
Instructions

Passwords and how to protect them is and forever will be a fundamental question. One of the ways

how to protect passwords is by using an application called a password manager. The follow-up

questions then are: How does the password manager protect stored passwords? Where are the

passwords stored? Moreover, how is the storage protected? This thesis aims to implement a plugin for

the KeePass password manager that provides means for storing the database in the cloud solution. In

addition, a second authentication factor will be used to protect the database.

1. Get familiar with applicable KeePass plugins.

2. Examine public cloud storage services in terms of secure storage.

3. Based on the previous research, propose a solution for safe storing of the KeePass passwords

database in the cloud.

4. Implement, test, and document your solution for the second factor secure storage.

5. Make a threat model and identify possible cybersecurity threats.

Electronically approved by prof. Ing. Pavel Tvrdík, CSc. on 31 January 2022 in Prague.

Assignment of bachelor’s thesis

Title: KeePass Password Manager Secure Cloud Storage

Student: Konstantin Filip Moisidis

Supervisor: Ing. Jiří Dostál, Ph.D.

Study program: Informatics

Branch / specialization: Computer Security and Information technology

Department: Department of Computer Systems

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

KEEPASS PASSWORD
MANAGER SECURE
CLOUD STORAGE

Konstantin Filip Moisidis

Faculty of Information Technology
Department of Information Security
Supervisor: Ing. Jiří Dostál, Ph.D.
May 11, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Konstantin Filip Moisidis. Citation of this thesis.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology. The
thesis is protected by the Copyright Act and its usage without author’s permission is prohibited
(with exceptions defined by the Copyright Act).

Citation of this thesis: Moisidis Konstantin Filip. KeePass Password Manager Secure Cloud
Storage. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.

Contents

Acknowledgments vii

Declaration viii

Abstrakt ix

Introduction x

1 KeePass 1
1.1 About . 1
1.2 Plugins . 2

1.2.1 Cloud storage plugins . 2
1.2.2 OTP plugins . 2
1.2.3 TPM plugins . 2

2 Cloud storage 3
2.1 About . 3
2.2 Providers . 3

3 Viable options 5
3.1 One-time password . 5

3.1.1 HOTP . 5
3.1.2 TOTP . 6
3.1.3 Conclusion . 6

3.2 Trusted Platform Module . 7
3.2.1 TPM Software Stack by Microsoft 7

3.3 Microsoft . 8
3.3.1 Windows Hello . 8
3.3.2 CSP and CNG . 8

3.4 Research conclusion . 9

4 Implementation 11
4.1 Google Drive API . 11

4.1.1 Google Cloud Platform . 11
4.1.2 Class hierarchy . 11

4.2 TSS.MSR . 15
4.2.1 TSS.MSR and TPM 2.0 . 15
4.2.2 Basic concepts . 15
4.2.3 Usage . 15

4.3 Profiling with Windows registry . 19
4.4 KeePass plugin creation . 20
4.5 Testing . 22

4.5.1 Preparation . 22
4.5.2 Installation and example . 23

iii

iv Contents

5 Security analysis 27
5.1 Threat model . 27

5.1.1 Define the objectives . 27
5.1.2 Define the technical scope . 28
5.1.3 Decompose the application . 28
5.1.4 Threat analysis . 29
5.1.5 Vulnerability detection . 29
5.1.6 Attack Analysis . 31
5.1.7 Risk and Impact Analysis . 32

6 Discussion and results 33
6.1 Cloud findings . 33
6.2 Two-factor authentication . 33
6.3 TPM as 2FA . 33

7 Conclusion 35

A Acronyms 41

Contents of enclosed SD Card 43

List of Figures

3.1 HOTP chart flow . 6
3.2 TSS by TCG . 7

4.1 Successful installation . 23
4.2 Profile manager . 23
4.3 Adding profile . 24
4.4 Google login . 24
4.5 Adding profile completed . 25
4.6 Profile manager with profile . 25

5.1 Demonstrative dataflow . 28
5.2 Vulnerability window . 30

List of Tables

4.1 Registry entry . 19
4.2 Comparison table . 20

List of code listings

4.1 ClientSecret class . 12
4.2 UserCredential class . 12
4.3 DriveService class . 12
4.4 Data protection method . 13
4.5 Upload method . 13
4.6 Update method . 14
4.7 Download method . 14
4.8 Create primary key method . 16
4.9 Create key method . 16
4.10 Load key method . 17
4.11 Make key persistent method . 17
4.12 Database encryption method . 18

v

vi List of code listings

4.13 Plugin insertion method . 21
4.14 Simulator or Device method . 22

Throughout the writing of this thesis, I have encountered
several setbacks. However, thanks to a great deal of support
and assistance, I have prevailed.

Firstly, I would like to thank my supervisor Ing. Jiří Dostál,
Ph.D. for his guidance throughout this thesis and words of
advice in times of greatest need.

Secondly, I would like to thank Ing. Josef Kokeš for the
time spent on consultations, helping to improve found
shortcomings.

Lastly and with equal importance, I would like to thank all
my friends and family. Without their unimaginable support,
this would have been an impossible feat.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to ethical
principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the
Czech Technical University in Prague has the right to conclude a license agreement
on the utilization of this thesis as a school work under the provisions of Article 60 (1)
of the Act.

In Prague on May 11, 2022 .

viii

Abstract

Research on the KeePass plugin base and most common cloud storage providers
showed that no combination of plugins or cloud providers creates a safe 2FA environ-
ment for the KeePass database. Therefore, several solutions were investigated. Re-
searched technologies consist of OTP tokens, Microsofts crypto libraries, such as CNG
or Windows Hello, and TPM 2.0. TPM was chosen for the solution proposal and later
for implementation out of all these candidates. Using TPM and an arbitrary cloud
provider, a cryptosystem was created and implemented into a working KeePass plu-
gin. This plugin was tested and documented, as well as a creation of a threat model
on this plugin, identifying possible cybersecurity threats.

Keywords password manager, KeePass plugin, cloud storage, multi-factor authen-
tication, cryptography

Abstrakt

Výzkum základny zásuvných modulů KeePass a nejběžnějších poskytovatelů cloudo-
vých úložišť ukázal, že žádná kombinace zásuvných modulů a poskytovatelů cloud-
ových úložišť nevytváří bezpečné, vícefaktorové prostředí pro databázi KeePass. Proto
bylo zkoumáno několik řešení. Zkoumané technologie se skládají z tokenů OTP, kryp-
tografických knihoven Microsoftu, jako je CNG nebo Windows Hello, a TPM 2.0.
Ze všech těchto kandidátů byl pro návrh řešení a později pro implementaci vybrán
čip TPM. Pomocí čipu TPM a námi zvoleného poskytovatele cloudových služeb byl
vytvořen kryptosystém, který byl implementován do funkčního zásuvného modulu
KeePass. Tento zásuvný modul byl testován, zdokumentován a podroben vytvoření
modelu hrozeb, který identifikuje možné kybernetické bezpečnostní hrozby.

Klíčová slova správce hesel, KeePass plugin, cloudové úložiště, vícefázové ověření,
kryptografie

ix

Introduction

Password Managers
The world we live in today is a fast-
moving, information-oriented roller coaster
that will take by storm anyone who is not
willing to adapt, improvise and eventually
overcome its intricate inner workings. Av-
erage person is often required to have some
piece of technology in their hands to oper-
ate normally. Chats with friends, phone
calls with relatives, and even vaccination
certificates are digitized. A lot of effort
has to be made to make these things reli-
able, user-friendly, and, most importantly,
secure. Cybersecurity is most certainly an
infinite topic to unravel, so this thesis aims
to cover only a narrow topic of password
management.

Most of us concluded that keeping our
PC password on a sticky note next to our
computer is not the best way of protect-
ing against unauthorized access. A better
solution is to keep our passwords memo-
rized, but we find it troublesome to re-
member complicated long strings of letters,
numbers, and other symbols. We, there-
fore, tend to make those passwords memo-
rable and predictable, which in turn makes
them less secure due to dictionary attacks.

One solution to this is to use software to
keep passwords in one place. This soft-
ware is called password manager, and there
is a variety to choose from.

One of the most commonly used pass-
word managers is KeePass. KeePass has
a vast community that is full of exten-
sions and plugins. However, none of these
plugins lets users use cloud storage with
some other form of secure storing – e.g.,
two-factor, for instance. Users can upload
KeePass database to the cloud manually
or automatically and add additional layers
of security to the password database. But
not with one single extension.

Aim

This thesis aims to create a KeePass plu-
gin which provides users with 2FA cloud
storage. A research of the current KeeP-
ass plugin base and cloud storage providers
will be conducted. Based on these find-
ings, a solution will be proposed and im-
plemented. Implementation will then be
tested and documented. Lastly, a threat
model will be made to identify possible cy-
bersecurity threats.

x

Chapter 1

KeePass

This chapter provides a small introduction to KeePass password manager as well
as a research on current cloud providers and the KeePass plugins related to a cloud
communication and a second-factor authentication.

