
Instructions

Physical unclonable functions are an emerging cryptographic primitive that can be used for device 

identification, authentication, and key generation in digital devices.

* Study the topic of physical unclonable functions (PUFs). Focus primarily on key generation.

* Select a suitable TLS library for use with ESP32.

* Implement generation of asymmetric keys from PUF responses.

* Design and implement an enrollment procedure for key certification.

* Test authentication and connection establishment using the TLS library with a private key generated 

from PUF.

* Use a mock-up PUF model in your development, final PUF implementation will be adapted from a 

parallel thesis [1] by Ondřej Staníček.

[1] Ondřej Staníček: Physical unclonable functions on ESP32, bachelor thesis, CVUT FIT 2022.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 3 February 2022 in Prague.

Assignment of bachelor’s thesis

Title: Using physical unclonable functions in TLS on ESP32

Student: Matěj Týfa

Supervisor: Ing. Jiří Buček, Ph.D.

Study program: Informatics

Branch / specialization: Computer Security and Information technology

Department: Department of Computer Systems

Validity: until the end of summer semester 2022/2023





Bachelor’s thesis

USING PHYSICAL
UNCLONABLE
FUNCTIONS IN TLS ON
ESP32

Matěj Týfa

Faculty of Information Technology
Department of Computer Systems
Supervisor: Ing. Jǐŕı Buček, Ph.D.
May 12, 2022



Czech Technical University in Prague
Faculty of Information Technology
© 2022 Matěj Týfa. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Týfa Matěj. Using physical unclonable functions in TLS on ESP32. Bachelor’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2022.



Contents

Acknowledgments viii

Declaration ix

Abstract x

Abbreviations xi

1 Introduction 1

2 Aims of This Thesis 3

3 Physical Unclonable Function 5
3.1 What is a Physical Unclonable Function? . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Challenge-Response Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Strong and Weak PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4.1 Constructibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4.2 Evaluability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4.3 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.4 Unclonability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4.5 Reproducibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.6 Unpredictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.7 Other Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5.1 Optical PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5.2 SRAM PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6.1 Device Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6.2 Device Authorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6.3 Counterfeit Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Key Generation from PUF 15
4.1 Cryptographic Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Symmetric Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Asymmetric Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Error Checking and Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Secure Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Repeated Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Generating Key from Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.1 Response as a Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Strong Extractor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.3 Key Derivation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Key Generation Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . 21

iii



iv Contents

4.4.1 Best Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4.2 Best Error Checking and Correction . . . . . . . . . . . . . . . . . . . . . 21
4.4.3 Best Process to Generate a Key from Response . . . . . . . . . . . . . . . 22

5 Transport Layer Security on ESP32 23
5.1 Transport Layer Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 Functions of TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 TLS Version 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Self Implementation of TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Available Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3.1 ESP-TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.2 WolfSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.3 Mbed TLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.4 BearSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3.5 CycloneSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4 The Best TLS Library? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Design of a Key Enrollment Procedure 27
6.1 Aims of the Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 Communication Medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3.1 Triggering Key Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3.2 Creating Certificate Signing Request . . . . . . . . . . . . . . . . . . . . . 28
6.3.3 Exporting Certificate Signing Request . . . . . . . . . . . . . . . . . . . . 29
6.3.4 Receiving Certificate Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.3.5 Validating Certificate Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Implementation 31
7.1 ESP-IDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1.1 ESP-IDF Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1.2 Installing WolfSSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.2 Additional Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.1 Access Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2.2 Domain Name System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2.3 Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2.4 Mock Library Providing PUF . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.3 Creating a Key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.4 Key Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7.4.1 Communication Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4.2 Triggering Key Enrollment . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4.3 Creating Certificate Signing Request . . . . . . . . . . . . . . . . . . . . . 36
7.4.4 Receiving Certificate Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4.5 Validating Certificate Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4.6 Helper Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7.5 Establishing TLS Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.6 Test of Authentication and Connection Establishment . . . . . . . . . . . . . . . 39

7.6.1 Web Browsers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.6.2 OpenSSL s client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.6.3 sslscan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



Contents v

8 Using an Actual PUF 43
8.1 Challenges with PUF Library Integrations . . . . . . . . . . . . . . . . . . . . . . 43

8.1.1 Incompatibility with ESP-IDF Version 5.0 . . . . . . . . . . . . . . . . . . 43
8.1.2 Response not Available . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.1.3 Deep Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8.2 Test of Authentication and Connection Establishment . . . . . . . . . . . . . . . 44

9 Usability of PUF in TLS on ESP32 45
9.1 Speed of Response Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2 Future Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

9.2.1 Another PUF Construction . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.2.2 Generating Private key on Demand in TLS . . . . . . . . . . . . . . . . . 46

10 Conclusion 47

A Example of the Enrollment Procedure 49

B Testing TLS Using the s client Application 51

C Testing TLS using the sslscan application 53

Contents of the enclosed CD 63



List of Figures

3.1 Challenge-Response pair in PUF, adapted from [5, p. 5] . . . . . . . . . . . . . . 6
3.2 Uniqueness in PUF, adapted from [5, p. 8] . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Unclonablility of PUF, style inspired by [5] . . . . . . . . . . . . . . . . . . . . . 9
3.4 Reproducibility in PUF, adapted from [5, p. 7] . . . . . . . . . . . . . . . . . . . 9
3.5 Unpredictability in PUF, adapted from [5, p. 9] . . . . . . . . . . . . . . . . . . . 10
3.6 Functional principle of optical physical unclonable function, adapted from [9, p. 8] 12
3.7 Stability of SRAM cells after power up, reproduced from [14, Figure 3] . . . . . . 13

4.1 Encryption using an symmetric key cryptography, adapted from [16, p. 84] . . . 15
4.2 Encryption using an asymmetric key cryptography, adapted from [16, p. 84] . . . 16
4.3 Signature using an asymmetric key cryptography, inspired by [16, p. 84] . . . . . 16

6.1 Enrollment activity diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1 Sequence diagram of the standard startup . . . . . . . . . . . . . . . . . . . . . . 40
7.2 Managing trusted CAs in Firefox . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Firefox established a TLS connection . . . . . . . . . . . . . . . . . . . . . . . . . 42

List of Tables

5.1 Comparison between TLS libraries on ESP32 . . . . . . . . . . . . . . . . . . . . 26

List of code listings

7.1 Access point on ESP32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Creating a key from response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 UART buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4 A check for an enrollment trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5 A check for an enrollment trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.6 Partition table allocating space on ESP32 . . . . . . . . . . . . . . . . . . . . . . 37
7.7 SPIFFS initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.8 Configuring a TLS context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

vi



List of code listings vii

7.9 Creating a Berkeley socket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.10 Establishing TLS connection with key generated using PUF . . . . . . . . . . . . 39
8.1 Establishing TLS connection with key generated using PUF . . . . . . . . . . . . 44



I would like to thank my supervisor, Ing. Jiř́ı Buček, Ph.D, without
his help this work would not be possible. I also need to thank my
family and friends, who provided all the moral support in the world.
Thank you! For all the times you helped me. No matter if it was a
technical question, discussion or simple reassurance.

viii



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Technical
University in Prague has the right to conclude a license agreement on the utilization of this
thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 12, 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ix



Abstract

This thesis focuses on key generation using a hardware security primitive known as physical
unclonable function. Proof of concept application is created to test the functionality of physical
unclonable function – inside cryptographic protocol known as Transport Layer Security – on
ESP32 platform.

The theory behind physical unclonable functions in the context of key generation is examined
to define essential properties. An enrollment protocol for the keys generated on ESP32 is proposed
to enable the use of generated keys in Transport Layer Security. Available Transport Layer
Security libraries are investigated to select the most suitable choice for the proof of concept
application.

Both a mock-up (simulating ideal properties) and a real physical unclonable function are used
inside the proof of concept application to test the functionality on the ESP32 platform.

Our application proves that physical unclonable functions can be successfully used to generate
keys for Transport Layer Security on ESP32. Mock implementation is working almost perfectly.
However, the real physical unclonable function poses some significant implementation challenges
that decrease the usability of these solutions.

Keywords cryptography, key generation, physical unclonable function, Transport Layer Se-
curity, ESP32

Abstrakt

Tato práce se soustřed́ı na generaci kĺıč̊u za pomoci hardwarového bezpečnostńıho prvku známého
jako fyzická neklonovatelná funkce. Testovaćı aplikace je vytvořena s ćılem otestováńı funkčnosti
fyzické neklonovatelné funkce – uvnitř kryptografického protokolu známého jako Transport Layer
Security – na platformě ESP32.

Teorie o fyzických neklonovatelných funkćıch v kontextu generováńı kĺıč̊u je zkoumána za
účelem definice d̊uležitých parametr̊u. Je navržen protokol, který umožňuje použit́ı kĺıč̊u gen-
erovaných na ESP32 v Transport Layer Security. Dostupné knihovny implementuj́ıćı Transport
Layer Security jsou prozkoumány s ćılem volby nejvhodněǰśı knihovny pro naš́ı aplikaci.

Uvnitř testovaćı aplikace jsou použity jak imitace (simuluj́ıćı ideálńı parametry), tak oprav-
dová fyzická neklonovatelná funkce, s ćılem otestovat jejich funkčnost na platformě ESP32.

Naše aplikace dokázala, že je možné úspěšně použ́ıt fyzickou neklonovatelnou funkci ke gen-
erováńı kĺıč̊u pro Transport Layer Security na platformě ESP32. Použit́ı imitace funkce je funkčńı
téměř dokonale. Ovšem použit́ı opravdové fyzické neklonovatelné funkce přináš́ı zásadńı imple-
mentačńı výzvy, které snižuj́ı použitelnost takovýchto řešeńı.

Kĺıčová slova kryptografie, generace kĺıč̊u, fyzická neklonovatelná funkce, Transport Layer
Security, ESP32

x



Abbreviations

PUF Physical Unclonable Function
SSL Secure Sockets Layer
TLS Transport Layer Security
HD Hamming Distance

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
SRAM Static Random-Access Memory

AES Advanced Encryption Standard
RSA Rivest–Shamir–Adleman
ECC Elliptical Curve Cryptography
XOR Exclusive Or
KDF Key Derivation Function

HKDF HMAC-based Key Derivation Function
HMAC Hash-based Message Authentication Code

CA Certification Authority
CSR Certificate Signing Request

UART Universal Asynchronous Receiver-Transmitter
PEM Privacy-Enhanced Mail

ESP-IDF Espressif IoT Development Framework
IDE Integrated Development Environment

SSID Service Set Identifier
IP Internet Protocol

DNS Domain Name System
mDNS Multicast DNS

DER Distinguished Encoding Rules
TCP Transmission Control Protocol

xi



xii Abbreviations



Chapter 1

Introduction

The rise of Internet connected devices and their presence in our day-to-day life highlighted the
need for privacy and security. Especially on low-power and low-cost devices such as an ESP32.
Historically, the security aspect of these devices was overlooked, usually due to the significant
costs associated with the development and distribution of security elements. Nevertheless, their
popularity is rising each year.

This work could be used in network connected devices by developers and manufacturers
worldwide. It can provide a relatively straightforward (and at no additional cost) way to use
industry standard cryptographic protocols for secure network communication on their device. It
also has the potential to improve privacy (against an unknown adversary) for anyone using such
devices.

The topic of this thesis was chosen because use of of physical unclonable function (PUF) on
an ESP32 platform was not sufficiently explored. Furthermore, such devices could greatly benefit
from the advantages provided by physical unclonable functions.

In this thesis, we describe what a physical unclonable function is. We study properties
required to securely generate something known as a private key1. A private key is something
only the device knows, and it is also used to prove that the device is the one it says it is.

We design an enrollment procedure that establishes a way for the outside world to verify the
device’s identity. If you are deploying the device inside your business infrastructure, you can
verify the identity of the device when connecting to it from anywhere inside the infrastructure.

Then we investigate available options for implementing Transport Layer Security2 (TLS)
on ESP32. TLS is a cryptographic protocol that provides a secure connection over computer
networks, and it can be found implemented on most websites accessible over the Internet. We
weigh the positive and negative factors of each available option to choose the most suitable one.

And finally, we create a proof of concept application that uses a private key – that was
generated using the physical unclonable function – in TLS. The application also implements our
enrollment procedure, after which the device is prepared to establish a secure connection using
Transport Layer Security protocol.

We also perform tests on our implementation to establish whether or not is the use of physical
unclonable function inside Transport Layer Security on ESP32 platform is even possible and
practical.

This work makes use of a parallel Bachelor’s thesis [1] by Ondřej Stańıček. His thesis provided
a usable implementation of a physical unclonable function that will be used as part of our proof
of concept application.

1sometimes referred to as a secret key, or simply a secret, depending on context and application
2successor of Secure Sockets Layer (SSL)

1



2 Introduction



Chapter 2

Aims of This Thesis

The main aim of this thesis is to describe physical unclonable function and to analyze properties
and procedures that are required to use PUF as a secret key generator. It also aims to create a
proof of concept application to demonstrate the usability of PUF inside Transport Layer Security
protocol on ESP32 platform.

In the theoretical section, we attempt to define a physical unclonable function and its prop-
erties in the context of key generation. We analyze different approaches to repeatable secret
key generation from responses of physical unclonable function. We also propose an enrollment
procedure for devices to integrate them into already existing infrastructure. Finally we compare
available options for implementing Transport Layer Security on the ESP32 platform.

The practical section aims to develop a proof of concept application to demonstrate the
device’s life cycle in a typical deployment. We aim first to implement the proposed enroll-
ment procedure using a mock1 implementation of physical unclonable function. The application
should demonstrate the device’s ability to establish secure communication using Transport Layer
Security.

Finally, we aim to test and evaluate the usability of our application with a real physical
unclonable function created by Ondřej Stańıček as part of his Bachelor’s thesis [1].

1an imitation with ideal characteristics

3



4 Aims of This Thesis



Chapter 3

Physical Unclonable Function

In this chapter, we attempt to describe an emerging security primitive known as physical
unclonable function (PUF). We will study properties that should be present in the PUF when
it is being used as a key generator. We also describe different types of constructions and
consider their suitability for this application.

When reading previously published works, it is possible to come across multiple different names
for the same (or at least very similar) concept. The terminology is evolving with different
properties that are required from what we call physical unclonable function (PUF). Some of
previously used names include, but are not limited to:

physical one-way functions

physical random function

physically obfuscated key

physically unclonable functions

The label of physical unclonable functions can be used to describe a wide range of con-
structs. While the term is mainly limited to the field of hardware/computer security, it might
be applicable to other fields. [2]

3.1 What is a Physical Unclonable Function?

Maes [2] devises an interesting comparison: “a PUF is an object’s fingerprint”. The name –
physical unclonable function – already contains three points of reference:

1. physical: A fingerprint is a physical property of an individual, and it is a “component” that
exists in real world. [2]

2. unclonable: We are unable to create two humans with identical fingerprints, and the finger-
print is “selected” randomly at birth. [2]

3. function: Fingerprint functions as an identifier of a specific individual. Each individual
fingerprint contains markers that we can quantify and compare to ascertain if two samples
match. [2]

5



6 Physical Unclonable Function

While this comparison is quite useful to illustrate the essence of physical unclonable functions,
it can not be used as a proper definition.

Over the years, there have been numerous attempts1 at defining PUF at varying levels of
complexity. Neither one of them seems to be successful enough to see widespread adoption. We
will to follow the unwritten tradition and combine multiple definitions to create our own.

▶ Definition 3.1 (Physical unclonable function). Physical unclonable function (PUF) is a
hardware component that maps a challenge to a response using device-intrinsic process variations2

as an entropy source. [3, 4]

Let us revisit the three defining words now that we have a definition of physical unclonable
functions:

1. physical: PUF is a physical component with some physical properties. [2]

2. unclonable: While we are still unsure what “clone” precisely means. However, the fact that
PUF should map answers using device specific characteristics suggests that it should be
impossible to copy those characteristics to another device. [2]

3. function: A PUF is not a function in a mathematical sense. Since all PUF constructions rely
on physical variance to generate responses. Moreover, due to fluctuations, the response might
slightly change from time to time. However, in simplified terms, we can still think about it
as such. [2]

3.2 Challenge-Response Pair

Physical unclonable function has two inputs. The first one is a challenge selected by the user (or
a program, protocol, etc.). The second input is its device-intrinsic variation.

The variation is inherited from the manufacturing process and is consistent across the devices
life. Small inaccuracies that originated in production, outside the manufacturer’s control, lead
to different characteristics across units. A typical example of such variation is resistance, leakage
current or switching delay. [3]

PUF ResponseChallenge

Device-intrinsic
variation

Figure 3.1 Challenge-Response pair in PUF, adapted from [5, p. 5]

As illustrated in figure 3.1, a physical unclonable function creates a response based on a
challenge and the device’s manufacturing variations. Since these variations are device specific
and static they are usually omitted as an input. The physical unclonable function, therefore,
create Challenge-Response pairs.

Since the device-intrinsic variation is device specific, no two devices should create identical
challenge-response pairs with a bigger probability than random chance.

1almost every publication we encountered attempts to define PUF itself
2manufacturing variations that are integral to a device



Strong and Weak PUF 7

3.3 Strong and Weak PUF
Based on the amount of possible challenge-response pairs, it is possible to differentiate physical
unclonable functions into two types.

▶ Definition 3.2 (Strong PUF). A physical unclonable function is classified as strong if the
size of challenge-response pairs is large. It must be impossible to evaluate all possible challenges
in a reasonable time. [6]

▶ Definition 3.3 (Weak PUF). A physical unclonable function is classified as weak if the size
of challenge-response pairs is small (or in some cases even 1). [6]

3.4 Properties
While the general behavior of physical unclonable functions is simple, we need to specify some
more specific properties that “good” PUF architecture should achieve.

As noted previously, the term physical unclonable function is rather broad, and because of
that, it is extremely difficult to define properties that would fit all applications. On one end,
we might make the properties too strict to the point of excluding some constructions that still
deserve to be considered physical unclonable functions. And on the other end, if we are not
specific enough, we end up permitting constructions that might hinder security. [2]

We, therefore, included properties that are interesting (or beneficial) in the context of key
generation. A mixture of formal and more relaxed definitions will be used. The aim is to convey
why these properties are required, rather than creating a set of strict definitions that all physical
unclonable functions must adhere to.

When possible, we tried to include metrics to quantify the PUF compliance with a given prop-
erty. But the requirements, whether or not does PUF satisfy the property, were kept intentionally
ambiguous to allow for different security or implementation requirements.

Multiple metrics might be used when comparing two responses and attempting to quantify
their difference. Probably the best known metric might be Hamming distance proposed by
Hamming in [7]. Let us modify the definition slightly to account for the different contexts.

▶ Definition 3.4 (Hamming distance). Suppose that a and b are two responses consisting of a
sequence of bits (of the same length). Then the Hamming distance between a and b is:

HD(a, b) = number of bits where a and b differ

3.4.1 Constructibility
While constructibility might be a natural expectation, some aspects are not only interesting but
also important.

