
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Adding Context into Convolutional
Neural Networks

Sebastian Štefko
Artificial Intelligence and Computer Science

May 2022
Supervisor: Mgr. Jan Šochman, Ph.D.





BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492294Personal ID number:Štefko  SebastianStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Adding Context into Convolutional Neural Networks 

Bachelor’s thesis title in Czech:

Přidání kontextu do konvolučních sítí 

Guidelines:

Propose and implement a modification of a standard CNN architecture which gathers contextual information from the input
image faster than the original method. Get inspired by the recent success of Vision Transformers [1] architecture, where
the additional context early on in the decision process together with a positional encoding leads to better results on many
standard tasks.
1. Get familiar with the current CNN and Transformer architectures and their use for vision tasks.
2. Get familiar with CNN-based architectures which try to incorporate additional context early on in the processing (e.g.
DeepLab [2]).
3. Modify a commonly used CNN architecture (e.g. ResNet [3]) to incorporate addition context cues into lower
spatially-narrow-focused layers. Get inspired by the Transformer’s attention module.
4. Compare the method on a standard dataset (e.g. COCO dataset) with the original CNN and other similar approaches.

Bibliography / sources:

[1] Kolesnikov et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021.
[2] Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully
Connected CRFs, TPAMI 2017.
[3] He et al., Deep Residual Learning for Image Recognition, CVPR 2016.

Name and workplace of bachelor’s thesis supervisor:

Mgr. Jan Šochman, Ph.D. Visual Recognition Group  FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 05.01.2022

Assignment valid until: 30.09.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Mgr. Jan Šochman, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1





Acknowledgement / Declaration

I would like to express my gratitude
to Mgr. Jan Šochman, Ph.D. for his
guidance and feedback during the writ-
ing of this thesis. My thanks also go
to Ing. Jonáš Šerých and Ing. Michal
Neoral, who provided me with many
valuable advice. Lastly, I would like to
thank my family for supporting me and
thus allowing me to work on things I
enjoy. Thank you.

The access to the computational infras-
tructure of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765
“Research Center for Informatics” is
also gratefully acknowledged.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, 20th May 2022

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v



Abstrakt / Abstract

Nejnovější články [1, 2, 3] ukazují, že
neuronové sítě mohou těžit z využití
širšího receptivního pole (kontextu) již
na nižších vrstvách. Naopak běžně po-
užívaná architektura ResNet má pouze
lokální kontext a její receptivní pole se
zvětšuje pomalu. Trvá několik vrstev,
než se její kontext rozšíří. Navrhujeme
několik metod, jak přidat kontext do
architektury ResNet. Konkrétně jsme
zkoušeli: (i) vygenerovat náhodný kon-
text, (ii) rozšířit náhodný kontext o
relativní poziční kódování a (iii) naim-
plementovat self-attention s náhodným
kontextem a pozičním kódováním. Pro-
zkoumali jsme také možnosti použití
dilatované konvoluce a její modifikaci s
náhodným tvarem konvolučního jádra.

Navržená rozšíření testujeme na úloze
klasifikace do deseti tříd. Měříme, jak
neuronová síť využívá kontext pomocí
receptivního pole a efektivního receptiv-
ního pole. Naše metody porovnáváme s
architekturami jako je HRNet, Vision
Transformer a ConvNext.

Výsledky ukazují, že síť ResNet 50 vy-
užívá rozšířeného kontextu již na nižších
vrstvách, nárůst výkonu však nebyl za-
znamenán. Použití dilatované konvoluce
s náhodným tvarem jádra konvoluce při-
neslo malé zlepšení ve výkonu. I přes vý-
sledky našich experimentů je rozšířený
kontext považován za přínosný ve snaze
zlepšit přesnost neuronových sítí.

Klíčová slova: kontext, receptivní
pole, konvoluční neuronová síť, Vision
Transformer, ResNet 50

Recent papers [1, 2, 3] show that neu-
ral networks can benefit from using a
wider receptive field (context) already
in lower layers. On the contrary, a com-
monly used ResNet has a local context,
and the receptive field grows slowly. It
takes multiple layers before the ResNet
reaches a broader context.

We propose several methods how
to add context into ResNet architec-
ture. In particular, we experimented
with: (i) generating random context,
(ii) enhancing random context with
the relative positional encoding, and
(iii) implementing self-attention with
the random context and relative po-
sitional encoding. Alternatively, we
tried using dilated convolution and its
alteration with a randomised shape of a
convolutional kernel.

We test the proposed ResNet exten-
sions on the task of classification into
ten classes. We measure how well the
networks utilise the context using the re-
ceptive field and the effective receptive
field. Our methods are compared with
HRNet, Vision Transformer and Con-
vNext architectures.

Results show that the utilisation of
the context was increased already in the
lower layers of the ResNet 50 network.
However, the performance increase was
not registered. Only using randomised
dilated convolution has shown a slight
performance increase. Despite the re-
sults of our experiments, the extended
context is still considered beneficial in
the pursuit of better performance.

Keywords: context, receptive field,
convolutional neural network, Vision
Transformer, ResNet 50

vi



/ Contents

1 Introduction 1
1.1 Contributions . . . . . . . . . . . 3

2 Architectures 5
2.1 ResNet 50 . . . . . . . . . . . . . 5

2.1.1 Bottleneck block . . . . . . . 6
2.2 Vision Transformer . . . . . . . . 7

2.2.1 Self-Attention . . . . . . . . 8
2.2.2 Positional Encoding . . . . . 9

2.3 High-Resolution Network . . . 11
3 Method 13

3.1 Random sparse context . . . . 13
3.2 Augmenting the context

with relative positional en-
coding . . . . . . . . . . . . . . 14

3.3 Adding Attention . . . . . . . . 15
3.4 Dilated convolution . . . . . . . 16

3.4.1 Inserted dilated convo-
lution . . . . . . . . . . . . 17

3.5 Randomized dilated convo-
lutions . . . . . . . . . . . . . . 17

4 Experiments 19
4.1 Methods of measurement . . . 19
4.2 Dataset and training . . . . . . 20
4.3 Random sparse context . . . . 20
4.4 Random sparse context on

higher layers . . . . . . . . . . 21
4.5 Augmenting the context

with relative positional en-
coding . . . . . . . . . . . . . . 21

4.6 Adding Attention . . . . . . . . 24
4.7 Experiments with dilated

convolution . . . . . . . . . . . 26
4.8 Comparison of the

ResNet 50 with other
architectures . . . . . . . . . . 29

5 Conclusion 33

References 35

A Abbreviations 37

B ERF visualizations 39

vii



Tables / Figures

4.1 Random sparse context, per-
formance . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Random sparse context on
lower layers, performance . . . . . . 22

4.3 Augmenting the context with
relative positional encoding,
performance . . . . . . . . . . . . . . . . . . . . 24

4.4 Adding Attention, perfor-
mance . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Dilated convolution, perfor-
mance . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Other architectures, perfor-
mance . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.1 Receptive field example . . . . . . . . . .2
1.2 Growth of the receptive field . . . .3
1.3 RF and ERF difference . . . . . . . . . .4
2.1 ResNet architectures . . . . . . . . . . . . .6
2.2 Bottleneck block . . . . . . . . . . . . . . . . .6
2.3 Vision Transformer architec-

ture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
2.4 Multi-Head Self Attention

Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
2.5 Linear mapping . . . . . . . . . . . . . . . . . .9
2.6 Learned positional encodings . . 10
2.7 HRNet architecture . . . . . . . . . . . . 11
2.8 Change of resolutions in HR-

Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Interconnection of image pix-

els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Modified bottleneck block

with a tensor permutation . . . . . 15
3.3 Dialted convolution . . . . . . . . . . . . 16
3.4 Random dialted convolution . . . 17
4.1 Mean distance of random

sparse context . . . . . . . . . . . . . . . . . . 21
4.2 RF, ERF of the random

sparse context . . . . . . . . . . . . . . . . . . 22
4.3 Mean distance of random

sparse context on lower layers . 23
4.4 RF, ERF of the random

sparse context on lower layers . 23
4.5 Mean distance of the con-

text with relative positional
encoding . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 RF, ERF of the spatial per-
mutations . . . . . . . . . . . . . . . . . . . . . . . 25

4.7 Mean distance of the added
attention . . . . . . . . . . . . . . . . . . . . . . . . 26

4.8 RF, ERF of the spatial per-
mutations with attention . . . . . . 27

4.9 Mean distance of experi-
ments with dilated convo-
lution . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.10 RF of dilated convolution. . . . . . 28
4.11 Artefacts created by the di-

alted convolution . . . . . . . . . . . . . . . 28
4.12 RF, ERF of the inserted di-

lated convolution . . . . . . . . . . . . . . . 29

viii



4.13 RF, ERF of the random di-
lated convolution . . . . . . . . . . . . . . . 30

4.14 ERF of other architectures . . . . 31
B.1 Sum of ERFs for ResNet 50 . . . 39
B.2 Sum of ERFs for HRNet . . . . . . . 39
B.3 Sum of ERFs for ConvNext. . . . 40
B.4 Sum of ERFs for Vision

Transformer . . . . . . . . . . . . . . . . . . . . 40

ix





Chapter 1
Introduction

Convolutional neural networks (CNN) are widely used in computer vision.
In problems such as image classification or segmentation, a neural network
(NN) receives an image on the input, processes it and performs a given task.
The way an image is processed depends on the architectural structure of the
network. CNNs are organised into layers, most of them are convolutional,
and some are pooling layers or a fully-connected layers. The output of each
layer is a feature tensor. In computer vision, a feature tensor has typically
four dimensions, two of which are the spatial dimensions, one is the channel
dimension determining the number of individual learned feature maps, and
one is the batch size dimension. The network gathers signals from an area on
the lower layer and applies the convolutional filter to learn a new feature. The
area in the input image is referred to as a receptive field (RF). The example
in Figure 1.1 shows a single feature as one green square in the second layer.
It was influenced by an area of 3 by 3 in the first layer, further influenced by
an area of 5 by 5 in the input image. It is apparent that the RF increases
by every layer. The feature tensor shrinks in spatial dimensions and increases
the number of its channels as it passes through the network.

We are talking about the context available to the network when we consider
the total area of the RF at any given layer of the network. RF serves as
a good indicator of the size of the context in the network. In CNN s like
ResNet [4], the context is expanded relatively slowly. That is because the
convolutional kernel is relatively small compared to the size of the image. It
takes several layers before the network holds broader contextual information.
There are, however, architectures which manage to provide wider context
faster and achieve better performance results.

One of such approaches is to modify the standard convolution. By do-
ing so, we provide a larger context which promises better performance. As
mentioned, convolutional kernels have a narrow scope. To make the scope
wider while keeping the number of parameters the same, dilated convolution
(see Section 3.4.1) was proposed, reaching further from the convolution’s cen-
tre. Such modification is implemented, e.g. in DeepLab architectures [2, 5]
as one of the main modifications for bringing wider context. Combining the
approach of dilated convolutions in several layers has shown significant merit.

A different way of ensuring broader context was proposed in the high-
resolution network (HRNet) [1] architecture, which performs unmodified con-
volutions. An HRNet keeps the high-resolution image representation and,

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.1. An example of the receptive field. A 3×3 convolution has been done
on the input image and on layer 1. Receptive field of a single feature (depicted
as a single green square) in layer 2 is 9 and 25 for layer 1 and the input image

respectively.

along with that, computes several lower resolutions. On all of those resolu-
tions, it computes a 3×3 convolution. Feature tensors of individual resolutions
are combined together. The context increases when the low-resolution feature
tensor to which the 3×3 convolution was applied is upscaled and concatenated
to the high-resolution feature tensor. That is because when a 3×3 area gets
upscaled, it covers a way larger area. This way of obtaining contextual in-
formation from the input data has proven to be particularly beneficial in the
problem of semantic segmentation.

An inspiration for the expansion of context for this thesis was the recent
success of the Transformer architecture [6] in natural language processing and
later the Vision Transformers (ViT) [7] in computer vision. In the last year,
they outperformed classical convolutional neural networks in terms of compu-
tational efficiency and accuracy in many tasks [7]. ViT brought many inter-
esting ideas into computer vision as they completely substitute convolutions
for the self-attention mechanism. Self-attention builds an image representa-
tion by relating all parts of the image. This operation allows the network to
look anywhere in the image. It rapidly increases the receptive field giving the
network a high context already in the early stages (see Figure 1.2a). In ViT,
instead of the RF , a mean attention distance is used to quantify the amount
of context. It is the average distance spanned by attention weights at different
layers and is analogous to the receptive field size in CNNs ([7], Section D7). In
contrast to the ViT, the receptive field grows much slower in CNN s (see Fig-
ure 1.2b). The whole context of the input image is first retrieved earliest at
the latest layers of the network.

Providing a broader context to the neural network by the abovementioned
architectures is one of the aspects which helps to increase their accuracy.
We are aware of other options for making the network perform better, for
example, changing the number of stages in every layer, reducing the number
of activation functions and normalization layers or processing the input image
differently at the beginning of the network [3]. We will, however, focus on
adding context in order to increase the performance. Our goal is to modify
a standard CNN architecture to make a broader context available to it. We

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Contributions

a) b)

Figure 1.2. The figure shows a growth of the receptive field (analogous term
in ViT is the attention distance) for the a) Vision Transformer [7] and b)
ResNet 50 [4]. ViT-L/16 contains 16 self-attention heads at every layer. The
individual dots in a) show the mean attention distance for every head at a par-
ticular layer. The size of the input image for both ViT and for ResNet was

224×224 pixels.

will use innovative methods as well as get inspiration from already verified
architectures.

RF is usually used to evaluate the amount of context. It turns out that
when creating a new feature, not every part of the RF area contributes the
same. A method for such measurement has been proposed by [8], and it is
called the effective receptive field (ERF). To calculate the impact of input
on one feature vector in the feature tensor, a partial derivative ∂𝑦𝑝/∂𝑥𝑖,𝑗
is taken, where 𝑦𝑝 is the feature vector and 𝑥𝑖,𝑗 represents the input pixel
of an image on position (𝑖, 𝑗). This partial derivative can be computed using
backpropagation. To compute the ERF, we set the error gradient with respect
to an auxiliary loss 𝑙 as ∂𝑙/∂𝑦𝑝 = 1 and ∂𝑙/∂𝑦𝑖,𝑗 = 0 for 𝑖, 𝑗 ≠ 𝑝. The error
gradient ∂𝑙/∂𝑥𝑖,𝑗 on the first layer then equals to the desired ∂𝑦𝑝/∂𝑥𝑖,𝑗 [8].
This shows us how much 𝑥𝑖,𝑗 contributes to 𝑦𝑝.

An illustration of the difference between RF and ERF is shown in Figure 1.3.
The computation of the derivative was taken from the centre of the feature
tensor at the end of layer 2 in the ResNet 50 network. It can be visually seen
that the ERF occupies only a fraction of a theoretical RF and resembles the
Gaussian distribution.

1.1 Contributions

For our research, we have chosen ResNet 50 [4] for its straightforward imple-
mentation, which was revolutionary at the time. It is also still being used
for solving many computer vision tasks, so it is worth trying to improve its
performance and accuracy.

