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Abstract

Implementations of Semantic Web stan-
dards have been the focus of many en-
terprises. However, the process of data
creation and manipulation can be quite
time-consuming. It is often the case that
a dataset has rigidly defined classes with
a vast amount of instantiations of those
classes. Ontology design patterns pro-
vide an efficiency boost to creating these
instantiations - they formalize an often-
repeatable set of data and allow the user
to create instances of those patterns eas-
ily instead of manually copying the data
each time. In this thesis, the potential ap-
plications of ontology design patterns is
discussed, research of current formal ontol-
ogy design pattern description languages
is performed, and the resulting language is
then tested on OntoUML model examples.
Finally, a service functioning as an inter-
mediary between datasets and patterns
is designed and implemented. Interac-
tions with the endpoints are implemented
in the conceptual modeling tool Ontog-
rapher and evaluated on a repository of
vocabularies of legal terms from pieces of
Czech legislation. The evaluation showed
that while shortcomings are present, the
overall project has enough potential to
warrant further study.

Keywords: ontology design patterns,
semantic web, thesaurus, skos, owl,
ontouml, conceptual modeling, web
application, ontology, knowledge
management system, software
engineering, ontology engineering

Supervisor: Ing. Petr Křemen, Ph.D.
Karlovo náměstí 13, Praha 2

Abstrakt

Implementace standardů Semantic Web
je středem zájmu mnoha organizací. Vy-
tváření dat a manipulace s nimi však
může být značně časově náročné. Často
se stává, že datová sada má pevně defino-
vané třídy s velkým množstvím instancí
těchto tříd. Návrhové vzory ontologií po-
skytují zvýšení efektivity při vytváření
těchto instancí – formalizují často opako-
vatelnou sadu dat a umožňují uživateli
snadno vytvářet instance těchto vzorů na-
místo ručního kopírování dat. V této práci
jsou diskutovány možné aplikace návrho-
vých vzorů ontologií a je proveden výzkum
současných jazyků pro popis formálních
návrhových vzorů ontologií. Výsledný ja-
zyk je následně testován na příkladech
OntoUML modelů. Poté je navržena a
implementována služba fungující jako pro-
středník mezi datovými sadami a návrho-
vými vzory. Interakce s funkcemi služby
jsou implementovány v nástroji pro kon-
cepční modelování Ontographer a vyhod-
nocovány na úložišti slovníků právních
pojmů z české legislativy. Hodnocení uká-
zalo, že ačkoliv existují nedostatky, tak
celkový projekt má dostatečný potenciál
k tomu, aby si zasloužil další výzkum.

Klíčová slova: ontologické návrhové
vzory, semantický web, tezaurus, skos,
owl, ontouml, konceptuální modelování,
webová aplikace, ontologie, knowledge
management system, softwarové
inženýrství, inženýrství ontologií

Překlad názvu: Podpora tvorby
ontologických konceptuálních modelů
pomocí návrhových vzorů
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Chapter 1

Introduction

The concept of ontologies, linked open data and the technologies within the
Semantic Web paradigm have been the focus of many projects spearheaded
by private firms[22], municipalities[21], countries[11] and even supranational
entities[1] all over the world. The goals of many of these projects are to
increase transparency and legibility of public data primarily for governmen-
tal organizations, and also to provide context, interoperability and formal
definitions of data models, which can be useful for private enterprises as well.

Within the Semantic Web, data is usually described in the RDF[19] for-
mat, using certain kinds of publicly available or private ontologies or thesauri
which offer standardized shorthands for descriptions of several "things" (terms,
persons, products), relationships between those things (employments, owner-
ships, responsibilities), and description of those things (names, editorial notes,
provenance data). However, these shorthands are oftentimes (in the cases
of SKOS[23] and OWL[16], for example) very simple individual relations or
classifications; in order to model a single class of "thing" and its relations
formally and completely, one probably needs tens if not hundreds of lines of
RDF data. A portion of these shorthands is then replicated for each member
of the class, as a member usually has e.g. a different name, address, ID
number, responsible persons, and so on.

Ontology Design Patterns (ODPs) offer a hypothetical efficiency improve-
ment in this process. Instead of typing out each description of a class member
by individual lines, a pattern would allow a data entry algorithm or user to
"call" it with simple parameters and the instantiation of the pattern would
take care of the rest. Chapter 3 discusses in detail the benefits of this approach

1



1. Introduction .....................................
on a real example from the Czech government’s linked open data project.
This project is discussed in greater detail in the same Chapter.

This enhancement, however, implies the existence of a language able to
describe such patterns and their instantiations. There are many options
currently available with varying degrees of generalizability, legibility, and ease
of use. Chapter 3 provides an overview of the current state of affairs and
details research determining which language is the most applicable to the
aforementioned example.

This research picks the OTTR (Reasonable Ontology Templates1) language,
which is described in Chapter 4. The language and its supporting structure
is analyzed and tested on OntoUML, an UFO-based extension of UML,
which works as a base which is then expanded into the Czech project’s base
vocabulary.

There is a significant barrier to overcome in order to take advantage
of OTTR on real-life RDF datasets, which is that there is the need for
an interpreter between OTTR and the actual datasets. In the examples
researched in Chapter 3, the patterns do not generally interact with the
actual data directly, but through an intermediary expander2, which takes
a pattern and instantiates it with given parameters. This interactions is
roughly analogous to creating objects of a certain class in an object-oriented
programming paradigm; data describing an object (e.g. a Ford car with
a specific VIN) is created from a class’ constructor (e.g. a Car pattern
instantiated with parameters including the VIN number and make).

OTTR already has an implementation of an expander, but this is not
the complete package for datasets, as the maintainers also need to provide
a way to create the patterns themselves (ideally through a frontend or an
abstraction, not manually) and then similarly to call the expander with a
pattern and filled out parameters. This paper, specifically in Chapter 5
attempts to implement this package as a server interacting with a database
solely for patterns and instantiations and providing endpoints providing useful
functionality.

The endpoints are tested with Ontographer, a web-based tool for conceptual

1In this paper, templates and patterns are oftentimes interchangeable concepts, but
note that templates are generally meant as a formal description of a pattern that can then
be easily recreated. Pattern is a much more general term describing recognizable and
predictable phenomena.

2To expand a pattern is to instantiate it with given parameters and return the actual
RDF data.

2



......................................1. Introduction

modeling used within the project to see if the solution is also useful for visual
modeling tools concerning multiple terms and relationships between them.

The entire package (OTTR, the server, the Ontographer enhancement) is
evaluated based on its performance on a repository semantic vocabularies of
(mostly) legal terms in Chapter 7, which prompts a discussion of the results
of the thesis’ effort in Chapter 8, as well as potential avenues for future
development.

3
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Chapter 2

The Semantic Web

The traditional way of recording data in enterprise settings has been the
Relational Database Management System. In it, data are primarily defined
through basic types (i.e. strings, various number types, etc.) and are collected
through variously connected tables containing the individual entries according
to the design specifications.

This approach is very practical for conventional use-cases, where the se-
mantic inferences from those tables are easily legible (e.g. tables of employees,
customer orders or products), the connections between tables are evident and
unchanging, or the database is meant for mostly private applications - for
example simply serving as a backend to a website or an enterprise solution.

Needless to say, there are limitations whenever there is a requirement
for representing deeper semantic relations between individual "things". For
example, how would one ask an RDBMS "What are the most common types
of road accidents during thunderstorms in Prague"? Of course, if the system
has all the information about weather patterns, locations, and road accidents,
the task is easy. However, the majority of relational databases are context
and architecture specific, so interoperability of databases within the same
organization, let alone different ones, is mostly out of the question. In
addition, a relational database does not really know what an "accident" or a
"thunderstorm" is, as it simply stores data rows.

This interferes also with the scenario where the data is supposed to be
public; as relational databases require either vast software abstraction or
detailed documentation to be legible to those not in the know of the given

5



2. The Semantic Web ..................................
database design. There are organizations which forgo any type of conventional
database whatsoever - rather preferring to store information in spreadsheets,
word processors, or PDF files. While technically "open" data if published onto
the web for everyone, the de facto usability of the data when attempting to
correlate information from multiple sources is very poor and often a tedious
manual task.

Enter the Semantic Web. Rather than just a new way of storing and
querying information, the authors at the World Wide Web Consortium
attempt to change the way in which data on the web is thought of [20].
Instead of envisioning computer-stored information as a series of rows and
columns representing "things", the information here is actually the "thing".
This reversal of thought is crucial to understanding what the data actually is,
both for users and machines. Objects can have types, inferences, semantic
connections between other objects, and more. The paradigm is also interested
in making linked open data - data which is publicly available and linked
between different data sources and providers. A dataset of road accidents
and a dataset of thunderstorms, then, can be accessed with one simple query,
instead of perusing both individually.

In addition, the Semantic Web data formats and languages (RDF, SKOS,
OWL) enable each object to be formally defined as a member of a certain
type, which could automatically (inherently) give it other properties. A
woman automatically becomes a wife when married without interventions
from any software solution. It is possible to check if all buildings over 500
meters squared in area have at least 2 emergency exits.

2.1 Definitions of legal terms

These formal definitions and strict rule enforcement is useful in the case of
various governmental projects, namely one lead by the Czech government’s
Ministry of the Interior1. The basic premise is that the government aims
to increase transparency and data availability for the purposes of ease of
communication between the government’s own entities as well as public and
private ones[12]. This is done through

. legislation enforcing certain data standards,
1This project is known as KODI (Full Czech name: Rozvoj datových politik v oblasti

zlepšování kvality a interoperability dat veřejné správy) and will be referred to as such.

