
Bachelor’s thesis

Finding the Fastest Trajectory
for Autonomous Student

Formula

Michal Horáček

Supervisor: Ing. Jan Čech, Ph.D.

Faculty of eletrical engineering

Department of cybernetics

May 19, 2022

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

492073Personal ID number:Horáček MichalStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Finding the Fastest Trajectory for Autonomous Student Formula

Bachelor’s thesis title in Czech:

Nalezení nejrychlejší trajektorie pro autonomní studentskou formuli

Guidelines:

Propose an algorithm for finding the fastest trajectory for the autonomous student formula. The input will be a list of points
delineating the track. The output will be the trajectory as a list of waypoints comprising position and velocity. As a proxy
problem, find (1) the shortest trajectory, and (2) the trajectory minimizing the average curvature. Formulate the problem
mathematically, use a suitable representation and an optimization solver. The dynamic model of the formula can be very
simplistic. Validate the algorithm on a synthetic experiment, or optionally on the real autonomous formula.

Bibliography / sources:

[1] Nitin R. Kapania. Trajectory planning and control of an autonomous race vehicle. PhD Thesis. Stanford University,
2016.
[2] Alexander Liniger. Path Planning and Control for Autonomous Racing. PhD Thesis. ETH Zurich, 2018.
[3] Adam Slomoi. Path Planning and Control in an Autonomous Formula Student Vehicle. Technical Report. Monash
University, 2018.

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Čech, Ph.D. Visual Recognition Group FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 26.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Jan Čech, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Declaration
I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instruc-
tions for observing the ethical principles in the preparation of university theses.

Prague, date
Signature

I

Acknowledgement
First and foremost, I would like to thank my thesis supervisor Jan Čech for giving
me the opportunity to work on this thesis. His expert guidance was indispensable
to ensure the steady progress of my work. Without his invaluable advice, this thesis
could not be completed in its current form.

Next, I would like to thank Hynek Zamazal for implementing the Stanley control
algorithm for our formula. Without him, my algorithm would not be as successful.
In addition, I am very grateful for his help with the Formula Student Driverless
Simulator and the integration of my algorithm with the rest of the formula’s au-
tonomous pipeline. I also wish to express my gratitude to Daniel Štorc for his
excellent job in leading eForce Driverless and supporting me in my struggles with
the Robot Operating System.

Furthermore, I would like to thank Tomáš Roun for developing SLAM for our
formula and for his advice on writing a thesis in LATEX. Without him, this thesis
would not be possible. Moreover, I am very grateful to Matěj Zorek and Dima
Khursenko for their work on the reactive path planning algorithm. Their efforts
have been integral to the success of my algorithm. Finally, I would like to thank
each member of eForce for maintaining the team spirit.

II

Abstract
This thesis proposes a trajectory planning algorithm for an autonomous formula
built for the international Formula Student competition. In particular, the thesis
focuses on the situation where the vehicle’s environment is largely known and de-
scribed by a SLAM–provided global map of cones delineating the track. We demon-
strate a parametrization method based on a list of cones, that is robust to false
detections. Next, we construct three optimization problems: the shortest path, the
path minimizing the average curvature, and the fastest path that takes basic han-
dling limits of the vehicle into account. The algorithm outputs both the path and its
optimal speed profile. Our work is validated on multiple sources of data, including
real–world SLAM maps and the Formula Student Driverless simulator, where we
successfully decreased lap times by half compared to a simple baseline algorithm.

Keywords: Path planning, Trajectory planning, Autonomous racing, Vehicle
dynamics, Optimization, Formula Student

Abstrakt
Tato práce navrhuje algoritmus plánováńı trajektorie pro autonomńı formuli po-
stavenou pro mezinárodńı soutěž Formula Student. V této práci se zaměřujeme na
situaci, ve které je okoĺı vozidla do značné mı́ry známo a popsáno globálńı mapou
kužel̊u poskytnutou algoritmem SLAM, která vytyčuje trat’. Předvád́ıme paramet-
rizačńı metodu založenou na listu kužel̊u, která je robustńı v̊uči falešným detekćım.
Dále konstruujeme tři optimalizačńı problémy: nejkratš́ı cestu, cestu minimalizuj́ıćı
pr̊uměrné zakřiveńı a nejrychleǰśı cestu, která bere v úvahu základńı j́ızdńı omezeńı
vozidla. Náš algoritmus poskytuje jak cestu, tak i jej́ı optimálńı rychlostńı profil.
Naše práce je validována na několika zdroj́ıch dat, včetně SLAM map sesb́ıraných v
realném světě a v Formula Student Driverless Simulator, kde jsme úspěšně sńıžili čas
projet́ı kola tratě na polovinu ve srovnáńı s jednoduchým základńım algoritmem.

Kĺıčová slova: Plánováńı cesty, Plánováńı trajektorie, Autonomńı závoděńı,
Dynamika vozidla, Optimalizace, Formula Student

III

TABLE OF CONTENTS

Table of Contents

1 Introduction 1
1.1 Formula Student . 1
1.2 Autonomous pipeline . 2

2 Proposed method 4
2.1 Input data . 4

2.1.1 Reactive path planning . 5
2.1.2 SLAM map . 6

2.2 Track parametrization . 7
2.2.1 Estimating track boundaries 7
2.2.2 Curvature–based sampling . 9
2.2.3 Constructing transverse lines 10
2.2.4 Enforcing track boundaries 10

2.3 Proxy tasks . 13
2.3.1 Length . 13
2.3.2 Curvature . 15

2.4 Time optimization . 17
2.4.1 Speed profile . 18
2.4.2 Racing line . 19

3 Implementation 22
3.1 System architecture . 22
3.2 Pipeline integration . 23

4 Validation 25
4.1 Data sources . 25
4.2 Component testing . 28
4.3 Formula Student Driverless Simulator 34

5 Conclusion 40

A References 41

IV

Chapter 1

Introduction
This thesis proposes a path planning algorithm for an autonomous formula built
for the international Formula Student competition. We focus specifically on finding
the fastest trajectory for a known race track.

Path planning, the problem of finding an optimal path through an agent’s en-
vironment, is an extensively studied problem in robotics. Its origins can be traced
back to the invention of classical graph search algorithms such as Dijkstra’s algo-
rithm [1] or A* [2], which remain widely used to the present day. During the 1990’s
computers became more portable, powerful, and prevalent. New advances in vehicle
dynamics [3] were used to augment cars with systems such as traction or launch
control. In 1994 FIA banned all electronic driver aids from Formula One because
they were believed to devalue the driver’s skill. Meanwhile, tools that calculate the
minimal time trajectory were developed to aid in the design process of Formula One
teams [4, 5]. The new millennium saw the beginnings of autonomous racing as a
standalone category of motor sport. The most famous early autonomous race was
the DARPA Grand Challenge, especially its second iteration in 2005 [6]. Nowadays
multiple autonomous racing series are being held annually, for example Roborace
or Indy Autonomous Challenge. In the latter series, cars compete head–to–head,
combining algorithms for autonomous driving with game theory [7].

The described trends were reflected in the Formula Student competition in 2016
when the driverless category was announced [8]. The first driverless racing season
of the competition took place the following year. Since then, teams from all over
the world have presented their innovations in path planning and other related fields
[9, 10, 11, 12].

Section 1.1

Formula Student
Formula Student, then called Formula SAE, was founded in 1981 in the USA. 25
years later, the competition came to Europe in the form of Formula Student Ger-
many racing event. Four years later, the original category of vehicles with internal
combustion engines became accompanied by formulas powered by an electric pow-
ertrain. In 2016 a third category Formula Student Driverless was added thanks to
pressure of sponsoring companies from German industry. Today, the most presti-
gious races are held in Germany, Hungary, Spain, and the United States.

Students from Czech Technical University have entered the Formula Student
competition quite early. Czech Republic’s first team, CTU CarTech, which competes
in the combustion vehicle category, was established in 2006, the year the competition
itself came to Europe. In 2010 the team has once again kept pace with developments
in Formula Student and started CarTech Electric to compete in the new Formula
Student Electric category. In its third racing season, CarTech Electric was rebranded
as eForce FEE Prague Formula as it is known today. To date, eForce has constructed
ten formulas, and the eleventh is being built for the current racing season.

1

1.2 Autonomous pipeline

Stereolabs ZED
Camera

Ouster OS1 LiDAR

Ellipse2-D INS

Visual Cone
Detection

LiDAR Cone
Detection

Reactive Path
Planning

Optimal Path
Planning

Control AlgorithmSLAM

Point clouds

Images

Relative cone
positions

Trajectory

Measurements

Car position
and heading

Sensors Perception Planning & Control

Ab
so

lu
te

 c
on

e

Steering
angle

Motor
torque

po
si

tio
ns

Figure 1.1: Diagram of the autonomous pipeline. This thesis focuses on the high-
lighted optimal path planning component of the pipeline.

From 2019 onward, eForce has been participating in the driverless category
through the eForce Driverless team. The driverless team received the seventh gener-
ation of eForce formula to serve as the vehicle platform. Since then, eForce Driverless
has been developing algorithms for autonomous driving, as well as augmenting the
existing platform with the necessary hardware.

Section 1.2

Autonomous pipeline
Our car’s autonomous pipeline runs on a Zotac Z-Box computer equipped with a
standard Linux Ubuntu operating system. The autonomous system is made up of
separate modules that communicate through the Robot Operating System (ROS)
framework. A diagram of the modules and their connections is shown in Figure 1.1.
There are additional nodes in the system that were omitted for clarity, for example,
the CAN node that handles communication with the rest of the car or the lap counter
node.

The pipeline begins with the data input provided by the car sensor array. Cur-
rently, we use an Ouster OS1 LiDAR, a Stereolabs ZED camera, and an SBG Sys-
tems Ellipse2–D inertial navigation system (INS). Their physical location in the car
is shown in Figure 1.2.