3



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) b)

Figure 1.3. A difference between receptive field and effective receptive field on
ResNet 50, computed from the middle feature on the second layer.

We propose the following contributions in this thesis:

. We made the following modifications to the original architecture of the
ResNet 50 network to provide a higher context in the learning process.. Initially, we randomly generated a context, potentially spanning the

whole image. The context is random but fixed in each layer where it
is added to the ResNet 50 network. (Section 3.1). We extended the randomly generated context by adding relative posi-
tional encoding. (Section 3.2). A part of the self-attention mechanism for comparing the similarity be-
tween any two feature vectors was implemented in the ResNet 50. It
was then combined with the randomly generated context method. (Sec-
tion 3.3). We used the dilated convolution in the architecture in two ways. First, we
replaced the original 3×3 convolution with the dilated one, and second,
we inserted the dilated convolution into the architecture. (Section 3.4). We randomized the regular pattern of the dilated convolution and in-
serted it into ResNet 50. (Section 3.5). We tested our implementations on the ten class classification problem from

the Imagenette dataset [9]. We compared our methods with the original
ResNet 50 and other well-known architectures like Vision Transformers [7],
HRNet [1] or ConvNext [3].. To study the size of the context used by each method, we studied the
receptive field and the effective receptive field [8]. We quantified the amount
of context using the mean distance measure. (see experiments in Chapter 4). We managed to verify that our proposed methods increased the context in
the network. However, no significant performance boost was observed for
our methods.

4



Chapter 2
Architectures

Since the immense success of AlexNet [10] in 2012, convolutional neural net-
works became a popular architecture. The only limitation of these networks
was initially their maximum depth, i.e. how many convolutional layers could
be stacked on top of each other. The deeper the net was, the more difficult
it was to optimise it. A sudden degradation of performance was a common
occurrence. Another challenge was vanishing gradients, which occurred dur-
ing the training and practically prevented the learning process. Most of these
problems were mitigated by introducing the deep residual networks [4], known
as ResNets.

As mentioned in the Introduction, ResNets are a popular backbones used
plainly or with modifications [11, 12] in many neural networks. We will be
exploring options for adding context to the ResNet 50 architecture in our
experiments. Some of the principles we are inspired by were developed in ViT,
which abandon the principle of convolutions and instead use self-attention. To
better understand these architectures, we will describe them in more detail in
this chapter.

2.1 ResNet 50

ResNet 50 is a variant of an architecture proposed by a paper [4], introducing a
new concept of residual learning for image recognition. Individual variants (see
Figure 2.1) differ in the total number of convolutions ranging from 18 all the
way up to 152. The networks can be virtually arbitrarily deep, thanks to the
skip connections, which is the most significant contribution of the mentioned
paper. Skip connections allow the network to learn only the difference between
the blocks into which the convolutions are organised (see Figure 2.2). It
is done by summing an output from a previous block to the output of a
current block. These blocks are of two types in ResNets. Variants with 18
and 34 convolutions use the basic block, consisting of two consecutive 3×3
convolutions, and the other variants use a more complex bottleneck block
(see Section 2.2.1).

We will be dealing with the ResNet 50 version, which consists of 50 convo-
lutions in 16 bottleneck blocks further organised into four layers, as shown in
Figure 2.1. The input image is resized to a uniform shape of 224×224 pixels.
First, a 7×7 convolution with stride 2 followed by 3×3 max-pooling is applied

5



2. Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. Table showing different configurations of residual networks. 18/34
convolution variants are built from basic blocks in 4 layers. 50/101/152 convo-
lution variants are made of bottleneck blocks also in 4 layers. In the column
output size are listed spatial dimensions of the image representation in every

layer. Residual connections are around every block [4].

Figure 2.2. An example of a bottleneck block with the residual connection. Out-
put from the previous block with 256 channels is squashed to 64 channels by
the first 1×1 convolution; the context is expanded by the 3×3 convolution, and
the last 1×1 convolution outputs back 256 channelled data to which a residual

connection data is added. Last, a ReLU is applied [4].

before the image continues to the residual connections section formed out of
the bottleneck blocks. The spatial dimensions of the input image stay the
same in the entire layer and get halved at the end of it while increasing the
number of channels by a factor of four. The final shape of the feature map is
7×7×2048 before global average pooling produces a vector of 2048 dimensions,
which is inputted into a 1000-way fully-connected layer with softmax [4].

2.1.1 Bottleneck block

The bottleneck block is the main building block of the ResNet 50 architec-
ture. It consists of three convolutions on top of each other. It starts with a
1×1 convolution, which reduces the number of channels to a quarter of the
original size. This is followed by a 3×3 convolution that incorporates contex-
tual information from the picture. Lastly, another 1×1 convolution restores

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Vision Transformer

Figure 2.3. Architecture of the Vision Transformer model [7].

the number of channels to the original size. After every convolution, there is
a ReLU activation function. An identity feature vector, which is the output
feature map from the previous block, is added at the very end to the output
of the last 1×1 convolution. This is the trick of residual learning — a short-
cut connection (also skip or residual connection). The bottleneck block only
learns the difference from the original data on the input to the block. The
idea is that if the identity mappings were optimal, the network would learn
the weights such that they were close to zero, easier than learning the function
to be an identity.

2.2 Vision Transformer

Since the Transformers [6] revolutionised the natural language processing field
of artificial intelligence, the ideas behind this architecture have also been
adopted in computer vision. Such modification has been proposed in [7] and
is called the Vision Transformer (ViT). It is similar to the standard CNN
architecture, but it uses a self-attention mechanism (see Section 2.2.1) instead
of convolutional layers. The ViT has several advantages over the standard
CNN architectures. First, it lacks image-specific inductive biases, which are
inherent to the CNNs. Second, the ViT is more accurate, when trained on
large datasets [7]. This is because the self-attention mechanism can learn the
same [13] and even more complex relationships than the convolutional layers
in a CNN due to the global attention of all parts of the input image.

Transformer is a model which operates on sets of tokens. These tokens
were originally words; however, in the vision, we are dealing with 2D images.

7



2. Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.4. Multi-Head Self Attention with ℎ layers of self-attention function [6].

Naturally, the possibility of feeding a sequence of individual pixels to the
network is an option but computationally unfeasible. Instead, an input image
of size 224×224 pixels is divided into small patches, typically 14×14 pixels in
size, resulting in a 16×16 grid of patches. Every patch is linearly projected by
a trainable projection matrix to get the required sequence vector for the input
called the patch embeddings. At this moment, positional relationships are lost
as the embeddings are arranged in parallel to the next layer. In order to retain
the positional information, learnable positional encoding (see Section 2.2.2) is
added to every patch. On top of that, there is also a learnable embedding (see
patch zero in Figure 2.3) added to the sequence at the beginning of the input.
The first token gathers relational information from all the other patches during
training and serves as the image representation used by the classification head.
This process is visualised in the left-hand side of Figure 2.3.

The encoder consists of two sublayers, each having a layer norm applied
before the next block. The first sublayer contains the core, computationally
most expensive operation, the multi-head self-attention (see Figure 2.4). It
consists of linear input projections preparing input data for several layers of
the self-attention function, whose output is concatenated and again linearly
projected. The second layer is a simple, fully connected feed-forward network.
Residual connections are applied after every sublayer. See right-hand side of
Figure 2.3.

2.2.1 Self-Attention

The self-attention mechanism is a type of neural network layer that allows
the model to learn relationships between features in an image. It operates on
sequences, which in our case are the patch embeddings. It relates every patch
to all the others, computing similarities between them. Self-attention can be
described as mapping a query, and a set of key-value pairs to an output [7].
The computation is done simultaneously as the data are packed into matrices.