6



...................................... 2.2. OntoUML

.meeting and convincing organizations to cooperate with submitting their
data to the new standard,. rigidly defining terms and types of things that the various data objects
will be classified under,. developing a software suite to make the transition and development
process more efficient,. delivering solutions so that data holders/providers can convert the data.

A particular sub-problem in this arena is the formal definitions of terms.
As the project deals mainly with legislation, the meaning of terms within
these can be (intentionally) vague or overlap with terms with the same name
in different pieces of legislation. The need for a data structure which can
properly represent definitions and meanings of terms within vocabularies
assigned to pieces of legislation.

For this purpose, a Semantic Vocabulary of Terms (Czech: Sémantický
slovník pojmů, SSP2) has been devised as a repository of glossaries, models
and vocabulary data describing legal terms and associations. The terms
are all defined with a base ontology, Zs-Gov ("Basic vocabulary"), partly
created from the very popular standard OntoUML. The basics of the term
representation are described in [2] and the detailed rationale and development
of SSP is chronicled in [13].

2.2 OntoUML

OntoUML is a UML extension first envisioned in Giancarlo Guizzardi’s
Ph.D. thesis "Ontological foundations for structural conceptual models"[6].
It is based on the UFO (Unified Foundational Ontology), that he used to
create an extension of UML (Unified Modeling Language). This extension
enables the use of UML standards to create conceptual models of ontologies
and, most importantly, visualize them and the relationships between them.
Since its inception, OntoUML has been adopted by many public and private
organizations all around the world.

2Can be seen at https://github.com/opendata-mvcr/ssp.
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Chapter 3

Ontology Design Patterns

Ontology Design Patterns (ODPs) play a crucial role in ontological engineering
and they are a field of study within ontological modeling that is growing in
interest in the last few years[27]. ODPs help engineers create models more
quickly, avoid certain frequently made inefficiencies and better prepare their
models for any future extension or revision. This field is, however, only a few
years old and therefore support of ODP usage with methodological approaches,
classification, categorization, standardized distribution or implemented tools
is still developing. Some particular advantages of an implemented toolset
based on commonized standards for conceptual modeling would be in:

. providing a form of describing ODPs that can be used by other tools
(i.e. standardized, machine-readable, and ideally in a commonly used
format),.modularizing patterns, allowing them to be separated into reusable
sub-patterns which other patterns may be composed from,. introducing an annotation framework for categorizing and classifying
patterns. Such a framework would allow recording e.g. provenance data.

To accomplish this, we first need a solid pattern representation language,
which would be expressive enough to capture key features of conceptual
ontological models, yet able to efficiently fulfill the requirements above - along
with another features such a language could enable:

9



3. Ontology Design Patterns ...............................
. identification of patterns in models, even when they are not officially

recognized by the designer;

. comparison and merging of patterns, whenever appropriate;

.modeling guidance via suggestion of more efficient patterns upon detec-
tion of certain anti-patterns (patterns that are comparably inefficient or
unfavorable).

There have been suggestions as to what elements this language should have
or what efforts should be made to make it viable, some of which are explored
in Section 3.1. As of the time of writing, there are no available and commonly
recognized implementations of such a language. In this work, a proposal is
made for a language that aims to fulfill the aforementioned requirements.
After research of current developments in the field and analyzing the various
approaches within in Section 3.2, the Reasonable Ontology Template (OTTR)
language is chosen. Emphasis will be put on evaluating whether this language
is compatible with the Unified Foundational Ontology (UFO), as it is one of
the most well-known high-level ontologies [8]. This will require implementing
or at least allowing the implementation of constructs constituting OntoUML,
an UFO-based extension of UML [6]. This evaluation of correctness of repre-
sentation of OntoUML models and against the aforementioned requirements
is done on several conceptual model examples in Chapter 4.

3.1 Motivation

In this section, the problem for which a solution is proposed in this work is
introduced and discussed. Use-cases of ODP usage are described in which
an ODP representation language could be used to either enable them or
make performing them more efficient. To demonstrate these points more
clearly, consider an example of an ODP that represents the relation between
an identity card provider, identity card, and identity holder (e.g. Drivers’
Registry, Driver’s licence, Driver).

The Identity example (represented in Figure 3.1 and instantiated in Figure
3.2) could be a part of a larger model designating a relationship of persons
between various governmental institutions - therefore, it could be instantiated
as relationships between drivers and drivers’ licences, citizens and identity
cards, students and students’ cards, etc.

10



..................................... 3.1. Motivation

Figure 3.1: Conceptual diagram of the Identity ODP.

Figure 3.2: Conceptual diagram of a possible instantiation of the Identity ODP.

3.1.1 Standardization

A key aspect of design patterns in general is the ability to share best practices
and efficient solutions for recurring problems with other engineers. These
solutions, if they were expressed with a recognized and sufficient enough
language, could be quickly implemented into existing ontologies, perhaps
with developed supporting tools to help facilitate such a utilization. This
collaboration can be either with the larger community or within an organiza-
tion, where teams can create a library of ODPs commonly shared within the
organization’s ontologies tailored to enforce their ontology design philosophy.

3.1.2 Metadata

ODPs have a well established taxonomy, separating them into various cate-
gories by purpose or domain [5]. In addition, the creation of an ODP implies
certain provenance and other metadata, for example

. whether the ODP belongs to a pattern library and/or serves a sub-
domain;. if the ODP is an implementation of another pattern;. description of the pattern and its recommended usage;

11



3. Ontology Design Patterns ...............................
. information about anti-patterns.

This metadata can be useful to engineers and can help organize the ODPs
in such a way that allows for easier sorting, searching, and sharing of ODPs
and ODP libraries between users and team members.

Depending on its usage and implementation, the Identity ODP could be
classified in many ways - e.g. as a Content/Reasoning ODP, as a Govern-
ment/Personhood ODP, and so on. If the ODP is sufficiently annotated with
examples and explanations, a user who perhaps is not as knowledgeable on
ODP usage (or ontological modeling generally) can be aided in modeling,
especially if the examples can be identified based on the models in which the
ODP is used.

3.1.3 Modularization

Being able to formulate ODPs either individually, or together with similar
ODPs into a shareable package is crucial for facilitating ODP usage and
sharing; users, whether they are from the wider community or within a small
team, can collaborate on ODP engineering. Having them packaged in a way
that is accessible can help with implementing them into existing ontologies
as seamlessly as possible, encouraging ODP usage and speeding up ontology
engineering in recurring cases. Another feature of modularization is the
possibility of using ODPs as part of other ODPs - along with standardization,
this could further propel general ODP usage.

3.1.4 Algorithm support

As mentioned in Section 3.1, a language that satisfactorily and predictably
describes ODPs and their metadata can be leveraged into the creation of
certain algorithms that aid ontology engineers in modeling or ontology design.
One such case is the ability to detect patterns, perhaps even anti-patterns,
in models in which the given patterns are not explicitly identified; the user
can then choose to re-engineer their model. Another case is ODP creation; a
user can select a particular section of their model and modularize it for use
in other models and/or share it with a wider selection of users.

For example, an ontology engineer can choose to refactor their model(s)

12
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easily, if a function in modeling software could separate model parts of their
choice into ODPs that they can then send to other models or other users.
Perhaps the Identity ODP could be a part of a larger model, which concerns
many aspects of personhood that a government is interested in enumerating
and/or processing. Separating the model into ODPs can also help separate the
models themselves in order to better fulfill the DRY (Don’t Repeat Yourself)
principle, among others.

3.2 Current research

In this section, existing proposals of ODP languages are analyzed for their
potential as well as their shortcomings. Such analysis provides an understand-
ing of the requirements the language must have, in addition to showcasing
approaches to consider.

The individual proposals were chosen using a research methodology de-
scribed in a 2008 paper by Petersen et al[17]. In it, the authors describe a
process to acquire a representative article sample, the details of which are
described in Appendix A.

3.2.1 Existing ODP languages

Of particular note for this paper were the ODP language proposals and
presentations - the research captured two examples of each. These examples
are detailed below.

The OPLa ontology

In the “Towards a simple but useful ontology design pattern representation
language” paper from 2017, Hitzler et al. present an ontology for annotating
ODPs and all their potential elements, which they call OPLa [10]. The
ontology consists of two main classes: OntologicalCollection, describing types
of patterns, and OntologicalEntity, denoting types of constructs that form a
pattern. A classification of OntologicalEntity classes of note is into external
or internal entities – where internal entities only connect to other individuals

13
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within the ODP, external entities are only defined as a “connection point”
between the ODP and other classes already present in the model. For example,
a pattern that describes a complex relationship between Insurer, Insured, and
InsuredItem classes would see these classes described as external entities in
OPLa.