1.1 About
KeePass is a password manager designed mainly for Windows operating system. Its
open-source platform allows more advanced users to inspect the source code and
implementation of cryptography mechanisms [1]. As opposed to, for instance, 1Pass-
word, Dashline, KeePass stores passwords in a database placed in a file system [2]. It
has many built-in features for importing and exporting [3], Auto-typing [4], and its
Built-in password generator.

Thanks to its open-source license, KeePass has an extensive plugin base ranging
from cosmetic changes to entirely new functionalities [3].

KeePass was created in 2003 by Dominik Reichl. This almost 24-years-old software
receives updates to this day. Historically, there are two versions of KeePass. The first
version (denoted as 1.x version) was written in C++. Around five years later, KeePass
2.00 released its alpha version this time; and, it was developed in C#. KeePass version
1 still receives occasional updates; however, based on edition comparison1, KeePass
version 2 offers more advantages.

1Full comparison can be found at: https://keepass.info/compare.html

1

https://keepass.info/compare.html

2 KeePass

1.2 Plugins
This chapter focuses on examining plugins related to OTP, TPM 2.0, or cloud syn-
chronization. Providing examples for each category and discussing their potential
uses and flaws.

1.2.1 Cloud storage plugins
KeePass plugins have a basic coverage for all the most popular cloud storage. Most
prominent are KeeAnywhere [5] provide more than five cloud services, and Keep-
assSync [6], with four online storage providers. For a more conservative selection, KP-
GoogleSync [7] and KeePassOneDriveSync [8] are direct implementations for Google
Drive API and Microsoft Graph API, respectively.

1.2.2 OTP plugins
Plugins allowing OTP can be divided into two categories. One category represents an
additional layer of security with OTP protection of the database. The other category
is a set of plugins that support storing OTP seeds within KeePass entry, ergo adding
no new layer of security. The first category consists only of one plugin, and that
is OtpKeyProv. Created by the KeePass creator [9], OtpKeyProv provides users with
another factor of authentication; possession. This possession is in the form of a seed –
more on OTP in the third chapter. Plugins from the second category, KeePassOTP,
KeeOtp2, and KeeTrayTOTP, are only for a generation of OTP tokens. The user
needs to supply a seed; plugins then generate the token. [10] [11] [12]

1.2.3 TPM plugins
Currently, KeePass plugin base does not have support for a TPM. The argument
can be made that implementing TPM compatibility is somewhat of a reinventing
the wheel2 since KeePass has a safe mechanisms for storing its passwords. The only
intriguing aspect of using TPM should include some other mechanism or principles
for it to be a viable option. More on this topic in the Viable options chapter. The
tenets of TPM are explained in the TPM chapter as well.

2KeePass already provides a solution for a safe password storing. Using TPM 2.0 can be only
thought of as a complementary service.

Chapter 2

Cloud storage

This chapter focuses on examining current cloud service providers and their ability
to offer a multi-factor authentication.

2.1 About
Cloud storage is a model of computer storage that allows storing digital data in,
mostly, off-premise servers. Users do not need to know what servers their data is stored
on or where the servers are physically located. Providers try to guarantee security
and accessibility. However, not always are these guarantees upheld. Sadly, cloud
leaks and security breaches are waiting to happen almost every day. Yahoo breach
in 2013, Facebook in 2019, and, more recently, LinkedIn in 2021 all faced the same
issue – sensitive data being exposed to the internet [13]. These issues were caused
by the providers themselves. When it comes to end-users, the protection of their
data is as strong as the password protecting their account. Many providers allow for
two-factor authentication. However, some have additional features.

2.2 Providers
One of the newer additions to cloud storage is a term coined by Microsoft; Personal
Vault. Microsoft’s could storage OneDrive has developed an additional feature to their
cloud, an obligatory second-factor authorization for accessing most sensitive data [14].
Upon logging in, the user gains access to cloud contents but to unlock the Personal
Vault, the user must comply with the second factor, in this case, possession. This idea,
however, is unparalleled in the competition. IDrive, Google Drive, and Dropbox are
still missing similar feature of a Personal Vault. The major disadvantage persisting to
the current day is a non-existent API for a Personal Vault1. This makes integration
for KeePass plugin practically impossible.

1The current Microsoft Graph API, which provides all OneDrive API calls, does not mention of
Personal Vault or any of its features.

3

4 Cloud storage

Chapter 3

Viable options

To achieve second-factor protection for a KeePass database in the cloud, users may
use the Personal Vault feature of OneDrive. However, this is not an ideal solution.
This solution is bound to Microsoft’s cloud service. This chapter will attempt to
propose a solution for a general cloud service storage using a KeePass plugin.

3.1 One-time password
A one-time password, OTP for short, is a password meant to be used only once or in
a specific timeframe. This kind of authorization is commonly used as a second factor
due to its implementation. OTP can be divided into many categories. Main focus
will be on two implementations. HOTP, short for HMAC-Based One-Time Password
Algorithm, and TOTP Time-Based One-Time Password Algorithm. [15]

HOTP and TOTP both work on a pre-shared key premise. Meaning that both
parties, be it a client and a server, need to share this key securely. With this assump-
tion, a sequence of, most commonly, numbers is generated by the OTP client and
verified by the server. [16] [17]

3.1.1 HOTP
HOTP works using HMAC; hashed message authentication code. Message authen-
tication codes are short messages used for authenticating a message. With HMAC,
messages sent over the internet are hashed with a derivation of a pre-shared private
key, followed by another hashing of this hashed message with a different derivation
of the pre-shared key. These derivations are named opad and ipad. The ”i” and ”o”
are mnemonics for inner and outer. [16]

With the message as text and key as K, HOTP can be described with following
expression:

H(K ⊕ opad,H(K ⊕ ipad, text))

Using opad and ipad in this manner is done to prevent a Length Extension Attack.
[18]

5

6 Viable options

For HOTP, HMAC takes in two parameters – a sequence counter and a secret
key. A sequence counter is simply a counter starting at zero when the key exchange
is completed. With each authentication, the client and server increment the sequence
counter. [17]

Figure 3.1 Chart flow diagram for HOTP implementation

3.1.2 TOTP
TOTP work very similarly with one difference. The sequence counter is replaced with
the current time value. For this time value, Unix time is used.

Unix time is a signed integer value of 32-bits, representing the number of seconds
that have passed since the Epoch – January 1st, 1970. Unix time and pre-shared
key are then used as an input for HMAC and again truncated. Good practice on
a server-side is to hold an error window for verification. This means that the server
is precalculating a few hashes ahead and keeping a few hashes that have timed out.
This helps users deal with shortly expired codes, making them still valid. [19]

3.1.3 Conclusion
A conclusion to this section would be an applicable OTP plugin for cloud storage; how-
ever, after considerable time and examinations, all solutions showed to be a pseudo-
second factor as a standard cloud storage does not provide any computing power for
calculating OTP token and evaluating it. OTP is, therefore, not within the realm of
valid options.

Trusted Platform Module 7

3.2 Trusted Platform Module
A trusted Platform Module is a standard for a secure cryptoprocessor. It was stan-
dardized by a consortium called Trusted Computing Group in 2009 and, since then,
it is developed and maintained. It represents an anchor point of trust in a system.
It is primarily used to ensure the integrity of a platform. Integrity in this context
means, for example, secure boot. [20]

TPM ensures that the boot process starts from a trusted combination of hardware
and continues until all parts of an operating system are running. Other uses include
disk encryption, a hardware random number generator, or Binding (encryption by
a unique RSA key descended from the primary key). The implementation chapter
highlights the Binding feature as a part of the solution. [21]

3.2.1 TPM Software Stack by Microsoft
TPM Software Stack from Microsoft Research is an API made by Microsoft. This
API provides a much more user-friendly layer for using TPM devices as the raw
documentation made by TCG is rather complicated.

TCG introduced Enhanced System API (ESAPI) and Feature API (FAPI), and
TPM Command Transmission Interface (TCTI). This all combined constitutes a Trus-
ted security stack.

Figure 3.2 Description of TCGs TPM 2.0 Software Stack by TCG

The TPM Software Stack from Microsoft Research provides rich API wrappers
encapsulating all the API layers with one-to-one mapping to TPM commands.

8 Viable options

3.3 Microsoft
Moving away from lower levels of programming, Microsoft provides its developers with
several security-related APIs for authorization, authentication, or general-purpose
cryptography. APIs that could be used are introduced in the following subsections.

3.3.1 Windows Hello
Windows Hello is a biometric sign-in system provided by the Windows 10 operating
system. Because it is built directly into the operating system, it allows users to login
with, for example, face or fingerprint. This combines two vital elements of security;
authentication and authorization. What is the difference? Authentication is a process
of verifying a user’s identity, whereas authorization is a process of verifying if the
supplied credentials are allowed for the specified action – access rights. Windows Hello
can makes use of both of these, making it essentially 2FA. Fingerprint (something
a person is) and a PIN code (something a person knows).