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Vision Transformer

Figure 2.5. Linear mapping of the input embeddings to matrices 𝑄, 𝐾, 𝑉 [14].

To obtain query 𝑄, key 𝐾 and value 𝑉 matrices (see Figure 2.5), input data are
passed through linear projection matrices, which have learnable parameters
[𝑞, 𝑘, 𝑣] = 𝑧𝑈𝑞𝑘𝑣, where 𝑧 is the input vector of patch embeddings and 𝑈𝑞𝑘𝑣 is
the projection matrix. The attention operation itself is computed as follows:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (1)

First, a dot product of queries and keys is calculated and reweighted by a
√𝑑𝑘, where 𝑑𝑘 is the dimensionality of the keys. This gives us similarities
between all patches. A distribution output (also called attention weights) from
the softmax determines the amount of attention every patch should pay to all
other patches by multiplying the weights with the matrix of values 𝑉. In other
words, we obtain a matrix (attention scores) which tells us how significant are
all the other tokens for every token in a sequence.

2.2.2 Positional Encoding

In natural language processing, a disarranged order of words in a sentence can
cause a loss of meaning or even a change of meaning. For recurrent neural
networks, which take one word after another, this is not a concern. However,
the original Transformer architecture processes whole sentences all at once,
which causes the word order to be lost. To retain it, a positional encoding is
added as it returns positional information to the network. The same principle
applies in vision, where we work with image embeddings instead of words.
There are many options for how the positional encoding can be implemented.

In the original Transformer architecture, there is a fixed function that gen-
erates positional information depending on the position in the sequence. It
must meet the following requirements:

. Each position in the sequence should have the same value regardless of the
total length of the sequence or the input itself. To avoid pushing the embeddings into very distinct subspaces, they need
to be from a limited range of values

One such function was proposed in [6],

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(𝑝𝑜𝑠/100002𝑖/𝑑) (2)

9



2. Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.6. Example of learnable positional encodings after the training in Vi-
sion Transformer architecture reshaped and arranged so that every image patch

corresponds to its original position. [7].

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(𝑝𝑜𝑠/100002𝑖/𝑑) (3)

where 𝑝𝑜𝑠 is a position of the word or patch in the sequence and 𝑖 is the
𝑖th dimension of the 𝑑-dimensional positional embedding. Even dimensions
are encoded by a 𝑠𝑖𝑛() and odd by a 𝑐𝑜𝑠() functions.

The equations (3) and (4) define positional encoding for a 1-dimensional
sequence. There is also a 2-dimensional positional encoding, which is useful
when dealing, for example, with images. It is defined as follows,

𝑃𝐸(𝑥,𝑦,𝑖) = 𝑠𝑖𝑛(𝑥/100004𝑖/𝑑) (4)

𝑃𝐸(𝑥,𝑦,𝑖+𝑑/4) = 𝑐𝑜𝑠(𝑥/100004𝑖/𝑑) (5)

𝑃𝐸(𝑥,𝑦,𝑗+𝑑/2) = 𝑠𝑖𝑛(𝑦/100004𝑖/𝑑) (6)

𝑃𝐸(𝑥,𝑦,𝑗+3𝑑/4) = 𝑐𝑜𝑠(𝑦/100004𝑖/𝑑) (7)

where (𝑥, 𝑦) is a point in a 2d space and 𝑖, 𝑗 ∈ ⟨0, 𝑑/4), where 𝑑 is the
number of channels.

ViT [7] approaches the issue in a different way. Instead of adding precom-
puted positional encodings, only 1-dimensional trainable encodings are added
to the patch embeddings. These get trained during the learning process. Fig-
ure 2.6 shows that the network actually learns sensible positional relationships.
The paper also mentions the difference between adding 1-dimensional or 2-
dimensional positional embeddings concluding there is no significant difference
in performance as opposed to no encodings at all.

Means of attaching the positional embeddings to the data also differ as they
can be either summed or concatenated with the input. Summing retains the
computational complexity while concatenating increases the dimensionality of
data and, therefore, increases hardware resource demands.

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 High-Resolution Network

Figure 2.7. HRNet architecture, showing separation of lower resolutions after
every layer in the whole network. [1]

Figure 2.8. Changes in the resolution at the end of every layer are performed
by 3×3 convolution with stride 2 for downsampling and by bilinear upsampling

followed by 1×1 convolution for upsampling. [1]

2.3 High-Resolution Network

The High-Resolution Network (HRNet) [1] is a CNN architecture used mainly
for tasks like semantic segmentation, object detection or human pose estima-
tion, where high-resolution representations are needed. This architecture is
interesting for us as it expands its context while performing only convolu-
tions without any modifications. We will be using it for comparison with our
modified architectures.

The network architecture consists of 4 stages, starting with only a high-
resolution representation from the input. After every stage, a new lower res-
olution is separated from the higher ones (see Figure 2.7). The new lower
resolution is half of the one separated last but has twice as many channels.
There is an operation between stages called multi-resolution group convolu-
tion [1], where every resolution contributes to all the others. A resolution is
downsampled (strided convolution) or upsampled (Figure 2.8) so it can be
added to the rest of the resolutions.

11





Chapter 3
Method

In this chapter, we introduce the proposed methods for increasing the receptive
field in convolutional neural networks. The goal is to extend the contextual
information available to a neural network. We explored several approaches to
architectural changes. As suggested by ([8], Section 4), instead of connecting
each feature value to a local convolution window, sparse connections to a larger
area in the lower layer of the network should be beneficial for increasing RF
and thus ERF. We propose a method for achieving the sparse connections
by permuting the feature tensor in the spatial dimensions. We also modify
dilated convolution to a not grid-like shape, also suggested by [8]. For our
method with the attention mechanism, we were inspired by the ViT, where it
is used.

We build on top of the original residual CNN, ResNet 50 [4]. We imple-
mented our methods into the architecture to add context and tested it against
other well-known architectures in terms of the size of the RF, ERF and its
performance.

3.1 Random sparse context

The task is to increase the amount of information processed by a convolution
kernel at a single position. Under normal circumstances, a 3×3 kernel sees
only the neighbouring eight feature values, which are all local. We propose
extending the context of the convolution by considering a fixed number of
other randomly selected positions from the feature tensor. We obtain a dense
interconnection of individual features in the feature tensor when repeating this
process on multiple consecutive convolutional layers. Figure 3.1 visualises this
process for one feature value.

We modify a standard bottleneck block (see Section 2.1.1) in ResNet 50.
We implement this by appending the same data tensor permuted along the
spatial dimensions to the original tensor (see Figure 3.2). Formally, we have
a data tensor 𝐱 ∈ ℝ𝐻×𝑊×𝐶, where 𝐶 is a number of channels and (𝐻, 𝑊)
are the spatial dimensions. In ResNet 50, 𝐱 is the output of a 3×3 convo-
lution in a bottleneck block. Let 𝑘 ∈ ℕ be the number of permutations, i.e.
a fixed number of random neighbours which get associated with each spatial
position in 𝐱. The neighbours are formed by 𝑘 times permuting the tensor 𝐱,
producing 𝐱′

𝑖 where 𝑖 = 1, . . . , 𝑘 and then constructing tensor 𝐱𝐶. Concate-
nating the tensor 𝐱 and tensors 𝐱′

𝑖: 𝐱𝐶 = [𝐱, 𝐱′
1, 𝐱′

2, . . . , 𝐱′
𝑘]. Tensor 𝐱𝐶 is the

13



3. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.1. An illustration of the growth of the context with random sparse
connections. To simplify the scheme, a 1×1 convolution is used. Also, the
circles represent only some features in the feature tensor. In layer 𝑛 − 1, every
red circle has its context extended by three random blue circles. After applying
the convolution in layer 𝑛, the full red circle receives context from three empty
red circles, which already had their context extended in layer 𝑛−1. This results
in a total of 15 connections for the full red circle after the second convolution.

new input for the last 1×1 convolution in the bottleneck block with shape of
(𝑘 + 1)𝐶 × 𝐻 × 𝑊. It has 𝑘 times more channels than 𝐱. This, however,
does not pose a problem as the 1×1 convolution shrinks or extends the chan-
nels (depending on 𝑘) to the original value of 4𝐶, so no other modifications
of the architecture are necessary. That is a standard size of the output from
the bottleneck block.