The advantage of an ontology approach is the simplicity of the design and
its assured compatibility with other standards built on the Semantic Web
paradigm. Extraction of ODPs and their individual parts from a model as well
as their categorization is relatively straightforward. In addition, the inclusion
of the ontology into existing data infrastructures can be done algorithmically,
avoiding a manual and time-consuming task. Nevertheless, its simplicity also
limits the use-cases the solution can satisfy. In the proposal, the ontology
mainly serves an annotative function, as mentioned above; this means that
problems such as pattern identification or reuse are not addressed. While the
implementation of such functions is not prohibited outright by this approach,
the amount of effort required for the development of an extension must be
taken into account – in this case, it would be entirely from scratch. The
authors themselves acknowledge these shortcomings – the focus of the paper
is not a description of a feature-complete language proposal, but rather a
foundation other researchers and engineers can take advantage of. An example
of OPLa on the Identity ODP is shown below.

ex:Identity a opla:Pattern.
ex:IDHolder opla:isNativeTo ex:Identity;
opla:ofExternalType ex:externalClass.
ex:IDCard opla:isNativeTo ex:Identity;
opla:ofExternalType ex:externalClass.
ex:IDProvider opla:isNativeTo ex:Identity;
opla:ofExternalType ex:externalClass.
ex:IDIssuance opla:isNativeTo ex:Identity.

In a followup paper, OPLa is reorganized and expanded with two additional
namespaces: OPLa-cp, a set of annotations covering ODP usage consequences
with respect to scenarios, requirements, or competency questions addressed by
the ODP, in addition to providing an annotation for unit tests, and OPLa-sd,
which describes ODP entity positions (i.e. X, Y coordinates for a schema
diagram visualization)[9].

14
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Reasonable Ontology Templates

Skjæveland et al. describe Reasonable Ontology Templates (OTTR; spelled
’otter’) within many papers, tutorials, and documentation articles available at
https://www.ottr.xyz/. The central elements of the language are template
definitions and instances; definitions describe a template, which has certain
parameters and can have nested templates within its definition. These
definitions are then instantiated with template instances.

The ability to use typed parameters in template definitions and nested
templates results in a particularly flexible language; one that can easily be
used for refactoring existing templates into reusable modules (as demonstrated
in a real example in a paper by Skjæveland [22] ). The templates and instances
can be inputted and outputted in many forms as defined by related OTTR
standards; for example, wOTTR can be used to publish the templates in
an OWL-compliant graph; tabOTTR provides a way to import templates
from tabular formats, and bOTTR allows engineers to map external sources
to create templates via queries (therefore supporting an ETL approach). A
clear disadvantage is the need for an interpreter for the language - the team
developing OTTR has an implementation of the language, Lutra, available
at the website mentioned above. The implementation can read and write
templates between different formats, such as Turtle or tabular formats, and
expand instances into RDF graphs.

Consider an example implementation of the Identity ODP. Note that as in
the OPLa example, the way that a person can express the same ODP varies;
an engineer might want to implement certain additional rules/inferences, or
considers different things to be a "parameter" or "external entity" - this, as
with any ODP, depends on the use-case. Other, more complex interpretations
of this specific ODP will be explored in further sections.

ex:Identity[! ex:IDHolder ?holder, ! ex:IDCard ?id,
! ex:IDProvider ?provider] :: {

ottr:Triple(?holder, rdfs:subClassOf, ex:Person),
ottr:Triple(?id, rdfs:subClassOf, ex:ID),
ex:Connection(?holder, gufo:characterization, ?id, 1, 1, 1, 1),
ex:Connection(?id, gufo:material, ?provider, 1, ottr:none, 1, 1),
ex:Connection(?provider, gufo:mediation, ex:issuance, 1, 1, 1, 1),
ex:Connection(?id, gufo:mediation, ex:issuance, 1, 1, 1, 1)
}.

# Instantiation
ex:Identity(ex:Alice, ex:DriversLicence, ex:DriversRegistry).
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The Distributed Ontology, Modeling and Specification Language

The Distributed Ontology, Modelling and Specification Language (DOL) is
not a language for describing ontologies or ODPs per se, but rather a meta-
language for connecting ontologies that have already been written in other
languages - for example OWL, Common Logic or first-order logic - without
the need to rewrite such ontologies[15]. As such, it provides syntax to perform
various actions to one or more ontologies, such as:

. unification, combination, extension, or selection of a part of an ontology;. translation or conversion of one ontology from one language to another;

among other actions. The paper presenting DOL also introduces Ontohub, a
repository for organizing, sharing and collaborating on ontologies written in
DOL or an ontology language supported by DOL. DOL has been accepted as
an official OMG standard in 2018[1].

A paper by Krieg-Brückner and Mossakowski extends this language with
generics, enabling the creation of general ODPs within DOL[14]. An example
of the Identity pattern expressed in GDOL, is below:

pattern Identity
[IDHolder: holder]
[IDCard: card]
[IDProvider: provider] =

holder SubClassOf: Person
card SubClassOf: ID
Connection

[holder][Characterization][card][1][1][1][1]
Connection

[card][Material][provider][1][1][1][1]
Connection

[provider][Mediation][issuance][1][][1][1]
Connection

[card][Mediation][issuance][1][1][1][1]

# Instantiation
ontology IdentityInstantiation =

Identity
[Alice][DriversLicence][DriversRegistry]
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Notice the parameters in brackets and their subsequent use in the pattern
definition itself; the generics introduced in this paper is what allows this syntax.
The numbers in the Connection instantiations refer to minimum and maximum
cardinalities for the subject and object, respectively. The empty argument
results in no cardinality being applied - in this example, the Connection
[provider][Mediation][issuance][1][][1][1] instantiation creates a
provider [1..*] -mediation-> [1] issuance OntoUML relation.

The aforementioned authors and Codescu continued with GODPs in DOL
with a proposal for extensions of generic DOL[3]. These mainly serve the
purpose of easier ODP development, such as optional pattern parameters, list
parameters, recursion, or local sub-patterns.

A general ontology pattern language formally defined with graph
grammar

Giancarlo Guizzardi, the creator of OntoUML, wrote a paper with Eduardo
Zambon with the intention to redefine OntoUML purely with graph trans-
formation rules[26]. This has the advantages of (i) being independent from
UML and therefore able to be implemented in other modeling languages, and
(ii) a formal definition for OntoUML that explicitly notates the rules and
ontological commitments of OntoUML constructs.

A graph transformation rule, here, is an action that takes an input graph
and outputs a (presumably modified) different graph. In this way, modeling
OntoUML models isn’t done with using constructs (classes and relationships)
individually, but with a set of patterns which ensure that the resulting
model is always valid. For instance, instead of creating a SubKind class and
subsequently connecting it via generalization to a Kind (or another Rigid
Sortal), a "SubKind pattern" is used, creating both the SubKind class and
the relationship (and the Rigid Sortal, if needed) at the same time.

Figure 3.3 describes an example use of the patterns. Note that since the
patterns from the paper do not have a defined serialization, they provide a
potential ODP use methodology rather than a formal language definition.

With these sets of patterns as "constructs", the user need not worry about
validation, since constructing models solely through these patterns guarantees

1Note that in the original paper, some of these patterns are not defined despite being
valid in OntoUML - this is because they were not relevant according to the paper itself.
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Figure 3.3: Example of an instantiation of the Identity pattern via available
patterns within graph grammar. The left column describes the general pattern,
the right instantiates it1. The instantiations describe individual patterns that
are then pieced together to create the Identity pattern.

conformity and validity.

3.2.2 Discussion of approaches

The four proposals presented above showcase different approaches to packag-
ing, modularizing, interconnecting, or annotating ontologies. While OPLa
offers a competent annotation ontology w.r.t. describing patterns and sub-
patterns, OTTR offers one as well in its ODP catalogue. On the other hand,
OTTR (when working with stOTTR, its proprietary format) conforms to an
already established and popular standard. While the latter is appealing for
reasons of faster adoption and compatibility, it lacks in comparison to the
number of abilities the language can immediately provide for engineers. In
addition, since wOTTR, a standard for OTTR enabling the use of RDF/OWL
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for template definition/instantiation, a transition from an existing model
that does not use ODPs to one that takes advantage of OTTR’s refactoring
potential can be made easier; especially with algorithms that enable such
refactoring from an ontology or set of ontologies.

DOL, then, with all of its extensions, provides an alternative to OTTR,
especially as far as (inter)compatibility with already existing languages goes.
The authors of the paper introducing extensions to generic DOL even reference
OTTR when comparing its capabilities of creating patterns to OTTR’s,
stating its superiority with regards to actions over list parameters specifically.
However, DOL requires a custom interpreter as well - the one promoted by
the authors is Hets. While support for UML is planned, it is not available
at the time of writing, and the generic DOL with extensions is yet to be
implemented. A custom conversion from UML to OWL/RDF is therefore
still necessary. Hence DOL in our case does not offer significant advantages
to OTTR.

Guizarrdi and Zambon’s contribution presents an interesting way of treating
ODPs. The text suggests treating the application of ODPs as a function
with relevant classes as parameters and a modified graph (model) as output.
This is what OTTR and GDOL essentially provide; with the exception of not
being able to create patterns which delete or modify something in an existing
graph. Regardless, the consequence of treating entire models as collections
of ODPs and therefore, if the patterns have been designed correctly, not
having to worry about model validity, provides an interesting approach with
which ODPs can be treated - not as elements enhancing a model with other
components, but the elementary basic blocks of models. Of course, not all
models will only use formally defined ontologies such as UFO or be completely
satisfied with existing ODPs - however, this is not the case for OntoUML,
because of the theories presented in the discussed paper.
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Chapter 4

Reasonable Ontology Templates

The two basic building blocks of the OTTR language are template definitions
and instances. Both will be shown in the stOTTR format in this section, as
that is the one intended by the authors for use in cases of demonstrations
- Lutra can then be used to convert (in OTTR terminology expand), the
template instances into Turtle.

