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Abstrakt

Tato práce se zabývá zmapováńım limituj́ıćıch faktor̊u tvorby mračen bod̊u a meřeńı vzdálenosti
pomoćı běžně dostupných hloubkových kamer.

Byl zkoumán vliv incidenčńıho úhlu, vzdálenosti měřeńı, tvaru objektu, velikosti objektu a
povrchových charakteristik na třech zař́ızeńıch, využ́ıvaj́ıćıch principy Time-of-Flight, pasivńıho
stereo viděńı a aktivńıho stereo viděńı. Porovnaná zař́ızeńı jsou Basler ToF, OAK-D-Lite a Intel
RealSense D415.

Testy odhalily silné a slabé stránky každého zař́ızeńı. Kamera Basler ToF má nejlepš́ı struk-
turálńı rozlǐseńı, ale je snadno ovlivnitelná povrchovou úpravou měřených objekt̊u. Přesnost
hloubky a strukturálńı rozlǐseńı kamery Intel RealSense D415 jsou srovnatelné s Basler ToF, ale
nejsou tak snadno ovlivněny povrchovou úpravou. OAK-D-Lite postrádá strukturálńı rozlǐseńı
potřebné pro přesnou rekonstrukci 3D objekt̊u, ale zdá se být dobrou volbou pro použit́ı ve
vizuálně r̊uznorodých prostřed́ı pro přibližný odhad hloubky scény.

Výsledky provedených experiment̊u jsou využitelné jako podklad pro studie proveditelnosti
projekt̊u strojového viděńı s využit́ım hloubkových kamer.

Kĺıčová slova metrologická studie, hloubková kamera, porovnáńı hloubkových kamer, 3D
rekonstrukce, Intel RealSense D415, OAK-D-Lite, Basler ToF, stereovize, time of flight

Abstract

This thesis is concerned with the mapping of limitations on creating point clouds and measuring
depth using commonly available depth-sensing cameras.

The influence of an incidence angle, measurement distance, object shape, size and surface
characteristics were investigated and measured on three devices, utilising Time-of-Flight, passive
stereo vision, and active stereo vision. The compared devices are Basler ToF, OAK-D-Lite, and
Intel RealSense D415.

The tests established the strengths and weaknesses of each device. The Basler ToF has the
best structural resolution but is easily influenced by the surface characteristics of the measured
objects. The depth accuracy and structural resolution of the Intel RealSense D415 are comparable
to the Basler ToF but are not as easily influenced by a surface finish. The OAK-D-Lite lacks the
structural resolution required for an accurate reconstruction of 3D objects. However, it seems to
be a solid choice for an approximate scene depth estimation in visually complex environments.

The results of the carried out experiments are usable as a basis for feasibility studies on
computer vision projects utilising depth-sensing cameras.

Keywords metrological comparison, depth camera, depth camera comparison, 3D reconstruc-
tion, Intel RealSense D415, OAK-D-Lite, Basler ToF, stereovision, time of flight
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Introduction

Lately, the market is becoming increasingly saturated with readily available depth cameras of
varying cost, accuracy, and intended use. Historically, short-range 3D reconstruction was preva-
lently done using mechanical or laser-based coordinate-measuring machines (CMMs) or laser-
based hand-held scanners. While depth cameras are not intended to replace the devices men-
tioned above, their portability and accessible price enable a broad range of new technologies to
be developed and widely adopted.

When imaging a scene using a monocular camera, information about the distance of scene
objects from the camera sensor is lost due to projection to a 2D space. While it is possible to
reconstruct the depth of a scene from acquired images, it often requires a large number of images,
heavy preprocessing, and a long run time. Thus it is not suited for applications when real-time
depth sensing is required or computing power is limited.

Depth sensing systems are often deployed in many fields for various use cases. Some such use
cases include, but are not limited to, quality control of parts created by additive manufacturing,
inspections of buildings, reconstruction of historical artifacts, terrain mapping, navigation, and
localization of robotic agents in their working environment.

In contrast to CMMs and hand-held scanners, the ability of depth cameras to reproduce
accurate 3D models is not advertised by their manufacturers. The ability to capture small details
is not advertised at all, while the depth estimation accuracy is often reported as a deviation of
mean distance in a central ROI to a perpendicular plane from the ground truth. This metric,
however, does not represent the device’s ability to capture complex scenes accurately. Because
of this, it is hard to judge the suitability of different devices to carry out required tasks.

This thesis is concerned with conducting a metrological comparison of selected depth cameras,
utilizing different principles for estimating the depth of the scene. The comparison will be
conducted on both single-view and multi-view scenes. This metrological comparison will then
serve as a basis for feasibility studies for computer vision projects utilizing depth cameras. The
methodology for metrological comparison is in part based on the ISO-10360:13 standard.
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2 Introduction



Chapter 1

Theoretical background

Computer vision is concerned with the extraction of information from visual inputs.

1.1 Image segmentation
Image segmentation is the process of separating different parts of an image in order to extract an
ROI in order to simplify the solved task. The segmented parts are then further used for various
measurements, feature extraction, or more complex tasks such as object tracking.

A simple example of an image segmentation algorithm is thresholding, which extracts parts
of an image whose pixel values lie within a certain predefined threshold.

1.2 Image filtering
Image filters are used to change an image on a pixel level. Different filters can accomplish a
broad range of results. For example, highlight the present edges or corners or suppress the noise
in an image by blurring.

An example of an edge detecting filter is the Sobel filter. A mean filter can be used to blur
an image in order to reduce noise.

1.3 Feature detection and description
Feature detection and description methods are used to extract and mathematically describe
interesting regions in an image. Such interesting regions may be parts of an image where, for
example, a sudden change of brightness or colour occurs. Those regions are referred to as key
points.

The description process is used in order to discern or match different key points from each
other in different images. The problem of finding corresponding points in multiple images is
referred to as the correspondence problem and is the fundamental problem of computer vision.

SIFT, SURF and ORB are examples of algorithms used for feature detection and extraction.

1.4 Intrinsic camera parameters
Intrinsic parameters of a camera are focal length, principal point offset, and shear coefficient.
The intrinsic camera matrix transforms 3D camera coordinates into 2D homogeneous image
coordinates. The ideal pinhole camera models this projection.

3



4 Theoretical background

The intrinsic matrix I is parameterized as

I3×3 =

 fx s x0
0 fy y0
0 0 1

 (1.1)

Where fx and fy describe the focal length of the camera in counts of pixels. Two lengths are
used due to imperfect (in other words, not square) dimensions of the sensor pixels. x0 and y0
describe the offset of the principal point from sensor origin. s is the shear coefficient [1].

1.5 Epipolar geometry and constraint

Epipolar geometry is the basis of stereo vision. It establishes the relations between two images of
a single scene captured from different perspectives. The epipolar constraint simplifies the problem
of finding corresponding points in those images (known as the correspondence problem).

Figure 1.1 Scene shot from two perspectives described by epipolar geometry.

