CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F 3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor's Thesis

Facial Time Lapse Video

A Generative Approach to Creating Facial Time Lapse

Videos

Ondfiej Veres

May 2022
Supervisor: Ing. Jan €ech, Ph.D.

£t BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details
e N
Student's name: VereS Ondrej Personal ID number: 492095

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Cybernetics

Study program: Open Informatics

Specialisation: Artificial Intelligence and Computer Science
\ /
[l. Bachelor’s thesis details
e A

Bachelor’s thesis title in English:

Facial Time Lapse Video

Bachelor’s thesis title in Czech:
Casosbérné video obliceje

Guidelines:

A time lapse video of a face documents an age progression of a person. The video might be attractive to visualize, e.g.,
child growing. The input would be an unorganized collection of images (a family photo album, automatically crawled images
of politicians or other celebrities). A target person should be present in most of the images, but may appear on an image
together with other persons or may not be present at all (on small number of images).

The algorithm would then process the input set: (1) Detects faces, (2) Finds the target person, estimates the acquisition
time of the image (in case EXIF data is unavailable or is apparently wrong). (3) Represents face images in StyleGAN [1]
latent space, (4) Morphs temporarily subsequent facial images by interpolation in the StyleGAN latent space to generate
smooth transitions.

The output will be a video.

Optionally, prepare a web-service, when a user uploads his/her image collection, the algorithm is executed on the server
to output the video available for download.

Bibliography / sources:

[1] T. Karras, S. Laine and T. Aila. A style-based generator architecture for generative adversarial networks. In CVPR,
20109.

[2] R. Abdal, Y. Qin and P. Wonka. Image2stylegan: How to embed images into the stylegan latent space? In ICCV, 2019.
[3] A. Subrtova, J. Cech, V. Franc. Hairstyle Transfer between Face Images, In IEEE Face and Gesture Recognition, 2021.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Cech, Ph.D. Visual Recognition Group FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Date of bachelor’s thesis assignment: 25.01.2022 Deadline for bachelor thesis submission: 20.05.2022

Assignment valid until: 30.09.2023

Ing. Jan Cech, Ph.D. prof. Ing. Tomas Svoboda, Ph.D. prof. Mgr. Petr Pata, Ph.D.

Supervisor’s signature Head of department’s signature Dean’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

[ll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgement / Declaration

I would like to sincerely thank my
supervisor Ing. Jan Cech, Ph.D., for
giving me the opportunity to work on
this very interesting project. Moreover,
his guidance and expertise were essen-
tial to overcoming problems throughout
the development of this project.

Also, T also would like to thank Ing.
Daniel Vecerka for helping me solve
technical issues regarding making the
web application available online.

Lastly, I would like to thank my fam-
ily and friends for their continuous sup-
port.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague, 20. May 2022

Abstrakt

Tato prace popisuje generativni me-
todu pro tvorbu casosbérnych videi
obliceje a webovou aplikaci dostupnou
na adrese http://cmp.felk. cvut.
cz/facialtimelapse, do které uzi-
vatel mtze nahrat sbirku klicovych
snimku dané osoby nebo zadat jméno
zname osobnosti a sbirka se na zakladé
internetového vyhledavani vytvofri au-
tomaticky. Aplikace na zdkladé této
sbirky vygeneruje plynulé casosbérné
video obli¢eje dané osoby.

Pouziti této metody je umoznéno diky
vyznamnému pokroku v oblasti genero-
vani foto-realisticky obrazku obliceje po-
moci generativni adversialni sité [1] Sty-
leGAN/[2].

Nase metoda funguje v nésleduji-
cich krocich: (0) Pokud je vstup jméno
zname osobnosti, najde pomoci in-
ternetového vyhledavace fotky dané
osoby. (1) Seradi fotky podle automa-
ticky odhadnutého véku. (2) Doporuci
odstranéni fotek, na kterych se prav-
dépodobné dana osoba nenachazi. (3)
Invertuje vstupni obrazky do latentniho
prostoru StyleGANu. (4) Vygeneruje
plynulou sekvenci obrazkti dané osoby
pouzitim interpolace v latentnim pro-
storu StyleGANu. (5) Prolne klicové
snimky s vygenerovanou sekvenci pro
lepsi zachovani identity. (6) Spoji vy-
slednou sekvenci obrazkt do videa.

Ve srovnani s naivni metodou spo-
Civajici v interpolaci intenzit pixeld
klicovych snimkt, nase metoda pro-
dukuje videa, kterd puisobi prirozenéji
a vice realisticky. Pokud ovSem nasi
metodu porovname s naivni metodou
v zachovani identity, naivni metoda si
vede lépe, protoze neuronova sit, ktera
ji vyhodnocuje, neni citliva na artefakty
,ducht® z predochoziho ¢i néasledujiciho
klicového snimku.

Kli€¢ova slova: casosbérné video, gene-
rativni adversidlni sité, StyleGAN

/ Abstract

Vi

This thesis describes a generative
method for creating facial time lapse
videos and a web application avail-
able at http://cmp.felk.cvut.cz/
facialtimelapse where a user can up-
load his/her image collection of sparse
key-frames or enter a well-known per-
son’s name, and the application will
crawl the collection from the Internet
automatically. Afterward, the applica-
tion will generate a smooth facial time
lapse based on the collection.

The proposed method is enabled by
the significant progress in the generation
of photo-realistic facial images based on
an improved generative adversarial net-
work [1], the StyleGAN [2].

The proposed algorithm works in the
following steps: (0) If the input is a well-
known person’s name, crawl images of
the person from the Internet. (1) Order
input images according to an automati-
cally estimated age. (2) Recommend re-
moving images without the target per-
son. (3) Invert the input images into
the StyleGAN latent space. (4) Gener-
ate a smooth sequence of images of the
target person using linear interpolation
in StyleGAN latent space. (5) Partially
blend the key-frames into the generated
sequence to increase identity fidelity. (6)
Combine the resulting sequence of im-
ages into a video.

Compared to the naive method,
which produces a video by interpolating
the pixel intensities of the key-frames,
our method produces more natural
and realistic facial time lapse videos.
However, the naive method performed
better in identity loss because the neural
network computing the identity loss has
minimal sensitivity to “ghosts” artifacts
from the previous or next key-frame in
the time lapse.

Keywords: time lapse, generative ad-
versarial networks, StyleGAN

http://cmp.felk.cvut.cz/facialtimelapse
http://cmp.felk.cvut.cz/facialtimelapse
http://cmp.felk.cvut.cz/facialtimelapse
http://cmp.felk.cvut.cz/facialtimelapse

Contents

1 Introduction 1
1.1 Definition 1
1.2 Motivation 1
1.3 Overview of the possible

methods 1

1.3.1 Classical approach 1

1.3.2 Morphing approach 2
1.4 Generative approach 2

2 Technical background q
21 GANs 4
2.2 StyleGAN 5

2.2.1 StyleGAN2 6

2.2.2 StyleGAN3 6

2.3 Latent space interpolation7
2.4 Representing facial images

in the latent space of StyleGAN .7

2.4.1 Losses 7

2.4.2 Input space W+ 8

2.4.3 Latent space optimization . . 8

2.4.4 Latent space encoding 9
2.4.5 Combination of encod-

ing and optimization 9

2.4.6 Latent image manipulation 10

3 Approach 12

3.1 Definition of the problem . . . 12

3.1.1 Input 12

3.1.2 Output 12
3.2 General description of the

proposed solution 12

3.3 Crawling the images 12

3.4 Detecting, aligning faces,
and estimating age 13

3.5 Representing facial images
in the latent space of StyleGAN 13

3.6 Morphing facial images in

StyleGAN latent space 13

3.7 Image blending 14
3.8 Suggesting removal of im-
ages of people who are not

the target person 15

4 Implementation 16

4.1 Frontend 16

4.1.1 Components 16

4.1.2 Ul Design 20

4.2 Backend 20

/

Vii

4.2.1 API
4.2.2 Crawling the images
4.2.3 Image processing
4.2.4 Inverting and generat-

ing images

5 Experimental evaluation
5.1 Methods.
5.2 Experiment 1: Generating
a facial time lapse
5.2.1 Input images
5.2.2 Visual results
5.2.3 Method evaluation
5.3 Experiment 2: Recreating
a facial time lapse
5.3.1 Visual results.
5.3.2 Method evaluation
5.4 Discussion