Template definitions contain parameters and the content of the definition
itself, which consists of other templates. The templates can be other predefined
templates or base templates, which represent an RDF resource (e.g. a
triple). Parameters can be typed, optional, and multiple (as a list). Cyclic
dependencies are not allowed.

Instances are created using template definitions by referring to the template
with the (mandatory) parameters filled out. Continuing with the Identity
example from Section 3.2.1:

ex:Identity(ex:Alice, ex:DriversLicence, ex:DriversRegistry).

The resulting graph after expansion lists the following information:

ex:Alice rdfs:subClassOf ex:Person.
ex:DriversLicence rdfs:subClassOf ex:ID.
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# ex:Connection(ex:Alice, gufo:characterization,
# ?id, 1, 1, 1, 1),
ex:Alice rdfs:subClassOf

[rdf:type owl:Restriction;
owl:onProperty gufo:characterization;
owl:allValuesFrom ex:DriversLicence],
[rdf:type owl:Restriction;
owl:onProperty gufo:characterization;
owl:onClass ex:DriversLicence;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger],

# ex:Connection(ex:DriversLicence, gufo:material,
# ex:DriversRegistry, 1, ottr:none, 1, 1),
ex:Alice rdfs:subClassOf

[rdf:type owl:Restriction;
owl:onProperty gufo:characterization;
owl:allValuesFrom ex:DriversRegistry],
[rdf:type owl:Restriction;
owl:onProperty gufo:characterization;
owl:onClass ex:DriversRegistry;
owl:minQualifiedCardinality "1"^^xsd:nonNegativeInteger],

# ex:Connection(ex:DriversRegistry, gufo:mediation,
# ex:issuance, 1, 1, 1, 1),
ex:Alice rdfs:subClassOf

[rdf:type owl:Restriction;
owl:onProperty gufo:characterization;
owl:allValuesFrom ex:issuance],
[rdf:type owl:Restriction;
owl:onProperty gufo:characterization;
owl:onClass ex:issuance;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger],

# ex:Connection(ex:DriversLicence, gufo:mediation,
# ex:issuance, 1, 1, 1, 1)
ex:DriversLicence rdfs:subClassOf

[rdf:type owl:Restriction;
owl:onProperty gufo:mediation;
owl:allValuesFrom ex:issuance],
[rdf:type owl:Restriction;
owl:onProperty gufo:mediation;
owl:onClass ex:issuance;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger],
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4.1 Annotation ontology

In its template library, OTTR provides an official annotation ontology,
docTTR, which is in the form of templates implementing the annotations[25].
With it, it is possible to:

. Version ODPs and describe changes from version to version;

. Establish provenance metadata;

. Describe the ODP, provide notes, examples, etc.

The list of available annotations is at https://tpl.ottr.xyz/p/docttr/0.
1/.

4.2 Basic OntoUML representation

Because of OntoUML’s wide adoption, there is some use in redefining On-
toUML as a set of ODPs - at the very least it serves as an important test-case
for ODP usage. Guizzardi himself with another colleague explore this possi-
bility, which will be discussed in more detail in Section 3.2.1 describing their
paper.

There is a lightweight thesaurus describing UFO, called gUFO, which could
help in our effort if the ODPs were compatible with it. Such a design would
need to also accept all the possible constructs of UML in order to be fully
compatible with OntoUML.

There are certain UML-specific constructs that require a certain transfor-
mation in order for them to be implemented in an RDF graph. An advantage
of the pattern approach is that difficult (or generally unobvious) translations
can be used without having to understand the underlying conversions; similar
in simplicity to modeling in UML in the first place.
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4.2.1 Classes and connections

To show the modularization capabilities, the basic building blocks, which will
be used in further examples, will be defined first. These building blocks are
the Class and Connection templates, representing classes and the relationships
between them as commonly used in OntoUML. The templates are defined
first, followed by their description according to the ontology referenced in
Section 4.1.

ex:Class[ottr:IRI ?iri, ? ottr:Literal ?name,
? NEList<ottr:IRI> ?customType] :: {
ottr:Triple(?iri, rdf:type, owl:Class),
cross | ottr:Triple(?iri, rdf:type, ++?customType),
ottr:Triple(?iri, skos:prefLabel, ?name)

}.

ex:Connection[ex:Class ?subject, ottr:IRI ?predicate,
ex:Class ?object, ? xsd:nonNegativeInteger ?minCardinality1,
? xsd:nonNegativeInteger ?maxCardinality1,
xsd:nonNegativeInteger ?minCardinality2,
? xsd:nonNegativeInteger ?maxCardinality2] :: {
o-owl-ax:SubObjectSomeValuesFrom(

?subject, ?predicate, ?object),
o-owl-ax:SubObjectAllValuesFrom(

?subject, ?predicate, ?object),
o-owl-ax:SubObjectMinCardinality(

?subject, ?predicate, ?object, ?minCardinality1),
o-owl-ax:SubObjectMaxCardinality(

?subject, ?predicate, ?object, ?maxCardinality1),
o-owl-ax:SubObjectMinCardinality(

?object, ?predicate, ?subject, ?minCardinality2),
o-owl-ax:SubObjectMaxCardinality(

?object, ?predicate, ?subject, ?maxCardinality2),
}.

ex:Class a ottr:Pattern;
ottr:status ottr:draft;
owl:versionInfo 0.1;
dct:description ’Pattern for creating classes

with optional multiple types’@en;
dct:creator ex:Alice;

ex:Connection a ottr:Pattern;
dct:description ’Pattern for creating OntoUML connections
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with optional cardinalities’@en;
dct:creator ex:Alice;

The cross operator performs a cartesian product with a given list (?customType
in this example - a ?iri, rdf:type, ?customType triple is generated for
each ?customType list member). OTTR also offers similarly used operators
for convolution (also known as zip e.g. in the Python programming language)
called zipMin and zipMax.

The patterns originating from prefix o-owl-ax are simple OWL patterns
capturing class restrictions. For example, the ax:SubObjectMinCardinality
pattern instantiation results in these triples in the RDF graph (?subject,
?predicate, ?object and ?minCardinality will be replaced with parameters):

?subject rdfs:subClassOf [ a owl:Restriction;
owl:onProperty ?predicate;
owl:onClass ?object;
owl:minQualifiedCardinality ?minCardinality].

These prefixes can be then used for instantiations1:

ex:Class(ex:Person, "Person", (gufo:kind)).
ex:Class(ex:Patient, "Patient", (gufo:role)).
ex:Class(ex:Disease, "Disease", (gufo:quality)).
ottr:Triple(ex:Patient, rdfs:subClassOf, ex:Person).
ex:Connection(ex:Patient, gufo:characterization, ex:Disease,

1,1,1,ottr:none).

This example describes a model shown in Figure 4.1. With these templates,
a significant set of OntoUML models can be represented. Some special cases
are shown in Section 4.3.

4.2.2 Cardinalities and restrictions

If patterns are to replace conventional modeling, special considerations have to
be made towards any potential restrictions that the patterns’ elements might

1Note that the template definition, instances, and metadata would each be in separate
files; stOTTR and Turtle statements or definitions and instances cannot be in the same file.
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Figure 4.1: A patient-describing pattern described with instantiated class and
connection templates.

require (e.g. cardinality requirements, data property minimum and maximum
values, etc.). While the examples shown in the evaluation demonstrate the
enforcement of parameter types and optional or mandatory parameters, there
are no other checks performed on template instantiation (a facet shared by
the DOL language introduced in Section 3.2.1). Therefore, any e.g. OWL
restrictions have to be evaluated after instantiation by separate reasoner
software.

4.3 Advanced model features

These examples were taken from ’Stability Patterns in Ontology-Driven
Conceptual Modeling’ by Guizzardi & Almeida [7]. The reason for this is
that the models shown in the paper exemplify key features of OntoUML:
n-ary relations, XOR pairwise constraints, etc. Such elements test potential
flexibility of the proposed language. There are two notable constructs that
present a considerable modeling challenge (such that require a specialized
pattern of more than one restriction declaration):

. a XOR constraint between two relations or multiple XOR constraints
in a pairwise distribution between three or more relations that are all
connected with the same class.. An N-ary (ternary or higher) relation.
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Figure 4.2: Example of pairwise XOR constraint use in a model of insured items.