As a result, any position on the feature map is now able to attend 𝑘 other
random positions. The subset of attainable values is quickly growing; there-
fore, the context was extended. Adding a random context is repeated on
multiple convolutional layers in every bottleneck block or only on the higher
spatially-narrow layers. This and the value 𝑘 control the amount of context
supplied to the network.

3.2 Augmenting the context with relative
positional encoding

Permuting data tensors and feeding them back into the network is a very
straightforward method of increasing the attention distance already in the
lower layers of the network. However, as the individual feature vectors in the
feature tensor were randomly permuted, the original positional relations were
lost. A feature vector in the permuted tensor can be close or far from its
original position before the permutation. We want to retain this positional
information as we think it is beneficial for the network to know which features
are more local and which are more distant. This is similar to ViT architecture,
where in order to keep positional information, a positional encoding is added.
We proceeded in an analogous manner. In our case, a relative positional
encoding is used.

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Adding Attention

Figure 3.2. Modified bottleneck block with extended context. The input is a
tensor with the shape H×W×C (in this scheme 𝐻 = 2, 𝑊 = 2). The cuboid
on the left is the output of the 3×3 convolution with spatial dimensions 𝐻, 𝑊 and
𝐶/4 channels. In this case, it gets permuted twice (the cuboids in the middle).
The original tensor is then concatenated with the permuted ones resulting in
a tensor with 3𝐶/4 channels, which is the input a for 1×1 convolution. The
1×1 convolution is original in the bottleneck block, now with more channels on

input.

Relative positional encoding is a subtle modification of the classical posi-
tional encoding [15, 6]. It considers relative distances between any two po-
sitions on a grid of spatial dimensions. The implementation details closely
follow equations (4-7) in Section 2.2.2.

Let 𝐱 ∈ ℝ𝐻×𝑊×𝐶 be the original data tensor. The tensor 𝐱 gets 𝑘-times
permuted producing 𝐱′

𝑖, where 𝑖 = 1, . . . , 𝑘. For every permuted tensor 𝐱′
𝑖, we

want to produce a relative positional encoding 𝐄𝑖 ∈ ℝ𝐶×(𝐻𝑊), which contains
encoded relative distances between spatial positions in 𝐱′

𝑖 and 𝐱. Let 𝐑𝑖 be
the matrix of relative row distances between elements in the original data
tensor 𝐱 and the 𝑖-th permuted tensor 𝐱′

𝑖. Let 𝐂𝑖 be the matrix of relative
column distances between elements in the original data tensor 𝐱 and the 𝑖-th
permuted tensor 𝐱′

𝑖. From equations (4-7) in Section 2.2.2, we obtain four
vectors of frequencies 𝐟𝑗 ∈ ℝ𝐶/4; 𝑗 = 1 . . . 4. 𝐄𝑖 encodes relative distances
between rows in the first half of the channels and relative distances between
columns in the second half of the channels. Each of those halves is encoded
by the 𝑠𝑖𝑛() function in the first half and by the 𝑐𝑜𝑠() function in the second
half. Hence the final relative positional embedding 𝐄𝑖 is created as follows,
𝐄𝑖 = [𝐑𝑖𝐟𝑇

1 , 𝐑𝑖𝐟𝑇
2 , 𝐂𝑖𝐟𝑇

3 , 𝐂𝑖𝐟𝑇
4 ], where �̂� is flattened tensor. Lastly we add

the reshaped relative positional encodings 𝐄𝑖 to the data 𝐱′
𝑖.

3.3 Adding Attention

The attention mechanism computes how similar are two vectors from a given
set. The similarity is evaluated as a magnitude of a dot product. The larger
the dot product is, the more similar the two vectors are.

New connections between individual feature vectors are created as a data
tensor 𝐱 ∈ ℝ𝐻×𝑊×𝐶 is permuted, producing 𝐱′

𝑖; 𝑖 = 1, . . . , 𝑘. However, not

15



3. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.3. Examples of a 3×3 dilated convolution for 𝑑 = 2 and 𝑑 = 3. The
centre of the convolutional kernel is depicted by a blue dot. Orange tiles show,
where a standard convolution would have been. The red dots show the dilated

positions of the kernel values.

every new connection with the original data tensor has the same significance
as others. We use a modified attention function [6] to evaluate which feature
vector should be paid more attention to and which not. We implement the
attention as follows. First a relative positional encoding is added to all data
tensors (according to Section 3.2). We denote 𝐱′

0 = 𝐱. For all 𝑖 = 0 . . . 𝑘, we
construct a matrix of the attention weights 𝐬𝑖 ∈ ℝ𝐻×𝑊, such that 𝐬𝑖(𝑙, 𝑚) =
𝐱𝑇(𝑙, 𝑚, : )𝐱′

𝑖(𝑙, 𝑚, : ), ∀𝑙, 𝑚. There are 𝑘 + 1 matrices of the attention weights,
each for the original tensor and all permuted tensors. A softmax is computed,
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐬0, . . . , 𝐬𝑘) to get a distribution from the weights. Then the data is
reweighted for 𝑖 = 0 . . . 𝑘, 𝐱′

𝑖(𝑙, 𝑚, 𝑘) = 𝐬𝑖(𝑙, 𝑚)𝐱′
𝑖(𝑙, 𝑚, 𝑘); ∀𝑘, 𝑙, 𝑚. We then

sum all tensors ∑𝑘
0 𝐱′

𝑖 to produce an input for the following 1×1 convolution.

3.4 Dilated convolution

It was mentioned in the Introduction that dilated convolution is a success-
ful method of increasing context. We also use dilated convolution in the
ResNet 50 architecture.

Dilated convolution [16] (see Figure 3.3), also known as atrous convolu-
tion, is a convolution which splits the normally coherent convolutional kernel
into discontinuous pieces, creating holes between the individual filter values.
Dilated convolution is defined by the parameter 𝑑, which specifies the dis-
tance between individual values, which form a regular grid. The kernel is
larger, having wider outreach while keeping the same number of parameters.
A standard convolution has 𝑑 = 1 as the distance between two filter values
in a horizontal or vertical direction. Figure 3.3 shows an example of dilated
convolution for different values of parameter 𝑑.

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Randomized dilated convolutions

Figure 3.4. Example of a random dilated convolution performed on the feature
map on two consecutive positions with stride 1. Blue dots represent the centre
of the convolutions, and red dots the positions of the convolution filter values.
Orange tiles show a standard 3×3 convolution. For better orientation, a green

square shows the previous position of the standard convolution.

3.4.1 Inserted dilated convolution

In ResNet 50, the context is expanded only by the 3×3 convolutions, which
takes many layers for the network to achieve a broader context. We inserted
a dilated convolution into every bottleneck block. It is located right after the
3×3 and before the 1×1 convolutions, taking and outputting the same number
of channels, so no other changes to the architecture are required.

3.5 Randomized dilated convolutions

The standard dilated convolution has individual filter values positioned
in a regular grid with holes between them. We remove the regular pattern
and introduce a random positioning to the filter values in the convolutional
kernel. This is because choosing a larger parameter 𝑑 for a regular dilated
convolution causes artefacts — isolated areas of the receptive field without
any local context.

