplane, the yaw angle of P is sampled uniformly in range [−π, π) and the
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Algorithm 6 Methods for sampling on 2-sphere
Input: r — radius of the sphere

1: procedure Polar-wrong
2: θ ← random angle in range [−π; π)
3: φ← random angle in range [−π; π)
4: x = r · sin θ · cosφ
5: y = r · sin θ · sinφ
6: z = r · cos θ
7: return Point3D(x, y, z)
8: procedure Polar-right
9: u← random number in range [0, 1)
10: θ = arccos (2u− 1)
11: φ← random angle in the interval [−π; π)
12: x = r · sin θ · cosφ
13: y = r · sin θ · sinφ
14: z = r · cos θ
15: return Point3D(x, y, z)
16: procedure Muller
17: u← random number in range [0, 1)
18: v ← random number in range [0, 1)
19: w ← random number in range [0, 1)
20: n =

√
u2 + v2 + w2

21: (x, y, z) = r · (u, v, w) /n
22: return Point3D(x, y, z)

(a) : Wrong method 1 — high
density around poles

(b) : Wrong method 2 —
switched distribution of an-
gles

(c) : Correct approach for uni-
form sampling

Figure 6.2: Sampling on sphere — wrong and correct approaches
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pitch angle is sampled uniformly in the range given by the configuration file. The rotation
of the robot for planning on polynomial trajectories is embedded into the velocity and
acceleration vectors.

The velocity and acceleration for planning on polynomial trajectories is determined the
same way as for the sampling in space (Section 6.2.2), i. e., the velocity is sampled according
to normal distribution and the acceleration is sampled uniformly.

6.2.3 Collision checking

One of the most important and computationally expensive parts of the sampling-based
algorithms is the collision detection.

Robots and obstacles might be usually decomposed into simpler primitives, even when
they are not convex. As Jiménez et al. [81] describe, many algorithms for detection of
interferences of such primitives exist. One of the most basic is e. g., direct computation of
distance between two sets of points [6].

The collision detection might be significantly speeded up by utilization of hierarchical
volume representations. This way the object is transformed into a tree, so that each vertex of
the tree represents a bounding volume that contains some subset of the object and allows
faster computation of the interference than with the whole object itself. An union of children
objects’ subsets must be moreover equal to the subset represented by their parent. The root
of such tree represents bounding volume of the whole object.

Each interference query then proceeds from the root of such tree and, in case the bounding
volumes of examined objects overlap, continues recursively downto bottom-most leaves. The
bounding volumes might be represented by spheres, axis-aligned bounding boxes, or oriented
bounding boxes, which perform best (at least in dense, cluttered environments) [81].

Implementation-wise it is desirable to utilize existing libraries for collision detection, e. g.,
RAPID library [82], CGAL [83] or FCL [75]. For this library of motion planning algorithms,
the RAPID library9 was selected.

6.2.4 Local planner

Not only the sampled nodes, but also the transitions between them must be collision-free.
This task is solved by so called “local planner”.

One of the approaches is the incremental planning, where small steps are incrementally
taken from the initial sample towards a goal sample, and for each step possible collisions
of robot’s configuration with surrounding environment are checked. The binary approach
applies methods of binary search on the transition, i. e., the middle configuration is checked
first, then the motion is divided into two halves etc. Another possible planner, line planner,

9Available per request at http://gamma.cs.unc.edu/OBB/.
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combines both approaches: first the initial and goal configurations are checked and the rest is
examined in binary manner [32].

In this custom library of planning algorithms, classic incremental local planner was
implemented.

6.2.5 Nearest neighbors

All of the following algorithms search typically in one of their computational steps for nearest
neighbors of some point in space. It is of course possible to use exhaustive iteration through
all samples with complexity O(n), favourable is to use some specialized datastructures, like
“k-d trees” [84], where the average time complexity of search for M neighbors in n samples is
O(M ˙logn).

Furthermore the results do not have to be precise (sampling-based algorithms are still
some kind of heuristics), therefore some randomized approaches might be used. One of them
is implemented in the library FLANN [85] used also in this library of planning algorithms10.
The implemented algorithm uses multiple random k-d trees to obtain best performance of
search for nearest neighbors.

6.2.6 Generation of Dubins maneuvers

The 2D Dubins maneuvers are generated using the opendubins library11, which was already
introduced in the Section 3.3. This library offers methods both for finding the optimal
maneuver from point A to point B as well as for interpolation on this maneuver. These
are the only required methods. Moreover the library is written in C++, so the process of
embedding was possible without any significant modifications of the code.

On the contrary, direct integration of the library for generation of 3D Dubins maneuvers
was not possible. The selected library12 is written in Julia language. To embed it into
the project, the code was rewritten to C++ and added to the library for generation of 2D
Dubins maneuvers. The custom merged version of libraries is available at https://github.
com/jarajanos/gdip. One of the advantages of this solution is the utilization of the part
for generation of 2D maneuvers, as the computation of 3D maneuvers requires multiple
computations of 2D maneuvers — precise principle was already described in Section 3.3.1.

6.2.7 Generation of polynomial segments

The code for the generation of polynomial segments is based on [49], i. e., the aim of the
planning is to minimize jerk of the vehicle rather than the length of final trajectory. From

10The FLANN library is available at https://github.com/flann-lib/flann.
11Available at https://github.com/comrob/gdip.
12Available at https://github.com/comrob/Dubins3D.jl.
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code available on the official GitHub repository13 a static library was created14, which is more
suitable for deployment on this library. Moreover the generation of trajectories in 2D was
added into this library, in which only 2 axis instead of 3 axis are considered.

An input to this trajectory generator consists of three vectors (representing position,
velocity, acceleration) for both start and goal configurations, a vector of gravitational accel-
eration and of time duration of the trajectory. This time is computed from the Euclidean
distance of positions of both configurations and from the average velocity. An output forms
three real constants (α, β, γ) for each axis, defining the polynomial shape of the trajectory.
The principle was described in Section 3.4. The generator library also contains methods
for interpolation of configurations on the trajectory and checking of feasibility in terms of
vehicle’s dynamics.

6.2.8 Integration of TSP solvers

The aim of the multi-goal path planning problem is to search for the shortest tour between
multiple goals — the Traveling Salesman Problem and its solution is therefore its indivisible
part. As some of the planners need multiple solutions of TSP throughout the algorithm flow
and others need it at least in the end when the cities are connected with found paths, the
planning library integrates an interface for calling of external TSP solvers. In actual version,
LKH and Concorde solvers are supported — both were already introduced in Section 4.2.
Both might be automatically downloaded and installed to a default location via Makefile
commands, or path to an external location might be specified in the configuration file.

The LKH solver is downloaded and installed from its official site15. As an input the
standard TSPLIB file is accepted, type of the solved problem might be either TSP or ATSP.
The standard Euclidean problems are symmetric, therefore they are naturally well-suited for
TSP, while the problems with Dubins vehicles and even mutliple possible paths between single
nodes (due to multiple heading angles) fall into category of Generalized Asymmetric Traveling
Salesman Problems (GATSP). The GATSP is then converted to ATSP with Noon-Bean
transformation, which is implemented in this library as well. The processing of results is
straightforward, as LKH saves into the result file only the order of cities in the tour. When
solving ATSP, the order has to be back-converted to GATSP, getting not only the order of
cities, but also the optimal heading angle for each city.