In the perception step of the pipeline, sensory input is used to produce a rep-
resentation of the environment. Camera images are processed by a convolutional
neural network, based on the YOLOv3 object detection architecture, which detects
cones in an image. The cone pixels are subsequently projected into the world coor-
dinates via a homography mapping between the image and the world [13]. The cone
positions can be obtained simultaneously from LiDAR point clouds. The LiDAR
detector starts with removing the ground points that make up the majority of a
given point cloud. Then the remaining points are clustered together, reconstruct-
ing the individual cones whose positions are returned [14]. Continuously generated

2

1.2 Autonomous pipeline

Stereo Camera

LiDAR

INS Antennas

Figure 1.2: Photo of the autonomous formula with sensors marked. The INS itself
is hidden inside the monocoque.

measurements of cone positions in vehicle coordinate system combined with INS
readings are fed into a simultaneous location and mapping (SLAM) algorithm. In
return an estimated map of cones and the car’s position and heading on this map
in the world coordinate system is produced [15].

In the first lap, vehicle coordinate system–based reactive path planning is used
until the entire race track is explored and mapped by SLAM at its completion. This
path planning algorithm provides a conservative path through the cones currently
seen by the camera and LiDAR detectors. In the remaining nine laps, our algorithm
computes the optimal trajectory, which is the subject of this thesis. Both path
planning algorithms provide a trajectory to the Stanley control algorithm [6]. The
control algorithm uses a nonlinear lateral regulator to transform the trajectory into
a sequence of steering angles. At the same time, a longitudinal regulator calculates
motor torque instructions to match the speed profile. Finally, the steering angle
and motor torque commands are sent via controller area network (CAN) bus to the
appropriate electronic control units that execute them.

3

Chapter 2

Proposed method
The algorithm outlined in this thesis consists of several components, which are all
explained in this section.

In Section 2.1 we look at the input data. We discuss the dynamic disciplines
of Formula Student and related competition rules. Then we explain the reactive
path planning algorithm that navigates the car during the first lap. While the
formula follows the path provided by the reactive path planning algorithm, the
SLAM algorithm maps the cones delineating the race track and localizes the formula
on its map. This information serves as a foundation for our work, so we explore its
properties at the end of this section.

In Section 2.2, we develop a path representation on a given race track. In the
process, we take steps to maximize the ratio of accuracy of representation to com-
putation time required when working with the parametrization. We also decide on
the intended behavior of our parametrization near the track boundaries.

In Section 2.3 we discuss the length and average curvature of a path. Afterwards
we derive these measurements for the path parametrization method introduced in
the second subsection and construct optimization problems which lead to shortest,
respectively curvature–minimal paths. Furthermore, we examine properties of these
paths in the context of searching for a fastest trajectory.

In Section 2.4 we consider the physical laws that constrain car performance.
Subsequently, we derive an algorithm to calculate the optimal speed profile for a
given path. With a speed profile, we can transform a path, which carries merely
spatial data about its shape and orientation, into a trajectory. Finally, we combine
partial results reached in the course of this thesis to obtain the desired time–optimal
trajectory.

Section 2.1

Input data
The Formula Student competition consists of four dynamic disciplines. In the ac-
celeration discipline, formulas are compared by their acceleration capabilities. The
eight–shaped skidpad measures the car’s ability to execute sharp turns. Both of
these disciplines possess a race track predefined in the competition rules [16]. How-
ever, their simple layout is not interesting to us. The third discipline is autocross,
which focuses on driving through an unknown environment. Because our algorithm
relies on prior knowledge of the race track, this discipline is also unsuitable for our
purposes. This leaves us with only the final discipline, trackdrive, which is illustrated
in Figure 2.1.

In trackdrive, the teams aim to successfully complete 10 laps around the track,
optimally in the fastest possible time. Teams start without precise knowledge of the
environment and have to map it during the first lap. Therefore, we can consider the
first lap to be a case of an autocross run and use the same approach to complete the
lap. We briefly discuss how to complete the first lap in Section 2.1.1. Furthermore,
autocross and track drive share the same set of guarantees on the properties of the
race track, which is provided by the rules and the competition handbook [17]. The
rules say that the track is at least 3 m wide and contains no turns of outside diameter

4

2.1 Input data

Blue/Yellow cone

Small/Big orange cone

Start/Finish line

10 Laps

Figure 2.1: Trackdrive schematic taken from FSG rules [16]. The direction of travel
is always oriented such that blue cones mark the left track boundary and yellow
cones delineate the right track boundary.

smaller than 9 m. Furthermore, the distance between two successive cones of the
same color is at most 5 m. Finally, the length of a single lap is known to be between
200 m and 500 m.

Subsection 2.1.1

Reactive path planning

During the first lap of trackdrive, the car relies on a reactive path planning algo-
rithm. This algorithm is not the author’s work. It was developed by Matěj Zorek,
one of the team’s founding members. Recently, a fellow eForce Driverless member
Dima Khursenko has improved upon Matěj Zorek’s original design. In principle,
the algorithm identifies a centerline through the cones currently seen by our neural
network. The neural network detects up to 20 m distant cones [13], which translates
to about five cones on both sides of the track. In our experience, at least three cones
of both colors (corresponding to the next 10 m of the track) must always be localized
to successfully complete the first lap.

However, during sharp turns, the cones on the track’s inner edge may fall out
of camera view. In this case, no cones of that color are detected. Therefore, the
reactive path planning algorithm employs several heuristics that help solve common
situations such as this. For example, it can fill in the missing cones on the inner turn
radius using the visible cones on the outer edge and assuming that the track is 3 m
wide. A more detailed explanation of this algorithm can be found in Boháč [9]. The
reactive path planning algorithm has been extensively tested and it has performed
reasonably well in the last year’s competitions. In conclusion, we expect the car to
finish the first lap, at which time our algorithm assumes control over path planning.

5

2.1 Input data

−20 −10 0 10 20 30 40 50

−5

0

5

10

15

20

25

30 False detection

Missing cone

First lap path

Figure 2.2: A SLAM cone map built during the first lap. This map has been created
from real data. We highlight examples of false positive and false negative errors
typically encountered on SLAM maps.

Subsection 2.1.2

SLAM map

As the formula travels through the race track, its detectors generate measurements
of the cone positions from different places. In addition to reactive path planning,
which we have already discussed, these data are sent to the SLAM algorithm [15].
SLAM continuously integrates cone measurements taken from numerous angles and
positions into a global cone map in the world coordinate system. By the time the
first lap is finished, SLAM will have explored the entire race track and built a global
map of the cones that delineate it.

The second function of the SLAM algorithm is localization. SLAM continuously
provides the formula’s position on the global cone map. Our algorithm saves the
positions during the first lap and subsequently uses them during the parametrization
procedure, as we describe in Section 2.2.1.

Figure 2.2 demonstrates how a typical SLAM cone map constructed from real
data looks. Although the outline of the track is clearly visible, a few false negatives
and false positives are also easily recognizable. Imprecision in the reported cone
positions is caused by inaccuracies in sensory measurements and failures of the cone
detectors. The topic of dealing with these errors is addressed in the next section.

6

2.2 Track parametrization

Section 2.2

Track parametrization
Several parametrization schemes can be found in literature. For example, Kapa-
nia [18] stores information about the track and the path using curve functions.
Slomoi [12] discretizes the track through fixed transverse lines and then keeps a sin-
gle point on every such line. Together, the points provide a piecewise approximation
of a path. For the purposes of this project, we decided to use the latter approach
for its simplicity. Its principle is illustrated in Figure 2.3.

The entire parametrization process is depicted in Figure 2.4. In Section 2.2.1
we demonstrate how to estimate the track boundaries shown in Figure 2.4b. In
Section 2.2.2 we show how to gain representation accuracy in sharp turns while
saving computation time on straight segments of the track, which we depict in
Figure 2.4c. We complete the parametrization process in Section 2.2.3 to obtain the
final result in Figure 2.4d.

(a) A continuous path defined by a curve.

λk+2

λk+1

bi

bi+1

bi+2

bi+3

yj

yj+1

yj+2 yj+3

lk

lk+1

lk+2

lk+3 lk+4

rk+4
rk+3

rk+2

rk+1

rk

λk

λk+3

λk+4

(b) Representation of the same path produced
by our parametrization method.

Figure 2.3: Original continuous path and its discretized approximation based on
transverse parametrization lines. We mark the relevant points of interest with the
appropriate symbols used in this section.

Subsection 2.2.1

Estimating track boundaries

When our algorithm receives a SLAM map at the completion of the first lap, several
preprocessing steps are performed. The cones that form the map are internally
stored as a two–dimensional array whose rows consist of arbitrarily ordered triplets
(x, y, color) representing individual cones. Color is an integer label that specifies
blue, yellow, small orange, or big orange cones. We ignore the small and big orange
cones, since the former are completely absent in trackdrive and the latter only mark
the finish line (see Figure 2.1).

The remaining blue and yellow cones are separated into an array of blue cones
and an array of yellow cones. In our notation summarized in Table 1, we refer to the
positions of the blue cones as the sequence (bi)

B
i=1 and the positions of the yellow

7

2.2 Track parametrization

5 10 15 20

0

5

10

15

20

25

First lap path

(a) Cones forming a track segment, including
two false detections. Orange line is the path

taken by the formula during the first lap.

5 10 15 20

0

5

10

15

20

25

Left boundary

Right boundary

First lap path

(b) Track boundary estimation using cone
projections on the first lap path. Outlying

blue cone was filtered out.

5 10 15 20

0

5

10

15

20

25

Left boundary

Right boundary

First lap path

Sampled points

(c) Sampling the first lap path according to
local curvature. Selected points (di)

D
i=1 are

marked with orange diamonds, D = 8

5 10 15 20

0

5

10

15

20

25

Left boundary

Right boundary

First lap path

Transverse lines

Left intersections

Right intersections

(d) Final transverse parametrization lines.
Left intersections (li)

D
i=1, and right

intersections (ri)
D
i=1 delineate the track.

Figure 2.4: Illustration of the parametrization process on a track segment.