6 Conclusion
6.1 Possible improvements

References

21
22

22

23
23

23
23
24
24

26
26
26
28

29
29

30

/ Figures

viii

1.1 Time lapse of a flower blooming
1.2 Example of a classical ap-
proach to creating facial time
lapse video......................
1.3 Example of a morphing ap-
proach to creating facial time
lapse video......................
1.4 Example of a generative ap-
proach to creating a facial

time lapse video of Bill Gates ...

2.1 Visualisation of discrimina-
tor and generator
2.2 Example set of facial images
generated by GAN
2.3 Example set of facial images
generated by StyleGAN........
2.4 Example set of facial images
generated by StyleGAN2
2.5 Example set of facial images
generated by StyleGAN3
2.6 Encoder Comparison...........
2.7 Demonstration of improve-
ment in inversion quality
when using a combination
of encoding and optimization..
2.8 Example of latent space ma-
nipulation of age
3.1 Example of linear interpola-
tion ..o
3.2 Visualisation of image blend-
NG o
4.1 Facial time lapse generator
application......................
4.2 Enter name component
4.3 Upload images component
4.4 Item component
4.5 Result component
5.1 Example of an input set
5.2 Example of a processed list
of imagesooiiiiinl.
5.3 Visual comparison of the five
mentioned methods
5.4 Visual comparison of the 5
mentioned methods
5.5 Visual comparison of the 5
mentioned methods

.1

5.6 Comparison of the five meth-
ods in identity loss
5.7 Visual comparison of the five
mentioned methods
5.8 Comparison of the five meth-
ods in identity loss
5.9 Comparison of the five meth-
ods in identity loss

Chapter 1
Introduction

This chapter will explore the possible methods for creating facial time lapse videos.

I 1.1 Definition

A time lapse video is a series of photographs documenting a process, which generally
takes a long time. These images are displayed at a much higher frame rate than initially
captured. This visualization technique can take a process that has a duration of several
months or years and condense it to several seconds. Typical topics include growing
plants or mushrooms, blooming flowers, ants digging holes in ant farms, and other
natural processes. An example of a time lapse is shown in Fig. 1.1.

Figure 1.1. Time lapse capturing blooming flower.

I 1.2 Motivation

The main motivation behind this work is to create an interesting time lapse video
reflecting on how a person looked while growing up. The video should be suitable for
sharing with friends or family.

I 1.3 Overview of the possible methods

B 1.3.1 Classical approach

A person takes a photograph of herself/himself every day. Ideally, these photographs
should be taken regularly, with the same lighting at the same angle. Then these photos
can be put one after another into a video, as in Fig. 1.2.

The pros: The cons:

m It requires many images.

m Unless done professionally, lighting and
head position change in every photo,
making the video not smooth.

m Produces visible transition artifacts.

m Authentic representation of how the
person looked.

m If done professionally, this method
produces convincing results.

1. Introduction

Figure 1.2. Example of a classical approach to creating facial time lapse video. A repro-
duction from [3].

Il 1.3.2 Morphing approach

The user selects a few images that she/he wants to include in the time lapse. The
user selects facial parts, for instance, nose, eyes, eyebrows, chin, and forehead, on all
photographs. The program geometrically warps and morphs the images together to
create a smooth transition based on these selections. An example of such a program is
WinMorph [4].

The pros: The cons:

m Generates a smooth facial time lapse m It requires a precise manual selection of
video. facial parts on every image.

m Only a few key pictures are needed. m Geometric warping and morphing can

produce unwanted artifacts.

Figure 1.3. Example of a morphing approach to creating facial time lapse video. A repro-
duction from [5].

I 1.4 Generative approach

We are going to explore this approach in this work. The user selects a handful of
images, and a generative network automatically produces the images “in-between”. See
Fig. 1.4. as an example.

The pros: The cons:
m Generates a smooth facial time lapse m Identity is not guaranteed to be pre-
video. served unless we combine this method
m Only a few key pictures are needed. with others.

m The user does not need to select areas
in the facial images.

1.4 Generative approach

Figure 1.4. Example of a generative approach to creating a facial time lapse video of Bill
Gates.

Chapter 2
Technical background

This chapter will explain the basics of GANs, StyleGAN, and GAN inversion.

B 21 cans

Ian Goodfellow and his colleagues invented GANs [1] in 2014 at the University of
Montreal.

The generative adversarial networks consist of two neural networks: Generator G(z)
and discriminator D(x). The generator produces an image from a random noise sample
z ~ N(0,,1,), where n = dim(z). The discriminator produces a “credibility score”
between zero and one for an image. The “credibility score” corresponds to how “sure”
the discriminator is that the image is real and was not generated artificially. These two
networks are adversarial because they play a mini-max game together. The generator
creates new samples, while the discriminator evaluates them and decides whether they
are actual samples from the distribution or artificial ones from the generator. The
generator aims to generate samples that look like authentic images so that the dis-
criminator cannot tell them apart. However, the goal of the discriminator is to label
generated samples as generated while labeling real ones as real with the highest accu-
racy possible. In other words, the generator tries to maximize “the credibility score”
of the generated images while the discriminator tries to minimize the same value and
keep “the credibility score” of real images high. GAN is visualized in Fig. 2.1. Early
results of facial image synthesis can be seen in Fig. 2.2.

D tries to make
D(G(z)) near 0,

D(x) tries to be G tries to make
near 1 D(G(z)) near 1
Differentiable D
function D
. z sampled from x sampled from .
: b I C data model b’ |
Differentiable
function G

Figure 2.1. Visualisation of discriminator and generator. A reproduction from [6].

4

2.2 StyleGAN

Figure 2.2. Example set of facial images generated by an early GAN. A reproduction
from [1].

B 22 stylecan

StyleGAN [2] was published in 2019 by Nvidia researchers.

The authors of StyleGAN focused on changing the architecture of the generator G
to increase the quality of the images produced. The vector z is mapped to w € W
by a nonlinear transformation, where dim(Z) = dim(W) = 512. The w controls the
generator because A(w) is injected into each of the 18 convolution layers, where A is
learned affine transformation specific for that layer.

The authors trained StyleGAN on the FFHQ dataset [7] consisting of 70,000 images
crawled from Flickr [8]. The data set was cropped and aligned using DLIB [9].

With these and several other changes, the authors were able to generate high-quality
images with a resolution of 1024x1024 pixels and reduce the FID (Fréchet inception
distance) [10] score, which is a metric for evaluating the quality of generated images,
significantly. More details about StyleGAN can be found in the StyleGAN paper [2].
An example set of images generated by StyleGAN is shown in Fig. 2.3.

Figure 2.3. Example set of facial images randomly generated by StyleGAN. The images
contain some imperfections and artifacts. Images were downloaded from [11].