The Concorde solver is quite old but still efficient TSP solver. It is automatically
downloaded from the official site16 as well and, as it contains deprecated calls to external API,
it is automatically patched and installed. Contrary to LKH, the Concorde needs commercial

13Available at https://github.com/markwmuller/RapidQuadrocopterTrajectories.
14Available at https://github.com/jarajanos/RapidQuadrocopterTrajectories.
15More information at http://webhotel4.ruc.dk/~keld/research/LKH-3.
16More information at http://www.math.uwaterloo.ca/tsp/concorde/.
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CPLEX optimizer API17 installed on the target machine, location of its libraries has to be
specified in the Makefile of the planning library. Another difference is the type of accepted
input, as it only solves (symmetric) TSP and not ATSP. When solving ATSP, this problem
has to be converted to TSP — algorithm for the conversion is part of the planning library as
well. The processing of the result is done in a similar way as for the LKH.

6.2.9 Implementation of planners

Solver class

In order to unify the implemented planners mentioned in the introduction of Section 6.2
as much as possible, all of them inherit from “Solver” class. This class embeds common
structures used for planning like description of the problem, random generator for sampling
of nodes or integrated TSP solver. It also owns all instances of expanded trees.

Apart from these structures, the Solver class implements the local planner for all supported
dimensions. For Dubins maneuvers it is also tested, that all points lie in given bounds of the
environment and for polynomial trajectories also their feasibility in terms of dynamics.

Other methods procure finding of all connected trees, getting all paths from them and
also combining of these paths together to link unconnected pairs of cities via other cities. The
Floyd-Warshall algorithm is utilized for this purpose. Common parts of paths are additionally
removed to shorten the total length.

The Solver class also implements common methods for export of cities, expanded trees,
paths and final TSP tour in OBJ or MAP formats as well as saving of parameters of achieved
solutions or TSP table for external TSP solvers in commonly used TSPLIB format [86].

SpaceForest class

The most fundamental part of the library is the family of Space Filling Forest algorithms
implemented in the “SpaceForest” class. The class covers both SFF and newer NR-SFF*
switchable by the value of priority bias (setting bias to 0 enables SFF, any other bias enables
NR-SFF*) as well as their improved version SFF* which is enabled via “optimize” setting in
the configuration file.

Contrary to the original version of library presented in [5] the code was significantly
optimized, especially the implementation of NR-SFF* and SFF*. Thanks to a change of order
of some methods described later in the following paragraphs, the runtime of SFF algorithms
was reduced.

The SFF and NR-SFF* versions differ mostly in the structural representation of frontiers,
i. e., nodes for expansion. The old SFF uses common vector of nodes for all trees, whereas
for NR-SFF* each of n cities uses (n− 1) priority queues for each of their neighboring city.

17Available at https://www.ibm.com/analytics/cplex-optimizer.
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Each priority queue keeps its own order of nodes18 in open list closest to the particular target
city. In each iteration a random queue is selected for a random tree, and with probability
p its top node is expanded, or with probability (1 − p) a random node from the queue is
expanded. For the representation of priority queue a custom implementation of binary heap is
utilized, supporting not only standard push and pop operations, but also access and popping
of random elements in the heap.

After selection of a node for expansion a random configuration is sampled in given distance
and it is checked, that it lies in the bounds of the environment. In following step, the growth
back into the tree is tested by searching for nearest neighbors, using the aforementioned
FLANN library. Next, the feasibility of the trajectory is checked by the local planner. The
order of last two steps is crucial for performance of the library, as the local planner is
significantly more demanding, due to mutiple collision checks.

Another important step is linking of expanding trees. When two trees approach each
other, i. e., the new node is close enough to a node from another tree, a reference to both
nodes is saved, without any feasibility check of path between these nodes. This check is done
after complete expansion, not until the links are sorted by the length of resulting path from
shortest to longest.

The last step of the expansion process before addition of the new node to the tree is
RRT-rewiring, for SFF* only. Its principle was already described in Chapter 5.

In case when one of the checks fails, the new configuration is discarded and next expansion
is attempted, up to k-times, where k is given maximum number of misses. After k misses,
the expanded node is removed from all priority queues (or from the frontier structure) and
inserted into the closed list.

The end of the expansion phase depends on the “connect-only” setting. If this option is
enabled, the expansion is finished after connection of all trees — this is checked by finding
weakly connected components of the created graph. If the “connect-only” option is disabled,
the open list for expansion (i. e., all priority queues) must be empty and the trees must
be connected. If they are not connected despite the emptiness of open list, the expansion
continues from the closed list. This option is by default disabled.

The situation is different for multi-goal planning for Dubins vehicles. The decoupled
approach was selected as a solution of the DTSP problem, therefore multiple yaw angles
are considered for each of the given cities. In order to maximize the number of possible
paths for each angle, multiple paths are allowed between the city node and its children. The
2D table of distances had to be therefore expanded to four dimensions (instead of city-city
pairs, city-city-angle-angle quadruples have to be considered). Moreover, as the DTSP is
not symmetric, i. e., path from A to B is not equal to path from B to A, paths back and
forth would have to been checked normally, which could have potentionally eliminated some

18Only references to nodes are stored in the queues.
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solutions in narrow passages. Instead of this approach, the points of one tree are inverted
when getting paths from connected trees, and therefore the same paths are retained although
they are flown in opposite direction.

For the polynomial trajectories the base code is modified as well. When checking for
nearest neigbors in the expanded or in any other neighboring tree, the 9D distances are
considered (not the length of the trajectory). Also the collisions are in this case checked only
on the straight-line connection between considered nodes19. The reason is that for close nodes,
the generated trajectory is long and expensive and therefore the tree would be too dense.

RapidExpTree class

The module “RapidExpTree” is primarily designed to comply with the Multi-T-RRT algorithm
presented in Section 3.2.3. When planning only for one goal, the behavior of the implementation
corresponds to the standard RRT algorithm. Even though the asymptotically optimal version
and priority bias are not defined for Multi-T-RRT, both are available for RRT, i. e., when
planning for single goal.

At the beginning a tree is set up for each city node. During every iteration a random
tree t1 is selected (apart from the tree for goal node) and is expanded in RRT manner —
a random configuration in space r is sampled (or goal node selected, for single goal with
priority bias), closest configuration in the expanded tree n is found (using FLANN) and
a new configuration c is interpolated on the path from r to n in given distance. This path
is either a straight line, a Dubins maneuver or a polynom. The path from r to c is checked
for collisions (using local planner of Solver class) and added to the expanded tree (in case of
RRT*, the parent and children rewiring is done as well). If a node of other tree t2 happens to
be located in neighborhood of c, the trees are connected via c and further expanded as one
tree. The merging of trees is done via Union-Find structure.

The iteration process ends when all trees are connected together. The resulting paths are
extracted only between directly connected trees, rest of them is found with Floyd-Warshall
algorithm of Solver class.

ProbRoadMaps class

The “ProbRoadMaps” class is dedicated to sPRM planner. The setting of priority bias as
well as settings of sampling and tree distances are ignored, the most important settings are
number of iterations corresponding to the maximum number of sampled configurations and
number of PRM connections for each configuration. The latter setting may be omitted by
choosing PRM* version, for which the number of connections is calculated automatically.

First, the random configurations are sampled in the free configuration space. Standard
uniform sampling is applied, with no advanced techniques of sampling. Each configuration is

19For the subsequent nodes collisions are still checked on whole trajectories
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then connected up to n nearest neighbors (using FLANN), where n is the selected number of
connections, after checking feasibility of such connection with the local planner. The paths
between cities are found in the created graph using the Dijkstra algorithm, based on the
custom implementation of the binary heap.