8

2.2 Track parametrization

cones as (yi)
Y
i=1, where B is the total number of blue cones and Y the number of

yellow cones.
Next, we determine the left and right track boundaries from the array of blue

and yellow cones, respectively. We decompose this problem into two parts. First,
sorting the cones into the order in which they are encountered while driving along
the race track. Second, interpolating between neighboring cones using a method of
our choice. Our task is made significantly easier because SLAM provides the current
position and heading of the formula with respect to its map. Our algorithm collects
these data during the first lap and uses them to reconstruct the path taken by the car.
We represent the path taken in the first lap as the sequence (ti)

T
i=1. Crucially, this

sequence is already sorted in driving order. Although many interpolation techniques
are possible, we choose the simplest in the first version of our algorithm. We linearly
interpolate between every pair of neighboring points ti and ti+1 and produce a
piecewise linear approximation of the first lap path.

We use the sorted property of (ti)
T
i=1 to sort the cones. For every cone, we

find its orthogonal projection on the nearest line segment created from the sequence
(ti)

T
i=1. We illustrate this process in Figure 2.4b. Afterwards, we permute the cones

into the order in which they are projected onto the path from the first lap.
In addition to sorting the cones, this process filters out serious false detections.

Although the competition track is unknown prior to the race for the formula, teams
may check and measure it using analog devices during a track walk organized before
the race. Therefore, we can always obtain an upper bound on the cone distance to
any valid path through the race track. We delete all cones further to the nearest
point on the path from the first lap because they are false detections. In Figure 2.2
we eliminate the lower false detection in this way, and our system is robust enough
to handle the upper one.

Finally, the sorted blue cones form the left track boundary, while the sorted
yellow cones create the right track boundary. Geometrically, both track boundaries
are piecewise linear curves. We explored other options in addition to linear interpo-
lation, for example cubic splines [19]. Ultimately, we decided to prefer simplicity in
the first version of this algorithm over other potential benefits such as differentiabil-
ity of the interpolation at each point. An alternative robust solution to determining
the track boundaries is demonstrated by the AMZ Racing team [11].

Subsection 2.2.2

Curvature–based sampling

The track boundaries trivially lead to a parametrization using Equation (2), which
connects opposing points on the track boundaries. This is a valid parametrization
which is capable of representing paths. However, it faces two serious issues. First, it
places the lines fi with the same density in both hairpin turns and straight segments
of the track. This is not wrong, but a smarter scheme allocates the parametriza-
tion lines fi more densely in regions with high curvature where they are needed
to maintain accuracy and places them further apart in straight segments where few
are sufficient. Obviously, fewer parameterization lines lead to a less computation-
ally demanding parametrization on which optimization problems converge to local
minima faster. Second, the connecting line fi often crosses the track boundaries
at a sharp angle, severely affecting the quality of the solution to any optimization
problem; see Figure 4.3.

9

2.2 Track parametrization

To solve the first issue, we begin with our initial first lap path (ti)
T
i=1, on which

we will allocate new curvature adjusted points. First, we use the inscribed circle
function % from Algorithm 1 to calculate the curvature at every point ti. The
measured curvatures form an empirical distribution. Using the quantile function,
we separate the track into Q distinct regions of similar curvature. We associate the
weight wq, which is drawn from a weight sequence (wq)

Q
q=1, with the q–th quantile.

Each point ti is then assigned a weight according to its quantile. We equidistantly
interpolate D points on a weighted version of the first lap path, where the segment
from ti to ti+1 is given the length

δ(ti, ti+1) =
wi + wi+1

2
||ti+1 − ti||. (1)

Transforming the newly assigned points back to fit onto the original path (ti)
T
i=1,

we obtain D curvature–adjusted sample points (di)
D
i=1. These are depicted in Fig-

ure 2.4c. In summary, D controls the smoothness of discretization and the weights
(wq)

Q
q=1 influence how aggressively the placement of (di)

D
i=1 discriminates according

to the local curvature.

Subsection 2.2.3

Constructing transverse lines

We solved the first problem by allocating points (di)
D
i=1 according to the local cur-

vature. We solve the second outlined issue in a natural way. At every point di we
find the normal vector ni to the segment tj to tj+1 on which di is placed. Next,
we draw a line through the point di in the direction of the normal vector ni. We
call this line fi and it intersects with the track boundaries gained in Section 2.2.1 at
some point li, respectively ri. Line fi can thus be expressed as an affine combination
of li and ri using the parameter λi

fi(λi) = λili + (1− λi)ri. (2)

Now we are able to represent a path on the race track as a sequence (λi)
D
i=1.

However, because λi is currently an unconstrained parameter, many invalid paths
are allowed. In the next section, we discuss how to select an appropriate interval
[ai, bi] for λi and how to enforce it during optimization. A summary of the symbols
used in this section and their meaning is presented in Table 1.

Subsection 2.2.4

Enforcing track boundaries

In the context of Equation (2), it is clear that ensuring that the path remains within
the track bounds is equivalent to condition λi ∈ [0, 1] ∀i ∈ 1, . . . , D. Furthermore,
we need to consider the physical width of the car (1.6 m) so we avoid hitting the
cones. Consequently, we need to restrict every λi to some interval [ai, 1 − ai] that
creates a minimal margin 0.8 m wide around the track boundaries. In practice, we
allocate larger margins to account for inaccuracies; see Figure 4.11a.

From a simple reasoning derived from Figure 2.6 we obtain the equation

ai =
M

||li − ri||
(3)

10

2.2 Track parametrization

−30 −20 −10 0 10

−25

−20

−15

−10

−5

0

Figure 2.5: Parametrization of an example race track using D = 50 transverse lines.

Name Symbol Domain Type

Number of blue cones B N scalar
Number of yellow cones Y N scalar

Number of points in the first lap path T N scalar
Number of quantiles considered Q N scalar

Discretization smoothness D N scalar
Minimal distance to track boundaries M R+ scalar

Weight associated with q–th quantile wq R+ scalar
Normal vector to i–th path segment ni R2 2D vector
Intersection of fj and left boundary lj R2 2D point

Intersection of fj and right boundary rj R2 2D point
Valid region on line fj [ai, 1− ai] ai ∈ [0, 0.5) interval

Blue cone positions (bi)
B
i=1 bi ∈ R2 2D points

Yellow cone positions (yi)
Y
i=1 yi ∈ R2 2D points

Points representing the first lap path (ti)
T
i=1 ci ∈ R2 2D points

Points resampled based on curvature (di)
D
i=1 di ∈ R2 2D points

Track path representation (λj)
D
j=1 λj ∈ [ai, 1− ai] scalars

Transverse parametrization lines (fj)
D
j=1 fj : R→ R2 functions

Weighted path distance function δ R2 × R2 → R+ function
Off–track distance function θ R→ R+ function

Off–track penalization function η R+ → R+ function

Table 1: Summary of used mathematical symbols and notation

11

2.2 Track parametrization

valid region

total race track width

D
is

ta
nc

e
fro

m
 v

al
id

 re
gi

on

Off-t
rac

k d
ist

an
ce

 fu
nc

tio
n θ

li ri

transverse line fi

0ai1 - ai1values of λi

road surface

margin M margin M

Figure 2.6: Illustration of the off–track function θ which calculates distance of λi
from its valid interval [ai, 1 − ai]. The valid region corresponds to values of λi, for
which the resulting point from Equation (2) lies further than M meters right to li
and M meters left to ri along the line fi.

where M is the desired margin width. Next, we construct an off–track distance
function θ that returns the distance outside the valid region along the transverse
line fi

θ(λi) = max{ai − λi, 0, λi − (1− ai)}. (4)

Finally, we select a new function η : R+ → R+ that assigns a penalty based on
the distance from the valid region. In Section 3, we choose to solve optimization
problems with iterative optimizers and automatic gradient computation. Therefore,
we require η to be differentiable.

The selection of a concrete function η is further determined by the rules that
define two types of penalties for diverging from the marked race track. First, hitting
a cone incurs 2 s penalty to the total track time. Second, an off-course event, which
occurs when the vehicle has all four wheels outside the track boundaries, is penalized
with 10 s penalty. Therefore, executing a faster trajectory by driving at or even
beyond the track boundaries is never worth it under current rules. Consequently,
we want the penalization function η to be hard enough to prevent these events.

In practice, a simple linear function η(x) = αx performs flawlessly. We choose α
proportionately to typical values of the problem’s objective function. For curvature
optimization, whose objective function returns values less than one, α = 1 provides
sufficient penalization. In contrast, when optimizing the length of a given path, we
expect values somewhere in the hundreds; thus, we choose α = 100.

The track boundary enforcement feature appears as a term in every optimization
problem defined in the following sections as

Pofftrack(λ1, . . . , λD) =
D∑
i=1

(θ ◦ η)(λi) =
D∑
i=1

η(θ(λi)) (5)

12

2.3 Proxy tasks

Section 2.3

Proxy tasks
Once a valid path through the race track can be formed, the natural next step
is to ask about its quality. In this thesis, we ultimately aim to minimize the time
required to execute the path. In general, time is expressed as distance over speed, ds .
To start, we formulate minimization of path length as an optimization problem and
introduce a way to efficiently compute an initial guess close to the optimal solution.
Afterwards we show that maximizing speed is related to minimizing the curvature
of a path; then we express it as an optimization problem as well.

Both properties are based on continuous paths specified by differentiable curves.
However, they can naturally be extended to operate on discretized tracks, as we
discussed them in the preceding section.

Subsection 2.3.1

Length

The importance of length in the context of finding the fastest trajectory is apparent.
A smaller distance to cover intuitively leads to faster lap times. The length of a path
defined by a continuous curve φ : [a, b)→ Rn is expressed by the integral

L(φ) =

∫ b

a
||φ′(s)||ds (6)

In the previous sections, we used a piecewise linear approximation of a continuous
path φ. Because its linear segments have a constant first derivative, the integral can
be substituted for a simple summation

L(λ1, ..., λD) =
∑
i

||fi+1(λi+1)− fi(λi)|| (7)

Note that for a fixed path φ the length of its approximation is always smaller
than the length of φ itself. It can be proven that as the discretization parameter D
approaches infinity, the length of the increasingly smooth approximation converges
to the original length of φ. Combining the track length function with the soft con-
straint term Pofftrack to enforce track boundaries, we get the optimization problem

arg min
λ1, ..., λD

L(λ1, ..., λD) + Pofftrack(λ1, . . . , λD) (8a)

subject to λ1 = λD. (8b)

The optimization constraint in Equation (8b) forces the path represented by (λi)
D
i=1

to be a closed loop. Minimizing this optimization problem results in the path de-
picted in Figure 2.7.