Microsoft also made Windows Hello API available to developers, which means that
any application can use Windows Hello 2FA. With a closer look into the Windows
Hello documentation, TPM technology is used for public-private key generation. [22]

To conclude this section, Windows Hello is a suitable candidate for a KeePass
multi-factor cloud storage providing a 2FA API.

3.3.2 CSP and CNG
The last thing worth mentioning is two Microsoft APIs; Cryptographic Service Provid-
er (CSP) and Cryptography API: Next Generation (CNG). These are, as the name
suggests, cryptography APIs made by Microsoft. They essentially represent the same
capabilities. However, CNG is a renewed, updated version of the previous CryptoAPI
with better API and newer algorithms. Using one of these APIs, KeePass plugin
can use a pair of generated keys as a possession factor, encrypting KeePass database
before uploading it to the cloud.

This would seem like a satisfactory solution; however, Windows as an operating
system does not have an excellent way of storing private keys. The only exception may
be CNGs Key Storage and Retrieval model, which mimics TPM with the hardware.
[23]

To conclude this section, using only software to handle private keys, be it CSP or
CNG, is not recommended and should be avoided if possible.

Research conclusion 9

3.4 Research conclusion
The overall conclusion of this research chapter is a proposal to implement technologies
suitable for KeePass plugin that can securely manage its database in the cloud.

The proposition is as follows: For demonstrative purposes, one cloud storage
provider is to be chosen and, with its API, implement upload and download func-
tionalities for the KeePass plugin. Using TPM, generate a pair of keys where the
private key shall be stored within the TPM. Upon saving the database, encrypt it
using the TPM key (representing a possession factor) and upload it to the cloud stor-
age. Upon user request, download the database from the cloud, unlock it and let the
user make their changes. Should the user be done or reopens the database at a later
date, this process repeats.

10 Viable options

Chapter 4

Implementation

This chapter focuses on the implementation details of the previously proposed
solution. Starting with Google Drive API implementation for cloud communication
and utilizing TPM for key handling. Lastly, putting all these components together
with basic concepts of KeePass plugin creation.

4.1 Google Drive API
Google API is a collection of API calls allowing interaction with Google related ser-
vices. The main emphasis of this plugin is on Google Drive communication, narrowing
down what needs to be explained.

4.1.1 Google Cloud Platform
The first step in developing a Google Drive application is to create a project in
the Google Cloud Platform. GCP shortly explained is a suite of cloud computing
services. One of its features is a project that can be referenced with API tokens for
inner Google authentication. This allows for a simple set of tokens to provide working
Google Authorization. Desktop applications use these tokens to communicate with
Google servers to authorize any existing user.

This is achieved with a hierarchy of classes constructing, in the end, an object
representing a communication channel for an update, upload, and download.

4.1.2 Class hierarchy
The first class that needs to be constructed is ClientSecrets. ClientSecrets class
represents API tokens gained from a previously created project on the Google cloud
platform. This token consists of ClientId and ClientSecrets. These are somewhat
self-explanatory. ClientId is a Cloud Platform project ID, and ClientSecret can
be understood as a password authenticating an incoming connection (4.1).

11

12 Implementation

Code listing 4.1 ClientSecret class
ClientSecrets = new ClientSecrets

{
ClientId = GoogleDriveClientId ,
ClientSecret = GoogleDriveClientSecret

}

Once the ClientSecrets class is constructed1, it is used as a building block for
a UserCredential class. With the usage of GoogleWebAuthorizationBroker, a con-
nection to Google Authorization servers is established, prompting users with browser
login. With a few more arguments, like a scope of application, and cancellation to-
kens, the GoogleWebAuthorizationBroker then returns initialized UserCredential
(4.2).

Code listing 4.2 UserCredential class
UserCredential = GoogleWebAuthorizationBroker.AuthorizeAsync(

new GoogleAuthorizationCodeFlow.Initializer
ClientSecrets ,
Scopes,
name,
cancellationToken ,
new NullDataStore()).Result;

As the last step, the UserCredential object is used to construct the final class –
DriveService. DriveService is the object used for uploading, updating, or down-
loading files with the corresponding methods (4.3).

Code listing 4.3 DriveService class
DriveService service = new DriveService(

new BaseClientService.Initializer()
{

HttpClientInitializer = UserCredential ,
ApplicationName = ApplicationName ,

});

This whole process is a description of a CreateLogin method. This method
is called upon adding a new user to the KeePass plugin application. How users
are managed is explained in the Profiling with Windows registry section.

To prevent users from recreating logins each time the KeePass application starts,
a LoginAs method is used. This method uses the same API calls as CreateLogin
however, UserCredential is supplied with a refresh token. This results in automatic
login with no need for reauthorizing.

With LoginAs and CreateLogin methods explained, the only things remaining are
upload and download functionalities. As mentioned before, DriveService is a handle
for all of these operations. After Logging in with LoginAs method, DriveService
object is created. When a user decides to save their work on a KeePass database or
opens KeePass for accessing the database, methods Upload and Download are used.
These are methods of mentioned DriveService object and are reasonably simple to
use.

1Working token is included in the source code of this project; however, users should create this
token for themselves. Firstly, it is not guaranteed that this service will be running in the long term;
secondly, it is for their own security reasons.

Google Drive API 13

Note: After a successful login, a refresh token is created. A refresh token
is a client secret representing a login session. This token can have a time
expiration but still represents a potential vulnerability. Should the to-
ken be stolen, a Google account with weak security measures can be
logged in by an intruder.

To protect these tokens, a Microsoft DPAPI library was used. This library consists
of ProtectedData class which provides a simple encryption service. The encryption
uses a DataProtectionScope, which is either CurrentUser or LocalMachine. This
class does not provide any keys; it encrypts messages with the current user session or
with local machine credentials. In this case, use of the CurrentUser scope, protects
tokens from unauthorized theft (4.4). [24]

Code listing 4.4 Data protection method
byte[] bytes = Encoding.ASCII.GetBytes

(credential.Token.RefreshToken);
var encrypted = ProtectedData.Protect

(bytes, null, DataProtectionScope.CurrentUser);

Uploading starts with a Create method. Create method needs a FileStream to
create FileResource. FileStream, in this case, is a path to the password database.
When this FileResource is created, an Upload method (method belonging FileRe-
source) is called, uploading the file, with the current authorization session, to the
user’s Google Drive (4.5).

Code listing 4.5 Upload method
var driveFile = new Google.Apis.Drive.v3.Data.File();
driveFile.Name = "Personal Vault";
driveFile.Description = "Vault";
driveFile.MimeType = "application/octet-stream";

var request = driveService.Files.Create
(driveFile , file, "application/octet-stream");

request.Fields = "id";

var response = request.Upload();

14 Implementation

Updating file2 method looks and works almost identically to Create method. The
only difference is a fileID reference of the desired file. FileID is a unique ID refer-
encing the Google Drive file (4.6).

Code listing 4.6 Update method
using (var stream = new FileStream(filePath ,

FileMode.OpenOrCreate))
{

updateRequest = service.Files.Update(driveFile ,
fileID,
stream,

"application/octet-stream");
updateRequest.Upload();
var file = updateRequest.ResponseBody;
return file.Id;

};

Downloading is made even more straightforward. Developers can use extensive
filtering on users’ Google Drive files. One specific filtering is by ID. This ID is stored
together with user credentials when CreateLogin is called. Meaning it is persistent
and can be referenced later. So to download a specific file, FileID is looked up and
handed to the download method (4.7).

Code listing 4.7 Download method
var request = service.Files.Get(fileID);

string FileName = request.Execute().Name;
string FilePath = Path.Combine(FolderPath , FileName);
MemoryStream stream = new MemoryStream();

request.MediaDownloader.ProgressChanged +=
(IDownloadProgress progress) =>
{

switch (progress.Status){
case DownloadStatus.Downloading:
{ break; }
case DownloadStatus.Completed:
{

SaveStream(stream, FilePath);
break;

}
case DownloadStatus.Failed:
{ throw new Exception(); }

}
};

request.Download(stream);

To summarize this section, Google Drive API establishes a connection to the GCP
project with ClientId and ClientSecret. This connection prompts the user with
a Google login, and if successful, a refresh token is saved. This token can be reused to
re-login if it is not expired. The functionality described in this section is implemented
in GooglAuth.cs class.

2Meaning that file already exists and does not to be created.

TSS.MSR 15

4.2 TSS.MSR
TSS.MSR is a Windows TPM Software Stack developed by Microsoft. This seems to
be one of few applicable implementations due to the fact that KeePass is written in
C# and TSS.MSR has a .NET variant.

4.2.1 TSS.MSR and TPM 2.0
To fully understand what TSS is, we first need to understand what TCG has standard-
ized. As mentioned in the TCG guide, TPM is a standard for a secure cryptoprocessor
[21]. This means that developers who are bound to an operating system can not di-
rectly interact with the TPM chip. First, the operating system needs to know how to
communicate with the TPM. This, therefore, implies that communication with TPM
is different with each operating system. For the Windows system, one of the solutions
is mentioned TSS.MSR.