LazyTSP class

As the name suggests, this module integrates the Lazy TSP planner. Contrary to the previous
planners Lazy TSP is purely multi-goal planner and its functionality is tightly bounded
with the TSP solver. The TSP solver is therefore mandatory and must be specified in the
configuration file. The algorithm’s basis planner is standard RRT or its asymptotically optimal
version RRT* (switchable via “optimize” option in configuration file), both are implemented
without priority bias.

In each iteration, first the TSP is solved with the table of distances between cities. In the
first iteration, it is initialized with Euclidean distances between cities. The TSP is solved by
generation of temporary TSPLIB file, calling external solver and processing the generated
result file. The name of the temporary file is unique and is dependent on the ID of the
program’s instance, to avoid rewrites or other mismatches. This is important especially for
testing when multiple instances of the solver are run in parallel. For each edge from the result
single-goal RRT or RRT* is run and distance in the table is updated accordingly. The process
is repeated until two calls of TSP solver return the same solution, i. e., the path is the shortest
possible. The algorithm also (unsuccessfully) ends, when the limit of iteration is exceeded20.

LazySpaceForest class

The module “LazySpaceForest” implements a modification of classic SFF for 3D problems
with Dubins maneuvers denoted by “Lazy SFF”. The problem is solved in decoupled way —
at first it is solved as standard 3D problem, and the resulting straight-line paths are converted
to Dubins maneuvers. Main purpose of this implementation is to show that this approach is
infeasible especially for environments with narrow passages. The configuration is the same as
for the SpaceForest module.

First, the problem is converted from 3D Dubins problem to Euclidean 3D problem,
which is then solved by standard SFF, NR-SFF* or SFF* planner. From the resulting path
waypoints, a Dubins Touring Problem (DTP) is constructed, in which the optimal heading
angles are determined. According to the “dubins-resolution” setting of the configuration file,
multiple heading angles are sampled for each waypoint, and for each pair of heading angles
of two subsequent waypoints, a Dubins maneuver is constructed. In the created graph, the
shortest path is determined using the Dijkstra algorithm with custom binary heap.

20Contrary to other planners, the limit applies to each call of RRT.
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Chapter 7
Benchmarking of the proposed planners

The implementations of NR-SFF* and SFF* in OMPL as well as in the custom library have
been extensively tested in almost all dimensions that are not covered by article [5], both in
single-goal and multi-goal planning. Specifically, the OMPL implementation was tested in
single-goal planning for Euclidean 2D and 3D planning and planning for Dubins car. The
implementation in the custom library was tested in single-goal planning for Dubins airplane
and planning on polynomial trajectories in 2D and 3D and in multi-goal planning for Dubins
vehicles in 2D and 3D. The main purpose of these tests is to compare NR-SFF* and SFF*
with existing planners, rather than looking for for optimal settings of SFF-based algorithms —
this is in certain extent already covered by [4] and [5].

7.1 Testing in Open Motion Planning Library

The OMPL implementation was compared with all available geometric planners that fall into
the same category of planneers as NR-SFF* and SFF* (e. g., are not bidirectional) and have
been properly implemented for particular dimension1. Precisely, the following planners were
used for comparison: BKPIECE, LBKPIECE, KPIECE, EST, FMT, PRM, PRM*, RRT,
RRT*, TRRT, SBL, SPARS, SPARS2, SST, STRIDE and for some dimensions also LBTRRT
and RRTXStatic.

An integrated OMPL benchmarking module was used for the benchmarks, each configura-
tion (map, start and goal, planner) was run 1 000 times, with variable timeouts according to
the difficulty of the specific problem. Some planners usually ended up much earlier, some tried
to improve the solution as long as possible (typically PRM based algorithms or asymptotically
optimal planners like RRT*).

The tests ran on a DELL G5 15 notebook with Intel Core i7-10750H with 6 cores, each
with a core frequency up to 5 GHz, and 12 MB of L3 cache. HyperThreading feature has
been disabled to prevent incorrect correlations at runtime for specific planners. The type of

1Some of the tested planners might have ended erroneously,e. g., with SIGTERM flag and therefore were
excluded from further tests.
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the integrated RAM was DDR4 with a frequency 2933 MHz, and its size was 16 GB.

The test results were converted to a database with an integrated converter. Even though
this database might be processed by the Planner Arena interface introduced in Chapter 6,
the output plots are confusing as Planner Arena does not distinguish between approximate
(incorrect, nearest to the goal) and correct solutions and timed-out runs are sometimes wrongly
marked as correct solutions. Also, formatting or further processing of output plots is not
possible. The output databases with the results of benchmarks were therefore processed using
Python and available libraries for data processing — NumPy and Pandas. The graphs were
plotted with Matplotlib and Seaborn libraries.

7.2 Testing of the custom library

The benchmarking of algorithms implemented in the custom library was performed differently.
For single-goal planning, only RRT, RRT* and PRM* were compared, for multi-goal planning
PRM*, Lazy-SFF and Lazy-TSP with RRT and RRT* basis planners were tested.

The configuration files were generated automatically using a Python script, and the
library was then launched by another Python script 1 000 times per each configuration. This
was done in parallel, typically on 32 threads, with a 30 minute timeout. Unlike the OMPL,
each run is limited by a fixed number of iterations, typically 100 000.

The benchmarks were executed on the MetaCentrum grid. MetaCentrum is a Czech
virtual organization for sharing the computing resources of its members to Czech academic
community2. Each group of tests3 was executed on a different cluster, so it is not possible
to specify exactly hardware resources used for the computation, or the results (in particular
computation times) should only be interpreted within the scope of each test, not globally. It
should also be noted that the total walltime of the tests performed ranges in the thousands of
days of computation.

The results of each test were written into single CSV parameter file, then all files were
processed using Python and available libraries for data processing — NumPy and Pandas —
in the same way as the OMPL benchmarks.

7.3 Maps for problems in 2D space

The 2D testing environments were chosen to correspond as much as possible with benchmarks
in [5] and highlight the main advantages of SFF-based algorithms (especially independence
from Voronoi bias). The maps for single-goal planning are depicted in Figure 7.1 with start

2More information at https://metavo.metacentrum.cz/.
3By “group of tests” is meant all tests with the same problem dimension and different environments and

planners.
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and goal points in the default configurations for single-goal planning. The problems were also
solved in the opposite direction, starting from the goal point.

For the multi-goal path planning, the same environments as in [5] were chosen, they are
depicted in Figure 7.2 along with the default configuration for a setup with 20 cities.

The Bugtrap map shown in Figure 7.1a contains one narrow passage (trap entry), which
might be difficult for some planners to overcome. The depicted configuration is called “in”
as the robot is trying to get into the bugtrap, the reversed configuration is similarly called
“out”. Unlike Bugtrap, the Dense map (Figure 7.1b) is a prototype of a common map with
multiple obstacles, and wide corridors. Priority bias or Voronoi bias might be misleading.
These “fragilities” of planners should get exhibited in two newly designed maps: Spiral and
Maze. The Spiral map (Figure 7.1c), like the Bugtrap map is tested in two configurations, “in”
and “out”. Maze map configuration shown in Figure 7.1d is called “corridor”, the inverted
configuration is denoted by “walls”.

In all cases the robot has a circular shape, its size was adjusted to fit into narrow passages
with sufficient space to find a valid solution even for Dubins car or with polynomial trajectories.