Moreover, we are able to quickly obtain an excellent initial guess (λi)
D
i=1 of the

shortest path, which is shown in Figure 2.8a, through dynamic programming. We
discretize each λi to G values, which correspond to G 2D points placed on the
appropriate line fi. Next, we connect every point from the G points on line fi with
the G from the previous line fi−1 and the next line fi+1. Every edge between two

13

2.3 Proxy tasks

−30 −20 −10 0 10

−25

−20

−15

−10

−5

0

Figure 2.7: The shortest path through the track.

points is weighted by its length. Thus, we obtain a directed acyclic graph (DAG)
with nodes and edges illustrated in Figure 2.8b. Finally, we add an additional layer
of G points from the first line f1 to the end of the DAG. The duplicated layer of
points in the first and the last layer of DAG simulates the closed nature of the
trackdrive race track. We calculate the initial guess using a standard DAG search
and then transform the nodes that form the best path through the DAG back to the
appropriate (λi)

D
i=1 values.

−30 −20 −10 0 10

−25

−20

−15

−10

−5

0

(a) An initial guess of the shortest trajectory obtained
from DAG graph search.

bi

bi+1

yj

yj+1

lk

lk+1

lk+2

rk+1

rk

lk+2

(b) Graph edges between layers in
DAG. Edges possess a cost equal

to euclidean distance between
their end nodes.

Figure 2.8: Using DAG to find an initial guess of the shortest trajectory.

14

2.3 Proxy tasks

Subsection 2.3.2

Curvature

The importance of the curvature–minimal path is derived from the friction ellipse
which is discussed in Section 2.4. The curvature–minimal path can be traveled using
the least lateral force Fy. Consequently, it maximizes the available longitudinal force
Fx which influences the speed of the vehicle.

The curvature κ at the point φ(s) of a continuous differentiable curve defined by
the function φ : [a, b)→ Rn is commonly defined as

κ(s) =
T ′(s)

N(s)
(9)

T (s) stands for the tangent to the curve at point φ(s) and N(s) represents the
normal vector to φ at φ(s). The total curvature of φ that we wish to minimize is
then

K(φ) =

∫ b

a
|κ(s)|ds =

∫ b

a
k(s)ds (10)

where k is the magnitude of the signed curvature κ, k = |κ|. We aim to minimize the
curvature of a path regardless of its orientation, therefore we consider k instead of
κ. In addition, if φ is a closed curve as in our case (i.e. φ(a) = φ(b)),

∫ b
a κ(s)ds = 0.

However, the piecewise linear approximation we chose in Section 2.2 to repre-
sent a path is not differentiable at its every point and, therefore, lacks a defined
normal and tangent vector at those points. We overcome these limitations by using
an equivalent, historically used, definition of curvature. The alternative definition
is based on the osculating circle, which is the best approximating circle to a given
curve φ at the point φ(s). Mathematically,

k(s) = lim
p1,p2,p3→φ(s)

%(p1,p2,p3) (11)

where p1,p2,p3 ∈ φ and % : R3 → R is a function that returns the curvature of a
circle on whose circumference lie points p1, p2 and p3. The function % is explained
by Algorithm 1 and is illustrated in the added sketch. We use the property of a
circle that its curvature is equal to the inverse value of its radius 1

r at each point.

Algorithm 1 Curvature of a circle inscribed to three points

Input: Points p1,p2,p3

Output: Curvature k of the inscribed circle
1: a = ||p2 − p1||
2: b = ||p3 − p2||
3: c = ||p1 − p3||
4: q = a2+b2−c2

2ab

5: k =
2
√

1−q2
c

6: return k

p1

p2

p3

r = c

2
√

1−q2

Returning to our approximation of a path through a piecewise linear function,
the curvature is zero when we pick three points lying on the same segment fi(λi) to
fi+1(λi+1). We consider meaningful only the curvatures derived from the osculating

15

2.3 Proxy tasks

−30 −20 −10 0 10

−25

−20

−15

−10

−5

0

Figure 2.9: Path minimising average curvature.

circles inscribed to three successive points fi−1(λi−1), fi(λi), fi+1(λi+1) of the path.
If we sum these terms together, we obtain the expression

K(λ1, . . . , λD) =
∑
i

%(fi−1(λi−1), fi(λi), fi+1(λi+1)) (12)

Increasing the value of the discretization smoothness parameter D corresponds
to the limit in Equation (11). From this we can prove that Equation (12) is an
approximation that converges to the true total curvature of the continuous curve φ
defined in Equation (10) as D increases.

Similarly to searching for a path with the shortest length, we can use Equa-
tion (12) to search for a path with the smallest curvature. We formulate the appro-
priate optimization problem as follows:

arg min
λ1, ..., λD

K(λ1, ..., λD) + Pofftrack(λ1, . . . , λD) (13a)

subject to λ1 = λD−1, (13b)

λ2 = λD (13c)

which results in the path shown in Figure 2.9. Once again the constraints ensure
that the obtained path is a closed loop.

Unlike in the case of a shortest path, dynamic programming cannot provide a
good initial guess of the desired path. DAG is based on the fact that when we begin
exploring the neighbors of a node, we have already reached the optimal value in that
node. Because % from Algorithm 1 requires points from three successive layers, we
cannot ensure this requirement, and so we cannot formulate curvature minimization
as a DAG search problem.

In this section, we discussed the beneficial qualities of shortest distance paths as
well as paths with smallest curvature. In the next section, we will explore how to
combine their positive properties into a time–optimal trajectory while acknowledging
physical limits of the car’s abilities to execute a given trajectory in reality.

16

2.4 Time optimization

Section 2.4

Time optimization
So far, we only discussed trajectories in terms of geometry, regardless of the physical
requirements they impose on a vehicle attempting to travel them. However, if we
wish to provide a good racing line, we need to make sure it is feasible, otherwise the
entire effort expended towards its calculation is worthless.

Movement is in reality governed by highly complex and decidedly nonlinear phys-
ical laws, which are hard to model while maintaining an acceptable computation
speed. Therefore, we need to decide which laws we will keep and which we neglect.

We model the race car as a single tire with the combined force transfer and
acceleration abilities of the four real tires and the mass of the entire car. We neglect
any tire modeling, for example the slip ratio. The only enforced physical constraint
is the friction ellipse, which is also called the circle of forces

F 2
x + F 2

y ≤ (µFz)
2 (14)

This inequality describes the driving limits of a car. A vehicle is pressed against
the road surface with normal force Fz. There is a certain maximum force µFz that
tires can transfer to the road surface. This force is a function of the normal force Fz
and the friction coefficient µ which describes the tire–road interaction. The right–
hand side of Equation (14) can be distributed among longitudinal force Fx, which
accelerates/decelerates the car, and lateral force Fy, which changes the car’s heading.
In total, the longitudinal and lateral forces must remain within the handling limits
defined by µFz.

The grip coefficient µ is affected by many things, from road composition, temper-
ature, or wetness, to tire material, size, inflation pressure, or temperature. Because
accurate knowledge of µ is integral to safety–critical applications such as anti–lock
braking systems or adaptive cruise control, it has been a focus of numerous research
projects. The approaches to learning µ range from optical [20] to slip–based [21]
and a comprehensive overview can be found in [22]. However, for our purposes, it is
common to assume a constant value for µ corresponding to driving on dry asphalt
[23]. According to literature [24], µ = 0.75 is a reasonable choice.

The available normal force Fz consists largely of the gravitational term mg, which
remains constant. But when the car is moving, it increases due to the aerodynamic
downforce

Faero = ρArefCLv
2 (15)

where ρ is the air density, acting on the vehicle. Equipping the formula with an aero-
dynamic package decreases the aerodynamic lift coefficient CL, which in turn gen-
erates a higher downforce. Our formula has an aerodynamic package designed to
produce 977 N of downforce at its design target speed of 16 m s−1 [25]. The relevant
parameters of our aerodynamic package are included in Table 2. However, the de-
sign speed of 16 m s−1 is not yet always reachable by our autonomous formula. To
evaluate the importance of Faero, we consider the aerodynamic downforce with our
formula’s parameters from Table 2 and set v = 7.5 m s−1. This is approximately the
average speed we estimate our formula can consistently maintain; see Figure 4.5c.
In this situation, Faero ≈ 313 N. That is about a third of the downforce that the
aerodynamic package was originally designed to provide and one seventh of the
gravitational term.

17

2.4 Time optimization

Parameter Symbol Value Unit

Friction coefficient µ 0.75 —
Formula mass m 212 kg

Coefficient of lift CL -3.82 —
Coefficient of drag CD 1.49 —

Reference aerodynamic area Aref 1.19 m2

Maximum acceleration amax 2 m/s2

Maximum deceleration amin -4 m/s2

Table 2: Physical parameters of our car relevant to the speed profile algorithm.
Properties of the aerodynamic package come from an unpublished engineering design
document [25].

However, the aerodynamic package also introduces aerodynamic drag to the sys-
tem, which slows down the car, weakening the benefits of higher downforce. We
have decided to neglect aerodynamic effects in the first version of our formula’s path
planning algorithm. Instead, we count any unmodeled aerodynamic improvements
of our car’s driving abilities towards a safety margin for its operation.

Finally, we estimate the maximum acceleration amax from the performance of
our formula in the acceleration discipline. Last summer it has typically completed
the 75 m long track in 9 s. Under our maintained simplification of acceleration’s
independence on speed, it amounts to acceleration of 2 m/s2.

Subsection 2.4.1

Speed profile

Given a path, we wish to calculate the maximum speed along the path that the car
is capable of executing under the physical laws considered. In our case, we use the
friction ellipse to derive the forces encountered along the path into their lateral and
longitudinal components. We begin by calculating the maximum speed at which the
formula remains within the handling limits. In other words, we find the speed at
which the centrifugal force is equal to the normal force at each point. We initialize
our speed profile at the s–th point of the path (pi)

P
i=0 with the following equation:

Ux(s) =

√
µg

k(s)
(16)

where k(s) is the average path curvature at the point ps calculated by Algorithm 1.
The initial speed profile for the trajectory in Figure 2.11 is drawn in Figure 2.10b.