TPM and its architecture offer hundreds of commands. However, building a secure
cryptosystem does not require hundreds of commands. With this plugin’s implemen-
tation, only a handful is needed.

4.2.2 Basic concepts
The first thing to understand is that TPM comes with an endorsement key. The
endorsement key is embedded into TPM and can not be changed. This endorsement
key is then used to derive a hierarchy of keys for the user. [25]

The second thing to understand is an authorization session. If a developer decides
to communicate with TPM, they must do so with a secure channel. This authorization
is achieved with HMAC, parameter decryption, and then response encryption3. In
more detail, this authorization session starts with a nonce4 generated by the user side
and a nonce generated by TPM. These two are then used to derive a session key. [26]

4.2.3 Usage
To start using the TPM and to start creating keys for users, a hierarchy needs to be
created as well. A key always needs a parent authority. A primary key is a key that
uses the endorsement key or storage root key as its parent. The primary key is the
first key of the hierarchy and is used as a parent to all other user-created keys. When
the application is run, this key is created each time. [27]

This key remains the same based on the fact that the endorsement key is persistent
within the TPM. This, however, creates a slight complication. This key generation
is time-consuming, and only recently, the TCG created a Provisioning Guidance which
states that these primary keys are stored in the persistent storage at NV address
8100001 [28]. This, however, was not implemented. The Key is, in this case, always
recreated (4.8) [29]. [30]

3These examples all are principles used for an authorization session. All three should be present
while communicating with the TPM.

4In cryptography, a nonce (number once) is an arbitrary number that can be used just once in
a cryptographic communication.

16 Implementation

Code listing 4.8 Create primary key method
// Construction of necessary parameters
var sensCreate = new SensitiveCreate

(new byte[] { 0xa, 0xb, 0xc }, null);
byte[] outsideInfo = new byte[] { 0, 1, 2 };
var creationPcr = new PcrSelection

(TpmAlgId.Sha1, new uint[] { 0, 1, 2 });

TpmPublic parms = new TpmPublic(...)
TpmPublic pubCreated;
CreationData creationData;
TkCreation creationTicket;
byte[] creationHash;

// Creation of primary key
TpmHandle h = tpm.CreatePrimary(TpmRh.Owner, sensCreate , parms,

outsideInfo ,
new PcrSelection[] { creationPcr },
out pubCreated , out creationData ,
out creationHash , out creationTicket);

return h;

Note: Values for SensitiveCreate and creationPcr are chosen arbitrarily.
Code for TpmPublic is purposely hidden and can be inspected in TSS.cs
class for further detail.

With the primary key created, a standard5 key can be created, and this time for
encrypting user data. When creating a key, TPM does not load it automatically.
Creating (4.9) and loading (4.10) a key are two separate operations .

Code listing 4.9 Create key method
TpmPublic keyInPublic = new TpmPublic(...)

SensitiveCreate sensCreate = new SensitiveCreate
(new byte[] { 2, 2, 3 }, null);

CreationData keyCreationData;
TkCreation creationTicket;
byte[] creationHash;

TpmPrivate keyPrivate = tpm.Create(primHandle , sensCreate ,
keyInPublic , null,
new PcrSelection[0],
out keyPublic ,
out keyCreationData ,
out creationHash ,
out creationTicket);

return keyPrivate;

5Naming the key standard is done only to distinguish it from the primary key.

TSS.MSR 17

Note: SensitiveCreate represents authentication key. It needs to be remem-
bered for later reconstruction and authorization sessions.

Note: Despite its class name TpmPrivate is not a readable private key. This
structure is encrypted by the TPM and represents the private part of
the key. Sometimes referred to as the private blob. [31]

Code listing 4.10 Load key method
TpmHandle keyHandle = null;

tpm._Behavior.Strict = true;

// No auth session is added automatically when
// TPM object is in strict mode.
tpm._ExpectError(TpmRc.AuthMissing)

.Load(primHandle , keyPrivate , keyPublic);

// Now explicitly request an auth session of a desired type.
// Actual auth value will be supplied by TSS.Net implicitly.
keyHandle = tpm[Auth.Default].Load(primHandle ,

keyPrivate ,
keyPublic);

// Switch TPM object back to the normal mode.
tpm._Behavior.Strict = false;

return keyHandle;

Note: tpm._Behavior.Strict is a TSS.Net specific piece of functionality, not
a part of TPM 2.0 specification [32]

This kind of key is, unfortunately, not persistent. This can be prevented by
making the key persistent. Making key persistent is done by the EvictControl func-
tion. EvictControl internalizes the keyhandle making it a valid reference even after
a computer restart (4.11). [33]

Code listing 4.11 Make key persistent method
hPers = NextPersistentHandle(TpmRh.Owner);
tpm._ExpectResponses(TpmRc.Success,

TpmRc.NvSpace,
TpmRc.NvDefined)

.EvictControl(TpmRh.Owner, handle, hPers);

Note: NextPersistentHandle is a method returning a persistent handle.
EvictControl then uses the newly loaded handle and assigns it to
hPers

18 Implementation

This keyhandle needs to be exported to a file and kept by the user. In this case,
it is the user’s responsibility to protect this file from corruption as it represents the
only means of gaining control over this key.

With a persistent key, developers can start encrypting and decrypting messages
with TPM methods (4.12). However, in this case, the KeePass database can grow
in size. This means that asymmetric encryption is not an efficient approach. What
is used here is a hybrid encryption. The TPMs GetRandom method generates a sym-
metric key for AES-256.

Note: GetRandom is a True Random Number Generator (TRNG) that can
be used for various applications including cryptographic purposes. This
RNG module serves as the source for randomness for the TPM 2.0 Chip.
[34]

Code listing 4.12 Database encryption method
// Create Symmetric Key
byte[] aesKey = tpm.GetRandom(3);

// Encrypt the db with Block Cypher
AESEncryptFile(dbPath, aesKey, false);

// Encrypt the key with TPM
encryptedKey = tpm.RsaEncrypt(hPers, aesKey, scheme, null);

// Write the key to file
WriteToBinaryFile(pathAESKey , encryptedKey);

This symmetric key is then encrypted with a private key previously Evicted. When
the user decides to save their work on the KeePass database, the AES key is used to
encrypt the database, which is then uploaded to the cloud. The other way around, if
the user downloads the encrypted database, the AES key is decrypted and used for
database decryption. The functionality described in this section is implemented in
TSS.cs class.

The summary of this section is as follows. TPM creates keys in a hierarchy. Each
key is encrypted with its parent, and on top of this hierarchy stands the endorsement
key6, which never changes. To securely communicate with TPM, authorization ses-
sions are used to encrypt the communication. Using the endorsement key, a primary
key is created. This primary key is always the same since it is based on the endorse-
ment key. A standard key is created with the primary key as a parent and made
persistent. The database itself is encrypted with an AES key, which is encrypted by
the TPM key. User’s requests for uploading and downloading the database are bound
to these encrypting and decrypting operations.

6or a storage root key

Profiling with Windows registry 19

4.3 Profiling with Windows registry
A use Windows registry is implemented to create a profiling system for managing
more than one database and or more users.

Windows registry has a specification for what is meant to be used by the system,
users, or anything else.

The root key structure for users is HKEY_CURRENT_USER. SubKey SOFTWARE is then
used for program-specific data. The plugin creates a new key named KeePassVault
inside the SOFTWARE key, and stores information about created profiles.

One key consists of Name and Value. The Name, in this case, is the profile name that
is entered in profile creation. Value is a serialized JSON string containing boolean
isDefault and fileID (Database ID on Google Cloud). Example of what a registry
may look like in the following figure (4.1).

Table 4.1 Registry entry

Name Type Data
Filip REG_SZ {"isDefault":false,"fileID":"abcdef123456"}
Kostas REG_SZ {"isDefault":true,"fileID":"ghijkl678901"}

IsDefault shows which profile is meant to be loaded automatically when the
KeePass starts. This string is serialized and deserialized when it needs to be read or
changed. The functionality described in this section is implemented in ProfileMan-
agerForm.cs class.

20 Implementation

4.4 KeePass plugin creation
As the KeePass is open-source, some documentation on plugin creation can be found
on the product’s website. [35]

The first thing to understand is how plugins are imported. A plugin can be
either DLL or PLGX. These are only file extensions, so the difference lies within
the files. DLL is already compiled and compacted, and all KeePass does is include
this DLL. PLGX is a packed file with source code that needs to be compiled by
the KeePass binary with specified utility commands. Both these approaches have
pros and cons. For instance, PLGX can not use cache while DLL can. DLL plugins
are rarely supported on third-party KeePass implementations for Linux systems. The
development will be made for Windows operating systems, so the DLL variant is more
suitable. Complete comparison in the following table (4.2). [35]

Table 4.2 Comparison table

DLL PLGX
Compatibility check Weak only Strong
Compatibility with custom builds (Linux) Partial Strong
Authenticode signing support Yes no
No compilation on the user's system Yes no
No plugin cache Yes no

Importing a plugin starts with placing a plugin in the ”Plugins” folder in the
KeePass installation folder. The DLL, however, must have a Project Assembly infor-
mation set to ”KeePass Plugin”. Only then is it loaded.