7.4 Maps for problems in 3D space

The selection of 3D environments for benchmarks of implementations in the custom library
fully corresponds to the benchmarks executed in [5]. These are depicted in Figures 7.3a, 7.3b
and 7.3c along with the start and goal points for single goal planning in 3D.

The environments should also have been used for benchmarking of planners for 3D
Euclidean space in the OMPL. However, the migration of the maps was not successful due
to unknown issues with the FCL collision library, which did not work properly and the final
paths were not collision-free. Therefore the native OMPL.app environments were used for
testing, they are depicted in Figures 7.3d, 7.3e and 7.3f. Although it would also be possible
to use the OMPL environments for benchmarks of the planners in the custom library, it is
impossible to use them for multi-goal path planning. Also, there may not be a solution to
the problems of single-goal path planning problems with constrained robot, or it would be
difficult to find it in reasonable amount of time. Each of the environments contains some
narrow passages and obstacles that might be problematic for planners with priority bias or
Voronoi bias, as well as in particular 2D maps.

The Building map shown in Figure 7.3a is inspired by the task of MBZIRC 2020 interna-
tional competition4. The Dense environment (Figure 7.3b) is the transformation of the 2D
map of the same name into 3D with the random height and altitude position of each segment.
The Triangles map (Figure 7.3c) was inspired by the twodimensional Triangles map presented
in [5]. Unlike the Dense 3D map, the height of all segments is the same, and equals to the

4More information and actual challenge might be found at https://www.mbzirc.com/.
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(a) : Bugtrap (b) : Dense

(c) : Spiral (d) : Maze

Figure 7.1: Visualization of maps for 2D single-goal problems

height of the configuration space.
The shape of the robot deployed in the previously introduced environments is a cyllinder,

its size has been adjusted individually for each map to fit in narrow passages with enough
space, so it was possible to find a valid solution even for Dubins airplane or with polynomial
trajectories.

The Bugtrap map depicted in Figure 7.3d along with the robots used, is one of the most
famous benchmarking maps. For this configuration, the challenge is to get the robot out of
the “hollow case” through a narrow hole. In this case, the rotation of the robot also plays
a significant role. On the Easy (Figure 7.3e) and Twistycool (Figure 7.3f) maps the main
challenge is similar, as the “complexly-shaped” robots (depicted in the referenced figures)
are supposed to get through a rectangular window. The window for the Twistycool map is
smaller and the problem is therefore more difficult.
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(a) : Dense (b) : Triangles

(c) : Varying density

Figure 7.2: Visualization of maps for 2D multi-goal problems
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(a) : Building (b) : Dense

(c) : Triangles (d) : Bugtrap

(e) : Easy (f) : Twistycool

Figure 7.3: Visualization of maps for 3D problems
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Chapter 8
Space Filling Forest for single-goal motion planning

Both implementations of SFF algorithms, in the OMPL and in the custom library, were
compared with other available planners, with conditions specified in Chapter 7. As the
single-goal motion planning was not analyzed in [4] or in [5], all possible combinations of
dimensions and kinodynamic constraints were tested, i. e., standard unconstrained planning
in the Euclidean space, planning for the Dubins vehicles and planning with polynomial
trajectories, both in 2D and 3D.

In the following sections, complete results of the benchmarks are analysed, but only
significant graphs were selected for demonstration of the described features. The complete
results in a form of graphs are available in the appendix (Appendix C). In all cases, three
parameters were watched: the success rate, time of run and the length of the resulting path.

8.1 Planning in 2D Euclidean space

Planning in the 2D Euclidean space was tested on the OMPL implementation, as described
in Chapter 7. The tested planners were left in their default configurations, only the “range”
parameter was unified for all tree-expanding algorithms. Each test was repeated 1 000 times
for each planner.

The results for Bugtrap configurations are very tight for most of the planners. The
shortest solutions found asymptotically optimal RRT* and RRTXStatic planners, followed
by PRM, PRM* and FMT algorithms. However, apart from the FMT planner, all of them
ran in all cases for the maximum allowed time. The performance of the SFF* planner was
mediocre, and poor concerning the NR-SFF* planner. Additionally, there is a significant
difference between “in” and “out” configurations, as depicted in Figure 8.1 — the results for
the “in” configuration are worse. This is probably caused by the priority queue utilized in
NR-SFF* and SFF*. However, compared to classic EST, SFF* found shorter paths in shorter
time in vast majority of cases. The performance of NR-SFF* is comparable to SBL. The
worst results achieved the KPIECE-based algorithms, STRIDE and TRRT were not even able
to solve the problem.
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(b) : Lengths of the paths for Bugtrap “out”

Figure 8.1: Comparison of lengths of paths for Bugtrap configurations

The results for both Dense configurations are almost the same as in the Bugtrap problem.
The main difference is only in the success rate and the computational times of the EST
algorithm, which were the worst.

The outcome of the benchmark of Spiral configurations is different. Some planners,
including EST and RRT*, have not found a solution in almost all runs, the success rates of
other planners like SPARS or SST are low. The order of planners as per the lengths of their
paths is then similar to the previous environments, except for RRT. The lengths of paths
found using RRT are comparable to NR-SFF* and are significantly worse than the paths
found using SFF*. The quality of paths found using SFF* compared to the paths found using
KPIECE planner is depicted in Figure 8.2.

(a) : Paths found by KPIECE planner (b) : Paths found by SFF* planner

Figure 8.2: Comparison of quality of paths in Spiral map

However, considering also the times of computations, only the FMT planner achieved
better results than SFF*. Such a good performance of SFF-based algorithms was reached
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thanks to independence from Voronoi bias, which steers other planners to wrong direction. In
this way, they waste the time and consequently some of them could not even reach the given
goal.

BK
PI

EC
E

ES
T

FM
T

K
PI

EC
E

LB
K

PI
EC

E
LB

T
R

R
T

PR
M

PR
M

*
R

R
T

R
R

T
*

R
R

T
X

St
at

ic
SB

L
N

R
-S

FF
*

SF
F*

SP
A

R
S

SP
A

R
S2

SS
T

ST
R

ID
E

T
R

R
T

Planner

0

2

4

6

T
im

e 
[s]

(a) : Computational times for Spiral “in”
BK

PI
EC

E
FM

T
K

PI
EC

E
LB

K
PI

EC
E

LB
T

R
R

T
PR

M
PR

M
*

R
R

T
R

R
T

*
SB

L
N

R
-S

FF
*

SF
F*

SP
A

R
S

SP
A

R
S2

SS
T

Planner

1000

1500

2000

2500

Le
ng

th

(b) : Lengths of the paths for Spiral “in”

Figure 8.3: Computational times and lengths of paths of Spiral “in”
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Figure 8.4: Computational times and lengths of paths of Spiral “out”

The benchmarks in the Maze map ended up the same way as the Spiral configurations,
the only difference was a higher success rate for some planners like RRT* (RRTXStatic or
EST did not even solve this problem). This is caused by the fact, that the Maze map does
not have so narrow corridors, especially in the second section. In this way, the Voronoi bias
does not have such a negative impact.
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8.2 Planning in 3D Euclidean space

Unlike the benchmarks of the OMPL in 2D Euclidean space, which were done on custom maps
and with custom settings, the tests in 3D Euclidean space were performed in 3D environments,
which are part of OMPL.app, as described in Chapter 7. The parameters of benchmarks were
also left in default, except from the number of runs, which was set to 500 for the Easy and
Twistycool environments, and to 100 for the 3D Bugtrap environment. The longer timeouts
are reason for this — 300 seconds for the Bugtrap, and 20 seconds for other two problems.