Figure 1.1 represents two views of the same scene. C and C ′ represent optical centres of
the first and second cameras, I and I ′ their respective image planes, where rigid transformation
(R | ~t) := E describes the rotation and translation of the second camera relative to the first and
is referred to as the essential matrix of the stereo system. If measurement in pixels is required, a
fundamental matrix F is used instead, which, in addition to the rigid transformation between the
two camera sensors, also contains the intrinsic parameters. The distance between optical centres
is referred to as the baseline. M represents a point in the scene. m and m′ are projections of the
point M on image plane I and I ′ respectively. Projection of camera centres C to image plane I ′
gives us a point called the epipole e of image plane I, analogically for e′.

The line is defined by a projection of point M on an image plane and an epipole, is called
the epipolar line corresponding to the projection of point M .

Corresponding epipolar lines, created by the same point M on each of the image planes, are
referred to as a conjugate epipolar pair.

The epipolar constraint establishes that a projected point in one image plane must lie on the
corresponding epipolar line in the second image plane. Therefore it simplifies the solution of the
correspondence problem. This second epipolar line can be easily determined by transforming the
first one by the fundamental matrix F . [2, 3]
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1.6 Stereo rectification

Image rectification is a projective transformation of a pair of stereo images to a common image
plane. This is particularly useful, as solving the correspondence problem then becomes much
more manageable.

Rectifying a stereo image pair also transforms the conjugate epipolar line pairs such that each
pair becomes colinear and parallel to one of the image axes (usually the horizontal axis).

The advantage of rectification is that the search of corresponding points is reduced from 2D
space to search along the horizontal axis of the transformed images. [4]

1.7 Disparity

Two rectified images used for calculation of disparity are shown in figure 1.2.

Figure 1.2 A diagram of two rectified images

After determining the corresponding key points in both images, the disparity can be calcu-
lated. The stereo disparity is defined as the offset between a point m in image I and point m′
in image I ′ calculated along the horizontal axis. The calculated disparity will be positive in the
left image and negative in the right image.

Having obtained this difference, the depth Z in the specified pixel position can be obtained
by the following equation.

z = B × f
mx −m′x

(1.2)

Where B is the baseline in cm and f is the focal length in counts of pixels [5].
In practice, key points are matched by blocks of predetermined size. Larger blocks produce

fuller maps with a lower amount of noise, while smaller blocks produce more accurate depth
maps.

For best results, certain soft constraints should be complied with. Such as low disparity
gradient and uniqueness of key points.

There are, of course, many other difficulties in producing correct depth maps by stereo match-
ing, such as occlusions in one of the views or uncertain correspondences.
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1.8 Depth image
The depth image is an n × m matrix, where each pixel within the image plane contains the
distance to a 3D point in the scene projected to that position. Invalid depth is often represented
by a zero.

1.9 Confidence image
A confidence image is an image of the same size as the depth image, where each pixel contains
the confidence the device has in estimating the depth value at the same coordinates. Higher
values and lower values correspond to higher and lower confidence, respectively. The generation
of a confidence image is device-specific.

The primary usage of a confidence image is to remove values from a depth frame based on
the likelihood that they are incorrect. This can be useful during scanning for the removal of
incorrectly measured points or especially useful in robotic applications, where real-time depth
sensing is often required and where incorrect or ”hallucinated” depth may have severe effects on
the operation of the device.

1.10 Temporal filter
A temporal filter increases depth map consistency and accuracy by manipulating pixel values
based on previous depth frames. Either by imputing previous values into invalid pixels or pixels
with low confidence, or by averaging the pixel difference of two consecutive images, thus reducing
the amount of noise in static scenes.

It is best suited for scenes with low movement, as it introduces blurring and or smearing
effects on the depth map [6].

1.11 Hole filling filter
A hole filling filter is used to impute values to invalid parts of the depth map by imputing from
adjacent pixels. There are different approaches to the selection of value that will be imputed
from the neighbouring pixels, such as direction-based imputing, imputing the furthest value by
depth, or the closest one [6].

1.12 Spatial filter
A spatial filter is used to smoothen the captured scene by doing a series of horizontal and
vertical passes, preserving edges. Depending on the implementation, it may also perform hole
filling during the passes on the depth map by imputing values from adjacent pixels [6].

1.13 Point cloud
A point cloud defines a 3D scene as a set of points, where each point has an x, y, and z coordinate.
In addition, a colour of a point, surface normal vectors, or detected features may also be specified.

Point clouds may be organized or unorganized. Organized point clouds resemble a matrix.
Such point clouds have to contain invalid points (in positions where depth could not be deter-
mined), and are stored in either a row-major or column-major ordering. In contrast, unorganized
point clouds contain only an unordered set of valid points.
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Depth image can be extracted from an organized point cloud by extracting only the z com-
ponent of the ordered coordinates. This extraction is impossible with unorganized point clouds
due to missing points.

An example of a file format in which point clouds can be stored is the PCD file format. [7]

1.14 Scene reconstruction from depth image
If intrinsic parameters, introduced in section 1.4, of a depth image are known, The 3D scene can
be reconstructed from the depth data.

Given depth value d at (u, v) image coordinate, the corresponding 3D point is:

z = d (1.3)

x = (u− cx)× d
fx

(1.4)

y = (v − cy)× d
fy

(1.5)

Such reconstructed scene will be in the coordinate system of the camera used to produce the
depth image, i.e. the origin vector (0, 0, 0) will be placed in the centre of the camera sensor. [8]

1.15 K-dimensional tree
K-d tree is a multidimensional space-partitioning data structure. It was first presented in 1975
by Jon Louis Bentley in [9]. It can be described as a multidimensional binary search tree and is
used for efficient nearest neighbour searches, among other types of queries.

3-dimensional k-d trees are often used for nearest neighbour queries in point clouds and are
implemented, for example, in the Open3D library 1 or in scikit-learn 2.

1.16 Iterative Closest Point (ICP)
Iterative Closest Point is most often used for the alignment of polygonal 3D models or point
clouds but can also be applied to geometric data such as polylines, parametric and implicit
curves, and surfaces. Such a process is also referred to as registration. In the 3D vision, it is
used extensively to align point clouds taken from different perspectives to a common space.

ICP is an algorithm for finding such rigid transformation T = (R | ~(t)) between two point
clouds, where R is a matrix determining the rotation and ~t is the translation vector, that when
each point from the first point cloud is transformed by T , the distance between the two clouds
is minimal.

Given two point clouds P1 and P2 and a set of correspondences between these clouds C =
{(pa, pb) | pa ∈ P1∧pb ∈ P2}, the algorithm can be simply described as the following optimization
problem.

minimize ICP(T ) = 1
#C

∑
(pa,pb)∈C

||T · pa − pb|| (1.6)

The ICP algorithm always monotonically converges to the nearest local minimum of a mean-
square distance metric. Where the convergence is rapid during the first iterations [10].