Figure 4.3: Conceptual diagram of a model with a binary and ternary relation-
ship

In figure 4.3, a ternary relationship is used, which was emphasized in
section OntoUML constructs. According to W3C’s Working Group, a way
to describe n-ary relationships is to reify the relationship [4]. An example of
such reification for the model in the figure is expressed below.

ex:Class(ex:Musician, ’Musician’, (gufo:role)).
ex:Class(ex:Person, ’Person’, (gufo:kind)).
ottr:Triple(ex:Musician, rdfs:subClassOf, ex:Person).
ex:Connection(ex:Musician, ex:plays-with, ex:Musician, 1,

ottr:none, 1, ottr:none).
ex:Class(ex:PlaysWith, ’Plays with’, ottr:none).
ex:Connection(ex:Musician, ex:plays-with1, ex:PlaysWith,

ottr:none, ottr:none, ottr:none, ottr:none).
ex:Connection(ex:Musician, ex:plays-with2, ex:PlaysWith,

ottr:none, ottr:none, ottr:none, ottr:none).
ex:Connection(ex:Musician, ex:plays-with3, ex:PlaysWith,

ottr:none, ottr:none, ottr:none, ottr:none).
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Another feature of OntoUML is a pairwise XOR constraint expression. Look-
ing at Figure 4.2, the appropriate pattern can now be constructed from
it:

ex:XORpatternRestriction[ottr:IRI ?c, owl:ObjectProperty ?op,
owl:Class ?object] :: {

ottr:Triple(?c, rdf:type, owl:Restriction),
ottr:Triple(?c, owl:onProperty, ?op),
ottr:Triple(?c, owl:allValuesFrom, ?object)
}.

ex:XORpatternUnionOf[ottr:IRI ?c, NEList<ottr:IRI> ?list] :: {
ottr:Triple(?c, rdf:type, owl:Class),
ottr:Triple(?c, owl:unionOf, ?list)

}.

ex:XORpattern[owl:Class ?c, owl:ObjectProperty ?op,
NEList<ottr:IRI> ?blanks,
NEList<owl:ObjectProperty> ?properties,
NEList<owl:Class> ?objects] :: {

ottr:Triple(?op, rdf:type, owl:ObjectProperty),
ottr:Triple(?c, rdf:type, owl:Class),
ottr:Triple(?c, owl:disjointUnionOf, ?objects),
cross | ottr:Triple(++?objects, rdfs:subClassOf, ?c),
ottr:Triple([], owl:allDisjointProperties, ?properties),
zipMin | ex:XORpatternRestriction(++?blanks, ?op, ++?objects),
ex:XORpatternUnionOf(_:union, ?blanks),
ottr:Triple(?c, rdfs:subClassOf, _:union)
} .

The example is notable for several reasons:

. Note the use of blank nodes in the ex:XORpattern template definition.
To build up the expression, they are used similarly to a variable; first, the
list of restrictions is declared, then they are placed into the owl:unionOf
range, and finally they are included in the subject class’ subClassOf
notation.. A drawback of declaring these patterns manually is that the user needs
to have already thought out all the IRIs that the pattern is going to
require. Management of internal IRIs has to be done by an external tool
if it is to be abstracted away from the end user.
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An example of using this pattern library was shown in Section 3.2.1. An
aspect of the ODP that one might find desirable is the ability to infer certain
information about the person - if a person is assigned an identity card with
"1996-02-06" as a recorded birth date, it is reasonable to assume that that
person’s birth date is "1996-02-06". Two ways of implementing this will be
shown: (i) a pattern that eliminates redundancy by declaring the birth date
the same on the card and for the person on creation of the card, and (ii) a
pattern involving a SWRL [24] rule inferring the connection.

(i)

ex:Identity[! ex:IDHolder ?holder, ! ex:IDCard ?id,
! ex:IDProvider ?provider, ! ottr:Literal ? ?firstName] :: {
ottr:Triple(?holder, rdfs:subClassOf, ex:Person),
ottr:Triple(?id, rdfs:subClassOf, ex:ID),
ottr:Triple(?holder, ex:firstName, ?firstName),
ottr:Triple(?id, ex:firstName, ?firstName),
ex:Connection(?holder, gufo:characterization, ?id, 1, 1, 1, 1),
ex:Connection(?id, ex:material, ?provider, 1, ottr:none, 1, 1),
ex:Connection(?provider, ex:mediation, ex:issuance, 1, 1, 1, 1),
ex:Connection(?id, ex:mediation, ex:issuance, 1, 1, 1, 1)
}.

(ii)

@prefix swrl: <http://www.w3.org/2003/11/swrl#> .

ex:Identity[! ex:IDHolder ?holder, ! ex:IDCard ?id,
! ex:IDProvider ?provider] :: {
ottr:Triple(?holder, rdfs:subClassOf, ex:Person),
ottr:Triple(?id, rdfs:subClassOf, ex:ID),
ex:Connection(?holder, gufo:characterization, ?id, 1, 1, 1, 1),
ex:Connection(?id, gufo:material, ?provider, 1, ottr:none, 1, 1),
ex:Connection(?provider, gufo:mediation, ex:issuance, 1, 1, 1, 1),
ex:Connection(?id, gufo:mediation, ex:issuance, 1, 1, 1, 1),
ottr:Triple(ex:varX, rdf:type, swrl:Variable),
ottr:Triple(ex:varY, rdf:type, swrl:Variable),
ottr:Triple(ex:varZ, rdf:type, swrl:Variable),
ex:IdentityRuleBody(_:body, ex:varX, ex:varY, ex:varZ),
ex:IdentityRuleHead(_:head, ex:varX, ex:varZ),
ottr:Triple(_:rule, rdf:type, swrl:Imp),
ottr:Triple(_:rule, swrl:body, _:body),
ottr:Triple(_:rule, swrl:head, _:head)
}.
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ex:IdentityRuleBody[?body, ?x, ?y, ?z] :: {
ottr:Triple(?body, rdf:type, swrl:AtomList),
ottr:Triple(?body, rdf:first, _:first),
ottr:Triple(_:first, rdf:type, swrl:IndividualPropertyAtom),
ottr:Triple(_:first, swrl:propertyPredicate, ex:hasDOB),
ottr:Triple(_:first, swrl:argument1, ?x),
ottr:Triple(_:first, swrl:argument2, ?y),
ottr:Triple(?body, rdf:rest, _:rest),
ottr:Triple(_:rest, rdf:type, swrl:AtomList),
ottr:Triple(_:rest, rdf:first, _:restFirst),
ottr:Triple(_:rest, rdf:rest, rdf:nil),
ottr:Triple(_:restFirst, rdf:type, swrl:DatavaluedPropertyAtom),
ottr:Triple(_:restFirst, swrl:propertyPredicate, ex:hasDOB),
ottr:Triple(_:restFirst, swrl:argument1, ?y),
ottr:Triple(_:restFirst, swrl:argument2, ?z),
}.

ex:IdentityRuleHead[?head, ?x, ?z] :: {
ottr:Triple(?head, rdf:type, swrl:AtomList),
ottr:Triple(?head, rdf:first, _:first),
ottr:Triple(?head, rdf:rest, rdf:nil),
ottr:Triple(_:restFirst, rdf:type, swrl:DatavaluedPropertyAtom),
ottr:Triple(_:restFirst, swrl:propertyPredicate, ex:hasDOB),
ottr:Triple(_:restFirst, swrl:argument1, ?x),
ottr:Triple(_:restFirst, swrl:argument2, ?z),
}.

The SWRL rule expressed in (ii) can be read as
hasID(?x, ?y), hasName(?y, ?z) -> hasName(?x, ?z). A clear advan-
tage of this approach is that any changes on the ID card is immediately
reflected on the record of the person themselves - in (i), the changes would
have to be recorded in both instances separately, if for some reason queries
are not a viable option for retrieving holder information.

An avenue of potential future development is also hinted at in (ii); in
this instance, the SWRL rule patterns are created manually. However, since
transformation of SWRL rules into RDF can be done algorithmically (as
the RDF representation for SWRL already exists), an algorithm that can
refactor these rules into the language seamlessly can multiply the refactoring
potential of the proposed language. More specifically, if an algorithm had at
its disposal a pattern library that represented SWRL’s basic building blocks
(in this case, atoms and their attributes) and could utilize those patterns
seamlessly (perhaps even automatically create new ones when appropriate)
from a more human-readable form of expressing SWRL rules, the task of
refactoring SWRL representations in RDF could be largely automated. A
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similar case could be made for OWL and its expressions.
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Chapter 5

Pattern management server

As mentioned in Chapters 1 and 3, there is a need for an intermediary service
simplifying the use of ODPs on actual data. Since Semantic Web data is
meant to be stored on internet-accessible servers, the obvious choice is to
create another server - a service providing users the endpoints needed to
submit, search, expand, and instantiate patterns. This service would keep
information about patterns and instantiations in an associated database. It
is necessary for the server to be able to accept and return RDF documents.

5.1 Technologies

The server uses Spring as the base framework for deploying endpoints. RDF
connections to the database, handling of statements and any updates/queries
are handled by Apache Jena - a popular Java framework for Semantic Web
implementations.

Technically, any triple store database (such as GraphDB, the store used
for the KODI software suite) would be appropriate to serve as a database for
the service, Apache Fuseki store is an easy choice simply because of almost
no setup required for Jena to directly interact with the store. Figure 5.1
describes the basics of the configuration.

33



5. Pattern management server ..............................

Figure 5.1: Component diagram for the manager. The only functions meant for
users are exposed by the Spring service, as denoted by the User endpoints port.
The Fuseki store interacts with the service only.

5.2 Requirements

The basic read/update requirements can be itemized as follows:

. Retrieve an ODP.

.Query the ODPs (e.g. return and ODPs satisfying some metadata
requirements).

. Submit an ODP into the database.

. Retrieve instantiations of an ODP.

5.2.1 Lutra inclusion

There is a potential benefit for Lutra, the OTTR expander, to be also included
in the overall package, namely the ease of setting up the whole environment.
However, there is no benefit for Lutra requests to go through the service first:
Lutra takes an input, desired format, and returns a translated or expanded
result. Therefore, an endpoint in the Spring service to return Lutra results
would just function as a simple passthrough.

Lutra is released as both a .jar and a .war solution, so the inclusion of it
into an existing framework should not be difficult.
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5.3 Algorithms

Along with the aforementioned basic endpoints, the service also implements
three algorithms that process both inputted model data and its own database
to find and/or create appropriate data.