In the 3D Bugtrap problem all planners failed, i. e., no solution was found. In order to
find at least some solution, the “range” settings of tree-expanding algorithms was adjusted.
However, even after the adjustments, no solutions were found. This is clearly one of many
problems discovered in the OMPL.

Solving the second problem, Easy, was more successful. Like the problems solved in 2D
Euclidean space, the success rate of the SST planner was low and the STRIDE and TRRT
algorithms did not find almost any solution. The worst results delivered BKPIECE and
LBKPIECE planners, their paths were in average almost 2 000 times worse than the best
average. The best average length of paths was achieved by RRT* and RRTXStatic planners,
followed by FMT. The SFF* algorithm found paths comparable to paths found using PRM,
but in much shorter average time. It also defeated the classic RRT planner and EST planner,
which was even worse than NR-SFF*. The filtered results are depicted in Figure 8.5a.
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Figure 8.5: Lengths of the paths found in 3D Euclidean test problems

The results of the more difficult Twistycool problem are quite different. Most significant
are the changes of success rates, where the majority of planners solved the problem in less
than half of the runs. This concerns both SFF-based algorithms, together with EST, PRM,
RRT* and others. The shortest paths were found using RRT* and RRTXStatic planners,
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followed by FMT and SFF*. Even results of the NR-SFF* algorithm are better than average,
as it defeated EST, RRT or even PRM*. Such great results were achieved probably thanks to
the independence from Voronoi bias. The filtered results are depicted in Figure 8.5b.

8.3 Planning for Dubins car

The last category of planners implemented in the OMPL are algorithms for planning for Dubins
car. The tests were performed in the same maps as benchmarks for the 2D Euclidean space.
The tested planners were left in their default configurations, only the “range” parameter was
unified for all tree-expanding algorithms, and the “turningradius”, representing the turning
radius of the Dubins car, was adjusted.

However, issues with some planners were discovered during the tests. Some of the resulting
paths, or Dubins maneuvers, collided with the obstacles, as shown in Figure 8.6. In cases of
LBKPIECE, BKPIECE and SBL, only few curves go through the walls, for paths of SPARS,
SPARS2 and RRTXStatic planners are the violations more evident, while the results of the
PRM and PRM* planners should not even be taken in account.

(a) : Overlapping Dubins maneuvers — results
of LBKPIECE planner

(b) : Final paths going through the walls of an
obstacle — results of PRM planner

Figure 8.6: Issues with Dubins maneuvers in OMPL

The results for both Bugtrap configurations are different from the results for 2D Euclidean
space in terms of the success rates and the computational times, but almost identical in
terms of the path lengths. The lowest success rate when “getting into the bugtrap” has EST,
followed by SFF* and NR-SFF*, which found a solution in around half of the runs. Other
succeeded in almost all runs. For the problem of “getting out”, only SFF-based algorithms
did not succeeed in cca. 1/4 of runs for NR-SFF*, or 1/3 of runs for SFF*. The shortest
solutions were in both cases found using RRT*, FMT and SFF* planners, the longest using
LBKPIECE and BKPIECE — despite the fact that their paths collide with obstacles.

The Dense configurations brought similar results for all three watched parameters. The
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(a) : Lengths of the paths for Bugtrap “in”
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(b) : Lengths of the paths for Bugtrap “out”

Figure 8.7: Comparison of lengths of paths for Bugtrap configurations when planning for Dubins
car

SFF* algorithm found one of the shortest solutions and defeated RRT, EST and PRM, but
the success rate is low — cca. 1/2 of runs for one configuration, and even less than 1/10 of
runs for the second configuration. Lower success rate has only EST with almost no successful
runs.

The Spiral problem was solved only by the problematic planners colliding with obstacles,
and in one configuration also by FMT.

The situation for the Maze problem is a bit better, unfortunately both problems were
not solved by any of the SFF-based algorithms. On the other hand, the success rates of
RRT-based algorithms are close to zero as well. Surprisingly, the KPIECE planner delivered
quite good results.

8.4 Planning for Dubins airplane

The planning for Dubins airplane is the first category of planning tested in the custom library
of planning algorithms and also the only category of single-goal planning, where Lazy SFF
planners were deployed.

For the benchmarks, the 3D maps Building, Dense and Triangles introduced in Chapter 7
were used. Maximum number of iterations of SFF-based and RRT-based algorithms was
100 000, number of sampled nodes for PRM was 1 000. Apart from the radius of Dubins
curves, also sampling ranges of pitch angles were adjusted for all planners.

With an exception of Lazy SFF algorithms, all planners solved every problem almost in
all runs. The worst computational times were achieved by the Lazy SFF algorithms, due
to the complicated and time demanding solving of Dubins Touring Problem. Slightly worse
times has also PRM*, other times of runs are similar to each other.
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The shortest paths for Dubins airplane found RRT* planner, closely followed by PRM.
Lengths of the paths of SFF* and Lazy SFF* as well as NR-SFF* and Lazy NR-SFF* are
almost identical and are definitely not worth the significantly longer computational time.
They are also depicted in Figure 8.8a.
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Figure 8.8: Lengths of the paths of selected problems of planning for Dubins airplane

The lengths of paths in the Dense problem are better for SFF*, as their lengths are
comparable to the lengths of paths found using RRT*. This is also depicted in Figure 8.8b.
The results for the Triangle problem are almost the same — at least the order of planners.

8.5 Planning on polynomial trajectories in 2D

The benchmarking of the proposed trajectory planner with polynomial 2D trajectories was
performed in the custom planning library, in the same environments as other 2D problems.
Maximum number of iterations of SFF-based and RRT-based algorithms was 100 000, number
of sampled nodes for PRM was 1 000. Unlike the previous dimensions, dynamic parameters
were also set: the minimum and the maximum thrust equaled to one expansion step and the
maximum rotation speed is 1 rad/s. The duration of a segment was 4 seconds. The gravity
was not set for the 2D case. Beware, that the cost of solution was minimized rather than its
length.

For both Bugtrap configurations, the results are practically the same. The problems
were solved by all tested planners, the least successful was PRM* with cca. 2/3 of successful
runs, the most successful were NR-SFF* and SFF*, which solved the problems in almost all
runs. The lowest average cost of trajectories achieved RRT and RRT*, followed by SFF*.
An example of such trajectory together with the expanded tree is depicted in Figure 8.10.
The worst average cost delivered NR-SFF*. The times of computations are similar for the
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RRT-based planners and SFF*, for the “in” problem the times for both SFF-based algorithms
are worse again. Quite good cost of found trajectories has also PRM*, although its running
times were the longest.
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Figure 8.9: Comparison of costs for both Bugtrap problems

The results for both Dense problems are the same as for the Bugtrap problem, apart
from the PRM* planner, which did not solve the problem in any of the runs.

(a) : Expanded tree and final trajectory found
by SFF

(b) : Expanded tree and final trajectory found
by SFF*

Figure 8.10: Expanded trees and trajectories in Bugtrap problem

For both Spiral and Maze problems was found no solution, as both are too difficult to
be solved using polynomial trajectories. The only exception is the Maze “corridor” problem,
which was in a few cases solved by the RRT planner. According to smaller tests, increase
of number of iterations did not lead to any solution as well, at least for the SFF-based
algorithms. This might be caused by the priority bias, or by the size and the dimensionality
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of the sampling space.