1http://www.open3d.org/docs/latest/tutorial/Basic/kdtree.html
2https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KDTree.html
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Due to that, the objects should already be closely aligned, and the set of correspondences be
well constructed. Otherwise, a possibly incorrect transformation will be computed, as is shown
in figure 1.3.

Such issue can be alleviated by, for instance, a predetermined camera trajectory, for which ev-
ery sampling position is known, initializing the algorithm with a transformation created by use of
odometry, or by a transformation computed from extracted key points for which correspondence
is well known.

Figure 1.3 Uncertain ICP correspondence may result in incorrect registration [11].

1.17 Visual odometry

Odometry, in the sense it is being used in this thesis, is a term originating from robotics. It
refers to the process of estimating the trajectory of a robotic agent by the use of sensors.

Similarly, visual odometry is the process of estimating a trajectory from a series of monocular
or stereo images. Monocular odometry has the disadvantage of being unable to determine the
scale of a translation between two positions. This disadvantage can be alleviated by supplying
scale from an external source such as an odometer or scale calculated using two consecutive depth
images.

1.18 RANdom SAmple Consensus (RANSAC)

RANSAC, first introduced by Fischler and Bolles in [12], is an algorithm designed for fitting a
model (for example, a plane) to data containing a large number of errors. Due to that, it can
also be used as an outlier detection algorithm. It can be naively summarised by the following
pseudo-code listing 1.1.
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Code listing 1.1 Pseudocode of RANSAC

def RANSAC ( point_cloud , model , threshold , tolerance , max_it ):

inliers = []
i = 0

do:
subset = sample ( point_cloud , model. minimum_points )
model.fit( subset )
distances = model. calc_point_distance ( point_cloud )
inliers = point_cloud [ distances < tolerance ]
i++

while ( inliers .size () / point_cloud .size ()) > threshold &&
i < max_it

return model.fit( inliers )
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Chapter 2

Research

A depth camera is a camera capable of measuring the distances of objects in the shooting scene
from the camera sensor (referred to as depth of the scene, depth image, depth map, or range
image).

The process of shooting a scene with a depth camera is often referred to as 3D surface
measurement, depth sensing, or depth mapping. [13]

2.1 Depth camera use cases
A wide range of industrial applications and academic research areas concerning depth cameras can
be found. Such applications include, for instance, quality inspection [14, 15, 16, 17], biometrics
[18], human-machine interaction [19] and robotics [20, 21].

[14] is dealing with visual inspection of reinforced concrete (RC) beam surface using an Intel
RealSense D435 camera 1 . Two groups of RC beams were built, control beams with no external
defects and beams with various surface deficiencies. Using the camera to produce depth maps of
the beam’s surface, they were able to qualify surface damage (roughness and cracks) correctly
by comparing acquired depth maps with pre-established ground truth.

Similarly [15] used a structured light sensor mounted on a robotic vehicle to aid in the
localization of external defects on an aeroplane hull. They were able to extract positions and
dimensions of external hull defects by segmenting irregularities in produced point clouds.

[21] is concerned with the guidance of a robotic welding arm. Using point clouds generated by
low-cost depth cameras, such as Intel RealSense D435 or ZED Mini 2, they created a point cloud
processing pipeline for estimating welding seam positions with satisfying precision and flexibility.

2.2 Limitations of depth sensing
Several influencing factors limit the usability of depth cameras. The majority of them are im-
posed by the scanned material’s surface, mutual position of the camera, and measured object
or operating environment. Those limiting factors may include the following, depending on the
technology used.

high incidence angle, either of the measured object or situated somewhere in the scene itself,
thus possibly causing multiple reflections to occur

1https://www.intelrealsense.com/depth-camera-d435/
2https://www.stereolabs.com/zed-mini/

11
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poor lighting

aggressive lighting in the operating optical wavelength band of the used sensor

high reflectivity of surface finish, either of the measured object or in the scene

high dispersivity of the measured surface

2.3 Stereo cameras
Stereo depth cameras consist of two matrix sensors placed at known positions so that the fun-
damental matrix F of this system is known.

Estimation of scene depth by a stereo camera can be described by the following steps. First,
an image of the scene is taken by each camera. The stereo image pair is then rectified. In the
next step, key points are detected and matched. Having a list of key points from both images
and their correspondences, disparity and depth can then be calculated as described in section
1.7.

The main limitation of stereo depth vision is that the scene for which depth is to be estimated
must be visible by both sensors. Therefore there is a vertical band on both sensors, where no
depth can be perceived. This limitation is illustrated in figure 2.1. Dmin denotes the minimum
distance at which depth can be perceived, as it is the closest point to the camera sensors, where
projected pixels start to overlap. B1 and B2 describe the two areas where no depth can be
perceived. [22]

Figure 2.1 Limitation of stereo vision

2.4 Passive and active stereo cameras
In order to extract key points from images, feature detection and key point extraction methods
are used, described in section 1.3. Passive cameras rely only on features present in the stereo
images. Therefore their accuracy strongly depends on the complexity of the scene itself. Poorly lit
or textured scenes will not contain many distinctive features. Therefore, the disparity matching
algorithm will not have enough correspondences to calculate depth via dense matching. In that
case, active stereo cameras need to be used.

Active stereo cameras combine the two sensors with an IR dot projector that illuminates the
scene. The projected dots themselves are then used as features in the images. [23]
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Multiple active stereo cameras shooting the same scene will not negatively affect each other,
in contrast to technologies described further. The generated depth maps may be denser and
more accurate due to a denser array of dots (features) being projected on the scene,

A comparison of produced depth maps by an active and a passive camera can be seen in
figure 2.2. Black spots on the disparity maps on the right side of the figure are places where no
corresponding features in stereo image pair could be found.

Figure 2.2 Visual comparison of passive and active stereo camera depth maps [23]

2.5 Structured light

Depth cameras utilizing structured light to determine scene depth consist of an active structured
light projector and a camera.

The light projector emits a specific 2D pattern, or a sequence of patterns, predetermined by
the nature of the scene. Scenes with movement may often require a single shot of the pattern,
while a sequence of patterns and images may be used for a static scene and produce a more
accurate depth map. The camera then captures the illuminated scene.

The captured 2D pattern will be nearly identical to the projected one if no objects are present
in the scene. If an object is present, then the projected pattern will appear deformed, as can be
seen in figure 2.3.

The depth map is then determined from the distortion of the projected pattern, as seen by the
camera. For this, several different techniques are used, each depending on the emitted pattern.
The most straightforward of which is triangulation. Triangulation is used, for example, with a
full-frame rainbow pattern, which consists of spatially varying wavelength illumination, similar
to the one depicted in figure 2.3. For this principle to work, the mutual position of the projector
and camera needs to be known, in addition to the viewing angle of the scene. [13]

Structured light depth sensing is not well suited for applications, where multiple cameras
utilizing the same pattern or sharing an optical wavelength band are required to operate in
close vicinity of each other, thus possibly mangling each other’s patterns if no synchronization
is carried out.