2. Technical background

Hl 2.2.1 StyleGAN2

StyleGAN2 was released a year after StyleGAN by an extended team of researchers at
Nvidia.

StyleGAN2 improves the generator G architecture to address issues in StyleGAN,
such as various defects and blurred parts of images. Moreover, it brings more changes
to increase the quality of the generated images and further reduce the FID score. For
more information on these changes, visit the StyleGAN2 paper [12]. The matrix of
example facial images generated by StyleGAN2 is shown in Fig. 2.4.

Figure 2.4. Example set of facial images generated randomly by StyleGAN2. Many types
of artifacts from StyleGAN were removed, and the overall image quality improved. Images
were downloaded from [13].

M 222 StyleGAN3

StyleGAN3 was published in October 2021 by researchers at Nvidia.

The main motivation behind StyleGAN3 is to remove the “Texture sticking problem”.
This issue occurs when an image morphs into another in latent space. It appears as if
the texture of hair or facial hair was “sticking to the screen”. It is caused because the
convolution layers have a reference of pixel coordinates. So, to eliminate the issue, the
authors had to get rid of any source positional reference. For instance, they removed
per-pixel noise inputs or replaced the learned constant input with a Fourier feature to
simplify working in the continuous domain. For more details, please read the StyleGAN3
paper [14]. An example set of images generated by StyleGANS3 is in Fig. 2.5.

6

2.3 Latent space interpolation

Figure 2.5. Example set of facial images generated by StyleGAN3. The image quality
stayed competitive with StyleGAN2 while removing the “Texture Sticking” issue. Images
were downloaded from [15].

I 2.3 Latent space interpolation

Minor changes to the latent code w produce minor changes in the image G(w). Gener-
ating an image on each step from one point to another point in latent space produces
a correct facial image. The smaller the steps in the latent space, the smaller the dif-
ferences between the generated images. In other words, interpolating in latent space
produces visually subsequent changes that can be put together into a smooth video.
This principle enables our method.

I 2.4 Representing facialimages in the latent space of
StyleGAN

Image inversion is a problem where we have an image, and we are looking for a latent
vector that the generator maps into an image as similar as possible to the input image.
There are three most common ways to invert an image into latent space: latent space
optimization, latent space encoding, and their combination.

B 2.4.1 Losses

Firstly, we have to be able to tell how good the inversion is compared to the target
image. For that, we can use a loss function. This subsection will mention three types
of loss metrics: pixel-wise loss, perceptual loss, and identity loss. We can use them
independently or use their weighted combination.

m L2 pixel-wise loss is a mean of squared differences between the original image reshaped
as vector a and the generated image as vector b. Formally:
n = dim(a) = dim(b)
n o 2 1
n

LPizelfwise (a7 b) =

Where n is a number of pixels in the image times a number of channels, optimizing
with this loss leads to blurry images with almost no detail.

m LPIPS (Learned Perceptual Image Patch Similarity) [16] loss is a perceptual simi-
larity metric. It correlates with the human perception of similarity between images.
As a result, the inversion does not lose detail, stays sharp, and matches the original
image more closely.

Interestingly, this metric is calculated using neural networks & trained for Im-
ageNet [17] classification, most commonly VGG [18] or AlexNet [19]. ImageNet
classification is a task where an algorithm is asked to assign a correct class to the
image x. The number of classes is one thousand, and they include, for instance,
“coffee mug” or “limousine”.

LPIPS loss is computed by extracting the feature stack from L layers of the network
& and unit normalizing them in the channel dimension. These feature extractions
are defined as F)(z), Fj(z,) € RE>WixCl for layer I, where H,, W, C;, mean height,
width and number of channels corresponding to layer [. These extractions are scaled
by a trained weight vector w; € R channelwise. Subsequently, the [, distance is
computed for these extractions. Lastly, the [, distances are averaged for each layer
[, and these averages are summed to produce the LPIPS loss.

Lipprps(,2q) = Z Hlll/Vl Z lw,; © (Fl<$>hw - Fl(%)hw)ng (2)
1

h,w

m Identity loss is the cosine similarity of the identity descriptors generated by VGG
[18] or ArcFace [20].
dl * d2

L;;(d,.d,) = ——=
raldi) = g i,)

B 2.4.2 Inputspace W+

The authors of the paper “How to Embed Images Into the StyleGAN Latent Space?”
[21] found that embedding into the extended latent space W™ produces much better
results than embedding into the input latent space Z or intermediate latent space W.

Any vector w from W™ is a concatenation of eighteen vectors from W. Therefore,
dim(W+) =18 x dim(W) = 18 x 512. Number 18 corresponds to a number of convolu-
tion layers in the StyleGAN architecture. Then each layer works with a different part
of the latent vector w, making it easier to find a better inversion.

B 2.4.3 Latentspace optimization

It is possible to use gradient descent to find an inversion with minimal loss. The process
starts with zero or random latent vector w, and target image o. The loss value [is
calculated with loss function

l=L(o,G(w)).

The w,, is updated as:
Wi = w; — pVL(0, G(w;))

where g > 0 is the learning rate, VL is the gradient of the loss function. PyTorch [22]
calculates this gradient automatically, using its autograd feature.

The drawbacks of this approach are that we might find a local minimum instead of a
global one and that it is a generally slow process, which can take up to several minutes.
Therefore, we will use latent space encoding as an alternative in this work.

8

2.4 Representing facial images in the latent space of StyleGAN

Bl 2.4.4 Latentspace encoding

Latent space encoding is an alternative to latent space optimization. Instead of itera-
tively finding the minimum, a neural network is trained to find an inversion in a single
forward pass with the smallest loss possible. This method takes only a fraction of a
second per image. Therefore, it is more suitable for this work.

These are current state-of-the-art StyleGAN encoders:

m Pixel2style2pixel StyleGAN2 encoder [23] for short “pSp”. It is an encoder which
transforms an image into style vectors, and (after possible modifications) the gener-
ator can create an image based on the style vectors.

m Encoder4editing StyleGAN2 encoder [24], for short “ede”; is designed for image ma-
nipulation in latent space.

m ReStyle StyleGAN2 encoder [25] is a residual-based encoder. Instead of directly pre-
dicting the inversion, it predicts the residual between the estimated inversion and
the original image. Based on the residual, it corrects the estimated inversion. This
iterative process can run any number of times, but the best results are achieved when
the number of iterations is relatively small, for instance, two or three.

m ReStyle pSp StyleGAN3 encoder [26] is an updated version of the ReStyle encoder
based on pSp created for StyleGANS.

m ReStyle ede StyleGAN3 encoder [26] is similar to the previous encoder, but it is based
on the ede encoder.

A visual comparison of the encoders mentioned above is in Fig. 2.6.

ReStyle pSp ReStyle ede
SG3 SG3

original pSp SG2 ede SG2 ReStyle SG2

Figure 2.6. Encoder Comparison. Restyle SG2 performed best in this comparison. How-
ever, the quality of inversions varies a lot based on the input image.

l 2.4.5 Combination of encoding and optimization

It is possible to combine the previous two methods to achieve better results. This
process first encodes the image and then uses the inversion as the starting point for the
optimization. As a result, it speeds up the optimization. The results produced by this
method are shown in Fig. 2.7.

2. Technical background

pSp SG2 +
optimization

Figure 2.7. Demonstration of improvement in inversion quality when using a combination
of encoding and optimization.

B 2.4.6 Latentimage manipulation

This subsection describes latent image manipulation. This technique was not used in
this work. However, it could be used to improve it further, as will be discussed in
section 6.1.