The second thing is to understand how plugins are written. A KeePass plugin
must be a Visual Studio C# Class Library project. This project must have a KeePass
binary referenced in the ”Reference tab” to access the KeePass namespace.

With access to the KeePass namespace, developers can access the most important
function, Initialize, which needs to be overridden. This function represents the
startup of the KeePass application, even before the main window is displayed. In this
method, all the main components of the plugin are called.

KeePass plugin creation 21

Code listing 4.13 Plugin insertion method
public override bool Initialize(IPluginHost host)
{

if (host == null) return false;
m_host = host;

// If profile exists , open the database
if (profile != null)
{

// Grab stored refreshtoken fomr datastore
var token = gAuth.GetTokenFromDataStore(profile.name);

// Login using the token
service = gAuth.LoginAs(token);

// Download the file
filePath = gAuth.DownloadFile(service,profile.fileID);

// Decrypt the file
TSS tss = new TSS();
tss.Decrypt(filePath);
tss.Disconnect();

// Open the database
var ci = IOConnectionInfo.FromPath(filePath + ".dec");
ci.CredSaveMode = IOCredSaveMode.SaveCred;
m_host.MainWindow.OpenDatabase(ci, null, false);
m_host.MainWindow.FileSaved += SaveBackToDrive;

}

return true;
}

In the case of this plugin, this method, if a default profile is present, calls for
GoogleAuth class, which handles downloading and uploading to Google Drive. Should
no profile be marked as default, nothing is downloaded.

The last thing worth mentioning is an event action provided by MainWindow class
named FileSaved. This event can be subscribed to and will call a specified ac-
tion when the user saves the database. In this case, it encrypts the database and
uploads it to the cloud. Functionality described in this section is implemented in
KeePassVaultExt.cs class.

22 Implementation

4.5 Testing
This section provides insight into the preparation of the testing environment as well
as an example of an installation. The installation part is described in a way that the
user can follow with the figures and instructions along.

4.5.1 Preparation
To properly test the proposed solution and its implementation, it would be desirable
to use actual TPM 2.0. This, however, was not possible due to the limitations of
the implementation environment. TPM chip was not present on the system used for
implementation; therefore, another solution was found.

TSS.MSR also offers a testing binary called TPM 2.0 simulator. [36] This binary
simulates TPM 2.0 according to the TCG standard and is reliable for software de-
velopment. This simulator binary uses a TCP connection and communicates with
applications the same way a real TPM chip would7. [37]

To make use of this simulator, changes in TSS.cs class need to be made. In the TSS
constructor, either TcpTpmDevice or TbsDevice is used to construct the TPM object.
TcpTpmDevice takes in two arguments, IP and PORT. These credentials are used to
connect to the simulator binary. TbsDevice takes no arguments and establishes the
connection to TPM with system calls.

Code listing 4.14 Simulator or Device method
public TSS()
{

// Choose Simulator or Chip
tpmDevice = new TcpTpmDevice(DefaultSimulatorName ,

DefaultSimulatorPort);
tpmDeviceHW = new TbsDevice();
...

}

In theory, these two commands can be swapped, and no loss of functionality shall
arise. This, however, remains to be tested due to the limitations of the current
hardware.

7This binary can be downloaded from https://www.microsoft.com/en-us/download/details.
aspx?id=52507

https://www.microsoft.com/en-us/download/details.aspx?id=52507
https://www.microsoft.com/en-us/download/details.aspx?id=52507

Testing 23

4.5.2 Installation and example
To begin testing, compiled library KeePassVault.dll needs to be imported into the
plugins folder of the KeePass directory. KeePass then should be launched. Following
the launch of KeePass, the plugin should be loaded. A ”Personal Vault options”
item should be visible in the ”Tools” section of the navigation menu to confirm if the
loading process worked correctly (4.1).

Figure 4.1 Successful installation and where to find settings for Personal Vault

Opening these options, the user is shown a profile manager window. Now empty,
the list box presents added profiles (4.2).

Figure 4.2 Profile manager – used for adding and removing profiles

24 Implementation

The user should begin by adding a profile by clicking the ”Add profile” button.
This opens a window for the selection of database and Google account authorization.
The order of these two does not matter (4.3).

Figure 4.3 Adding profile – selecting database and a Google account

Proceeding with ”Select database”, the user selects a database to encrypt and
upload to the cloud. This needs to be followed by the ”Google login” button, which
prompts the user with a profile name selection. This is purely a quality of life feature
allowing easier management of databases and profiles for users. Any name or nickname
can be chosen. After confirming the name, a browser window is opened automatically,
and the user is prompted with the Google authorization page (4.4).

Figure 4.4 Google login – OAuth Browser Window

Testing 25

At this moment, settings in the GCP project need to be adjusted. A newly
created project in GCP is automatically in testing mode. Testing mode warns users
when authorizing of an unverified application hosted by GCP. If the user is not in the
”test users” list, which can be found on the ”OAuth consent screen” page in project
management, they will not be allowed to use this application. So GCP project either
needs to be published, or test users need to be added. In this case, the application
has been published and should be accessible to any Google user.

Should the authorization be successful, the profile’s name with the full name of
the logged-in user is displayed next to the Google login button (4.5).

Figure 4.5 Adding profile – completed selection of database and a Google account

Note: 20-second cancellation token is used in this section giving the user a 20-
second window. Should the user take too long with the login, the con-
nection is dropped.

Clicking the ”OK!” button initiates first-time database encryption and uploads it
to the cloud. More information on how TPM performs these actions in TSS.MSR
section. Should the encryption and upload be successful, the profile is added to the
registry. The profile will now appear in the listbox, and by selecting it and pressing
the ”Make Default” button, the user will select this profile as default. The default
profile is only one, and the default profiles database is automatically downloaded and
decrypted upon KeePass startup (4.6).

Figure 4.6 Profile manager – profile creation completed

26 Implementation

Should the user be done, they can save the database manually, force encryption
immediately, and re-upload or exit. KeePass will prompt the user to save should
the user exit with an unsaved database. This will trigger encryption and file update
as well. This process can be repeated indefinitely as long as the simulator binary
is running.

Note: The simulator binary needs to be kept running between KeePass reruns
because re-running the simulator binary regenerates its endorsement
keys resulting in a different primary key. This invalidates every key
derived for the endorsement key, and decryption will no longer be pos-
sible. [38]

Note: Due to the nature of testing, one protection mechanism of the TPM
is manually disabled. This protection mechanism is DictionaryAt-
tackProteciton. This mechanism locks the TPM communication down
should some requests be sent and fail too frequently. [39] Disabling this
mechanism is done in the constructor for the TPM object in TSS.cs
class.

Lastly, if the user decides to disable the TPM encryption, they can do so by
removing the profile. Removing the profile downloads the database from the cloud,
decrypts it and places it into the current user profile folder. The registry entry is then
removed.

Chapter 5

Security analysis

This chapter focuses on identifying possible threats and creating a threat model.
A threat model represents and evaluates how the application is implemented through
a lens of security.

5.1 Threat model
There are many approaches to threat modeling. One of those approaches is The
Process for Attack Simulation and Threat Analysis, PASTA. PASTA is a seven-step,
risk-centric methodology. [40] [41]

The seven steps or stages are as follows:

Stage 1 Define the objectives

Stage 2 Define the technical scope of assets and components

Stage 3 Decompose the application

Stage 4 Threat analysis

Stage 5 Vulnerability detection

Stage 6 Attack Analysis

Stage 7 Risk or impact analysis and development of countermeasures

5.1.1 Define the objectives
Objectives, in this case, are things that are important with the application. Under-
standing what is the objective of the application is understanding its purpose.

The main objective of the KeePass is to protect passwords. Following this idea,
this plugin’s objective is to store the KeePass database in the cloud securely. This
objective can be expanded to handling the database outside the cloud. This will be
taken into account.

So the main objectives are:

Database protection in the cloud

Database handling off the cloud

27

28 Security analysis

5.1.2 Define the technical scope
The second stage should understand the attack surface by defining assets and compo-
nents. Defining the attack surface, in this case, includes consideration of the depen-
dencies of this plugin. However, this needs to be under-scoped because the primary
focus should be placed on the application.

Using this, the display of considerable technologies is as follows:

KeePass Password Manager

Google Drive and its API

TSS.MSR

Overall implementation

5.1.3 Decompose the application
Decomposing the application should map the relations between mentioned compo-
nents. How they communicate and what is being communicated.

A simplified decomposition for a specific section of KeePass startup using data
flow diagrams in the following figure (5.1).

Figure 5.1 Demonstrative dataflow diagram for KeePass Startup

Threat model 29

5.1.4 Threat analysis
Threat analysis is focused on the scope of the KeePass plugin. Considerable attack
vectors, in this case, can be the following:

Compromised credentials of the Google Drive storage

Weak credentials of the Google Drive storage

Ransomware

Brute force

The last two attack vectors can be used if the user loses control over their Google
Drive. Ransomware – extortion where data is deleted or encrypted unless a ransom
is paid. Or a brute force attack on the encrypted database.

