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Abstrakt
Diplomová práce se zabývá nastavenı́m mikrobolometrického obrazového snı́mače použitého
v nechlazené, dlouhovlnné infračervené kameře a následným použitı́m snı́maného obrazu pro
ostřenı́ kamery. Protože výstupnı́ signál z použitého mikrobolometrického senzoru je možné
ovlivnit nastavenı́m pěti vstupnı́ch parametrů (velikostı́ třech řı́dı́cı́ch napětı́ VA, VB a Voff ,
dobou integrace a velikostı́ integračnı́ho kondenzátoru), provedl jsem se v prvnı́ části experi-
mentálnı́ měřenı́ a zdokumentovánı́ vlivu všech těchto parametrů na výstupnı́ signál snı́mače.
Vliv všech těchto parametrů jsem současně měřil v závislosti na externı́m vlivu okolnı́ teploty.
Na základě těchto měřenı́ jsem poté navrhl dvě metody stabilizace teplotnı́ závislosti mikrobolo-
metrického senzoru. Prvnı́ metoda je vhodná pro aplikace, které pouze zobrazujı́ dopadajı́cı́
infračervené zářenı́ (např. puškohled). Protože tato metoda nemá vliv na nehomogenitu zesı́lenı́
jednotlivých pixelů obrazového snı́mače, je obraz zı́skaný z kamery subjektivně kvalitnějšı́.
Druhá metoda kompenzace vnějšı́ teploty je určena pro přesný výpočet a zjištěnı́ teploty předmětu
snı́maného kamerou (radiometrie). Tato metoda kompenzace nastavuje parametry senzoru tak,
aby tělesa, která vyzařujı́ stejná množstvı́ energie, byla zobrazována vždy stejnou výstupnı́ hod-
notou bez ohledu na teplotu okolı́. V druhé části jsem se zabýval využitı́m zı́skaného obrazu ze
snı́mače pro ostřenı́ kamery. Zde jsou popsány a porovnány metody výpočtu ostrosti obrazu a
popsány algoritmy, které lze na základě ostrosti obrazu použı́t pro hledánı́ nejlepšı́ho zaostřenı́
kamery.

Klı́čová slova: nechlazená infračervená kamera, microbolometer, automatické ostřenı́, měřenı́
ostrosti obrazu.
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Abstract
Thermal cameras, non-contact devices that convert infrared energy into a visual image, have a
broad sphere of application ranging from epidemiology to building and construction. The objec-
tives of this master thesis are to first develop a process of setting up a microbolometer infrared
detector used in uncooled, long-wave infrared cameras and second to use the resultant image
for camera focusing purposes. As the output signal from the used microbolometric detector can
be influenced by adjusting five input parameters (integration time, integration capacitor size and
three controlled voltages GA, GB and Voff ), an experimental measurement assessing influence
each of these parameters was performed. Simultaneously, these measurements were assessed for
their dependence on ambient temperature, where a strong dependence was found. Based on these
results, two compensation methods of ambient temperature dependence were designed. The first
method is suitable for an application that only displays incident infrared radiation, an example
of which may be a digital riflescope. Because this method does not amplify the influence of
individual pixels of the image sensor on nonuniformity, the image obtained from the camera
is subjectively better. The second method is intended for accurate calculation and determina-
tion of the temperature of the captured object (radiometry) for industry and research purposes.
This compensation method adjusts the sensor parameters in the way that subjects emitting the
same amount of energy are always displayed with the same output value, regardless of ambient
temperature. Further, methods to assess sharpness of an image were researched and based on ex-
perimental evaluation the Prewit derivation evaluated with the threshold sum was found to bring
the best results. Lastly, four algorithms allowing to find the maximum sharpness were evaluated,
and based on secondary research, the hill search algorithm was selected as the best option.

Keywords: Uncooled infrared camera, Microbolometer, Uncooled infrared detector, Autofocus,
Sharpness-maximization autofocus.
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Chapter 1

Introduction

FLIR, one of the largest producers of thermal cameras, defines thermal camera as ”non-contact
device that detects infrared energy (heat) and converts it into a visual image“ [1]

Even though the human eyes have brilliant performance, they can capture and interpret only
a tiny fraction of the electromagnetic spectrum. This spectrum is called the visible spectrum and
has a wavelength of 0.4 – 0.7 µm [2]. The human eye does not have flat sensitivity, but respects the
photopic curve with maximum sensitivity at 0.555 µm. In dark conditions, the photopic curve is
replaced with the scotopic curve with a new peak at 0.510 µm. Although visible light is essential
for humans, there is a lot of information hidden out of the light that humans cannot see. This is
the area in which the infrared cameras operate.

The objectives of this master thesis are to first develop a process of setting up an uncooled,
long-wave infrared camera and to use the resultant image for automatic camera focusing purposes.
The camera setting is very important for the image quality. This thesis aims to regulate the cam-
eras’ parameters in such a way that the camera will display the object independently of the ambient
temperature.

Infrared cameras play an important role in various fields of application. Firstly, in building
management and construction field, infrared cameras can provide time effective and non-invasive
analysis of thermal isolation of the building. The thermal cameras highlight areas with above-
average temperatures and hence allow to detect heat-loss points. This information will allow not
only to improve the building design while under construction, but also will remain essential for
those managing the building or occupying the house, as it can be used to optimize air conditioning
and heating. This optimization will lead to both cost savings and lowering the environmental
impact. Secondly, thermal cameras can be used for early fault detection. For example, a hot water
leakage will be detectable in very early stages and can be resolved prior further damage is caused.
The advantage of infrared cameras in these scenarios over other, more traditional methods, is their
non-invasive nature.

Continuing on the topic of fault detection, the increase in temperature in temperature is a
symptom of many failures in both electronics and mechanics. In developing electric circuits,
temperature gradients can bring to light short circuits and overcurrent. Modern electronics use
many small footprint integrated circuits, which makes it challenging to analyze such a printed
circuit board (PCB) using conventional methods. The infrared camera can take one picture of the
entire PCB, and the fault will literally lights up.

Thermography is also well suited for regular inspections of electrical distribution systems. The
rise in temperature may be caused by loss of connection, insulation problems, and others, and may
lead to unplanned outages. The main benefit of the thermal camera is that during an inspection,
the systems can operate normally and there is no need to interrupt the power delivery.

Thermography also proved to be an asset in medicine and epidemiology, as raised body tem-
perature is a common symptom to many infectious diseases. Preventing the spread of diseases
(especially SARS-CoV-2) has become essential in the past two years. Infrared camera systems
play an important role in solving this critical problem. While detecting potentially ill humans, the
measurement can be proceeded contactless and within a significant distance. This makes infrared
cameras a great solution for high volume traffic points as well as the overall increase in protection
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1. Introduction

for the operating staff due to their separation from the potentially contentious population. This and
the processing speed of the measurements are the main advantages of this solution over more con-
ventional methods. Moreover, the whole process can be automatized by finding human faces using
a well-known algorithm on a visible camera as described in [3] and [4]. Thermal cameras can be
used in medicine not only as a noncontact thermometer but also as a diagnostic tool. Infrared
imaging was found to be nearly as good as mammography in detecting breath cancer. Sensitivity,
specificity, and false positive rate have similar results to mammography, unlike the false positive
rate, which is approximately two times higher [5]. Thermal imaging is a non-invasive technique
that does not use X-rays, making it less harmful. Furthermore, in recent years, deep neural net-
works have allowed us to predict breast cancer as presented in [6].

Infrared technology has found its place in chemistry as well. Infrared spectroscopy is one of
the widely used spectroscopic methods due to its sensitivity and simplicity for users. Furthermore,
the results are quickly obtained and contain numerous information on each bond vibration in
the molecule connected with infrared light absorption and change of the dipole moment. More
information, including sensors used, can be found in [7].

As the field of application is large, there are many IR cameras already available on the market
today. The cheap one starts as low as 5000 CZK (VOLTCRAFT WB-80 [8]), which is affordable
for a wide range of potential customers. The price of an expensive industrial IR camera system
can be higher than a new car. The price of the camera depends on its parameters described in the
following.

The most expensive cameras are those with cooled detectors. These detectors are cooled to
temperatures lower than -120 °C. The temperature depends on the used technology InSb, MCT, X-
Hot. Cameras equipped with cooled detectors have outstanding performance. They are not blinded
by self-radiation, which is a consequence of higher operating temperature in not cooled cameras
and devalues the obtained results. Due to this, the detectors have a lower noise level, and therefore,
the sensitivity of the detectors increases. This makes those cameras perfect for long-range lenses.
Cooled thermal cameras are usually intended as MWIR or SWIR.

On the other hand, cooled sensors are heavier, bigger and consume more energy compared to
uncooled ones. Before the camera can be used, the sensor has to be cooled down to the operating
temperature. The cooling system contains moving parts, which can produce unwanted noise and
can wear out. The cooling system uses helium gas, which slowly passes out because of the small
volume of helium atoms or dimer molecules. The cooled detectors have a limited mean time to
failure from 8000 to 30000 hours, after which the camera needs to be serviced.

The second possible type of sensor is an uncooled one. As the term indicates, these sen-
sors operate at ambient temperature. These sensors are compact and look similar to standard
charge-coupled devices (CCDs) used in visible-light cameras. Uncooled bolometer cameras are
perfectly suited for mobile applications because of small dimensions, low power consumption,
and lightweight (compared to cooled ones). Because they do not contain moving parts or small
molecular gases (such as helium), they require much less maintenance than cooled sensors, when
operating in the same environment.

For IR cameras, the trend is similar to that in other electronics: The necessity to have higher
resolution for a lower price and smaller physical dimensions as time goes on. The higher resolution
plays an important role in radiometry. Similarly to visible-light photography, higher resolution
means higher image quality. Moreover, in IR imaging, higher resolution means more accurate
thermal measurement. When the camera has low resolution, the measured subject is captured by
fewer pixels. This may result in inaccuracy in temperature determination, which in turn can lead
to incorrect conclusions. As an example, if one has two cameras with the same optical systems,
one with a resolution of 160 x 120 pixels and the second 320 x 240 pixels. The value of one pixel

2



1. Introduction

of the first camera equals on an average of 4 pixels of the second camera. If the object is one
pixel big, the lower-resolution camera shows an average of 3 background temperatures and one
object temperature. This phenomenon results in lower temperature capture by the lower resolution
camera. The higher resolution sensor makes camera measurements more accurate. There is a Full
High Definition sensor (Full HD: 1920 x 1080 pixels) already available on the market.

The next important parameter in choosing the IR sensor is the pitch of the pixels. The pitch
of the pixels is the distance from the center of a pixel to the center of the adjusted pixel. A lower
pixel pitch means a smaller footprint of the sensor with the same resolution, which results in a
smaller and lighter camera. On the other hand, smaller pixels can capture less energy, which can
reflect in a higher noise of the picture.

Next, it is essential to classify the quality of the image. Infrared systems are very sensitive to
any kind of noise. Noise can be divided into two groups. First, spatial noise can be seen when
a homogeneous surface is captured. Instead of all pixels having the same value, the values vary
with some time-invariable pattern. Because this pattern does not change between frames, it is
sometimes referred to as Fixed Pattern Noise. This Fixes Pattern Noise can be canceled using
non-uniformity correction, as described later.

The second noise category is temporal noise, which changes from one frame to another. The
temporal noise that occurs in microbolometers is well described in [9]. One of the most common
types of temporal noise is Johnson noise (sometimes called Nyquist noise). This noise is caused
by the spontaneous motion of charge carriers in an electrical conductor. The effect of this noise
is directly proportional to the temperature of the conductor and can be reduced by increasing the
integration time. The Johnson noise is often described as a Gaussian white noise because of the
nearby uniform distribution of power over the frequency spectrum (similarly to white light, which
contains all the colors in the spectrum to an equal extent). Next, Flicker noise is another major
noise, especially at low frequency. This noise is often referred to as 1/f noise or pink noise because
of the spectral density of the 1 / f power. The flicker noise is associated with a DC current and can
be found in all active electronic components, as well as some of the passive ones. Not only the
electronic, but the temperature plays an important role in noise. Temperature fluctuation noise
is caused by fluctuations in the temperature of the thermal detector. This fluctuation arises from
the heat exchange (by conduction and radiation) with the sensor surroundings.

It turns out that it is useful to classify camera or sensor noise by a single number to enable
comparison. The objective parameter is better than subjective parameters, such as the minimum
resolvable temperature difference or the minimum detectable temperature difference because it
has excellent repeatability and the value is the same, regardless of the person performing the mea-
surement. Noise Equivalent Temperature Diffece (NETD) is used in infrared imaging. NETD is
defined as an equivalent black-body target to the background temperature difference that produces
a peak signal-to-rms noise ratio (SNR) of one at video output [10].

NETD =
∆T
∆S

N
(1)

, where ∆ T is the difference between the target and the background. ∆ S is the response of the
system signal voltage to the input ∆ T and N is the root mean square deviation of RMS from the
mean video output, which is commonly referred to as the standard deviation. The exact procedure
is described in [10]. IR detector manufacturers present the Noise Equivalent Temperature Differ-
ence (NETD), which indicates the level of ability to distinguish among small differences in the
image, as an indicator of sensor quality. The NETD is the equivalent temperature (in kelvins) of
the noise in the whole sensor. Better sensors have lower NETD. 20 mK is considered a significant
difference in the image quality obtained [11]. The NETD parameterize only the temporary noise.
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The following two Sections 1.1 and 1.2 introduce the basic knowledge about infrared light
and the infrared camera. The rest of the work has been divided into two parts. Section 2 describes
the measure behavior and possible settings of the microbolometer array and ends with the ambient
temperature compensation. The second part of the thesis covers the camera automatic focusing
and can be found in Section 2.8. Firstly, the camera hardware related to focusing is described as
well as the controlling firmware. The next Section 3.1 presents autofocus principles. From these
principles the image sharpness-based autofocus principle was chosen, and Section 3.2 focused on
it.

1.1 Infrared Light
Every physical object with a temperature higher than absolute zero (0 K = -273.15 ◦C) sponta-
neously emits electromagnetic radiation.

This radiation was described by Max Planck. [12] Planck’s radiation law gives the relationship
between spectral radiance I with wavelength λ and the absolute temperature of the body T as
described in Equation2:

I =
2hc2

λ5

1

e
hc

λkT − 1
(2)

,where h is the Planck constant, c is the speed of light, and k is the Boltzmann constant.
From Planck’s law, one can determine the wavelength at which the spectral radiance has a

maximum value depending on the temperature by deriving the Planck low (Equation 3), and find-
ing at which lambdas the equation equals zero.

dI

dλ
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2hc2

λ6
(
e

hc
λkT − 1

)2

(
5− 5e

hc
λkT +

hc

λkT
e

hc
λkT

)
!
= 0 (3)

As c is the speed of light and h is the Boltzmann constant, the fractal before the bracket in
Equation 3 cannot equal zero. Substitution x = hc

λkT was made on the rest of Equation 3 to obtain
Equation 4:

(x− 5)ex + 5 = 0 (4)

The trivial solution for Equation 4 cannot be used because either speed of light or Boltzmann
constant equals zero and neither wavelength nor Boltzmann constant nor temperature goes to in-
finity. The second solution was obtained from a numerical solver: x ≈ 4.965. From the revert
substitution, the Wien law was obtained:

λ =
hc

4.965kT
(5)

If the Plank’s law is integrated, the Stefan–Boltzmann law is obtained (Equation 6). The law
describes how much energy P the object of surface area A radiated.

P

A
=

2π5k4

15h3c2
T 4 (6)

In real life, the object radiates less power. The emissivity parameter (ϵ) was introduced to
compensate for the difference between theoretical calculations and experimental values. The emis-
sivity is defined as the ratio of the energy emitted by the measured material surface to the ideal
emitter(black body). The emissivity is a number between 0 and 1, where 1 is the ideal emitter and
0 is the ideal reflector. The emissivity is highly dependent on the material’s surface. Moreover,
emissivity is not a constant, but is a function of many parameters (such as color, temperature,
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1.1 Infrared Light

wavelength, and surface structure). As an example, polished silver has very low emissivity (near
0). On the other hand, human skin has a very high emissivity (near 1). Objects with emissivity less
than one are sometimes called gray bodies or imperfect black bodies. Equation 6 can be modified
for an object with an emissivity (ϵ) for that gray body:

P =
2π5k4

15h3c2
T 4Aϵ (7)

Equation 7 indicates that the power radiated from an object is directly proportional to the fourth
power of temperature, which indicates an extremely high sensitivity to the temperature difference.
By contrast, the wavelength (with the maximal power) is indirectly dependent on temperature as
described in Equation 5. Infrared light can be divided into smaller parts by its wavelengths. There
are multiple wavelength classifications, and there are different boundaries between them. Infrared
wavebands from Lynred [13] are presented in Table 1. The wavebands are ranges of wavelengths
falling between limits, which are presented in the first column. The discontinuities between the
Short, Mid, and Long Wave Infrared light are caused by high atmospheric absorption.

Wavelength Name Temperature
peaks Applications

0.8 µm ... 1 µm Near Infrared (NIR) 2600°C ... 3000°C
Night vision (NIR LEDs re-
quired)

1 µm ... 2,7 µm
Short Wave Infrared
(SWIR)

800°C ... 2600°C Steel and glass Industry

3µm ... 5µm
Mid-Wave Infrared
(MWIR)

300°C ... 700°C. Fire detection

8µm ... 16µm
Long Wave Infrared
(LWIR)

90°C ... -90°C
Security, surveillance, gas
leak detections

16µm ... 50µm
Very Long Wave In-
frared (VLWIR)

-90°C ... -200°C Chemical analysis

Table 1: Infrared waveband.

The waveband names are listed in the second column. Temperatures that correspond to wave-
length peaks were calculated using Equation 5 for each wavelength, which defines the wavebands.
However, other wavelengths are also emitted by an object at a constant temperature. For that
reason, the boundaries are not strict. Although the temperature of an object is not in the range
of temperature peaks, the object can still emit in that waveband. These values were roundup and
listed in the third column.

An example of a typical application is listed in the last column. The Near Infrared light is the
closest to visible light and therefore, also some visible light cameras can see in this spectrum. If
the manufacturer equips such a camera with an infrared light-emitting diode (IR LED), it could
be used at night. In that case of use, the camera captures the reflected light from the surface of a
reflecting object. Contrastly, in standard scenarios, the infrared camera captures the light emitted
by the captured object itself.
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1.2 Infrared camera
IR cameras consist of several parts. The first part of the camera, which is in contact with the
infrared flux, is the IR lens. The same physical laws apply to the IR lenses as to visible-light
lenses. The only difference is the material of the optics, because it requires a high transmission
level in the infrared range. The glass, which has a brilliant transmission for visible light, reflects IR
radiation. Thus, IR lenses are made of different materials, such as Germanium or Zinc Selenide.
These materials work well for SWIR, MWIR, and LWIR, but they have a high reflection factor.
For that reason, an antireflection coating is applied, which limits the lens to be used only in a
small band of the IR spectrum. Another critical parameter is the working temperature, because
the transmission of the used materials depends on its temperature. Infrared camera lenses have
two fundamental parameters, the focal length and aperture, similar to a visible camera lens. The
aperture is the optically open space where the flux can travel through the lens. The aperture
mainly affects the amount of flux that hits the sensor. Usually, the len’s aperture is specified as an
f-number, the ratio of focal length to effective aperture diameter. Typically, the aperture is fixed for
the IR camera lens. The focal length expresses how the optical system converges light. Negative
focal length indicates that the system diverges light. The field of view (ω) can be computed on the
basis of focal length (f ):

ω = 2atan

(
p ·Npix

2f

)
(8)

,where p is the pixel pitch and Npix is a number of pixels. (The numerator is the size of the sensor)
The LWIR lens was used in this thesis. The lens has a focal length of 25.0 mm and the f-

number is equal to f / 1.20. The field of view was calculated from equation 8 and equals 24.55 °
x 18,45 °. The Workswell Infrared Camera has the opportunity to change lenses to alter the field
of view. Thus, in section 2.8 two more lenses from the same manufacturer were tested. The first
lens used has a focal length of 14.2 mm and aperture-based f-number f/1.24 (file of view 41.93 ◦ x
32.06 ◦). The second lens used has a focal length of 7.48 mm and aperture-based f-number f/1.23.
(file of view 72.05 ◦ x 57.22 ◦). All used lenses can operate with the 8 - 12 µm waveband light
and have the same average transmission greater than 94% in this waveband.