After inverting the image x, we have a latent w. We can make semantically mean-
ingful changes to w by adding or subtracting a latent directional vector d scaled by
scalar p.

The direction vector d corresponds to a semantic direction of the generated image,
such as age, gender, facial expression, or facial pose.

As stated in thesis “Face Image Editing in Latent Space of Generative Adversarial
Networks” [27], for non-binary features such as age, the directional vector d can be
found using linear regression as

min |Wd — S|

where W = [wy,....,w,]T, S = [s;,...,5,]T and s, is a semantic score (e.g. normalized
age) corresponding to the target feature of the image G(w;)

For binary features, such as “gender”, or “having glasses”, the directional vector d
can be found using a linear classifier, such as SVM [28]. The linear classifier finds a
hyperplane that separates latent vectors into two groups, depending on whether G(w,)
has the binary feature. A normal vector for this hyperplane is the directional vector d.

By adding or subtracting the directional vector d to w, we could see changes corre-
sponding to the feature of the directional vector d in the output image G(w +p - d).
This way, we could change the target person’s gender or make the person younger or
older.

An example of latent space manipulation of age can is shown in Fig 2.8. More details
about latent image manipulation can be found in the following sources [27, 29).

10

2.4 Representing facial images in the latent space of StyleGAN

Figure 2.8. Example of latent space manipulation of the age of Bill Gates.

11

Chapter 3
Approach

I 3.1 Definition of the problem

H 3.1.1 Input

Input is a collection of images of a particular person. This collection should include
images from the person’s entire lifespan, for example, Facebook profile photos, family
albums, or a custom-made collection created for this project. Alternatively, the input
can be just a name of a well-known person. In this case, the system automatically
obtains the images by querying the Programmable search engine [30] made by Google.

Hl 3.1.2 Output

The output is a facial time lapse video demonstrating the age progression of the target
person.

I 3.2 General description of the proposed solution

This section presents an algorithm for generating facial time lapse videos. The algorithm
operates as described in the following steps:

. Optional only if the input is a name - crawl images from the Internet

. Detects all faces on the input images.

. Align, crop, and resize all detected faces.

. Estimate the age for every facial image.

. Order facial images by age and present them to the user.

. Recommend removal of images that probably do not feature the target person.
. Let user remove, add, or reorder facial images.

. Encode facial images into StyleGAN latent space.

. Linearly interpolate latent vectors and generate a sequence of latent vectors.

© 00 O U i W N

—
]

. Generate an image from every latent vector in the sequence.
. Blend the generated images with authentic images to increase identity fidelity.
. Create a video from the generated images and show it to the user.

— =
N =

I 3.3 Crawling the images

The algorithm uses a search engine to download images of the target person. It tries
to download photos from her/his entire lifespan. This goal is achieved by searching
repeatedly and altering the search phrase to get age-diversified results. For instance,
the algorithm uses phrases such as “photo of target person as a young adult”.

12

3.4 Detecting, aligning faces, and estimating age

I 3.4 Detecting, aligning faces, and estimating age

The algorithm uses third-party libraries and algorithms for these tasks. They will be
described in more detail in the implementation Chapter 4.

I 3.5 Representing facial images in the latent space of
StyleGAN

The algorithm should be interactive. Consequently, we cannot do latent space opti-
mization because the user would have to wait several minutes for each input image to
invert. Therefore, we decided to use latent space encoding.

To get the latent space representation (latent vector w) in W+ C R18%512 the algo-
rithm passes the input image x € &2°6%256>3 {0 the encoder E: R256%256x3 _ J/+

w = E(x). (1)

The algorithm supports the encoders for StyleGAN2 and StyleGAN3 to demonstrate
the changes between them.

I 3.6 Morphing facial images in StyleGAN latent space

After inverting the input images J = (x;,X,,...,X,), we have a sequence of latent
vectors § = (W, Wy, ...,w,,) where n is the number of inverted images. The density
constant d sets a number of vectors, between w; and w, ; including the point w; and ex-
cluding the point w,;, to compute. We are looking for a sequence 7 = (u;, uy, ..., u,,)
where m = (n —1)d + 1

The algorithm finds & with a linear interpolation as

o = —,

=1, u; = (1= A)w; + Aw, 4, (2)

Ql = Q| .

A=a—j.

A visual example of the linear interpolation equation (2) is shown in Fig. 3.1.

W3, Ug

Wo, Ug

Figure 3.1. Example of linear interpolation with n = 3 and d = 3 in 2D space.

Algorithm passes the vectors from J to StyleGAN generator G: W+ — R1024x1024x3
and provides a sequence § = (g;, &, -.-, &,,) of generated images.

g = G(u,) (3)

13

I 3.7 Image blending

The inversion does not usually preserve the identity of the target person perfectly. Some
details such as wrinkles, scars, or freckles are often lost. This issue is fundamental
because the user expects the algorithm to preserve the identity. A facial time lapse
video of a person without a real identity is not interesting to watch.

The algorithm mixes inverted and real images to preserve the identity. For that, the
algorithm uses the function

cos(2ma)y + v

f(Oé,’Y): 9

(4)
with parameter o from Eq. (2) corresponding to the current position in the video and
a new parameter v which defines the maximal portion of the real image in the output
image.

The output image is a blend of real image (crawled from the Internet or uploaded
by user) and generated image. To calculate the pixel values of the BlendedImage the
algorithm uses the following formula with function f from Eq. (4):

BlendedImage = f(a,7) - Reallmage + (1 — f(«, 7)) - GeneratedImage. (5)

Visualization of the image blending functionality is in Fig. 3.2.

Image blending
1.0
Bl Generated image with a
First real image
Second real image

==Y

o
o)

o
o

o
>

Blended image composition
o
)

o
=)
o

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Interpolation parameter a

Figure 3.2. Visualisation of image blending based on the formula (5).

The image blending function f from Eq. (4) uses cosine (instead of, for instance, a
piecewise linear function) to make the blending as smooth as possible. The algorithm
lets the user adjust . From testing, the value v = 0.5 works generally well. If v is too
high, time lapse appears as if it stopped moving and only showed a static picture. If v
is too low, identity is not preserved.

The image blending function is “U-shaped” because the generated and authentic
images are similar only when interpolation parameter a from Eq. (2) is close to an
integer, i.e., the current position in the video matches a period of time with a real
input image. Otherwise, they would not match, and blending would result in strange
artifacts.

14

3.8 Suggesting removal of images of people who are not the target person

I 3.8 Suggesting removal of images of people who are
not the target person

The algorithm does not remove any images, but it suggests to the user that an image
might show somebody else than the target person. This way, we avoid the accidental
removal of images with the target person.

Due to the technical limitations of the web application, this feature does not take
into account already uploaded images. It runs when the user asks the server to crawl
images or when she/he uploads at least four images at once.

For this task, we decided to use a simple baseline method described in the paper
“Learning CNNs from weakly annotated facial images” [31] in section 5.2. This method
assumes most images feature the target person. Thanks to the median’s robustness,
the element-wise median of identity descriptors extracted from the input key-frames
corresponds to the representation of the target person well.

The algorithm takes a batch of images B = {x, X, ..., X, }. It uses ArcFace [20] to
get an identity descriptor id; € 512 for image x,. Afterwards, an element-wise median
m,,; € R512 is calculated from the embeddings. Lastly, if

lid; —m;|3 > € (6)

the image is labeled as “recommended to be removed”. Value of € = 0.002 has been set
empirically based on testing.