▶ Definition 3.5 (Constructibility). Physical unclonable function is constructible if, for a given
PUF architecture, it is easy to construct a random unit. [2]

The adjective random is important. We want it to be easy to create multiple units for
manufacturing needs. However, at this time, we pose no requirements on the creation of specific
unit – a unit where some challenge-response behavior is required. [2]

3.4.2 Evaluability
Also evaluability is quite simple yet important. If it would not be possible to retrieve a response
corresponding to a valid challenge, the whole physical unclonable function would be pointless.



8 Physical Unclonable Function

▶ Definition 3.6 (Evaluability). Physical unclonable function is evaluable if it is easy to retrieve
a response for any valid challenge. [2]

The easy requirement is highly use case dependent.

3.4.3 Uniqueness
“Uniqueness represents the ability of a PUF to uniquely distinguish a particular chip among a
set of chips of the same type.” [8]

PUF 1

PUF 2

Challenge

Response 1

Response 2

≠

Figure 3.2 Uniqueness in PUF, adapted from [5, p. 8]

As you can see illustrated in figure 3.2, two different devices that are given an identical
challenge should not prove identical responses. Further down we actually make the definition
even stricter. The responses should differ as much as possible.

When using a physical unclonable function to generate a private key on multiple identical
devices it is critical that the generated key is unique for each device. If this property is not
satisfied, it could mean that multiple devices share the same private key. And we would no
longer be able to guarantee the identity of the device.

To measure the variance between multiple responses (to the same challenge) from different
PUFs, we can use Inter Hamming distance. [8]

▶ Definition 3.7 (Inter Hamming distance). Suppose that i and j (where i ̸= j) are physical
unclonable functions. And Ri and Rj, with bit length of n, are their respective responses to
an identical challenge. With HD(Ri, Rj) representing Hamming distance, from definition 3.4,
between the two responses. Then the average Inter Hamming distance for k PUFs is [8]:

HDinter = 2
k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(Ri, Rj)
n

× 100%

The Inter Hamming distance of 0% would mean that all responses are identical (Ri == Rj),
while distance of 100% implies that the first response is the exact opposite the of second response
(i.e. bit-wise negation).

▶ Definition 3.8 (Uniqueness). Physical unclonable function is unique if Inter Hamming dis-
tance is close to 50%. [3]

3.4.4 Unclonability
Physical unclonable function already contains the required property in the name. But what does
it mean?



Properties 9

PUF

PUF'

Challenge

Response

Response'

�

≈

�

Figure 3.3 Unclonablility of PUF, style inspired by [5]

As you can see illustrated in figure 3.3, it should be ideally impossible to create a copy of
physical unclonable function that creates the same challenge-response pairs.

Maes et al. [2, 9] suggest that two distinct types of unclonablility can be formulated.

▶ Definition 3.9 (Physical unclonablility). PUF architecture is physically unclonable if it is
extremely difficult to create two units that – for every challenge – have minimal HDinter. [9]

This property is sometimes called manufacturer resistance because it protects against ma-
licious manufacturers. The manufacturer would be unable to create two identical PUFs, and
therefore the manufacturer does not need to guarantee the uniqueness of our unit. [2]

As we previously mentioned, when discussing constructibility in subsection 3.4.1, it should
be easy to construct a random unit; however extremely difficult to construct a unit with specific
characteristics. [2]

▶ Definition 3.10 (Mathematical unclonablility). PUF architecture is mathematically unclon-
able if it is extremely difficult to create a mathematical model of another PUF (with unlimited
access) that – for every challenge – has minimal HDinter. [2]

This is especially problematic with weak physical unclonable functions from definition 3.3. If
we have unlimited physical access, it is trivial to save every challenge-response pair to memory.
This would enable us to have a perfect mathematical model. [2]

3.4.5 Reproducibility
If we wish to use the physical unclonable function more than once, for example, when we use it
to generate a private key, it would be beneficial to use PUF every time we need the private key.
This way, there is no need to store the sensitive key in memory.

PUFChallenge

Response 1

Response 2

≈

Figure 3.4 Reproducibility in PUF, adapted from [5, p. 7]

As you can see illustrated in figure 3.4, a device should always generate identical responses
for the same challenge always. Because the response should be dependent on a challenge and
device-intrinsic variations that should be constant across the device’s life.



10 Physical Unclonable Function

As a metric to asses the reproducibility (or reliability) of a physical unclonable function, we
can use Intra Hamming Distance. It uses Hamming distance, defined in definition 3.4, between
multiple responses to the same challenge of a single PUF, to quantify their similarity. [8]

Due to the physical properties of PUF, the response is likely at least partially dependent
on environmental factors – temperature, supply power fluctuations, etc. We therefore establish
a reference response Rref at a normal operating conditions. Which we can later compare to
samples taken across operating conditions. [8]

▶ Definition 3.11 (Intra Hamming distance). Suppose that we have a physical unclonable
function with a response bit length of n. Let us have a single challenge with reference response
Rref taken at normal operating conditions, and responses R1 . . . Rm taken at different operating
conditions. Then the average Intra Hamming distance is [8]:

HDintra = 1
m

m∑
i=1

HD(Rref, Ri)
n

× 100%

Intra Hamming distance represents how big portion of a PUF response is unreliable; this
portion does not provide stable bits across the measured range [8]. We can express the repro-
ducibility of physical unclonable function as:

▶ Definition 3.12 (Reproducibility). Physical unclonable function should be 100% reproducible.
Using the Intra Hamming distance metric, we can represent reproducibility of the PUF as [8]:

Reproducibility = 100% − HDintra

The Intra Hamming Distance of 0% would mean that all responses are identical (the PUF is
100% reproducible), with rising Intra HD the collected responses are drifting away from reference
response (the PUF is 100% − HDintra reliable)

To achieve ideal reproducibility, the average Intra Hamming distance should be at 0%. This
value signals the responses are stable across tested environments. [3]

3.4.6 Unpredictability
We have chosen to name the property, illustrated in figure 3.5, unpredictability, because we wish
to convey that it should be impossible to predict the response (or even a part of the response)
regardless of how much information is known about the physical unclonable function (short of
knowing the challenge-response pair itself).

PUF ????????Challenge

Figure 3.5 Unpredictability in PUF, adapted from [5, p. 9]

Different publications refer to this property differently. It is often split into multiple simpler
properties. For example:

Hori et al. [10] used two properties randomness and diffuseness;

Maiti et al. [11] already included uniform distribution and bit-aliasing requirements as part
of uniqueness;

Maes [2] made use of unpredictability of next response with uniqueness of individual PUFs.



Constructions 11

The following definition is constructed by combining multiple separate definitions [10, 11, 2,
5] into a single simpler definition.

▶ Definition 3.13 (Unpredictability). Suppose that some number of previously seen challenge-
response pairs is known. Physical unclonable function is unpredictable if the probability of cor-
rectly predicting a response to a new challenge is close to a random choice ( 1

|all responses| ).

It is possible to separate this property into two parts. Firstly it should not be possible to
predict (or partially predict) the next response after studying previously used challenge-response
pairs. This is especially important if a large number of challenge-response pairs is used (e.g.
repeated authorization with pre-shared pairs). And secondly, it should be impossible to predict
a response based on a challenge.

3.4.7 Other Properties
There is no shortage of possible properties. We decided to include a few that might be interesting
for some applications.

One-Wayness by Maes [2] requires that it should be very hard (ideally impossible) to extract
the challenge from a response;

Tamper evidence by Maes [2] requires that any attempted modification or security circumven-
tion of the PUF is either blocked, confidential data is cleared, or device-intrinsic characteristics
are irreparably changed;

Bit-Aliasing by Maiti et al. [8] states that every bit of response should be a random choice
between 1 and 0.

3.5 Constructions
Now that we know what is a physical unclonable function we need to discuss how can PUF be
constructed.

Since 1993 there have been at least 40 suggested concepts for physical unclonable function
construction. While not all of them used the term physical unclonable function, it is possible to
find similarities in their functional principles and/or intended usage to label them as such. [12]

Due to the availability of a wide variety of PUF construction, it is highly probable that
a suitable construction for your specific need already exists. It would be impossible for us to
include every single one in this work.

We, therefore, selected just a few interesting proposals. If you wish to explore more construc-
tion “A PUF taxonomy” by McGrath et al. [12] is an excellent starting point.

3.5.1 Optical PUF
Pappu et al. [13] proposed in 2002 a so called Physical One-Way Function, this led to what we
call today a physical unclonable function.

The proposed constructions use a piece of optical epoxy containing randomly dispersed glass
spheres of varying size (500–800 µm). This token is the source of device-intrinsic variations.

As you can see illustrated in figure 3.6, a laser beam (HeNe, 632.8 nm) is emitted through the
token at an angle. This angle is the challenge of this construction. Due to a difference between
the refractive indexes of the glass and the used optical epoxy (and other imperfections), the laser
disperses and creates a so called speckle. This speckle is then recorded using a camera. A final
2400-bit response is created from the picture using a Gabor transform. [13]



12 Physical Unclonable Function

Challenge Response

Token

Speckle

Gabor transform

Figure 3.6 Functional principle of optical physical unclonable function, adapted from [9, p. 8]

Challenge-response space relies on the accuracy that can be achieved when positioning the
laser. The mount allows movement in six degrees of freedom. [13]

The properties of optical PUFs are exceptional. This construction meets all properties we
previously outlined. [2]

Unfortunately, it is rather impractical for the decoder to be used in small and/or low cost
devices [6]. It would be possible to use this PUF as an access control system, where cheap
tokens could be issued to individuals. The downsides in the form of required scratch protection,
periodical cleaning of optical systems, etc., make the solution less appealing.

3.5.2 SRAM PUF

Static random-access memory (SRAM) is a “digital memory technology based on bistable circuits.”
[2]. This storage technology is widely used in a wide range of products, including micro controllers
and field-programmable gate arrays [3].

A single cell – a component that can be used to save 1 bit of information – is usually con-
structed using four transistors that create a flip-flop circuit, and two additional transistors are
used to read and set the information. The flip-flop circuit consists of two parts, where one is
always the opposite of the second part. Based on which side is high3 we can decode the stored
information. [3]

When power is applied to a cell, both parts of the cell attempt to enter their high state.
But due to the flip-flop circuitry, only half of the circuit can be high. Based on manufacturing
variations of the transistors, the cell will assume a “random” state. [3]

The strength of transistors that decides the state of a cell is susceptible to voltage noise. When
the variance between transistors is small, the outcome of cell power up might become random.
We can repeatably measure the outcome and calculate the stability of a cell as illustrated in
figure 3.7. [2]

3a powered on state



Usage 13

Some of the cells in the array are neutral-skewed and
unreliable across power-up trials, adding randomness to a
fingerprint. Other cells are 0-skewed or 1-skewed but not
correlated to the same bits on different chips, acting as
reliable identifying features of a fingerprint. Thus, an
SRAM physical fingerprint is a fuzzy identifier of a chip
Fig. 3, much as a literal fingerprint is a fuzzy identifier of a
human. Borrowing terminology from human fingerprint-
ing, the terms latent and known fingerprints are defined as
follows:

A latent fingerprint is an SRAM fingerprint produced at a
single power-up. With lðiÞ denoting the state of a single
SRAM cell at power-up i, anN-bit latent fingerprint is simply
the collective state of a specified set of N cells at power-up i:

LC ¼ l0ðiÞ; l1ðiÞ; . . . ; lNðiÞf g: ð1Þ

As a latent fingerprint is sensitive to noise, and some bits will
not power-up to their most probable state, the same set of
SRAM cells can produce many different latent fingerprints.

A known fingerprint is an intentional estimation of the
state that a given set of SRAM cells is most likely to generate
at power-up and is used as the known identity of a chip.
The most likely power-up state of each cell is determined by
averaging across an odd number of trials

p ¼ avg
8i

lðiÞð Þ ð2Þ

and rounding to a binary value k

k ¼ 0 if p < 0:5
1 if p > 0:5

� �
: ð3Þ

Averaging over multiple power-ups reduces the impact
of noise, making a known fingerprint more representative
of the SRAM cells that generate it than a latent fingerprint
from the same cells:

KC ¼ fk0; k1; . . . ; kNg: ð4Þ

The differences between latent and known fingerprints
imply their usage in the FERNS method of identification

and random number generation. Identification is enabled
by the similarity between known and latent fingerprints
when both are generated by the same chip, compared to the
lack of similarity between those generated by different
chips. TRNG is possible because the minor differences
between latent fingerprints generated by the same chip
cause large latent fingerprints to be effectively unique.

4 FERNS FOR IDENTIFICATION

FERNS determines identity from SRAM physical finger-
prints using a simple Hamming distance matching. A single
known fingerprint is first created for each chip that is to be
identified and stored in a database. When a latent
fingerprint of unknown origin is obtained, its Hamming
distance to each known fingerprint is determined:

HDðLC;KCjÞ ¼ LC �KCj: ð5Þ

The correct identity of the chip that produced the latent
fingerprint is determined from the known fingerprint with
the closest Hamming distance to it:

IDðLCÞ ¼ KCj 2 f8KCg : HDðLC;KCjÞ is minimized: ð6Þ

If this known fingerprint does in fact come from the same chip
as the latent fingerprint, then the identification is deemed
successful.

Two distributions are used to characterize and demon-
strate the quality of the fingerprints:

1. The distribution of Hamming distances between
latent fingerprint and known fingerprint when both
are generated by the same chip. A close distance
indicates a reliable fingerprint.

2. The distribution of Hamming distances between
latent fingerprint and all known fingerprints not
generated by the same chip. A large distance indicates
a low probability of false identification.

4.1 Logical Devices

To evaluate the identifying properties of SRAM, physical
fingerprints with potentially correlated process variation are
compared through the use of logical devices. The logical
devices occupy the same addresses across all chips. Logical
devices that occupy the same positions on different chips
have correlated within-field positions, while logical devices
from nearby locations on the same chip have correlated wafer
positions (Fig. 4). If fingerprint identities are influenced by
lithographic mask variation, those generated from correlated

HOLCOMB ET AL.: POWER-UP SRAM STATE AS AN IDENTIFYING FINGERPRINT AND SOURCE OF TRUE RANDOM NUMBERS 1201

Fig. 3. A 64-bit fingerprint, shown within a larger fingerprint for context.

The lightness of the shading of each cell indicates p, the probability of

powering-up to 1, as measured over 100 trials. A 64-bit fingerprint can

identify an SRAM chip among a population of 5,120.

Fig. 4. Physical devices are partitioned into logical devices, shown

shaded according to their within-field position. The use of logical devices

allows for comparison of SRAM fingerprint IDs from both correlated

within-field positions and correlated wafer positions.

Authorized licensed use limited to: CZECH TECHNICAL UNIVERSITY. Downloaded on April 23,2022 at 22:44:53 UTC from IEEE Xplore.  Restrictions apply. 

Figure 3.7 Stability of SRAM cells after power up, reproduced from [14, Figure 3]

Since the SRAM PUF is using a memory component that is already available on low-power
and low-cost devices such as ESP32, it is a suitable candidate. But does it comply with the
properties that we previously described?
physical unclonable function Yes, a challenge is a selected part of memory; response is the

state after power-up. [2]

constructibility Yes, we are able to construct a SRAM. [2]

evaluability Yes, we need to temporarily remove power from the cells, and after powering them
up we only need to read the memory. [2]

uniqueness Yes, based on measurements by Maes [2], the mean Inter Hamming distance was
in the range of 49.59% to 49.72%. Measurements by Holcomb [14] also confirm that it is
possible to use responses to identify a unit.

unclonablility No, since the challenge-response space is fairly small (limited by the size of
memory), it is trivial to create a lookup table by iterating over every possible challenge. This
is in conflict with the definition of mathematical unclonablility. [2]
Unfortunately, also the aspect of physical unclonablility is in danger. It would be possible for
a manufactures to include circuitry to manually initialize cells at power up.
Helfmeier et al. [15] demonstrated the creation of physical copy using Focused Ion Beam
circuit edit. This process modifies the transistors of a new SRAM to match extracted char-
acteristics.

reproducibility Yes, with the mean Intra Hamming distance of 5.46% as measured by Maes
[2], it is possible to reproduce with a relatively high success rate. With the use of error
correction, it should be possible to achieve almost flawless reproducibility.

unpredictability Yes, measurements by Holcomb [14] indicate uniform distribution of 1 and 0.
Furthermore, there is no corelation between multiple challenge-response pairs.
A SRAM PUF is an example of weak physical unclonable functions defined in definition 3.3.

As such, it is useful as a device identifier or a physically obfuscated key. The advantage of already
being present (as a form of memory) on many devices might outweigh the possibility of being
cloned.

3.6 Usage
There are many potential use cases for a physical unclonable function. While this work focuses
on key generation (on which we focus in chapter 4), we have also prepared a selection of other
possible use cases.



14 Physical Unclonable Function

3.6.1 Device Identification
Mainly on the grounds of uniqueness from definition 3.8 and reproducibility from definition 3.12,
physical unclonable functions can act as an identifier. Suppose such PUF is included in a device.
In that case, the simple fact that response to a predefined challenge is unique among multiple
devices means that the response can act as a devices identifier. [2]

The usage of physical unclonable function, to identify a device, have a few significant ad-
vantages. The need for an algorithm that generates unique identifiers is eliminated. When the
device is deployed, it is also no longer required to make physical (e.g. a write to a permanent
storage) changes to the device itself, simplifying and speeding up the process. [2]

3.6.2 Device Authorization
When we add stricter requirements to identification introduced in subsection 3.6.1 we can, in
addition to identification, also authorize4 the device. The added properties usually require the
use of strong PUF definition 3.2 and unclonablility definition 3.9 to guarantee that it is impossible
to impersonate another device. [2]

In an authorization protocol proposed by Pappu et al. [13], the enrollment5 process consists
of generating multiple challenge-response pairs that are send over a secure channel and stored
inside the system.

When an attempt to authorize the device is made, the system selects one of the previously
stored challenges and requests a response from the device. The received response is then com-
pared to the one previously generated. The device is authorized only if the responses match.
[13]

After a challenge is used it is deleted from the system. This allows us to authorize the devices
over untrusted connection since the challenge-response pairs are not reused. [13]

3.6.3 Counterfeit Protection
A physical unclonable function can be used to combat counterfeiting. When a manufacturer
manufactures a new unit, its challenge-response pairs can be stored inside a database. When
devices authenticity needs to be tested, response to one of the previously stored challenges is
evaluated by the user and sent to validation to the manufacturer. [3]

This is principally similar to identification introduced in subsection 3.6.1 and authorization
from subsection 3.6.2. The difference is that the manufacturer can validate a devices authenticity
based on information from customers.

4validate that it is whom it claims to be
5the initialization of a device in a system



Chapter 4

Key Generation from PUF

In this chapter, we simply describe what a cryptographic key is. Then we take a look at what
we need to consider to generate a cryptographic key from physical unclonable function.