8.6 Planning on polynomial trajectories in 3D

The 3D trajectories were tested in almost the same way as the 2D trajectories, of course
with an exception of used environments. The maximum and minimum thrust equaled to one
expansion step, the maximum rotation speed was 1 rad/s. The duration of a segment was
4 seconds. The size of gravity was set to triple of the expansion step, it acted in the negative
direction of z-axis. The cost of the solution was minimized rather than its length.

The 3D trajectory problems are quite problematic for the PRM* algorithm. For the
Building problem, it did not find any solution. Oppositely, the RRT-based algorithms found
a valid path in every run. The SFF-based algorithms were successful only in half of the cases.
Regarding the cost of solutions, the best results achieved RRT* followed by SFF*. However,
the computational times of SFF* are the worst, they are three times longer than the times of
RRT*. The results are depicted in Figure 8.11. An example of an expanding tree with the
final polynomial trajectory is shown in Figure 8.12.
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Figure 8.11: Results for the Building problem

The Dense problems were solved only by the RRT-based algorithms, and in the case of
RRT* only in few percent of cases — usually the computation timed out. The environment is
probably too spacious, so the planners with Voronoi bias are in advantage, as they are able to
expand faster.

The results for the Triangles problem are better for all planners. All runs were successful
for both RRT-based planners, which solved all runs, the SFF-based algorithms were successful
in half of the cases, and even PRM* found a path in cca. 1/5 of all runs. RRT* won in
the cost of solutions followed by SFF* and PRM*. However, it should be noted that the
computational times of SFF* are the worst and are in order of minutes.
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(a) : Expanding SFF* tree (b) : Final trajectory

Figure 8.12: Expanding tree and final polynomial trajectory by SFF* in the Building environment

8.7 Discussion

It is apparent from the benchmarks, that SFF-based algorithms are for single-goal planning
definitely not the best, but they are an interesting alternative to classic planners for some
environments.

Such environments were Spiral and Maze in 2D Euclidean spaces, where other planners
failed (computed for longer time or found longer paths) due to the effect of Voronoi bias, which
steered their expansion to a wrong direction. For other environments, the proposed algorithms
found mediocre paths in mediocre times, but they still defeated EST and KPIECE-based
planners. Unfortunately, the priority queue had in some cases negative impact on the results
of SFF*.

Similar results were achieved in 3D Euclidean space, where SFF* delivered better results
in more difficult Twistycool environment and outperformed standard planners like RRT or
EST. This was possible thanks to the independence from Voronoi bias.

When planning for Dubins car, NR-SFF* and SFF* found in some environments very
good paths, but achieved very low success rates in comparison to other planners. Here,
Voronoi bias probably helped other planners as they were able to expand faster.

In the case of planning for Dubins airplane, the best average of path lengths achieved
RRT*, but it is closely followed by SFF*. Unfortunately the computational times were the
worst for the SFF-based planners, probably due to a higher number of computations of path
segments, i. e., 3D Dubins maneuvers.

For 2D polynomial trajectories, RRT* excelled again, but the SFF* planner was able to
achieve the highest success rate of all planners. For the 3D case of polynomial trajectories,
identical results as for the Dubins airplane were achieved, probably due to the higher number
of generations of trajectory segments as well.
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Chapter 9
Space Filling Forest for multi-goal motion planning

As already mentioned in Chapter 7, the proposed algorithms for multi-goal planning were
benchmarked with their main competitors in the custom library of planning algorithms. Only
the planning with Dubins vehicles, i. e., the Dubins car and Dubins airplane, was tested
because the multi-goal planning in Euclidean spaces was compared with other planners in [5].

9.1 Planning for Dubins car

The algorithms for planning with the Dubins car were tested in the environments “Dense”,
“Triangles” and “Varying density”, each in configurations with 5, 10 and 20 cities. The novel
SFF* and NR-SFF* algorithms were compared with the tree-growing Lazy TSP and the
roadmap-constructing PRM* planner.

All planners used the same radius of the Dubins maneuvers, both SFF-based planners
were limited by 100 000 iterations, each RRT expansion of the Lazy TSP algorithm was
limited by 100 000 iterations and used the same sampling distance as SFF-based algorithms.
The number of nodes sampled using the PRM* planner was 1 000. Three main parameters
were watched, likewise to single-goal planning: Time, the length of the TSP tour and the
TSP succcess rate, i. e., a percentage of runs in which one graph was formed by all paths
connecting the cities and the LKH TSP solver found a valid tour.

An example of a final TSP tour for the Dubins car found using the SFF* planner in
“Dense” map with 5 cities is depicted in Figure 9.1.

The complete results of the benchmarks are recorded in Table 9.1. Please note that the
values for the TSP length and the computational times are in format “mean | std”, where
mean is the mean of valid values, and std is the standard deviation from the mean value. The
values for the computational time include both solved and unsolved cases.

According to the measured values, it might appear that the best planner is PRM* in
all tested environments. It found the shortest paths with lowest dispersion among runs,
additionally in the shortest time. However, its success rates in “Dense” and “Varying density”
are the lowest. This is probably caused by the choice of the number of sampled nodes —
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Figure 9.1: Final TSP tour after planning with Dubins car in “Dense” map using SFF*; visible
points of inflection are caused by selected small turning radius

higher number of sampled nodes would increase the success rate, but also extend the path
length due to the higher number of Dubins maneuvers included. The highest success rate
and comparable length of the tour were achieved by the Lazy TSP planner, but its time of
run increases exponentially with the number of cities, which is apparent from the results for
20 cities.

Both SFF-based planners provided longer paths in mediocre time and their success rates
in “Triangles” and “Varying density” environments were poor. The results for the “Dense”
map with 10 and 20 cities are surprising, as other planners failed in almost all runs. This is
probably caused by some hard-to-connect city in a narrow passage. This result confirms the
assumption that SFF-based planners are suitable for problems with narrow passages, even for
the planning with the Dubins car, thanks to independence from Voronoi bias.

9.2 Planning for Dubins airplane

The planners for the Dubins airplane model were tested in 3D environments “Dense”, “Building”
and “Triangles”, each in configurations with 5, 10 and 20 cities. The same planners as for
the Dubins car problem were benchmarked, also with Lazy NR-SFF* a Lazy SFF* planners
using the decoupled solution of the DTSP problem, i. e., finding path in 3D Euclidean space
first and then solving DTP with resulting path nodes.
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All planners used the same initial radius of Dubins maneuver in the vertical level, as well as
the same ranges of pitch angles. All SFF-based algorithms were limited by 100 000 iterations,
each RRT expansion of the Lazy TSP algorithm was limited by 100 000 iterations and used
the same sampling distance as SFF-based algorithms. The number of nodes sampled using
the PRM* planner was 1 000. Number of sampled angles for the DTP problem solved by
Lazy SFF planners was 2, i. e., only the opposite angles of each node were considered. The
same parameters as for the Dubins car problem (Time, the length of the TSP tour and the
TSP success rate) were watched.

Two examples of a final TSP tour for Dubins airplane found using the SFF* planner in
“Building” and “Dense” maps are illustrated in Figure 9.2.

(a) : Final TSP tour in “Dense” map with 5 cities (b) : Final TSP tour in “Building” map with 5
cities

Figure 9.2: Final TSP tours after planning with Dubins airplane using SFF*

The complete results of the benchmark are recorded in Table 9.2. They are almost the
same as for the 2D case, as the PRM* planner was able to find the shortest paths in the
shortest time, but with the lower success rate. This is valid especially in the “Triangles”
map with 10 and 20 cities. The Lazy TSP planner found paths comparable in length, but
its demands on the computational time are relatively higher for configurations with higher
number of cities than for the 2D case, and increases exponentially as well.