5.3.1 The suggestion algorithm

Consider a situation where an ontology engineer is tasked with modifying
certain models, but is unaware of the complete range of the library of patterns
available to them. One solution is to use a search function (taking advantage
of the querying endpoint), but is still unsure of what pattern would fit their
particular use-case.

The suggestion algorithm takes a (part of a) model and processes it to
find possible combinations of patterns and applicable parameters to create
instantiations with. This takes advantage of the fact that OTTR patterns
oftentimes have defined types of parameters, so when that information is cross-
referenced with the types of subject present within the input, the matches
are evident. The premise of the algorithm is the following:..1. Create pairs of subjects and their rdf:type values...2. Query patterns to extract pairs of patterns and parameter type require-

ments from their rOTTR representation in the database...3. Combine the two pairs in such a way that results in a map of patterns
and sets of subjects that could populate the patterns’ parameters...4. (Optional enhancement) Provide a ranking of the assignments from step
3 based on perfect matches, usage statistics from the same model, etc.

The automatic applicability of the results is heavily predicated on the heuris-
tics employed in step 4 and the input. It is often the case, especially with
larger inputs, that the number of possible combinations can rise exponentially.
Because of this consequence, the algorithm does not replace the need to
know the general ins and outs of the pattern library entirely, but merely
supplements the search for the right pattern to use.
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5.3.2 The refactor/create algorithm

The remaining two algorithms share basic principles of operation, and as
such they will be discussed together. The general underlying algorithm is
described in a companion online demonstration[18] for a paper about using
OTTR to automatically generate patterns and use them to refactor an entire
database of a corporation with significantly less user intervention[22].

The basic structure of the algorithms rests on dependency pairs: a mapping
of "patterns" (or sets of predicates, as will be explained more precisely below)
and subjects de facto including that pattern.
Example 5.1. Consider a model in which we have several concepts with some,
but not all repeating predicates.

The first step is to convert all predicates to patterns returning a simple
statement - this is so they can be more easily processed later. For example,
rdf:type turns into:

rdfType(?subject, ?object) ::
ottr:triple(?subject, rdf:type, ?object).

Then, using these predicate patterns, all subjects with their predicates are
turned into patterns as well. This way, the statements

ex:Car a owl:Class;
skos:prefLabel "Auto"@cs,
skos:inScheme ex:exampleScheme.

turn into a pattern:

ex:Car(?prefLabel, ?rdfType, ?skosInScheme) :: {
ottr:triple(ex:Car, rdf:type, ?rdfType).
ottr:triple(ex:Car, skos:prefLabel, ?prefLabel).
ottr:triple(ex:Car, skos:inScheme, ?skosInScheme).

}
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This set of patterns is then constructed into the aforementioned dependency
pairs: each subject is correlated with the predicate patterns needed to create
an expansion that would exactly reproduce the given data of the subject. The
pairs take the form of <I,T>, where

. I are the predicate patterns which could form a potential pattern, and. T are the subjects that can be created by instantiating and expanding
the pattern from I.

Any pairs that have only one entry in I or T are removed, as that does not
signify a repeated pattern.

The difference between the refactoring and creating patterns begin after the
dependency pairs have been formed. In the case of refactoring, the existing
database is checked whether an exact match resembling the resulting pattern
candidates is found - if so, the subjects from the pair are refactored into
instantiations of the found pattern. This is useful for record keeping of the
usage of patterns, which can then be studied for further analysis (usage
correctness, pattern improvements, metadata clarification, etc.). However, if
the pattern candidates do not yet exists, there is an option to automatically
create them and instantly populate them with the subject found in the other
part of the pair. The effects of both algorithm variants can be combined.

This algorithm has a shortcoming in that it only works with subjects
and not any further model constructs. In an environment where the model,
a glossary connected with semantic links, has possible redundancies that
encompass both subjects and subject relationships, this algorithm will not
find them.

5.4 Implementation

The endpoints are therefore implemented as follows:

Request ODP and its info The service is passed an IRI of a supposed
pattern in the database. The service returns all related statements
pertaining to the pattern.
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Update the database The service is passed an RDF document and at-

tempts to insert it into the database.

Query the database The service is passed a SPARQL query and attempts
to ask the database with it.

Request instantiations of an ODP The service is passed an IRI of a
supposed pattern in the database. The service returns all instantiations
pertaining to the pattern.

Suggest patterns The service is passed an RDF document and runs the
aforementioned suggestion algorithm on it.

Refactor the model The service is passed an RDF document and runs the
aforementioned refactoring algorithm on it.

Create new ODPs The service is passed an RDF document and runs the
aforementioned pattern creation algorithm on it.

The reason the inputs are not more tightly defined is that the rOTTR
specification of patterns and instances is formally defined; it would be limiting
to resolve queries or updates through a JSON formatted input, for example,
and it would also create an obligation to continually update the accepted
format in case the specification changes.

Evaluation of the implementation is described in Chapter 7.
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Chapter 6

Ontographer integration

Ontographer is a web application used within the KODI project to provide
conceptual modeling functionality to the vocabulary-creating process, taking
glossaries and turning them into models via creating semantic connections
between various terms in a graphical environment. The tool does not nec-
essarily require understanding of underlying Semantic Web concepts - it
is intended for clerks who have the domain knowledge to create accurate
semantic connections. Figure 6.1 shows a screenshot of Ontographer during
ordinary operation.

6.1 Standard workflow

The usual use loop of Ontographer is that a user loads a workspace, a list
of vocabularies that are set to be edited, the terms of which can then be
displayed in the main center window, or the canvas. Users can manipulate
the terms’ information, their positions within the canvas, as well as the
relationships that connect them. At any time, the validation service can
be called to potentially catch invalid attributes or connections w.r.t. the
SSP specifications. The application supports multiple diagrams - essentialy
different views of the entire model, sectioning it into specific chunks should
the user desire for purposes of presentation or easier manipulation. The
diagrams, term and relationship positions and attributes are persisted to the
database as soon as a change is made - this allows quick changes and prevents
loss of work. After the desired changes have been made, the workspace is
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Figure 6.1: Screenshot of OntoGrapher without any pattern enhancements with
the "Drivers and vehicles" workspace open. The left panel lists all vocabularies
and concepts in the model, while the right panel details a single selected concept.
The tabs above the work area list diagrams. Concepts are color-coded to their
respective vocabularies. The first vocabulary in order of appearance on the left
panel is write-enabled and the second is read-only (as depicted by pictographs
next to their titles).

marked as a candidate for publishing, i.e. merging the changes made into the
original repository, making the changes canon.

In SSP, terms are represented as owl:Classes and skos:Concepts with various
labels and descriptions. Relationships can be represented in two ways: in
the case of a specialization, as a simple rdfs:subClassOf predicate or another
Class with an intricate set of owl:Restrictions otherwise.
Example 6.1. An example of a connection between two terms with the latter
representation of a relationship looks like this:

# "Documents birth event" Relator type
gov-birth-registry:documents-birth-event a skos:Concept,

z-sgov-pojem:typ-vztahu;
skos:inScheme gov-registry-office:scheme;
skos:prefLabel "documents birth event"@en;
skos:altLabel "documents"@en.

# Connection from "Documents birth event" to "Record of birth"
gov-birth-registry:documents-birth-event rdfs:subClassOf

[rdf:type owl:Restriction;
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owl:onProperty z-sgov-pojem:má-vztažený-prvek-1;
owl:allValuesFrom gov-birth-registry:record-of-birth],
[rdf:type owl:Restriction;
owl:onProperty

[owl:inverseOf z-sgov-pojem:má-vztažený-prvek-1];
owl:allValuesFrom gov-birth-registry:documents-birth-event],
[rdf:type owl:Restriction;
owl:onProperty z-sgov-pojem:má-vztažený-prvek-1;
owl:onClass gov-birth-registry:record-of-birth;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger],
[rdf:type owl:Restriction;
owl:onProperty

[owl:inverseOf z-sgov-pojem:má-vztažený-prvek-1];
owl:onClass gov-birth-registry:documents-birth-event;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger].

# Connection from "Documents birth event" to "Birth of person"
gov-birth-registry:documents-birth-event rdfs:subClassOf

[rdf:type owl:Restriction;
owl:onProperty z-sgov-pojem:má-vztažený-prvek-2;
owl:allValuesFrom gov-civil-law:birth-of-person],
[rdf:type owl:Restriction;
owl:onProperty

[owl:inverseOf z-sgov-pojem:má-vztažený-prvek-2];
owl:allValuesFrom gov-birth-registry:documents-birth-event],
[rdf:type owl:Restriction;
owl:onProperty z-sgov-pojem:má-vztažený-prvek-2;
owl:onClass gov-civil-law:birth-of-person;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger],
[rdf:type owl:Restriction;
owl:onProperty

[owl:inverseOf z-sgov-pojem:má-vztažený-prvek-2];
owl:onClass gov-birth-registry:documents-birth-event;
owl:qualifiedCardinality "1"^^xsd:nonNegativeInteger].

Ontographer creates these data by essentially employing (currently) hard-
coded informal patterns: a creation or editing of a term of relationship is done
through various forms present throughout the user interface; the application
then translates its representation of the data into RDF, which is then sent
into the main database via SPARQL Update requests. The data mentioned in
example 6.1 can be created by the user in a couple of seconds during normal
operation.

Conceptually, then, the implementation of standardized patterns into On-
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tographer makes sense; replacements of the fundamental hard-coded patterns
would allow the application to represent multiple variants of term specifi-
cations outside SSP, but the main point is the creation of patterns that
encapsulate multiple terms and patterns. Consider the Identity ODP from
Chapter 3; similar designs are commonly present throughout many vocabu-
laries of SSP.