15

Chapter 4
Implementation

This chapter will focus on implementing the web application for generating facial time
lapse videos. The application is currently hosted at http://cmp.felk.cvut.cz/
facialtimelapse (note: https is not supported - the application will load, but it will
not be able to communicate with the backend server). If the application is down, please
contact me at veresond@fel.cvut.cz.

We decided to create a web application because it is a user-friendly way of showing
our method. In addition, it does not require installation and runs on all platforms that
can run an Internet browser.

The frontend runs in the user’s browser, and the backend runs on a GPU server.
We had to split the application into backend and frontend because the browser cannot
run our program, mainly because it requires a GPU with CUDA installed. These two
programs communicate using HTTP requests in the following way: Frontend (browser)
sends an HTTP request (for example, to crawl images or to generate a GIF) to the
backend, and the backend sends a response to these requests containing necessary data
(aligned images with estimated ages, or the output GIF.)

The frontend is written in JavaScript, HTML, and CSS. The browser downloads these
files when it visits the website. Then, the browser renders the website and displays it
to the user.

Backend is written in Python because it offers many machine learning libraries. In
addition, the key component for our project StyleGAN [2, 12, 14] is written in Python
as well.

Fig. 4.1. shows the design of our application.

I 4.1 Frontend

The client-side of the application is built mainly in JavaScript [32] and uses react.js [33]
The react library is helpful because of two points:

m We can create reusable components, such as containers for image and age, containers
for displaying the facial time lapse, or containers for uploading the images. These
components can then be used anywhere throughout the app, eliminating the need
for code duplicity.

m React.js keeps track of the state of every individual component. Whenever the state
of a component changes, the component is re-rendered with the values of the new
state. Therefore, the displayed values are always in sync with the internal values.

l 4.1.1 Components
The application uses the following react.js components:

m appComponent This component contains all other components and the web page as
a whole. It keeps track of all the current images and their age in its state.
This component contains the following functions:

16

http://cmp.felk.cvut.cz/facialtimelapse
http://cmp.felk.cvut.cz/facialtimelapse
veresond@fel.cvut.cz

4.1 Frontend

FaCI al tlme I apse StyleGAN2 without StyleGAN2 with image
genera-tor image blending blending
Enter a name Upload images
Celebrity name
Steve Carell
m Lp\aadafjirdigandurcn

Settings v Settings v

Age Age

StyleGAN3 with image Only image blending
blending

Settings v

Age Settings v

Figure 4.1. Facial time lapse generator application.

m Removingitems This function takes itemld as input and removes the item with
that itemld from the items array in the state.

m Changing age in an item This function takes inputld and newAge and updates
the corresponding item in the items array in the state

m Synchronizing the facial time lapse GIFs When one GIF is loaded, the other ones
reset to synchronize.

m enterNameComponent This component handles entering the name of a well-known
person. Sending the name to the backend. Waiting for the backend to reply with
photos and ages and then putting it to the parent app component state.

This component has three different states:

m default Component is waiting for the input from the user. In this state, it
displays an input field and a run button.

m waiting Component sent data to the backend and is waiting for the response.
In this state, it displays loading animation.

m failed Component either received no response or a response with error. This
state displays the status code of the error and the error message.

Screenshots of enterNameComponent are in Fig. 4.2.

17

Enter a name
Enter a name

Celebrity name
Error status: No response
Error data: Servers are currently offline

Run

State: failed

State: default

Enter a name

) Processing...

State: waiting
Figure 4.2. Enter Name Component.

m fileUploadComponent This component handles manual image upload. Users can
upload multiple images or a single image by dragging and dropping the images or
clicking the “Upload a file” text and selecting the images from their file explorer.
Images must be in JPEG or PNG formats.

Similarly, as the enterNameComponent, it has three states that behave similarly.
This component is shown in Fig. 4.3.

Upload images

Upload a file or drag and drop

PNG or JPG

Figure 4.3. Upload Images Component.

m itemComponent This component displays, as shown in Fig. 4.4., the aligned image
along with the predicted age and button to remove the image. Also, it allows the
user to edit the automatically predicted age. If the corresponding image has the
“recommended to remove” label, the background is changed to light red, and the
remove button also includes the text “recommended”.

m resultComponent This component handles entering the settings. It lets the user to
select:

m Encoder:
m StyleGAN2 pSp
m StyleGAN3 ReStyle pSp

18

4.1 Frontend

Figure 4.4. Item Component.

m None - When a user enters this value, max blended opacity is ignored, and
images are blended pixel-wise.

m Output GIF size:

m 1024x1024 px
m 512x512 px
m 256x256 px

m Frames betweenimages — this parameter corresponds to parameter d in Eq. (2).
It sets the number of generated images between two original images.

m Max blended image opacity — this parameter corresponds to parameter v in Eq.
(4), but it is in percentage %.

Afterward, it sends images along with corresponding ages to the backend. When it
receives the response containing the video in GIF format. It displays it to the user.
The result component in its two states can be seen in Fig. 4.5.

StyleGAN2 with image
blending

StyleGAN2 without
image blending

Settings ~
Encoder. StyleGAN2 pSp v
Output gif size: 512x512 px v
Frames between two images 24
Max blended image opacity (%) 0

s P2
Settings v

Regenerate gif

Figure 4.5. Result Component.

19

Bl 4.1.2 UlDesign

The application uses Tailwind CSS [34] which is a CSS framework. Tailwind CSS
makes designing UI faster and easier by generating CSS code for predefined HTML
classes.

Tailwind UI [35] is a UI component library offering both free components and
paid components. The design of the components of this web application is based on
Tailwind Ul free tier components.

It uses Epilogue [36] as a font.

I 4.2 Backend

Backend is responsible for crawling the images, aligning them, inverting them into
StyleGAN latent space, and generating facial time lapse video. All of the services are
accessible to the frontend with the API. The backend uses PyTorch [22] for image
inference, and Flask [37] for communicating over the web using the API.

B 421 API

The application provides the following API endpoints:

m /uploadFile Accepts a POST HTTP request containing a list of images. Send a
response containing JSON with imageUrls and ages.

m /uploadName Accepts a POST HTTP request with celebrityName. Send a re-
sponse containing JSON with imageUrls and ages of crawled results. Example
request:

POST http://halmos.felk.cvut.cz:5000/uploadNameAPT
Content-Type: application/json;

{
"celebrityName": "Steve Carell"

}

Example response with an array of items, each item contains the predicted age
along with a path to the aligned and cropped image and a “recommend to remove”

label:
[
[
"ee014acd-1358-4189-b4b7-08a20ae14216. jpg", //path to image
12, //estimated age
false // 'recommended to remove' label
1,
[
"ae38552f-2503-4284-a09b-b72c6£61e826. jpg",
17,
true
1,
]

m /generateGif Accepts a POST HTTP request containing image URLSs, ages and
settings. Example request:

20

POST http://halmos.felk.cvut.cz:5000/generateGifAPI
Content-Type: application/json;

{
"encoder": "psp",
"frames": "24",
"opacity": "50",
"size": "512",
"items": [
{
"path": "d193da85-fbce-4c72-a074-27efb54e3c64a. jpg",
"age": 25
1,
{
"path": "d73542fe-ddb7-4011-addd-3ccaba045812. jpg",
"age": 26
) SR
]
3

The response contains a facial time lapse video in a GIF format.
m /storage/[filename] Example request:

GET http://halmos.felk.cvut.cz:5000/storage/image. jpg

The response contains an image stored at that URL.

4.2.2 Crawling the images

The application uses Custom Search JSON API alongside a Programmable search
engine [30] from Google to get images of well-known people.