Cryptography creates constructs (protocols and algorithms) to protect information [2]. Informa-
tion that we wish to protect is called plain text. A construct takes this information and encrypts
it using a key creating a cipher text. [16]

Cryptographic constructs aim to provide the ability to keep the plain text secret, even if the
inner workings of the construct and cipher text is disclosed to the public (i.e. attacker). The
problem is reduced from trying to protect every information to protecting the key. [2]

4.1 Cryptographic Keys
A cryptographic key is a parameter to a cryptographic construct that is used to transform
information to a cipher text that can not be transformed back without knowledge about the
used key [2]. Based on the procedure that is used to decrypt – transform cipher text back to
plain text – we can distinguish two different types of keys [16].

4.1.1 Symmetric Key
A symmetric key (sometimes called a shared key) is a key used in symmetric cryptography. As
you can see illustrated in figure 4.1, in this type of cryptography, the key that is used to encrypt
the plain text and decrypt the cipher text is identical. [16]

An interesting
message

#>?a.3!@a#^
@1e1q#aa@!Encrypt

An interesting
messageDecrypt

Plain text Cipher text

Symmetric key

Plain text

Figure 4.1 Encryption using an symmetric key cryptography, adapted from [16, p. 84]

Symmetric key cryptography allows secure information transfer between users/devices that

15



16 Key Generation from PUF

know the used key. The transformation between plain and cipher text can be done only by
someone who knows the symmetric key. [2]

Symmetric cryptography is usually faster and less resource intensive. Multiple constructions
using a symmetric key were proposed and used over the years. Probably the best known example
is Advanced Encryption Standard (AES). [16]

4.1.2 Asymmetric Key
In asymmetric cryptography, we use two different keys. The first key is called a private key and
is meant to be kept private by a single user/device. The second key is called a public key and is
meant to be shared to other users/devices. It is often called a public-private key pair. [16]

There are two modes of operation that can be used with asymmetric cryptography:
encryption mode In the mode illustrated in figure 4.2 anyone can encrypt plain text message

using a public key. This cipher text can be decrypted only with the private key. [2]

An interesting
message

#>?a.3!@a#^
@1e1q#aa@!Encrypt

An interesting
messageDecrypt

Plain text Cipher text

Public key Private key

Plain text
��

Figure 4.2 Encryption using an asymmetric key cryptography, adapted from [16, p. 84]

signature mode In the mode illustrated in figure 4.3 a user/device signs a message using a
private key. And anyone, who knows the public key, can verify that the message was signed
with the key that belongs to the key pair. [2]

An interesting
message

An interesting
message

��������	Sign V rif

Message Signed message

Public keyPrivate key

� �
An interesting

message

Message
✓

Figure 4.3 Signature using an asymmetric key cryptography, inspired by [16, p. 84]

The use of asymmetric cryptography is more suited for instances where we want to be able
to identify an individual user/device.

Notable examples of asymmetric cryptography include Rivest–Shamir–Adleman (RSA) and
Elliptical Curve Cryptography (ECC). [16]

4.2 Error Checking and Correction
When we defined reproducibility of physical unclonable functions in definition 3.12 we recom-
mended that the reproducibility should be at 100%1. Unfortunately, measurements by Maes [2]

1100% reproducibility means that every generated response for a repeated challenge is identical



Error Checking and Correction 17

demonstrated that even the best performer in reproducibility, SRAM physical unclonable func-
tions only reached 90% reproducibility. This means that if we need an identical response every
time, an additional error checking and correction procedure must be implemented.

The recommended reproducibility value of 100% was chosen because cryptographic protocol-
s/algorithms require the key to be identical every time. Even if a single bit of key was changed
between encryption and decryption, the decrypted text should have no resemblance to the orig-
inal plain text. [3]

As a side note, if we wish to use the key only once, this requirement would not be important. If
the intended use is an authorization using pre-shared challenge-response pairs an error correction
may not be even necessary. Similarity between expected and actual response could be calculated,
and the device could be authorized based on a threshold. [17]

It would also be possible to generate a key using physical unclonable functions once and then
store it inside non-volatile2 memory. However, this approach enlarges the attack surface on the
device. If the key is not in memory (e.g. when the device is off or not connected) any memory
disclosure attack would be unable to reveal it. [3]

The aim of error checking and correction is to stabilize and repair the subsequent response
that match the original. It allows us to detect and repair erroneous data. A helper data3 is usually
created to aid in response restoration. This data must be considered public and therefore contain
no information that can be used to predict the response. [17]

The following overview of approaches to error checking and correction is not exhaustive.

4.2.1 Secure Sketch
Information in this subsection is based on a publication by Dodis et al. [18], in which they propose
a secure sketch which converts noisy inputs to reproducible outputs. This transformation is
additionally done in a way that does not significantly decrease the entropy of the input.

Secure sketch consists of two randomized procedures:

sketch This procedure generates a helper data h for input w ∈ W . The helper data is a sequence
of bits that can be potentially publicly disclosed.

recover This procedure generates an output for input w′ using the previously generated helper
data. If w and w′ are similar enough, the output of the recover procedure is identical to the
original w.

Disclosure of the helper data h, for randomly selected w with min-entropy4 of m, should not
increase the prediction probability of w above 2−m̃. Where m̃ is a min-entropy of response when
helped data is known.

There are multiple possible secure sketch implementations. Two main implementations are
using error correcting block code C with 2k distinct n-bit codewords. Each codeword is at least
2t+1 bits apart from every other codeword. This distance can be measured by Hamming distance
defined in definition 3.4. More specific information about the used error correcting codes can be
found in publications by Dodis et al. [18] and Hamming [7].

code-offset construction This construction calculates offsets from code words.

1. Sketching: A random codeword c is selected. The helper data (h) is constructed as the
change that is required to reach the input (w) from the codeword (c). h = w − c

2. Recovering: When attempting to recover word w′, the change stored in the helped data
(s) is applied in reverse to the word: c′ = w′ − h. This new potential codeword c′ can

2memory that does not need power to retain data
3sometimes called parity and/or redundancy
4later defined in definition 4.1



18 Key Generation from PUF

then be decoded using error correcting code C. If HD(w, w′) ≤ t, the original codeword is
restored (c′ = c). At this point if the change is applied to the codeword (c) the original
input is recovered. w = c + h

syndrome construction This construction is only possible if the used code C is linear.

1. Sketching: The helper data (h) is constructed from input (w), using parity check matrix
H from the selected code C, as: h = H · w

2. Recovering: When attempting to recover input (w′), a n-bit error vector e is defined using:
H · e = H · w′ − s. The corrected word (w) then can be calculated as: w = w′ − e.

In the case of binary strings additions and subtractions can be achieved using bit-wise exclu-
sive or (XOR) operations. Both constructions are equivalent and provide error correction up to
t bits. A w′ input can be corrected back to the original w if: HD(w, w′) ≤ t.

4.2.2 Repeated Sampling
Information in this subsection is based on a publication by Price et al. [19], in which they propose
a new approach to error correction for physical unclonable functions. The proposed algorithm
allows the use of all response bits regardless of their noisiness.

The process requires a test that can verify the accuracy of the generated key. This means
that in the case of asymmetric cryptography, only the public key is required. If the generated
key is used inside symmetric cryptographic protocol, additional helper data, such as plain and
cipher text pair encrypted using the key, is required. This approach can lead to reduced storage
requirements on most applications since a public key is already stored for other reasons. The
maximum number of restored bits is not defined at enrollment but rather at reconstruction.

enrollment Multiple samplings of PUF response are performed to establish the most probable
response. Since this procedure is not done often, it is possible to perform a large number of
samplings to increase the accuracy of this correct response.
This generated response is treated as correct. A private key (or in the case of symmetric
cryptography plain and cipher text) is generated and stored for future correctness tests.

reproduction During the reproduction stage, multiple samplings of the physical unclonable
function are performed to establish the stability of each response bit. The number of samples
can usually be lower to allow faster reproduction, and this repeated sampling is the main
error correction mechanism employed.
When the most probable response is calculated, the generated key is tested. If the public key
(or cipher text) match the stored data, it is correct.
Two additional error correction mechanisms can be performed to repair a key that was unable
to be corrected by repeated sampling:

1. broadening search for 1 . . . n bit errors
2. exhaustive search ordered by bit stability

The number of required repetitions in the enrollment stage should be greater than the number
of repetitions in the reproduction stage. The measurements conducted by Price et al. [19] on a
latch based physical unclonable function suggests that 353 samplings at reproduction make any
bit error improbable.

The required sample count is however dependent on PUF construction as well as external
noise, temperature and age. Since the amount of samplings can be adjusted without re-enrollment
– provided that the device was originally enrollment with a sufficiently large number of samples



Generating Key from Response 19

– this value can be modified at runtime in an attempt to find the balance between sampling and
error correction.

The broadening search is designed to correct only a small number of bits. The probability of a
change of a small subset of response bits is much higher than the probability of large instability. If
this process is unable to recover the key, an exhaustive search is performed based on bit stability.
This, in theory, guarantees the recovery of the key. In practice, this is only effective if erroneous
bits indicated higher instability than the rest of the response.

At some point, this search becomes more of a brute force attack. And since most used
keys are long enough to resist these attacks, in a reasonable time frame, a time limit should be
implemented.

4.3 Generating Key from Response
We can construct physical unclonable functions based on information in chapter 3. Small errors
that are common to every PUF construction can also be repaired using error checking and correc-
tion introduced in section 4.2. At this state, we are able to create unique responses repeatably.
In this section, we take a look at different approaches to using the generating response as a key
in a cryptographic protocol.

Most physical unclonable functions, unfortunately, exhibit some amount of predictability.
Sometimes it might be in form of bit preference (e.g. bits of value 1 are more likely to appear),
other times, it can manifest itself in the form of increased probability for groups of identical bits.
[8]

Different cryptographic algorithms/protocols impose different requirements and restrictions
on the keys. However one common requirement is usually high entropy. [2]

A min-entropy can be used to quantify this requirement. Entropy is a measurement of
“uncertainly” of information. [18]

▶ Definition 4.1 (Min-entropy). The min-entropy is based on the entropy of the most probable
response [18]:

H∞(A) = −log2(MAXa(P (A = a)))

Let us suppose that PUF generates 4-bit responses and that the responses are uniformly
distributed (all responses have the same probability of generation). In that case the min-entropy
is H∞(A) = −log2(0.0625) = 4. This means that the response bit sequence contains as much
information as possible.

If the generated responses are not uniformly distributed, the min-entropy metric changes. If,
for example, the response 0000 is generated with probability 25%, and the rest is then uniformly
distributed (each with a probability of 5%). The min-entropy for this physical unclonable function
would be H∞(A) = −log2(0.25) = 2.

Depending on the algorithm/protocol, and characteristics of the physical unclonable function,
multiple approaches are possible when transforming PUF response to a cryptographic key. Some
of which are discussed below.

4.3.1 Response as a Key
The simplest way to utilize a response is to simply use it as a key. There are some challenges
that should be considered.

length Unfortunately, algorithms usually require a predefined key length. For example, Ad-
vanced Encryption Standard offers 3 different key lengths: 128, 192 and 256 bits [16].
If the selected response is shorter than the required key length, we must extend it to match.
This can be done in multiple ways. If we have the ability to use multiple challenges, another



20 Key Generation from PUF

response could be chained to double the length. In the case of weak PUF, with a single
response, this would not be possible.
Another solution to a short response is to simply repeat the response or create a simple
transformation (e.g. switch every other bit, use response in reverse). However, both of these
options are strongly not recommended. Part of the key is now more predictable because it
depends on another part of the key.
Let presume that the attacker has access to the implementation (either by it being open
source, being reverse engineered or by simple information leak). He can take a look at
the key usage passage of the application and see that the 128-bit key is comprised of two
identical sequences of 64 bits. His brute force attack is now reduced from 2128 ≈ 3.40∗1038 ≈
340 undecillion5 to mere 264 ≈ 1.84 ∗ 1019 ≈ 18 quintillion6. While those numbers might
seem relatively large, the decrease in required time complexity is by 264.
In a report [20] published by the European Union Agency for Network and Information
Security published in 20147 a minimal 80-bit key length for legacy symmetric ciphers (such
as AES) was recommended. With 128-bit keys being recommended for near term future use.
Our, at most, 64-bit key does not meet those safety criteria.
The situation is slightly better if the response is longer than the required key length. The
unused part could simply be left unused. This would be slightly ineffective as part of the
response that had to be generated and corrected is now not being used.

properties Another factor to consider is that not all technically possible key values (e.g. all
values in a range 0 . . . 2128 for 128-bit key) are possible or safe to use. Some cryptographic
constructions have a small subset of keys that lower the provided security. Those keys should
therefore not be used. Some constructions also require the keys to fulfil some additional
requirements. For example, the Rivest–Shamir–Adleman (RSA) uses two prime numbers
(with some additional properties for added security) to generate the private-public key pair.
[20]

entropy Key entropy must be taken into consideration. Even if the response has the same (or
larger) length as the required key, it does not mean that the security provided is identical to
a randomly generated key. An ideal min-entropy would be identical to the key length. [18]

4.3.2 Strong Extractor
A strong extractor (sometimes called randomness extractor) can be combined with a secure
sketch introduced in subsection 4.2.1 to form a single construct called fuzzy extractor. [18]

A strong extractor uses a seed sequence, of r random bits, to transform nonuniform n-bit
sequence into l-bit sequence of mostly (with ε error) uniform distribution. The output length l
is limited by [18]:

l ≤ m − 2 log
(

1
ε

)
+ O(1)

If a high quality (i.e. uniform distributed) seed of sufficient length is available, a universal
hash functions creates a strong extractor with maximal output length l = m − 2 log( 1

ε ) + 2. The
hash function is universal if the probability of two different inputs generating the same hash is
equivalent to a random choice. [18]

Other constructions of strong extractors are possible. However, only possible improvement is
to the required length of the seed sequence.

52128 = 340 282 366 920 938 463 463 374 607 431 768 211 456
6264 = 18 446 744 073 709 551 616
77.5 years ago at the time of writing



Key Generation Recommendations 21

4.3.3 Key Derivation Function
A key derivation function (KDF) uses a source keying material with less than ideal properties
(e.g. attacker has some knowledge about it, it is not distributed uniformly) and creates keys that
are suited for cryptographic purposes. The process can be split into two phases. The first phase
extracts uniformly distributed keys that can be used in the second phase to expand into multiple
independent cryptographic keys. [21]

The extraction phase is based on strong extractors introduced in subsection 4.3.2. And the
second phase uses a pseudo random function to expand the input into multiple usable keys. In
practice, many KDF do not follow the two phase design, and combine the process into a single
step. [21]

An HMAC-based key derivation function (HKDF) was introduced in a work by Heidelberg
[21] and later published as RFC 5869. As the name suggests, the HKDF is a key derivation
function that uses hash-based message authentication code (HMAC) in the second phase. [21]

As it might be already clear, every proposed solution improves the previous one. A raw key
suffers from uniformity and length problems. A strong extractor can combat poor uniformity.
And key derivation function adds additional key derivation functionality.

This key derivation functionality means that multiple pseudo random keys can be generated
using a single response from physical unclonable function. This allows us to select another derived
key in the case of secret key disclosure or to use multiple different keys for different purposes.

4.4 Key Generation Recommendations
In this section we argue our approach to key generation we use in our proof of concept application.
We explain our reasoning behind our selection.

This should not be taken as a definitive solution as the field of physical unclonable function is
still evolving. New PUF constructions can be faster, cheaper, simpler and/or more secure. New
approaches to error checking and correction can increase the stability of responses over time.
And with new cryptographic algorithms/protocols come new requirements on keys.

Another factor to consider is security vulnerabilities that were discovered in either component,
from the PUF construction to the selected cryptographic protocol.

4.4.1 Best Construction
This is a complex problem that does not have a definitive solution. Measurements by Maes [2]
provide a reference to different constructions. And indicate that most of them are a suitable
choice with varying level of error checking and entropy extracting required.

It usually comes down to what is available for your application. We especially like the SRAM
construction, for its mostly ideal properties and high availability.

4.4.2 Best Error Checking and Correction
We would recommend to use the combination of repeated sampling and a secure sketch.

Since the repeated sampling is usually fast, it can provide a nice starting point (especially if
used in the enrollment phase). This helps to filter out a random errors.

However, it can not significantly combat a larger change in environmental factors. For those,
we would use a secure sketch. This not only helps with the environment but it can also combat
permanent changes to the characteristics caused by age. If a bit, in the devices life, switches
from (mostly) generating 1 to generating 0, repeated sampling is useless, but a secure sketch can
correct this error.



22 Key Generation from PUF

4.4.3 Best Process to Generate a Key from Response
We recommend that other cryptographic systems than RSA are used. The key generation for
RSA is rather complex. While it is possible, the added complexity of generating two prime
numbers from a response enlarges the surface where any mistake can completely neutralize any
cryptographic properties. Over the years, many different attacks were developed against weak
RSA keys. [16, 22]

On the other hand, a private key in elliptic curve cryptography (ECC) is a simple integer.
We only need to select a number that is inside a certain range. This provides an undoubtable
advantage. ECC also provides other advantages. In contrast with RSA, the encryption, decryp-
tion and sign operations are easier to calculate, and the keys – and subsequently certificates –
are smaller. [23]

If the used physical unclonable function demonstrates a sufficient unclonablility and the
response is at least the same length as is the key length, we can recommend to use the response
– without any additional processing – as a key inside an ECC cryptographic system.



Chapter 5

Transport Layer Security on
ESP32

In this chapter, we explore different options to support Transport Layer Security (TLS) on
ESP32. We weigh the positives and negatives of all options and then choose one that is the
best match for our use case.

5.1 Transport Layer Security
Transport Layer Security, commonly referred to as TLS, is a security protocol used to provide
security in network transmissions. It creates a secure connection between two parties across a
computer network. It can be used to encrypt any number of protocols (e.g. email, Voice over
Internet Protocol) to securely transport information across computer networks. TLS is best
known for its use with Hypertext Transport Protocol (HTTP). Together they form Hypertext
Transport Protocol Secure (HTTPS) which is used all over Internet. The HTTPS protocol is
used to encrypt communication between web browser and web server, for example between you
and your bank. [24]

Transport Layer Security is a evolution of a protocol known as Secure Sockets Layer (SSL).
While the SSL protocols are almost never used nowadays, the term SSL is still commonly used
to refer to TLS. [25]

5.1.1 Functions of TLS
A Transport Layer Security is utilized for 3 main reasons [24]:

1. encryption: All communication inside TLS is encrypted to hide it from adversaries.

2. authentication: A mechanism exists to authenticate – confirm that they are who they say
they are – both sides of connection.

3. integrity: Any modifications and/or damage to the transmitted data can be detected.