6.2 Pattern integration

Patterns and instances are implemented into Ontographer via Pattern and
Instance TypeScript types. These types are responsible for all interactions
between them and other parts of the application. The conversions are done
on communication with the service and are described in Section 6.4. On
application load, the patterns and relevant instances (those of the terms
present in the workspace) are loaded through the service like the terms,
connections, and diagrams themselves.

6.3 User interface

The enhancements have been implemented as to not significantly alter the
current user experience. The user is normally able to select multiple terms
at the same time to remove them from the canvas or perhaps move them
together. Also, right clicking of the mouse on empty space on the canvas
triggers a form to create a new term. In the enhancement, right clicking when
terms are selected brings up the Pattern or Instance creation forms. Figure
6.2 shows the creation of a pattern, whereas Figure 6.3 show the creation of
an instance. Instances can also be created by right clicking the mouse on
an empty canvas without any selection - the difference is that Ontographer
won’t try to autofill the fields for parameters and relationships with the user’s
selection. The pattern values can either be new terms and relationships that
are created along with the instance itself or can be existing terms that the
instance associates with the parameter.
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Figure 6.2: A creation of a new pattern. On the left are forms for editing the
features of the pattern, while on the right the vizualization shows the structure
of the pattern in the process of creation.

6.3.1 Instance view

Once the patterns or instances have been created, however, they can seem
kind of invisible, prompting the question if anything was even done in the
first place. The user can see the instantiations of patterns with the "Show
instantiations" button on the top panel. Clicking this option replaces terms
and relationships encapsulated with instances into similar looking "boxes"
describing the pattern the instance instantiates and its parameter names and
values. A link between instances demonstrates a pattern value that is shared
between the given instances. Clicking on an instance "box" opens up the
Detail panel familiar to users of Ontographer, but with information about the
instance instead, containing links to view pattern statistics or the internal
structure of the instance (i.e. terms and relationships that are "hidden" in the
instance). Figure 6.4 shows this on an example with two connected instances.
Another button on the top panel is the "Pattern statistics" button. That
button shows another dialogue with selections of patterns - if one is selected,
the right column provides information about the pattern, along with a list of
instantiations of this particular pattern. Figure 6.5 shows this on an example.

6.4 Server integration

. The server is used for basic operations, such as fetching or posting updates,
the results of which are then converted from the rOTTR form stored in the
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Figure 6.3: A creation of a new instance. The tag pictogram next to parameter
and relationships names signifies that the relationship or term mentioned already
exists, and therefore nothing new (except the instance) will be created.

Fuseki database to Ontographer’s internal type representations. The design of
the patterns and instances Ontographer sends and receives is worth detailing,
as there are several enhancements to the specification-mandated forms of the
rOTTR types1.

Instead of producing and consuming patterns that could expand into data
useful for the underlying dataset (e.g. the one described in example 6.1), the
patterns describe the actions Ontographer should take to deliver the actual
data.
Example 6.2. Ontographer might push a pattern such as

ex:Example(ottr:IRI ?t1, ottr:IRI ?t2, ottr:IRI ?r3) :: {
ottr:triple(?t1 a og:term),
ottr:triple(?t1 a z-sgov:typ-objektu),
ottr:triple(?t2 a og:term),
ottr:triple(?t2 ottr:modifier ottr:optional),
ottr:triple(?r3 a og:conn),
ottr:triple(?r3 og:from ?t1),
ottr:triple(?r3 og:to ?t2),

}

This simple example tells Ontographer that there is a pattern with two terms,
1This does not break the database entries for other users, however, because all Ontog-

rapher does is add additional entries other applications won’t think to look for or will
ignore
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Figure 6.4: Ontographer with Instance view enabled. There are two instances
shown, each with a list of parameters and its values in the format name: value.
Since the instances share the Objekt term, a link is shown demonstrating just
that.

one relationship connecting the two, the first term has to be at least an Object
Type and the other’s existence when instantiating is optional.

A problem found during development is that docTTR does not offer a way
to label the parameters. The ?t1 ?t2 ?r3 parameter identifiers are present
only in pattern definitions, but in actual use are invisible, so the choice is
between generating the name somehow or to include another sub-pattern
describing the name of the parameter. Ontographer’s implementation chooses
the latter.

This issue is also present in the instantiations - in OTTR normally, the
instantiation parameters are present as an ordered rdf:List without context,
since the context is provided through the actual pattern definition. Therefore,
Ontographer’s instantiations adds another ordered list to rOTTR instantiation
representations, this time documenting the names of the parameters so that
they may be cross-referenced by the names in the pattern definition.

Unfortunate omissions are those of the Automatic generation and refac-
toring algorithms. As mentioned in Section 5.3.2, these algorithms as imple-
mented in the service are usable for patterns describing only one subject. In
Ontographer, it would be very useful to be able to analyze patterns spanning
multiple terms and relationships - therefore, those algorithms are of little
value here.
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Figure 6.5: The Pattern Statistics dialogue with a pattern selected.
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Chapter 7

Evaluation

There are many aspects of the overall solution which need to be evaluated:
the language, server implementation and Ontographer implementation. This
evaluation will be based on the capability to bring value to the KODI process
of enhancing SSP.

7.1 OTTR

Evaluations have already been done with OTTR w.r.t. its ability to conform
itself to OntoUML in Chapter 4, which, while demonstrating the ability
to emulate OntoUML constructs, indicated some issues. Because of the
language’s adoption into the core of the package, these issues propagate
through the rest of the components.

Namely, it is the inability to have multiple types required for a single
parameter. A workaround exists with creating two parameters in which the
input is the same, but that is not ideal, given the realities of SSP design. In
SSP, the terms have at least one, but ideally two stereotypes: one OntoUML-
like stereotype and one Type-like stereotype. This configuration is common
there and so an enhancement there would be appreciated if the developers
were to include it.

During the implementation of integration of Ontographer (see Section
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6.2), it became obvious that even with docTTR, OTTR’s annotation pattern
library, the description of e.g. parameters and other parts of the patterns
and instances were adequate and needed to be supplemented by additional
statements.

Another, but quite understandable, limitation is the inability of the lan-
guage to validate the parameters. The parameters will not accept subjects
with a certain type if the parameter forbids it, but the parameter is then
willing to expand into semantically incorrect or impermissible statements,
even if the limitations are defined right in the pattern definition, for example
via owl:Restrictions. However, this would imply the inclusion of a reasoner
ran on every expansion, which could be impractical w.r.t. compounded
computational complexity.

Lastly, it is the lack of ability to generate IRIs - this is something that
software in the middle (in this thesis, that falls on Ontographer) to provide
IRIs for subjects. If one were to generate a new instance of a Car, for example,
the IRI has to be asked for in a parameter.

7.2 Server

The server, more specifically its basic functions and communication with
Fuseki, did not overtly disappoint in its application, but that is perhaps
because its application, as prescribed in the thesis, has been rather limited.
This is due to the fact that SSP as a sample is rather repetitive and user
testing, along with further exploration of possibilities is necessary to fully
analyze the potential of such a server.

7.2.1 Algorithms

The algorithms provide further analysis than the rest of the server. A general
note on all of the algorithms presented are that heuristic analyses performed
during or after the basic algorithm run are necessary for the analysis to
become truly useful in everyday use. Currently, due to the general results
they return, they at the time of writing, unless the dataset is as repetitive as
SSP, function more as a potential enhancement rather than a realized one.
As with the server itself, more testing is needed with users and with more
datasets to fully appreciate what is (or isn’t) possible with these algorithms.
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Suggestion algorithm

This algorithm is adept for quickly filtering unusable patterns w.r.t. the
model given as an input, however it is as of yet inadequate for automatically
filling out the pattern values, since often there are so many combinations of
available values, especially when the types for the parameters are not enforced.
Currently, it serves well for filtering patterns that can then be filtered even
more with additional search criteria.

Refactor/creation algorithm

The usefulness of the algorithm, without factoring Ontographer into the
equation, highly varies on the provided dataset and the order of operations.
The first testing occurred with a single vocabulary, with which it was able to
detect a repeating pattern of

ex:Example(?iri, ?rdfType1, ?rdfType2, ?skosPrefLabel, ?rdfsSubClassOf)

and variations differing in the number of requested rdf:types or rdfs:subClassOfs.
Connections in the form of owl:Restrictions as is the common case in SSP
could not be identified. Applying the newly created patterns to refactor other
vocabularies, however, bore fruit; since SSP’s structures are highly repetitive,
the algorithm was able to pick up lots of terms into pattern instantiations.
This is useful in the case of when one wants to get started quickly with new
patterns without having to define every single pattern from scratch and then
apply those patterns to gain insight into the statistics of pattern usage.

7.3 Ontographer

Integration of pattern functionality into the Ontographer user experience was
fairly smooth, given the nature of the experience being suitable to creation
forms, element visualisations, and database connections already. The user
experience of the additions, while functional, is not the most appealing; forms
take up almost the entire screen with information that requires explanations
before using them for the first time. Nevertheless, in cases of repeated patterns
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that exist within vocabularies (as is often the case in SSP), the ability to
create new terms and connections quickly greatly enhances the experience
when creating a new or redoing an existing workspace.