The ’eye’ of the camera is the Infrared sensor, sometimes called the focal-plane array (FPA).
The FPA converts the infrared radiation to voltage.

The Long Wave infrared uncooled microbolometer array is used in this thesis. Because the
manufacturer protects its know-how and does not wish to publish sensitive data, the principle of
operation is described on a general sensor, for which the data are available from [15], [16], [17],
[14], and [2]

The sensor is composed of pixels arranged in a regular two-dimensional grid (in this case
640 x 480) and a read-out integrated circuit (ROIC). The pixel is the smallest image sensor element
in this context; however, the same term can be used in other contexts such as the smallest segment
of digital photography. Each pixel is created with one small bolometer, that is why those IR
sensors are referred to as microbolometer array. The example of such a pixel is displayed in
Figure 1, where one can see the heat absorbing area (the square shape object in the center of the
image), leg supports, and the substrate, from which the sensor is made.

For better imagination about working principle, the diagram in Figure 2 is presented. The
diagram shows a vertical cut of a fictive bolometer, which simplified electrical schematic with the
description can be found in section 1.2. Firstly, the IR flux hits the absorption layer. In this layer,
the infrared light is converted into the heat. The IR flux should not be reflected, because reflection
decreases the efficiency of light-heat conversion and may cause stray light 1. Reflection may be

1Stray light is undesirable light in optical system. It may follow an unintended path or can be emitted by a source
different than intended.
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1.2 Infrared camera

Figure 1: Scanning electron microscope photography of microbolometer pixel. The size of the
pixel is 17 x 17 µm2. The image is taken from [14].

limited with the antireflection coating or the material and thickness of the absorption layer. This
layer can be made from Nb, NiCr, Ti, Zr as described in [18], or amorphous SiGe doped with
hydrogenated boron [19] or TiN [20].

This absorption layer is thermally connected to the thermometer layer. If the absorption layer
is made from electrically conductive material, these two layers must be electrically isolated (in
Figure 2 marked as black lines). The temperature can be measured using a diode [21] or a ther-
mistor. The sensor used in this thesis is thermistor-based. Thermistor is an electrical resistor
sensitive to temperature. The thermistors are divided on the basis of their conduction model into
the negative temperature coefficient and the positive temperature coefficient. Negative temperature
coefficient thermistors are typically used as a thermometer in uncooled thermal camera sensors.
The thermistors used in microbolometers can be made of amorphous silicon [20] or vanadium
oxide V Ox [22].

The bolometer should be thermally isolated from the rest of the sensor. Mainly, this is reached
by vacuum or air gap. Thus, the sensor is raised from the substrate, hanging on supporting legs.
Typically the two legs are used. The legs have to be strong enough to carry the load of the bolome-
ter. However, the wide legs result in temperature losses to the substrate, which may influence the
sensor sensitivity. Long legs are used to increase thermal resistance, as can be seen in Figure 1.
The thermal time constant must be compatible with the desired frame rate. The time constant is di-
rectly proportional to the heat capacity of the bolometer. The legs are used for electronic coupling
of the bolometer and readout eletronics and may be metalized for higher conduction.

ROIC can be implemented in the substrate beneath the bolometer to save the chip footprint. A
reflector made of metal (such as aluminum or gold) can be placed between the substrate and the
bolometer to reflect the thermal flux going through the absorber. All pixels of the sensor must be
thermally isolated from each other. In practice, this is done by physical separation. To increase
the thermal insulation, some manufacturers place the microbolometer in vacuum.

If the FPA is the camera’s ’eye’, then the processing unit is the ’brain’. This unit has to read the
sensor’s analogue value and convert it into digital values. Digital values have to be further adjusted
to obtain a nice picture. The first step is to replace dead pixels. During sensor manufacturing, some
pixels are damaged and do not work. The value of those pixels is equal to saturation and remains
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1.2 Infrared camera

Figure 2: Working principle diagram of a bolometer.

the same, regardless of the source of IR radiation. Because such pixels would disturb the user,
their value is replaced with an average value of the neighboring pixels. New dead pixels may arise
during the life-cycle of the camera.

Even after the dead pixel is removed, the image is not usable due to variations in pixel-to-pixel
sensitivity. Each pixel has a different gain and offset, making the image grainy. The image can be
cleared by Non-Uniformity Correction (NUC), sometimes called flat-field correction. During this
correction, the value of each pixel is corrected using a line approximation. The camera manufac-
turer has to compute the gain for each pixel. The offset of each pixel is usually recalibrated during
regular camera operation because the offset of the pixels changes depending on ambient temper-
ature. After the camera starts, the offset update is needed more frequently as the camera heats
up. To obtain a new offset value for each pixel, the FPA is covered by an uniform surface. This
surface can be the shutter or, if possible, an external object with a homogeneous surface can be
used. If an external shutter is used, the NUC will also correct the lens imperfections, such as lens
vignetting. As a result, each pixel working under the same conditions (mainly IR flux from the
object) will have the same value after the NUC procedure. The offset update during the operation
needs a shutter and when is performed some frames are skipped, because the shutter is closed and
block the incoming radiation to capture only the background flux. This background flux is used to
compute the offset of each pixel, which is saved in onboard memory. The price of the shutter and
the frame skipping motivates some manufacturers not to perform the NUC offset update. Instead,
they compute both gains and offset in advance. These cameras are called shutterless cameras. The
principle of a shutterless camera is described in [23], where the temperature of the IR sensors is
used to choose the offset correction from the memory. This means that the shutterless camera
needs much more memory and cannot react to situations when the camera body is not uniformly
heated.

In contrast to a visible camera, it is impossible to prohibit radiance from the sensor surround-
ings, because the camera body has a different temperature than absolute zero, and thus according
to Planck law emits radiation. The processing unit produces heat while working, which com-
plicates the situation, because the background radiation is not homogeneous. This phenomenon
is partly solved by smart camera design and partly can be removed by the NUC. This makes it
extremely important to correctly choose the size and position of the shutter.

In addition, the processing unit provides the representation of the data. The values for each
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1.2 Infrared camera

pixel are directly proportional to the capture of IR flux. Those values can be displayed, and this is
enough for some applications (such as moisture detection or surveillance). For other applications,
the exact temperature is essential. In these applications, the temperature could be computed from
the flux and other parameters such as the emissivity of the object, the distance of an object, and
the permeability of the environment. The camera that enables temperature reading is referred to
as a radiometric camera.

The processing module can enable other features, such as digital zoom or increased contrast
in the image. A frequently used feature is the coloration of the pixels according to the temperature
or the capture flux. This feature is called temperature pallets. There exist many possible pallets
for different use cases. For example, the Rainbow pallet uses all combination RGB colors (hot
is white / red and coolest is blue) to increase the contrast of the image. The second example is
Isotherm, which highlights a specific temperature range with a particular color (frequently red).
The rest of the image reminds grayscale. The Isotherm pallet is perfect for detecting some error
(for instance, overcurrent on the printed circuit board).

The Workswell Infrared Camera uses a field-programmable gate array (FPGA) as a processing
unit due to the high complexity of this unit task. There is no processor or microcontroller in this
camera, which means that everything has to be implemented in the FPGA. The great advantage of
FPGA is that several processes can run simultaneously.
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Chapter 2

Ambient temperature compensation of
the infrared detector

The infrared flux from the captured object hits the infrared detector and causes uneven heating of
individual pixels as described in Section 1.2. Each pixel consists of an infrared light absorber and
a thermistor that measure the temperature of the absorber. The pixel temperature is read from all
pixels and represents the image. The problem is that the absorber temperature is highly dependent
on the ambient temperature. Moreover, sensor operations (such as reading the value of a certain
pixel) cause sensor warming-up because current flows through the thermistor. Different settings
of sensor parameters cause different sensor heating.

All voltages are presented as the digital level in the least significant bit (LSB). This section
aims to compensate for the ambient-temperature effect on the infrared detector output.

2.1 State of the art

Only a few publications focus on the problem of ambient temperature compensation. A short
review of them is listed below.

The [24] described the compensation in the ROIC based on the current mirror. This method
enables the sensor to operate in a wide range of approximately 60 ◦C. This ROIC was tested with
a 384 x 288 V Ox array at three environmental chamber temperatures: -10 ◦C, 30 ◦C and 50 ◦C,
showing a maximum difference of 0.545 V (out of 0.7 V - 4.3 V) for black body temperatures
from -10 ◦C to 110 ◦C.

The most related publication that was found is [25]. The aim of this article is not ambient
temperature compensation, but ideal operation point selection. The sensor used in this article is
similar to the one used in this thesis, but the frame rate used is twice higher in this thesis, which
means that the integration time has to be twice shorter. The authors approximated the sensor
output as U = KG ∗KA+KO, where KG denotes the gain coefficient, KA is coefficient of active
bolometer corresponding detected energy and the KO is the offset coefficient. For each pixel, they
measure the offset at the BB temperature of 10 ◦C and compute the gain as the difference between
the measured values at the 40 ◦C and 10 ◦C BB temperatures divided by the difference in the
temperature of these BBs.

The next two methods provide compensation of the ambient temperature only by software pro-
cessing. In [23] the authors propose to compute the corresponding voltage at ambient temperature
T0. To achieve this, they advise measuring the temperature of two black bodies at various ambient
temperatures (with step of 5 K insight the working range). In the second step, the radiometry is
computed using 2 K step for all BB ranges at ambient temperature T0. Unfortunately, no results
were published.

In [26] the same principle is used, but is more described, and a measurement is made. A photon
320 microbolometer camera located in an environmental chamber with a large-area black body is
used for the measurement. The authors cycled the chamber temperature while changing the black
body temperature. The temperature of the blackbody was changed from 10 ◦C to 50 ◦C with step
of 10 ◦C. They present the relationship between the incoming flux and the output voltage of the
IR sensor as linear. The correction for each pixel is computed by comparing the radiance at two
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Figure 3: The simplified schema of microbolometer (in a blue dashed rectangle) and read-out
circuit.

different chamber temperatures. For each pixel the correct value rc is computed as

rc =
r + bδT

1−mδT
(9)

, where r are the raw data from the sensor, m and b are the correction parameters. The results
presented in the 24 hour experiment show good results for this method of uncertainties of +-
0.32 ◦C. The maximum error was close to 2 ◦C.

These two recently mentioned methods do not affect sensor behavior. Therefore, it can be used
without knowing the sensor. However, the sensor value changes with the ambient temperature and,
at some point, the value hits the ADC or sensor saturation. Accordingly, this method needs a value
margin, which results in a lower dynamical range or lower sensitivity. This method performs
ambient temperature drift compensation and a non-uniform correction at once.

2.2 Microbolometer properties
If the sensor output can be directly influenced, the whole sensor range can be used at each ambient
temperature. This results in a higher sensitivity compared to the software output compensation
presented in [26] and [23]. However, it is essential to understand its functionality to affect the
sensor properly.

The simplified schema of the sensor (in a blue dashed rectangle, based on [27], [16], [28])
and the attached analog-to-digital converter (ADC) is shown in Figure 3. The pixel is represented
as a resistor R1 with variable resistance depending on the ambient temperature (Tamb) and the
temperature of the captured object (TBB). All pixels in the column share the rest of the electronics.
ROIC automatically switches the pixel connected to the Q1 transistor according to the sensor
clock. Because the ambient conditions have a more significant effect on the temperature of the
pixels than infrared radiation, the ambient temperature is measured by the blind pixel (R2) and
subtracted from the result. The blind pixel has the same construction as an active pixel, but it
is isolated from incident IR radiation. Therefore, the thermisotr R2 is sensitive only to ambient
temperature. The R2 thermistor is connected to the sensor power supply.

The microbolometer manufacturer provides the sensor with two metal oxide semiconductor
field effect transistors (MOSFETs) to enable sensor tuning. The transistor Q1 controls the current
to the active bolometer R1. The transistor Q1 is controlled by the VA voltage. FPGA can set the
voltage VA by external 14-bits digital to analog converter (DAC). The blind thermistor compensa-
tion effect is weighted by the second Q2 transistor, which is controlled by a VB voltage. One blind
microbolometer (R2) is used for one column of active pixels (out of 480).
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2.2 Microbolometer properties

Figure 4: Affect of Voff on ADC value.

The resulting voltage is then integrated for tint time. This time can be set through a commu-
nication bus. The integration capacitor Cint can be set to six discrete values on the same bus.

The one-pixel column was described above. The described circuit can be found 640 times in
the entire sensor. All setting parameters are set for all columns, which means that there is only one
set {VA;VB;tint;Cint} for controlling the sensor.

The sensor works as follows. First, all pixels in the first column are integrated at the same
time. Then the voltage is stored in the sample and hold circuit. The values are read pixel by pixel
during next-line integration.

The sensor output is the voltage is compared to the Voff voltage and is converted by the
differential ADC. The Voff is the last parameter that can influence the voltage level. FPGA can
set Voff by DAC similarly to VA and VB . The resulting voltage is converted by a 14-bit ADC
and processed in the FPGA. The effect of Voff on the ADC value can be seen in Figure 4. On
the x-axis, the set value Voff is listed, and on the y-axis, the read ADC value is presented. The
limitations of the ADC are highlighted by a horizontal level of light orange (ADC = 16383 LSB)
and light blue (ADC = 0 LSB) horizontal level. The offset sensor minimum is marked with blue
lines with dots, and the shifted sensor maximum is marked with an orange line with dots. The
Voff only makes sense to set in values for which the ADC value of the shifted signal maximum
does not exceed the maximum ADC value, and the ADC value of the offset signal minimum is
greater than the minimum ADC value. This condition is valid only for Voff in the range from
10434 LSB to 11719 LSB.

The effects of other parameters were measured according to the procedure described in the
next section.
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2.3 Measuring Infrared detector thermal properties
All measurements were made with a particular camera and lens (focal length = 25.0 mm). The
methodology described in the following lines was used for all measurements, unless otherwise
noted.

The camera is located in the climatic chamber, which is set to a particular temperature (this
temperature is called the ambient temperature or Tamb). First, the camera is turned on and placed
in the environmental chamber. The measurement begins thirty minutes after the temperature of
the climatic chamber has stabilized to allow the insight camera temperature to stabilize as well.
The non-uniformity correction is not applied during the measurement while the dead pixels are
removed. The camera is focused on the stabilized black body with fixed temperature. The distance
between the sensor and the black body is one and a half meters, and there is no obstacle between
the camera and the surface of the black body because the climatic chamber has a small hole created
specially for this purpose. This small hole was tested to not affect the thermal stabilization of the
climatic chamber or the sensor. The black body (BB) is the reference source of IR radiation with
known high emissivity (near 1).

For measuring, only the average value of the middle 8 pixels (array 3 x 3 - 1) is captured and
sent to the computer using the universal asynchronous receiver-transmitter (UART) communica-
tion protocol. The BBs have a limited size of the thermal controlled area, which is the reason why
only the middle pixes are used. The surrounding pixels of the center are taken to ensure that the
measured pixel is not faulty. The number eight was chosen because the integer divide by eight is
equal to the bit shift by three to the right, and the shift operation is effective on FPGAs.

The central pixels value was measured 50 times to have the statistically correct value. The
mean value of these 50 measurements is used in the following procedure.

For each measurement, the three temperature levels were also captured. These temperatures
provide confirmation that the transient response was completed and may be used for ambient-
temperature compensation. The first is the temperature of the bolometer. This temperature is
read out form the bolometer. The second temperature is the shutter temperature, and the third
temperature measures the FPGA temperature. The two last mentioned temperatures are measured
by the camera’s built-in temperature sensors.

2.4 Measured data evaluation procedure
For illustration, the data evaluation process is performed in the default sensor configuration, which
the sensor manufacturer provides for each sensor.

Note that the integration time is two times higher than the developing camera can have, result-
ing in a fram erate of 30 frames per second (FPS) for the default sensor settings.

The demonstration data set was taken at ambient temperature Tamb = 10 ◦C for BB tempera-
tures in the range of -15 °C to 650 °C. Data are shown in Figure 5. Every blue point corresponds
to a mean value of 50 measurements of the average value of the eight central pixels (as described
in the previous section). The mean value of the pixels can be found on the Y-axis. This is the raw
ADC value, the minimum value is zero, and the maximum value is 16383 (marked by a red line),
since the 14-bit ADS is used. On the X-axis the temperatures of the black bodies are listed.

The first thing to do is filter out the data that are not valid. If one of the three temperatures
deviates more than 0.2 °C from an average value, the corresponding black body measurement is
not used to prevent errors. This deviation can be caused by the change in the temperature of the
climate chamber (opening the door, power supply outage, etc.) or when the measurement starts
before the temperature is in steady state.
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2.4 Measured data evaluation procedure

Figure 5: Default sensor configuration showing measured BB at blue points and the fitted RBO
function by orange dashed line.

In the next step, the data points for which the ADC respective the sensor is saturated have to
be filtered out. When the sensor is saturated, the value is not equated to the maximum possible
value but rather to other values which, without knowing the context, may be considered as valid
ones. The gradient was computed to detect those invalid data. Once the gradient is negative, all
subsequent data (measured at higher BB temperature) were skipped. This data filtering turned out
to be unreliable when two black body measurements were close to each other. The noise caused the
condition to be triggered, mainly because of the lower BB temperatures. Then, experiments were
carried out with other more complex filtrating conditions. The final and used condition predicts
the position of the following measured points. If the measured point was lower than the predicted
point by the threshold, then the point was considered invalid.

An important part of the post-processing of the data was determining the relationship between
the measured data. The first attempt was to fit the measured data with a linear line similar to [25],
in which the sensor was similar. Because the line is determined by two points, only two black
bodies were measured. The result of the measurement and stabilization using the linear model
does not meet the expectations, which results in a new measurement shown in Figure 5. Then
several functions, including exponential and polynomials, were tested to fit the data. The function
that best fits the results is shown in Equation 10 and is used to calculate the temperature of the
measured ADC value [29]:

ADC =
R

e
B
T − 1

+O. (10)

The Planck law (Equaion 2) can be obtained if R = 2hc2

λ5 , B = hc
λk and O = 0. This function is

referred to as the RBO function in this thesis. The trust region reflective algorithm is used to fit the
RBO function. The result can be seen in Figure 5 as a dashed orange line. Measurements reveal
that parameter B can be considered as a constant. The set of measurements of all BB temperatures
was described with two parameters, R and O.
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2.4 Measured data evaluation procedure

Figure 6: Default sensor configuration temperature showing the ambient temperature dependence.
Each line represents the measurement on twenty BBs.

(a) Parameter O (b) Parameter R

Figure 7: Influence of ambient temperature on RO parameters. Each point represents one RBO
curve from Figure 5.
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2.5 Measured infrared detector behavior
In this section, the measured characteristics of the infrared detector built into the Workswell Ther-
mal Camera are presented.

2.5.1 Effect of ambient temperature on infrared sensor output
First, the influence of ambient temperature on sensor output was measured. Several ambient tem-
peratures were set in the climate chamber and, for each ambient temperature, the measurements
described in sections 2.3 and 2.4 were made. The measurement is shown in the graph in Figure 6.
Each line corresponds to an ambient temperature constructed from nine black body temperatures.
This measurement shows a substantial dependence on the output value on ambient temperature,
which must be compensated for. Each of the functions shown in Figure 6 can be parameterised
by two variables (R, O) according to Equation 10. The difference in ambient temperature causes a
change in microbolometer behavior, which is described by changing the parameters R, O shown in
the figure 7. As can be seen in the graph, the effect on both parameters looks linear, which makes
it possible to approximate the data with a line using the least squares method (blue dotted line in
the figure 7).

In the following subsections, all parameters that can be used for thermal compensation will be
presented.