The encryption and integrity functions are simple to imagine, at least if you know how
common encryption algorithms work. However how do we authenticate someone across the
network?

If we wish to authenticate using TLS we can use something called a certificate [24]. A
certificate contains information (e.g. name, address, domain) and a public key of the subject.

23



24 Transport Layer Security on ESP32

Certificates are generally issued by certificate authority (CA). The CA signs the certificate using
asymmetric cryptography introduced in subsection 4.1.2. [24, 26]

The CA guarantees that the information stored in the certificate is valid for the subject that
has the private-public key pair, from which the public part is stored inside the certificate. If we
decide to trust the CA, we can authorize the subject in the certificate. [24, 26]

5.1.2 TLS Version 1.3
Multiple versions of both SSL and TLS exist. A newest version1 is TLS 1.3 from August of
2018, standardized as RFC 8446. TLS 1.3 is a large step forward from the previous versions.
Features that are not commonly used or contain known vulnerabilities are removed to improve
the security. Faster and more effective mechanism to establish a secure connection is used. All
with the aim to improve performance, simplify the protocol and improve security. [25]

In a recommendations published by Mozilla Organization [27] no versions before TLS 1.2 is
recommended to be used. If the service is expected to communicate with modern devices only
and/or an high level of security is desired, TLS version 1.3 should be used exclusively.

It must also be noted that another configuration, apart from version selection, should be
applied. Namely the used ciphers and authentication mechanisms should be limited to those
with good support, security and no known vulnerabilities. [27]

Significant improvement in terms of security in TLS 1.3 is the mandatory use of forward
secrecy (apart from few specific instances). This change means that, even in the case of server
private key disclosure to the adversary, no previous transmissions can actually be decrypted by
the adversary. To decrypt a transmissions a specific one time key needs to be discloses. Those
keys are however discarded after the communication ends. [28]

5.2 Self Implementation of TLS
First idea might to simply implement Transport Layer Security on our own. Let us suppose that
we would like to implement TLS 1.3. The rationale behind this choice would be quite simple.
It does not make much sense to develop complicated library for a protocol that is already being
replaced.

The starting point would be RFC 8446 [28], this document outlines all the required com-
ponents that together create Transport Layer Protocol version 1.3. It defines the handshake
protocol, possible extensions, what cryptographic components are used for authentication and
encryption. It also references many different standards that we would need to implement also.

Any mistake, in any component, could lead to a security incident. In which private data
might be disclosed, or a adversary might take over the control of any device that is using our
implementation. Even commonly used TLS libraries as OpenSSL commonly suffer from vul-
nerabilities. Over the last 20 years that OpenSSL existed, over 200 vulnerabilities were found
[29].

Developing your own TLS library might certainly be possible, however the dangers and com-
plexity it brings does not make it practical. A possible compromise might be to create your own
version of open source library (given that proper license was followed), to customize the library
for your purposes.

5.3 Available Libraries
If we wish to use Transport Layer Security on ESP32, but we do not want to go to all the trouble
of implementing our own TLS library, we can turn to one of the already existing solutions.

1at the time of writing



Available Libraries 25

Simple comparison between libraries can be found in Table 5.1.

5.3.1 ESP-TLS
ESP-TLS is a component provided as part of ESP-IDF development framework by Espressif
Systems (Shanghai) Co., Ltd [30].

It provides a very limited interface for Transport Layer Security. It uses Mbed SSL (default)
or wolfSSL as underlying layer. [30] This abstraction layer is available under Apache 2.0 license
[31].

While this might be useful for simple applications that require TLS, and therefore do not use
any special features, for any more in-depth applications it does not provide much benefits.

5.3.2 WolfSSL
WolfSSL [32] developed by wolfSSL Inc. is an open source TLS library targeted at low power
and embedded devices.

The advantages highlighted by the developers include, but are not limited to: high porta-
bility, small size, support for modern protocol and ciphers and Federal Information Processing
Standards certifications. [32]

WolfSSL provides a comprehensive documentation both as learning materials and function
documentation. Both are accessible online, with support for generating your own via Doxygen.
Both forum and direct support contact are also provided. [33]

5.3.3 Mbed TLS
Mbed TLS developed by TrustedFirmware is a small TLS library. Library was previously known
as PolarSSL and was maintained by Arm. [34]

Since the inclusion of Mbed TLS in the Trusted Firmware project in 20202 [35], a new major
(and multiple minor) version were published. [36]

“Mbed TLS provides a minimum viable implementation of the TLS 1.3 protocol” [37]. The
TLS 1.3 support is not complete, however the set of implemented features is growing fast. [37]

The state of documentation for this library is less than ideal. Documentation hosted by Arm
[38] is still accessible, however the documented version (2.16.1) is quite behind the newest 3.1.0.
For example the documented version does not provide any TLS 1.3 support. On the other side,
documentation hosted by Trusted Firmware is still not available [34].

All the documentation is provided in the form of Doxygen, as part of the source code, it
means that if we wish to have up to date documentation available, we need to download the
source code and generate it ourself. [39]

5.3.4 BearSSL
BearSSL developed by Thomas Pornin [40] is a small TLS library aimed solely on small and
embedded systems.

The library is published under MIT license and is still considered in beta. It does however
support client and server side TLS 1.0, TLS 1.1 and TLS 1.2. Server and client side certificates
are implemented including simple validation. This library operates without the need for dynamic
memory allocation. [40]

A TLS 1.3 support is underway. However a estimated time of implementation is not provided.
[41]

2almost 2 years at the time of writing



26 Transport Layer Security on ESP32

5.3.5 CycloneSSL
CycloneSSL developed by Oryx Embedded [42] is a ANSI C compliant TLS library.

The library is published under GPLv2 license. It supports TLS versions 1.0 to 1.3 on both
server and client with wide range of ciphers to choose from (including Suite B). The library does
not use any processor depended code. [42]

Table 5.1 Comparison between TLS libraries on ESP32

Library Licensea TLS support Certifications Days since last releaseb

wolfSSL GPLv2 1.3 DO-178c, FIPS 140-2c 2
Mbed TLS Apache 2.0 experimental 1.3 Nod 139
BearSSL MIT 1.2 No 1360
CycloneSSL GPLv2 1.3 No 92
a Commercial licenses are also available.
b As of 2022-05-05. [43, 36, 40, 44]
c Only for wolfCrypt component. [45]
d The official FIPS 140-2 tests are included in automatic testing. [46]

5.4 The Best TLS Library?
Based on the information we gathered in section 5.3 we carefully considered our choice for TLS
library.

While all options would be potentially suitable, we want to target TLS version 1.3 to demon-
strate the usability in modern protocols. This allows this work to remain relevant for years to
come. Another point to consider it a license. We wanted to use an open source library, however
the license does not make much of a difference for us.

wolfSSL is quite popular on the ESP32 platform. This is important in the development phase,
since many resources are available. It also supports a TLS 1.3.

Mbed TLS is probably the most popular on ESP32 (maybe due to its default inclusion in
ESP-TLS). However its support of TLS 1.3 is somewhat lacking. It is also released under the
Apache 2.0 license.

BearSSL does not unfortunately support TLS 1.3. The development is also rather slow. How-
ever it is released under MIT license if that is something that your project requires.

CycloneSLL does support TLS 1.3 and is released under GPLv2 license.

Mbed TLS might be a suitable open source option, if a GPLv2 license, or other commercial
license options, do not suit your needs. However we decided to use wolfSSL for the TLS 1.3
support, active development and support it offers.



Chapter 6

Design of a Key Enrollment
Procedure

In this chapter, we design a key enrollment procedure. This allows us to use private keys,
that were generated on the device, within TLS to facilitate authentication.

Transport Layer Security encrypts traffic between two parties with the aim of creating a secure
communication channel. It also support an authorization using TLS certificates.

We designed a key enrollment procedure to allow us to authorize the device, within already
established system, using industry standard certificate mechanisms. The device creates a certifi-
cate signing request (CSR) that can be used to receive a certificate from a certificate authority.

The EPS32 is generally not used as end user device and thus do not posses any human usable
interface (e.g. keyboard, screen). For this reason, another device is needed to “talk” with the
device. While we intended for the device to be a computer, the protocol is device independent.

6.1 Aims of the Procedure
When designing the procedure we wanted to keep it simple.

Simple means easier implementation, which in turn leads to safer and less error prone code.
While more sophisticated procedure could implement a error recovery or modification subroutines
we did not think that such features would provide significant benefit.

The enrollment procedure is most likely done only once (over the life of the device). And since
it is not a complicated process, it does not, in our opinion, warrant the increased complexity that
would additional features bring. If at any phase a error occurs, it is simply a matter of resetting
the device and repeating the procedure.

6.2 Communication Medium
The ESP32 platform itself offers multiple possible communication mediums.

There are possibly 3 main options: Bluetooth, Wi-Fi, and Universal asynchronous receiver-
transmitter (UART) [47]. Other options exist, but most of them would require some development
work and/or additional hardware.

A care must be taken to secure this medium against a man in the middle attack. If an
adversary takes over the communication, he can create his own certificate signing request. If
this CSR then gets signed it allows the adversary to impersonate the device. While this device

27



28 Design of a Key Enrollment Procedure

would be then unusable (the devices public keys would not match the public key stored inside
the certificate), it still allows the adversary to have a valid certificate.

We therefore recommend the use of a UART interface. The interface is accessible only locally,
so the adversary would require a physical access (or a compromised computer on the other side)
to the device at the time of the enrollment.

A significant advantage in favor of UART is the presence of a USB to serial converter on
most ESP32 development boards. This is mainly useful in the development phase. However a
single affordable external USB to serial converter can be used for numerous deployment, leading
to no significant additional cost for a manufactured unit. However, as noted previously, this
enrollment procedure can be – with sufficient precautions – implemented over any medium of
choice.

6.3 Procedure
You can find a diagram of the procedure in figure 6.1. In the following subsection we describe
each phase in depth.

Since the aim of the procedure was to be simple, we did not want to require and significant
software on the opposite computer side. We therefore decided to transfer all information as in
text form. This way any serial monitor application could be used to enroll a device.

The format of the messages send from a device to a computer is inspired by the Privacy-
Enhanced Mail (PEM) encoding format [48], that is commonly used with certificates and private
keys. Every message is ended by a new line character (’\n’). The messages from the computer
to the device are of two types. In the first section of the procedure a simple textual strings are
transmitted. In the last section, an actual PEM encoded certificates are transmitted.

We call the single line messages from the device to the computer a header. All the headers
look like this: “----- {PLACEHOLDER} -----”. Where “{PLACEHOLDER}” is a variable length
string of upper and lower case letters, numbers, spaces, and underscores.

All messages transmitted by the device are using an 8-bit ASCII encoding.
If at any stage in the enrollment procedure the devices encounters an error. It signals it via

a “-----FAIL ENROLLMENT-----” header and terminates the procedure.
An example of full enrollment procedure between the device and the computer can be found

in Appendix A.

6.3.1 Triggering Key Enrollment
For a security reasons the enrollment procedure must be triggered manually on the device. It is
intended as a countermeasure to a remote denial of service. We suggest that a push button is
installed, which is required to be pressed at the device startup, to enter the enroll procedure.

The device establishes connection across the selected medium (e.g. UART serial communica-
tion) and sends “-----BEGIN ENROLLMENT-----” header to signalize the start of the enrollment
procedure.

6.3.2 Creating Certificate Signing Request
Now that the enrollment procedure is started, we need to get information from the computer
to create the certificate signing request. Each CSR consists of multiple fields that need to be
filled with information. The fields include identification information (e.g. country, organization,
common name).

The device will send headers in the form of “-----INPUT {PLACEHOLDER}-----” where
“{PLACEHOLDER}” is replaced with the requested field name. The field names adhere to
“LDAP-NAME” of attributes defined in Section 6 of X.520 [49] recommendation. If multiple



Procedure 29

versions are defined a longer version is used. All names are converted to upper case letters before
usage. The order of fields is consistent with the ordering of X.520 [49].

If any additional fields are supported by the device, they are ordered lexicographically, using
the most common field names, and filled last.

For example if fields country name, common name, and custom are supported, the headers
are ordered as follows:

1. “-----INPUT COMMONNAME-----” as common name is defined first in Section 6.2.2 with
two possible names (longer is used and capitalized).

2. “-----INPUT C-----” as country name is defined in Section 6.3.1.

3. “-----INPUT CUSTOM-----” as custom is not part of the recommendation.

After the header is sent, the device awaits a response. If the response is only an empty line
that means that the field should remain unused.

After the response have been received it is validated against requirements defined in X.520
[49] (mainly maximal length and encoding). The process repeats until all supported fields are
filled.

6.3.3 Exporting Certificate Signing Request
After all fields of the certificate signing request are filled the device assembles and completes
the CSR. The fully prepared CSR is then transmitted as a PEM encoded multiline message.
Afterwards all currently stored certificates are deleted from the system.

The message is, in accordance with RFC 7468 [48], started with header “-----BEGIN CER-
TIFICATE REQUEST-----” and ended with header “-----END CERTIFICATE REQUEST-----”.

This certificate signing request can then be transmitted to certificate authority of choice. The
CA then should perform signing a certificate with the rest of certificate chain of trust.

6.3.4 Receiving Certificate Chain
The device prompts for a count of certificates in the chain with header “-----INPUT CERTIFI-
CATE COUNT-----”. An positive whole number, larger than 0, is expected as a response.

A device now sends a header “-----INPUT CERTIFICATE CHAIN-----” prompting the com-
puter to send the certificate chain. The certificate chain should consist of PEM encoded certifi-
cates ordered from the devices certificate to the root certificate.

Device reads all the certificates, the count was specified previously with the response to the
INPUT CERTIFICATE COUNT message, and saves them for future use within TLS.

6.3.5 Validating Certificate Chain
Last part of the enrollment procedure is for the device validate that the certificate was intended
for this device, a devices public key stored in the certificate should therefore be validated against
devices private key.

If all the steps leading up to here and the public key check were completed successfully, the
device sends last header “-----END ENROLLMENT-----” to signalize a successful enrollment.



30 Design of a Key Enrollment Procedure

Device boot

Enrollment
requested?

Establish
communication

-----BEGIN ENROLLMENT-----

All CSR fields
previously
selected?

sign CSR

:CSR
[SIGNED]

Send CSR as PEM

Select next field
based on priority

-----INPUT CERTIFICATE COUNT-----

Receive certificate count

Certificate count > 0?

-----FAIL ENROLLMENT-----

Number of recieved certificates
>= certificate count?

Delete stored
certificate chain

Store the certificate chain
Certificate chain

intended for this device?

-----END ENROLLMENT-----

Receive PEM encoded cerificate

-----INPUT {PLACEHOLDER}-----

:CSR
[FILLING]Receive response

Response valid for
selected field? Add

response as
the fiendResponse

empty?

Set field as
not used

[YES][NO]

[YES]

[NO]

[YES]

[NO]

[NO]

[YES]

[NO]
[YES]

[NO][YES]

[NO] [YES]

Figure 6.1 Enrollment activity diagram



Chapter 7

Implementation

In this chapter, we demonstrate the use of physical unclonable functions in Transport Layer
Security on ESP32. We constructed a sample project that demonstrates the usability of such
solution.

We are creating a proof of concept application to test the feasibility of using physical unclonable
functions in Transport Layer Security on ESP32. As a TLS library we selected, in section 5.4,
wolfSSL.

In this section, we sometimes include code listings. It should be noted that the code is usually
without any error checking. It is also simplified, and some variable names are changed to be
more readable in printed form.

7.1 ESP-IDF

For the development of the application, we decided to use Espressif IoT Development Framework
[50] (ESP-IDF) provided by Espressif, the manufacturer of the ESP32 family of chips. ISP-IDF
is the official framework for developing C (and C++) applications.

ESP-IDF is released under Apache 2.0 license and offers an Application Programming Inter-
face (API) and a build system that allows to build, flash, and monitor the application. Numerous
components are provided to simplify the development by providing functionality such as a Wi-Fi
driver, networking protocols, file systems, and nonvolatile storage. [50, 51, 52]

The ESP-IDF is available as a command line tool, or it can be integrated with several of
Integrated Development Environments (IDE) using a CMake suite. [52]

7.1.1 ESP-IDF Version
ESP-IDF currently has two major versions. The v4.4.1 is a stable version, and v5.0 is in devel-
opment. [53]

We decided to use the newest possible version (v5.0-dev-1730-g229ed08484) at the time. This
decision was made because we wanted it to be possible to use this application in the future with
minimal effort. And since the new major version brings some API changes [54], we decided to
use it even though it is still in development.

31



32 Implementation

7.1.2 Installing WolfSSL
The application was developed using wolfSSL version 5.2.0. The library can be integrated as a
component into ESP-IDF. [55]

When you download the library and enter IDE/Espressif/ESP-IDF/ folder, you have a setup.sh
and setup_win.bat scripts that transforms the library into an ESP-IDF component and moves it
into standard component location. [55]

It should now be usable as the rest of the components. Unfortunately, it is not that simple.
WolfSSL manages its build configuration via a user_settings.h header file [56].

For this configuration to work you need to [56]:

place the header inside the include path of the application;

include wolfssl/wolfcrypt/settings.h everywhere wolfSSL is used;

define WOLFSSL_USER_SETTINGS preprocessor macro.

This, however presents some challenges when using wolfSSL as an ESP-IDF component.
Because the component is stored with the rest of the components, it is outside of the application
structure. However, we would like to keep the configuration as part of the project.

The simplest solution is to move the component inside the application structure. Now you
can have the configuration versioned with the rest of the project. This, however requires you to
modify the CMakeList.txt build configuration to work from its new location. It is simply a matter
of replacing all relative single up directory (..) paths with paths that originate from ESP-IDF
root (${IDF_PATH}/components).

It does not end there. Since every component is compiled separately, and the available wolf-
SSL features are configuration dependent, you need to make the same configuration file available
inside every component. This is best achieved by modifying every component’s CMakeList.txt
to manually include the user_settings.h header.

7.2 Additional Components
While the main aim of this application is to demonstrate the use of physical unclonable functions,
we also require some additional components that allow us to demonstrate it.

7.2.1 Access Point
We need a way to communicate with the device to establish a TLS connection. The ESP32
platform supports multiple networking options [57]. However, the most straightforward option
is Wi-Fi.

The Wi-Fi component supports multiple modes. In a production environment, the device
would most likely be connected to an already existing Wi-Fi network.

We decided to use the device as an access point. This allows us to create a local Wi-Fi
network that other devices can connect to, where the TLS connection can be demonstrated and
tested.

We created a new component called accessPoint. It allows us to use the configuration element
of ESP-IDF, whereby using “menuconfig” the developer can choose the SSID name, password,
and channel for the access point.

As you can see in Code listing 7.11, the process of creating an AP is quite simple. Keep
in mind that this snippet does not contain any error checking, and some minor configuration
options were omitted.