Programmable search engine is a search engine from Google that can be set to
search only a specific website. However, it is set to search the entire web in our case.
Unfortunately, we cannot use Google.com because it does not have any public API.
A Programmable search engine set to search the entire web is inferior to Google.com
because it lacks several search features, and other features do not work well. Mainly,
the duplicate filter does not seem to be working.

Custom Search JSON API is also a service from Google. The application can
make a request with a search query, Programmable search engine id, and other search
parameters and receive JSON with results as a response.

All search parameters are stored in the request URL. For example, one request
may look like this:

GET https://customsearch.googleapis.com/customsearch/v1?

cx=bOaeb7e24cc9a435d& //Programmable search engine id

g={search_term}& //Search query

imgType=face& //Image type [clipart, face, lineart,
//stock, photo, animated]

imgSize=medium& //Image size

num=44& //Number of results to return [1-10]

safe=active& //Enables SafeSearch filtering

searchType=image& //Specifies image search

filter=1& //Enables duplicate filter

21

key=AIzaSy...& //Google cloud key, used for billing
start=1 //The index of a first result to return

To get images throughout the person’s life. The application makes four requests with
the following queries:
m photo of [name] as a kid
m photo of [name] as a teenager
m photo of young [name]
m photo of [name]

Each request returns links to two top results. Afterward, the application downloads
the images. To speed up the process. Search requests and download requests are sent
in parallel using a modified Request boost Python package [38].

H 4.2.3 Image processing

DLIB [9] detects all faces on the images, then aligns, crops and scales to resolution
1024 x1024 pixels each detected face. Afterward, the application removes duplicate
images by calculating L2 pixel-wise loss (1) between all images and removing those
with a pixel-wise loss smaller than an empirically set threshold. Pixel losses are
calculated only from a small portion of the image cropped from the center to speed
up the process.

If the application is processing more than four images uploaded by the user or
the input was crawled from the Internet, it selects images that are probably not the
target person by following a procedure described in section 3.8.

Lastly, ages are estimated for each facial image using a neural network “DEX”
proposed in the paper “Deep EXpectation of Apparent Age from a Single Image”[39].
DEX uses the VGG-16 [18] architecture and was trained on a crawled data set of
0.5 million images with available age from IMDB and Wikipedia.

H 4.2.4 Inverting and generating images

The backend server runs with the encoder models, age estimation model, and ArcFace
identity model loaded to speed up this process. These models consume about 4.5
GB of GPU memory. The backend server is currently running on server Halmos
at CMP. It uses a single NVIDIA GTX TITAN X card with 12GB of memory. A
single inversion using SG2 pSp takes about 0.25 seconds, and using SG3 ReStyle
pSp (with three iterations) takes about a second. Generating a single frame takes
about 0.25 seconds with SG2 and 0.30 seconds with SG3. Because the output video
usually contains about a hundred frames, the generation task takes the most time.
The batch size for inverting and generating the images is kept at one to be able
to generate multiple facial time lapse videos at once. When the user simultaneously
generates multiple facial time lapse videos using different encoders, the GPU memory
consumption goes up to 9GB.

22

Chapter 5
Experimental evaluation

I 5.1 Methods

m Pixel interpolation This is a naive baseline method. It linearly blends the images,
i.e., interpolates pixel intensities, to create a time lapse. It does not use StyleGAN
or any other generative network.

m StyleGAN2 without image blending This method uses pSp to invert the image into
W latent space. Then it interpolates the images in the W™ latent space.

m StyleGAN2 with image blending Similar to the previous one, it blends authentic
images into the video according to section 3.7 with v = 0.5.

m StyleGAN3 without image blending This method uses ReStyle pSp to encode im-
ages into W latent space. The number of iterations for iterative refinement is set
to the default value of 3.

m StyleGAN3 with image blending Same as the above method, but it also uses image
blending from section 3.7 with v = 0.5.

I 5.2 Experiment 1: Generating a facial time lapse

[| 5.2.1 Inputimages

Input is an unorganized set of images. Images in this experiment were not automat-
ically crawled but manually collected to get the best result possible. The input set
is shown in Fig. 5.1.

Figure 5.1. Example of an input set.

The algorithm detected aligned and cropped faces, as shown in Fig. 5.2. Then, the
age was estimated for each image, and the images were ordered.

23

5. Experimental evaluation

Figure 5.2. Example of a processed list of images.

B 5.2.2 Visualresults

The algorithm generated facial time lapse video using the five methods mentioned in
section 5.1. The results are visible in Fig. 5.3., 5.4. and 5.5. The Pixel Interpola-
tion method produces “ghosts” of the previous/next person in the video. Generative
methods without blending tend to miss some important details for identity preserva-
tion. In contrast, generative methods with blending bring those details back when «
is close to an integer.

Pixel
Interpola-
tion

SG2 pSp

SG2 pSp
+ image
blending

SG3
ReStyle

SG3
ReStyle
+ image

blending .
a 0 0.25 0.5 0.75 1 1.25 1.5

Figure 5.3. Visual comparison of the five mentioned methods with a € [0, 1.5].

B 5.2.3 Method evaluation

This section will evaluate all methods based on identity loss (3). Pixel-wise (1) and
perceptual loss (2) are misleading because they are very sensitive to changes in the
background. The identity loss graph in Fig. 5.6. was plotted from the input set in
Fig. 5.2. Density from Eq. (2) was set to d = 24. The loss function is calculated
against the closest neighbor among the authentic images. SG2 pSp and SG3 Restyle
encoders perform in terms of identity loss similarly. One is sometimes better than the
other one and vice versa. Image blending decreases identity loss significantly. Pixel
interpolation has the smallest identity loss due to minimal sensitivity to “ghost”
artifacts. They will be mentioned in more detail in section 5.4.

24

5.2 Experiment 1: Generating a facial time lapse

Pixel
Interpola-
tion

SG2 pSp

SG2 pSp
+ image
blending

SG3
ReStyle

SG3
ReStyle
+ image
blending

a 1.75 2 .95 25 2.75 3 3.25

Pixel
Interpola-
tion

SG2 pSp

SG2 pSp
+ image
blending

SG3
ReStyle

SG3
ReStyle
+ image
blending

a 3.5 3.75 4 4.25 4.5 4.75

Figure 5.5. Visual comparison of the five mentioned methods. « € [3.5,4.75].

25

5. Experimental evaluation

Identity Loss

0.5
—— Pixel interpolation
—— SG2 pSp
0.4 —— SG2 pSp with image blending
' A —— SG3 ReStyle
i —— SG3 ReStyle with image blending
0 0.3 l '
S “\
S \
> \
0 \ p A
\7 W X
3 \
0.1 \
>
0.0

Interpolation parameter a

Figure 5.6. Comparison of the five methods in identity loss.

5.3 Experiment 2: Recreating a facial time lapse

This experiment recreates a professional imitation of a facial time lapse video
“Danielle” [40]. Anthony Cerniello and his team created this imitation of facial
time lapse in 2013 using numerous images and videos of family members. Then, the
animators combined the images and videos into a single video using Adobe After
Effects [41], Autodesk 3D Studio Max [42], and Nuke [43].

We can try to replicate only the first part of this imitation because further in the
imitations, a part of the head is out of the frame.

This experiment takes the first and last image of the “usable” part of the imitation
and compares the result with the imitation itself.

5.3.1 Visual results

Facial time lapse videos generated in Experiment 2 are shown in Fig. 5.7.

5.3.2 Method evaluation

The identity loss is calculated against the corresponding image in the original time
lapse imitation in Fig. 5.8.