Two parameters define random dilated convolution. The first parameter 𝑘
specifies how many different positions besides the centre of the convolution
a kernel will look at. Parameter 𝑑 defines a maximum vertical or horizontal
distance of the filter value from the kernel centre. Visualization of this method
is shown in Figure 3.4

Let 𝐌 = [−𝑑, 𝑑] × [−𝑑, 𝑑] be a set of possible offsets from the centre of
the kernel, where 𝑑 is the maximum distance in any direction. Let 𝐇 be a
subset of 𝑘 randomly chosen offsets from 𝐌. The random dilated convolution
operation is defined as:

𝑔(𝑥, 𝑦) = 𝜔 ∗ 𝑓(𝑥, 𝑦) = ∑
(𝑑𝑥,𝑑𝑦)∈𝐇

𝜔(𝑑𝑥, 𝑑𝑦)𝑓(𝑥 − 𝑑𝑥, 𝑦 − 𝑑𝑦) (1)

17



3. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
where 𝑔 is the output image, 𝑓 is the original image and 𝜔 is the randomized
filter kernel.

18



Chapter 4
Experiments

The previous chapter introduced new ways for adding context into the
ResNet 50 backbone. Now we evaluate the proposed approaches both quan-
titatively and qualitatively by visualising the size of the context at different
positions in the network. Then we check whether the methods led to a
performance increase. We compare modified ResNet 50, Vision Transformers,
HRNet and ConvNext to see the overall impact of our methods.

4.1 Methods of measurement

For measuring the amounts of context, we use the receptive field. It shows
areas in the input image a network can query information from. The actual
impact of the theoretically attended areas is measured using the effective
receptive field [8]. The RF and ERF can be measured for any spatial position
on the feature map in any network layer. Our experiments show the situation
only for the centre most position in the feature map on various layers as it
mitigates the effects at the edges of the image. It is also a well comparable
position to do so. To quantify the size of the attended area, we introduce a
mean distance 𝑚 measured from the position of ERF measurement (centre
point 𝑐). Let 𝐅 ∈ ℝ𝐻×𝑊 be the normalised feature map, where 𝐻, 𝑊 is
typically equal to 224 in our experiments. We have an Euclidean distance
function 𝑑(𝑥), giving us the distance between 𝑐 and any 𝑥 ∈ 𝐅. The mean
distance 𝑚𝑐 at a position 𝑐 is a sum of weighted distances from the centre
point to all points in the feature map, computed as follows:

𝑚𝑐 =
𝐻

∑
𝑖

𝑊
∑

𝑗
𝑑(𝐅𝑖,𝑗)𝐅𝑖,𝑗

The greater the mean distance, the more important pixels further from the
centre were for the neural network.

The results of the experiments are visualised in such a way that one image
simultaneously shows RF (any non-white areas), ERF, the centre point, and
the size of the mean distance depicted by a circle with a radius of the mean
distance. The visualised data are averages over a batch of ten images.

19



4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Architecture Top 1 accuracy (in %) params ×106

ResNet 50 90.42 23.5
ResNet 50, 1 Permutation 90.52 28.5
ResNet 50, 3 Permutations 89.63 38.6
ResNet 50, 5 Permutations 89.81 48.7

Table 4.1. Performance results on the validation set of random sparse context
compared with the ResNet 50.

4.2 Dataset and training

The evaluation was performed on the task of classification into ten classes from
a dataset Imagenette [9]. It is a subset of the full ImageNet 1k dataset [17],
containing a thousand classes. The Imagenette contains approximately
9.4 thousand images in a training set and 3.9 thousand in a validation set.

In our training setup for ResNet 50, we followed the original paper [4] as
closely as possible. We used random weights initialisation according to [18].
The models were trained for 100 epochs using an SGD optimiser with a batch
size of 32. The learning rate starts at 0.1 and is divided by ten every 30 epochs.
Standard image augmentations like random flipping and rotating were used,
and the images were resized and cropped to be precisely 224×224 pixels in
size.

4.3 Random sparse context

We performed the first experiment using a random sparse context imple-
mented by permuting the feature map described in Section 3.1. Individual
runs differed in the number of permuted tensors. We tested one, three and
five permutations in every bottleneck block of the network. Performance re-
sults are shown in Table 4.1. The graph of the mean distance at every block is
in Figure 4.1. Expansion of the RF and ERF for individual runs with different
numbers of permutations is shown in Figure 4.2.

Discussion. It was expected to see a rapid increase of the RF already on
lower layers, and it was confirmed that the higher number of permutations,
the faster RF increases. Graph 4.1 also correspond with our hypothesis. The
context was added, RF increased, and the network attended a wider area.
Performance, however, did not increase. With more permutations, the perfor-
mance was slightly getting worse. It follows that the network was probably
overloaded with too much context. On top of that, no positional information
was supplied in this experiment.

20



. . . . . . . . . . . . . . . . . . . . . . . . . 4.4 Random sparse context on higher layers

Figure 4.1. Mean distance at every bottleneck block for random sparse context
method.

4.4 Random sparse context on higher layers

To prevent possible network overloading by context, we conducted a short
experiment supplying considerably less context. Only one permutation was
used and was added just in the third and fourth layers. This leaves the network
to focus on the local features in the early stages. Once it already attends a
wider area, a context is added. This can be seen in Figure 4.4 that the RF
is starting to get extended first in the eighth block. Performance results are
in Table 4.2. The results of the mean distance growth compared with plain
ResNet 50 and one permutation from the previous experiment are plotted in
graph 4.3.

Discussion. Based on a slight performance increase, we can say that adding
context only on higher spatially-narrow layers is beneficial. The network was
attending more limited areas until the eighth block, which nicely corresponds
with the mean distance of ERF shown in Figure 4.3. It started to increase
just as the context was supplied. The positional encoding still was not added.

4.5 Augmenting the context with relative
positional encoding

This experiment extends the very first experiment with the random sparse
context. We tested the influence of positional encoding on the added context
to the NN. A relative positional encoding is used according to Section 3.2. It
contains the encoded relative distances of the permuted data tensor from the

21



4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.2. RF and ERF on the first (1st col.), third (2nd col.) and the last
(3rd col.) bottleneck block with 1/3/5 permutations (in rows respectively).

Architecture Top 1 accuracy (in %) params ×106

ResNet 50 90.42 23.5
ResNet 50, 1 Permutation all layers 90.52 28.5
ResNet 50, 3 Permutations layers 3,4 90.85 28.3

Table 4.2. Performance results on the validation set of the random sparse context
with one spatial permutation at different layers compared with the ResNet 50.

22



. . . . . . . . . . . . . . . . . 4.5 Augmenting the context with relative positional encoding

Figure 4.3. Mean distance at every bottleneck block for one spatial permutation
at different layers.

Figure 4.4. RF and ERF on the eighth, ninth and the last bottleneck block with
only one permutation.

original data tensor giving the network a clue, which we expect to be benefi-
cial. The tensors with relative positional encodings are accordingly summed
with the permuted tensors. We again tried one, three and five permutations.
Table 4.3 shows the performance results and the graph 4.5 growth of the mean
distance compared with the plain ResNet 50.

Discussion. We observed that even if positional encoding was added, it was
no help in terms of performance. When compared with permutations without
encoding, there was even a slight performance decrease. We concluded that
positional encoding for this method is more confusing than beneficial to the
neural network. The course of the mean distance values shows a similar trend
as in previous experiments. Figure 4.6 shows RF and ERF at different blocks
of the network for various numbers of permutations, which is very similar
to the Figure 4.2, showing only permutations without encoding. It can be
inferred that the network tries to ignore the positional information.