5.1.5 Vulnerability detection
Considering the first two stages, vulnerability detection can be done on two levels.
The first level only considers the security of the cloud storage. The second level as-
sumes compromisation of localhost.

With the first level, hardly any significant attack vectors can be found. The
database is under two-factor authentication protection - possession factor (SHA-256
key) and knowledge factor (master password). However, some threats can still be
pointed out. The first attack vector is credential compromisation of the Google Drive
account. This would give an attacker access to the encrypted database. The second
attack vector is a brute force attack on the AES key and the master password.

With the second level, more attack vectors arise. Limiting the scope of this anal-
ysis, assumption about the security of the KeePass application will be made. Pro-
claiming it secure, the analysis will treat KeePass component as a safe one. The same
assumption will be made about TPM 2.0. Thanks to TGC, private keys can not be
extracted from TPM, nor are they exposed to the user while using them [42].

30 Security analysis

However, the first attack vector can be found in the moment of only master pass-
word protection. The following figure highlights the time window of the decrypted
database (5.2).

Figure 5.2 Vulnerability window in dataflow

This window represents the database’s vulnerability to theft. Theft can then be
followed by brute force attack on the master password, eliminating the second factor.

The next attack vector deals with localhost storage. Assuming that database
is handled in a secure environment, the unencrypted database (unencrypted by the
TPM) needs to be securely disposed of. Depending on the hardware, difficulty
changes.

Threat model 31

5.1.6 Attack Analysis
This stage focuses on the attacker’s side of the analysis. As previous stages revealed
attack surfaces, this stage simulates poetical attacks.

The first scenario that will be simulated is considering only a credential theft of
the Google Drive account followed by the brute force attack on the AES key and
master key. Credential theft can be done in various ways. One of the more common
is a phishing attack. ”Phishing is a type of social engineering attack often used to
steal user data, including login credentials and credit card numbers. It occurs when
an attacker, masquerading as a trusted entity, dupes a victim into opening an email,
instant message, or text message.” [43]

With access to the encrypted database, the attacker can begin brute-forcing AES-
256. This already had become an almost impossible task. This kind of attack would
require to go through 2256 combinations. The fastest computer in the world is cur-
rently the Fugaku supercomputer [44]. The Fugaku supercomputer has been bench-
marked by LINPACK to 415.5 PFLOPS [45]. Petaflop is 1015 floating-point operations
per second. In terms of base 2, this can be rewritten to 250 with some inaccuracy.

Putting this all together Fugaku supercomputer can do 415.5 × 250 operations
per second. The following equation can then express the estimate for the final time
needed for brute-forcing AES-256:

2256

415.5× 250 × 365× 24× 60× 60
≈ 8.047× 1051 years.

However, time spent brute-forcing AES-256 only gets the attacker halfway there.
Should the attacker be astronomically and unimaginably lucky and crack the encryp-
tion in their lifetime, the attacker needs to crack the master password.

Cracking the KeePass database can prove to be a rather lengthy task as well.
The attacker, in essence, needs to go through all password combinations. What helps
in favor of the attacker is the fact that the master password will most probably be
a word or a phrase made by the user since it should be memorable.

Smart tools using password lists or carefully crafted rules for password generation
can be used. To name a few, Keepass2john and Hashcat are both tools designed for
brute force attacks. Keepass2john is a sub-module for John the Ripper tool. [46]

Assuming the credential theft, brute force of AES-256 and KeePass database, the
attacker can, in theory, gain access to the victim’s passwords.

The second scenario will assume an attack on the unsecured time window and
compromisation of the operating system. There are numerous ways of compromising
the Windows system, ranging from the most recent Log4Shell RCE [47] to an older
EthernalBlue RCE [48]. With the assumption of a compromised system, the attacker
can create an application that waits for a download request followed by TPM decryp-
tion. Once the decryption is done, the malicious application can copy the database
to a different location entirely. The database can then be subjected to Keepass2john
or Hashcat cracking, significantly reducing the estimated time.

The last issue with the second scenario is a secure deletion of the decrypted
database. This eliminates the need for a time window when considering that the
database is being worked within an insecure environment. An argument can be made
that assuming the working environment is unsecured makes even a basic use of KeeP-
ass dangerous. As Dominik Reichl, creator of KeePass, said: ”Neither KeePass nor
any other password manager can magically run securely in a spyware-infected, inse-
cure environment.” [49]

32 Security analysis

Deleting the database with simple system calls can be easily reverted as there are
many software projects for retrieving deleted files, such as EaseUS Data Recovery or
Disk Drill.

5.1.7 Risk and Impact Analysis
A proposal of countermeasures that mitigate the threats will be made to finalize the
threat modeling.

The main objective, secure cloud storage, fails to protect the database only under
credential theft conditions. Be it a phishing attack or weak credentials, this risk is in
the hands of the user. It is paramount for users not to use weak passwords or, in case
of phishing, click suspicious links or reveal any personal information to an unverified
end.

For the second objective – compromisation of the operating system or local storage,
a secure deletion of the database should be implemented. One solution would be
the utilization of Sysinternals applications. Sysinternals is a set of utilities to help
users manage, troubleshoot, and diagnose Windows systems. One of those utilities
is SDelete. ”Using the defragmentation API, SDelete can determine precisely which
clusters on a disk are occupied by data belonging to compressed, sparse, and encrypted
files.” [50] [51]

This, however, becomes complicated when users use SSDs. SSDs make the process
of secure erasure much harder. The TRIM commands can be used; however, SSDs
essentially keep a record of the data due to wear-leveling process buffering. This
makes SSDs susceptible to many data recovery attacks. [52]

Chapter 6

Discussion and results

This chapter discusses and elaborates on found results of research and implemen-
tation.

6.1 Cloud findings
With the research done on the cloud platforms, it would be desirable for Microsoft
to release Personal Vault API. That way, users can use Microsoft 2FA services with
cloud storage.

As for other cloud providers, any implementation of Personal Vault would seem
like the next step in cloud security. Developing a secure folder for users with sensitive
documents is, in my opinion, time well invested.

6.2 Two-factor authentication
In terms of 2FA research, OTP tokens were initially focused on for their simplicity
in theory and implementation. It was only later discovered that a form of computing
power is imperatively needed for the server-side to use OTP properly. Ideas were
discussed on how to implement OTP without computing power.

For instance, the cloud storage could hold a part of the key (the second-factor
key). The user then must login into the cloud and combine this partial key with the
part they have, completing the key for 2FA. This seemed like a satisfactory solution;
however, TPM was chosen over the OTP.

6.3 TPM as 2FA
At the beginning of implementation, TCGs documentation on TPM 2.0 was harder to
understand as it is made in an abstract manner. The direct implementation of TCGs
TSS – TSS.MSR, even though adequately developed following the TCGs standard,
introduced yet another new layer of abstraction that needed to be understood. Their
implementation, however, is accompanied by a set of basic examples that created
a starting ground for the development.

The most significant milestone to overcome was to export the keyhandle correctly
in compliance with authorization sessions and the key hierarchy.

33

34 Discussion and results

Chapter 7

Conclusion

Although the KeePass plugin base is not small, its support for the second factor
is lacking. This plugin created a secure way of providing a safe cloud environment,
resilient to simple credential loss in combination with secure cloud storing.

First attempts to involve OTP tokens proved unsuccessful due to the fundamental
concepts of cloud storage. File systems alone can not provide any computing power
for validation. Any other cryptosystems created for a key exchange of sorts resulted
in either complication beyond the scopes of this thesis or loss of security altogether.
TPM technology was researched and later implemented as a solution to this issue.

As for the objectives of this thesis, the examination of the current state of the
KeePass plugin community was conducted and confirmed the lack of 2FA plugins.
Analysis of cloud storage providers revealed that only one provider (Onedrive) con-
siders the usage of 2FA within the cloud storage. The rest of examined providers rely
solely on password protection. The concept of secure cloud storage was constructed
with TPM 2.0 as a second authentication factor, encrypting the database and using
one of the cloud providers as storage. This proposal of the solution was later im-
plemented, tested, and documented. Lastly, a threat model was created, revealing
possible attack surfaces, and a proposition of the solution to these threats was also
made. With the last step, all the objectives of the thesis were successfully fulfilled.

Future work
Although the implementation and threat analysis proved to be successful endeavors,
much work needs to be done to meet the potential fully. Mainly in the three following
components.

Firstly, implementation of other cloud storage providers like Onedrive, Dropbox,
and others. Their APIs are available and should not need any wide changes in the
application.

Secondly, implementation of countermeasures described in threat analysis would
also be desirable, making the plugin less susceptible to user mistakes and other threats.

And lastly, as stated in previous chapters, the plugin remains to be tested on
actual TPM 2.0 rather than simulating it with, even though adequately developed
according to TCG standard, simulator binary provided by Microsoft Research Team.