2.5.2 Effect of Voltage VA on infrared sensor output
The influence of VA on both parameters (R,O) was measured at an ambient temperature of Tamb =
0◦ C for three different voltage values of VB to see how they impact each other. The highest value
of VB was 13,000 LSB. This data set was measured with a small step of 50 LSB VA to provide high
precision. The other two set points (12000 LSB and 11000 LSB) were measured with a larger step
of 120 LSB to confirm the conclusions of the first and more detailed set point. The measurement
can be seen in Figure 8. A greater VA causes a greater parameter O. On the other hand, the R
parameter seems to be constant for the values in the middle part of the data. Near the end points
of the line, the lines bend downward. This may be due to the fact that some of the black body
measurements (blue points in Figure 5) cannot be used to fit the RBO functions because they are
outside the range of the sensor. Although these points are taken into account, the effect of VA on
the R parameter seems to be negligible to the other measurements shown next.

2.5.3 Effect of voltage VB on infrared sensor output
Similarly to voltage VA, voltage VB was measured for three different VA. All other parameters,
including ambient temperature, are identical. Measurements are shown in Figure 9. The VB has a
linear response to the O parameter. Compared to VA, the gain is approximately two times smaller.
On the other hand, Figure 9b shows that VB is proportional to a parameter R. Furthermore, this
measurement confirms the measurement presented in Section 2.5.2, because the three different
data sets VA are on one line, which means that VB does not affect the R parameter.
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2.5 Effect of voltage VB on infrared sensor output

(a) Parameter O (b) Parameter R

Figure 8: Influence of VA on RO parameters.

(a) Parameter O (b) Parameter R

Figure 9: Influence of VB on RO parameters.
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2.5.4 Effect of integration time on infrared sensor output

(a) Parameter O (b) Parameter R

Figure 10: Integration time influence of RO parameters on the default configuration.

2.5.4 Effect of integration time on infrared sensor output
The Workswell Thermal Camera project restricts the maximum integration time due to the frame
rate of 60 FPS. This maximal integration time can be computed as:

tint =
1

Framerate

Nrows
= 34.7 µs (11)

, where the frame rate is 60 frames per second (FPS) and Nrows is the total number of rows of
pixels on the sensor (= 480).

Integration time can be changed in the range of 0.05 µs to 34.7 µs with a constant frame rate
of 60 FPS. The effect of this parameter was measured for 22 different integration times and can be
seen in Figure 10.

2.5.5 Effect of integration capacitor on infrared sensor output
The integration capacitor Cint can be set to six different discrete values via the serial interface I2C
(Inter-Integrated Circuit) 2. All possible values of Cint were measured, and the result is shown
in Figure 12 for three different sensor settings. The green and orange points have the same VB

value. Unfortunately, Cint = 1 pF cannot be measured for the sensor configuration shown in orange
color, because the measured BB levels were outside the range. However, a clear trend can be seen
in the data. The dependence on the parameters R and O is not linear but logarithmic. A smaller
integration capacitor means a higher R parameter and thus a higher range. On the basis of the
other measurement, the effect on parameters such as VB or VA is not negligible.

2I2C is a synchronous serial communication bus.
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(a) Parameter O (b) Parameter R

Figure 11: Integration capacitor influence of RO parameters on the default configuration.

2.6 Ambient temperature drift compensation
The drift of the ADC value corresponding to one BB temperature described in the section 2.5.1
have to be compensate to enable the use of the camera in the entire range of operation of the
camera. Two possible requirements can be made for the thermal drift compensation, dependant
on camera usage. When temperature measurement is not needed (for example, for surveillance,
hunting, etc.), the sensor output voltage only has to be in the ADC range for all ambient temper-
atures. The RBO function in this range is not important and can change its parameters based on
the change in ambient temperature. Temperature ranges that do not enable temperature measure-
ment are called non-radiometric. The nonradiometric range, which can capture the Black body
temperature in range -15 ◦C to 150 ◦C is called High Gain in this thesis. The easy modification
of the ambient-temperature drift compensation is essential for non-radiometric ranges. This range
is described in Section 2.6.2

The radiometric range is used to compute the subject’s temperature. To enable this, there
should be a known dependence between the ambient temperature and the RBO parameters, be-
cause the RBO function is used to compute the temperature from the ADC value. This thesis aims
to find the thermal compensation model in such a way that the RBO parameters are invariant to
changes in ambient temperature. In other words,the ADC value of a BB-targeted pixel at constant
temperature is constant for all ambient temperatures in the working range. This condition holds
for all BB temperatures in range -15 ◦C to 150 ◦C and each of the BB temperatures must have a
different ADC value. This range is denoted R1 in this thesis and is described in 2.6.3.

2.6.1 Thermal detector configuration finding
The main building block in ambient temperature drift compensation is to find the configuration
in which the detector has specific RBO parameters. The target RBO parameters can be found
using a Python3 script with a graphical interface (see Appendix A.1). The script uses the numpy
library [30] and matplotlyb [31] for visualization.

The user can set the RBO parameter and see the effect on the RBO curve and the BB temper-
ature, which corresponds to 0, 10, 90 and 100 percent of ADC range. The BB temperature range
that the camera should be able to capture is specified to be -15 ◦C to 150 ◦C. Because each sensor
can have different properties the margin 10 percent of ADC range is used. This means that the BB

3Python is high-level, interpreted programming language with garbage collector and dynamic data type.
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2.6.2 High Gain sensor configuration

of 150 ◦C should be captured with the camera as a 0.9 ADC range and 0 ◦C should correspond
to the 0.1 ADC range. This margin should ensure that the sensor configuration can be used on
different sensors.

The first step in the process of finding the detector configuration is to set the value Cint. This
value is set based on the R parameter (which corresponds to the target Black body temperature
range, in which the camera should see/measure). The Cint capacitor value has to be constant
for all ambient temperature drift computation configurations, unless the nonuniformity correction
gain matrix has to be updated. To compute the NUC gain matrix, two BB measurements are
required, thus it is undesirable for the end user to perform it, and therefore it cannot be changed
for ambient-temperature compensation.

This capacitor value was chosen as 1 pF because the BB range is relatively small and the
maximum integration time is limited to 34.7 µs. If possible, the integration time is chosen as
high as possible. The last parameter that can be used to adjust the R parameter is VA. When it is
impossible to reach the target value, the capacitor has to be changed or the time has to be reduced.
In the last step, the parameter O is tuned using Voff and VB . Because Voff has a limited effect on
the ADC value, VB is chosen. The Voff parameter can be used in the latter case for small ADC
tuning.

The sensor configuration found based on the model created from the measurement was set
on the camera and placed in the environmental chamber, where it was tested according to the
procedure described in Sections 2.3 and 2.4. The values of VB and VA must be slightly adjusted
because the measured RBO parameters do not correspond to the target ones.

Unfortunately, it turns out that VB also has an effect on the R parameter, which is significant
when precise values of the R and O parameters are required, and thus small parameter tuning is
performed in the iterative process.

The first step is to determine the configurations that should be tested. The set of them is deter-
mined as all combinations of {VA−computed − a;VA−computed;VA−computed + a} and
{VB−computed− b;VB−computed;VB−computed+ b} where VA−computed, VB−computed are obtained
in the previous iteration step and a,b are constant, depending on the measured error. More con-
stants a,b can be used in one iteration to save time.

In the second step, the set computed in the first step is measured according to the process
described in Sections 2.3 and 2.4.

The last step is to compute the new values of VA−computed and VB−computed using a linear
approximation (the presented measurement shows that VA and VB have a linear effect). If the
newly computed values do not vary by less than 2 Least Significant byte (LSB), the value is
considered as final, and the process is stopped.

2.6.2 High Gain sensor configuration

Because the High Gain sensor configuration has to be easy to find, only one parameter is con-
trolled. According to Figure 6, the offset (parameter O) has the greatest impact on the result. The
O parameter can be regulated using the VA parameter.

Before starting the temperature compensation, the initial sensor configuration has to be found.
For High Gain camera settings, it is favorable to choose the initial configuration in the highest
ambient temperature from the operation range because when the ambient temperature decreases,
the gain will also decrease, which results in range increasing. If the initial configuration is chosen
at low ambient temperature, the range will be reduced, making it impossible to fulfill the BB
temperature range. The down side of the broad range is the smaller sensitivity.

The initial sensor configuration was found using the methods described in Section 2.6.1. Then
the climatic chamber was set to 0◦C. In the next step, the VA parameter was found to obtain the
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2.6.3 Ambient temperature drift compensation for radiometric purpose

same O parameter. Because the parameter O is linearly dependent on VA, only two measurements
are needed to compute the new value VA.

These two values were used for the first attempt of ambient temperature compensation. The
value of VA is regulated based on the temperature of the FPA according to the interpolation of the
lines of the two measured VA. This compensation mechanism was tested at ambient temperature
25◦C. The result is shown in Figure 12a as a yellow dotted curve. As can be seen, this regulation
cannot be used due to the measurement of low BB temperatures. The offset shift is caused by the
fact that the ambient temperature influences the impact of VA on the sensor ADC output. The im-
age shows the maximum ADC value by the black dotted line. Solid lines denote the measurement
for which the VA values were set to manually found values.

To compensate for this phenomenon, the correct value of VA was found at 25◦C using the same
technique as for the ambient temperature of 0◦C. The formula to calculate the value VA based on
the temperature of the FPA can be extended by this measurement, resulting in a second-order
polynomial:

VA = aT 2
FPA + bTFPA + c (12)

Then the drift compensation of ambient temperature uses the second-order polynomial and
was tested at ambient temperature 15 ◦C and 40 ◦C. The result is shown in the same Figure 12a as
the first-order polynomial method. The second-order polynomial method verification is visualized
by the dashed curve. As can be seen in Figure 12a, the maximum BB temperature that the camera
can capture depends on the ambient temperature and can vary from 173 ◦C to 232 ◦C. This means
that this compensation can be used for non-radiometric purposes only.

2.6.3 Ambient temperature drift compensation for radiometric purpose

The High Gain described above can display the desired BB range regardless of ambient temper-
ature in the camera operating range. The issue with the High Gain range is that the parameter
R changes, which decreases the sensitivity at low ambient temperatures and complicates the ra-
diometric computations. This inspires the radiometric range R1. In contrast to High Gain, the
initial configuration can be found at any ambient temperature. It is only necessary to take into
account future regulation and choose the parameters in such a way that enables parameter tuning.
In this work, the highest ambient temperature was chosen as the starting point. The configuration
was found using the procedure described in Section 2.6.1. The integration time is set as high as
possible to allow setting VB to low values.

In the next step, the configuration is found at ambient temperature 0 ◦C, which is the lowest
temperature at which the camera should operate. For this tuning, only VA and VB are used, and all
other sensor parameters are kept constant. Similarly to High Gain, the first attempt of regulation
is done using a first-order polynomial. In contrast to High Gain, R1 uses both VA and VB , which
means that two equations are required. The result is shown in Figure 12b by the yellow dotted line.
Similarly to High Gain, this regulation principle does not work well. The configuration was tuned
at ambient temperature 25 ◦C and both equations were extended to a second-order polynomial.
The second-order compensation result was verified at 15 ◦C, 30 ◦C, 35 ◦C, 40 ◦C, 45 ◦C and can
be seen in Figure 12b displayed as dashed lines. As can be seen when comparing Figures 12a and
12b the compensation using both VA and VB achieves better results, the RBO curves are located
close together. The ADC values corresponding to all BB temperatures in the range of -50 ◦C
to 150 ◦C with a step of one were calculated. At each of these points, the standard deviation
SDi was calculated for all measured ambient temperatures. The maximum standard deviation is
at the BB temperature 150 ◦C SD150 = 169 LSB, minimal at 11 ◦C SD11 = 128 LSB, and
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(a) High Gain (b) Radiometric

Figure 12: Ambient temperature drift compensation. The solid line represents measurement which
uses sensors settings found to meet the specifications, the dotted line corresponds to measurement
done with the sensor setting, which was computed using first order polynomial and the dashed
lines was obtain, when the sensor configuration was calculated using second order polynomial.

average SDAV G = 136 LSB. Because the 14-bit ADS is used, the maximum ADC value is
214 − 1 = 16383. The maximal standard deviation corresponds to one percent of the ADC range.

2.7 Effect of both voltages VA, VB on infrared sensor out-
put

The configuration findings shows dependency of parameter R to GB , which was not found during
the system identification. It was probably caused by the O parameter, which resulted in a rapid
shift in the capture range, which means that the BBs were outside the sensor range, causing the
inaccuracy. This dependence will be explored in this section.

To avoid the same issue, the measuring procedure was modified. The second objective of this
measurement is to find an easier procedure for the configuration findings. The process described
in Section 2.4 requires a much different BB temperature to interpolate the RBO function, which
requires much time. In order to save time, a constant BB temperature is used in this section.

The cameras were placed in the Climate chamber, which was set at a temperature of 25 ◦C.
The camera was focused on a black body with a temperature of 100 ◦C. The sensor settings
were then changed. In Section 2.6.3 it is shown that VA and VB can be used to compensate the
temperature of the infrared detector, therefore only those two were used. Then VB was changed
in the range of 10521 to 10980. This range was chosen based on the R1 configuration and divided
into three subranges. The bigger step of 10 DAC bits was applied to ranges from 10521 LSB to
10721 LSB and 10780 LSB to 10980 LSB. The smaller step of 1 DAC bit was used in the central
part 10702 LSB to 10779 LSB. In total, the set of possible voltages VA had 100 values. Similarly,
VB was changed in three sub-ranges from 9151 LSB to from 9351 LSB and from 9410 LSB to
9610 LSB with a step of 10 DAC bits and from 9352 LSB to 9409 LSB with a step of one bit.

The response for each combination of sets VA and VB was measured and stored in 100 x 100
matrix Mmeasured. All values in one row were obtained with the same VB and all values in
the same column have the same VA set in the infrared detector. The average temperature of all
thermometers was also saved.
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2.7 Effect of both voltages VA, VB on infrared sensor output

Figure 13: Effect of voltages VA, VB on infrared sensor output.

In the next step, the ideal ADC value for the BB temperature of 100 ◦C was calculated from
the RBO function, with the R1 settings parameters. Using this value, the matrix Midela was
constructed, as an all-ones matrix multiplied by the ideal value.

The matrix Midela was subtracted from Mmeasured which creates the matrix Mdeviation show-
ing the deviation from the ideal value. From the matrix Mdeviation, the error was calculated using
the absolute value for each element. The error is shown in Figure 13. It can be seen from the figure
that the lowest error follows a trend of a straight line. However, the error is never equal to zero,
which is caused by the fact that the parameters VB and VA are discrete.

The line is defined by two points with coordinates CA and CB . To allow the curve to have
an error equal to zero, the coordinates are decimal. The coordinates CA of these two points were
chosen as C1A = 10521.0 and C2A = 10980.0, their distance being the maximum possible. The
CB coordinators must be calculated. The column of matrix Mdeviation corresponding to VA =
10521 LSB for C1A and VA = 10980 LSB for C2A is taken and approximated with a line using
least squares methods. The value in which the approximated line crosses the zero deviation is the
coordinator CB .

The same procedure was repeated for BB temperature 200 ◦C and 15 ◦C. The low temperature
15 ◦C was chosen because it is above the Dew point, which ensures that the measurement is not
affected by the condense humidity. For a lower ambient temperature, the measurement has to be
done in a short time, or humid air has to be removed from the BB. With this procedure, three lines
were obtained, one for each BB temperature. These lines are drawn in Figure 14. The blue points
A and B define the line fT100, which corresponds to the temperature of the BB 15 ◦C, similarly,
the points C, D define the line fT200 and last but not least, E and F define the line fT15.
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2.7.1 Time efficient VB and VA findings for infrared detector configuration

Figure 14: CB x CA vector space, demonstrating the relations between effect of VB and VA on
ADC sensor output. The line fT15 shows how to configure the sensor to obtain the 2898 LSB
ADC value when camera is capturing BB 15 ◦C. The line fT100 shows how to configure the
sensor to obtain the 6467 LSB ADC value when camera is capturing BB 100 ◦C and the last line
fT200 corresponds to BB temperature 200 ◦C, which is converted as 13390 LSB. The gray points
denotes the intersections.

As can be seen, the lines are nearly parallel. The gray point H marks the intersection of fT15

and fT100, I of fT15 and fT200 and J denotes the intersection of fT200 and fT200. The ideal state
will be that if the points H, I, and J are identical, then all of the BB temperatures correspond to
the required ADC values. However, this is not the case. As can be seen in Figure 14, the distance
between them is not negligible. This may be due to the fact that the required RBO parameters are
probably not reachable.

2.7.1 Time efficient VB and VA findings for infrared detector configura-
tion

These data can be represented and used for ambient temperature compensation in two ways. The
first way is to work with all measured data and find a point in which the distance between all three
lines is minimal, which optimizes the error in these temperatures. The second way is to take into
account only fT15 and fT200, which ensures the range and offset, but the RBO parameters may be
different and must be found when radiometry is performed. The range is important in this thesis,
and the RBO parameters are only a tool to preserve the measure data. Thus, only point I is used
for ambient temperature compensation. It can be seen that point I is within the H, J interval and
the error for BB temperature of 100 ◦C will probably not be large.

The configuration of the IR detector at 0 ◦C and 50 ◦C is still needed to create the two second-
order polynomials presented in Section 2.6.3. The configuration is found using the BB of temper-
ature 15 ◦C and 200 ◦C. The measurement procedure is similar to the ambient temperature 25 ◦C.
The number of measurements may be reduced to save time. In theory, only four measurements
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Figure 15: Ambient temperature compensation using time efficient configuration finding. The
ideal settings use RBO parameters, which has been set to fulfill the assignment range.

are needed at each ambient temperature. The thermal compensation using these polynomials was
evaluated at ambient temperatures 15 ◦C, 30 ◦C, 35 ◦C and the result is shown in Figure 15. Be-
cause the RBO parameters were not measured during the configuration finding phase (at ambient
temperatures 0 ◦C, 25 ◦C, 50 ◦C) it cannot be plotted in Figure 15. To enable comparison, the
reference RBO parameters, which were used to determine the ADC values, were plotted by the
black line and are denoted as ideal settings. As can be seen, the curves for 30 ◦C and 35 ◦C are
very similar. Standard deviations for these three RBO parameters were calculated in a way similar
to that presented in Section 2.6.3. The maximum standard deviation of 116 bits was found at BB
temperature -50 ◦C, a minimum of 31 bits at BB temperature 93 ◦C, and the average standard
deviation is 71 bits. The maximum standard deviation is 0.7 % of the ADC range. This result is
slightly better than the result presented in Section 2.6.3, but less evaluation measurements were
made.

2.8 Result of the ambient drift compensation
This section describes the measured behavior of the microbolometer array infrared detector. First,
the measured ADC values corresponding to the measured BB temperature were interpolated with
the line. However, despite the usage of linear approximation in the literature, the line does not
fit the measured data. The reason why the linear approximation cannot be used in this thesis but
other works used it may be caused by usage of a different sensor, or they have tested less BB
temperatures and thus does not see the non-linearity. The special function presented in Equation
10 is used instead of the linear line. This function is usually used for radiometric temperature
measurements. Based on this measurement, two ambient temperature drift compensation methods
have been developed. The first is easy to find because it uses only the sensor parameter VB , but
does not support the temperature calculation. This method also suffers from changing sensitivity
as the ambient temperature changes. The second method uses the parameters VB and VA. Due to
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2.8 Result of the ambient drift compensation

the difficult and time-consuming process of these configuration findings, the new faster method of
finding the setting was introduced, which simplifies that process to 4 measurements on two BBs at
three ambient temperatures. This method was tested at three ambient temperatures. The measured
variance between the three measurement is only 0.7 % of the ADC range.
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Chapter 3

Infrared camera system auto-focus

The goal of the automatic focus system is to automatically adjust the distance between the lens
and the image sensor. An object of interest has to be well-focused in order to obtain all the details,
which are essential for visual evaluation or data processing. Camera focusing is an important prob-
lem in both computer vision and microscopy. A sharp image is essential for thermal measurement.
The fuzzy image does not look good, but the blur also increases the inaccuracies in the radiometry
calculations. When the temperature is computed from a blurred image, the temperature seems to
be lower because the IR flux is not concentrated in the proprietary pixels.

Figure 16: Lens model, where L is the lens, P object, P’ focused point, A Aperture radius, Q
Principal point, f focal length, FPA focal-plane array(sensor), B Blur circle radius.