SG3 Restyle encoder compared to SG2 pSp created an inversion with smaller
identity loss for the first image. However, they performed similarly in encoding the
last image of the time lapse. Image blending decreases identity loss when « is close
to an integer, as expected. Pixel interpolation has the lowest overall identity loss due
to the minimal sensitivity to “ghost” artifacts of the identity loss.

In contrast, in Fig. 5.9., the identity loss is calculated against the nearest neighbor
among the first and last frames of the time lapse imitation. The results approximately
correspond to the results in Fig. 5.8. Interestingly, we can see that the time lapse
imitation has a significant identity loss, which theoretically should be 0. We believe
it is because the identity descriptors generated by ArcFace [20] are not perfectly
robust to aging. However, another reason could be that ArcFace is picking up that

26

5.3 Experiment 2: Recreating a facial time lapse

Original
Time-lapse , | . A y ;
Imitation ‘ i
Pixel
Interpola- : |
tion ' ‘ : ' '
SG2 pSp ’ '
+ image _ ‘ : !
blending
SG3 .
ReStyle { : "
SG3
ReStyle '
+ image \) ’ ,
blending '
a 0 1/6 1/3 1/2 2/3 5/6 1
Figure 5.7. Visual comparison of the five mentioned methods. « € [0, 1]
Identity Loss
0.5 I I
—— Pixel interpolation
—— SG2 pSp
—— SG2 pSp with image blending
0.4 —— SG3 ReStyle

—— SG3 ReStyle with image blending

TN
= T~
—~

{
/

0.1

RN
S

0.8.

2 0.4 0.6 0.8 1.0
Interpolation parameter a

Figure 5.8. Comparison of the five methods in identity loss calculated against the corre-
sponding image in the time lapse imitation “Danielle”.

27

5. Experimental evaluation

Nearest Neighbour Identity Loss

0.5
—— Pixel interpolation
—— SG2 pSp
—— SG2 pSp with image blending
0.4/ ___ 5G3ReStyle
—— SG3 ReStyle with image blending
—— Facial time-lapse imitation Danielle
Y]
0.3
S
g —
> —
0
So2
0.1
0'8.0 0.2 0.4 0.6 0.8 1.0

Interpolation parameter a

Figure 5.9. Comparison of the five methods in identity loss calculated against the nearest
neighbor among first and last frame in the time lapse imitation “Danielle”.

“Danielle” is not a real time lapse video but a time lapse imitation created from
images of multiple family members.

I 5.4 Discussion

We can see that the graphs look “upside-down V”-shaped because we have the most
information about how the person looked when « is an integer. As a consequence, the
losses are smaller. On the contrary, we have the least information when « corresponds
to a position in the middle between two images. Therefore, the loss is higher.

The main takeaway from identity loss is that image blending improves identity
preservation. Furthermore, as expected, the identity is not guaranteed to be pre-
served without image blending. However, image blending only increases identity
preservation when « is close to a whole number.

We were unable to demonstrate that our approach is better than straightforward
pixel interpolation using identity loss because this loss is not sensitive to “ghosts” of
the previous or next person in the time lapse, even though the “ghost” artifacts are
particularly disturbing for humans. The artifacts are especially apparent when pose
or hairstyle differ between images.

28

Chapter 6
Conclusion

To conclude, we introduced a generative method to create facial time lapse videos
from a small number of key images. The method uses StyleGAN [2, 12, 14] to generate
pictures in between the keyframes and combines them into a smooth video. To
preserve the identity of the target person, the method uses blending with original
images at keyframes. Humans (generally) agree that our method is superior to pixel
interpolation. In addition, a web application was made available at http://cmp.
felk.cvut.cz/facialtimelapse for anyone to try the method using their images
and parameters. Additionally, the application can search for images on the Internet
of a well-known person, use them as input, sort input images agewise, and recommend
removing people who are probably not the target person.

I 6.1 Possible improvements

Given more time, we could use latent image manipulation to further improve our

method in the two following ways:

m We could generate a facial time lapse from a single picture by slowly altering age
using latent space manipulation. We would start with a lower age than the original
image and smoothly increase the age until a certain threshold.

m We could extend the time lapse by manipulating age in the first and last images
of the time lapse to cover the target person’s entire lifespan.

29

http://cmp.felk.cvut.cz/facialtimelapse
http://cmp.felk.cvut.cz/facialtimelapse

References

[1] Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative Adver-
sarial Networks. 2014.
https://arxiv.org/abs/1406.2661.

[2] Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architec-
ture for Generative Adversarial Networks. 2018.
https://arxiv.org/abs/1812.04948.

[3] Andrew Wyton. Face Time-lapse (3 years).
https://www.youtube.com/watch?v=1TnTZ0r5RMw.

[4] Satish Kumar. WinMorph.
https://www.debugmode.com/winmorph/.

[5] Mark Stead. Child growth face morph time-lapse (from birth to almost 4).
https://www.youtube.com/watch?v=ZTjHLF3xKWo.

[6] Tan J. Goodfellow. Generative Adversarial Networks - NIPS tutorial. 2016.
https://www.iangoodfellow.com/slides/.

[7] Janne Hellsten Tero Karras. Flickr-Faces-HQ Dataset (FFHQ).
https://github.com/NVlabs/ffhq-dataset.

[8] Stewart Butterfield, and Caterina Fake. Flickr.
https://www.flickr.com/.

[9] Davis E. King, and others. DLIB C++ Library.
http://dlib.net/.

[10] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. GANs Trained by a Two Time-Scale Update Rule Converge to
a Local Nash Equilibrium. 2017, DOI 10.48550/ARXIV.1706.08500.

[11] Timo Aila Tero Karras, Samuli Laine. Example images produced using Style-
GAN.
https://drive.google.com/drive/folders/100DJ0QXyG89HZzB4w2Cbyf4x j
NK54cQ1.

[12] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. Analyzing and Improving the Image Quality of StyleGAN. 2019.
https://arxiv.org/abs/1912.04958.

[13] Phil Wang. StyleGAN2 random people generator.
https://thispersondoesnotexist.com.

[14] Tero Karras, Miika Aittala, Samuli Laine, Erik Hérkonen, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Alias-Free Generative Adversarial Networks.
2021.
https://arxiv.org/abs/2106.12423.

[15] Tero Karras, Miika Aittala, Samuli Laine, Erik Harkonen, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Fzample images produced using StyleGANS.

30

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1812.04948
https://www.youtube.com/watch?v=1TnTZOr5RMw
https://www.debugmode.com/winmorph/
https://www.youtube.com/watch?v=ZTjHLF3xKWo
https://www.iangoodfellow.com/slides/
https://github.com/NVlabs/ffhq-dataset
https://www.flickr.com/
http://dlib.net/
http://dx.doi.org/10.48550/ARXIV.1706.08500
https://drive.google.com/drive/folders/100DJ0QXyG89HZzB4w2Cbyf4xjNK54cQ1
https://drive.google.com/drive/folders/100DJ0QXyG89HZzB4w2Cbyf4xjNK54cQ1
https://arxiv.org/abs/1912.04958
https://thispersondoesnotexist.com
https://arxiv.org/abs/2106.12423

https://nvlabs-fi-cdn.nvidia.com/stylegan3/images/stylegan3-r-
ffhq-1024x1024/.

[16] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. 2018.
https://arxiv.org/abs/1801.03924.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
geNet: A large-scale hierarchical image database. In: 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 2009. 248-255.

[18] Karen Simonyan, and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. 2014.
https://arxiv.org/abs/1409.1556.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. In: F. Pereira, C.J. Burges, L. Bottou,
and K.Q. Weinberger, eds. Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2012.
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8
436e€924a68c45b-Paper . pdf.