35

36 Conclusion

Bibliography

1. REICHL, Dominik. KeePass [online]. 2003 [visited on 2022-04-19]. Available
from: https://keepass.info/.

2. ZUKERMAN, Erez. Tools for the paranoid: 5 free security tools to protect your
data [online]. 2013 [visited on 2022-04-21]. Available from: https://www.pcw
orld.com/article/456636/tools-for-the-paranoid-5-free-security-
tools-to-protect-your-data.html.

3. REICHLN, Dominik. KeePass plugins [online]. 2003 [visited on 2022-04-20].
Available from: https://keepass.info/plugins.html.

4. REICHLN, Dominik. KeePass Auto-typing and its protection [online]. 2003 [vis-
ited on 2022-04-20]. Available from: https://keepass.info/help/v2/autotyp
e_obfuscation.html.

5. BÖLTS, Daniel. KeePass plugin keeanywhere [online]. 2015 [visited on 2022-04-
20]. Available from: https://keeanywhere.de/.

6. REICHLN, Dominik. KeePass plugin keepasssync [online]. 2012 [visited on 2022-
04-20]. Available from: https://sourceforge.net/projects/keepasssync/.

7. SHAWN, Casey; MITCH, Capper. KeePass plugin kpgsync [online]. 2013 [visited
on 2022-04-20]. Available from: https://sourceforge.net/projects/kp-
googlesync/.

8. DANYAL. KeePass plugin kpodsync [online]. 2013 [visited on 2022-04-20]. Avail-
able from: https://keepass.info/plugins.html#kpodsync.

9. ZOMERS, Koen. KeePass plugin otpkeyprov [online]. 2014 [visited on 2022-04-
20]. Available from: https://github.com/KoenZomers/KeePassOneDriveSync.

10. ROOKIESTYLE. KeePass plugin kpotp [online]. 2013 [visited on 2022-04-20].
Available from: https://keepass.info/plugins.html#kpotp.

11. TIUUB. KeePass plugin keeotp [online]. 2015 [visited on 2022-04-20]. Available
from: https://keepass.info/plugins.html#keeotp.

12. TIME, Crash; VICTOR, Rezende. KeePass plugin keetraytotp [online]. 2010 [vis-
ited on 2022-04-20]. Available from: https://keepass.info/plugins.html#
keetraytotp.

13. STORAGECRAFT. Cloud security breaches [online]. [N.d.] [visited on 2022-04-
20]. Available from: https://blog.storagecraft.com/7-infamous-cloud-
security-breaches/.

37

https://keepass.info/
https://www.pcworld.com/article/456636/tools-for-the-paranoid-5-free-security-tools-to-protect-your-data.html
https://www.pcworld.com/article/456636/tools-for-the-paranoid-5-free-security-tools-to-protect-your-data.html
https://www.pcworld.com/article/456636/tools-for-the-paranoid-5-free-security-tools-to-protect-your-data.html
https://keepass.info/plugins.html
https://keepass.info/help/v2/autotype_obfuscation.html
https://keepass.info/help/v2/autotype_obfuscation.html
https://keeanywhere.de/
https://sourceforge.net/projects/keepasssync/
https://sourceforge.net/projects/kp-googlesync/
https://sourceforge.net/projects/kp-googlesync/
https://keepass.info/plugins.html#kpodsync
https://github.com/KoenZomers/KeePassOneDriveSync
https://keepass.info/plugins.html#kpotp
https://keepass.info/plugins.html#keeotp
https://keepass.info/plugins.html#keetraytotp
https://keepass.info/plugins.html#keetraytotp
https://blog.storagecraft.com/7-infamous-cloud-security-breaches/
https://blog.storagecraft.com/7-infamous-cloud-security-breaches/

38 Bibliography

14. MICROSOFT. Personal Vault [online]. 2022 [visited on 2022-04-15]. Available
from: https://www.microsoft.com/en- us/microsoft- 365/blog/2019/
06/25/onedrive-personal-vault-added-security-onedrive-additional-
storage/.

15. ONELOGIN. What’s the Difference Between OTP, TOTP and HOTP? [Online].
2021 [visited on 2022-05-09]. Available from: https://www.onelogin.com/
learn/otp-totp-hotp#:~:text=There%20are%20two%20types%20of%20OTP%
3A%20HOTP%20and%20TOTP..

16. KRAWCZYK, H.; BELLARE, M.; CANETTI, R. HMAC: Keyed-Hashing for
Message Authentication [online]. 1997 [visited on 2022-04-16]. Available from:
https://datatracker.ietf.org/doc/html/rfc2104.

17. M’RAIHI, D.; BELLARE, M.; HOORNAERT, F.; NACCACHE, D.; RANEN,
O. HOTP: An HMAC-Based One-Time Password Algorithm [online]. 2005 [vis-
ited on 2022-04-15]. Available from: https://datatracker.ietf.org/doc/
html/rfc4226.

18. CLEM, Douglass. Hash Length Extension Attacks [online]. 2012 [visited on 2022-
05-09]. Available from: https://www.whitehatsec.com/blog/hash-length-
extension-attacks/.

19. M’RAIHI, D.; MACHANI, S.; PEI, M.; RYDELL, J. TOTP: Time-Based One-
Time Password Algorithm [online]. 2011 [visited on 2022-04-21]. Available from:
https://datatracker.ietf.org/doc/html/rfc6238.

20. MICROSOFT. Trusted Platform Module (TPM) [online]. 2021 [visited on 2022-
04-26]. Available from: https : / / www . microsoft . com / en - us / research /
project/the-trusted-platform-module-tpm/.

21. TRUSTEDCOMPUTINGGROUP. TPM 2.0 A Brief Introduction [online]. 2022
[visited on 2022-04-22]. Available from: https://www.trustedcomputinggroup.
org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf.

22. MICROSOFT. Microsoft Hello [online]. 2020 [visited on 2022-04-25]. Available
from: https://docs.microsoft.com/en-us/windows/uwp/security/microso
ft-passport.

23. CODEGURU. Windows Cryptography API [online]. 2007 [visited on 2022-04-
24]. Available from: https://www.codeguru.com/windows/windows-cryptog
raphy-api-next-generation-cng/#:~:text=The%5C%20Cryptography%5C%
20API%5C%3A%5C%20Next%5C%20Generation,part%5C%20of%5C%20the%5C%
20National%5C%20Security.

24. MICROSOFT. Data Protection [online]. 2021 [visited on 2022-05-07]. Available
from: https://docs.microsoft.com/en-us/dotnet/standard/security/
how-to-use-data-protection.

25. ARTHUR, Will; KENNETH GOLDMAN, David Challener with. A Practival
Guide to TPM 2.0. In: River Edge, NJ: APRESS OPEN, 2015, pp. 21–22. isbn
978-1-4302-6583-2.

26. ARTHUR, Will; KENNETH GOLDMAN, David Challener with. A Practival
Guide to TPM 2.0. In: River Edge, NJ: APRESS OPEN, 2015, p. 99. isbn
978-1-4302-6583-2.

27. ARTHUR, Will; KENNETH GOLDMAN, David Challener with. A Practival
Guide to TPM 2.0. In: River Edge, NJ: APRESS OPEN, 2015, p. 105. isbn
978-1-4302-6583-2.

https://www.microsoft.com/en-us/microsoft-365/blog/2019/06/25/onedrive-personal-vault-added-security-onedrive-additional-storage/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/06/25/onedrive-personal-vault-added-security-onedrive-additional-storage/
https://www.microsoft.com/en-us/microsoft-365/blog/2019/06/25/onedrive-personal-vault-added-security-onedrive-additional-storage/
https://www.onelogin.com/learn/otp-totp-hotp#:~:text=There%20are%20two%20types%20of%20OTP%3A%20HOTP%20and%20TOTP.
https://www.onelogin.com/learn/otp-totp-hotp#:~:text=There%20are%20two%20types%20of%20OTP%3A%20HOTP%20and%20TOTP.
https://www.onelogin.com/learn/otp-totp-hotp#:~:text=There%20are%20two%20types%20of%20OTP%3A%20HOTP%20and%20TOTP.
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4226
https://datatracker.ietf.org/doc/html/rfc4226
https://www.whitehatsec.com/blog/hash-length-extension-attacks/
https://www.whitehatsec.com/blog/hash-length-extension-attacks/
https://datatracker.ietf.org/doc/html/rfc6238
https://www.microsoft.com/en-us/research/project/the-trusted-platform-module-tpm/
https://www.microsoft.com/en-us/research/project/the-trusted-platform-module-tpm/
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://docs.microsoft.com/en-us/windows/uwp/security/microsoft-passport
https://docs.microsoft.com/en-us/windows/uwp/security/microsoft-passport
https://www.codeguru.com/windows/windows-cryptography-api-next-generation-cng/#:~:text=The%5C%20Cryptography%5C%20API%5C%3A%5C%20Next%5C%20Generation,part%5C%20of%5C%20the%5C%20National%5C%20Security
https://www.codeguru.com/windows/windows-cryptography-api-next-generation-cng/#:~:text=The%5C%20Cryptography%5C%20API%5C%3A%5C%20Next%5C%20Generation,part%5C%20of%5C%20the%5C%20National%5C%20Security
https://www.codeguru.com/windows/windows-cryptography-api-next-generation-cng/#:~:text=The%5C%20Cryptography%5C%20API%5C%3A%5C%20Next%5C%20Generation,part%5C%20of%5C%20the%5C%20National%5C%20Security
https://www.codeguru.com/windows/windows-cryptography-api-next-generation-cng/#:~:text=The%5C%20Cryptography%5C%20API%5C%3A%5C%20Next%5C%20Generation,part%5C%20of%5C%20the%5C%20National%5C%20Security
https://docs.microsoft.com/en-us/dotnet/standard/security/how-to-use-data-protection
https://docs.microsoft.com/en-us/dotnet/standard/security/how-to-use-data-protection

Bibliography 39

28. BOTTOMLEY, James. Security and Trust [online]. 2017 [visited on 2022-04-
22]. Available from: https://www.hansenpartnership.com/Impress-Slides/
LinuxCon-Japan-2018/#/step-85.