The thin-lens camera model was presented in [32] and is illustrated in Figure 16. The thin lens
approximation model neglects the lens thickness, which means that the first and second principal
planes coincide in the lens. The lens thickness is the distance along the optical axis between the
anterior and posterior faces of the lens. The more realistic model, which uses the thickness of the
lens, is called a thick-lens model.

The thin convex lens is shown as an ellipse with center Q. Q is the principal point, which is
the point at which the principal planes cross the optical axis. This point is identical to the nodal
points, which are the points with angular magnification +1. (The ray aimed at this point will be
reflected by the lens at the same angle with respect to the optical axis.)
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3. Infrared camera system auto-focus

The focal length f is the inverse of the system’s optical power, which is a measure of how
strongly the system converges or diverges light.

Let P be a point in the scene projected as a sharp point P’ in an image plane. The relation
between the position of P and P’ is given by the lens formula:

1

f
=

1

u
+

1

v
(13)

where u is the distance between the lens center and the object plane and v is the distance between
the lens center and the image plane. Because the focal plane array (FPA) is not placed in the image
plane, the image will be blurred. The blurred effect has the shape of the aperture but is scaled by a
factor. When the aperture is a circle with radius A, it will be seen as a circle with radius B on the
sensor. Let q be the scaling factor defined as a ratio of those two radiuses. Using the similarity of
the triangle and the substitution from 13, we obtain the following equation.
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Equation 14 can be used to calculate the blurry radius:

B = A · q = A · s
(
1

f
− 1

u
− 1

s

)
(15)

The diameter can be positive when the distance v is greater than s and negative otherwise. The
camera system can be considered as focused on an object P, when the diameter 2B is smaller than
the distance between two neighbouring pixels. This phenomenon also causes the depth of field,
which is the distance between the nearest and farthest objects that are in acceptably sharp focus in
an image.

When some blur radius is accepted (discussed later), the corresponding focus error s-v can be
calculated from Equation 14. According to equation 13 v was replaced by fu

u−f . Then the f-number

can be introduced as f♯ = f
2A . The f-number is famous to the photographer as a lens property.

s− v =
2B

2A
v = 2B · f♯ u

u− f
≈ 2Bf♯ ,when u ≫ f (16)

In normal user case (not macro-photography), the distance between the camera and capturing
subject is much larger than focal length. In that case, the result can be satisfied.

Ordinarily, the image is focused by screwing the lens closer or farther to the bolometer. How-
ever, when the camera is located in place, which is difficult to achieve or mount on an unmanned
aerial vehicle, the motor must be used for focusing. For this reason, the Workswell Infrared Cam-
era equipped with a motor was developed. This part of the thesis focuses on firmware related to
the motor-focus camera version.

In regular Workswell Infrared Cameras with manual focus, the lens is screwed into a thread in
the front of the microbolometer array. Workswell Infrared Cameras equipped with a motor can be
equipped with a bayonet, which enables fast lens changes or the same screw thread front end as
the manual focus camera. The bayonet does not allow the lens to change the focusing distance. If
the non-bayonet lenses are used with motor focus, the lens has to be fully screwed down. Thus,
only the motor can change the focusing distance.

Unlike visible cameras, the lens is permanently fixed and cannot change the focusing distance.
Because the lens does not move, the only way to focus is to move with the microbolometer. The
microbolometer is mounted on a metal support (in the figure shown in red). Movement is caused
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3. Infrared camera system auto-focus

Figure 17: Diagram showing the motor focus firmware. Blue color shows the Verilog modules
and red color stands for a hardware.

by a step motor located at the back of the camera. The motor is connected to the threaded rod,
which rotates in a nut that is mounted on the bolometer support. To ensure stability and smooth
operation, the sensor support is connected to linear bearings, which are mounted on the camera
body.

The position of the microbolometer array is read using the magnetic linear encoder, which
is located in the sensor support construction. The encoder reads a magnetic field from the hall
elements, which is produced by a multipole magnetic strip located on the camera body. This
magnetic field is converted in the linear encoder to pulse width modulation (PWM), which is read
by the FPGA. The end switch is needed to determine the origin because the encoder measures
the relative distance. Otherwise, the origin will be located at the place where the sensor was
during the start-up. The same encoder is used to read the rotation of a special ring on the bayonet
by which the user can set the focus. The bayonet also contains a connector, which can connect
to the lens. The lenses sold with Workswell Infrared Cameras equipped with a bayonet have a
built-in thermometer and electrically erasable programmable read-only memory (EEPROM). This
memory can be used to determine which lens is connected to the camera and to store information
connected to the lens.

The firmware that controls the motor and allows manual motor focusing (setting the focus
distance with the bayonet ring) was implemented in Verilog 4.

The diagram in Figure 17 shows the structure of the motor focus firmware. The main module
named Motor focus implements the interface with the rest of the firmware and decides which
strategy of focusing should be used. A user can choose a focus strategy from the eight possibilities
shown in the table2. The focus strategy can be changed by the existing communication protocol.

The first two focus modes set the sensor distance, which is sent via the communication proto-
col. They differ only in the range because the user mode enables us to set the distance only in the
range from the Nearest Focus Distance (NFD) to the Infinite Focus Distance (IFD) for better user
usability. In contrast, the Administrator mode allows to set any possible distance, which should be
used to find the NFD and IFD for a new lens.

4Verilog is a hardware description language defined in IEEE standard 1364-2005. [33]
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3. Infrared camera system auto-focus

Name Note Range
Administrator The distance is set via the communication protocol full range
User The distance is set via the communication protocol limited range
Manual motor focus The IR sensor position is set from the bayonet ring limited range

Position calibration
The IR sensor presses the end switch and returns to
the previous position

Infinite focus distance fix sensor position
Nearest focus distance fix sensor position
Macro focus distance fix sensor position
Autofocus The camera computes the focusing distance. limited range

Table 2: List of all possible focussing strategies

The next focusing strategy is manual motor focus. This strategy allows the user to manually
control the focus distance by rotating the bayonet ring. The bayonet ring uses the same magnetic
linear encoder to read the position of the bolometer, which allows the use of the same code to
calculate the distance. However, the code is used in a different way. Each time, when new data
are processed, they are added to the target sensor position and the clear signal is triggered (the
trigger set actual position as the origin). The target is limited to the space between the infinite
focus distance and nearest focus distance. If the new target is above that value, it is set to those
boundaries. This has two consequences: The user can rotate the ring over the limit position, and
when he decides to change the direction, the target position will change immediately, and the target
position register never overflows.

It is necessary to calibrate the sensor origin because the sensor position is measured as a
relative shift from the previous position. This task can be performed in the position-calibration
mode. When this mode is activated, the sensor goes as far as possible from the lens, where the end
switch is located. The distance in which the switch was pressed is stored as the maximum sensor
position. When the switch is pressed, the original focus strategy is re-entry to action.

There are special modes for setting special sensor positions (infinite focus distance, nearest
focus distance, and macro focus distance), which are determined by the lens or camera manufac-
turer.

Last but not least, is the autofocus. This focus mode is used to find the best sensor position.
The principle used is described in Section 3.2.5.

The chosen focus strategy is stored in FRAM (Ferroelectric Random Access Memory)5 in
order to be active when the next camera is on. There is a separate Verilog module (named FRAM)
that implements the communication protocol with the external FRAM through I2C. This module
creates three ports to communicate with a single FRAM hardware. Each port enables both reading
and writing operations. Writing requests are stored in First in First Out (FIFO) memory. Thus, the
writing request can appear all at once, in contrast to the reading request. The module has a busy
signal because the currently active reading request needs to be processed before a new reading
request is started. When the busy signal is high, other read requests have to wait.

As mentioned previously, the bayonet lenses are equipped with EEPROM. Because EEPROM
and FRAM use a similar communication protocol, the Verilog code was parameterized, and both
EEPROM and FRAM share the code.

5FRAM is non-volatile random-access memory with similar functionality as flash memory, but much greater maxi-
mum read/write endurance.
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Another important block of the firmware is the motor controller. This module regulates the
motor speed based on the actual position of the sensor and the target position, with one exception:
If the target distance is set to zero, the motor will rotate unless the end switch is pressed, regardless
of the actual position of the bolometer. This function enables the position sensor to be calibrated
and find the origin at start-up. Another feature of this module is the slow increase in motor speed
to achieve the maximum possible speed. If the speed changes quickly, the rotor stops following
the stator magnetic field. This module uses two submodules, the motor speed, which translates
the speed register into the signals, which controls the dual-H-bridge current control motor driver,
and the IR detector position module, which reads the magnetic linear encoder. The linear encoder
produces a PWM signal directly proportional to the distance in one dipole. The module computes
the distance in micrometres from the data and integrates the distance to produce the absolute
position. When the clear signal is set to high, the absolute position is set to zero. After smoothing
the output of this module with the moving average filter, the data are used as the actual sensor
position.

3.1 Known auto-focus principals
When a camera system is equipped with a motor that can change the distance between the lens
and the infrared sensor, the automatic focus procedure can be used. Automatic focus prevents the
user from tediously manually trimming the optics until a satisfactory sharpness is reached. Manual
focus depends on the user, which reveals threat such as insufficient qualification or sight problems.

The user is not the sole source of errors that cause the blurred image. The viewfinder screen is
essential when manual focus is in action. The display has to have at least the same resolution and
sufficient size to enable the user to see all the details.

On the other hand, a human operator may decide which object should be in the focus, which
is essential when mere objects in different positions are presented in the scene.

In general, there are two possible metrics to determine the position of the sensor. The first is
to directly determine how sharp the image is. The second possibility is to measure the distance
between the camera and the subject in the scene. The distance between the lens and the subject can
be calculated according to Equation 13, which can be used to change the problem of measuring the
sharpness of the image to measure the distance from the subject. The distance of the subject can
be measured in many ways, for example, using a measuring tape. Some smarter and frequently
used methods in optics are presented below.

If the dimension of the subject in front of the camera is known, trigonometry can be used to
calculate the distance. This principle is used in the rifle scope to determine the distance to the
target, which is important for long-range shooting. The shooter knows the physical dimension of
the target and can measure the angle the subject covers in the image using marks on the reticle.

The old film camera uses this principle as well. The camera was equipped with two windows,
a viewfinder and a rangefinder. The image of a rangefinder is reflected by the mirror and combined
with the viewfinder image. The mirror can rotate and is mechanically connected to the lens optic
system. Focus shifts the rangefinder image to the left or right against the viewfinder image. When
the image from the rangefinder and viewfinder overlaps, the scene is focused.

Distance can be measured using the time-of-flight principle. The rangefinder sends a pulse of
light or ultrasound and tracks the time for which the reflected pulse is received. The measured time
is multiplied by the propagation speed and divided by two to obtain the distance. Based on this
distance, the sensor position is set. Cameras with such a rangefinder work even if a poor quality
image is available. Automatic focus systems that need an energy-transmitting device to determine
the focus are called Active Autofocus systems.
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Modern digital single-lens reflex cameras use phase-detect autofocus. It is essential to see light
as a ray to understand the principle of phase detection autofocus. The light beams from the subject
hit the lens, which bands them and concentrates them into the sensor. Before hitting the sensor,
the light is reflected by a semipermeable mirror. Behind this semi-permeable mirror, a prism is
located within the same optical distance as a sensor. The prism bends the light (but, unlike the
lens, does not focus), which makes only one specific ray pass through. The filtrated ray hits the
one-dimensional photodiode array. If the camera is focused, the light beam hits the array in the
middle. When the camera is not focused, the light beam is offset. The offset is related to the
sharpness and enables the calculation of both the direction and the amount of sensor movement,
which means that the camera can focus on one single measurement. The modern camera typically
contains more sensors to choose the focal point.

Unfortunately, none of those methods can be used in this thesis because only the image can be
used.

3.2 Image sharpness measures
The Workswell Infrared Camera performs automatic focus only based on the information provided
by the microbolometer array, which is the image. The image is a two-dimensional array of 14-bit
gray lavel. The following part assumes that the scene is constant, contains only one object, and
the camera is fixed. The gray level of a certain pixel at coordinates i, j in the image (N x M array)
and the focus distance z is denoted G(i,j,z). The aim of this section is to find a sharpness function
Falgorithm(z) of the distance between the camera lens and its imaging sensor, which converts this
2D array into a number for each focus distance. There are several demands on the focus function
presented in [34]:

• Unimodality: The focus function must be uinmodal, which means that it should have only
one extreme (minimum or maximum). This prevents errors in the local extreme.

• Reproducibility: The result of the function should give the same results for a data set
regardless of the time it was captured and computed. The sharp extreme of a function
ensures that the extreme is always found.

• Accuracy: The extreme described above must be presented when the system is in focus.

• Range: The function should be used in all areas where the image could be focused.

• General applicability: The focus function should not be limited to a special type of images.

• Insensitivity to other parameters: The autofocus process should be resistant to changes in
the parameters, which does not influence the focus position (e.g. mean brightness).

• Video signal compatibility: The automatic focus function usually works at the same time
with the same data as the functions to process and display the image. It is important that
those systems do not negatively influence each other. When the focus detector is different
from the image detector, the distance has to be adjusted in such a way that the image detector
is in focus, which avoids the systematic focus error.

• Implementation: The system must be easy to implement(in this thesis developed on FPGA).
Moreover, in this case, there is a requirement for real time oration.

• Noise robustness: The function should be robust to noise. Even if the non uniformity
correction (NUC) is performed, there is still present residual fix pattern noise. Moreover,
during live time, new dead pixels may appear.
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3.2.1 Statistic based focus metrics function

The problem of automatic focusing is well-known in visible photography and microscopy, and
there is a wide range of literature available. In the field of infrared imaging, only a few works
have been presented. In [35] the authors present five different functions using a TESTO 880-3
equipped uncooled 160x120 pixels detector sensitive to the range of 8 to 14 µm. They find out that
the method of computing sharpness form image is possible for infrared cameras and recommends
using three algorithms: energy of gradient, energy of Laplacian, and sum of modified Laplacian.
They also claim that the Tenegrad operator does not work properly for low-resolution images.

In [36] the possibility of focusing for face recognition using the FLIR thermoVision A40M
camera with a spectral range of 7.5 to 13 µm and a resolution of 320 x 240 pixels. Their conclusion
is that the proper Tenegrad algorithm shows reasonably good focusing results.

Because the found scientific articles focusing on infrared implement only a few algorithms,
more algorithms are presented, which were used in visible light automatic focusing solutions.
As the implementation in FPGA is time-consuming, the algorithms were implemented in Python
with the usage of publicly available libraries, mainly OpenCV [37], numpy [30], SciPy [38], and
matplotlib [31]) for visualization. This script can be seen in the Appendix A.2. These algorithms
were tested on five data sets captured by the Workswell Infrared Camera with different lenses and
a visible control data set from [39]. The IR data sets were obtained when the IR camera was
stationary and only the focus was changing. The sensor was moved within the entire area limited
only by mechanics (0 - 3200 µm) with the largest step of 100 µm, but when the image began
looking focused, the step was reduced to 50 µm, 10 µm or even 5 µm.

All photos of all data sets were manually evaluated, and the subjectively sharpest image was
chosen. This image is shown in Figure 33. For better image contrast, histogram equalization
was performed on this image. The equalization of the histogram changes the distribution of the
histogram to the full range of intensities. The data sets are labeled with letters A to F. The first data
set was captured with the f=14 mm lens. The object is the BB with temperature 100 ◦C covered
by a special layer, which increases the number of edges in the image. The distance between
the camera and the BB was 70 cm. The second data set was captured with the same sensor
configuration, the same lens, and the same BB. Compared to data set A, the BB temperature is
lower (75 ◦C), the layer that adds edges does not apply, and the distance is smaller (50 cm). Data
sets C and D use the same BB covered by the 1951 USAF resolution test chart 6. The black body
has a temperature of 90 ◦C in both cases. Data set C was captured from this BB from distance
300 cm with the f=25 mm lens. The distance between the camera and the BB was 200 cm and
the lens f=7.5 mm was used for the data set D. Data set E shows the author of the thesis sitting
in a chair approximately 100 cm from the camera. To capture this data set, an f=25 mm lens was
used. This data set contains the lowest contrast. Moreover, the data sets contain invalid pixels in
the upper right corner. The data set can be affected by the movement of the subject. The last is the
visible data set, which was used only to test the correctness of the algorithm implementation.

In the following three sections 3.2.1, 3.2.2, and 3.2.3 the sharpness measure function is
described.

3.2.1 Statistic based focus metrics function
Firstly, the simpler methods will be described. These methods are based on the image statistic.

Mortimer L. Mendelsohn and Brian H. Mayall [40] presented in 1971 the image threshold
counter. They assume that poor focus causes the removal of optical density. Their method inte-
grates the amount of grayness that exceeds a preset reference Ψ for all points in the image. A
higher value of the function 17 means a sharper image.

6The 1951 USAF resolution test chart is used for resolving the power tests. The test target was constructed according
to the MIL-STD-150A standard.
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3.2 Statistic based focus metrics function

(a) Dataset A: v=845 µm (b) Dataset B: v=920 µm (c) Dataset C: v=550 µm

(d) Dataset D: v=740 µm (e) Dataset E: v=1050 µm (f) Dataset F

Figure 18: One figure from each data set showing how the scene looks, when the image is in focus.
The sensors position v is listed in the description for each infrared image.
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3.2 Statistic based focus metrics function

FMeldelson(z) =
M∑
j=0

N∑
i=0

(G(i, j, z)−Ψ) , when G(i, j, z) > Ψ (17)

The authors recommend setting the threshold Ψ somewhere in the mid range of the optical
density of the image. In this thesis, Ψ was set at a value of 40 (255 is the maximum value in the
Python test procedure), which is slightly above the median of all frames.

In [41] the authors sum the squared values of all the pixel intensities with the same motivation.

FImagePower(z) =
M∑
j=0

N∑
i=0

G(i, j, z)2 (18)

In [32] the closely related focus measure is presented. The measure is gray-level variance,
which is a linear and monotonic function of image energy computed as:

FV ariance(z) =
1

NM

M∑
j=0

N∑
i=0

(G(i, j, z)− µ(z))2 (19)

,where µ(z) is the mean value:

µ(z) =
1

NM

M∑
j=0

N∑
i=0

(G(i, j, z)) . (20)

Variance measures how far a set of numbers is spread out from its mean value. The sharp im-
age should contain more information, which should cause greater energy variance. In contrast to
previously presented methods, bright and dark pixels have the same influence. Because the divi-
sion requires a significant amount of hardware resources, it may be useful to omit it when it is
implemented in FPGA. Because the number of all pixels is constant, the division performs only a
scaling and does not affect the ideal focus position.

The energy of variance can be further improved by dividing the sum by the mean value of the
image, as presented in [41]. This should compensate for the difference in mean image brightness
among different images.

FNormV ar(z) =
1

NMµ(z)

M∑
j=0

N∑
i=0

(G(i, j, z)− µ(z))2 (21)

Another approach was presented in 1988 by Vollath [42]. The contrast measurement is achieved
by taking an autocorrelation of the object scene. When the edge appears in the image, the auto cor-
relation creates a peak. According to the author, this approach should perform well in the presence
of noise. The sharpness function is defined as

FAutocoleration(z) =

M−1∑
j=0

N∑
i=0

G(i, j, z) ·G(i+1, j, z)−
M−2∑
j=0

N∑
i

G(i, j, z) ·G(i+2, j, z). (22)

The same author [42] also describes the standard deviation based on autocorrelation.

FStdCorrelation(z) =

M∑
j=0

N−1∑
i=0

G(i, j, z)G(i, j + 1, z)− µ. (23)
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3.2.2 Gradient based sharpness measure methods

Figure 19: Result of the statistic based focus metrics function.

The last methods presented in this section are based on the histogram H(z). If the image is
completely out of focus, all pixels have a very similar value. On the contrary, the sharp image
consists of many different values of pixels. In [43] the difference between the maximum gray
level and the minimum gray level was presented. This method does not fit to infrared cameras
because new dead pixels (both at maximum and minimum) can appear during the live time of the
camera. Those dead pixels will ruin this automatic focus mechanism. [44] proposed an absolute
central moment:

FAbsCentrMoment(z) =
L∑

k=1

|k − µ|Pk (24)

where µ is the mean intensity of the histogram H(z), L is the number of gray levels in the image
and Pk the relative frequency of the gray level k (bin). The number of bins was chosen to be 100.