In the next step, we calculate the maximal speed at the point ps that can be
reached from a parameterizable initial speed at the beginning of the path. At each
point, we therefore take the smaller of the maximum speed according to Equa-
tion (16) and the speed reached with the maximum acceleration from the previous
point on the path. Algorithm 2 describes this process, whose result is shown in
Figure 2.10c. When the first pass of the algorithm finishes, we have a speed profile
that is viable in terms of lateral force and accelerates feasibly.

In Algorithm 3 we use a similar process to ensure the feasibility of braking
maneuvers. Although the update step is the same, we start from the end of the
path and progress back to its beginning.

18

2.4 Time optimization

Algorithm 2 First pass of the speed profile algorithm (acceleration)

Input: Speed profile Ux, path (pi)
P
i=0

Output: Speed profile U ′x adjusted for acceleration capabilities
1: for s = 1 to P do
2: c = 2amax||ps − ps−1||
3: U ′x[s] = min (Ux[s],

√
Ux[s− 1]2 + c)

4: end for

Algorithm 3 Second pass of the speed profile algorithm (braking)

Input: Speed profile Ux, path (pi)
P
i=0

Output: Speed profile U ′x adjusted for braking capabilities
1: for s = P to 1 do
2: c = 2amin||ps − ps−1||
3: U ′x[s− 1] = min (Ux[s− 1],

√
Ux[s]2 + c)

4: end for

The resulting speed profile identifies the optimal transition points between max-
imum acceleration and maximum braking. This behavior is a logical consequence
of neglecting the time required to change the input commands and the delay before
the car acts on them. Due to these deviations from reality, it is sensible to set the
parameters in Table 2 conservatively. Overestimating the braking ability amin and
the grip µ of the car can easily lead to dangerous situations. In contrast, more
adventurous settings naturally lead to better performance, but given that this is the
first version of path planning for our formula, we opt for the conservative approach.

The derivation of equations used in the speed profile algorithm from basic phys-
ical laws is demonstrated in Filip [19]. The implementation is based on the algo-
rithm’s description in Kapania [18]. Once the speed profile has been computed using
the algorithm described above, we can focus on our ultimate goal of minimizing lap
time.

Subsection 2.4.2

Racing line

In the previous sections, we calculated the length of a given path and its optimal
speed profile under simplified physical constraints. Now, we combine this informa-
tion to express the time required to execute the provided path φ as

T (φ) =

∫ L(φ)

0

1

v(s)
ds (17)

where L(φ) is the length of φ and v(s) the instantaneous speed at distance s along the
trajectory. Taking advantage of the piecewise linear nature of our approximations,
we can rewrite Equation (17) to

T (λ1, . . . , λD) =
∑
i

||fi+1(λi+1)− fi(λi)||
Ux(i)

(18)

where Ux is the speed profile which is the piecewise linear approximation of mo-
mentary speeds v(s). Adding the soft constraint term Pofftrack we formulate the

19

2.4 Time optimization

0 20 40 60 80 100

Distance (m)

0.0

0.1

0.2

0.3

0.4

C
u

rv
at

u
re

(1
/m

)

(a) Curvature profile k of path from Figure 2.11.

0 20 40 60 80 100

Distance (m)

0

5

10

15

20

25

S
p

ee
d

(m
/s

)

(b) Initial speed profile resulting from Equation (16). It accounts only for
centrifugal force at each point separately.

0 20 40 60 80 100

Distance (m)

0

5

10

15

20

25

S
p

ee
d

(m
/s

)

(c) Speed profile adjusted for the formula’s acceleration amax using Algorithm 2.

0 20 40 60 80 100

Distance (m)

0

5

10

15

20

25

S
p

ee
d

(m
/s

)

(d) Final speed profile adjusted for the formula’s braking ability amin using
Algorithm 3.

Figure 2.10: Speed profile algorithm illustrated on path from Figure 2.11 using
parameters from Table 2.

20

2.4 Time optimization

−30 −20 −10 0 10

−25

−20

−15

−10

−5

0

Figure 2.11: Time–minimal trajectory

optimization problem

arg min
λ1, . . . , λD

T (λ1, . . . , λD) + Pofftrack(λ1, . . . , λD) (19a)

subject to λ1 = λD−1, (19b)

λ2 = λD (19c)

The optimization constraints defined by Equation (19b) and Equation (19c) ensure
the closed nature of the resulting trajectory. We require two constraints to take into
account every set of three consecutive points in Equation (12), which is involved in
the computation of the speed profile.

When we use the appropriate solving tools, we obtain the trajectory shown in
2.11. These tools are discussed in the next section.

21

Chapter 3

Implementation
In the previous section, we have defined several optimization problems that represent
their respective objectives. This section focuses on efficiently computing a solution
to these problems in the context of our application. We begin by discussing how to
choose the right software library. Next, we describe the code that implements the
algorithm, as well as other supporting programs such as visualization code or the
race track modification utility tool in Section 3.1. Finally, we present the commu-
nication of the algorithm with the rest of the autonomous pipeline in greater detail
in Section 3.2.

The optimization problems defined in Section 2 are too complex to be solved
analytically. Instead, we implement iterative optimization methods to solve them
numerically. This approach requires an automatic differentiation library.

Furthermore, we are limited in our choice of automatic differentiation library by
ROS, which is currently implemented in C++, Python, and LISP [26]. In eForce
Driverless, we do not use LISP at all, and we follow a simple rule of thumb regarding
C++ and Python: avoid C++ unless it is necessary. In practice, we write everything
in Python, and only when the component is proven to be a performance bottleneck
in the pipeline, we rewrite it in C++. Therefore, we implemented the path planning
algorithm in Python.

Fortunately, thanks to the boom of deep neural network learning, Python offers a
diverse ecosystem of automatic differentiation libraries. The leading positions among
them are occupied by PyTorch and TensorFlow. Both have their own advantages.
We decided for the former because we consider PyTorch to be cleaner and more
intuitive. Additionally, the convolutional neural network which detects cones on a
camera image is built on PyTorch, while TensorFlow is not currently used anywhere
in eForce Driverless.

Section 3.1

System architecture
The core of the algorithm is formed by a model–solver pair. The former defines
the optimization problem, while the latter determines how the given problem will
be solved. These pairs are stored in a container class which simplifies manipulation
with them and implements a load/save mechanic.

The model consists of a class hierarchy at the top of which sits the PathModel
class. PathModel class extends the PyTorch base class torch.nn.Module and defines
the shared aspects of each model. These include model initialization, track boundary
enforcement, and individual measurements like path length and curvature. The
sequence (λi)

D
i=1 specifying a path is wrapped in torch.nn.Parameter. The particular

model sub–classes such as LengthModel, CurvatureModel or TimeModel inherit from
PathModel and implement their own version of the forward method. The forward
method specifies the forward pass of the model, in which the objective function of the
appropriate optimization problem is evaluated using the current values of (λi)

D
i=1.

The backward pass that updates (λi)
D
i=1 is performed automatically by PyTorch’s

automatic differentiation package torch.autograd and the optimizer used.

22

3.2 Pipeline integration

Compared to the model, the solver class is simple. It stores the name of the
selected optimizer, a dictionary of keyword arguments to be passed to the optimizer
later, and a number of iterations for which the optimizer is to be run. The optimizer
itself is only created when the optimization begins since the construction of an
optimizer requires the model parameters. Currently, we only support optimizers
from torch.optim, which, however, offers a wide range of ready to use optimizers.
The selected optimizers are shown in Figure 4.7. Moreover, the PyTorch optimizer
base class torch.optim.Optimizer allows us to easily define new special optimizers
which are compatible with predefined optimizers in PyTorch and our algorithm.

But before we start optimizing, we need to parametrize the track and initial-
ize the model. The first is completed in the preprocess module, which follows the
procedure described in Section 2.2. The DAG solver module computes the initializa-
tion for the length optimization problem through dynamic programming techniques
as outlined in Section 2.3.1. Generally, we initialize (λi)

D
i=1 to ”centerline”, which

means λi = 0.5 for i = 1, . . . , D.
Finally, our algorithm is supported by a visualization and race track editing

module which aids in the testing process. Both modules are based on Python’s
matplotlib library. Visualization is composed of multiple plots, for example, the race
track plot on which the cones, paths, or transverse parametrization lines are drawn.
To maximize clarity, we only render plots that have received data and dynamically
position them to make use of the space freed by the unused plots. The edit module
provides us with a way to insert or remove cones from a race track. It is controlled
by mouse clicks and key bindings that switch between operation modes. Finally, we
connected it to the reactive path planning algorithm to aid in its development.

Section 3.2

Pipeline integration
Our algorithm is not meant to exist on its own. As a node in the ROS framework, it
consumes and provides data to other ROS nodes. This communication was concisely
described in Figure 1.1 in the Introduction section, but given its importance, it is
beneficial to expand this explanation.

The handling of incoming data is relatively simple. In reality, SLAM offers both
the cone map and the current car position, which is aggregated by our algorithm
into a path driven in the first lap. In FSDS (see Section 4.3) the cone positions and
the location of the car are provided as ground truth data by the simulator. Because
the simulator is based on ROS1, integrating SLAM would require rewriting it in
Python 2.7, which is a lot of effort for little gain.

Sending outgoing data requires more thought. First, as Section 4.2 shows, the
full optimization can take an entire minute, which is potentially enough time to
finish a single lap. Fortunately, the iterative nature of our algorithm allows for
the publication of intermediate results. However, because Table 4 confirms that the
main benefit of this algorithm in the context of a typical Formula Student race track
lies in the speed profile, we are already able to gain a substantial advantage in the
first iteration. Taking into account the time required to parameterize the track and
perform other preprocessing steps, the first results become available in a span of
several seconds after receiving the required input.

Before the given trajectory can be sent to the control algorithm, it must be trans-
formed into the vehicle coordinate system. This step begins with the localization of

23

3.2 Pipeline integration

the car on the track based on its position and heading on the SLAM map. Position
and heading are then used to translate and rotate the trajectory to align it with the
current vehicle coordinate system.