7.4 Summary

Clearly, there is potential in the technology and implementations presented
in this thesis. However, due to various circumstances, from time constrains
to the fact that what is developed here presents a new approach to modeling
in the Semantic Web that is currently just starting to be explored, the true
meaning (or meaninglessness) of this proposal remains to be fully seen in
future research. Section 8.1 describes the various enhancements that the
project could take moving forward.
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Chapter 8

Conclusion

In this thesis, the current processes for data creation, processing and manage-
ment using the proposals of the Semantic Web have been introduced. The
concept of Ontology Design Patterns was presented to hypothetically improve
data manipulation and collection with several motivational examples to im-
plement them. Research for the most suitable ODP language was conducted,
where OTTR (Reasonable Ontology Templates) was finally selected. This
selection was then evaluated with attempts to translate various OntoUML
model examples into OTTR, which provided an entry point to try using
it for the Czech government’s SSP, a repository of vocabularies containing
legal terms from various pieces of legislation. Since the government’s team
(KODI) use a tool suite to produce and publish these vocabularies, a pro-
posal for a service mediating the connection between KODI’s RDF datasets
and OTTR’s own pattern and instance architecture was devised, along with
plans to demonstrate the usage of the service in a visual tool that serves
KODI to connect terms with semantic connections called OntoGrapher. The
implementation of both the server and Ontographer enhancement was then
evaluated on SSP, which showed current limitations of the implementation,
but also potential to be explored in the concept in the future.

8.1 Future work

Based on the experience gained during the development of this thesis, there are
some enhancements of various parts of the solution that are worth discussing
in future development. However, as mentioned in Chapter 7, user testing and
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different datasets are needed to have a complete picture about the current
state of the thesis.

8.1.1 OTTR limitations

As the OTTR language is in current development, there is no doubt that the
specification is going to improve. In future versions of OTTR (or perhaps
docTTR), a way of naming parameters instead of just giving them descriptions
would be welcome. Additionally, there is the single type enforcement only
parameter issue mentioned many times throughout the thesis.

8.1.2 Server and Ontographer interactions

One disappointment has been the inability to implement the (or at least some
variation of) the pattern creation algorithm, the reason of which is in Section
6.2. Otherwise, the development of heuristics into searching, creating, and
refactoring patterns is an obvious example of an enhancement.

8.1.3 Ontographer user interface

The pattern additions have been implemented into Ontographer without
disturbing much of the usual user experience. The experience with patterns,
however, is full of forms filling the entire screen and lack of clarity in the forms
themselves. A redesign of the pattern-specific user interface to a perhaps
more visual rather than form oriented experience could prove more pleasant
for potential users.

When it comes to specific feature additions, the implementation could go
in various ways; there could be an approval system for patterns, where a
user could only create draft patterns until their supervisor (or other persons
responsible) approve them into production use. In Ontographer, the usage
of docTTR metadata is highly limited; pattern descriptions and search
options could be extended with examples, parameter descriptions, pattern
classifications, subgroups, etc.

52



Appendix A

Ontology Design Pattern Papers Research
Methodology

The chosen methodology from [17] describes the following process to gather
research and evaluate their relevancy:..1. Define research questions that the research aims to answer...2. Conduct a search across chosen resources with search terms relevant to

the research questions...3. Screen the results to discard irrelevant papers...4. Define a classification scheme which sorts the papers into different, but
still relevant, categories...5. Extract data from each of the categories using the sorted papers.

A.1 Research Questions

As mentioned above, the main topic of interest is current research in the ODP
field; more specifically, it is the state of the art with respect to ODP usage
methodologies, software implementations, and language proposals. Therefore,
the research questions were defined as follows:
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A. Ontology Design Pattern Papers Research Methodology ....................1. Which journals feature papers on Ontology Design Patterns?..2. What methodologies and tools for developing, evaluating, reengineering,
and deploying ODPs are currently (in the last 5 years) in use?..3. What are the most frequently identified underdeveloped areas in ODP
usage?

A.2 Paper search

The website used for searching for the papers is http://scopus.com with
the following search term:

TITLE-ABS-KEY(’ontology design pattern’ or
’ontology design patterns’ or ’ontology template’ or
’ontology templates’ or ’ontology template’) and
ALL((’methodology’ or ’approach’) or
((’case’ or ’case study’) or (’example’ or ’examples’)) or
(’tool’ or ’tooling’))
PUBYEAR > 2015

This search term returned 222 results, of which 182 were discarded as
irrelevant, leaving 37 papers to classify.

A.3 Paper content classification

The remaining papers were sorted into two groups of classifications:

.What is being discussed, i.e. a language, a tool, or a methodology.. In what stage is the thing that is being discussed.

The second classification can be explained like so:
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................................... A.4. Research results

.Overviews - summaries or meta-analyses of solutions (e.g. none are
offered by the authors of the overview). Proposals - solution description. Presentations = solution description with a real-life case study (examples
/ demos for purpose of clarification are not sufficient)

At most 3 papers for each classification combination are selected (as some
combinations were not able to be fulfilled with this number of papers).

A.4 Research results

Listed below are the at most 3 papers selected for each classification combina-
tion. The papers analyzed in Section 3.2 are from the Language presentation
and proposal classes.

A.4.1 Methodology overviews

. Zhu, Q., Kong, X., Hong, S., Li, J. and He, Z. (2015), Global ontology
research progress: a bibliometric analysis, Aslib Journal of Information
Management, Vol. 67 No. 1, pp. 27-54.. Presutti V., Lodi G., Nuzzolese A., Gangemi A., Peroni S. and Asprino L.
(2016) The Role of Ontology Design Patterns in Linked Data Projects. In:
Comyn-Wattiau I., Tanaka K., Song IY., Yamamoto S., Saeki M. (eds)
Conceptual Modeling. ER 2016. Lecture Notes in Computer Science,
vol 9974. Springer, Cham..Kindermann, C., Parsia, B., and Sattler, U. (2019), Comparing Ap-
proaches for Capturing Repetitive Structures in Ontology Design Pat-
terns. Workshop on Ontology Design and Patterns 2019.

A.4.2 Methodology presentations

. He, Y., Xiang, Z., Zheng, J., Lin, Y., Overton, J. and Ong, E. (2018).
The eXtensible ontology development (XOD) principles and tool imple-
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A. Ontology Design Pattern Papers Research Methodology ..................
mentation to support ontology interoperability. Journal of Biomedical
Semantics.

. Ławrynowicz, A., Potoniec, J., Robaczyk, M. and Tudorache, T. (2017).
Discovery of Emerging Design Patterns in Ontologies Using Tree Mining.
Semantic Web 9(1):1-28.

. Forssell, H., Lupp, D.P., Skjæveland, M.G. and Thorstensen, E. (2017).
Reasonable Macros for Ontology Construction and Maintenance. 30th
International Workshop on Description Logics.

A.4.3 Methodology proposals

. Esposito, A. and Di Martino, B. (2015). A rule-based procedure for
automatic recognition of design patterns in UML diagrams. Software
Practice and Experience 46(7).

.Dorodnykh, N. and Yurin, A. (2019). Towards Ontology Engineering
Based on Transformation of Conceptual Models and Spreadsheet Data:
A Case Study. Intelligent Systems Applications in Software Engineering
(pp.233-247).

A.4.4 Tool presentation

. Yasvi M.A. and Mutharaju, R. (2019), Comparing Approaches for Cap-
turing Repetitive Structures in Ontology Design Patterns. Workshop on
Ontology Design and Patterns 2019.

. Jupp, S., Burdett, T., Welter, D., Sarntivijai, S., Parkinson, H. and
Malone, J. (2016). Webulous and the Webulous Google Add-On - a web
service and application for ontology building from templates. Journal of
Biomedical Semantics.

. Souza, A.K., Guizzardi, R., Campos, M.L. and Guizzardi, G. (2016).
Extending an Ontology Editor for Domain-related Ontology Patterns
Reuse: An Application in the Collaboration Domain. ONTOBRAS.
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.................................... A.5. Used prefixes

A.4.5 Tool proposals

. Shimizu, C. (2018). Towards a Comprehensive Modular Ontology IDE
and Tool Suite. DC@ISWC.

A.4.6 Language presentations

. Skjæveland, M., Lupp, D., Karlsen, L. and Forssell, H. (2018). Practi-
cal Ontology Pattern Instantiation, Discovery, and Maintenance with
Reasonable Ontology Templates: 17th International Semantic Web Con-
ference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part
I..Quirino, G., Barcellos, M., Falbo, R. (2017). OPL-ML: A Modeling
Language for Representing Ontology Pattern Languages. ER Workshops,
pp. 187-201.. Zambon, E., Guizzardi, G. (2017). Formal Definition of a General
Ontology Pattern Language using a Graph Grammar. 2017 Federated
Conference on Computer Science and Information Systems (FedCSIS),
1-10.

A.4.7 Language proposals

A.5 Used prefixes

Here is a list of all prefixes used in the paper:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix ottr: <http://ns.ottr.xyz/0.4/> .
@prefix ax: <http://tpl.ottr.xyz/owl/axiom/0.1/> .
@prefix rstr: <http://tpl.ottr.xyz/owl/restriction/0.1/> .
@prefix ex: <http://example.com/ns#> .
@prefix dct: <http://purl.org/dc/terms/> .
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@prefix gufo: <http://purl.org/nemo/gufo#> .
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Appendix B

Guide to the attachments

. readme.txt - a guide on how to compile and run the server and the
client. srcClient/ - the client’s source code. srcServer/ - the server’s source code
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