All metrics presented in this subsection were implemented in Python and tested on the data
sets. The result of the first data set can be seen in Figure 19. Because the different functions
have different maximal values, all were normalized to have maximum sharpness at 1. Because
all curves were noisy, which can cause problems with local extrema, the moving mean of window
size eight was used to smooth out the data. The image of the first data set is considered sharp when
the focal distance is in the range of 780 to 940 µm, which was determined by subjective human
criteria. The best result can be seen for the energy variance (Fvariance) and the normalized energy
variance (FNormV ar) with a peak in the range of 810 to 890 µm. Next, the Meldelson algorithm
found the sharpness point correctly, but local maximum at 530 µm. The image power has a peak
at 570 µm, which is out of focus. The remaining methods based on autocorlation and histogram
were found to be not suitable for infrared cameras because they do not contain any peak.

3.2.2 Gradient based sharpness measure methods

Sharp image consists of sharp edges. Edge is a rapid change in image density within a small region.
The edge in the figure may be caused by a depth discontinuity (object boundaries), a different
material (emissivity), a change in surface temperature, or variations in scene illumination. Edge
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3.2 Gradient based sharpness measure methods

detection is a fundamental tool for computer vision because it can be used for image segmentation,
data extraction object boundary detection, and feature detection and extraction.

In 1976 the first gradient method was published [45]. This simple method measures the mean
change in the gray level between pairs of points separated by n pixels. The maximum change is
when focus is reached.

fBrenner(z) =
M∑
j=0

N−n∑
i=0

(G(i, j, z)−G(i+ n, y, z))2 (25)

where n is a small integer. As can be seen, this method computes the gradient only with respect to
one axis. However, nowadays the computational power enables us to compute the gradient with
respect to both axis. This is presented in [32] :

fGradientAV G(z) =

M−1∑
j=0

N−1∑
i=0

(
gx(i, j, z)

2 + gy(i, j, z)
2
)

(26)

, where the gradient with respect to the x axis gx and the y axis gy is calculated:

gx(i, j, z) = (G(i, j, z)−G(i+ 1, j, z)) (27)

gy(i, j, z) = (G(i, j, z)−G(i, j + 1, z)) (28)

. The Tenengrad algorithm [46] showed that the gradient may be computed as a convolution with
a Sobel operator listed in equation 31. Furthermore, they proposed a way to evaluate the gradient
matrix:

fgrad−threshold =
O∑
j

P∑
i

S(i, j, z) for S(i, j, z) > T (29)

Here, the gradient matrix S(i,j,z) is computed as

S(i, j, z) =
(
sx(i, j, z)

2 + sy(i, j, z)
2
)

(30)

where sx(i, j, z) and sy(i, j, z) are elements from convolution of the image and the convolution
kernel SSobelx and SSobely .

SSobel3x =

−1 0 1
−2 0 2
−1 0 1

 ; SSobel3y =

 1 2 1
0 0 0
−1 −2 −1

 (31)

The Tenegrad algorithm sums all pixels that are above a certain threshold. The effect on the
resulting curve is shown in Figure 20. If the threshold is equivalent to zero, all pixels are summed,
which is the energy of the gradient. The low threshold is more sensitive to noise. The higher
threshold causes more pixels to be filtered out and thus the peak is sharper. The disadvantage of
a high threshold is that the value of the function when the image is not sharp equals zero. On the
basis of this graph, the value of 10 was chosen because it creates a smooth function with a sharp
peak.

The second method presented [46], how to evaluate the Sobel matrix, is by using standard
variation. Because the operator highlights the edges, a high standard deviation means high focus
and vice versa. The gradient operator is computed according to this equation.

fgrad−variance(z) =

O∑
j=0

P∑
i=0

(
S(i, j, z)− S̄

)2 (32)
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3.2 Gradient based sharpness measure methods

Figure 20: Threshold effect on Tenegrad algorithm.

, where O is the number of lines in the Soble matrix S (when the kernel size is 3x3: O = M-2) and
P is the number of columns (P = N-2 for the 3x3 kernel). The S̄ is the mean value of the matrix S
calculated as

S̄ =
1

OP

O∑
j=0

P∑
i=0

S(i, j, z) (33)

.
The Sobel operator performs a two-dimensional spatial gradient computation. The value,

which is proportional to the magnitude of the gradient, was used in the two last methods pre-
sented. The magnitude can be computed by extracting the root of the equation 30. However, the
Sobel operator can also determine the direction of the gradient.

θ = atan2((sy(i, j, z), sx(i, j, z)) (34)

This can be used for filtering, if an edge with a specific angle is found.
The convolution kernel that performs the derivation with respect to the y-axis is the transposed

kernel, which performs the derivation with respect to the x-axis, as can be seen in Equation 31.
There are also other matrices that approximate the derivation when they are convoluted with

the image. In this work, the convolution kernels from [47], [48], [49] are presented and tested.
The smallest convolution mask used is Robert operator. It is a 2x2 matrix, which approxi-

mates the gradient of an image through discrete differentiation.

SRobertsx =

[
0 1
−1 0

]
(35)

The 3x3 matrix is often used to calculate the gradient. The Prewitt operator takes the three
elements that are on the right from the actual position in the picture and subtracts from them
the three elements that are on the left to compute the horizontal derivation. The current position
column is not used in this gradient computation. The Sobel operator is very similar, with one
difference, Sobel operators put more weight to the actual row, where the elements are two times
bigger. The third operator based on the same principle but with different weights is Scharr. Unlike
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3.2 Gradient based sharpness measure methods

the previous 3x3 operators, the Kirsch matrix is not symmetric. It can be used to find the edge in
eight compass directions by rotating the kernel in a 45-degree increment. The 3x3 kernels can be
seen in Equation 31 and Equation 36.

SPrewitt3x =

−1 0 1
−1 0 1
−1 0 1

 ; Sscharr3x =

 −3 0 3
−10 0 10
−3 0 3

 ; SKirsch3x =

−3 −3 5
−3 0 5
−3 −3 5


(36)

These kernels can be extended to size 5x5. The extended Prewitt operator has the same
weight for all pixels in the same columns. The farther columns have more weight. The extended
Sobel is modified Prewitt operator. The coefficients of the Prewitt kernel are divided by the dis-
tance from the center. Distance is calculated as the sum of the squared index difference. For exam-
ple, the greatest distance from the center is at the corners, which can be computed as 22 +22 = 8.
The distance of the next element is 22 + 21 = 5, etc. For a more efficient implementation, the
entire kernel is multiplied by the least common multiple (20). In [48] the extended Kirsch and
Scharr operators are presented. The 5x5 kernels are shown in Equation 37.

SPrewitt5x =


−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2
−2 −1 0 1 2

; SSobel5x =


−5 −4 0 4 5
−8 −10 0 8 10
−10 −20 0 20 10
−8 −10 0 8 10
−5 −4 0 4 5



SScharr5x =


−1 −1 0 1 1
−2 −2 0 2 2
−3 −6 0 6 3
−2 −2 0 2 2
−1 −1 0 1 1

; SKirsch5x =


−7 −7 −7 9 9
−7 −3 −3 5 9
−7 −3 0 5 9
−7 −3 −3 5 9
−7 −7 −7 9 9


(37)

Another approach to enlarge the convolution kernel in order to benefit from a higher neighbor-
hood is dilating. The newly added positions of the dilated kernel are considered as gaps and set to
zero. This principle is demonstrated in Equation 38 using a generic matrix.

Sgeneric =

a b c
d e f
g h i

 ; SDilated =


a 0 b 0 c
0 0 0 0 0
d 0 e 0 f
0 0 0 0 0
g 0 h 0 i

 (38)

The dilatation, in contrast to the extension, does not add mathematical operations when increasing
the kernel.

All described kernels were used to calculate the edge maps. In Figure 21 the first edge maps
of the data set are presented. The first image 21a shows the black body with special mask capture
using the Workswell Infrared Camera at sensor position 845 µm, where the camera system is con-
sidered focused. For better image contrast, histogram equalization was performed on this image.
All other images in Figure 21 were calculated from this image without histogram equalization. In
those images, the edges are shown in gray level; darker color means more significant edge.

The last image in the first row presents the effect of the Roberts operator. The image looks
completely white, but when the image is zoomed in, the very light and narrow contour of the black
body mask can be seen. Roberts is the smallest kernel used (only 2x2) and therefore has the lowest
sensitivity.
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3.2 Gradient based sharpness measure methods

The rest of the figure consists of three columns. The images in the first column were created by
convolution with the original 3x3 gradient kernels. All convolution kernels presented in the first
column can reveal the edge; however, the edge is light. In the second column, the kernels were
dilated. This causes a small magnification in the intensity of the edges compared to the original
kernel. The disadvantage may be that the edge is stretched over more pixels. The third column
uses extended kernels. Extension causes a rapid increase in sensitivity. It turns out that all methods
look similarly. The best edge map is obtained using extended kernels.

All edge maps were evaluated using the methods presented at the beginning of this section. For
all Tenengrad algorithms, the same threshold (10) is used for a better comparison of kernels. To
allow plotting more graphs into one figure, all data were normalized by dividing by the maximal
value. The result of the evaluation can be seen in Figures 22, 23, and 24. The smoothing filter is
not used, in contrast to statistical methods. All curves contain a peak at a similar distance. The
image captured in those peaks can be considered sharp.

The original 3x3 kernels and the Roberts 2x2 operator are used in the first set of graphs shown
in Figure 22. In contrast to the edge maps, which look very similar, the convolution kernel plays
an important role in the quality of the method. The graph on the left shows the variation computed
from the derivation. The difference between the 3x3 kernels is the ratio between the peak and the
rest of the image, where the camera is not in focus. The only 2x2 kernel shown is the Roberts
gradient operator marked by a yellow color. The variance of the gradient computed by the Roberts
operator has low sensitivity and some local maxima, which makes focusing very difficult. On the
contrary, when the threshold in the Tenengra algorithm is used, the main peak is magnified, and the
resulting curve is smooth. Surprisingly, the Tenegrad using the Roberts operator is very similar to
the Prewit derivation evaluated with variation, even though Roberts uses less than half an element
for the edge-map computation.

Figure 22b shows a considerable difference between the curve shape depending on the convo-
lution kernel when the Tenengrad algorithm is used. The best curve is obtained using the Prewit
kernel (dark blue), followed by the Sobel operator, which can be used on a wider area but is not
that smooth. On the other hand, Scharr and Kirsch operators are not as good as 2x2 Roberts kernel,
even if they use the 3x3 kernel.

In the next Figure 23 the kernel used was dilated. The dilatation kernels should be less sensitive
to noise, which results in smoother curves in both images. The difference between the kernels is
less significant. Only Scharr and Kirsch used by Tenegrad contain local maxima, which complicate
the focus point finding.

Figure 24 presents the result when extended kernels are used. All convolution-extended ker-
nels result in very similar curves.

All methods were further evaluated in the table 3. The table is organized as follows. The first
column contains the convolution kernels. Then the table is divided into two parts. In the first
part, the edge map obtained by the convolution is evaluated by the variation algorithm, and in
the second by the Tenengrad algorithm. Each part consists of three columns. In the first column,
the main peak is presented. This is the distance in which the image is in focus according to the
algorithm used. This corresponds to the accuracy demand listed at the beginning of this section.
The correct value is difficult to predict because the image looks sharp in a wide range around these
values listed in the table and, therefore, all methods are considered accurate enough.

The second column presents the low range, which is the range in which the focusing criteria
can be used. The range in which the function is not monotonous was selected to enable more
efficient peak search algorithms. The dilated Sobel operator used in the Tenengrad algorithm
has the widest range of operations. The standard 3x3 Sobel kernel has a similar performance.
However, the variance evaluation criteria have a limited range. Especially when 3x3 kernels are
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3.2 Gradient based sharpness measure methods

(a) IR original figure (b) Roberts

(c) Prewit (d) Dilated Prewit (e) Extended Prewit

(f) Sobel (g) Dilated Sobel (h) Extended Sobel

(i) Scharr (j) Dilated Scharr (k) Extended Scharr

(l) Kirsch (m) Dilated Kirsch (n) Extended Kirsch

Figure 21: The result of gradient convolution operation with different kernels. The first image
shows the photograph from which all edge maps were computed. The second image in the first
row shows the 2x2 Roberts operator. The rest of the figure is organize as follows. In the first
column, the 3x3 convolution filter is presented. In the second column, the filter from the first
column is dilated and the third column consist of convolution with the extended filter.
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3.2 Gradient based sharpness measure methods

(a) Gradient variance (b) Tenegrad

Figure 22: Gradient methods with kernel size 3x3

(a) Gradient variance with dilated kernel (b) Tenegrad with dilated kernel

Figure 23: Gradient methods with dilated kernel.

(a) Gradient variance with Extended kernel (b) Tenegrad with Extended kernel

Figure 24: Gradient methods with extended kernel.
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3.2 Gradient based sharpness measure methods

used, the range size is limited to approximately 220 µm.
The last column is named ”high range” and presents how sharp the peak is. This parameter

corresponds to the repeatability demand. This presents the distances at which the sharpness value
is higher than ninety-five percent from the maximum value. The smaller interval means higher
reproducibility. The smallest range has variance computed from 3x3 kernels. As can be seen, the
variance criterion always has a smaller value than the Tenengrad presented. However, if a higher
threshold is used, the range can be reduced.

Derivation kernel Variance Tenengrad
Peak
[µm]

Low
range[µm]

High
range[µm]

Peak
[µm]

Low
range[µm]

High
range[µm]

Roberts 865 830 - 980 830 - 980 865 750 - 960 835 - 865
Prewit 865 750 - 960 835 - 865 865 590 - 1050 825 - 875
Sobel 865 740 - 970 835 - 865 865 510 - 2400 825 - 875
Scharr 865 740 - 970 835 - 865 865 700 - 1250 815 - 885
Kirsch 865 740 - 970 835 - 865 865 700 - 1250 825 - 885
Dilated Prewit 845 640 - 1050 800 - 885 845 0 - 1700 790 - 885
Dilated Sobel 845 650 - 1040 815 - 865 845 0 - 2000 790 - 885
Dilated Scharr 845 670 - 1020 815 - 865 845 550 - 2000 790 - 885
Dilated Kirsch 865 680 - 1010 815- 885 845 550 - 2000 790 - 885
Extended Prewit 845 650 - 1040 815 - 865 845 550 - 2400 790 - 885
Extended Sobel 845 680 - 1020 825 - 865 845 550 - 2400 800 - 885
Extended Scharr 845 680 - 1010 825 - 865 845 550 - 2400 805 - 885
Extended Kirsch 845 660 - 1040 825 -865 845 550 - 2400 790 - 885

Table 3: Comparison of gradient methods

Another important aspect of the sharpness measurement function is the complexity of im-
plementation. The variance is more complicated to calculate because the entire image has to be
evaluated twice. First, the mean value of the pixels is calculated, which is used in the second run
to compute the standard deviation of each pixel, which is then summed. Even though real-time
estimation is used, the methods still need division, which cost a lot of resources. The Tenegrad
algorithm returns the value in the single image processing and consists of one comparator and a
sum. Thus, it is more suitable for real-time operations.

The next aspect is the convolution kernel. When the convolution kernel is 2x2, the result is
computed on the basis of two rows. If the kernel is 3x3, one more row of the image has to be stored
and used when the convolution is computed, and so on. The smaller convolution kernel needs
less memory. Furthermore, when convolution is not implemented generally, but rather only one
selected kernel is used, fewer resources are needed. Obviously, the Roberts operator needs fewer
resources in order to implement the convolution with this kernel, only one operation is performed
(from one element another element is subtracted). The next easy-to-implement operator is Prewit.
The advantage of the Prewit operator is that it does not require multiplication because it performs
only tree subtractions and additions of elements. The convolution with the Sobel operator can
be effectively implemented without multiplication as well, but with one more subtractions and
additions operation or a bit shift.

The dilated kernels only need more memory, but use the same computation mathematical
operations as original kernels. Extended kernels are the most difficult to implement because they
require the highest number of mathematical operations and the same amount of memory as dilated
kernels.
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3.2.3 Laplacian based sharpness measure methods

3.2.3 Laplacian based sharpness measure methods
The previous section shows the approach of the first-order derivative. This section goes further
and introduces the second-order derivative usage in the sharpness measure. The sharp image
contains high frequency caused by sharp edges. The second-order derivation can be used as a high-
pass filter. When the low frequency is removed, the data may be evaluated using the techniques
presented above.

The Laplacian can be approximated in several ways. Similarly to gradient methods, convo-
lution with various convolution kernels can be used. In [46] the highest weight is placed on the
current pixel (the center of the convolution kernel). This element is multiplied by 4 (which can
be implemented using a double left bit shift), and the 4-neighbors are subtracted from it. This can
be implemented as a convolution with the kernel L1 presented in Equation 42. This Laplacian ap-
proximation is referred to as Laplacian1 in this thesis. In [32] the Laplacian uses the 8-neighbors.
The 4-neighbors have weights four times higher than the elements in the corners, and all the neigh-
bors are subtracted from the current element, which is multiplied by twenty. When all pixels have
the same value, the edge is not present and the result will be zero. This is represented as the con-
volution kernel L2 in Equation 42. This Laplacian approximation is referred as Laplacian2 in this
thesis.

L1 =

 0 −1 0
−1 4 −1
0 −1 0

 ; L2 =

−1 −4 −1
−4 20 −4
−1 −4 −1

 (39)

The Laplacian can result in a low value when two perpendicular edges with similar intensity
are presented. For this reason, [50] modified the Laplacian as follows:

fModifiedLaplacian1(x, y, z) = |2G(x, y, z)−G(x− 1, y, z)−G(x− 1, y, z)|+
|2G(x, y, z)−G(x, y − 1, z)−G(x, y − 1, z)|

(40)

The modified Laplacian is always equal to or greater than the Laplacian computed by convolution
with the kernel L1. This Laplacian approximation is referred to as ModifiedLaplacian1 in this
thesis.

This method was further extended to the eight neighbors by [51].

fModifiedLaplacian2(x, y, z) = |2G(x, y, z)−G(x+ 1, y, z)−G(x− 1, y, z)|
+ |2G(x, y, z)−G(x, y + 1, z)−G(x, y − 1, z)|

+
1√
2
|2G(x, y, z)−G(x+ 1, y + 1, z)−G(x− 1, y − 1, z)|

+
1√
2
|2G(x, y, z)−G(x− 1, y + 1, z)−G(x+ 1, y − 1, z)|

(41)

The authors used weights that are difficult to implement in an FPGA. If this method yields good
results, the weights will be modified as follows. The first two absolute values of the parts of
equation 41, which correspond to the row and column, will be multiplied by four, and the second
two correspond to the diagonal by square root. This editing scales up the result, and a slightly
change the weights. When the center element is large enough to ensure that all absolute values
are positive, the equation is identical to the convolution with the matrix L1. However, when
implemented in Python, the original method is used. This Laplacian approximation is referred to
as ModifiedLaplacian2 in this thesis.

All four of these methods have been tested in the first data set, and the image computed at a
distance of 845 µm is shown in Figure 25.
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3.2 Laplacian based sharpness measure methods

(a) Laplacian1 (b) Laplacian2

(c) ModifiedLaplacian1 (d) ModifiedLaplacian2

Figure 25: The result of Laplacian computation using different approximations. In the first col-
umn, the approximation uses only 4-neighbors and in the second column the diagonal elements
are added to the computation. The first row was computed using convolution and the second row
displays the extended Laplacian computation with the absolute value.

45



3.2.4 Image filtering

(a) Variance (b) Threshold

Figure 26: Laplacian methods.

The first two images (25a and 25b) have a gray background. This gray is equivalent to zero
value. The lighter pixels are negative, and the darker pixels are positive. The second two images
(25c and 25d) are always positive, and thus the white is equivalent to zero. The Laplacian 2 has
better highlighted the blackbody, which indicates more sensitivity. Modified Lapalcian 1 contains
high-contrast noise.