23



4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Architecture Top 1 accuracy (in %) params ×106

ResNet 50 90.42 23.5
ResNet 50, 1 Permutation + Enc 90.14 28.5
ResNet 50, 3 Permutations + Enc 89.81 38.6
ResNet 50, 5 Permutations + Enc 89.43 48.7

Table 4.3. Performance results on the validation set of the context with relative
positional encoding added, compared with the ResNet 50.

Figure 4.5. Mean distance at every bottleneck block for augmenting the context
with relative positional encoding.

4.6 Adding Attention

Not every feature value contributes the same to the overall context and vice
versa. This experiment evaluates the approach to the task of adding context
inspired by the attention function used in ViT [7]. The method of the modifi-
cation is described in Section 3.3. The performance results of the experiment
are in Table 4.4, and the plotted course of the mean distance is in Figure 4.7.

Discussion. The results showed the same trend as in previous experiments.
Increasing the number of permutations generally provided a higher mean dis-
tance, even though the one permutation reached a little lower value at the end
of the network compared to the ResNet 50. However, regarding performance,
it decreased with more permutations. Figure 4.8 shows that the ERF was
more suppressed, meaning it did not spread as much compared to the exper-
iment with only spatial permutations. On the other hand, the network in
this experiment had the same number of trainable parameters as the original
ResNet 50.

24



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Adding Attention

Figure 4.6. RF and ERF on the first (1st col.), third (2nd col.) and the last
(3rd col.) bottleneck block with 1/3/5 permutations with relative positional

encoding (in rows respectively).

Architecture Top 1 accuracy (in %) params ×106

ResNet 50 90.42 23.5
ResNet 50, 1 Permutation with Attention 90.14 23.5
ResNet 50, 3 Permutations with Attention 89.83 23.5
ResNet 50, 5 Permutations with Attention 89.76 23.5

Table 4.4. Performance results on the validation set of the added attention func-
tion, compared with the ResNet 50.

25



4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.7. Mean distance at every bottleneck block for the added attention
function.

Architecture Top 1 accuracy (in %) params ×106

ResNet 50 90.42 23.5
ResNet 50, modified dilated 𝑑 = 4 87.26 23.5
ResNet 50, inserted dilated 𝑑 = 4 90.78 34.8
ResNet 50, inserted dilated 𝑑 = 8 89.81 34.8
ResNet 50, random dilated 𝑑 = 16 90.55 63.7
ResNet 50, random dilated 𝑑 = 8 91.09 63.7

Table 4.5. Performance results on the validation set of different experiments
with dilated convolution.

4.7 Experiments with dilated convolution

In this set of experiments, the dilated convolution was used in its standard
form and also modified and implemented in ResNet 50. Several approaches
were tested. First, we modified the 3×3 convolution in every bottleneck block
by dilating it with 𝑑 = 4.

The next two runs also tested a dilated convolution; however, instead of
replacing/modifying the original one, we inserted the 3×3 dilated convolution
into the architecture according to Section 3.4.1. For the first run of the two,
𝑑 = 4 and for the second, 𝑑 = 8.

Lastly, randomised dilated convolution was tested (see Section 3.5). Same
as previously, two runs were done, first with parameters 𝑑 = 16 and 𝑘 = 8
and the second with 𝑑 = 8 and 𝑘 = 8. The random dilated convolution
was placed again after the 3×3 and before the 1×1 convolutions in every
bottleneck block. For the results to be comparable, we always used 𝑘 = 8

26



. . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Experiments with dilated convolution

Figure 4.8. RF and ERF on the first (1st col.), third (2nd col.) and the last
(3rd col.) bottleneck block with 1/3/5 permutations with the attention function

(in rows respectively).

so that the convolutional kernel had the same number of filter positions as
the 3×3 convolution. Performance results of individual runs are in Table 4.5,
compared with the plain RasNet 50. Graphs of the mean distances are in
Figure 4.9.

Discussion. Only dilating the 3×3 convolution has proven to decrease the
performance, which was expected. This experiment was shown to demonstrate
that even though the context was added and the mean distance of the ERF
was also significantly higher than the original architecture, it is still crucial
to incorporate local context. Figure 4.10 shows the isolated RF areas which
prevented the incorporation of the local features. The inserted dilated convo-

27



4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.9. Mean distance at every bottleneck block for various experiments
with dilated convolution.

Figure 4.10. Isolated areas of the RF are shown at the second and the last block
in ResNet 50, caused by dilating the 3×3 convolution with 𝑑 = 4.

a) b)
Figure 4.11. Comparison of the artefacts of the inserted dilated convolution.
a) shows the dilated convolution with 𝑑 = 4 and b) with 𝑑 = 8. It is apparent

that the bigger parameter 𝑑, the more are the artefacts visible.

28



. . . . . . . . . . . . . . . . . . . 4.8 Comparison of the ResNet 50 with other architectures

Figure 4.12. RF and ERF of the inserted dilated convolution on the second
(1st col.) and the last (2nd col.) bottleneck block. First row shows dilation with

𝑑 = 4 and the second row 𝑑 = 8.

lution has shown a slight performance increase for smaller 𝑑. For the higher
dilation factor, performance dropped. It was probably caused by the isolated
artefacts created by the too dilated convolution. The artefacts can be well
seen in Figure 4.11. Randomised convolution with 𝑑 = 8 performed the best
out of all methods at the cost of a large increase in the number of parame-
ters. Again dilating too far has shown a performance decrease. Figure 4.12
visualises RF and ERF for the inserted and Figure 4.13 for the randomised
convolutions.

4.8 Comparison of the ResNet 50 with other
architectures

In the last experiment, we compared several neural network architectures in
terms of ERFs with the ResNet 50 network. We selected the HRNet [1],
described in Section 2.3, and the ConvNext [3], which both performed better
than ResNet 50 in the classification task on the Imagenette dataset [9]. These
are all CNN architectures, ConvNext being a network introduced this year.
We also included the Vision Transformer [7] in the experiment. While not

29



4. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.13. RF and ERF of the random dilated convolution on the second
(1st col.) and the last (2nd col.) bottleneck block. First row shows dilation with

𝑑 = 8 and the second row 𝑑 = 16. In both cases was 𝑘 = 8.

Architecture Top 1 accuracy (in %) params ×106

ResNet 50 90.42 23.5
HRNet 91.62 21.3
ConvNext 94.80 28.6
Vision Transformer 84.99 85.6

Table 4.6. Performance results on the validation set of the Imagenette dataset.

convolutional, it has been an inspiration in our context expansion methods
and has also performed well in benchmarks on datasets like Imagenet [17].

The performance results are listed in Table 4.6. Mainly we were interested
in how these architectures use the context. Therefore the ERFs were plotted
from the centre of the final feature map for every architecture. These can
be seen in Figure 4.14. Finally, we visualised the sum of ERFs over all the
spatial positions in the feature map for all architectures. These can be seen
in Appendix B in Figures B.1-4, showing which areas of the input image
contributed to the final feature map and by what amount.

30



. . . . . . . . . . . . . . . . . . . 4.8 Comparison of the ResNet 50 with other architectures

Figure 4.14. Visualization of the ERF for the ResNet 50, HRNet, ConvNext
and the Vision Transformer.

Discussion. The performance results clearly show that ConvNext outper-
formed all the other architectures while having only slightly more trainable
parameters than the other CNNs. Regarding the ViT, the accuracy was rela-
tively low. ViT can and does outperform most of the CNN architectures [7].
However, it needs to be trained on very large datasets as it lacks the image-
specific inductive biases inherent to the CNNs. When we compare the ERFs
shown in Figure 4.14, it can be seen that ConvNext and HRNet attend way
larger areas than the ResNet 50. Still, most focus is concentrated around the
centre point (red dot in Figure 4.14) of the ERF in CNNs; however, it shows
that the broader outreach is beneficial. The ViT shows very little ERF, even
though the mean distance is significant, except for a single square from which
the ERF was computed. The square corresponds to a single patch which
attends to a few others just sparsely but mainly to itself.