14 Research

Figure 2.3 Camera system using structured light [13].

2.6 Time of Flight (ToF)
Time of Flight camera estimates the scene depth by measuring the time in which a modulated
light is emitted, reflected, and registered by a sensor. It consists of a light source that illuminates
the shot scene with a modulated light source (most often in the near infra-red spectrum) and an
infra-red camera sensor.

Due to the way a ToF camera operates, it is not well suited to imaging scenes in which objects
are positioned at high incidence angles. That will often lead to bad depth estimation or artefacts
in the depth map. Other badly influencing factors of ToF measurement include, for example,
low reflectivity of measured objects, aggressive ambient light or high infra-red noise, and other
ToF cameras operating in the same scene, the last of which can be alleviated by synchronization.
[24]

2.7 Compared cameras
The following cameras were compared in the metrological study, their parameters are displayed
in table 2.1, as advertised by their manufacturers. The displayed values may depend on the
specific settings the devices are initialized with.

2.7.1 Intel RealSense D415

Figure 2.4 Intel RealSense D415 [25]
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Intel RealSense D415, first launched in 2018, is an active RGB-D stereo camera. It consists
of an IR dot projector, IR sensitive stereo pair, and a 1080P RGB sensor.

Intel also develops an open-source software development kit, the Intel RealSense SDK 2.0 3,
used for setup and acquisition of data. The SDK also offers a range of post-processing functions
for the captured data.

The camera supports a range of different settings and presets 4. The High Accuracy preset
generates lower density depth maps with higher confidence, and the High Density preset generates
higher density maps, at the expense of an increased amount of noise present in the depth maps.

2.7.2 Basler ToF

Figure 2.5 Basler ToF [26]

Basler ToF, first released in 2016, is, according to Basler, the first industrial ToF Camera
with 480P resolution in the mid-range price segment. It has since been superseded by Basler
Blaze 101 5, with nearly all of the mentions of its existence removed from the official Basler
websites. It has a standard GigE interface and a fully GenICam compliant interface, so it can
be easily integrated into any computer vision project. It consists of 8 high-power NIR LEDs and
a NIR camera sensor. It operates on the principle of pulsed ToF.

2.7.3 OAK-D-Lite
OAK-D-Lite is the newest addition to a series of depth cameras developed by Luxonis together
with the OpenCV team. Its development has been backed on Kickstarter 6. The camera consists
of a BW stereo pair and an RGB camera sensor.

3https://github.com/IntelRealSense/librealsense
4https://github.com/IntelRealSense/librealsense/wiki/D400-Series-Visual-Presets
5https://www.baslerweb.com/en/products/cameras/3d-cameras/basler-blaze/
6https://www.kickstarter.com/projects/opencv/opencv-ai-kit-oak-depth-camera-4k-cv-edge-object-detection
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Figure 2.6 OAK-D-Lite [27]

The interesting thing about this device, in contrast to the others, is that it is built around an
Intel Movidius Myriad X VPU, allowing it to run complex workloads, such as neural networks,
on-device without needing a performant host.

Luxonis develops an open-source software development kit DepthAI 7, used for setup and
calibration of the device, in addition to the acquisition of frames from the device and deployment
of custom payloads on the camera.

Currently, there are two different presets for depth estimation - High accuracy and High
density.

Table 2.1 Camera specifications as advertised by the manufacturers [25, 26, 27].

RealSense D415 Basler ToF OAK-D-Lite (AF)
Technology Active stereo Time of Flight Passive stereo
Resolution 720P 480P 480P
Max frame rate 90 FPS 20 FPS 200 FPS
Depth Accuracy under 2% at 2 m 1 cm (distance unspecified) unspecified
Field of View (H x V) 65° × 40° 57° × 43° 73° × 58°
Ideal Range .5 m to 3 m 0 m to 5 m (or 13 320 mm) .20 m to 19.1 m

7https://github.com/luxonis/depthai
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Measurement methodology

Several distinct experiments were carried out. Namely the flat-form distortion test, sphere shape
test, sphere spacing test, distance estimation test, concave surface profile estimation test, and
multi-view fusion test. The first three of which were inspired by, but have not conformed to pre-
cisely, the ISO 10360-13 standard on acceptance and reverification tests for optical 3D coordinate
measuring systems. The reason for which is stated in section 3.1.2.

The general methodology each of these experiments followed can be described by figure 3.1.

Figure 3.1 General measurement methodology

3.1 ISO 10360-13
The ISO standard 10360-13 [28], published in 2021, describes a number of acceptance and reveri-
fication tests for optical 3D measurement systems. An example of another similar standard would
be VDE/VDE 2634 BLATT 2 1. ISO 10360-13 is, however, the only internationally accepted
standard for the measurement of the accuracy of optical 3D CMMs, i.e., depth cameras.

The purpose of an acceptance test is the verification of the manufacturer’s claimed perfor-
mance of their devices, while reverification tests are carried out in order to ensure the long-term
accuracy and usability of said devices in their working environments.

It describes the following tests in addition to the minimal and maximal sizes and positions
of the artefacts.

Probing characteristics measured on a sphere - estimation of a sphere shape
1www.vdi.de/en/home/vdi-standards/details/vdivde-2634-blatt-2-optical-3-d-measuring-systems-optical-

systems-based-on-area-scanning

17
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Distortion characteristics measured on a pair of spheres situated in the measurement volume
- estimation of sphere spacing

Flat-form distortion error measured on a plane

3.1.1 General procedure of the ISO 10360-13 tests
For each of the tests, the total sensor measurement volume (or the required measurement volume)
is divided into eight similarly sized regions. The measured artefact is then positioned in a different
region (or their combination) for each of the carried out measurements in the tests. The error is
then calculated across all the measurements.

3.1.2 Deviations of carried out tests from the standard
The main goal of the carried out tests was to compare the available devices on their ability to
capture the used artefact accurately and to determine how the accuracy changes with respect
to measurement distance, incidence angle, different materials of artefacts or a combination of
thereof.

By the methodology of ISO 10360-13, the characteristics of the tested device should be mea-
sured in the entirety of its measuring volume to assure uniform accuracy in the entire designated
working area. As this was not the goal in mind, the methodology could thus be simplified, and
ultimately different attributes were observed. They should, however, be well representative of
the results each device would be capable of achieving in the entire ISO test in comparison with
each other.

Each device was compared under the same conditions, distances, and incidence angles. The
observed attributes were, namely, the accuracy with which a device can capture spherical objects,
the accuracy with which a device can capture planar surfaces and the accuracy with which a
device can measure concave areas on an object.

3.2 Measured artefacts
Several different artefacts had to be obtained and manufactured to capture a dataset on which
deviations would be measured.

3.2.1 Spherical artefacts
Five spheres made of wrought iron with a diameter of 30 mm characterized by a slightly shiny
surface, five spheres made of wood with a diameter of 30 mm characterized by a rough matte
surface and one sphere made of aluminium with 40 mm diameter and a gleaming surface was
used.