Similarly to the gradient, the Laplacian can be evaluated using the variance [46] and the thresh-
old. The results are shown in Figure 29. This result shows that none of the Laplacian-based meth-
ods is suitable for infrared focusing. Although more different threshold values including zero,
which correspond to compute the energy, were tested, the ideal curve shape was not found. This
may be caused by the noise because the IR image is never homogeneous, even if the nonuniformity
correction is performed, there is still some residual noise pattern.

3.2.4 Image filtering

As mentioned, the residual noise after the nonuniformity correction is still present in the image,
which can decrease the performance of the sharpness measure. For that reason, the blurring filter
can improve the results of the metrics. Filter usage has previously been used in the literature; for
example, the Canny edge detection algorithm uses the Gauss smoothing filter [52]. The three filters
are presented in this thesis. The most simple is the mean filter, which replaces the pixel value with
the mean value of its neighbors. It can be implemented as a convolution with an all-ones matrix
and divided by the size of the kernel elements. The favorable kernels have a size of power of two,
because when implementing such a kernel, the division can be replaced by bit shift, which is easy
to implement. The second is the median filter, which replaces the pixel value with the median of
the set window. This non-linear filter is well known for removing salt and pepper noise. The last
filter used is the Gaussian blur filter. This filter can be approximated as a convolution with the
following kernels [53]:

Bgauss3 =
1

16

1 2 1
2 4 2
1 2 1

 ; Bgauss5 =
1

273


1 4 7 4 1
4 16 26 16 4
7 26 41 26 7
4 16 26 16 4
1 4 7 4 1

 (42)
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3.2 Image filtering

(a) Smaller filter kernel size (b) 5x5 filter kernel size

Figure 27: Effect image filtering on the sharpness measure.

The effect of all filters has been tested in Python. The effect on Tenengrad obtained from the
Prewit gradient and the first Laplacian method is presented in Figure 27. If the sensor is in an
out-of-focus position and any of the presented filters are not applied, the sharpness measure is
equal to zero with the exception of Laplacian and a filter with smaller kernel. However, the filter
may increase the width of the main peak. If no filter is used, the main high-peak range is 50 µm in
width. The same values hold for the 3x3 kernel size of all three filters. For the mean filter of kernel
size 5x5 the range of peaks is 75 µm and for the 4x4 kernel size the range is 60 µm. The Gauss
filter of the 5x5 kernel size has the biggest high range 85 µm. On the other hand, the median
filter with the 5x5 kernel has a smaller range (40 µm) compared to the gradient computation of
the original image.

When the image is filtered with the median filter of size 5x5, the Laplacian base method starts
to work, as can be seen in Figure 27b. Even if a filter is used, the Laplacian methods do not
perform better than the gradient-based sharpness measurement methods.

The filter can increase the noise resistance. The first noise tested is the salt and pepper noise.
Salt and pepper noise is an impulse type of noise caused by a certain number of pixels stuck at
a high or low value. This type of noise can be caused by dead pixels. This noise was simulated
in Python by setting randomly chosen pixels to maximal or minimal values. The image with this
noise can be seen in Figure 28c.

The image with added salt and pepper noise was used to test all filters. The filtered image
is evaluated using the Tenengrad algorithm based on the Pewit operator. The result can be seen
in Figure 29a. Only median filters can filter out the noise in such a way that sharpness can be
measured. The edges caused by the salt and pepper noise have a higher value than the edges
caused by the image for the Gaussian and also the mean filters.

The second added noise is Gaussian noise, which has a probability density function equal
to the normal distribution. This noise was implemented as a sum of the original image and the
noise matrix of the same shape as the image. The noise matrix was computed using the NumPy
library [30]. Sharpness values were computed on the images with added Gaussian noise using all
three filters and the Tenengrad algorithm computed from the Prewit operator. The result that can
be seen in Figure 29b shows that if the image is used without filtering, the image will be considered
focused at position 100 µm, which is far from the ideal 845 µm. When filters are used, the highest
peak is always in 865 µm, which means automatic focusing is possible. If the median filter of
kernel size 7 is used, then the function has only one maximum.
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3.2 Image filtering

(a) Original image (b) Gaussian noise (c) Salt and pepper noise

Figure 28: Image with added noise.

(a) Salt and pepper noise (b) Gaussian noise

Figure 29: Added noise.
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3.2.5 Auto focus implementation

3.2.5 Auto focus implementation

The automatic focus described in this thesis finds the optimal sensor position once per trigger. This
trigger can be run through the communication protocol. Modern visible DSLRs always provide a
sharp image because the automatic focus procedure is always running. This can be achieved only
because a special sensor is used for automatic focusing. Because the automatic focus described in
this section uses the image from the infrared detector, the image goes blurred during the focusing.
For this reason, the automatic focus procedure runs only on an user request. The automatic focus
consists of three parts. First, the focus area has to be chosen. In this thesis, the whole image
is used. This is typically done on processors to save computation time and to enable real-time
operation, which is not a problem on FPGAs. However, memory resources can be saved when the
area is reduced. The user can choose the area that should be in focus, which is useful, when more
objects at different distances are presented in the scene.

The second part is the sharpness measurement. The greatest attention was paid to this part.
Gradient-based sharpness measurement methods described in Section 3.2.2 show the best results.
In general, when the gradient is evaluated by the threshold, sharpness metrics can be used in a
wider range of sensor position. The second advantage compared to variance evaluation is the
complexity of the calculation. On the other hand, the peak is wider, which could decrease repeata-
bility. This is not a problem because the eye considers the image to be sharp in wider range. The
Sobel and Prewit operators show the best results. Due to easier implementation, the Prewit kernel
of 3x3 size was chosen.

Median filtering turns out to be effective in making the sharpness measurement immune to
noise and should be applied before the sharpness measurement. The median filter with kernel size
3x3 performs well for salt and pepper noise and can also filter out Gaussian noise. Larger kernel
sizes can eliminate small edges [54] and therefore the 3x3 kernel size was chosen.

The automatic focus module is connected to the video stream after the dead pixels are replaced
and non-uniformity is corrected. The video stream consists of a two-byte video data register, a
video clock register, and a startNewFrame signal. Each rising edge at the video clock new pixel
data is valid. The pixels start from the upper left corner and continue to the right. After sending
the first row, the second row starts from the left again, and so on.

Both the median filter and the sharpness measure use the 3x3 kernel. This kernel uses nine
elements, three from each of the three following rows. First, those elements are separated from
the image. This part is common for these two operations.

The schematic of these operations is shown in Figure 30. The process starts with the rising
edge of the startNewFrame signal, when the column and row counter is set to zero. Then the row
counter is enlarged by one each time new video data are received. When the counter equals 639 it
is set to zero and one is added to column counter.

Each time the new pixel is received, it is stored in the FIFO1 memory. When the first line
is saved in the FIFO1 memory, the read request is activated, and the line is saved into the FIFO2
memory. This memory is filled with this line similarly to the FIFO1 memory. Both FIFO memories
used in this design are 16 bits wide and 1024 words wide implemented in one M10K block. When
the third row starts, the read request for FIFO2 memory is enabled. Since then, all three rows can
be used.

The output of the two FIFO memories is stored in the cascade of two registers. This cascade
ensures the delay in the columns. The nine elements are ready to be used after 1282 pixels are
received. At this time, the first element of the edge map is computed.

Before sharpness is computed, the image is smoothed by the median filter. The effective
implementation of the median is presented in [54]. The median filter is built from a basic node
that can sort two elements. This basic node is shown in Figure 31. The node consists of one
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3.2.6 Peak search algorithms

Figure 30: Implementation of element preparation for median filter and sharpness measure. This
schematic spare 3x3 matrix M from the image.

two-byte comparator and two 2:1 multiplexers. Multiplexers are controlled by the output of the
comparator.

The median value is the center value of the ascending-order array. The schema presented
in [54] and shown in the figure 32 uses only 19 basic nodes instead of 41, which is required for the
full sorted array. Eight of those elements can be implemented with one single multiplexer because
the second output is not used.

The output of this filter is sent to the sharpness measurement function. This function imple-
ments the Prewitt operator in a simple way:

ASharpness = E13 − E11 + E23 − E21 + E33 − E31 (43)

and uses the same structure for accessing the needed 3 x 3 matrix.

3.2.6 Peak search algorithms
The last part is the decision about which sensor position to set. This position has two categories,
temporal and ideal. Temporal positions are used during the automatic focus procedure. The ideal
sensor position is the position in which the sensor is the most sharp.

Some methods have been presented in the literature. The most intuitive search algorithm is
the full sweep search (sometimes referred to as a global search). This algorithm visits all possible
distances, measures the sharpness of this distance, and then returns to the distance with the highest
sharpness. This method always finds the best sensor position. On the other hand, this algorithm is
very time-consuming.

Krotkov [55] solves this problem using the Fibonacci sequence. The Fibonacci sequence can
be defined as a recurrence relation Fk = Fk−1 + Fk−2 for k > 1 and the boundary condition
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3.2 Peak search algorithms

Figure 31: Scheme for each basic node used in the Median filter.

Figure 32: Implementation of Median filter.
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3.2 Peak search algorithms

F1 = F2 = 1. Then the interval L1, in which the sharpness should be found, has to be known
in advance, in this case 3200 µm. This range determines the number of iterations required to
find the optimal sensor position as the least integer N, such that FN > L1. In this case N = 19,
because F19 = 4181 µm and F18 = 2584 µm. In the first iteration step, the sharpness has to be
evaluated at two points, the distance from the boundaries of L1 is FN−1

FN
. The interval L1 is now

divided into three subintervals, and the sharpness value at each boundary distance is known. The
two subintervals neighboring the boundary with a higher sharpness value are used in the next step.
The sub-interval that was neighboring to the last removed sub-interval is divided by a point at a
distance of LK = LK−1

FN−(K−1)

FN−(K−2)
from the outside boundary. The sharpness value is measured at

this point and used to divide the next interval. This process is used iteratively, unless the maximum
iteration k = N is reached. Then the distance at which the highest sharpness value was measured is
the optimal sensor position. This process has the disadvantage of frequent changes in the direction
of sensor movement.

The number of direction changes can be reduced using the Hill-climbing search. This algo-
rithm uses two stages. In the first stage, the largest constant step is used to move the sensor. When
the first search stage found the peak (the sharpness value decreases with increasing sensor posi-
tion), the direction changes, and the second stage begins. In the second phase, a smaller step is
used to find the exact peak position. The hill climbing algorithm is improved by adaptive step
size in the second stage [56]. The step size is based on the following principle: When the image
sharpness changes relatively small, the next moving step should be increased. If the difference in
the sharpness measurement of two consecutive images is relatively large, the step size should be
reduced, because the peak may be close to this position.

The rule-based peak searching algorithm presented in [57] divides the focus range into four
types of search areas: Initial, Fine, Mid, and Coarse. The fine search is applied to areas where the
presence of the peak is highly probable. In this area, the smallest possible step is chosen. The mid-
areas have a lower probability; thus, larger step (three or four times) is used in those areas. The
biggest moving step (seven to ten times greater than the smallest possible) is used in the coarse
search areas because there is a low possibility of containing the global peak. All approaches
require an initial setup area to move the sensor to the initial position before the search begins. The
first five steps are performed by the smallest step. Then the area is classified as follows: If the
current sharpness value is less than one-quarter of the maximal measured sharpness, then the area
is classified as coarse. Otherwise, if the difference in sharpness between the current and previous
sharpness is greater than one quarter of the previous sharpness, the area is classified as fine. When
none of the above-disscribed conditions holds, the area is classified as mid. The fine area can
change to the mid area when the currently measured sharpness is smaller than the previously
measured sharpness for three times.

All these focus-finding methods target the absolutely focused image. In such an image, the ra-
dius of the blur circle 2B in Figure 16 is zero. However, this requirement is an unnecessarily strict
requirement, because of the depth of field. If the blur circle is smaller than one pixel, the image
is still in focus. Moreover, Jingqiang Li [58] introduces a photographic term circle of confusion.
This term is used to define the depth of field of an optical system by a psychological way. He pre-
sented that the needed minimum resolution is 0.2 mm for 8 x 10-in printed photography at normal
viewing distance. The photoprint is linearly scaled from the image sensor (film, CCD or, in our
case, microbolometer array). Therefore, the circle of confusion in the image plane will depend on
the size of the image sensor. The size of the image sensor is the diagonal length, which means that
the size of the 8 x 10 in print is 325.3 mm. The microbolometer used has a sensitive area of 12.2
x 9.8 mm, which means that the sensor size is 15.6 mm. Using Equation 16 the tolerable sensor
error can be calculated:
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s− v =
2B

2A
v =

0.2 · 15.6
325.3

· f♯ u

u− f
≈ 0.2 · 15.6

325.3
f♯ , when u ≫ f (44)

The camera is intended to be used with lenses with f♯ 1.1 or 1.2. To be on the safe side, f♯ 1.0
is used in the calculation of the distance, in which the blur effect is apparent. From Equation 44
the distance of 9.6 µm was obtained. This distance may be multiplied by a factor of two, because
the blur can be accepted both behind and after the focal point; thus, the minimal step is 19 µm.
The whole space in which the sensor can be moved has to be not whole searched, because the
image cannot be at focus anywhere between the lens and the point at which the camera focused
to infinity). The remaining space can be divided into a normal focus area and a macrofocus area.
This reduces the sensor movement area in which the image should be focused to 0.64 mm (for f =
25 mm lens) to maximum from all the lenses which are intended to be used with this camera.This
distance depends on the lens used. This maximum distance can be searched through 34 steps. The
camera supports up to 60 frames per second (on one channel), which means that all frames are
captured in half of second (the time needed for the sensors to move is neglected).

The Hill climbing algorithm was chosen to be used because the sharpnes measure function
is unimodal. First, the larger step of size 19 µm is used. This step should not cause observable
blurring when the image is once focused. The smaller step of 2 µm is applied in the second stage,
where the interval of 19 µm around the maximum found sharpness value is searched through. This
search should not have an eye-invisible effect on the image, but ensures the maximal focus for the
image processing.

This method can be accelerated by changing the starting point to the last distance, when the
camera was focused [58]. Then the direction is chosen on the basis of a larger sensor move.
When the sharpness value increases, the direction is correct. If the sharpness value decreases, the
direction has to be changed.

3.3 Results of the automatic focusing
This section presents the automatic focus procedure. First, all possible methods of automatic focus
are described. From them the image sharpness measured was chosen because it does not need any
additional hardware equipment or additional user information. This method uses a function that
calculates the sharpness of the image. The spatial sharpness measure was tested on the five IR
photo-detests captured for this purpose. First, the five different functions based on the raw image
were processed. Second, the derivative methods were evaluated. The gradient was approximated
by thirteen convolution kernels. The edges are highlighted in the result of that convolution and,
thus, it is denoted as an edge map. The best edge map is obtained by the 5x5 convolution kernel.
The threshold sum or variance can be used to obtain the sharpness measure from the edge map,
which adds in total twenty-six sharpness measure functions. The last method was based on the
second-order derivative. Two different kernels were used for the approximation and then each
of them was modified. The modified kernels shows the edges always positive. The result was
evaluated with the same two approaches as the derivation. In total, thirty-nine sharpness measures
were evaluated. From them, the best result was obtained using the gradient method. Due to the
complexity of the implementation, the 3x3 Prewit kernel evaluated with the threshold sum was
chosen. Then, three image filters were tested. Each filter was used with multiple kernel sizes. This
filter was applied on all presented methods, but any result does not exceed the derivation methods.
Because the filter improves the noise resistance, additional Gaussian and salt and pepper noise was
added to the images. It turns out that only the median filter is capable of filtering out the salt and
pepper noise and enabling the focusing. The larger filter performs better for Gaussian blur, but
needs more resources when implemented. Finlay, the median filter was chosen to be used before
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3.3 Results of the automatic focusing

(a) Dataset A (b) Dataset B (c) Dataset C

(d) Dataset D (e) Dataset E (f) Dataset F

Figure 33: Graph showing the sharpness over the sensor position computed by the selected
method.

the sharpness measure to ensure that the automatic focusing will work even when dead pixels are
present in the image. Lastly, the implementation of the module that decides which position should
be selected is described. Based on the literature, four peak search algorithms are described. From
them, the hill search algorithm is chosen, with the big step of 19 µm and small step of 2 µm.
When the big step crosses the peak, the algorithm switches to the small steps. The small steps
should not be seen by the user. To find the sharp point faster, this algorithm starts at the point at
which the image was in focus last time. Unfortunately, this module was not implemented due to
the lack of time.
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Chapter 4

Conclusion

This thesis focuses on uncooled infrared cameras and is divided into three parts. The first part of
this thesis provided the necessary theoretic background that was used in later parts. Fundamental
information about the thermal camera, its parts, and principles of functionality was presented. This
part also touched on the topic of infrared light, which is the operating space for thermal cameras.

The second part of the thesis dived into the hearth of an uncooled infrared camera, the mi-
crobolometr array. At first, general electrical schema was used to describe the working principle.
All the parameters which can be changed to the sensor functions were presented, defined, and
explained. Setting the microbolometer array is essential for image quality. Before the calibration
itself, the behavior of the sensor was measured. First, the measured data were approximated by
the linear line, as following the process outlined in the literature, but then the research proved that
a special function is required. After experiments with different functions, the RBO function was
chosen. This function achieved a mean fit error smaller than 0.2 percent of the ADC range. Using
this function, the influence of ambient temperature on the measured data was described, as well as
the effect of all parameters that can be measured. On the basis of the measurement, the two meth-
ods of drift compensation at ambient temperature were suggested and tested in a climate chamber.
The first methods change only one parameter (the rest of the parameters set to constant values),
which has the advantage of easy findings and not changing the gain of the fix pattern noise of
the detector. This range is suitable for all applications where object temperature is not important.
This application could be, for example, surveillance, hunting, or water pipes faults detection. It
was experimentally proved in the environmental chamber that this methods manage to display BB
range from -15 ◦C to 150 ◦C at any tested ambient temperature.

On the other hand, many applications, mainly in the industry, need a precise temperature
measurement. For this purpose, the second ambient temperature drift compensation method was
developed. This method was built on the basis of the time-consuming measurement. A special
method was presented to find the compensation model without the time-consuming measurement.
The new method found the coefficients based on the two measurements on the two black bodies at
three ambient temperatures instead of measuring all parameter sweep. This method was also tested
in the climatic chamber. The maximal difference between two RBF curves (each at different am-
bient temperatures) was 71 bits. This deviation will cause an error of approximately 1.2 ◦C, when
the radiometry is calculated. Further research should investigate whether the methods presented
are suitable for other cameras and sensors.

The third part of the thesis provided an overview of automatic focus methods. In the beginning,
methods known from visible cameras were presented. All presented methods except one cannot be
used in this thesis because of requiring additional hardware or user interaction. The only possible
method used the sharpness computed from the image. This method was discussed in more detail.
In total, thirty-nine sharpness measurement techniques were evaluated, whose can be divided into
three main groups. The first group of techniques calculated the sharpness of the raw image. These
techniques were found to be poorly sensitive. The second group evaluated the derivation of the
image. This group provided the best results. The third group used the second-order derivative.
The techniques in this group were very sensitive to noise in the image. All described techniques
were tested on five infrared data sets, which were specially captured for this thesis. One data
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4. Conclusion

set captured the author’s face, all other data sets captured the BB of various temperatures, and
consisted of approximately 100 frames. To increase the diversity, the BBs were covered with
two special masks, adding more edges. Additionally, various lenses were used. On the basis
of the performance of all the techniques on the test data sets, it was determined that the Prewit
derivation evaluated with the threshold sum provided the best results. Other convolution kernels
also provided good results. The main benefit of Prewit is the easy implementation in the FPGA and
the resistance to noise. This method was improved by using the median filter, which is capable of
preventing errors caused by dead pixels and even enhancing the noise resistance. This capability
was tested in data sets with added noise.