1snippet from src/ESP32/components/accessPoint/accessPoint.c



Additional Components 33

Code listing 7.1 Access point on ESP32
commentstylecommentstyle

commentstylecommentstyle commentstyle# include <esp_wifi .h>
commentstylecommentstyle commentstyle...
commentstylecommentstyle commentstylevoid accessPointInit () {
commentstylecommentstyle commentstylewifi_init_config_t initConfig = WIFI_INIT_CONFIG_DEFAULT ();
commentstylecommentstyle commentstyleesp_wifi_init (& initConfig ); // Allocate resources for WiFi
commentstylecommentstyle commentstyleesp_wifi_set_mode ( WIFI_MODE_AP ); // Set WiFi to Soft AP
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstylewifi_config_t config = {
commentstylecommentstyle commentstyle.ap = {
commentstylecommentstyle commentstyle.ssid = "SSID",
commentstylecommentstyle commentstyle. password = "PSK",
commentstylecommentstyle commentstyle. channel = 1,
commentstylecommentstyle commentstyle. authmode = WIFI_AUTH_WPA2_PSK ,
commentstylecommentstyle commentstyle...
commentstylecommentstyle commentstyle}
commentstylecommentstyle commentstyle};
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyleesp_wifi_set_config (WIFI_IF_AP , & config ); // Configure settings
commentstylecommentstyle commentstyleesp_wifi_start (); // Start AP
commentstylecommentstyle commentstyle}
commentstylecommentstyle

7.2.2 Domain Name System
Now that we have networking capabilities, we can use the default IP address (192.168.4.1), to
connect to the device.

But since we would like to demonstrate the TLS connection using a web browser over HTTPS,
we would encounter a security warnings when connecting. The web browsers comply with RFC
2818 [58], which means that they compare information stored inside the certificate with the
domain name of the server.

If present, the subject alternative name field of the certificate must be used to validate. If
this extension is not present, then the common name is compared. [58]

Since wolfSSL does not support creating a certificate signing requests with subject alternative
name extension [59], we will be using the common name for our purposes.

The only way to connect to the device is by using the IP address. While it would be possible
to set the common name to the IP address, it is not the most elegant solution. We would like to
use a domain name (e.g. pufintls.cz) instead of the IP address of the device. But how do we tell
the browser to contact the device when we request the domain?

The solution to this is a protocol known as Domain Name System (DNS), which translates
domains to IP addresses. ESP-IDF offers a component that implements multicast DNS (mDNS)
[60]. However, mDNS is not supported on all platforms.

We decided to create a simple DNS server that emulates an RFC 1035 [61]. It is implemented
inside the accessPoint component. It listens on port 53 and parses incoming messages. If the
incoming message is a DNS IPv4 request for a domain that matches the common name of a
certificate created in the last successful enrollment procedure, it responds with a device’s IP
address. Otherwise, a not implemented (for unsupported requests) or refused (for unknown
domain names) DNS response is returned to signalize the requesting device that another DNS
server should be contacted.

While this system should not be used in a production environment, it provides a simple
mechanism for this proof of concept application.



34 Implementation

7.2.3 Web Server
As we stated previously, we wanted to demonstrate the use inside HTTPS (where TLS is the
underlying protocol), this meant that we needed a simple web server.

We decided to implement a simple server (inside webserver_WolfSSL component) that receives
information from the TLS connection and responds with a simple web page. All the communi-
cation passes through a secure connection, establish with the help of the TLS library, that we
later describe in section 7.5.

7.2.4 Mock Library Providing PUF
We needed a library that would simulate a physical unclonable function. We created a component
puflibMock that behaves as an ideal PUF. At least in terms of evaluability and reproducibility.
It simply returns a predefined response every time.

The library interface is copied from the library created by Ondřej Stańıček [1] to facilitate
drop in support at a later time.

7.3 Creating a Key
Based on our recommendations in section 4.4 we decided to use elliptic curve cryptography
without any additional processing on the responses. Specially we decided on secp256r12 curve
since is one of the supported in TLS 1.3 [28].

There is one main format for ECC keys in wolfSSL, and that is ecc_key object. A function
wc_ecc_import_private_key offers the ability to import raw byte strings as a private part of the
key. [62]

This function, unfortunately does not provide the ability to select a curve. If we, however,
dive into the source code, we can see that it simply calls wc_ecc_import_private_key_ex with a
preselected curve. [63]

We can therefore use this function with an error corrected response, provided by our PUF
library, to generate a private-public key pair, as you can see in Code listing 7.23.

Code listing 7.2 Creating a key from response
commentstylecommentstyle

commentstylecommentstyle commentstyleecc_key key; // The key structure
commentstylecommentstyle commentstylewc_ecc_init (& key );
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyle// Calculates how long the key needs to be
commentstylecommentstyle commentstyleint len = wc_ecc_get_curve_size_from_id ( ECC_SECP256R1 );
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyle... // Generate RESPONSE from PUF + validate that it is long enough
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyle// Import the private key only
commentstylecommentstyle commentstylewc_ecc_import_private_key_ex (RESPONSE , len , NULL , 0, key , ECC_SECP256R1 );
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstylewc_ecc_make_pub (&key , NULL ); // Generate a public key from private
commentstylecommentstyle commentstyleif ( wc_ecc_check_key (& key )) // Validate that keypair matches
commentstylecommentstyle commentstyle// KEY IS VALID
commentstylecommentstyle

This ecc_key object can be used to generate the key and to generate a certificate signing
request. Unfortunately wolfSSL can not use this key when creating a TLS connection. When

2also known as P-256 or prime256v1
3snippet from src/ESP32/components/certificateHandler/certificateHandler.c



Key Enrollment 35

establishing a TLS connection, only keys read from file and/or buffer are supported. Both case
use either Distinguished Encoding Rules (DER) or Privacy-Enhanced Mail (PEM) encoding. [64]

Since the PEM format is simply a wrapper around the DER format, it makes sense to use
the DER format internally.

The conversion from ecc_key to a DER encoded buffer is a simple matter of calling one
function. wc_EccKeyToDer(&key, KEY_DER, KEY_DER_SIZE). [59]

And now, we can create cryptographic keys that can be used inside TLS in ESP32.

7.4 Key Enrollment
In this section, we take a look at the implementation of the enrollment procedure we designed
in chapter 6. The key enrollment is implemented inside certificateHandler component.

7.4.1 Communication Media
The ESP32 offers three UART ports using the ESP-IDF API [65]. We decided to use UART_NUM_0.
This UART port uses GPIO pins 1 and 3 for communication [65]. They are usually connected
to the onboard USB to serial adapter on most development boards. This allows us to enroll the
device over the same connection used to flash it.

This however, presents some challenges if ESP-IDF logging library [66] is used. The library
uses the same UART interface by default. This can prove a challenge if an automated script is
used on the computer side.

Since the enrollment protocol messages, that are sent from the device, are quite unique and
easy to filter, we did not consider this to be a problem for our application. The only significant
problem might arise, when an enrollment message is interrupted by a log. This is mainly a
problem for the message that sends the CSR. However, since the enrollment process is done at
the start of the device, when only a limited number of processes is running, the probability of
actual interrupted message is quite low.

The library supports multiple priority settings for each log entry. It is possible to disable all
logging output using the menuconfig from ESP-IDF [66]. For production application, the logging
would most likely be fully disabled or redirected to a log file.

Another logging output originates from the devices boot loader at startup. It is possible to
disable this output by externally pulling pin GPIO 15 low. [67]

Once the UART connection is established, we can start communication with the other device.
Unfortunately, the provided read and write functions are rather simple. When reading from the
UART port, the function retrieves anything that is available. This means that multiple messages
could be read with a single read function. [65]

A temporary buffer, that you can see in Code listing 7.34, is created to store the excess
messages for later processing. We also created functions to read a line and send a message over
the UART connection.

Code listing 7.3 UART buffer
commentstylecommentstyle

commentstylecommentstyle commentstyletypedef struct SUART_BUFFER {
commentstylecommentstyle commentstylechar * const m_buffer ; // pointer of the buffer
commentstylecommentstyle commentstyleconst int m_size ; // total size of buffer
commentstylecommentstyle commentstyleint m_used ; // current number of characters in buffer
commentstylecommentstyle commentstyle} SUART_BUFFER ;
commentstylecommentstyle

4snippet from src/ESP32/components/certificateHandler/include/certificateCommunication.h



36 Implementation

7.4.2 Triggering Key Enrollment
The first step in enrollment is to signal the device that this process should start. It can only be
done right after the device booted.

A pin GPIO 16 was selected as an input for this purpose. Mainly because it was unused and
because it does not offer any advanced features that could be used for something else. If a high
signal (3.3V) is connected to this port at startup, the enrollment procedure starts.

As you can see in Code listing 7.45, we first need to designate this pin as an input. We
can then use the internal pull down resistor to guarantee stable measurements when nothing is
connected.

After that, it is a simple matter of checking the state of the pin. And then optionally starting
the UART communication and enrollment process.

Code listing 7.4 A check for an enrollment trigger
commentstylecommentstyle

commentstylecommentstyle commentstylegpio_set_direction (BUTTON_PIN , GPIO_MODE_INPUT ); // set pin as output
commentstylecommentstyle commentstyle// enable integrated pulldown resistor to combat noise
commentstylecommentstyle commentstylegpio_set_pull_mode (BUTTON_PIN , GPIO_PULLDOWN_ONLY );
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyleif ( gpio_get_level ( BUTTON_PIN )) { // 1 => pin is HIGH (3.3V)
commentstylecommentstyle commentstyleconfigureUART ()
commentstylecommentstyle commentstylehandleEnrollment ();
commentstylecommentstyle commentstylefreeUART ()
commentstylecommentstyle commentstyle}
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstylegpio_reset_pin ( BUTTON_PIN ); // reset pin to default settings
commentstylecommentstyle

7.4.3 Creating Certificate Signing Request
WolfSSL provides an interface that can be used to create a certificate signing requests. [59] It
requires us, as you can see in Code listing 7.5, to create a certificate object, fill the supported
fields with information provided by the computer, and finally sign it.

Code listing 7.5 A check for an enrollment trigger
commentstylecommentstyle

commentstylecommentstyle commentstyleCert CSR;
commentstylecommentstyle commentstylewc_InitCert (& CSR ); // Create a empty certificate /CSR
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyle// Fill fields with information provided by computer over UART
commentstylecommentstyle commentstylestrcpy (CSR. subject .commonName , " COMMON NAME FROM UART");
commentstylecommentstyle commentstyleCSR. subject . commonNameEnc = CTC_PRINTABLE ; // Set the correct encoding
commentstylecommentstyle commentstyle...
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyleuint8_t DERBuffer [ DER_SIZE ];
commentstylecommentstyle commentstyle// Creates a DER encoded CSR with public key from "key"
commentstylecommentstyle commentstylewc_MakeCertReq (&CSR , DERBuffer , DER_SIZE , NULL , &key );
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyleWC_RNG rng; // RNG is required to generate a random seed for sign
commentstylecommentstyle commentstylewc_InitRng (& rng );
commentstylecommentstyle commentstyle// And lastly we need to sign the CSR
commentstylecommentstyle commentstylewc_SignCert (CSR.bodySz , CTC_SHA256wECDSA , DERBuffer , DER_SIZE ,
commentstylecommentstyle commentstyleNULL , &key , &rng );
commentstylecommentstyle

5snippet from src/ESP32/main/main.c



Key Enrollment 37

The DERBuffer now contains a fully prepared CSR in DER format. We only need to transform
it to PEM (with the help of wolfSSL function), and transport it over UART to the computer,
where it will be signed.

7.4.4 Receiving Certificate Chain
Now that we successfully created and transmitted the CSR to the computer, we need to wait
until the computer is ready to send back the certificate chain.

The first message we need to receive is the number (n) of certificates that are in the chain.
This allows up to know when to stop reading. Since every PEM encoded certificate contains
precisely 20 dashes, we can stop reading after we read 20 · n dashes.

We need to be able to store those certificates even after the device turns off, ESP-IDF offers
a non-volatile storage library [68] that stores a key-data pairs in flash memory. Unfortunately,
the length of data is currently limited to 4000 bytes.

A better option is to use a SPIFFS file system [69] also provided by ESP-IDF. First, we
need to create a partition table that allows us to assign a part of the device’s flash memory
to be used with the file system. In the Code listing 7.66 you can see the configuration. The
relevant partition is called storage and is just under 1MB in size. This size was not chosen for
any particular reason, it simply provides adequate space to store all the certificates.

Code listing 7.6 Partition table allocating space on ESP32
commentstylecommentstyle

commentstylecommentstyle commentstyle# Name , Type , SubType , Offset , Size , Flags
commentstylecommentstyle commentstylenvs , data , nvs , 0x9000 , 0x50000 ,
commentstylecommentstyle commentstylephy_init , data , phy , , 0x1000 ,
commentstylecommentstyle commentstylefactory , app , factory , , 2M,
commentstylecommentstyle commentstylestorage , data , spiffs , , 0xF0000 ,
commentstylecommentstyle

Now that we have a space where the partition can be stored, we need to initialize it before
use. The initialization you can see in Code listing 7.77 is simple. After that, we can simply use
a standard C library function for working with files. [69]

Code listing 7.7 SPIFFS initialization
commentstylecommentstyle

commentstylecommentstyle commentstyleesp_vfs_spiffs_conf_t conf = {
commentstylecommentstyle commentstyle. base_path = "/ spiffs ", // base path to partition
commentstylecommentstyle commentstyle// " spiffs " SubType from partition table will be used as a storage
commentstylecommentstyle commentstyle. partition_label = NULL ,
commentstylecommentstyle commentstyle. max_files = 1
commentstylecommentstyle commentstyle. format_if_mount_failed = true // Format at first use (and on errors )
commentstylecommentstyle commentstyle};
commentstylecommentstyle commentstyleesp_vfs_spiffs_register (& conf );
commentstylecommentstyle

7.4.5 Validating Certificate Chain
As the last part of the enrollment procedure, we check that the certificate matches our private key.
WolfSSL provides a wolfSSL_CTX_check_private_key(const WOLFSSL_CTX *ctx) that can validate
a private key on TLS context.

6snippet from src/ESP32/partitions.csv
7snippet from src/ESP32/components/certificateHandler/certificateHandler.c



38 Implementation

7.4.6 Helper Script
We also created a Linux Bash script to communicate with the device using a USB to serial
adapter. It uses the stty command [70] to configure the port, it then parses and forwards the
communication.

It can be used to automatically sign the CSR, using a minimal CA application provided by
OpenSSL [71], or manually via any certificate authority. It could also be modified to automate
the signing process with another service.

7.5 Establishing TLS Connection

In figure 7.1 you can see the startup process for the application. It shows how our components
cooperate when creating a TLS connection.

ESP-IDF offers implementation of TCP/IP stack [72] that we used in conjuncture with wolf-
SSL library to implement a TLS connection. We used a Berkeley socket interface to establish a
base connection on which we built the TLS tunnel.

We implemented this inside procedure as part of tlsAwaitConnect component. All snippets
in this section originate from src/ESP32/components/tlsAwaitConnect/tlsAwaitConnect.c.

As a first step of the process, we initialize and set up a context (ctx) object that wolfSSL
uses to store a general configuration for the TLC connection. You can see the process in Code
listing 7.8. We need to specify which TLS version to use and whether we will be a server or
client. We can then import the certificate chain stored as part of the enrollment procedure in
subsection 7.4.4. The server will transmit the certificate as part of the handshake process in an
attempt to authorize itself.

Some additional configurations of the server can be performed here as well. We decided to
limit the number of cipher suites – combinations of ciphers that secure the connection – to two
of our favorites. This might be useful in the future if some exploit is discovered in supported
ciphers. We can simply disable the affected cipher to completely neutralize the thread.

And last part of the configuration is to import the private key. WolfSSL supports two key
inputs, from file and from DER encoded buffer [64]. Since we can retrieve the key from our PUF,
it does not make much sense to save it to a file. We, therefore, generate the key and encode it
into the DER format.

Code listing 7.8 Configuring a TLS context
commentstylecommentstyle

commentstylecommentstyle commentstyle// CTX stores general settings for multiple connections , we use TLS 1.3
commentstylecommentstyle commentstyleWOLFSSL_CTX *ctx = wolfSSL_CTX_new ( wolfTLSv1_3_server_method ());
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyle// Certificate chain from our SPIFFS file is used as authenticator
commentstylecommentstyle commentstylewolfSSL_CTX_use_certificate_chain_file (ctx , getCertificateFilename ());
commentstylecommentstyle commentstyle// We can also explicitly enable only some ciphers
commentstylecommentstyle commentstylewolfSSL_CTX_set_cipher_list (ctx ,
commentstylecommentstyle commentstyle" TLS_CHACHA20_POLY1305_SHA256 : TLS_AES_128_GCM_SHA256 ");
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyleint bufLen ; // key from PUF is imported to be used as part of handshake
commentstylecommentstyle commentstyleconst unsigned char *key = getKeyDER (& bufLen );
commentstylecommentstyle commentstylewolfSSL_CTX_use_PrivateKey_buffer (ctx , key , bufLen , SSL_FILETYPE_ASN1 );
commentstylecommentstyle

Now that our general configuration is done, we can work on creating a connection. As you
can see in Code listing 7.9, we use Berkeley sockets to create a listening endpoint that accepts
Transmission Control Protocol (TCP) connections on a specified port. This allows anyone to use
a TCP connection on the port to reach our application.



Test of Authentication and Connection Establishment 39

Code listing 7.9 Creating a Berkeley socket
commentstylecommentstyle

commentstylecommentstyle commentstyle// create a endpoint for connections over IPv4 using TCP
commentstylecommentstyle commentstyleint socketFD = socket (AF_INET , SOCK_STREAM , 0);
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyle// This is a server side configuration
commentstylecommentstyle commentstylestruct sockaddr_in serverAddress ;
commentstylecommentstyle commentstyle// initialize all the fields to 0
commentstylecommentstyle commentstylememset (& serverAddress , 0, sizeof ( serverAddress ));
commentstylecommentstyle commentstyleserverAddress . sin_family = AF_INET ;
commentstylecommentstyle commentstyle// HostTONetwork Short converts endianness
commentstylecommentstyle commentstyleserverAddress . sin_port = htons(port ); // port to listen on
commentstylecommentstyle commentstyleserverAddress . sin_addr . s_addr = INADDR_ANY ; // use all interfaces
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyle// configures the socket with the configuration
commentstylecommentstyle commentstylebind(socketFD , ( struct sockaddr *)& serverAddress , sizeof ( serverAddress ));
commentstylecommentstyle commentstylelisten (socketFD , maxConnections ); // start listening for connections
commentstylecommentstyle

Now the only thing remaining is to wait for some connection. In Code listing 7.10 we wait
for a client to establish a TCP connection, we can then create a wolfSSL object (ssl) from the
configuration we set up in context. This object can then be assigned to the TCP connection,
and the TLS handshake can begin.