The spheres were placed in a custom made holder, shown in figure 3.5, figure 3.3 and figure 3.4,
at heights of 80, 60, 100, 90 and 70 mm respectively. Table 3.1 shows the respective centre-centre
distances of the spheres when placed on the holder.

3.2.2 Planar artefacts
An 800 mm by 600 mm wooden board characterized by a rough matte surface hung from a
supporting structure, and a smooth exposed concrete wall with many distinct key points was
used for tests with planar surfaces.
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Figure 3.2 Wrought iron sphere, aluminium sphere, and wooden sphere with a radius of 30 mm, 40
mm, and 30 mm, respectively

3.2.3 Cuboidal artefacts

Six cuboidal objects, shown in figure 3.8, with a cutout in the middle of one of the faces, were
3D printed. The artefacts were 60 mm by 60 mm wide, 30 mm high with cutouts of 10x10,
10x20, 10x30, 20x10, 20x20, 20x30 mm. The artefacts were 3D printed from black, opaque PLA
filament.

Passive stereo vision is not expected to be able to reconstruct these artefacts accurately
because the 3D printed PLA lacks distinct key points and is entirely uniform.

Table 3.1 Centre-centre distance of spheres when placed on the sphere holder artefact [mm], num-
bered from left to right.

Sphere number S1 S2 S3 S4 S5
S1 127 176 255 350
S2 127 107 200 255
S3 176 107 100 178
S4 255 200 100 127
S5 350 255 178 127
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Figure 3.3 Sphere holder artefact drawing from the top

3.2.4 Free-form artefacts
A guitar sound effect pedal was used as a free-form artefact. The pedal is made of cast metal
with a shiny metal button and switch and a shiny plastic potentiometer, A corresponding 3D
triangle mesh model was then reconstructed in OpenSCAD in order to obtain a reference. The
artefact is shown in figure 3.9 and the 3D model in figure 3.10.

3.3 Used mathematical notation

The following notation is used in the definitions of the errors.

#P refers to the size of set P .

Pi is the i-th item in the set P .

px and py refer to the x and y component of the point p, respectively.

||p|| is the L2 norm of the point p.

|r| is the absolute value of r.

(x, y, z) is a point in the 3D space.
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Figure 3.4 Sphere holder artefact drawing from the side

3.4 Tests on spherical artefacts

This test suite measures the ability of each of the devices to estimate the shape of spherical
objects. The main interest was testing how a rapidly increasing angle of incidence affects the
depth accuracy of a sensor.

Given a point cloud of a scene containing spherical artefacts, points belonging to each of the
artefacts are segmented into separate point clouds.

A model of a sphere defined by the central point c = (x, y, z) and radius r is then fit to each
of the point clouds using RANSAC.

3.4.1 Sphere shape error Er

The measured error is defined as follows.
Let RT be a set of actual radii of the used spheres and R be a set of radii estimated by

RANSAC.

Er = 1
#R

#R∑
i=0
|RT i −Ri| (3.1)

In other words, Er is the mean absolute error of estimated radii from actual radii.
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Figure 3.5 Constructed artefact for placement of spherical objects

3.4.2 Sphere spacing error Es

Complementary to the sphere shape test, this test measures the error of relative centre-centre
distances of the estimated sphere models. The reason for measuring this error is that the esti-
mated radii may be close to the ground truth. However, the spheres in the scene may appear
conically distorted due to an increasing angle of incidence. So if the estimated radius is correct,
the position will be shifted.

Given set CT of actual sphere central coordinates and C set of estimated central coordinates,
the error is defined as follows.

Es = 1(#C
2
) ∑

i,j∈{1..#C},i<j

||CT i − Cj || (3.2)

In other words, Es is the mean absolute error between the actual distances and the estimated
ones.

3.5 Tests on planar artefacts
This test suite measures the ability of each of the devices to estimate the depth and shape of
planar surfaces with respect to the incidence angle of the artefact with the camera sensor and
the distance of the artefact from the camera sensor.

The planar artefact should be positioned such that its centre is aligned with the centre of the
camera sensor. The distance of the artefact to the camera and the incidence angle are measured
from centre to centre.
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Figure 3.6 A wooden board hanged from supporting structure.

3.5.1 Distance estimation error Ed

Since the centre of the pictured artefact is aligned with the centre of the camera sensor, the
distance estimation error is defined as the mean difference between the depth of all points within
the ROI and the actual acquisition distance.

Let P be a 3D point cloud of the ROI and d the distance at which the point cloud was
acquired. Ed is then defined as follows.

Ed = 1
#P

∑
(x,y,z)∈P

(d− z) (3.3)

The reconstructed 3D point cloud may contain empty areas because the camera sensor cannot
estimate the distance. The mean distance will therefore be shifted and reflected in the measured
error. Such empty areas may appear in areas with too high of an incidence angle with the sensor.

3.5.2 Flat-form distortion error Ef

Complementary to the distance estimation test, this test measures the distortion of the pictured
planar artefact.

The observed error in this test is the mean absolute distance of a point cloud to a best-fit
plane. A plane model is fit to a 3D point cloud depicting the face of the planar artefact, giving
the following function for the z part of the coordinate derived from the scalar equation.

Z(x, y) = i+ αx+ βy (3.4)
Where i is the y-intercept of the plane, α and β are the scalars. With point cloud P of the

region of interest, the error is defined as follows.

Pd = 1
#P

∑
(x,y,z)∈P

||(x, y, z)− (x, y, Z(x, y))|| (3.5)
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Figure 3.7 An exposed concrete wall

3.6 Concave surface profile estimation error Ep

This test compares the structural resolution of the devices. The purpose of this test is to
determine the ability of each device to capture concave regions, i.e. to show the distortion in
regions where a rapid change of depth occurs. Another point of interest here is to show how
small a concave region can be registered with each device.

Let P be a point cloud of a concave region on the top face of the artefact obtained by scanning,
and let PT be a set of points depicting the real concave region on the top face of the artefact. P
should be registered so that the distance to PT is minimal, PT should be positioned so that it is
parallel to the xy plane.

For each point p ∈ P , let point s ∈ PT be a point satisfying the following criteria.

||(sx, sy)− (px, py)|| = min{d|d = ||(qx, qy)− (px, py)||, q ∈ PT } (3.6)

The error of point p is then the L2 norm of s − p, and Ep is the mean value of all errors of
points in P .

3.7 Multi-view fusion error Em

Similar to the concave surface profile estimation error, this test also measures the structural
resolution of each of the devices. The error is measured on a reconstructed model of a scanned
object, therefore it requires a series of consecutive point clouds taken from different perspectives.

The point clouds are registered in a common coordinate system, and the background of the
scenes is segmented out. The resulting scan is then registered on a reference 3d model, and the
mean absolute error is calculated.