In conclusion, the following result was by achieved post implementation of all selected meth-
ods. Every tested IR scene can be focused using the threshold sum of the convolution of the image
with the Prewit convolution kernel. In addition, the median filter makes this method robust against
dead pixels in the image. Data sets with higher contrast and more edges are easier to focus with all
the tested methods. The camera is focused at the point where the sharpness measure is maximal.
The peak search algorithm is responsible for finding the maximum value. This algorithm sets the
sensor position and, on the basis of the sharpness measure, decides the next step. This method was
not implemented in the FPGA due to a lack of time, but four different algorithms are discussed in
the thesis. On the basis of the literature, one was chosen, and the appropriate step size was com-
puted for the presented IR camera. The results presented are promising and should be validated
by further data sets with different IR cameras.
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[46] J. L. Pech-Pacheco, G. Cristóbal, J. Chamorro-Martı́nez, and J. Fernández-Valdivia, “Di-
atom autofocusing in brightfield microscopy: a comparative study,” Proceedings 15th Inter-
national Conference on Pattern Recognition. ICPR-2000, vol. 3, pp. 314–317 vol.3, 2000.

[47] H. Kekre and S. Gharge, “Image segmentation using extended edge operator for mammo-
graphic images,” International Journal on Computer Science and Engineering, vol. 2, 07
2010.

60

https://www.sciencedirect.com/science/article/pii/S0167865513004157
https://www.sciencedirect.com/science/article/pii/0010482572900443
https://www.sciencedirect.com/science/article/pii/0010482572900443
https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2818.1997.2630819.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2818.1988.tb04620.x
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.990120302
https://doi.org/10.1177/24.1.1254907
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Appendix A

Scripts and programs

A.1 Program for plotting RBFO function

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from matplotlib.widgets import Slider, Button, TextBox
4 import os
5

6 def RBFO_c(R,B,F,O,T):
7 try:
8 return RBFO_k(R,B,F,O,np.array(T)+np.array([273.15]*len(T)))
9 except:

10 return RBFO_k(R,B,F,O,T+273.15)
11

12 def RBFO_k(R,B,F,O,T):
13 return np.array(R)/(np.exp((np.array(B)/np.array(T)))-np.array(F)) + np.

array(O)
14

15 def RBO_c(R,B,O,T):
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16 F = 1
17 return RBFO_c(R,B,F,O,T)
18

19 def inv_RBFO_k(R,B,F,O,DAC):
20 if (DAC-O) == 0:
21 return -1000
22 if (R/ (DAC-O)) + F <= 0:
23 return -1000
24 else:
25 return B / np.log( (R/ (DAC-O)) + F)
26

27 def inv_RBFO_c(R,B,F,O,DAC):
28 T = inv_RBFO_k(R,B,F,O,DAC)
29 if T == -1000:
30 return -1000
31 else:
32 return T- 273.15
33

34 class RBFO_gui:
35 def __init__(self,BB = [[],[]],bigger_img = 0.02, R_init=245000,B_init

=1445,F_init=1,O_init=1261,t_min = 0, t_max = 300):
36 self.t_min = t_min
37 self.t_max = t_max
38 self.R = R_init
39 self.B = B_init
40 self.F = F_init
41 self.O = O_init
42 self.bigger_img = bigger_img
43 self.x_lim = [t_min-(t_max-t_min)*bigger_img,t_max+(t_max-t_min)*

bigger_img]
44 self.y_lim = [0-(2**14*bigger_img),2**14*(1+bigger_img)]
45 t = np.linspace(self.x_lim[0],self.x_lim[1])
46

47 self.fig, self.ax = plt.subplots()
48 self.ax.set_ylim(self.y_lim)
49 self.ax.set_xlim(self.x_lim)
50 plt.grid(True)
51 plt.title(’RBOF plotter’)
52

53 plt.plot(BB[0],BB[1],linestyle=’none’, marker=’o’,color=’#0091FF’)
54 self.line, = plt.plot(t, RBO_c(self.R, self.B, self.O,t),color=’#0000ff

’)
55 self.ax.set_xlabel(’BB temperature [ C ]’)
56 self.ax.set_ylabel(’Mean pixel value [DAC]’)
57 plt.subplots_adjust(left=0.18, right= 0.7, bottom=0.45)
58 self.btn = Button(plt.axes([0.84, 0.25, 0.10, 0.08]),’Ok’)
59

60 t_100 = self.inv_RBFO_c(2**14)
61 self.m_text = plt.gcf().text(0.75, 0.85, ’t_ADC1.0 = %.2 f C ’ %t_100,

color=’#e6194b’,fontsize=8.5)
62 t_90 = self.inv_RBFO_c(2**14*0.9)
63 self.text_90 = plt.gcf().text(0.75, 0.80, ’t_ADC0.9 = %.2 f C ’ %t_90,

color=’#F5824C’,fontsize=8.5)
64 t_10 = self.inv_RBFO_c(2**14*0.1)
65 if t_10 == -1000:
66 self.text_10 = plt.gcf().text(0.75, 0.75, ’t_ADC0.1 = NA’,color=’#4

c01ff’,fontsize=8.5)
67 else:
68 self.text_10 = plt.gcf().text(0.75, 0.75, ’T_ADC0.1 = %.2 f C ’ %

t_10,color=’#4c01ff’,fontsize=8.5)
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69 t_0 = self.inv_RBFO_c(0)
70 if t_0 == -1000:
71 self.text_0 = plt.gcf().text(0.75, 0.7, ’T_ADC0.0 = NA’,color=’

#0000FF’,fontsize=8.5)
72 else:
73 self.text_0 = plt.gcf().text(0.75, 0.7, ’T_ADC0.0 = %.2 f C ’ %t_0,

color=’#0000FF’,fontsize=8.5)
74

75 axcolor = ’lightgoldenrodyellow’
76

77 self.max_slider = Slider(
78 ax=plt.axes([0.1, 0.30, 0.55, 0.03], facecolor=axcolor),
79 label=’MAX’,
80 valmin= 0,
81 valmax= 1500,
82 valinit=t_max,
83 )
84 self.min_slider = Slider(
85 ax=plt.axes([0.1, 0.25, 0.55, 0.03], facecolor=axcolor),
86 label=’MIN’,
87 valmin=-50,
88 valmax= 600,
89 valinit=t_min,
90 )
91 self.F_slider = Slider(
92 ax=plt.axes([0.1, 0.20, 0.65, 0.03], facecolor=axcolor),
93 label=’F’,
94 valmin=-10,
95 valmax= 10,
96 valinit=self.F,
97 )
98 self.R_slider = Slider(
99 ax=plt.axes([0.1, 0.15, 0.65, 0.03], facecolor=axcolor),

100 label=’R’,
101 valmin=0.1,
102 valmax=400000,
103 valinit=self.R,
104 )
105 self.B_slider = Slider(
106 ax=plt.axes([0.1, 0.1, 0.65, 0.03], facecolor=axcolor),
107 label=’B’,
108 valmin=0.1,
109 valmax=3000,
110 valinit=self.B,
111 )
112 self.O_slider = Slider(
113 ax=plt.axes([0.1, 0.05, 0.65, 0.03], facecolor=axcolor),
114 label=’O’,
115 valmin=-10000,
116 valmax= 10000,
117 valinit=self.O,
118 )
119

120 self.max_text_box = TextBox( plt.axes([0.66, 0.295, 0.1, 0.04]),"",
initial=t_max)

121 self.min_text_box = TextBox(plt.axes([0.66, 0.245, 0.1, 0.04]),"",
initial=t_min)

122 self.R_text_box = TextBox(plt.axes([0.76, 0.145, 0.1, 0.04]),"",initial
=self.R)

123 self.B_text_box = TextBox(plt.axes([0.76, 0.095, 0.1, 0.04]),"",initial
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=self.B)
124 self.O_text_box = TextBox(plt.axes([0.76, 0.045, 0.1, 0.04]),"",initial

=self.O)
125 self.F_text_box = TextBox(plt.axes([0.76, 0.195, 0.1, 0.04]),"",initial

=self.F)
126

127

128 self.R_slider.on_changed(self.R_sliders_changed)
129 self.B_slider.on_changed(self.B_sliders_changed)
130 self.O_slider.on_changed(self.O_sliders_changed)
131 self.F_slider.on_changed(self.F_sliders_changed)
132 self.max_slider.on_changed(self.max_sliders_changed)
133 self.min_slider.on_changed(self.min_sliders_changed)
134

135 self.R_text_box.on_submit(self.R_boxes_submit)
136 self.B_text_box.on_submit(self.B_boxes_submit)
137 self.O_text_box.on_submit(self.O_boxes_submit)
138 self.F_text_box.on_submit(self.F_boxes_submit)
139 self.min_text_box.on_submit(self.min_boxes_submit)
140 self.max_text_box.on_submit(self.max_boxes_submit)
141

142 self.btn.on_clicked(self.export_potential_configurations)
143 plt.gcf().canvas.manager.set_window_title(’RBFO plotter’)
144 plt.show()
145

146 def max_sliders_changed(self,value):
147 if self.t_max != value:
148 self.t_max = value
149 self.max_text_box.set_val(round(value,1))
150 self.update(value)
151

152 def min_sliders_changed(self,value):
153 if self.t_min != value:
154 self.t_min = value
155 self.min_text_box.set_val(round(self.t_min,1))
156 self.update(value)
157

158 def R_sliders_changed(self,value):
159 if self.R != self.R_slider.val:
160 self.R = self.R_slider.val
161 self.R_text_box.set_val(round(self.R,1))
162 self.update(value)
163

164 def B_sliders_changed(self,value):
165 if self.B != self.B_slider.val:
166 self.B = self.B_slider.val
167 self.B_text_box.set_val(round(self.B,1))
168 self.update(value)
169

170 def O_sliders_changed(self,value):
171 if self.O != self.O_slider.val:
172 self.O = self.O_slider.val
173 self.O_text_box.set_val(round(self.O,1))
174 self.update(value)
175

176 def F_sliders_changed(self,value):
177 if self.F != self.F_slider.val:
178 self.F = self.F_slider.val
179 self.F_text_box.set_val(round(self.F,1))
180 self.update(value)
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181

182 def max_boxes_submit(self,value):
183 new_value = float(value.replace(",","."))
184 if self.t_max != new_value:
185 self.t_max = new_value
186 self.max_slider.set_val(self.t_max)
187 self.update(value)
188

189 def min_boxes_submit(self,value):
190 new_value = float(value.replace(",","."))
191 if self.t_min != new_value:
192 self.t_min = new_value
193 self.min_slider.set_val(self.t_min)
194 self.update(value)
195

196 def R_boxes_submit(self,value):
197 new_value = float(value.replace(",","."))
198 if self.R != new_value:
199 self.R = new_value
200 self.R_slider.set_val(self.R)
201 self.update(value)
202

203 def B_boxes_submit(self,value):
204 new_value = float(value.replace(",","."))
205 if self.B != new_value:
206 self.B = new_value
207 self.B_slider.set_val(self.B)
208 self.update(value)
209

210 def O_boxes_submit(self,value):
211 new_value = float(value.replace(",","."))
212 if self.O != new_value:
213 self.O = new_value
214 self.O_slider.set_val(self.O)
215 self.update(value)
216

217 def F_boxes_submit(self,value):
218 new_value = float(value.replace(",","."))
219 if self.F != new_value:
220 self.F = new_value
221 self.F_slider.set_val(self.F)
222 self.update(value)
223

224 def update(self,value):
225

226 self.x_lim = [self.t_min-(self.t_max-self.t_min)*self.bigger_img,self.
t_max+(self.t_max-self.t_min)*self.bigger_img]

227 self.ax.set_xlim(self.x_lim)
228 t = np.linspace(self.x_lim[0],self.x_lim[1])
229

230

231 max_t = self.inv_RBFO_c(2**14)
232 t_90 = self.inv_RBFO_c(2**14*0.9)
233

234 t_10 = self.inv_RBFO_c(2**14*0.1)
235 if t_10 == -1000:
236 self.text_10.set_text(’t_ADC0.1 = NA’)
237

238 t_0 = self.inv_RBFO_c(2**14*0)
239 if t_0 == -1000:
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240 self.text_0.set_text(’t_ADC0.0 = NA’)
241 else:
242 self.text_0.set_text(’t_ADC0.0 = %.2 f C ’%t_0)
243

244

245 print("ADC value of 15 C = "+str(self.RBFO_c(15))+" ;100 C = "+str(
self.RBFO_c(100))+" ;200 C = "+str(self.RBFO_c(200))+"")

246

247

248 self.line.set_data(t,RBFO_c(self.R,self.B, self.F,self.O,t))
249

250 #line_90.set_data([t_90,t_90],y_lim)
251 #line_h100.set_data(t,[2**14]*len(t))
252 #line_h90.set_data(t,[2**14*0.9]*len(t))
253

254 self.fig.canvas.draw_idle()
255 self.is_needet_uppdate = 0
256

257 def inv_RBFO_c(self,DAC):
258 return inv_RBFO_c(self.R, self.B, self.F, self.O,DAC)
259

260 def RBFO_c(self,T):
261 return RBFO_c(self.R,self.B,self.F,self.O,T)
262

263 def export_potential_configurations(self,event):
264

265 #path = ’../Vysledky/to_work_with/’
266 path=""
267 f = open(path+"Find_RBOF.txt", "w")
268 f.write("Saved constants: ")
269 f.write("\nR: ")
270 f.write(str(self.R))
271 f.write("\nB: ")
272 f.write(str(self.B))
273 f.write("\nO: ")
274 f.write(str(self.O))
275 f.write("\nF: ")
276 f.write(str(self.F))
277

278 f.close()
279

280 plt.close()
281 quit()
282

283 if __name__ == "__main__":
284 #filename = "Target_BB.txt"
285 filename = ""
286 BB_T = []
287 BB_v = []
288 if os.path.isfile(filename):
289 f = open(filename, "r")
290 f.readline()
291 for x in f:
292 data = x.replace(",",".").split(" ")
293 BB_T.append(float(data[0]))
294 BB_v.append(float(data[1]))
295 f.close()
296

297 gui = RBFO_gui(BB=[BB_T,BB_v])
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1 import os
2 from unicodedata import name
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import matplotlib.animation as animation
6 import matplotlib.cm as cm
7 import cv2
8 from scipy.ndimage import gaussian_filter
9 from scipy import signal

10 import math
11 import pywt
12 from scipy.stats import entropy
13 import random
14

15

16

17 my_colours = [’#0065BD’, ’#6AADE4’, ’#00B2A9’, ’#A2AD00’,
18 ’#F0AB00’, ’#E05200’, ’#F5824C’ ,’#C60C30’, ’#981F40’]
19

20 class Edge_detector:
21 def __init__(self, alg):
22 self.alg = alg
23 self.frames = []
24 self.distances = []
25 self.max_values = []
26 self.mean_values = []
27 self.sharpness = []
28 self.frame_columns = 480
29 self.frame_rows = 640
30 self.max_sharpness = self.frame_columns*self.frame_rows
31 self.max_pixel_value = 255
32

33 def add_frame(self,dist,frame):
34 algo = self.alg.split("+")
35 sharpness_value = 0
36 for alg in algo:
37 ##Filters
38 alg_split = alg.split(’-’)
39 filter = alg_split[0]
40 if len(alg_split) > 1:
41 param = alg_split[1]
42

43

44 if filter == ’GaussianBlur’:
45 frame = cv2.GaussianBlur(frame,(int(param),int(param)),0)
46 elif filter == ’AvgBlur’:
47 frame = cv2.blur(frame,(int(param),int(param)))
48 elif filter == ’MedianBlur’:
49 frame = cv2.medianBlur(frame,int(param))
50

51 elif filter == ’modifiedLaplacian1’:
52 frame = self.modifiedLaplacian1(frame)
53 elif filter == ’laplacian’:
54 frame = self.laplacian(frame)
55 elif filter == ’grad’:
56 frame = self.sobel(frame,param)
57 sharpness_value = np.mean(frame)
58
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59 elif filter == ’sobelx’:
60 frame = cv2.Sobel(frame,cv2.CV_64F,1,0,ksize=int(param))
61 sharpness_value = np.max(frame)
62 elif filter == ’sobely’:
63 frame = cv2.Sobel(frame,cv2.CV_64F,0,1,ksize=int(param))
64 elif filter == ’sobelxy’:
65 frame = cv2.Sobel(frame,cv2.CV_64F,1,1,ksize=int(param))
66 sharpness_value = np.mean(frame)
67 elif filter == ’MySobel’:
68 mySobelKer =np.array([[-1, -2, -1],
69 [-2, 12, -2],
70 [-1, -2, -1]])
71 #mySobelKer =np.array([[-1, -1, -1],
72 # [-1, 8, -1],
73 # [-1, -1, -1]])
74 frame = cv2.filter2D(src=frame,ddepth=-1, kernel=mySobelKer)
75 elif filter == ’None’:
76 frame = frame
77 elif filter == ’BrennerGradient’:
78 frame = self.Brenner_gradient(frame,int(param))
79 sharpness_value = np.sum(np.sum(frame))
80 elif filter == ’Energy_variance’:
81 frame = self.Energy_variance(frame)
82 sharpness_value = np.mean(frame)
83 elif filter == ’Energy_gradient’:
84 frame = self.Energy_gradient(frame)
85 sharpness_value = np.mean(frame)
86 elif filter == ’Energy_of_Laplacian’:
87 frame = self.Energy_of_Laplacian(frame)
88 sharpness_value = np.sum(frame)
89 elif filter == ’Gaussian_derivative’:
90 frame = self.Gaussian_derivative(frame,int(param))
91 sharpness_value = np.sum(frame)
92 elif filter == ’AbsCentrMoment’:
93 sharpness_value = self.Absolute_Central_Moment(frame,int(param)

)
94 elif filter == ’modifiedLaplacian2’:
95 frame = self.modifiedLaplacian2(frame)
96 elif filter == ’modifiedLaplacian3’:
97 frame = self.modifiedLaplacian3(frame)
98 elif filter == ’Laplacian1’:
99 frame = self.Laplacian1(frame)

100 elif filter == ’Laplacian2’:
101 frame = self.Laplacian2(frame)
102 elif filter == ’sumOfWavelets’:
103 sharpness_value = self.wavelets1(frame,param)
104 elif filter == ’VarianceOfWavelets’:
105 sharpness_value = self.wavelets2(frame,param)
106 elif filter == ’DifferenceOfGaussians’:
107 L1 = cv2.GaussianBlur(frame,(5,5),1)
108 L2 = cv2.GaussianBlur(frame,(5,5),2)
109 frame = L1-L2
110

111 elif filter == ’Threshold_count’:
112 sharpness_value = self.threshold_count(frame,int(param))
113 elif filter == ’Threshold’:
114 #print(np.mean(frame))
115 sharpness_value = self.threshold(frame,int(param))
116 self.max_sharpness = self.frame_columns*self.frame_rows
117 elif filter == ’Variance’:
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118 sharpness_value = self.variance(frame)
119 elif filter == ’Energy’:
120 sharpness_value = np.sum(frame)
121 elif filter == ’ImagePower’:
122 self.max_sharpness = self.max_pixel_value**2
123 * self.frame_columns
124 * self.frame_rows
125 sharpness_value = self.image_power(frame)
126 elif filter == ’Mean’:
127 self.max_sharpness = self.max_pixel_value**2
128 * self.frame_columns
129 * self.frame_rows
130 sharpness_value = np.mean(frame)
131 elif filter == ’Entropy’:
132 sharpness_value = entropy(frame.flatten())
133 print(sharpness_value)
134 elif filter == ’Range’:
135 sharpness_value = np.max(frame) - np.min(frame)
136 print(sharpness_value)
137 elif filter == ’Standar_deviation’:
138 sharpness_value = np.std(frame)
139 elif filter == ’Autocorelation’:
140 sharpness_value = self.autocoralation(frame)
141 elif filter == ’NormVar’:
142 sharpness_value = np.var(frame)/np.mean(frame)
143 elif filter == ’Meldelson’:
144 sharpness_value = self.Meldelson(frame,value=int(param))
145 elif filter == ’StdCorelation’:
146 sharpness_value = self.StdCorelation(frame)
147

148 elif filter == ’SPNoise’:
149 frame = self.AddSPNoise(frame)
150 elif filter == ’GaussNoise’:
151 frame = self.AddGaussNoise(frame)
152