Like reactive path planning, the control algorithm is also not the author’s work.
It implements the well–known Stanley control algorithm [6] and has been written by
a fellow member of eForce Driverless, Hynek Zamazal. The control algorithm has
already been tested and calibrated in both FSDS and real life.

24

Chapter 4

Validation
The algorithm proposed in Section 2 is designed to be modular. We rely on a
bottom–up testing approach where constituent components are first tested individ-
ually, then we assess the entire path planning algorithm, and finally we verify its
integration with the car’s autonomous pipeline that was outlined in Section 1.2.

During the design process, we relied on matplotlib visualizations to prove validity
and correctness on module–wide and algorithm–wide scope. Our input data come
from sources described in Section 4.1. We present our component testing procedures
in Section 4.2. Once we judged that the entire algorithm was ready to use, we
validated its integration with the autonomous pipeline in a vehicle simulator. We
demonstrate our simulation results in Section 4.3.

Section 4.1

Data sources
The testing of the constituent components is based on several sources of valida-
tion data sets. Initially we used an inherited race track generator which has been
developed very early in the history of eForce Driverless. Later, our internal track
generator was complemented by a second track generator created by a foreign For-
mula Student team [27]. When our team overcame a few technical obstacles relating
to INS and CAN handling, we were able to procure SLAM maps created from real–
world data. Finally, we programed a graphical utility tool, which allowed us to
manually modify existing cone maps or create completely new ones from scratch;
see Section 3.

We start by noting that the eForce track generator is not the author’s work.
It was originally written by fellow eForce Driverless member Tomáš Roun to pro-
vide testing data for the reactive path planning algorithm. Its principle is simple.
Initially, it allocates a preset number of points along a circle with parametrizable
radius and then distorts their location through a few Gaussians. This elementary
approach produces clean tracks, such as the one depicted in Figure 4.1a. The obvi-
ous drawback is the low variability of possible outputs, because it is impossible to
significantly change the shape of the resulting race track. On the other hand, be-
cause the generated race tracks are so close to being ideal, we consider this generator
to be suitable for testing at the start of development.

To account for the low diversity of the output of the eForce generator, we in-
troduced a second race track generator [27]. It has been developed by the Formula
Student team eRacing of the Brazilian University in Campinas. It offers more varied
race tracks, such as the one depicted in Figure 4.1b. Nevertheless, it still does not
provide race tracks sufficiently general to test our algorithm in its entirety. The
problem lies in the absence of noise in the cone positions.

This problem can easily be solved by adding noise to an existing race track. But
we did not need to do this, because when our team integrated SLAM into our ROS
system in the autumn of 2021, we gained access to SLAM maps based on formula
perception abilities. Therefore, we obtained the most accurate and representative
data possible; see Figure 4.1c.

25

4.1 Data sources

−40 −30 −20 −10 0 10 20 30 40

−20

−10

0

10

20

(a) eForce generator

−60 −50 −40 −30 −20 −10 0

30

40

50

60

(b) eRacing generator

−20 −10 0 10 20 30 40 50

0

10

20

30

(c) Real cone map from SLAM algorithm [15].

Figure 4.1: Examples of race tracks created by introduced data sources.

26

4.1 Data sources

The most severe downside of SLAM maps is that collecting real–world sensory
input is time consuming. Due to organizational constraints, it is not feasible to
organize more than a dozen testing events per racing season. Although SLAM has
worked since October 2021, we have collected only three SLAM maps to this day.
Usually, we would be content with a more lightweight solution than organizing a
new testing event, which requires the participation of at least 6 team members.
Typically, we wish to slightly modify an existing race track and observe the impact
of the change on the algorithm. For such reasons, we have developed a graphical
editor of race tracks that allows us to add or remove cones with a click of a mouse.
The editor has also been integrated with the reactive path planning algorithm and
also with the parametrization process developed in this thesis, allowing for swift
workflow.

27

4.2 Component testing

Section 4.2

Component testing
This subsection roughly follows the structure of Section 2. We begin by choosing
whether to sample the curvature adjusted points (di)

D
i=1 on the ”centerline”, which

is the sequence of middle points between the left and right track boundaries, or on
the original first–lap trajectory. Then we investigate the influence of the discretiza-
tion parameter D on the produced time–minimal trajectories. Next, we compare
the trajectories resulting from the optimization problems defined in Section 2 and
explore their relationships with each other in the context of the car parameters from
Table 2. Finally, we analyze the convergence rate of our optimization problems and
compare the performance of selected optimizers. All experiments in this section are
based on the track from Figure 4.1c because it offers the most realistic conditions
that we have available.

When the algorithm receives a new SLAM map, its first step is to estimate
the track boundaries, as described in Section 2.2. In Figure 4.2, the closest point to
each cone is found on the first lap path. Subsequently, cone projections are sorted on
individual path segments, and the sorted segments are connected, naturally sorting
the cones in the formula’s direction of travel. The ordered cones together form a
piecewise linear approximation of the track boundaries according to our wishes.

−20 −10 0 10 20 30 40 50

−5

0

5

10

15

20

25

30 Left boundary

Right boundary

Projections

First lap path

Figure 4.2: Projection of cones onto the first lap path and the track boundaries.

Once we have obtained the track boundaries in the previous step, we move on to
calculating a parametrization of the race track. Here, we face a new decision. We
either follow Section 2.2.2 and use the first lap path or we estimate a ”centerline”
path from the track boundaries. This alternative path is defined as the arithmetic
mean of the left and right track boundaries. In Figure 4.3, sampling from the first
lap path leads to the parametrization consisting of the red transverse lines, while
sampling from the alternative path results in the orange lines. In general, both
approaches lead to similar results; however, the former is more robust in parts of
the track with high curvature. This is apparent in Figure 4.3 in the leftmost turn,
where the red lines, unlike the orange ones, do not cross each other inside the track
boundaries.

28

4.2 Component testing

−20 −10 0 10 20 30 40 50

0

10

20

30 First lap path

Centerline

Figure 4.3: Two parametrizations of a SLAM map. Orange lines are built on an
estimation of centerline. Red lines are created from sampling from the first lap path.
Discretization parameter D is 64 in both cases.

−20 −10 0 10 20 30 40 50

−5

0

5

10

15

20

25

30 D = 32

D = 64

D = 128

Figure 4.4: Trajectories produced from parametrizations using different values of
parameter D.

As Figure 4.4 proves, the most important parameter to set correctly in this
step is the discretization parameter D. Intuitively, lower values of D lead to a
shorter computation time but less accurate trajectories, while higher values result
in the opposite result. We believe that a simple rule of thumb exists. The obvious
approach is to set D to the number of cones present. The cones are, by definition,
placed in a way that clearly delineates the track without being placed unnecessarily
densely. Figure 4.4 consists of 128 cones of blue or yellow color. At the same time,
the orange parametrization with D = 64 performs the best from our selection of
parameters D. Unfortunately, we were unable to prove conclusively the validity of
this rule.

29

4.2 Component testing

Figure 4.4 suggests the viability of periodically increasing the discretization pa-
rameter D during an optimization. Such a scheme would be analogous in principle
to learning rate schedulers, which are widely used in the training of neural networks.
Once again, we lacked time to pursue this idea further.

Next, we compare the trajectories resulting from the three optimization problems
defined in the course of Section 2. In the Formula Student competition, the track
boundaries are usually placed only the minimal distance of 3 m apart. Taking into
account the width of the car of 1.6 m, we receive a tight maneuvering space. There-
fore, we do not expect significant differences between the individual trajectories. Our
expectation is confirmed by Figure 4.5a, which shows that the optimal trajectories
for the curvature and time optimization problems remain closely together.

However, Figure 4.5 does not provide a complete picture. In Section 2.3 we
mentioned a view of the time–minimal trajectory as a certain combination of prop-
erties of the length–minimal and curvature–minimal trajectory. The precise ratio
is informed by the ability of the car to execute the trajectory. If we consider a
car equipped with ideal tires that are capable of transferring any force, the fastest
trajectory will always be the shortest. On the other hand, as the term µFz in Equa-
tion (14) decreases, the fastest trajectory approaches the trajectory with the lowest
average curvature.

Acceleration abilities that govern the optimal speed profile follow the same pat-
tern. Higher acceleration amax and braking capabilities amin allow a more aggressive
driving style. In turn, the ability to quickly change speed promotes driving nearer to
the shortest trajectory: as Figure 4.5a shows, the length–minimal trajectory com-
bines long straight segments with sharp turns. In contrast, the curvature–minimal
trajectory possesses a more balanced speed profile. Given our car’s low acceleration,
its fastest trajectory is significantly closer to the curvature–minimal trajectory than
to the length–minimal.

The other major source of influence are the different convergence rates of opti-
mization problems for curvature and time, as illustrated in Figure 4.6. Because the
objective function in Equation (18) is more complicated than the objective function
in curvature optimization defined in Equation (12), it takes longer for the optimizer
to find a local minimum. For example, in Figure 4.6 we see that the curvature reaches
its local minimum at approximately the 1000th iteration, while time continues to
decrease even at iteration 2000. In comparison, we regularly schedule approximately
500 iterations per optimization problem.

We also influence the convergence rate by selecting the appropriate optimizer.
We solve optimization problems using the optimizers from package torch.optim (see
Section 3.1). In Figure 4.7 we compare the speed with which they approach a local
minimum of the time optimization problem. Subsequently, we plot the average time
required for a single iteration of this problem in Figure 4.8. All optimizers were
constructed with a learning rate of 0.001 and no other parameter. We conclude that
most optimizers are largely equivalent both in terms of convergence and computa-
tional cost. We choose the Adam optimizer because it is a currently widely–used
optimizer designed for optimizing non–convex functions, especially neural networks.
LBFGS is an outlier in both graphs because it is the sole second–order method,
which evaluates the function gradient multiple times in a single iteration. Its com-
plex nature seems unsuitable for optimizing a complicated function, such as our
time–minimization problem.