The Lazy SFF algorithms failed for every configuration. This was caused by the fact that
the difference between paths in Euclidean space and trajectories for the Dubins airplane is
so significant that such a transformation is impossible in environments with obstacles. In
addition, the solution of the DTP with the resulting path nodes apparently increased the times
of computations, so the duration of computation for the Lazy SFF planners is higher than for
the standard SFF algorithms. Therefore, there is no use in using the lazy approach. This fact
highlights the need of planning directly with the Dubins maneuvers, as both NR-SFF* and
SFF* do.
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9. Space Filling Forest for multi-goal motion planning ............................
The proposed SFF* algorithm produced paths comparable in length with the Lazy TSP

approach in mediocre times, with an exception of the “Building” map where the computations
were even faster than with the PRM* planner. The computational time was even smaller for
the NR-SFF* planner with no rewiring, but at the cost of longer tours.

9.3 Discussion

For both dimensionalities of problems, the PRM* planner found the shortest paths, but with
one of the lowest success rates. This is due to the relatively low number of sampled points. If
this number were higher, the results would be probably different — the success rates would
be higher at the cost of longer paths with more Dubins maneuvers.

The second best planner, Lazy TSP, found on the one hand tours of comparable in length
to PRM*, but on the other hand its run time increased exponentially, which is especially
evident in 3D. However, it should be noted, that Lazy TSP is a “lazy” variant of classic
approach to multi-goal motion planning. In the case of classic approach, where paths would
be searched for all city–city pairs, the time would be much longer.

The Lazy SFF approaches totally failed, because they failed to convert the classic 3D
path into 3D Dubins maneuver in environments with obstacles. From these failures, it is
apparent that the only valid option is to expand directly using Dubins maneuvers.

On the one hand, SFF-based methods for multi-goal path planning found only average
paths in mediocre times, on the other hand, linked some hard-to-connect cities, where other
planners failed. Perhaps with different settings of Dubins vehicles and in environments with
more narrow passages, the results would be better.
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Chapter 10
Conclusion

The main objective of this work was to study and extend the existing sampling-based motion
planning methods from the family of “Space Filling Forest”, NR-SFF* and SFF*. These
have been defined in [5] — one of the co-authors of the paper is the author of this thesis.
Two challenges were defined for this work. First, derive methods for single-goal motion
planning in 2D and 3D, for Dubins car and for Dubins Airplane, as well as for planning with
state-of-the-art polynomial trajectories in 2D and 3D. Second, propose a novel multi-goal
motion planning method for Dubins car and Dubins airplane, where instead of planning
a path for each pair of cities, multiple trees are grown in SFF manner and the paths are
extracted from them at once.

In Chapter 2, the problem of motion planning was defined as well as the necessary
terminology used throughout the whole work was described. The next Chapter 3 gave reader
an overview of single-goal planners. Basic algorithms as well as newer and more complex
sampling-based methods were presented here. Specifically, Probabilistic Roadmaps, Rapid
Exploring Random Trees and Expansive Space Trees with their asymptotically optimal
variants were studied, and their behavior with respect to various parameters was analyzed.
Subsequently, Dubins car and Dubins airplane models were described together with approaches
to planning with them. Minimum snap and minimum jerk polynomial trajectories were also
studied together with related works.

The multi-goal path planning was discussed in Chapter 4. Methods for multi-goal planning
derived from single-goal sampling-based planners were presented, and two combinatorial
problems were introduced, the Traveling Salesman Problem and the Orienteering Problem
along with variants for Dubins vehicles. An overview of the principles and methods used for
their solution was given and selected solvers were referenced.

In Chapter 5 a family of motion planning algorithms called Space Filling Forest was
introduced and their behavior with various settings was analyzed.

The next Chapter 6 briefly introduced the implementation of the proposed SFF-based
algorithms in OMPL, followed by a detailed description of the created custom library of
planning algorithms. All SFF-based algorithms are implemented in this library, along with
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a selection of RRT- and PRM-based algorithms. All their implementation details and
supporting algorithms used were discussed. An overview of implemented sampling methods,
collision checking, nearest neighbors search and generation of paths for Dubins vehicles was
provided, as well as polynomial trajectories.

The resources, maps and models used for bechmarking of the proposed algorithms were
described in Chapter 7 and finally, in Chapters 8 and 9 the results of the benchmarks were
studied. First, single-goal planning for Euclidean space, for Dubins vehicles and on polynomial
trajectories was tested, always in 2D and 3D.

In Euclidean spaces, the influence of the Voronoi bias was evident. Although SFF* was not
the best planner, it excelled in environments like Spiral or Maze with the best length-to-time
ratio. It outperformed classic planners like RRT and EST, in some cases also sPRM.

For problems with Dubins car, the success rate of SFF-based planners was lower than of
the others. Also, for problems with Dubins airplane, SFF* may not be the best option, but
still worked better than standard PRM* or RRT. The most suitable planner for planning for
Dubins vehicles was RRT*, with Voronoi bias allowing faster tree expansion. RRT* also had
the best results for problems with polynomial trajectories where SFF-based algorithms failed
in most runs and their computational times were bad, especially in the case of 3D. It still
outperformed the PRM* planner.

Second, novel multi-goal planning for Dubins vehicles was benchmarked. In almost all
environments, the shortest tours were found with paths from the PRM* planner, but this
approach also had the lowest success rate. For the Lazy TSP planner, computational time
grew exponentially with the number of cities. The SFF-based planner found mediocre tours
in mediocre times, but managed to link hard-to-connect cities. Decoupled Lazy SFF planners
failed.

Any consequent research of SFF might focus on adjustments of planners parameters,
especially when planning with polynomial trajectories, or on searching for other applications
where SFF-based algorithms might be deployed. Also the multi-goal planning might get
further extended by planning on polynomial trajectories.

In this work, new SFF-based methods for single-goal path and trajectory planning were
presented along with a novel approach to multi-goal path planning for Dubins vehicles.
Although the proposed algorithms have not achieved excellent results, they are an interesting
alternative to classic sampling-based planners, especially in environments where the Voronoi
bias of classic planners might lead to worse results.
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Appendix B
Detailed description of the input configuration file
for the designed library

Below is a list of main nodes along with lists of their subnodes, detailed descriptions and
requirements.
Node problem (required). solver – required, type of the planner, one of “sff”, “rrt”, “prm”, “lazy-tsp”, or “lazy-

rrt”, and “lazy-sff” (combination of “rrt” setting with multiple cities corresponds to the
Multi-T-RRT algorithm). optimize – required, whether to use asymptotically optimal versions of algorithms,
boolean. connect-only – optional, switch for SFF based algorithms to stop expansion after
connecting all cities, boolean (default: “false”). iterations – required, maximum number of iterations, integer. dimension – required, dimensionality of the solved problem, one of ”2D”, ”2DDubins”,
”3D”, ”3DDubins”, ”3DPolynom”