As soon as the TLS connection (on top of the TCP layer) is established, we can pass the TLS
connection object to any application. It can be used by the application to securely communicate
with the other side.

Code listing 7.10 Establishing TLS connection with key generated using PUF
commentstylecommentstyle

commentstylecommentstyle commentstyle// waits for incoming connection , then starts communication over TCP
commentstylecommentstyle commentstyleint connectionFD = accept (socketFD , NULL , NULL );
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstyle// create a local TLS handler from context config
commentstylecommentstyle commentstyleWOLFSSL *ssl = wolfSSL_new (ctx );
commentstylecommentstyle commentstyle// use the handler on the accepted connection
commentstylecommentstyle commentstylewolfSSL_set_fd (ssl , connectionFD );
commentstylecommentstyle commentstylewolfSSL_accept (ssl ); // TLS handshake and establish secure channel
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstylecallback (ssl ); // start the application that uses secure connection
commentstylecommentstyle commentstyle
commentstylecommentstyle commentstylewolfSSL_shutdown (ssl ); // we ended , send terminate
commentstylecommentstyle commentstylewolfSSL_free (ssl ); // free all allocated resources
commentstylecommentstyle commentstyleclose( connectionFD ); // close TCP connection
commentstylecommentstyle

7.6 Test of Authentication and Connection Establishment

In this version, we describe what tests we performed to validate that the TLS connection was
successfully completed. We firstly enrolled the device with a certificate signed by our helper script
(it was signed using a local OpenSSL CA). Based on the test described below, we can confirm
that the TLS connection was established successfully and that the device can be authenticated
using certificates.



40 Implementation

main puflibaccessPoint

par 

loop 

[true]

tlsAwaitConnect certificateHandler

webserver_WolfSSL

loop 

[true]

callback is
handleHTTPSCommunication

{PUF response generation}

:key

tlsAwaitConnect(port,
maxConnections, callback)

getIP(): server IPv4

getHostName():
hostName

getKeyStructure():
keyStructure

accessPointInit()

get_puf_response()

getCertificateFilename():
certificateChainFilename

initCertificateStorage()

freeKeyDER()

clean_puf_response()

getKeyDER()

handleDNSRequest()

puflib_init()

callback()

:response

freeCertificateStorage()

getKeyStructurePrivate():
keyStructurePrivate

simpleDNSRun()

handleConnection()

Figure 7.1 Sequence diagram of the standard startup



Test of Authentication and Connection Establishment 41

7.6.1 Web Browsers

This test was chosen specifically because it is simple to demonstrate. A web browser is present
on most devices. It therefore allowed us to perform multiple tests from different devices.

As we have discussed previously in subsection 7.2.2, web browsers provide a simple demon-
stration. We tested multiple browsers (Mozilla Firefox, Google Chrome, Chromium, Safari) on
multiple platforms (Linux, Windows, Android, iPad OS).

All the tested browsers (on all platforms) behaved similarly. Some privacy warnings were
triggered occasionally

Bad certificate domain warning was displayed every time the browser connected using host
name that did not match the common name of the certificate. This warning was not present
when using the simple DNS implementation.

Unknown issuer warning is displayed because the browser does not trust the CA that issued
the certificate. In figure 7.2 you can see, that we imported the root certificate, as a trusted
CA, into the browser. This makes the warning disappear.

Subject alternative name mismatch was encountered only in Chromium. Certificates with-
out alternative names are officially considered deprecated [58]. However, other browsers do
not seem to have this warning.

Certificate validity too long was only encountered on iPad version of Chrome. We used a
certificate with roughly 10 year validity.

Figure 7.2 Managing trusted CAs in Firefox

Once we imported the root certificate into the browser as a trusted CA and started using
the DNS, most browsers worked flawlessly. As you can see in figure 7.3, the connection was
established successfully using TLS 1.3. All certificates in the chain were also transmitted.



42 Implementation

Figure 7.3 Firefox established a TLS connection

7.6.2 OpenSSL s client
OpenSSL offers a s client [73] application. It can be used to connect to a remote TLS server.
The full output can be found in Appendix B. The application confirmed that the connection
was established successfully and the root CA issued the provided certificate.

7.6.3 sslscan
A sslscan [74] is an application that scans a TLS server and displays supported versions, ciphers,
and other configurations. You can find the full output in Appendix C.

The test confirmed that only TLS 1.3 was supported; it also confirmed our selection for
supported cipher suites.



Chapter 8

Using an Actual PUF

In this chapter, we describe the process and obstacles to using an actual Physical Unclonable
Function instead of mock-up.

As the last part of our application, we integrated a library created by Ondřej Stańıček [75] that
implements a SRAM PUF on ESP32.

The library is available on GitHub as an ESP-IDF component [75]; this allowed us to simply
drop it it as another of our components.

The library uses non-volatile storage library we mentioned in subsection 7.4.4 to store the
helper data. Since the amount of the data is not small, a modification to the partition table is
required. We need to enlarge the nvs partition to roughly 300kB. [75]

The library also requires that helper data are initialized when it is first used on a device. We
included this initialization as a first step after the enrollment process is triggered.

8.1 Challenges with PUF Library Integrations
The library requires that an initialization function is called as the first function inside the main
function. It also requires a modification to a wake up callback function. You can find the
modifications inside src/ESP32/main/main.c file.

8.1.1 Incompatibility with ESP-IDF Version 5.0
We found out that the library does not include the correct header files. It attempts to use
ets_delay_us function, that is included inside rom/ets_sys.h header on our IDF-ESP version.

We created a GitHub issue [76] to notify the developer of this issue. We fixed this issue for
our component by modifying the library source code to include the correct header file.

8.1.2 Response not Available
In order to receive a PUF response the library requires that get_puf_response function is called.
If the function returns successfully, it signalizes that the response was generated and is available.

It also contains PUF_STATE global state that should signalize RESPONSE_READY any time the
response is generated.

Our testing discovered that the function would return success, but the global state would
still signalize that the response is not ready. We believe that this is due to a const type specifier

43



44 Using an Actual PUF

inside the library header file. The compiler might have optimised away since the state should
always remain the same.

We remedied this issue by removing the specifier from the header file and opening a GitHub
issue [77].

8.1.3 Deep Sleep
Generally, the library can retrieve a response without a problem. However, in some circum-
stances, it is not possible to generate stable response with the device running. For those instances
a get_puf_response_reset function is provided. It uses a deep sleep to generate the response.
[75]

The problem comes from the deep sleep requirement. When the device wakes up from the
deep sleep, it starts again in the main function. Most of the device’s operation memory is also
reset. A limited amount of memory can be retained after a deep sleep using a RTC_DATA_ATTR
attribute. [78]

As you can see in Code listing 8.11, we use this attribute to store a state, that we can later
use to restore the application after the deep sleep.

Code listing 8.1 Establishing TLS connection with key generated using PUF
commentstylecommentstyle

commentstylecommentstyle commentstyleenum EWakeupTargets { NONE , ENROLL , VALIDATE , WEBSERVER_INIT };
commentstylecommentstyle commentstyleenum EWakeupTargets RTC_DATA_ATTR g_WakeupTarget ;
commentstylecommentstyle

Every time we generate a response using the library, we set the state so we can later resume
where we left off. This, however, presents quite a few challenges.

Firstly all initialization needs to be redone. This means that it takes additional time to resume
the operation. It also means that a complicated system of conditions needs to be implemented
to initialized the right components for the corresponding wake up targets.

Secondly, any application data will be lost. We encountered this problem when generating
a CSR in subsection 7.4.3. We wanted to generate the response as late as possible to limit the
amount of time the response and key stay in memory. This, however meant that the CSR would
be already filled when the response would be generated. We ended up saving the DER encoded
CSR in a buffer2 with the RTC_DATA_ATTR attribute.

8.2 Test of Authentication and Connection Establishment
We repeated our testing in section 7.6 with the real PUF library. The tests did not reveal any
differences – apart from the used certificate and private key – between our mock and real physical
unclonable function.

1snippet from src/ESP32/globalWakeupState/globalWakeupState.h and src/ESP32/main/main.c
2you can find the implementation inside src/ESP32/components/certificateCommunication.c file



Chapter 9

Usability of PUF in TLS on
ESP32

The general aspect of using physical unclonable functions to generate keys for Transport Layer
Security on the ESP32 platform is possible, as we demonstrated with our proof of concept
application in chapter 7.

For an actual widespread deployment, one unknown remains. The construction of PUF plays
a huge role in the usability of such solutions. While the library created by Stańıček [75] is
definitely usable, the deep sleep requirement make the process very complicated.

9.1 Speed of Response Generation

One difference between the speed of mock and real PUF was the amount of time the library
required to create the helper data during provisioning. The real library required up to 30 seconds,
in contrast to 0 seconds required for mock, to generate the helper data. Nevertheless, it is not
an impassable obstacle since this is done only once per enrollment.

Another factor is the time it takes to generate a response. This is critical if we would like to use
keys on demand. From our testing, the amount of time required to generate the response using
the real PUF is in milliseconds. While this increase might be substantial in some circumstances,
it does not mean much for our purposes. The post-processing we require to convert the key into
something wolfSSL can use inside TLS takes so long that this slight increase is negligible.

9.2 Future Improvements

We wanted to address some possible future improvements – that we did not have space to cover
in this work – but are interesting.

9.2.1 Another PUF Construction
In chapter 8 we used a SRAM based physical unclonable function. It is possible that other types
of constructions would not be that complex to integrate.

The main integration complexity originated in the deep sleep requirement. If another con-
struction, or even the same construction with some improvements, would not have the same
requirements, it would be quite simple to integrate it.

45



46 Usability of PUF in TLS on ESP32

9.2.2 Generating Private key on Demand in TLS
As you can see in Code listing 7.8, we decided to load the private key at server startup. This is
not the most secure way of storing the private key. Ideally, the key would spend as little time
in memory as possible. Since with that we add another barrier (triggering the key generation)
before the attacker can even attempt to read the key from memory.

This decision was made for three reasons:

1. The key generation might take too long. The opposite device might think that the server is
not responding, while it is only generating the keys, and close the connection. Or the delay
might simply cause the application too unpleasant to use.

2. WolfSSL does not currently support an easy to use way of importing keys on demand. We
found two possible solutions to achieve the same result. Using a callback to import the key
prior to its use and another callback to later remove the key after it is used [79]. Another
possibility is to load the key into every connection handler instead of the context 1 [64].

3. The deep sleep would require significantly more complex recovery. It would need to pause
and resume every connection and every internal state of the application that is used over the
connection. It would also possibly cause a denial of service for already connected clients.

1see section 7.5 for details on how context and connection handler are used



Chapter 10

Conclusion

The use of physical unclonable functions on low-power and low-cost systems on chip as ESP32
was not widely researched. The aim of this thesis was to define what is a physical unclonable
function in the context of key generation and to implement a proof of concept application to
demonstrate the use of PUF in Transport Layer Security on ESP32. The thesis also aimed to
analyze the usability of real physical unclonable functions in those applications.

While precisely defining physical unclonable function might be almost impossible, we believe
that our definition applies to PUF in the context of key generation.

The proposed enrollment procedure might not be optimized for automatic/batch enrollment.
However, we feel that the disadvantages are outweighed by the ability to function over a standard
serial interface in a human readable format without any additional software required.

Transport Layer Security is a highly utilized protocol. Both the defining standards and
available libraries are still in active development. Because of this, the most suitable library is
likely going to change. When implementing a TLS support in your application, it is recommended
to analyze the available libraries according to your requirements.

Our development started with an ideal physical unclonable function that provided perfect re-
sponses in a minimal amount of time. This was done to demonstrate the best case scenario. The
application utilized the generated private-public key pair in a TLS connection. We then demon-
strated that a secure connection was established and that such applications could successfully
developed and used.

Lastly, we adapted an actual physical unclonable function to use in our application. To
analyze how the real PUF influenced the usability of our application with its less than ideal
characteristics.

Our proof of concept application lives up to its name. We successfully integrated – both mock
and real – physical unclonable function into Transport Layer Security on ESP32. With this, we
proved that it is possible to utilize PUF for such purposes.

However, the challenges we encountered when integrating a real physical unclonable function
into our proof of concept application caused a significant problem. No perfect solution exists to
resume the application after a deep sleep was performed to generate the required key. This, in
our opinion, makes it quite hard to fully utilize the potential of this library in TLS on ESP32.

Suppose more (hopefully easy to use) implementations of physical unclonable functions are
developed, and TLS libraries improve their support for on demand key loading. In that case, it
is feasible that such solutions can see widespread adoption.

47



48 Conclusion



Appendix A

Example of the Enrollment
Procedure

This is an example of enrollment procedure where the device (on the left) communicates with a
computer (on the right). As you can see the enrollment procedure was completed successfully.

MESSAGES FROM DEVICE : : MESSAGES FROM COMPUTER
========================================================================
-----BEGIN ENROLLMENT -----
-----INPUT COMMONNAME -----

pufintls .cz
-----INPUT SERIALNUMBER -----

DEADBEEFCAFE
-----INPUT C-----

CZ
-----INPUT L-----

Prague 6
-----INPUT ST -----

Capital City of Prague
-----INPUT STREET -----

Th á kurova 9
-----INPUT O-----

FIT CVUT
-----INPUT OU -----

BI -BIT
-----INPUT POSTALCODE -----

160 00
-----INPUT MAIL -----

tyfamate@fit .cvut.cz
-----INPUT CACHALLENGE -----

CA_challange
-----BEGIN CERTIFICATE REQUEST -----
MIIBuDCCAV8CAQIwgd8xCzAJBgNVBAYTAkNaMR8wHQYDVQQIExZDYXBpdGFsIENp
dHkgb2YgUHJhZ3VlMRUwEwYDVQQJDAxUaMOha3Vyb3ZhIDkxETAPBgNVBAcTCFBy
YWd1ZSA2MREwDwYDVQQKEwhGSVQgQ1ZVVDEPMA0GA1UECxMGQkktQklUMRQwEgYD
VQQDEwtwdWZpbnRscy5jejEVMBMGA1UEBRMMREVBREJFRUZDQUZFMQ8wDQYDVQQR
EwYxNjAgMDAxIzAhBgkqhkiG9w0BCQEWFHR5ZmFtYXRlQGZpdC5jdnV0LmN6MFkw
EwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEgXiYVB6gNXesoEdqsFVedeAt58PN89Tz
FbKdnIhpVRD8oUAVJ6F9 / x4WSBXcFDteixr9evTaAMJsDbUbe / fxoqAdMBsGCSqG
SIb3DQEJBzEODAxDQV9jaGFsbGFuZ2UwCgYIKoZIzj0EAwIDRwAwRAIgG3 +rHPz7

49



50 Example of the Enrollment Procedure

evGiFJCIIHJDFqjNRO5HxMqFkl5XbBzChiUCIGDZY3oEnIpMbnLcsdFwYb4lp17n
HGH4rJA2oEqSUg5y
-----END CERTIFICATE REQUEST -----
-----INPUT CERTIFICATE COUNT -----

1
-----INPUT CERTIFICATE CHAIN -----

-----BEGIN CERTIFICATE -----
MIIEGzCCAgMCAhACMA0GCSqGSIb3DQEBCwUAMIHPMQswCQYDVQQGEwJDWjEPMA0G
A1UECAwGUHJhZ3VlMREwDwYDVQQHDAhQcmFndWUgNjEtMCsGA1UECgwkVFlGQU1B
VEUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgTHRkMRUwEwYDVQQLDAxDQSBSb290
IHVuaXQxJzAlBgNVBAMMHnR5ZmFtYXRlLmNlcnRpZmljYXRlLmF1dGhvcml0eTEt
MCsGCSqGSIb3DQEJARYedHlmYW1hdGVAY2VydGlmaWNhdGUuYXV0aG9yaXR5MB4X
DTIyMDUwODIxMjMzMVoXDTMyMDUwNTIxMjMzMVowgaAxCzAJBgNVBAYTAkNaMR8w
HQYDVQQIExZDYXBpdGFsIENpdHkgb2YgUHJhZ3VlMREwDwYDVQQHEwhQcmFndWUg
NjERMA8GA1UEChMIRklUIENWVVQxDzANBgNVBAsTBkJJLUJJVDEUMBIGA1UEAxML
cHVmaW50bHMuY3oxIzAhBgkqhkiG9w0BCQEWFHR5ZmFtYXRlQGZpdC5jdnV0LmN6
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEgXiYVB6gNXesoEdqsFVedeAt58PN
89 TzFbKdnIhpVRD8oUAVJ6F9 / x4WSBXcFDteixr9evTaAMJsDbUbe / fxojANBgkq
hkiG9w0BAQsFAAOCAgEAyiVG8 + asEdiWj4HmyEVMpiTE7MAs0CCqNmdaBIK2q6MO
NgXbcYUW2fRCk7gzfhFD536jPGa + rmVIwc4i9HMeznexTinakpYnLQ + MklIAFg2U
zB9TSr38YRaCyOHIKiIwTxc1l6BDwd6t06k8uWjmfDzzAuzks2OSmLWGTb3rUi ++
m+1 ThALLWEOMJx0QikS6rY5pqaNo6KHPpQy0AiOewGgCGZXyaSeM61qt8Ec8Zvpa
RBVpFTv +94 chqfvSYJiAixgd6RWRWqs + z51XD1oFhSp48RLBUmFQb +7 yVWxJJZPW
+ nnCJ1hXcNoRyutEOHwL + Chmt2l7fY1CxOO5c1xX1V +9 t7tTosVmeItvoJ6i1BCx
TFn8svOrQJrP9hFu8zbnxN3HKhGUZn9PbNgKSC + C3m9x1Dt8og7eXLb8sAEMJLeD
W74kVnQ /VrP/ YerVAPOSauDSyQWpqN0VyY5bAHpLjuh0zosQexa7Ah6B8 + k3tsOy
chdA2g3y5mZcniBNwmpzbprTih0JF6ulzSrx3Yk7sPYNztYl6AN +PnAF/ kXe49kn
hUip1hDkGf4tEtR5p0uU + dBEIrSuwz3H1JAyHlha2Rajmk4nVyjUb2M / MMzdbnwg
HsrDYqp4Fu /8 rlhkyws1SQGOwQ7H83DOIVBvkwNtB10hpxsilVQshe + EduSsoBI =

-----END CERTIFICATE -----
-----END ENROLLMENT -----



Appendix B

Testing TLS Using the s client
Application

Here you can see the output provided by s client [73] application. The application was instructed
to connect to the device on port 443, it also was provided with a root certificate to validate the
certificate provided by the device.