30

4.2 Component testing

−20 −10 0 10 20 30 40 50

−5

0

5

10

15

20

25

30 Length

Curvature

Time

(a) Trajectories corresponding to optimization problems defined in Section 2.
The starting line is at the beginning of the coordinate system.

0 25 50 75 100 125 150 175

Distance (m)

0.0

0.1

0.2

0.3

0.4

0.5

C
u

rv
at

u
re

(1
/m

)

Length

Curvature

Time

(b) Curvature profiles

0 25 50 75 100 125 150 175

Distance (m)

0.0

2.5

5.0

7.5

10.0

12.5

S
p

ee
d

(m
/s

)

Length

Curvature

Time

(c) Speed profiles

Figure 4.5: Comparison of trajectories produced by different optimization problems
and their associated curvature profiles and optimal speed profiles. The speed profile
algorithm is set to parameters from Table 2.

31

4.2 Component testing

0 1000 2000 3000 4000 5000
Iteration

0.6

0.8

1.0

R
el

at
iv

e
va

lu
e

to
fi

rs
t

it
er

at
io

n

Length

Curvature

Time

Figure 4.6: Relative improvement of different optimization problems. We plot the
ratio of value in the i–th iteration to value obtained in the first iteration. We use
the Adam optimizer with a learning rate of 0.001.

0 50 100 150 200 250
Iterations

73

74

75

76

77

78

T
im

e
(s

)

Adam

SGD

LBFGS

AdamW

Adamax

NAdam

Rprop

RMSprop

Figure 4.7: Comparison of convergence rates of selected optimizers from torch.optim
on the time optimization problem from Equation (19a). Adam and AdamW opti-
mizers coincide in the figure. Curiously, SGD would benefit from a lower learning
rate than the value of 0.001 commonly used in this thesis.

32

4.2 Component testing

Adam SGD AdamW Adamax NAdam Rprop RMSprop

Optimizer

0

20

40

60

80

100

A
ve

ra
ge

it
er

at
io

n
d

u
ra

ti
on

(m
s)

67.53 ms

74.36 ms

67.12 ms 66.54 ms 66.78 ms

71.74 ms

67.84 ms

Figure 4.8: Time required by selected optimizers for a single iteration of the time
optimization problem from Equation (19a) for SLAM map from Figure 4.1c with 64
transverse lines. In this experiment, a single iteration of LBFGS took over 1.5 s and
therefore was not included in this graph due to the difference in scale.

33

4.3 Formula Student Driverless Simulator

Section 4.3

Formula Student Driverless Simulator
The entire 2020 racing season had to be canceled due to COVID-19 restrictions
in place at the time. Instead, an online event called Formula Student Online was
held as a replacement and it was the only competition of the 2020 season. This
prompted the development of the Formula Student Driverless Simulator (FSDS), in
which teams would compete against each other in the online competition. FSDS
is built on Microsoft AirSim [28], which is, in turn, based on Unreal Engine 4 and
offers a ROS interface for communication with the connected autonomous system.
Because the organizers of Formula Student Online have envisioned FSDS to serve
the teams beyond the online competition from the beginning, it is supported and
continuously updated to the present day. Our team eForce Driverless was one of the
four driverless teams which competed in the driverless category of Formula Student
Online. Therefore, we have an autonomous system that is extensively tested in the
context of FSDS. Recently, we explored the possibility of using other simulators such
as Carla or Carmaker. However, FSDS currently stays as our main simulator.

In 2020, eForce Driverless has competed in Formula Student Online with a simple
system of reactive path planning described in Section 2.1.1 and an implementation
of the pure pursuit control algorithm. Since then, the reactive path planning algo-
rithm has been improved, and pure pursuit has been replaced with Hynek Zamazal’s
implementation of the Stanley control algorithm [6]. We use the current version of
these algorithms to obtain a baseline against which we measure the performance of
our algorithm.

We test our algorithm on the competition track from the first race day of the
Formula Student Online competition. Therefore, this is in fact the first track that
eForce Driverless has ever competed on. The video footage can be found on YouTube
[29] and contrasted with the results presented in this section. For reference, in 2020
we completed this track in 85 s.

The physical model of FSDS assumes different parameters for the car compared
to Table 2. The parameters used for FSDS can be found in Table 3. As the true
parameters used in the internal physics engine of FSDS remain unknown to us, we
estimate them from experiments. The same settings of the speed profile algorithm
are used in all the experiments performed in this section.

34

4.3 Formula Student Driverless Simulator

Figure 4.9: Screenshot of Formula Student Driverless Simulator

Parameter Symbol Value Unit

Friction coefficient µ 0.5 —
Formula mass m 250 kg

Coefficient of lift CL -3.5 —
Coefficient of drag CD 0.3 —

Reference aerodynamic area Aref 1.14 m2

Maximum acceleration amax 4 m/s2

Maximum deceleration amin -2 m/s2

Table 3: Parameters from Table 2 updated for a simulated formula in FSDS [30].
Parameters which cannot be found in the documentation (µ, amax, amin, CL, and
Aref) are set either experimentally or taken from experiments previously performed
by Marek Boháč [9]. The most unusual feature of FSDS physics engine is that
vehicles accelerate better than they brake.

35

4.3 Formula Student Driverless Simulator

−60 −40 −20 0 20 40

0

20

40

60

80

Baseline

Optimal

(a) Trajectories of baseline and our algorithm compared on a map.

0 50 100 150 200 250 300 350

Distance (m)

0

5

10

15

S
p

ee
d

(m
/s

)

Baseline

Optimal

(b) The reactive path planning supplies a constant velocity of 5 m s−1, but the
regulator initially overshoots the target, before it settles down at the 20th meter

of the trajectory. The optimal speed profile steadily maintains approximately
double the speed.

Figure 4.10: Trajectory realised by the reactive path planning algorithm is plotted
in orange, while the optimal trajectory computed by our algorithm is drawn in red.

In Figure 4.10 we compare the trajectories performed by the Stanley control
algorithm from different input trajectories. The baseline trajectory was produced by
the reactive path planning algorithm from Section 2.1.1, whereas the time–optimal
trajectory was planned by our algorithm. The baseline trajectory is accompanied
by the currently used constant speed profile of 5 m, our optimal trajectory uses the
speed profile algorithm presented in Section 2.4.1. We see that the optimal trajectory
deviates from the baseline trajectory quite significantly, considering the limitations
discussed above regarding the track width. Intuitively, we expect these changes to
have a positive impact on lap time. Our expectations are confirmed by the results,
which are presented in Table 4.

36

4.3 Formula Student Driverless Simulator

−60 −40 −20 0 20 40

0

20

40

60

80

Planned

Executed

(a) Trajectory planned by our algorithm versus the same trajectory as it was
travelled by the formula in FSDS.

0 50 100 150 200 250 300 350

Distance (m)

0

5

10

15

S
p

ee
d

(m
/s

)

Planned

Executed

(b) Planned speed profile compared with its realization in FSDS.

Figure 4.11: Comparison between the planned fastest trajectory in orange and the
corresponding trajectory realised by the control algorithm in FSDS.

In Figure 4.10a the formula managed to stay on track, but it hit multiple cones.
Figure 4.11a investigates what causes this behavior. It shows that the traveled path
in red always lies closer to the inner edge of a turn than the planned trajectory,
which is drawn in orange. Therefore, the responsibility for this phenomenon lies
with the control algorithm. However, we can mitigate this problem in our algorithm
by setting the margin M from Section 2.2.4 higher.

In Figure 4.10b we contrast the planned speed profile with the speed profile
realized by the control algorithm. Although both profiles are quite similar, there are
regions where they deviate. We identify two types of error. First, the experimentally
estimated parameters from Table 3 we used are not completely equal to to the
parameters used by the simulator. Second, the regulator cannot flawlessly execute
the planned speed profile. Although some difference is always present, we suspect
that the simple linear interpolation scheme exacerbates the issue.

37

4.3 Formula Student Driverless Simulator

Planning objective Speed profile Lap time Relative improvement

Baseline Constant 5 m s−1 66.84 s 1
Time Constant 5 m s−1 66.65 s 1

Length Yes 33.46 s 2
Curvature Yes 30.76 s 2.17

Time Yes 30.48 s 2.19

Table 4: Overview of lap times resulting from different configurations of our for-
mula’s path planning algorithm in FSDS.

Given the parameters from Table 3, we expect the time–minimal trajectory to be
close to the curvature–minimal trajectory. Figure 4.12 largely confirms our hypothe-
sis, as the trajectory minimizing average curvature and the fastest trajectory barely
differ at any point. The high degree of similarity of both trajectories is reflected
in their speed profiles: in Figure 4.12c, the green profile of the fastest trajectory is
mirrored by curvature’s orange profile only a fraction of a unit lower on the vertical
axis.

Arguably, the small width of the typical Formula Student race track prohibits
any substantial spatial differentiation between ”reasonable” trajectories. This is
true, but because we focus specifically on the Formula Student competition, any
other unorthodox tracks are not of immediate practical interest to us.

The lap times resulting from different optimizations are summarized in Table 4.
Data in this table match the trajectories shown in other figures in this section.
Trajectories from bottom three rows are shown in Figure 4.12c.

38

4.3 Formula Student Driverless Simulator

−60 −40 −20 0 20 40

0

20

40

60

80

Length

Curvature

Time

(a) Length, Curvature and Time minimal trajectories planned for
FSDS by our algorithm.

−60 −40 −20 0 20 40

0

20

40

60

80

Length

Curvature

Time

(b) Trajectories corresponding to Figure 4.12a as they were realised
by the control algorithm.

0 50 100 150 200 250 300 350

Distance (m)

0

5

10

15

S
p

ee
d

(m
/s

)

Length

Curvature

Time

(c) Speed profiles corresponding to Figure 4.12a as they were
executed by the control algorithm.

Figure 4.12: Comparison of realized trajectories for different optimization problems.

39

Chapter 5

Conclusion
This thesis proposed a trajectory planning algorithm for an autonomous formula
built for the international Formula Student competition. We have decomposed tra-
jectory planning into several constituent components.