Due to the process of registration of successive point clouds, there is a certain degree of uncer-
tainty due to the cumulative error of registration algorithms such as ICP and the implementation
of the registration pipeline.
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Figure 3.8 Cuboidal artefacts

The error is defined as follows. Let P be a point cloud of the scanned object, PT a point
cloud sampled from a triangle mesh model of the reference object and n : R3 → R3 a function
returning the nearest neighbor of point p ∈ P from PT .

Em = 1
#P

∑
p∈P

||p− n(p)|| (3.7)



26 Measurement methodology

Figure 3.9 A free-form artefact

Figure 3.10 A 3D model of the free-form artefact



Chapter 4

Measurements

Every compared device was left running for 30 minutes before each measurement to reach thermal
stability. The settings for each device were identical in every test. While this may not be the
ideal setting for every application, it gives a reasonable basis for comparison. The acquisition
distance was measured after the placement of each camera by a laser range finder.

4.1 Intel RealSense D415
The acquisition of data from this camera was done by a custom script written in Python, with
the use of RealSense SDK Python language bindings.

Two different presets were compared, the High Density preset and the High Accuracy preset,
to see both extremes of which the device is capable. The presets are referred to as RealSense
D415 (A) and RealSense D415 (D) for High Accuracy and High Density, respectively.

In terms of acquisition pipeline settings, the spatial, hole filling and temporal filters were
used with default parameters, no median filter for the blurring of the generated depth maps was
used.

Both the RGB and depth images were used, the depth image was aligned with the RGB
image, and the aligned images were then saved. The depth images were saved in the NumPy 1

matrix format (.npy) and the RGB images in the Portable Network Graphics format.

4.2 Basler ToF

Acquisition from this camera was done by the use of the Basler ToF Viewer program [29]. The
program only allows the saving of ordered PCD files, normalized depth images and intensity and
confidence maps. Only the intensity maps and point clouds were used.

To obtain non discretized depth image, the z-channel of the ordered PCD file was extracted
into a depth image.

The temporal and spatial filters with default settings were used during the acquisition.

4.3 OAK-D-Lite
Both the High Accuracy and the High-Density settings were compared. The settings are referred
to as OAK-D-Lite (A) and OAK-D-Lite (D) for High Accuracy and High Density, respectively.

1https://numpy.org/
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Both temporal and spatial filters were used with the default settings, and no median filter for
the blurring of the generated depth maps was used.

The acquisition of RGB and depth frames was done by a custom script utilizing the DepthAI
SDK. The depth frames were saved in the NumPy matrix format, and the RGB frames were
saved in the Portable Network Graphics format.

4.4 Measurement of spherical artefacts

Objects described in section 3.2.1 were used as measuring artefacts.
A total of 60 images were captured in sets of 4. Each set contains images of different spheres

shot with increasing distance.
The sphere holding artefact was placed on a camera testbed and was then then pictured from

the distances of 500, 600, 700, and 800 mm, measured from the top of the testbed to the camera
sensor.

Three different sets of spheres were used, the first set consists of 5 wrought iron spheres with
a 30 mm radius, the second set consists of 4 wrought iron spheres and one aluminium sphere
with a 40 mm radius and the third set consists of 5 wooden spheres with a 30 mm radius.

Therefore a total of 12 images were shot by each camera.
The spheres were segmented out from the background by colour for the RGB-D cameras

and by depth for the Basler ToF. Figures 4.1 and 4.3 show unmasked colour and depth images.
Figures 4.2 and 4.4 show colour and depth images after applying a mask.

The reconstructed point clouds were then fitted with 3D sphere models.

4.4.1 Sphere shape error Er

Using the fitted models of the spheres visible in the shot, a mean absolute deviation of estimated
radii from the ground truth was calculated. Figure 4.5 shows the reconstructed spheres with
best-fit sphere models.

4.4.2 Sphere spacing error Es

Using the fitted models of the spheres visible, a mean absolute deviation of the distances of
spheres visible in the shot was calculated.

Figure 4.1 Wrought iron spheres shot from the distance of 700 mm.
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Figure 4.2 Masked wrought iron spheres shot from the distance of 700 mm.

Figure 4.3 Depth maps of wrought iron spheres shot from the distance of 700 mm.
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Figure 4.4 Masked depth maps of wrought iron spheres shot from the distance of 700 mm.
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Figure 4.5 Reconstructed 3d spheres with fitted sphere models
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4.5 Measurement of planar artefacts

Objects described in section 3.2.2 were used as measuring artefacts. 180 images were captured,
90 of which were of a wooden board and 90 of an exposed concrete wall. Each set was shot at
the distance of 500-3000 mm with 500 mm increments at an angle of 30, 60, or 90 degrees and
contains six images. Therefore a total of 18 images were shot by each camera in each scene. An
example of captured images and depth maps can be seen in figure 4.6 and figure 4.8.

For the two RGB-D cameras, OAK-D-Lite and RealSense D415, the ROI from the board
dataset was segmented out in the HSV colour space from the coloured image, and the generated
mask was used to mask out the uninteresting regions in the depth image. For the Basler ToF
camera, a combination of segmenting by depth and intensity was used.

In order to obtain a segmented ROI in the concrete wall dataset, the respective masks gen-
erated in the board dataset were used, since the acquisition distances and angles were identical.

An example of segmented colour images and depth maps can be seen in figure 4.7 and figure
4.9 respectively.

The segmented depth maps were then projected back into 3D space. An example of the
reconstructed point clouds of a planar artefact is displayed in figure 4.10.

4.5.1 Distance estimation error Ed

Using the reconstructed model of the planar surface and real measured distance, a mean of the
depth estimation error of the points was calculated. Figure 4.11 shows a 2D side view of the
generated point clouds together with a marker for ground truth.

4.5.2 Flat-form distortion error Ef

Using the reconstructed model of the planar surface, a plane model was fitted into the 3D points
using RANSAC. Example of such model can be seen in figure 4.12. Then the mean absolute
error and variation of the measured 3D points from the fitted model were calculated.

Figure 4.6 Wooden board captured from 3000 mm under a 60-degree incidence angle.
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Figure 4.7 Masked wooden board captured from 3000 mm under a 60-degree incidence angle.

Figure 4.8 Wooden board depth maps captured from 3000 mm under a 60-degree incidence angle.
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Figure 4.9 Masked wooden board depth maps captured from 3000 mm under a 60-degree incidence
angle.

Figure 4.10 Example of reconstructed point clouds of a wooden board
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Figure 4.11 Side view of wooden board point clouds generated by different sensors, projected to 2D.

Figure 4.12 A point cloud of a wooden board with a best-fit plane model
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4.6 Measurement of concave surface profile

Each of the six cuboidal artefacts from section 3.2.3 were placed on the test-bed under the camera
sensor so that the artefact and the camera sensor are parallel and pictured from distances of 500,
600, 700, and 800 mm, measured from the top of the testbed to the camera sensor. Therefore 24
pictures were captured by each camera, 4 of each cuboidal artefact.