31





Chapter 5
Conclusion

In this thesis, we proposed several methods for increasing context in convolu-
tional neural networks. We tried two main approaches. The first was based
on the generation of random context in order to achieve sparse connections
between individual feature vectors. The second was utilising the dilated con-
volution.

Using the random context was a relatively simple method that led to in-
creased context. This approach was then extended by using relative positional
encoding for identifying new connections between feature vectors as local or
distant. For the last method with random context, we implemented the atten-
tion mechanism to assess and reweight the significance of the newly created
relationships. The inspiration came from the Vision Transformer, where self-
attention is the main building block of the architecture.

Dilated convolution is defined by the dilation parameter, which states how
far away the individual filter values are from each other in the grid. It reaches
further away from the centre of the convolution, which extends the context.
The downside of the dilated convolution is the high dilation parameter as it
no longer incorporates local context and creates artefacts in the input image.
We proposed a dilated convolution with a randomised kernel shape to prevent
the artefacts while extending the context.

We have shown how to measure the context used by the network. In con-
volutional networks, we used the receptive field as a quantitative indicator,
showing the area in the input image attended for creating a new feature. Fur-
ther, we said that not every part of the receptive field contributes the same. To
evaluate the context qualitatively, we introduced an effective receptive field.
As the effective receptive field is computed for a particular feature, we also
came up with the mean distance measure. It showed how far the feature, for
which the effective receptive field was computed, attends in the input image.

We evaluated our methods implemented in the ResNet 50 network on the
problem of classification into ten classes. We compared the use of the context
with the Vision Transformer, HRNet and ConvNext architectures.

The results showed that all our methods successfully added context into
the network. The receptive field contained the whole input area already after
a few convolutional layers. Performance-wise however, no significant increase
was registered.

33



5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The approach with the random sparse context showed that the more per-

mutations (context) we added, the worse the performance was. This was the
same for the random sparse context with relative positional encoding and also
the attention approach. It was likely that the network was overloaded with
context. So we tried adding the context later in the network on higher layers.
It showed a slight increase in performance, however again, not significantly.
We listed the experiment only with random sparse context as it showed the
most promising improvement. Though we ran the experiment for the relative
positional encoding and the attention, the improvement was insignificant.

The experiments with dilated convolution showed that the local context is
still more important because the performance drops rapidly without it. Com-
bining the standard and dilated convolutions saw a slight increase in perfor-
mance, though only for smaller dilation parameter d. The best performance
increase was achieved by the randomised convolution, in which accuracy was
0.67 % higher than the plain ResNet 50 at the cost of several times more
parameters.

Lastly, the plain ResNet 50 was compared with Vision Transformer, HRNet
and ConvNext architectures in terms of accuracy and effective receptive field.
It showed that the better performing convolutional architectures, which were
HRNet and ConvNext, could utilise the context better. The context utilisation
for Vision Transformer was surprising as it showed very little attention to other
parts of the image.

We still consider the context to be an essential part of increasing the
network’s performance. Potential research could focus on finding the right
amount of context so the network is not overloaded. Also, adding the context
into different parts of the architecture could lead to better results.

34



References

[1] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang, Chaorui
Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui Tan, Xinggang
Wang, Wenyu Liu, and Bin Xiao. Deep High-Resolution Representation
Learning for Visual Recognition. 2019.
https://arxiv.org/abs/1908.07919.

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin
Murphy, and Alan L. Yuille. DeepLab: Semantic Image Segmentation
with Deep Convolutional Nets, Atrous Convolution, and Fully
Connected CRFs. CoRR. 2016, abs/1606.00915

[3] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer,
Trevor Darrell, and Saining Xie. A ConvNet for the 2020s. CoRR. 2022,
abs/2201.03545

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016. 770–778.

[5] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig
Adam. Rethinking atrous convolution for semantic image segmentation.
arXiv preprint arXiv:1706.05587. 2017,

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. Advances in neural information processing systems. 2017,
30

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk
Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, and others. An image
is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929. 2020,

[8] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understand-
ing the effective receptive field in deep convolutional neural networks.
Advances in neural information processing systems. 2016, 29

[9] Jeremy Howard, and Kerem Turgutlu. FASTAI/imagenette: A smaller
subset of 10 easily classified classes from Imagenet, and a little more
French.
https://github.com/fastai/imagenette.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems. 2012, 25

35

https://arxiv.org/abs/1908.07919
https://github.com/fastai/imagenette


References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[11] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaim-

ing He. Aggregated Residual Transformations for Deep Neural Networks.
CoRR. 2016, abs/1611.05431

[12] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi Zhang, Haibin
Lin, Yue Sun, Tong He, Jonas Mueller, R. Manmatha, Mu Li, and
Alexander J. Smola. ResNeSt: Split-Attention Networks. CoRR. 2020,
abs/2004.08955

[13] Shanda Li, Xiangning Chen, Di He, and Cho-Jui Hsieh. Can Vision
Transformers Perform Convolution?. CoRR. 2021, abs/2111.01353

[14] Jaesin Ahn, Jiuk Hong, Jeongwoo Ju, and Heechul Jung. Rethinking
Query, Key, and Value Embedding in Vision Transformer under Tiny
Model Constraints. 2021.
https://arxiv.org/abs/2111.10017.

[15] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with
relative position representations. arXiv preprint arXiv:1803.02155. 2018,

[16] Matthias Holschneider, Richard Kronland-Martinet, Jean Morlet, and
Ph Tchamitchian. A real-time algorithm for signal analysis with the help
of the wavelet transform. 1990.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
ImageNet: A large-scale hierarchical image database. In: 2009 IEEE Con-
ference on Computer Vision and Pattern Recognition. 2009. 248-255.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving Deep
into Rectifiers: Surpassing Human-Level Performance on ImageNet Clas-
sification. CoRR. 2015, abs/1502.01852

36

https://arxiv.org/abs/2111.10017


Appendix A
Abbreviations

CNN . Convolutional Neural Network
ERF . Effective Receptive Field
HRNet . High-Resolution Network
MLP . Multilayer Perceptron
NN . Neural Network
ReLU . Rectified Linear Unit
RF . Receptive Field
SGD . Stochastic Gradient Descent
ViT . Vision Transformer

37





Appendix B
ERF visualizations

Figure B.1. Summed ERFs over all spatial positions of the final feature map for
the ResNet 50.

Figure B.2. Summed ERFs over all spatial positions of the final feature map for
the HRNet.

39



B ERF visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure B.3. Summed ERFs over all spatial positions of the final feature map for
the ConvNext.

Figure B.4. Summed ERFs over all spatial positions of the final feature map for
the Vision Transformer.

40


	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Contributions

	Architectures
	ResNet 50
	Bottleneck block

	Vision Transformer
	Self-Attention
	Positional Encoding

	High-Resolution Network

	Method
	Random sparse context
	Augmenting the context with relative positional encoding
	Adding Attention
	Dilated convolution
	Inserted dilated convolution

	Randomized dilated convolutions

	Experiments
	Methods of measurement
	Dataset and training
	Random sparse context
	Random sparse context on higher layers
	Augmenting the context with relative positional encoding
	Adding Attention
	Experiments with dilated convolution
	Comparison of the ResNet 50 with other architectures

	Conclusion
	References
	Abbreviations
	ERF visualizations