Node delimiters (optional). standard – optional, delimiter between values in OBJ file, character (default: ” ”). name – optional, delimiter of the name in OBJ file, character (default: ”_”)
Node robot (required). path – required, path to the file with robot model, string. type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”)
Node obstacles (optional) – list, might contain more records. path – required, path to the file with obstacle/environment model, string. position – optional, position of the obstacle, string – point format (default: center of

coordinate system). type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”)
Node ranges (optional, when not specified, autorange is enabled). autorange – required for planning without obstacles otherwise optional, enables deduction
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of sampling limits from the ranges of specified obstacles, boolean (default: false). x – required when autorange is disabled, limits of x-axis, string in format ”[min; max]”,
where “min” and “max” are doubles. y – required when autorange is disabled, limits of y-axis, string in format ”[min; max]”,
where “min” and “max” are doubles. z – required for three-dimensional spaces (3D, 3DDubins and 3DPolynom) when autorange
is disabled, limits of z-axis, string in format ”[min; max]”, where “min” and “max” are
doubles. pitch – optional for 3D and 3DDubins problem dimensions otherwise ignored, minimum
and maximum pitch angle during the flight, string in format ”[min; max]”, where “min”
and “max” are doubles (default: for 3D from “-inf” to ”+inf”, for 3DDubins from ”−π/2”
to ”π/2”)

Node TSP-solver (required for Lazy TSP, otherwise optional). type – required, type of the embedded TSP solver to use, one of “lkh” and “concorde”. path – optional, path to the solver executable, string (default: path to the embedded
solver, according to type)

Node algorithm (required when at least one of its subnodes is required, otherwise optional). m2r-ratio – optional, ratio of path length to rotation (used for distance calculation),
double (default: 1). misses – optional for SFF-based algorithms otherwise ignored, maximum number of
failed expansions before moving a node from the open list to the closed list, integer
(default: 3). dubins-radius – required when planning for Dubins vehicle or airplane otherwise ignored,
minimum turning radius, double. dubins-resolution – required when planning for Dubins vehicle or airplane otherwise
ignored, number of ingoing/outgoing angles to/from each city node (the rotation of city
is taken as an offset), integer, must be even and greater than 1 for multi-goal planning
to ensure symmetry. bias – optional, sampling bias for RRT-based or SFF-based algorithms (probability of
selecting the node closest to the goal for expansion), double, for Lazy TSP and multi-goal
RRT (Multi-T-RRT) must be equal to 0. prm-connections – required for PRM otherwise ignored (incl. PRM*), number of
neighboring nodes to connect to, integer

Node cities (required) – list, at least one record is required
Each record represents the coordinates of one city node, string in point format

Node goal (optional)
Record representing coordinates of the goal node, string in point format
Note: the behavior when entering multiple cities and the goal node is not defined
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Node distances (required). collision – required, step size for the local planner checking possible collisions of the
robot model with the environment, double. sampling – required, distance between the parent node and its children, used for RRT-
based and SFF-based algorithms, double. tree – required, maximum distance between trees to connect them (multi-goal) or
tolerance around the goal node (single-goal), double

Node dynamics (required for planning with consideration of vehicle’s dynamics). min-thrust – optional, minimum possible thrust on the planned trajectory, double
(default: 0). max-thrust – optional, maximum possible thrust on the planned trajectory, double
(default: 1). max-rotation-speed – optional, maximum achievable rotation speed, double (default:
1). gravity – optional, intensity of gravitational acceleration, directed in negative direction
of z-axis, double (default: 9.81). segment-time – required, time between the parent node and its children, double. control-interval – optional, time interval for feasibility check, double (default: 0.01)

Node save (optional). goals – optional, file to save coordinates of all cities and the goal node. path – required, path to the file for saving, string. type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”). tree – optional, file to save final ”planning graph” after expansion. path – required, path to the file for saving, string. type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”). frequency – optional, number of iterations between two consecutive tree saves –
enables progressive saving of the graph when not equal to 0. roadmap – optional, file to save final path(s). path – required, path to the file for saving, string. type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”). params – optional, file to save the output values – identifier, number of elapsed iterations,

whether the problem was solved, the order of the cities, the length of paths between
them (not printed out for Dubins problems), total length of the tour (when it was found)
and elapsed time. path – required, path to the file for saving, string. type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”). id – optional, identifier of the problem, string. TSP-file – optional, file to save the distance matrix for external TSP solvers
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. path – required, path to the file for saving, string. type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”). TSP-paths – optional, file to save the final paths in the final tour between cities. path – required, path to the file for saving, string. type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”). frontiers – optional for SFF-based algorithms otherwise ignored, file to save nodes in

open list in actual iteration. path – required, path to the file for saving, string. type – optional, type of the file, one of “tri”, “map” and “obj” (default: “map”). frequency – optional, number of iterations between two consecutive saves – enables
progressive saving of the graph when not equal to 0

B.1 Point format

Some of the abovementioned nodes have a prescribed specific string format of string denoted
as ”point format”. This has not benn further explained before, as the precise format depends
on the dimension and type of the problem. The common format of the point is as follows:

[x; y; . . . ]

The number of elements is 2 for 2D problems, 3 for 2DDubins problems (x, y, angle), 6 for
3D problems (x, y, z, yaw, pitch, roll), 5 for 3DDubins problems (x, y, z, yaw, pitch) and 6
for 3DPolynom problems (same as for 3D problems). Each element is double, elements must
be separated by a semicolon with optional spaces.
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Appendix C
Complete results of single-goal benchmarks

On the following pages the complete results for single-goal path planning benchmarks are
available in form of the graphs, generated either from the results of OMPL implementations
or the implementations in the custom library.
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C.1 Planning in 2D Euclidean space
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Figure C.1: Results for “Bugtrap in” problem
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Figure C.2: Results for “Bugtrap out” problem
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Figure C.3: Results for “Dense 0” problem
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Figure C.4: Results for “Dense 1” problem
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Figure C.5: Results for “Spiral in” problem
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Figure C.6: Results for “Spiral out” problem
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Figure C.7: Results for “Maze corridor” prob-
lem
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Figure C.8: Results for “Maze walls” problem
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C.2 Planning in 3D Euclidean space
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Figure C.9: Results for “Easy” problem
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Figure C.10: Results for “Twistycool” problem
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C.3 Planning for Dubins car
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Figure C.11: Results for “Bugtrap in” problem
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Figure C.12: Results for “Bugtrap out” problem
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Figure C.13: Results for “Dense 0” problem
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Figure C.14: Results for “Dense 1” problem
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Figure C.15: Results for “Spiral in” problem
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Figure C.16: Results for “Spiral out” problem
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Figure C.17: Results for “Maze corridor”
problem
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Figure C.18: Results for “Maze walls” problem
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Figure C.19: Results for “Building” problem
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Figure C.20: Results for “Dense” problem
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Figure C.21: Results for “Triangles” problem
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Figure C.22: Results for “Bugtrap in” problem
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Figure C.23: Results for “Bugtrap out” problem
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Figure C.24: Results for “Dense 0” problem
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Figure C.25: Results for “Dense 1” problem
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Figure C.26: Results for “Spiral in” problem
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Figure C.27: Results for “Spiral out” problem
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Figure C.28: Results for “Maze corridor”
problem
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Figure C.29: Results for “Maze walls” problem
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Figure C.30: Results for “Building” problem
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Figure C.31: Results for “Dense” problem
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Figure C.32: Results for “Triangles” problem
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Appendix D
Attachments

The attached ZIP file has following structure:. library_planning_algorithms – Source codes of the created library of planning al-
gorithms. Instructions on how to install it and run it are provided in the included
README.md file.. omplapp – Source codes of OMPL and OMPL.app extended by the implementations of
NR-SFF* (registered as “sff”) and SFF* (registered as “sffstar”).. thesis – Source codes and the final PDF version of this thesis.
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