Similarly, as in other tests, the ROI was segmented out of the scene by either colour or depth
and projected back into 3D space. Figures 4.13, 4.14 and 4.15 show the colour images of the
scene, depth maps of the scene and depth maps of the top profiles generated by the cameras.

The outliers on the edge of the ROI were removed in order to obtain a point cloud represen-
tation of the top face of the cuboidal artefact. In the next step, the 3D polygon model of the
cuboidal artefact was positioned so that its bottom face was parallel with the xy plane. Then it
was sampled to yield a point cloud representation of the model, and the top face was segmented
out. The two-point clouds were then aligned with the use of ICP.

From both of the point clouds, only the concave region was used for the calculation of the
error, so that the top face would not skew the result, and the deviation from ground truth would
be more apparent.

Correspondences between the two-point clouds were obtained by constructing a k-d tree from
the model point cloud, retrieving the nearest neighbours for each scanned point in a radius of
two times the cut depth and picking the nearest point in the x and y dimension.

The mean distance and variation of the measured profile from the model were then calculated.
Figure 4.16 shows the reconstructed top profiles with inliers coloured green and outliers red.
Points classified as inliers have an error lower or equal to the mean error, while points classified
as outliers have an error larger than the mean. Similarly, figure 4.17 shows the side view of the
measured profiles along with the profile of the 3D model.

Figure 4.13 Colour images of the cuboidal artefacts scene
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Figure 4.14 Depth maps of the cuboidal artefacts scene

Figure 4.15 Depth maps of the top faces of the artefacts
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Figure 4.16 3D scene of the profiles generated by the cameras with coloured inliers and outliers.
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Figure 4.17 Side view of the mean distances along the profile with ground truth

4.7 Multi-view measurement

All of the devices were tested, but the complete measurement was completed only with the
RealSense D415 in both the High Accuracy and the High Density settings.

Basler ToF showed a high amount of distortion due to the high incidence angles and the
glossy finish of the artefact. The distortion is shown on figure 4.18. Due to this distortion, ICP
would not be able to register the point clouds correctly because the transformation generated by
ICP is rigid.

OAK-D-Lite was also unable to produce sufficiently accurate depth maps to measure any
meaningful error. An example of the depth maps containing a large amount of noise is displayed
in figure 4.19.

The measurement with the RealSense D415 proceeded as follows. A series of 100 consecutive
RGB-D images were taken from a distance of around 500 mm. The camera trajectory was similar
in both measurements. An approximation of the trajectory is shown in figure 4.20. A precise
trajectory could not be generated from the series by the use of RGB-D odometry, as the scene
was primarily flat with the artefact situated in the centre and lacked enough distinct key points.

The consecutive point clouds were registered by the ICP algorithm. The ICP was not initial-
ized by any precomputed initial transformation, as the distance between the consecutive point
clouds is minimal. Only points not already present in the scan were added to the resulting scan
during the run of the fusion pipeline. The pseudo-code listing 4.1 summarizes the entire process
of the registration and fusion of the successive point clouds. The resulting scans are shown in
figure 4.21.
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Code listing 4.1 Pseudocode of point cloud fusion algorithm

def fusion (pcd_it , lower_bound , upper_bound ):
scan = pcd_it . grab_next_frame ()

. reconstruct_pc ()

. downsample ()

scan = segment_roi (scan)

while ( next_frame = pcd_it . grab_next_frame ()). is_valid ():
next_frame = next_frame . reconstruct_pc (). downsample ()
next_frame = segment_roi ( next_frame )
transformation = ICP(scan , next_frame )
scan. transform ( transformation )
distances = next_frame . calculate_distance (scan)

scan. add_points (
next_frame [ lower_bound < distances < upper_bound ]

)

return scan

Figure 4.18 Basler ToF distortion of the free-form artefact
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Figure 4.19 OAK-D-Lite point cloud noise in a free form artefact scene

Figure 4.20 An approximate trajectory of the RealSense D415 during the measurement of the free-
form artefact
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Figure 4.21 Reconstructed free-form artefact with a point error scale
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Results

The following values were measured in the captured datasets. Influences of measurement factors
such as an increasing distance, an angle of incidence, and material surface characteristics are
compared.

5.1 Spherical artefact shape and spacing estimation
Figure 5.1 shows the sphere shape error Er, sphere spacing error Es, and the mean count of
measured points of the spheres depending on the measurement distance.

The OAK-D-Lite camera does not show any systematic error in radius estimation or spacing
in any of the three datasets. As can be seen in figure 4.5, the reconstructed data is too noisy
and does not resemble a top of a hemisphere. Due to the lack of resemblance, it is impossible to
estimate a sphere model’s parameters with RANSAC accurately.

On the two datasets containing metal spheres with shiny surfaces, the Basler ToF camera
shows a substantial amount of conical distortion, hinted by the significant spacing error. The
conical distortion is also visible in figure 4.5. The radius estimation error of Basler ToF seems
to be lessened by an increasing measurement distance, most likely due to a lower intensity of the
reflection. On the dataset with matte wooden spheres, the error is not as substantial, and the
camera can capture the spheres fairly well.

The RealSense D415 was able to estimate the sphere radius and spacing with good accuracy
and was not affected by the shiny or matte surfaces. No systematic error due to an increasing
distance seems to be present in the measurement range.

5.2 Flat-form distortion
Figures 5.2 and 5.3 show the flat-form distortion error measured on a wooden board and a
concrete wall respectively. The mean flat-form distortion error Ef is marked with a cross.

5.2.1 Wooden board dataset
With an incidence angle of 0 degrees, i.e. the sensor and the measured planar object in parallel,
the Basler ToF shows the least amount of flatness distortion. The RealSense D415 performs
similarly to Basler ToF on lower distances. However, it shows more distortion gradually with
an increasing distance on both of the presets. The images obtained from OAK-D-Lite contain
considerable noise when taken at lower distances. With an increasing measurement distance, the

43



44 Results

Figure 5.1 Er, Es, and mean count of points measured on spherical artefacts.

distance of the wooden board is estimated uniformly by OAK-D-Lite and is therefore completely
flat. However, the box plot shows a non-zero mean value due to the reconstructed point cloud
containing a low amount of outliers. The uniform depth estimation is most likely caused by a
low number of visually distinct key points on the board for disparity matching.

Both the RealSense D415 and Basler ToF show a large amount of distortion, which seems
to be caused by a combination of the increasing incidence angle and the surface characteristics
of wood. Again, they both perform similarly on lower distances. With an increasing angle
of incidence, the OAK-D-Lite can no longer estimate the depth uniformly and has the most
significant flat-form distortion error.

5.2.2 Concrete wall dataset
In contrast to the wooden board, the concrete wall offers more visually distinct key points and
it, therefore, should be better suited for passive stereo vision.

Both the Basler ToF and the RealSense D415 perform far better on the concrete wall than
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Figure 5.2 Flatness error measured on a wooden board dataset

they did on the wooden board. The exact reason for this is not immediately apparent. The
surface texture and different reflectivity in the IR spectrum may both be influencing factors. It
is, however, not possible to say for sure without a further investigation.