> openssl s_client --connect pufintls .cz :443 -CAfile CAcert .pem

CONNECTED (00000003)
depth =1 C = CZ , ST = Prague , L = Prague 6, O = TYFAMATE Certification

Authority Ltd , OU = CA Root unit , CN = tyfamate . certificate .authority
, emailAddress = tyfamate@certificate . authority

verify return :1
depth =0 C = CZ , ST = Capital City of Prague , L = Prague 6, O = FIT CVUT ,

OU = BI -BIT , CN = pufintls .cz , emailAddress = tyfamate@fit .cvut.cz
verify return :1
---
Certificate chain

0 s:C = CZ , ST = Capital City of Prague , L = Prague 6, O = FIT CVUT , OU
= BI -BIT , CN = pufintls .cz , emailAddress = tyfamate@fit .cvut.cz

i:C = CZ , ST = Prague , L = Prague 6, O = TYFAMATE Certification
Authority Ltd , OU = CA Root unit , CN = tyfamate . certificate .
authority , emailAddress = tyfamate@certificate . authority

---
Server certificate
-----BEGIN CERTIFICATE -----
MIIEGzCCAgMCAhACMA0GCSqGSIb3DQEBCwUAMIHPMQswCQYDVQQGEwJDWjEPMA0G
A1UECAwGUHJhZ3VlMREwDwYDVQQHDAhQcmFndWUgNjEtMCsGA1UECgwkVFlGQU1B
VEUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgTHRkMRUwEwYDVQQLDAxDQSBSb290
IHVuaXQxJzAlBgNVBAMMHnR5ZmFtYXRlLmNlcnRpZmljYXRlLmF1dGhvcml0eTEt
MCsGCSqGSIb3DQEJARYedHlmYW1hdGVAY2VydGlmaWNhdGUuYXV0aG9yaXR5MB4X
DTIyMDUwODIxMjMzMVoXDTMyMDUwNTIxMjMzMVowgaAxCzAJBgNVBAYTAkNaMR8w
HQYDVQQIExZDYXBpdGFsIENpdHkgb2YgUHJhZ3VlMREwDwYDVQQHEwhQcmFndWUg
NjERMA8GA1UEChMIRklUIENWVVQxDzANBgNVBAsTBkJJLUJJVDEUMBIGA1UEAxML
cHVmaW50bHMuY3oxIzAhBgkqhkiG9w0BCQEWFHR5ZmFtYXRlQGZpdC5jdnV0LmN6
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEgXiYVB6gNXesoEdqsFVedeAt58PN
89 TzFbKdnIhpVRD8oUAVJ6F9 / x4WSBXcFDteixr9evTaAMJsDbUbe / fxojANBgkq
hkiG9w0BAQsFAAOCAgEAyiVG8 + asEdiWj4HmyEVMpiTE7MAs0CCqNmdaBIK2q6MO
NgXbcYUW2fRCk7gzfhFD536jPGa + rmVIwc4i9HMeznexTinakpYnLQ + MklIAFg2U

51



52 Testing TLS Using the s client Application

zB9TSr38YRaCyOHIKiIwTxc1l6BDwd6t06k8uWjmfDzzAuzks2OSmLWGTb3rUi ++
m+1 ThALLWEOMJx0QikS6rY5pqaNo6KHPpQy0AiOewGgCGZXyaSeM61qt8Ec8Zvpa
RBVpFTv +94 chqfvSYJiAixgd6RWRWqs + z51XD1oFhSp48RLBUmFQb +7 yVWxJJZPW
+ nnCJ1hXcNoRyutEOHwL + Chmt2l7fY1CxOO5c1xX1V +9 t7tTosVmeItvoJ6i1BCx
TFn8svOrQJrP9hFu8zbnxN3HKhGUZn9PbNgKSC + C3m9x1Dt8og7eXLb8sAEMJLeD
W74kVnQ /VrP/ YerVAPOSauDSyQWpqN0VyY5bAHpLjuh0zosQexa7Ah6B8 + k3tsOy
chdA2g3y5mZcniBNwmpzbprTih0JF6ulzSrx3Yk7sPYNztYl6AN +PnAF/ kXe49kn
hUip1hDkGf4tEtR5p0uU + dBEIrSuwz3H1JAyHlha2Rajmk4nVyjUb2M / MMzdbnwg
HsrDYqp4Fu /8 rlhkyws1SQGOwQ7H83DOIVBvkwNtB10hpxsilVQshe + EduSsoBI =
-----END CERTIFICATE -----
subject =C = CZ , ST = Capital City of Prague , L = Prague 6, O = FIT CVUT ,

OU = BI -BIT , CN = pufintls .cz , emailAddress = tyfamate@fit .cvut.cz

issuer =C = CZ , ST = Prague , L = Prague 6, O = TYFAMATE Certification
Authority Ltd , OU = CA Root unit , CN = tyfamate . certificate .authority
, emailAddress = tyfamate@certificate . authority

---
No client certificate CA names sent
Peer signing digest : SHA256
Peer signature type: ECDSA
Server Temp Key: X25519 , 253 bits
---
SSL handshake has read 1404 bytes and written 377 bytes
Verification : OK
---
New , TLSv1 .3, Cipher is TLS_CHACHA20_POLY1305_SHA256
Server public key is 256 bit
Secure Renegotiation IS NOT supported
Compression : NONE
Expansion : NONE
No ALPN negotiated
Early data was not sent
Verify return code: 0 (ok)
---
DONE



Appendix C

Testing TLS using the sslscan
application

Here you can see the output provided by sslscan (version 2.0.13) [74] application. The application
was instructed to connect using IPv4, print used certificates, and show times of handshakes.

> sslscan -4 --show - certificate --show -times pufintls .cz

Version : 2.0.13
OpenSSL 1.1.1n 15 Mar 2022

Connected to 192.168.4.1

Testing SSL server pufintls .cz on port 443 using SNI name pufintls .cz

SSL/TLS Protocols :
SSLv2 disabled
SSLv3 disabled
TLSv1 .0 disabled
TLSv1 .1 disabled
TLSv1 .2 disabled
TLSv1 .3 enabled

TLS Fallback SCSV:
Server supports TLS Fallback SCSV

TLS renegotiation :
Session renegotiation not supported

TLS Compression :
OpenSSL version does not support compression
Rebuild with zlib1g -dev package for zlib support

Heartbleed :
TLSv1 .3 not vulnerable to heartbleed

Supported Server Cipher (s):
Preferred TLSv1 .3 256 bits TLS_CHACHA20_POLY1305_SHA256 Curve 25519

DHE 253 1911 ms
Accepted TLSv1 .3 128 bits TLS_AES_128_GCM_SHA256 Curve 25519

53



54 Testing TLS using the sslscan application

DHE 253 1924 ms

Server Key Exchange Group(s):
TLSv1 .3 81 bits sect163k1
TLSv1 .3 81 bits sect163r1
TLSv1 .3 81 bits sect163r2
TLSv1 .3 96 bits sect193r1
TLSv1 .3 96 bits sect193r2
TLSv1 .3 116 bits sect233k1
TLSv1 .3 116 bits sect233r1
TLSv1 .3 119 bits sect239k1
TLSv1 .3 141 bits sect283k1
TLSv1 .3 141 bits sect283r1
TLSv1 .3 204 bits sect409k1
TLSv1 .3 204 bits sect409r1
TLSv1 .3 285 bits sect571k1
TLSv1 .3 285 bits sect571r1
TLSv1 .3 80 bits secp160k1
TLSv1 .3 80 bits secp160r1
TLSv1 .3 80 bits secp160r2
TLSv1 .3 96 bits secp192k1
TLSv1 .3 96 bits secp192r1
TLSv1 .3 112 bits secp224k1
TLSv1 .3 112 bits secp224r1
TLSv1 .3 128 bits secp256k1
TLSv1 .3 128 bits secp256r1 (NIST P -256)
TLSv1 .3 192 bits secp384r1 (NIST P -384)
TLSv1 .3 260 bits secp521r1 (NIST P -521)
TLSv1 .3 256 bits brainpoolP512r1
TLSv1 .3 128 bits x25519
TLSv1 .3 224 bits x448
TLSv1 .3 112 bits ffdhe2048
TLSv1 .3 128 bits ffdhe3072
TLSv1 .3 150 bits ffdhe4096
TLSv1 .3 175 bits ffdhe6144
TLSv1 .3 192 bits ffdhe8192

SSL Certificate :
Certificate blob:

-----BEGIN CERTIFICATE -----
MIIEGzCCAgMCAhACMA0GCSqGSIb3DQEBCwUAMIHPMQswCQYDVQQGEwJDWjEPMA0G
A1UECAwGUHJhZ3VlMREwDwYDVQQHDAhQcmFndWUgNjEtMCsGA1UECgwkVFlGQU1B
VEUgQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkgTHRkMRUwEwYDVQQLDAxDQSBSb290
IHVuaXQxJzAlBgNVBAMMHnR5ZmFtYXRlLmNlcnRpZmljYXRlLmF1dGhvcml0eTEt
MCsGCSqGSIb3DQEJARYedHlmYW1hdGVAY2VydGlmaWNhdGUuYXV0aG9yaXR5MB4X
DTIyMDUwODIxMjMzMVoXDTMyMDUwNTIxMjMzMVowgaAxCzAJBgNVBAYTAkNaMR8w
HQYDVQQIExZDYXBpdGFsIENpdHkgb2YgUHJhZ3VlMREwDwYDVQQHEwhQcmFndWUg
NjERMA8GA1UEChMIRklUIENWVVQxDzANBgNVBAsTBkJJLUJJVDEUMBIGA1UEAxML
cHVmaW50bHMuY3oxIzAhBgkqhkiG9w0BCQEWFHR5ZmFtYXRlQGZpdC5jdnV0LmN6
MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEgXiYVB6gNXesoEdqsFVedeAt58PN
89 TzFbKdnIhpVRD8oUAVJ6F9 / x4WSBXcFDteixr9evTaAMJsDbUbe / fxojANBgkq
hkiG9w0BAQsFAAOCAgEAyiVG8 + asEdiWj4HmyEVMpiTE7MAs0CCqNmdaBIK2q6MO
NgXbcYUW2fRCk7gzfhFD536jPGa + rmVIwc4i9HMeznexTinakpYnLQ + MklIAFg2U
zB9TSr38YRaCyOHIKiIwTxc1l6BDwd6t06k8uWjmfDzzAuzks2OSmLWGTb3rUi ++
m+1 ThALLWEOMJx0QikS6rY5pqaNo6KHPpQy0AiOewGgCGZXyaSeM61qt8Ec8Zvpa
RBVpFTv +94 chqfvSYJiAixgd6RWRWqs + z51XD1oFhSp48RLBUmFQb +7 yVWxJJZPW
+ nnCJ1hXcNoRyutEOHwL + Chmt2l7fY1CxOO5c1xX1V +9 t7tTosVmeItvoJ6i1BCx



55

TFn8svOrQJrP9hFu8zbnxN3HKhGUZn9PbNgKSC + C3m9x1Dt8og7eXLb8sAEMJLeD
W74kVnQ /VrP/ YerVAPOSauDSyQWpqN0VyY5bAHpLjuh0zosQexa7Ah6B8 + k3tsOy
chdA2g3y5mZcniBNwmpzbprTih0JF6ulzSrx3Yk7sPYNztYl6AN +PnAF/ kXe49kn
hUip1hDkGf4tEtR5p0uU + dBEIrSuwz3H1JAyHlha2Rajmk4nVyjUb2M / MMzdbnwg
HsrDYqp4Fu /8 rlhkyws1SQGOwQ7H83DOIVBvkwNtB10hpxsilVQshe + EduSsoBI =
-----END CERTIFICATE -----

Version : 0
Serial Number : 4098 (0 x1002)
Signature Algorithm : sha256WithRSAEncryption
Issuer : /C=CZ/ST= Prague /L= Prague 6/O= TYFAMATE Certification

Authority Ltd/OU=CA Root unit/CN= tyfamate . certificate . authority /
emailAddress = tyfamate@certificate . authority

Not valid before : May 8 21:23:31 2022 GMT
Not valid after: May 5 21:23:31 2032 GMT
Subject : /C=CZ/ST= Capital City of Prague /L= Prague 6/O=FIT CVUT/OU=BI

-BIT/CN= pufintls .cz/ emailAddress = tyfamate@fit .cvut.cz
Public Key Algorithm : NULL
EC Public Key:

Public -Key: (256 bit)
pub:

04:81:78:98:54:1 e:a0 :35:77: ac:a0 :47:6a:b0 :55:
5e:75: e0:2d:e7:c3:cd:f3:d4:f3 :15: b2:9d:9c:88:
69:55:10: fc:a1 :40:15:27: a1:7d:ff:1e :16:48:15:
dc :14:3b:5e:8b:1a:fd:7a:f4:da :00: c2:6c:0d:b5:
1b:7b:f7:f1:a2

ASN1 OID: prime256v1
NIST CURVE: P -256

Verify Certificate :
unable to get local issuer certificate

SSL Certificate :
Signature Algorithm : sha256WithRSAEncryption
ECC Curve Name: prime256v1
ECC Key Strength : 128

Subject : pufintls .cz
Issuer : tyfamate . certificate . authority

Not valid before : May 8 21:23:31 2022 GMT
Not valid after: May 5 21:23:31 2032 GMT



56 Testing TLS using the sslscan application



Bibliography

1. STANÍČEK, O. Physical unclonable functions on ESP32. Prague, 2022. Bachelor’s Thesis.
Czech Technical University in Prague, Faculty of Information Technology, Department of
Computer Systems. to appear.

2. MAES, R. Physically Unclonable Functions. Springer Berlin Heidelberg, 2013. Available
from doi: 10.1007/978-3-642-41395-7.

3. BHUNIA, S.; TEHRANIPOOR, M. Hardware Security: A Hands-on Learning Approach.
1st ed. Katey Birtcher, 2018. isbn 978-0-12-812477-2.

4. GASSEND, B. Physical random functions. Cambridge, 2003. Masters’s Thesis. Massachusetts
Institute of Technology, Department of Electrical Engineering and Computer Science.

5. KODÝTEK, F. HW Bezpečnost: Fyzicky neklonovatlené funkce [online]. 2017 [visited on
2022-04-22]. Available from: https://courses.fit.cvut.cz/BI-HWB/lectures/files/
prednaska8.pdf. accessible after authorization with Czech Technical University account.

6. RÜHRMAIR, U.; BUSCH, H.; KATZENBEISSER, S. Strong PUFs: Models, Constructions,
and Security Proofs. In: Information Security and Cryptography. Springer Berlin Heidelberg,
2010, pp. 79–96. Available from doi: 10.1007/978-3-642-14452-3_4.

7. HAMMING, R. W. Error detecting and error correcting codes. The Bell System Technical
Journal. 1950, vol. 29, no. 2, pp. 154–155. Available from doi: 10.1002/j.1538-7305.
1950.tb00463.x.

8. MAITI, A.; GUNREDDY, V.; SCHAUMONT, P. A Systematic Method to Evaluate and
Compare the Performance of Physical Unclonable Functions. In: Embedded Systems Design
with FPGAs. Springer New York, 2012, pp. 245–267. Available from doi: 10.1007/978-1-
4614-1362-2_11.

9. MAES, R.; VERBAUWHEDE, I. Physically Unclonable Functions: A Study on the State of
the Art and Future Research Directions. In: Towards Hardware-Intrinsic Security: Founda-
tions and Practice. Ed. by SADEGHI, A.-R.; NACCACHE, D. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 3–37. isbn 978-3-642-14452-3. Available from doi: 10.1007/
978-3-642-14452-3_1.

10. HORI, Y.; YOSHIDA, T.; KATASHITA, T.; SATOH, A. Quantitative and Statistical Per-
formance Evaluation of Arbiter Physical Unclonable Functions on FPGAs. In: 2010 Inter-
national Conference on Reconfigurable Computing and FPGAs. 2010, pp. 298–303. Available
from doi: 10.1109/ReConFig.2010.24.

11. MAITI, A.; CASARONA, J.; MCHALE, L.; SCHAUMONT, P. A large scale characteriza-
tion of RO-PUF. In: 2010 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST). 2010, pp. 94–99. Available from doi: 10.1109/HST.2010.5513108.

57

https://doi.org/10.1007/978-3-642-41395-7
https://courses.fit.cvut.cz/BI-HWB/lectures/files/prednaska8.pdf
https://courses.fit.cvut.cz/BI-HWB/lectures/files/prednaska8.pdf
https://doi.org/10.1007/978-3-642-14452-3_4
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1007/978-1-4614-1362-2_11
https://doi.org/10.1007/978-3-642-14452-3_1
https://doi.org/10.1007/978-3-642-14452-3_1
https://doi.org/10.1109/ReConFig.2010.24
https://doi.org/10.1109/HST.2010.5513108


58 Bibliography

12. MCGRATH, T.; BAGCI, I. E.; WANG, Z. M.; ROEDIG, U.; YOUNG, R. J. A PUF
taxonomy. Applied Physics Reviews. 2019, vol. 6, no. 1, p. 011303. Available from doi:
10.1063/1.5079407.

13. PAPPU, R.; RECHT, B.; TAYLOR, J.; GERSHENFELD, N. Physical One-Way Functions.
Science. 2002, vol. 297, no. 5589, pp. 2026–2030. Available from doi: 10.1126/science.
1074376.

14. HOLCOMB, D. E.; BURLESON, W. P.; FU, K. Power-Up SRAM State as an Identifying
Fingerprint and Source of True Random Numbers. IEEE Transactions on Computers. 2009,
vol. 58, no. 9, pp. 1198–1210. Available from doi: 10.1109/TC.2008.212.

15. HELFMEIER, C.; BOIT, C.; NEDOSPASOV, D.; SEIFERT, J.-P. Cloning Physically Un-
clonable Functions. In: 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST). 2013, pp. 1–6. Available from doi: 10.1109/HST.2013.6581556.

16. CHANDRA, S.; PAIRA, S.; ALAM, S. S.; SANYAL, G. A comparative survey of Sym-
metric and Asymmetric Key Cryptography. In: 2014 International Conference on Electron-
ics, Communication and Computational Engineering (ICECCE). 2014, pp. 83–93. Available
from doi: 10.1109/ICECCE.2014.7086640.

17. BÖHM, C.; HOFER, M. Error Correction Codes. In: Physical Unclonable Functions in
Theory and Practice. Springer New York, 2012, pp. 87–102. Available from doi: 10.1007/
978-1-4614-5040-5_5.

18. DODIS, Y.; OSTROVSKY, R.; REYZIN, L.; SMITH, A. Fuzzy Extractors: How to Gen-
erate Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing.
2008, vol. 38, no. 1, pp. 97–139. Available from doi: 10.1137/060651380.

19. PRICE, N. E.; SHERMAN, A. T. How to Generate Repeatable Keys Using Physical Unclon-
able Functions Correcting PUF Errors with Iteratively Broadening and Prioritized Search
[online]. 2014 [visited on 2022-04-30]. Available from eprint: https://ia.cr/2014/1023.