153 else:
154 print("ERROR: Unknown filter: "+filter)
155

156

157 self.frames.append(frame)
158 self.distances.append(dist)
159 self.max_values.append(np.amax(frame))
160 self.mean_values.append(np.mean(frame))
161 self.sharpness.append(sharpness_value)
162

163 def plot_sharpness(self,color_index,names = []):
164 self.sharpness = self.sharpness/np.max(self.sharpness)
165 if names == []:
166 plt.plot(self.distances,self.sharpness,label=self.alg,
167 color=my_colours[color_index])
168 else:
169 plt.plot(self.distances,self.sharpness,label=names[color_index],
170 color=my_colours[color_index])
171 kernel_size = 8
172 kernel = np.ones(kernel_size)/kernel_size
173 smoth_data = np.convolve(self.sharpness,kernel,’same’)
174

175 def plot_max_values(self):
176 plt.plot(self.distances,self.max_values,label="MaxValue of " + self.alg

)
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177

178 def plot_avg_values(self):
179 plt.plot(self.distances,self.mean_values,label="MeanValue of " + self.

alg)
180

181 def animate(self):
182 fig, ax = plt.subplots()
183 plt.axis(’off’)
184 plt.title(self.alg)
185 ims = []
186 for count,img in enumerate(self.frames):
187 im_plot = plt.imshow(img, cmap=cm.Greys_r,animated=True)
188 ims.append([im_plot,dist,avg,max])
189

190 ani = animation.ArtistAnimation(fig, ims, interval=60, blit=False,
191 repeat_delay=1000)
192 plt.show()
193

194 def modifiedLaplacian1(self,img):
195 img = np.uintc(img)
196 for j in range(self.frame_columns-2):
197 for i in range(self.frame_rows-2):
198 img[j+1][i+1] = abs(2*img[j+1][i+1]-img[j+2][i+1]-img[j][i+1])
199 +abs(2*img[j+1][i+1]-img[j+1][i+2]-img[j+1][i])
200 return img
201

202

203 def laplacian(self,img):
204 return cv2.Laplacian(img, ddepth=cv2.CV_64F)
205

206 def Brenner_gradient(self,img,n=2):
207 img = np.intc(img)
208 for j in range(self.frame_columns):
209 for i in range(self.frame_rows-n):
210 img[j][i] = int((int(img[j][i]) - int(img[j][i+n]))ˆ2)
211 return img
212

213 def Energy_variance(self,img):
214 img = np.intc(img)
215 mu = np.mean(img)
216 return np.power(img-mu,2)
217

218 def Energy_gradient(self,img):
219 img = np.intc(img)
220 for j in range(self.frame_columns-1):
221 for i in range(self.frame_rows-1):
222 gx = int((int(img[j][i]) - int(img[j][i+1])))
223 gy = int((int(img[j][i]) - int(img[j][i+1])))
224 img[j][i] = gxˆ2 + gyˆ2
225 return img
226

227 def Energy_of_Laplacian(self,img):
228 img = np.intc(img)
229 for j in range(self.frame_columns-1):
230 for i in range(self.frame_rows-1):
231 img[j][i] = (-(int(img[j-1][i-1]))
232 -4*-(int(img[j-1][i]))
233 -(int(img[j-1][i+1]))
234 -4*(int(img[j][i-1]))
235 +20*(int(img[j][i]))
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236 -4*(int(img[j][i+1]))
237 -(int(img[j+1][i-1]))
238 -4*(int(img[j+1][i]))
239 -(int(img[j+1][i+1])))ˆ2
240 return img
241

242 def Gaussian_derivative(self,img,sigma = 1):
243 img = np.intc(img)
244 return gaussian_filter(img,(sigma,sigma),(0,1))
245 + gaussian_filter(img,(sigma,sigma),(1,0))
246

247 def Absolute_Central_Moment(self,img,bins=100):
248 img = np.intc(img)
249 H = np.histogram(img, bins=bins)
250 mu = np.mean(H[1])
251 suma = 0
252 P = H[0]/(640*480)
253 for k in range(len(H[0])):
254 suma = suma + abs((H[1][k]+H[1][k+1])/2-mu)*P[k]
255 return suma
256

257 def image_power(self,img):
258 img = np.intc(img)
259 return np.sum(img**2)#sum
260

261 def sobel(self,img, param):
262 img = np.intc(img)
263 print("Grad: "+param)
264 if param == ’roberts’:
265 my_ker_X=np.array([[ 0, 1],
266 [-1, 0]])
267 my_ker_Y = np.transpose(my_ker_X)
268 elif param == ’prewit3’:
269 my_ker_X=np.array([[-1, 0, 1],
270 [-1, 0, 1],
271 [-1, 0, 1]])
272 my_ker_Y = np.transpose(my_ker_X)
273 elif param == ’prewit5’:
274 my_ker_X=np.array([[-2,-1, 0, 1,2],
275 [-2,-1, 0, 1,2],
276 [-2,-1, 0, 1,2],
277 [-2,-1, 0, 1,2],
278 [-2,-1, 0, 1,2]])
279 my_ker_Y = np.transpose(my_ker_X)
280

281 elif param == ’prewitD’:
282 my_ker_X=np.array([[-1,0, 0, 0,1],
283 [ 0,0, 0, 0,0],
284 [-1,0, 0, 0,1],
285 [ 0,0, 0, 0,0],
286 [-1,0, 0, 0,1]])
287 my_ker_Y = np.transpose(my_ker_X)
288

289 elif param == ’prewit7’:
290 my_ker_X=np.array([[-3,-2,-1, 0, 1,2,3],
291 [-3,-2,-1, 0, 1,2,3],
292 [-3,-2,-1, 0, 1,2,3],
293 [-3,-2,-1, 0, 1,2,3],
294 [-3,-2,-1, 0, 1,2,3],
295 [-3,-2,-1, 0, 1,2,3],
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296 [-3,-2,-1, 0, 1,2,3]])
297 my_ker_Y = np.transpose(my_ker_X)
298

299 elif param == ’prewit9’:
300 my_ker_X=np.array([[-4,-3,-2,-1, 0, 1,2,3,4],
301 [-4,-3,-2,-1, 0, 1,2,3,4],
302 [-4,-3,-2,-1, 0, 1,2,3,4],
303 [-4,-3,-2,-1, 0, 1,2,3,4],
304 [-4,-3,-2,-1, 0, 1,2,3,4],
305 [-4,-3,-2,-1, 0, 1,2,3,4],
306 [-4,-3,-2,-1, 0, 1,2,3,4],
307 [-4,-3,-2,-1, 0, 1,2,3,4],
308 [-4,-3,-2,-1, 0, 1,2,3,4]])
309 my_ker_Y = np.transpose(my_ker_X)
310

311 elif param == ’sobel3’:
312 my_ker_X=np.array([[-1, 0, 1],
313 [-2, 0, 2],
314 [-1, 0, 1]])
315 my_ker_Y = np.transpose(my_ker_X)
316

317 elif param == ’sobelD’:
318 my_ker_X=np.array([[-1, 0, 0, 0, 1],
319 [ 0, 0, 0, 0, 0],
320 [-2, 0, 0, 0, 2],
321 [ 0, 0, 0, 0, 0],
322 [-1, 0, 0, 0, 1]])
323 my_ker_Y = np.transpose(my_ker_X)
324

325 elif param == ’sobel5’:
326 my_ker_X=np.array([[ -5, -4, 0, 4, 5],
327 [ -8, -10, 0, 10, 8],
328 [-10, -20, 0, 20,10],
329 [ -8, -10, 0, 10, 8],
330 [ -5, -4, 0, 4, 5]])
331 my_ker_Y = np.transpose(my_ker_X)
332

333 elif param == ’sobel7’:
334 my_ker_X=np.array([[ -780, -720, -468, 0, 468, 720, 780],
335 [ -1080, -1170, -936, 0, 936, 1170, 1080],
336 [ -1404, -1872, -2340, 0, 2340, 1872, 1404],
337 [ -1560, -2340, -4680, 0, 4680, 2340, 1560],
338 [ -1404, -1872, -2340, 0, 2340, 1872, 1404],
339 [ -1080, -1170, -936, 0, 936, 1170, 1080],
340 [ -780, -720, -468, 0, 468, 720, 780]])
341 my_ker_Y = np.transpose(my_ker_X)
342

343 elif param == ’scharr3’:
344 my_ker_X=np.array([[-3, 0, 3],
345 [-10, 0, 10],
346 [-3, 0, 3]])
347 my_ker_Y = np.transpose(my_ker_X)
348

349 elif param == ’scharrD’:
350 my_ker_X=np.array([[-3,0, 0,0, 3],
351 [ 0, 0, 0, 0, 0],
352 [-10,0, 0,0, 10],
353 [ 0, 0, 0, 0, 0],
354 [-3, 0,0, 0,3]])
355 my_ker_Y = np.transpose(my_ker_X)
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356

357 elif param == ’scharr5’:
358 my_ker_X=np.array([[ -1, -1, 0, 1, 1],
359 [ -2, -2, 0, 2, 2],
360 [ -3, -6, 0, 6, 3],
361 [ -2, -2, 0, 2, 2],
362 [ -1, -1, 0, 1, 1]])
363 my_ker_Y = np.transpose(my_ker_X)
364

365 elif param == ’Kirsch3’:
366 my_ker_X=np.array([[-3, -3, 5],
367 [ -3, 0, 5],
368 [ -3, -3, 5]])
369 my_ker_Y = np.transpose(my_ker_X)
370

371 elif param == ’KirschD’:
372 my_ker_X=np.array([[-3, 0,-3,0, 5],
373 [0, 0,0,0, 0],
374 [ -3,0, 0,0, 5],
375 [0, 0,0,0, 0],
376 [ -3,0, -3,0, 5]])
377 my_ker_Y = np.transpose(my_ker_X)
378

379 elif param == ’Kirsch5’:
380 my_ker_X=np.array([[ -7, -7, -7, 9, 9],
381 [ -7, -3, -3, 5, 9],
382 [ -7, -3, 0, 5, 9],
383 [ -7, -3, -3, 5, 9],
384 [ -7, -7, -7, 9, 9]])
385 my_ker_Y = np.transpose(my_ker_X)
386

387 else:
388 print("Unknow parameter")
389

390 fx = signal.convolve2d(img,my_ker_X,mode=’valid’)
391 fy = signal.convolve2d(img,my_ker_Y,mode=’valid’)
392 return np.array(fx)**2 + np.array(fy)**2
393

394 def Laplacian2(self,img):
395 img = np.intc(img)
396 mySobelKer =np.array([[-1, -4, -1],
397 [-4, 20, -4],
398 [-1, -4, -1]])
399 return signal.convolve2d(img,mySobelKer,mode=’valid’)
400

401 def AddSPNoise(self,img):
402 for i in range(100):
403 x = random.randint(0,self.frame_columns-1)
404 y = random.randint(0,self.frame_rows-1)
405 img[x][y] = 0
406 for i in range(100):
407 x = random.randint(0,self.frame_columns-1)
408 y = random.randint(0,self.frame_rows-1)
409 img[x][y] = 255
410 im = Image.fromarray(img)
411 return img
412

413 def AddGaussNoise(self,img):
414 noise = np.random.normal(0,3,(self.frame_columns,self.frame_rows))
415 noise = noise.astype(np.uint8)
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416 img = noise + img
417 return img
418

419 def Laplacian1(self,img):
420 img = np.intc(img)
421 myKer =np.array([[0, -1, 0],
422 [-1, 4,-1],
423 [0, -1, 0]])
424 return signal.convolve2d(img,myKer,mode=’valid’)
425

426 def modifiedLaplacian2(self,img):
427 imgA = np.double(img)
428 for j in range(self.frame_columns-2):
429 for i in range(self.frame_rows-2):
430 imgA[j+1][i+1] = float(abs(2*img[j+1][i+1]-img[j+2][i+1]-img[j

][i+1])
431 + abs(2*img[j+1][i+1]-img[j+1][i+2]-img[j+1][i])
432 + 1/math.sqrt(2)*abs(2*img[j+1][i+1]-img[j+2][i

+2]-img[j][i])
433 + 1/math.sqrt(2) *abs(2*img[j+1][i+1]-img[j+2][i

]-img[j][i+2]))
434 return imgA
435

436 def modifiedLaplacian3(self,img):
437 imgA = np.intc(img)
438 for j in range(self.frame_columns-2):
439 for i in range(self.frame_rows-2):
440 imgA[j+1][i+1] = 4*float(abs(2*img[j+1][i+1]-img[j+2][i+1]-img[

j][i+1])
441 + 4*abs(2*img[j+1][i+1]-img[j+1][i+2]-img[j+1][i

])
442 + abs(2*img[j+1][i+1]-img[j+2][i+2]-img[j][i])
443 + abs(2*img[j+1][i+1]-img[j+2][i]-img[j][i+2]))
444 return imgA
445

446

447 def threshold_count(self,img,value):
448 count = 0
449 print(np.max(img))
450 for j in range(len(img)-1):
451 for i in range(len(img[1])-1):
452 if img[j][i] > value:
453 count = count + 1
454 return count
455

456 def threshold(self,img,value):
457 sum = 0
458 for j in range(len(img)-1):
459 for i in range(len(img[1])-1):
460 if img[j][i] > value:
461 sum = sum + img[j][i] - value
462 return sum
463

464 def variance(self,img):
465 return np.var(img)
466

467 def wavelets1(self,img,wavelet = ’bior1.3’):
468 img = np.intc(img)
469 LL, (LH, HL, HH) = pywt.dwt2(img, wavelet)
470 return np.mean(np.abs(LH)) + np.mean(np.abs(HL)) + np.mean(np.abs(HH))
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471

472 def wavelets2(self,img,wavelet = ’bior1.3’):
473 img = np.intc(img)
474 LL, (LH, HL, HH) = pywt.dwt2(img, wavelet)
475 return np.var(LH) + np.var(HL) + np.var(HH)
476

477 def autocoralation(self,img):
478 sumA = 0
479 sumB = 0
480 for j in range(self.frame_columns-1):
481 for i in range(self.frame_rows-1):
482 if i != self.frame_rows-2:
483 sumB = sumB + int(img[j][i]) * int(img[j][i+2])
484 sumA = sumA + int(img[j][i]) * int(img[j][i+1])
485 return sumA - sumB
486

487 def Meldelson(self,img,value):
488 img = np.intc(img)
489 sum = 0
490 print(np.mean(img))
491 for j in range(self.frame_columns-1):
492 for i in range(self.frame_rows-1):
493 if img[j][i] > value:
494 sum = sum + img[j][i] - value
495 return sum
496

497 def StdCorelation(self,img):
498 sum = 0
499 mu = np.mean(img)
500 for j in range(self.frame_columns-1):
501 for i in range(self.frame_rows):
502 sum = sum + int(img[j][i])*int(img[j+1][i]) - mu
503 return sum
504

505 def saveFrame(self,name,dist,srcpath):
506 plt.imsave( srcpath + ’/’+str(name)+"--"+self.alg+ ".png" ,
507 self.frames[self.distances.index(dist)],cmap =’Greys’)
508

509 class all_detectors:
510 def __init__(self,used_alg = [],names=[] ):
511 self.used_alg = used_alg
512 self.edge_detectors = []
513 self.names = names
514 for alg in used_alg:
515 self.edge_detectors.append(Edge_detector(alg))
516

517

518 def uppdate(self,dist,img):
519 for detector in self.edge_detectors:
520 detector.add_frame(dist,img)
521

522 def animate(self,to_animate = "all"):
523 if to_animate == "all":
524 for detector in self.edge_detectors:
525 detector.animate()
526 for count,alg in enumerate(self.used_alg):
527 if(to_animate == alg):
528 self.edge_detectors[count].animate()
529

530 def plot_max_values(self,to_plot="all"):
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531 fig = plt.figure()
532 if to_plot == "all":
533 for detector in self.edge_detectors:
534 detector.plot_max_values()
535 for count,alg in enumerate(self.used_alg):
536 if(to_plot == alg):
537 self.edge_detectors[count].plot_max_values()
538 plt.xlabel(’Distance’)
539 plt.ylabel(’Sharpness’)
540 plt.title(’Max value’)
541 plt.grid(True)
542 plt.legend()
543 plt.show()
544

545 def plot_mean_values(self,to_plot="all"):
546 fig = plt.figure()
547 if to_plot == "all":
548 for detector in self.edge_detectors:
549 detector.plot_avg_values()
550 for count,alg in enumerate(self.used_alg):
551 if(to_plot == alg):
552 self.edge_detectors[count].plot_avg_values()
553 plt.xlabel(’Distance’)
554 plt.ylabel(’Sharpness’)
555 plt.title(’Mean value’)
556 plt.grid(True)
557 plt.legend()
558 plt.show()
559

560 def plot_sharpness_values(self,to_plot="all"):
561 fig = plt.figure()
562 color_index = 0
563 if to_plot == "all":
564 print(self.names)
565 for detector in self.edge_detectors:
566 detector.plot_sharpness(color_index=color_index,names = self.

names)
567 color_index = color_index +1
568 for count,alg in enumerate(self.used_alg):
569 if(to_plot == alg):
570 self.edge_detectors[count].plot_sharpness(color_index=

color_index)
571 color_index = color_index +1
572 plt.xlabel(’Distance’)
573 plt.ylabel(’Sharpness’)
574 plt.grid(True)
575 plt.legend()
576 plt.show()
577

578 def save_sharpness_graph(self,name,path="",to_plot="all"):
579 fig = plt.figure()
580 color_index = 0
581 if to_plot == "all":
582 for detector in self.edge_detectors:
583 detector.plot_sharpness(color_index=color_index,names = self.

names)
584 color_index = color_index +1
585 for count,alg in enumerate(self.used_alg):
586 if(to_plot == alg):
587 self.edge_detectors[count].plot_sharpness(color_index=
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color_index)
588 color_index = color_index +1
589 plt.xlabel(r’$Sensor\;position [\mu m]$’)
590 plt.ylabel(r’$Sharpness [-]$’)
591 plt.grid(True)
592 plt.legend()
593 plt.savefig(path+"/results/"+name+".png",dpi=500)
594

595 def save_frame(self,name,dist,srcpath):
596 for detector in self.edge_detectors:
597 detector.saveFrame(name,dist,srcpath+"/results/")
598

599 def printcurveInfo(self,name,srcpath):
600 for detector in self.edge_detectors:
601 print("New detector: "+str(detector.alg))
602 detector.printcurveInfo(name,srcpath+"/results/")
603

604 def getFiletype(filename) -> str() :
605 dot = 0
606 for i in range(len(filename)-1, 0, -1):
607 if filename[i] == ’.’:
608 dot = i+1
609 break
610 return filename[dot:]
611

612 def getFileName(filename) -> str() :
613 dot = 0
614 for i in range(len(filename)-1, 0, -1):
615 if filename[i] == ’.’:
616 dot = i+1
617 break
618 return filename[:dot-1]
619

620

621 if __name__ == "__main__":
622 paths = [
623 "H:/Autofocus/Datasets/5_dataset"
624 ]
625

626 for srcpath in paths:
627 print("Start: "+srcpath)
628 directories = os.listdir( srcpath )
629 file_name_ints = np.array([])
630 for filename in directories:
631 if getFiletype(filename) != "png":
632 continue
633 file_name_int = int(getFileName(filename))
634 file_name_ints = np.append(file_name_ints,file_name_int)
635 file_name_ints.sort()
636

637 test = []
638 test_name = []
639 # Image statistic
640

641 test_name.append(’Used’)
642 my_detectors = all_detectors([’MedianBlur-3+grad-prewit3+Threshold-10’

],
643 names=[’MedianBlur3+PrewitTenengrad’])
644 test.append(my_detectors)
645

78



A.2 Evaluation Sharpness measure algorithm framework

646 for i in range(len(test)):
647 print("Iterace "+str(i)+"/"+str(len(test)) + " - " + test_name[i])
648 for filename in file_name_ints:
649 fileName = str(int(filename)) + ".png"
650 img = cv2.imread(srcpath + ’/’+fileName,cv2.IMREAD_GRAYSCALE)
651 test[i].uppdate(filename,img)
652

653 with plt.style.context(’bmh’):
654 test[i].printcurveInfo("DATA"+test_name[i],srcpath)
655 test[i].save_sharpness_graph(test_name[i],srcpath)
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