Due to the higher amount of distinct visual key points on the concrete wall, the OAK-D-Lite
can perform much better and is comparable to the other cameras in the low range. The slight
noisiness of the data generated by the OAK-D-Lite may be alleviated by using a mean filter or
a similar blurring method.

5.3 Distance estimation

Figures 5.4 and 5.6 show the distance estimation error Ed measured on a wooden board and a
concrete wall respectively.



46 Results

Figure 5.3 Flatness error measured on a concrete wall dataset

5.3.1 Wooden board dataset
All tested devices measure the mean distance of the wooden board reasonably well under a zero
degree incidence angle in the short-range.

The Basler ToF starts showing quite a substantial deviation from the ground truth at around
1000 mm, and it systematically overestimates the distance of the wooden board with increasing
measurement distance. The overestimation is far higher when a high incidence angle is intro-
duced, reaching around 700 mm when measured under a 60-degree incidence angle at 3000 mm.

In contrast, the RealSense D415 can accurately measure the mean board distance.
The OAK-D-Lite performs similarly to the other cameras when the measurement angle is

zero. The reason for this is the same as in the measurement of flat-form distortion error. With
an increasing incidence angle and distance, it slightly underestimates the distance.

Figure 5.5 shows the amount of points captured on each picture. Since it doesn’t hint at any
large blind spots in the depth maps of any of the devices other than a slightly lower amount
of points taken by the OAK-D-Lite at the 500 and 1000 mm measurement distances at an
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Figure 5.4 Distance estimation error measured on a wooden board dataset

incidence angle of 60 degrees, due to the ROI being too close to fit in the view. The reason for
the underestimation and overestimation of the distances is therefore not obvious. The inaccuracy
of the passive OAK-D-Lite is not surprising. However, the inaccuracy of the Basler ToF seems
to be worthy of further examination.

Figure 5.5 Mean amount of points captured on a wooden board.

5.3.2 Concrete wall dataset
The Basler ToF camera and the RealSense D415 were both able to measure the mean distance to
the wall with reasonable accuracy under 0 and 30-degree incidence angles. However, they both
showed an increased error in measurements under a 60-degree incidence angle.

The OAK-D-Lite shows a significant systematic distance measurement error under any inci-
dence angle. The distance error is around 10% to 25% of the actual acquisition distance in the
2000 mm to 3000 mm range.

Figure 5.7 again hints at no large blind spots in the depth maps, other than for the OAK-D-
Lite at 500 and 1000 mm at 60 degrees.
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Figure 5.6 Distance estimation error measured on a concrete wall dataset

Figure 5.7 Mean amount of points captured on a concrete wall.

5.4 Concave surface profile measurement

The OAK-D-Lite camera was not able to discern the concave region from the top face due to a
lack of distinct key points, as the measured objects all have a uniform black colour.

Figure 5.8 shows the profile errors measured on all of the cuboidal artefacts.
Both the Basler ToF and RealSense D415 were able to estimate the depth of the concave

region reasonably well. The influence of measurement distance in the chosen range is substantial
only on the artefact with dimensions of the concave region of 10 mm by 10 mm.

5.4.1 Influence of the width of the concave region
Figure 5.9 shows the influence of the width of the concave region on the profile estimation error.
The mean error Ep is marked with a cross.

The Basler ToF camera could discern narrow concave regions with reasonable accuracy. Due
to the density of its projected pattern, the RealSense D415 could not scan very narrow cuts.
However, with the increasing width of the concave region, both of the cameras showed similar
accuracy.
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Figure 5.8 Profile error measured on all cuboidal artefacts.

5.5 Free-form artefact reconstruction

As mentioned in section 4.7, only the RealSense D415 camera was able to reconstruct the free-
form artefact. Figure 4.21 shows the reconstructed artefact, figure 5.10 shows the histogram of
point errors.

The scans from the camera with High Accuracy and High Density presets contain 4993 and
5561 points, respectively. The mean error Em is 2.0 mm for both.

It is apparent from the error histogram that the presets did not influence the overall result.
The lack of preset influence may be partly caused by the implementation of the point cloud
fusion pipeline. The difference between the presets may also be better measured on a larger and
a more complicated free-form artefact.
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Figure 5.9 Influence of the concave region width on the measurement error.

Figure 5.10 Reconstructed free-form artefact point error histogram

5.6 Measurement conclusion
Considering the measured errors, the following decision diagrams for selecting a depth-sensing
device for computer vision tasks are presented. Figures 5.11 and 5.12 show diagrams for selecting
a device for distance measurement and shape measurement, respectively.

Other factors such as operating conditions and environment, required FPS, FOV, scene light-
ing, host device, and processing pipeline requirements, to name a few, should still be considered
carefully.
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Figure 5.11 Decision diagram for selecting a depth-sensing device for distance measurement.
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Figure 5.12 Decision diagram for selecting a depth-sensing device for shape measurement.
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Discussion

The Basler ToF camera performed reasonably well in all of the measured tests, although it is
clearly not well suited for imaging reflective surfaces that cause a specular reflection. Contin-
uation of the distance estimation tests seems interesting, as the reason for overestimating the
wooden board distance when measuring under a high incidence angle is not clear. The fact that
a similar systematic error was not present in the exposed concrete data hints at the surface
characteristics of wood. It is possible that the coarse surface caused a diffusing reflection. The
limitations of Time-of-Flight sensors seem very severe, and their extent should be investigated
further.

The Intel RealSense D415 was quite accurate in all of the measurements. Neither of the tested
influencing factors had any significant effect on its accuracy. Therefore, active stereo vision seems
to be a good choice for accurate depth sensing in the low to medium range with high structural
resolution regardless of the imaged objects.

The OAK-D-Lite was not well suited for most carried out tests due to a lack of a dense array
of visually distinct key points present in the images. However, it performed reasonably well when
imaging an exposed concrete wall, which clearly met the required conditions for dense disparity
matching. Therefore it is expected that the camera would perform satisfactorily in well lit and
visually complex environments, such as outside, to estimate the depth of scene objects. It is
also quite exciting compared to the other cameras, as it can run image processing workloads on
device in real-time. If such functionality is required, however, the depth accuracy and structural
resolution are not satisfactory, Luxonis also offers an active version.
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Chapter 7

Conclusion

Several depth camera comparison tests and their methodologies were created. Each of the tests
measured the influence of measurement factors on the accuracy of the devices. The tests mon-
itored such factors as the incidence angle, increasing distance, object surface characteristics, or
object dimensions to establish the respective strengths, weaknesses, metrological characteris-
tics, and the compared devices’ structural resolutions. Three selected devices utilising different
principles for estimating the scene depth were compared in each test. The principles were Time-
of-Flight and active and passive stereo vision. After analysing the test results, decision diagrams
and recommendations for the selection of a depth-sensing device were presented as a basis for
future feasibility studies of computer vision projects utilising depth-sensing cameras.
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