20. EUROPEAN UNION AGENCY FOR CYBERSECURITY. Algorithms, key size and pa-
rameters: report – 2014 [online]. Ed. by SMART, N. LU: Publications Office, 2014 [visited
on 2022-04-27]. Available from doi: 10.2824/36822.

21. KRAWCZYK, H. Cryptographic extraction and key derivation: The HKDF scheme. In:
Advances in Cryptology – CRYPTO 2010. Springer Berlin Heidelberg, 2010, pp. 631–648.
isbn 9783642146220. issn 0302-9743. Available from doi: 10.1007/978-3-642-14623-
7_34.

22. BONEH, D. Twenty Years of Attacks on the RSA Cryptosystem. Notices of the American
Mathematical Society. 1999, vol. 46, pp. 203–213.

23. NAKOV, S. Practical Cryptography for Developers: Elliptic Curve Cryptography (ECC)
[online]. 2021 [visited on 2022-05-10]. isbn 978-619-00-0870-5. Available from: https://
cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-
ecc.

24. CLOUDFLARE, INC. What is TLS (Transport Layer Security)? [Online]. © 2022 [visited on
2022-05-05]. Available from: https://www.cloudflare.com/learning/ssl/transport-
layer-security-tls/.

25. SULLIVAN, N. A Detailed Look at RFC 8446 (a.k.a. TLS 1.3) [online]. 2018-08-11 [visited
on 2022-05-05]. Available from: https://blog.cloudflare.com/rfc-8446-aka-tls-1-
3/.

26. CLOUDFLARE, INC. What is an SSL certificate? [Online]. © 2022 [visited on 2022-05-
05]. Available from: https://www.cloudflare.com/learning/ssl/what-is-an-ssl-
certificate/.

https://doi.org/10.1063/1.5079407
https://doi.org/10.1126/science.1074376
https://doi.org/10.1126/science.1074376
https://doi.org/10.1109/TC.2008.212
https://doi.org/10.1109/HST.2013.6581556
https://doi.org/10.1109/ICECCE.2014.7086640
https://doi.org/10.1007/978-1-4614-5040-5_5
https://doi.org/10.1007/978-1-4614-5040-5_5
https://doi.org/10.1137/060651380
https://ia.cr/2014/1023
https://doi.org/10.2824/36822
https://doi.org/10.1007/978-3-642-14623-7_34
https://doi.org/10.1007/978-3-642-14623-7_34
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
https://blog.cloudflare.com/rfc-8446-aka-tls-1-3/
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/


Bibliography 59

27. VEHENT, J.; DESTUYNDER, G.; MEIHM, A.; KING, A. Security/Server Side TLS [on-
line]. 2022-04-01 [visited on 2022-05-05]. Available from: https://wiki.mozilla.org/
Security/Server_Side_TLS.

28. RESCORLA, E. The Transport Layer Security (TLS) Protocol Version 1.3 [RFC 8446].
RFC Editor, 2018-08. Tech. rep., 8446. Available from doi: 10.17487/RFC8446.

29. OPENSSL FOUNDATION, INC. Vulnerabilities [online]. © 2021 [visited on 2022-05-05].
Available from: https://www.openssl.org/news/vulnerabilities.html.

30. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. ESP-TLS [online]. © 2022 [visited on
2022-05-05]. Available from: https://docs.espressif.com/projects/esp- idf/en/
latest/esp32/api-reference/protocols/esp_tls.html.

31. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. Copyrights and Licenses [online]. © 2022
[visited on 2022-05-05]. Available from: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/COPYRIGHT.html.

32. WOLFSSL INC. wolfSSL Embedded SSL/TLS Library [online]. © 2022 [visited on 2022-05-
05]. Available from: https://www.wolfssl.com/products/wolfssl/.

33. WOLFSSL INC. Documentation [online]. © 2022 [visited on 2022-05-05]. Available from:
https://www.wolfssl.com/docs/.

34. TRUSTED FIRMWARE. Mbed TLS [online]. 2022-02-28 [visited on 2022-05-05]. Available
from: https://developer.trustedfirmware.org/w/mbed-tls/.

35. WEBWIRE. Hafnium, MbedTLS, PSA Crypto join the Trusted Firmware Project [on-
line]. 2020-07-17 [visited on 2022-05-05]. Available from: https://www.webwire.com/
ViewPressRel.asp?aId=261668.

36. TRUSTED FIRMWARE. Releases · Mbed-TLS [online]. 2021-12-17 [visited on 2022-05-
05]. Available from: https://github.com/Mbed-TLS/mbedtls/releases.

37. TRUSTED FIRMWARE. TLS 1.3 support [online]. 2022-03-31 [visited on 2022-05-05].
Available from: https://github.com/Mbed- TLS/mbedtls/blob/development/docs/
architecture/tls13-support.md.

38. ARM LIMITED. mbed TLS v2.16.1 source code documentation [online]. © 2015 [visited on
2022-05-05]. Available from: https://tls.mbed.org/api/.

39. TRUSTED FIRMWARE. README for Mbed TLS [online]. 2022-03-31 [visited on 2022-
05-05]. Available from: https://github.com/Mbed-TLS/mbedtls/blob/development/
README.md.

40. PORNIN, T. BearSSL [online]. © 2018 [visited on 2022-05-05]. Available from: https :
//bearssl.org/.

41. PORNIN, T. TLS 1.3 Status [online]. © 2018 [visited on 2022-05-05]. Available from: https:
//bearssl.org/tls13.html.

42. ORYX EMBEDDED. CycloneSSL: Embedded TLS / DTLS Library [online]. © 2021 [visited
on 2022-05-05]. Available from: https://oryx-embedded.com/products/CycloneSSL.

43. WOLFSSL INC. Releases · wolfSSL [online]. 2022-05-03 [visited on 2022-05-05]. Available
from: https://github.com/wolfSSL/wolfssl/releases.

44. ORYX EMBEDDED. Download: Here you can find our source code by version [online].
© 2021 [visited on 2022-05-05]. Available from: https : / / www . oryx - embedded . com /
download/.

45. WOLFSSL INC. First DO-178 SOI Audits [online]. 2020-06-30 [visited on 2022-05-05].
Available from: https://www.wolfssl.com/first-178-soi-audits/.

46. BAKKER, P. Is mbed TLS FIPS certified? [Online]. 2019-12-12 [visited on 2022-05-05].
Available from: https://tls.mbed.org/kb/generic/is-mbedtls-fips-certified.

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://doi.org/10.17487/RFC8446
https://www.openssl.org/news/vulnerabilities.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/esp_tls.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/COPYRIGHT.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/COPYRIGHT.html
https://www.wolfssl.com/products/wolfssl/
https://www.wolfssl.com/docs/
https://developer.trustedfirmware.org/w/mbed-tls/
https://www.webwire.com/ViewPressRel.asp?aId=261668
https://www.webwire.com/ViewPressRel.asp?aId=261668
https://github.com/Mbed-TLS/mbedtls/releases
https://github.com/Mbed-TLS/mbedtls/blob/development/docs/architecture/tls13-support.md
https://github.com/Mbed-TLS/mbedtls/blob/development/docs/architecture/tls13-support.md
https://tls.mbed.org/api/
https://github.com/Mbed-TLS/mbedtls/blob/development/README.md
https://github.com/Mbed-TLS/mbedtls/blob/development/README.md
https://bearssl.org/
https://bearssl.org/
https://bearssl.org/tls13.html
https://bearssl.org/tls13.html
https://oryx-embedded.com/products/CycloneSSL
https://github.com/wolfSSL/wolfssl/releases
https://www.oryx-embedded.com/download/
https://www.oryx-embedded.com/download/
https://www.wolfssl.com/first-178-soi-audits/
https://tls.mbed.org/kb/generic/is-mbedtls-fips-certified


60 Bibliography

47. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. ESP32 Series: Datasheet [online]. 2022-
03 [visited on 2022-05-05]. Available from: https://www.espressif.com/sites/default/
files/documentation/esp32_datasheet_en.pdf.

48. JOSEFSSON, S.; LEONARD, S. Textual Encodings of PKIX, PKCS, and CMS Structures
[RFC 7468]. RFC Editor, 2015-04. Tech. rep., 7468. Available from doi: 10.17487/RFC7468.

49. TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU. Information tech-
nology - Open Systems Interconnection - The Directory: Selected attribute types [online].
2019-10-14 [visited on 2022-05-05]. Tech. rep. International Telecommunications Union.
Available from: https://handle.itu.int/11.1002/1000/14037.

50. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. ESP-IDF [online]. © 2022 [visited on
2022-05-09]. Available from: https://www.espressif.com/en/products/sdks/esp-idf.

51. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. Get Started [online]. © 2022 [visited on
2022-05-09]. Available from: https://docs.espressif.com/projects/esp- idf/en/
latest/esp32/get-started/index.html.

52. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. Build System [online]. © 2022 [visited
on 2022-05-09]. Available from: https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-guides/build-system.html.

53. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. ESP-IDF Versions [online]. © 2022 [vis-
ited on 2022-05-09]. Available from: https : / / docs . espressif . com / projects / esp -
idf/en/latest/esp32/versions.html.

54. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. ESP-IDF 5.0 Migration Guides [online].
© 2022 [visited on 2022-05-09]. Available from: https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/migration-guides/index.html.

55. WOLFSSL INC. ESP-IDF port [online]. 2022-03-30 [visited on 2022-05-09]. Available from:
https://github.com/wolfSSL/wolfssl/tree/master/IDE/Espressif/ESP-IDF.

56. WOLFSSL INC. Building wolfSSL [online]. © 2022 [visited on 2022-05-09]. Available from:
https://www.wolfssl.com/documentation/wolfssl-manual/chapter02.html.

57. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. Networking APIs [online]. © 2022 [visited
on 2022-05-09]. Available from: https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-reference/network/index.html.

58. RESCORLA, E. HTTP Over TLS [RFC 2818]. RFC Editor, 2000-05. Tech. rep., 2818.
Available from doi: 10.17487/rfc2818.

59. WOLFSSL INC. ASN.1 [online]. © 2021 [visited on 2022-05-09]. Available from: https:
//www.wolfssl.com/doxygen/group__ASN.html.

60. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. mDNS Service [online]. © 2022 [visited
on 2022-05-09]. Available from: https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-reference/protocols/mdns.html.

61. MOCKAPETRIS, P. V. Domain names - implementation and specification [RFC 1035].
RFC Editor, 1987-11. Tech. rep., 1035. Available from doi: 10.17487/RFC1035.

62. WOLFSSL INC. Algorithms - ECC [online]. © 2021 [visited on 2022-05-09]. Available from:
https://www.wolfssl.com/doxygen/group__ECC.html.

63. WOLFSSL INC. wolfssl/ecc.c [online]. 2022-04-27 [visited on 2022-05-09]. Available from:
https://github.com/wolfSSL/wolfssl/blob/master/wolfcrypt/src/ecc.c.

64. WOLFSSL INC. wolfSSL Certificates and Keys [online]. © 2021 [visited on 2022-05-09].
Available from: https://www.wolfssl.com/doxygen/group__CertsKeys.html.

https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://doi.org/10.17487/RFC7468
https://handle.itu.int/11.1002/1000/14037
https://www.espressif.com/en/products/sdks/esp-idf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/build-system.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/build-system.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/versions.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/versions.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/migration-guides/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/migration-guides/index.html
https://github.com/wolfSSL/wolfssl/tree/master/IDE/Espressif/ESP-IDF
https://www.wolfssl.com/documentation/wolfssl-manual/chapter02.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/index.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/index.html
https://doi.org/10.17487/rfc2818
https://www.wolfssl.com/doxygen/group__ASN.html
https://www.wolfssl.com/doxygen/group__ASN.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/mdns.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/protocols/mdns.html
https://doi.org/10.17487/RFC1035
https://www.wolfssl.com/doxygen/group__ECC.html
https://github.com/wolfSSL/wolfssl/blob/master/wolfcrypt/src/ecc.c
https://www.wolfssl.com/doxygen/group__CertsKeys.html


Bibliography 61

65. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. Universal Asynchronous Receiver/Trans-
mitter (UART) [online]. © 2022 [visited on 2022-05-09]. Available from: https://docs.
espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/
uart.html.

66. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. Logging library [online]. © 2022 [visited
on 2022-05-09]. Available from: https://docs.espressif.com/projects/esp-idf/en/
latest/esp32/api-reference/system/log.html.

67. ESP IGRR. Re: ESP32 How to turn off automatic log of system output [online]. 2018-01-17
[visited on 2022-05-09]. Available from: https://www.esp32.com/viewtopic.php?t=4249.

68. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. Non-volatile storage library [online].
© 2022 [visited on 2022-05-09]. Available from: https://docs.espressif.com/projects/
esp-idf/en/latest/esp32/api-reference/storage/nvs_flash.html.

69. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. SPIFFS Filesystem [online]. © 2022
[visited on 2022-05-09]. Available from: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/api-reference/storage/spiffs.html.

70. MACKENZIE, D. stty(1) — Linux manual page [online]. .328th ed. 2020 [visited on 2022-
05-09]. Available from: https://www.man7.org/linux/man-pages/man1/stty.1.html.

71. OPENSSL FOUNDATION, INC. openssl-ca [online]. © 2021 [visited on 2022-05-09]. Avail-
able from: https://www.openssl.org/docs/manmaster/man1/openssl-ca.html.

72. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. lwIP [online]. © 2022 [visited on 2022-
05-09]. Available from: https://docs.espressif.com/projects/esp-idf/en/latest/
esp32/api-guides/lwip.html.

73. OPENSSL FOUNDATION, INC. s client [online]. © 2021 [visited on 2022-05-09]. Available
from: https://www.openssl.org/docs/man1.0.2/man1/openssl-s_client.html.

74. RBSEC. sslscan2 [online]. 2022-04-10 [visited on 2022-05-09]. Available from: https://
github.com/rbsec/sslscan.

75. STANÍČEK, O. esp32 puflib [online]. 2022-03-22 [visited on 2022-04-01]. Available from:
https://github.com/Cpt-Hook/esp32_puflib/tree/main.

76. TÝFA, M. ets delay us(...) is not defined in puf measurement.c [online]. 2022-04-14 [visited
on 2022-04-14]. Available from: https://github.com/Cpt-Hook/esp32_puflib/issues/1.

77. TÝFA, M. PUF STATE is RESPONSE CLEAN after successful get puf response [online].
2022-05-11 [visited on 2022-05-11]. Available from: https : / / github . com / Cpt - Hook /
esp32_puflib/issues/3.

78. ESPRESSIF SYSTEMS (SHANGHAI) CO., LTD. Deep Sleep Wake Stubs [online]. © 2022
[visited on 2022-05-09]. Available from: https://docs.espressif.com/projects/esp-
idf/en/latest/esp32/api-guides/deep-sleep-stub.html.

79. WOLFSSL INC. Callbacks [online]. © 2022 [visited on 2022-05-09]. Available from: https:
//www.wolfssl.com/documentation/wolfssl-manual/chapter06.html.

https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/log.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/log.html
https://www.esp32.com/viewtopic.php?t=4249
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/nvs_flash.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/spiffs.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/storage/spiffs.html
https://www.man7.org/linux/man-pages/man1/stty.1.html
https://www.openssl.org/docs/manmaster/man1/openssl-ca.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/lwip.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/lwip.html
https://www.openssl.org/docs/man1.0.2/man1/openssl-s_client.html
https://github.com/rbsec/sslscan
https://github.com/rbsec/sslscan
https://github.com/Cpt-Hook/esp32_puflib/tree/main
https://github.com/Cpt-Hook/esp32_puflib/issues/1
https://github.com/Cpt-Hook/esp32_puflib/issues/3
https://github.com/Cpt-Hook/esp32_puflib/issues/3
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/deep-sleep-stub.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-guides/deep-sleep-stub.html
https://www.wolfssl.com/documentation/wolfssl-manual/chapter06.html
https://www.wolfssl.com/documentation/wolfssl-manual/chapter06.html


62 Bibliography



Contents of the enclosed CD

readme.txt................................ introduction and information about the media
src

ESP32.................................source code for the proof of concept application
components

puflib...............................esp32 puflib developed by Ondřej Stańıček
wolfssl..............................wolfSSL library developed by wolfSSL Inc.

main....................................................application starting point
wolfSSLConfiguration ....................... configuration for the wolfSSL library
sdkconfig.defaults.......................default configuration for the application

PC...........................................................enrollment helper script
thesis .............................................. LATEX source code for this thesis

generated
thesis.pdf................................................PDF version of this thesis

63


	Acknowledgments
	Declaration
	Abstract
	Abbreviations
	Introduction
	Aims of This Thesis
	Physical Unclonable Function
	What is a Physical Unclonable Function?
	Challenge-Response Pair
	Strong and Weak PUF
	Properties
	Constructibility
	Evaluability
	Uniqueness
	Unclonability
	Reproducibility
	Unpredictability
	Other Properties

	Constructions
	Optical PUF
	SRAM PUF

	Usage
	Device Identification
	Device Authorization
	Counterfeit Protection


	Key Generation from PUF
	Cryptographic Keys
	Symmetric Key
	Asymmetric Key

	Error Checking and Correction
	Secure Sketch
	Repeated Sampling

	Generating Key from Response
	Response as a Key
	Strong Extractor
	Key Derivation Function

	Key Generation Recommendations
	Best Construction
	Best Error Checking and Correction
	Best Process to Generate a Key from Response


	Transport Layer Security on ESP32
	Transport Layer Security
	Functions of TLS
	TLS Version 1.3

	Self Implementation of TLS
	Available Libraries
	ESP-TLS
	WolfSSL
	Mbed TLS
	BearSSL
	CycloneSSL

	The Best TLS Library?

	Design of a Key Enrollment Procedure
	Aims of the Procedure
	Communication Medium
	Procedure
	Triggering Key Enrollment
	Creating Certificate Signing Request
	Exporting Certificate Signing Request
	Receiving Certificate Chain
	Validating Certificate Chain


	Implementation
	ESP-IDF
	ESP-IDF Version
	Installing WolfSSL

	Additional Components
	Access Point
	Domain Name System
	Web Server
	Mock Library Providing PUF

	Creating a Key
	Key Enrollment
	Communication Media
	Triggering Key Enrollment
	Creating Certificate Signing Request
	Receiving Certificate Chain
	Validating Certificate Chain
	Helper Script

	Establishing TLS Connection
	Test of Authentication and Connection Establishment
	Web Browsers
	OpenSSL s_client
	sslscan


	Using an Actual PUF
	Challenges with PUF Library Integrations
	Incompatibility with ESP-IDF Version 5.0
	Response not Available
	Deep Sleep

	Test of Authentication and Connection Establishment

	Usability of PUF in TLS on ESP32
	Speed of Response Generation
	Future Improvements
	Another PUF Construction
	Generating Private key on Demand in TLS


	Conclusion
	Example of the Enrollment Procedure
	Testing TLS Using the s_client Application
	Testing TLS using the sslscan application
	Contents of the enclosed CD