[20] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. ArcFace: Addi-
tive Angular Margin Loss for Deep Face Recognition. 2018.
https://arxiv.org/abs/1801.07698.

[21] Rameen Abdal, Yipeng Qin, and Peter Wonka. Image2Style GAN: How to Embed
Images Into the StyleGAN Latent Space? 2019.
https://arxiv.org/abs/1904.03189.

[22] Facebook’s AI Research lab. PyTorch.
https://pytorch.org/.

[23] Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav
Shapiro, and Daniel Cohen-Or. Encoding in Style: a StyleGAN Encoder for
Image-to-Image Translation. 2020.
https://arxiv.org/abs/2008.00951.

[24] Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or.
Designing an Encoder for StyleGAN Image Manipulation. 2021.
https://arxiv.org/abs/2102.02766.

[25] Yuval Alaluf, Or Patashnik, and Daniel Cohen-Or. ReStyle: A Residual-Based
StyleGAN Encoder via Iterative Refinement. 2021.
https://arxiv.org/abs/2104.02699.

[26] Yuval Alaluf, Or Patashnik, Zongze Wu, Asif Zamir, Eli Shechtman, Dani
Lischinski, and Daniel Cohen-Or. Third Time’s the Charm? Image and Video
Editing with StyleGANS. 2022.
https://arxiv.org/abs/2201.13433.

[27] Cech Jan Nela Petrzelkova. Face Image Editing in Latent Space of Generative
Adversarial Networks.

[28] Corinna Cortes, and Vladimir Vapnik. Support-vector networks. Machine learn-
ing. 1995, 20 (3), 273-297.

[29] Peiye Zhuang, Oluwasanmi Koyejo, and Alexander G. Schwing. Enjoy Your
Editing: Controllable GANs for Image Editing via Latent Space Navigation.
2021.
https://arxiv.org/abs/2102.01187.

31

https://nvlabs-fi-cdn.nvidia.com/stylegan3/images/stylegan3-r-ffhq-1024x1024/
https://nvlabs-fi-cdn.nvidia.com/stylegan3/images/stylegan3-r-ffhq-1024x1024/
https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1801.07698
https://arxiv.org/abs/1904.03189
https://pytorch.org/
https://arxiv.org/abs/2008.00951
https://arxiv.org/abs/2102.02766
https://arxiv.org/abs/2104.02699
https://arxiv.org/abs/2201.13433
https://arxiv.org/abs/2102.01187

[30] Google LLC. Programmable Search Engine.
https://programmablesearchengine.google.com/about/.

[31] Vojtéch Franc, and Jan Cech. Learning CNNs from weakly annotated
facial images. Image and Vision Computing. 2018, 77 10-20.
DOI https://doi.org/10.1016/j.imavis.2018.06.011.

[32] Brendan Eich of Netscape, and others. JavaScript.
http://www.ecma-international.org/publications-and-standards/
standards/ecma-262/.

[33] Facebook Inc. React.js, a javascript library for building user interfaces.
https://reactjs.org/.

[34] Tailwind Labs. Tailwind CSS, a utility-first CSS framework.
https://tailwindcss.com/.

[35] Tailwind Labs. Beautiful UI components, crafted with Tailwind CSS.
https://tailwindui.com/.

[36] ETC Tyler Finck. Epilogue, a sans serif variable font.
https://etceteratype.co/epilogue.

[37] Armin Ronacher. Flask.
https://flask.palletsprojects.com/.

[38] Kuldeep Singh Sidhu. 4 simple package for hitting multiple URLs and performing
GET/POST requests in parallel.
https://github.com/singhsidhukuldeep/request-boost.

[39] Rasmus Rothe, Radu Timofte, and Luc Van Gool. DEX: Deep EXpectation of
Apparent Age from a Single Image. In: 2015 IEEFE International Conference on
Computer Vision Workshop (ICCVW). 2015. 252-257.

[40] Edmund Earle Anthony Cerniello, Nathan Meier, and George Cuddy. Danielle.
https://www.youtube.com/watch?v=JRqPJdgdnIM.

[41] Adobe Inc. Adobe After Effects, digital visual effects, motion graphics, and com-
positing application.
https://www.adobe.com/cz/products/aftereffects.

[42] Inc. Autodesk. 3ds Mazx,a professional 3D computer graphics program.
https://www.autodesk.com/products/3ds-max/overview.

[43] Foundry. Nuke, a node-based digital compositing and visual effects application.
https://www.foundry.com/products/nuke/.

32

https://programmablesearchengine.google.com/about/
http://dx.doi.org/https://doi.org/10.1016/j.imavis.2018.06.011
http://www.ecma-international.org/publications-and-standards/standards/ecma-262/
http://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://reactjs.org/
https://tailwindcss.com/
https://tailwindui.com/
https://etceteratype.co/epilogue
https://flask.palletsprojects.com/
https://github.com/singhsidhukuldeep/request-boost
https://www.youtube.com/watch?v=JRqPJdgdnIM
https://www.adobe.com/cz/products/aftereffects
https://www.autodesk.com/products/3ds-max/overview
https://www.foundry.com/products/nuke/

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Definition
	Motivation
	Overview of the possible methods
	Classical approach
	Morphing approach

	Generative approach

	Technical background
	GANs
	StyleGAN
	StyleGAN2
	StyleGAN3

	Latent space interpolation
	Representing facial images in the latent space of StyleGAN
	Losses
	Input space W^+
	Latent space optimization
	Latent space encoding
	Combination of encoding and optimization
	Latent image manipulation

	Approach
	Definition of the problem
	Input
	Output

	General description of the proposed solution
	Crawling the images
	Detecting, aligning faces, and estimating age
	Representing facial images in the latent space of StyleGAN
	Morphing facial images in StyleGAN latent space
	Image blending
	Suggesting removal of images of people who are not the target person

	Implementation
	Frontend
	Components
	UI Design

	Backend
	API
	Crawling the images
	Image processing
	Inverting and generating images

	Experimental evaluation
	Methods
	Experiment 1: Generating a facial time lapse
	Input images
	Visual results
	Method evaluation

	Experiment 2: Recreating a facial time lapse
	Visual results
	Method evaluation

	Discussion

	Conclusion
	Possible improvements

	References
	22c2cc2a-2a8c-4d14-a0d3-177aeefaf998.pdf
	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	/Figures
	Introduction
	Definition
	Motivation
	Overview of the possible methods
	Classical approach
	Morphing approach

	Generative approach

	Technical background
	GANs
	StyleGAN
	StyleGAN2
	StyleGAN3

	Latent space interpolation
	Representing facial images in the latent space of StyleGAN
	Losses
	Input space W^+
	Latent space optimization
	Latent space encoding
	Combination of encoding and optimization
	Latent image manipulation

	Approach
	Definition of the problem
	Input
	Output

	General description of the proposed solution
	Crawling the images
	Detecting, aligning faces, and estimating age
	Representing facial images in the latent space of StyleGAN
	Morphing facial images in StyleGAN latent space
	Image blending
	Suggesting removal of images of people who are not the target person

	Implementation
	Frontend
	Components
	UI Design

	Backend
	API
	Crawling the images
	Image processing
	Inverting and generating images

	Experimental evaluation
	Methods
	Experiment 1: Generating a facial time lapse
	Input images
	Visual results
	Method evaluation

	Experiment 2: Recreating a facial time lapse
	Visual results
	Method evaluation

	Discussion

	Conclusion
	Possible improvements

	References