In Sections 2.1 and 2.2, we prepared a parametrization scheme that produces a
suitable problem representation from a SLAM cone map. Our approach filters out
major errors in the input data and is sufficiently robust to handle the uncaught minor
errors. We designed a flexible parametrization method, which can be successfully
applied to any race tracks valid in the context of Formula Student rules. Moreover,
our representation saves computational resources by adapting the parametrization
density to the local path curvature.

In the future, we plan to interpolate between cones that form the track bound-
aries or points that make up the trajectory with cubic splines. In contrast to the
currently used linear interpolation, cubic splines provide a better interpolation curve.
Moreover, we can ensure the smoothness of the first derivative at each point of the
interpolation, including the knot points. Because cubic splines are polynomials of
degree 3, we can reformulate Equation (12) to a continuous rational function de-
rived from Equation (9). Then, we use it to replace the mechanism of osculating
circles [19]. We expect this change to reduce the non–convexity of the resulting
optimization problem and improve its convergence speed.

In Sections 2.3 and 2.4, we derived length and curvature measurements for a
path parameterized by our method. We formulated optimization problems which
minimize these objectives. Then, we discussed the physical laws that affect the
formula on the race track and implemented a speed profile algorithm that determines
the optimal speed of the formula along the supplied path. Finally, we combined
everything together to obtain the fastest trajectory.

At the present time, we use a naive and simple physical model; for example,
we neglect tire modeling. Therefore, extending the physical model will increase the
accuracy and reliability of our algorithm. Currently we also have the data needed
to dynamically estimate µ instead of relying on a constant value. Implementing an
estimation method will also make our model more realistic.

In Sections 3 and 4, we implemented our method in Python and connected it
with the rest of the autonomous pipeline of eForce Driverless. We verified our
work on testing data from multiple sources, including a SLAM map assembled from
real sensory input. Moreover, we proved that our algorithm works properly in a
closed loop with the control algorithm in the Formula Student Driverless Simulator.
Finally, we demonstrated a measurable improvement in total lap time.

The most imminent task that we face today is to implement our algorithm di-
rectly in the formula. Although this will involve a new set of challenges, it also offers
several new opportunities. For example, we plan a feedback mechanism to visually
verify that the formula stays within track boundaries during all 9 trackdrive laps
that are navigated by our algorithm. In this regard, the most important test to
come will be the upcoming 2022 competition season. We will see how will the new
improvements to the autonomous pipeline of eForce Driverless, including our trajec-
tory planning algorithm, perform in Formula Student races in the Czech Republic,
Italy and Hungary.

40

Chapter A

References
[1] Edgar Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[2] Peter Hart, Nils Nilsson, Bertram Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107, 1968.

[3] Egbert Bakker, Hans B. Pacejka, Lars Lidner. A new tyre model with an
application in vehicle dynamics studies. SAE Transactions, 98:101–113, 1989.

[4] Marco Gadola, David Vetturi, Danilo Cambiaghi, and Luca Manzo. A tool for
lap time simulation. Technical report, SAE Technical Paper 962529, 1996.

[5] T J Gordon, M C Best, and P J Dixon. An automated driver based on conver-
gent vector fields. Proceedings of the Institution of Mechanical Engineers, Part
D: Journal of Automobile Engineering, 216(4):329–347, 2002.

[6] Sebastian Thrun, Michael Montemerlo, Hendrik Dahlkamp, David Stavens, An-
drei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel
Hoffmann, Kenny Lau, Celia Oakley, Mark Palatucci, Vaughan Pratt, Pas-
cal Stang, Sven Strohband, Cedric Dupont, Lars-Erik Jendrossek, Christian
Koelen, and Pamela Mahoney. Stanley: The robot that won the darpa grand
challenge. Journal of Field Robotics, 23:661–692, 1 2006.

[7] Alexander Liniger. Path Planning and Control for Autonomous Racing. PhD
thesis, ETH Zurich, 2018.

[8] Formula Student Germany. Autonomous driving at formula student ger-
many 2017. https://www.formulastudent.de/pr/news/details/article/

autonomous-driving-at-formula-student-germany-2017/, 2016.

[9] Marek Boháč. Design of control system for an autonomous racecar. Bachelor’s
thesis, Czech Technical University, 2020.

[10] Juraj Kabzan, Miguel de la Iglesia Valls, Victor Reijgwart, Hubertus Fran-
ciscus Cornelis Hendrikx, Claas Ehmke, Manish Prajapat, Andreas Bühler,
Nikhil Bharadwaj Gosala, Mehak Gupta, Ramya Sivanesan, Ankit Dhall, Eu-
genio Chisari, Napat Karnchanachari, Sonja Brits, Manuel Dangel, Inkyu Sa,
Renaud Dubé, Abel Gawel, Mark Pfeiffer, Alexander Liniger, John Lygeros,
and Roland Siegwart. AMZ driverless: The full autonomous racing system.
CoRR, abs/1905.05150, 2019.

[11] Leiv Andresen, Adrian Brandemuehl, Alex Honger, Benson Kuan, Niclas
Vödisch, Hermann Blum, Victor Reijgwart, Lukas Bernreiter, Lukas Schaupp,
Jen Jen Chung, Mathias Burki, Martin R. Oswald, Roland Siegwart, and
Abel Gawel. Accurate mapping and planning for autonomous racing. In 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 4743–4749, 2020.

41

https://www.formulastudent.de/pr/news/details/article/autonomous-driving-at-formula-student-germany-2017/
https://www.formulastudent.de/pr/news/details/article/autonomous-driving-at-formula-student-germany-2017/

[12] Adam Slomoi. Path planning and control in an autonomous formula student
vehicle. Technical report, Monash University, 2018.

[13] Roman Š́ıp. Visual Detection of Traffic Cones for Autonomous Student Formula.
Bachelor’s thesis, Czech Technical University, 2022.

[14] Daniel Štorc. Detection of Traffic Cones from LiDAR Point Clouds. Bachelor’s
thesis, Czech Technical University, 2022.

[15] Tomáš Roun. Navigation system for autonomous student formula. Master’s
thesis, Czech Technical University, 2021.

[16] Formula Student Germany. Formula student rules 2022. https:

//www.formulastudent.de/fileadmin/user_upload/all/2022/rules/

FS-Rules_2022_v1.0.pdf, 2022.

[17] Formula Student Germany. FSG handbook 2022. https://www.

formulastudent.de/fileadmin/user_upload/all/2022/rules/FSG22_

Competition_Handbook_v1.1.pdf, 2022.

[18] Nitin R. Kapania. Trajectory planning and control of an autonomous race
vehicle. PhD thesis, Stanford University, 2016.

[19] Jan Filip. Trajectory tracking for autonomous vehicles. Master’s thesis, Czech
Technical University, 2018.

[20] David Vosahlik, Jan Cech, Tomas Hanis, Adam Konopisky, Tomas Rurtle, Jan
Svancar, and Tomas Twardzik. Self-supervised learning of camera-based driv-
able surface friction. In 2021 IEEE International Intelligent Transportation
Systems Conference (ITSC), pages 2773–2780, 2021.

[21] Kanwar Bharat Singh and Saied Taheri. Estimation of tire–road friction coeffi-
cient and its application in chassis control systems. Systems Science & Control
Engineering, 3(1):39–61, 2015.

[22] Changsun Ahn, Huei Peng, and H. Eric Tseng. Robust estimation of road
friction coefficient. In Proceedings of the 2011 American Control Conference,
pages 3948–3953, 2011.

[23] Michal Bahnik, Dominik Filyo, David Pekarek, Martin Vlasimsky, Jan Cech,
Tomas Hanis, and Martin Hromcik. Visually assisted anti-lock braking system.
In 2020 IEEE Intelligent Vehicles Symposium (IV), pages 1219–1225, 2020.

[24] Bo Persson, U. Tartaglino, O. Albohr, and Erio Tosatti. Rubber friction on wet
and dry road surfaces: The sealing effect. Physical Review B, 71, 03 2005.

[25] eForce. Engineering design report: Aerodynamic devices. Presentation of aero-
dynamics included in the Engineering Design discipline of Formula Student
competition, 2018.

[26] Open Robotics. ROS introduction. http://wiki.ros.org/ROS/Introduction.
Accessed: 07/05/2022.

[27] Lucas Barretto. Path following demonstration. https://github.com/

lucasbarretto/path_follower, 2020.

42

https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FS-Rules_2022_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FSG22_Competition_Handbook_v1.1.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FSG22_Competition_Handbook_v1.1.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2022/rules/FSG22_Competition_Handbook_v1.1.pdf
http://wiki.ros.org/ROS/Introduction
https://github.com/lucasbarretto/path_follower
https://github.com/lucasbarretto/path_follower

[28] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim:
High-fidelity visual and physical simulation for autonomous vehicles. CoRR,
abs/1705.05065, 2017.

[29] Formula Student Online. Formula Student Online - Day 1 Driverless Simula-
tor Event Competition. https://youtu.be/TCgKwuLo3Eo?t=1426. Accessed:
18/05/2022.

[30] FSDS development team. Formula Student Driverless Sim-
ulator documentation. https://fs-driverless.github.io/

Formula-Student-Driverless-Simulator/v1.4.0/vehicle_model/

#more-properties-of-competition-vehicles. Accessed: 18/05/2022.

43

https://youtu.be/TCgKwuLo3Eo?t=1426
https://fs-driverless.github.io/Formula-Student-Driverless-Simulator/v1.4.0/vehicle_model/#more-properties-of-competition-vehicles
https://fs-driverless.github.io/Formula-Student-Driverless-Simulator/v1.4.0/vehicle_model/#more-properties-of-competition-vehicles
https://fs-driverless.github.io/Formula-Student-Driverless-Simulator/v1.4.0/vehicle_model/#more-properties-of-competition-vehicles

	Introduction
	Formula Student
	Autonomous pipeline

	Proposed method
	Input data
	Reactive path planning
	SLAM map

	Track parametrization
	Estimating track boundaries
	Curvature–based sampling
	Constructing transverse lines
	Enforcing track boundaries

	Proxy tasks
	Length
	Curvature

	Time optimization
	Speed profile
	Racing line

	Implementation
	System architecture
	Pipeline integration

	Validation
	Data sources
	Component testing
	Formula Student Driverless Simulator

	Conclusion
	References