29. WININTRO. Tpm Key Creatrion [online]. 2015 [visited on 2022-04-22]. Available
from: http://winintro.ru/tpmadmin.en/.

30. TOMLINSON, Allan. Introduction to the TPM [online]. 2012 [visited on 2022-
04-29]. Available from: https://courses.cs.vt.edu/cs5204/fall10-kafura-
BB/Papers/TPM/Intro-TPM-2.pdf.

31. BOTTOMLEY, James. Security and Trust [online]. 2017 [visited on 2022-04-
22]. Available from: https://www.hansenpartnership.com/Impress-Slides/
LinuxCon-Japan-2018/#/step-68.

32. MICROSOFT. Switch TPM object to the strict mode [online]. 2014 [visited on
2022-04-25]. Available from: https://github.com/microsoft/TSS.MSR/blob/
d365231fe799024f8194ba0182b0b7cf3f327dcb/TSS.NET/Samples/Authoriza
tion/Program.cs#L189.

33. EBRARY. Persistence of Keys [online]. 2014 [visited on 2022-04-25]. Available
from: https://ebrary.net/24767/computer_science/persistence_keys.

34. MANDAL, Ritwik. Random Number Generator (TPM2) [online]. 2021 [visited
on 2022-04-21]. Available from: https://developers.tpm.dev/posts/random-
number-generator-tpm2-12528972.

35. REICHL, Dominik. Plugin Development (2.x) [online]. 2016 [visited on 2022-04-
22]. Available from: https://keepass.info/help/v2_dev/plg_index.html.

36. MICROSOFT. TPM Simulator [online]. 2021 [visited on 2022-04-21]. Available
from: https://github.com/microsoft/ms-tpm-20-ref/blob/d638536d0fe0
1acd5e39ffa1bd100b3da82d92c7/TPMCmd/Simulator/src/TPMCmdp.c#L78.

37. MICROSOFT. Official TPM 2.0 Reference Implementation [online]. 2021 [vis-
ited on 2022-04-25]. Available from: https://github.com/microsoft/ms-tpm-
20-ref.

38. MICROSOFT. TPM Simulator [online]. 2021 [visited on 2022-04-20]. Available
from: https://github.com/microsoft/ms- tpm- 20- ref/tree/master/
TPMCmd/Simulator/src.

39. MICROSOFT. ResetAuthLockOut method of the Win32_Tpm class [online]. 2021
[visited on 2022-04-22]. Available from: https://docs.microsoft.com/en-
us/windows/win32/secprov/resetauthlockout-win32-tpm.

40. UCEDAVÉLEZ, Tony. PASTA Threat Modeling [online]. 2021 [visited on 2022-
04-30]. Available from: https : / / versprite . com / blog / what - is - pasta -
threat-modeling/.

41. TONY, UcedaVelez; MARCO, Morana. Risk Centric Threat Modeling: Process
for Attack Simulation and Threat Analysis. wiley, 2015. isbn 978-0-470-50096-5.

42. MICROSOFT. TPM fundamentals [online]. 2021 [visited on 2022-04-21]. Avail-
able from: https : / / docs . microsoft . com / en - us / windows / security /
information-protection/tpm/tpm-fundamentals.

43. IMPERVA. Phishing attacks [online]. 2021 [visited on 2022-04-30]. Available
from: https://www.imperva.com/learn/application-security/phishing-
attack-scam/#:~:text=What%5C%20is%5C%20a%5C%20phishing%5C%20attack
,instant%5C%20message%5C%2C%5C%20or%5C%20text%5C%20message..

https://www.hansenpartnership.com/Impress-Slides/LinuxCon-Japan-2018/#/step-85
https://www.hansenpartnership.com/Impress-Slides/LinuxCon-Japan-2018/#/step-85
http://winintro.ru/tpmadmin.en/
https://courses.cs.vt.edu/cs5204/fall10-kafura-BB/Papers/TPM/Intro-TPM-2.pdf
https://courses.cs.vt.edu/cs5204/fall10-kafura-BB/Papers/TPM/Intro-TPM-2.pdf
https://www.hansenpartnership.com/Impress-Slides/LinuxCon-Japan-2018/#/step-68
https://www.hansenpartnership.com/Impress-Slides/LinuxCon-Japan-2018/#/step-68
https://github.com/microsoft/TSS.MSR/blob/d365231fe799024f8194ba0182b0b7cf3f327dcb/TSS.NET/Samples/Authorization/Program.cs#L189
https://github.com/microsoft/TSS.MSR/blob/d365231fe799024f8194ba0182b0b7cf3f327dcb/TSS.NET/Samples/Authorization/Program.cs#L189
https://github.com/microsoft/TSS.MSR/blob/d365231fe799024f8194ba0182b0b7cf3f327dcb/TSS.NET/Samples/Authorization/Program.cs#L189
https://ebrary.net/24767/computer_science/persistence_keys
https://developers.tpm.dev/posts/random-number-generator-tpm2-12528972
https://developers.tpm.dev/posts/random-number-generator-tpm2-12528972
https://keepass.info/help/v2_dev/plg_index.html
https://github.com/microsoft/ms-tpm-20-ref/blob/d638536d0fe01acd5e39ffa1bd100b3da82d92c7/TPMCmd/Simulator/src/TPMCmdp.c#L78
https://github.com/microsoft/ms-tpm-20-ref/blob/d638536d0fe01acd5e39ffa1bd100b3da82d92c7/TPMCmd/Simulator/src/TPMCmdp.c#L78
https://github.com/microsoft/ms-tpm-20-ref
https://github.com/microsoft/ms-tpm-20-ref
https://github.com/microsoft/ms-tpm-20-ref/tree/master/TPMCmd/Simulator/src
https://github.com/microsoft/ms-tpm-20-ref/tree/master/TPMCmd/Simulator/src
https://docs.microsoft.com/en-us/windows/win32/secprov/resetauthlockout-win32-tpm
https://docs.microsoft.com/en-us/windows/win32/secprov/resetauthlockout-win32-tpm
https://versprite.com/blog/what-is-pasta-threat-modeling/
https://versprite.com/blog/what-is-pasta-threat-modeling/
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/tpm-fundamentals
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/tpm-fundamentals
https://www.imperva.com/learn/application-security/phishing-attack-scam/#:~:text=What%5C%20is%5C%20a%5C%20phishing%5C%20attack,instant%5C%20message%5C%2C%5C%20or%5C%20text%5C%20message.
https://www.imperva.com/learn/application-security/phishing-attack-scam/#:~:text=What%5C%20is%5C%20a%5C%20phishing%5C%20attack,instant%5C%20message%5C%2C%5C%20or%5C%20text%5C%20message.
https://www.imperva.com/learn/application-security/phishing-attack-scam/#:~:text=What%5C%20is%5C%20a%5C%20phishing%5C%20attack,instant%5C%20message%5C%2C%5C%20or%5C%20text%5C%20message.

40 Bibliography

44. HUSSEIN, Mohammed. Visualising the race to build the world’s fastest super-
computers [online]. 2022 [visited on 2022-04-30]. Available from: https://www.
aljazeera.com/news/2022/1/14/infographic-visualising-race-build-
world- fastest- supercomputers- interactive#:~:text=According%5C%
20to%5C%20Top500%5C%2C%5C%20which%5C%20ranks, is%5C%20the%5C%
20world's%5C%20fastest%5C%20supercomputer..

45. TOP500. Japan Captures TOP500 Crown with Arm-Powered Supercomputer
[online]. 2020 [visited on 2022-04-30]. Available from: https://top500.org/
news/japan-captures-top500-crown-arm-powered-supercomputer/.

46. ROY. Can You Crack a KeePass Database if You Forgot Your Password? [On-
line]. 2021 [visited on 2022-04-22]. Available from: https://davistechmedia.c
om/can-you-crack-a-keepass-database-if-you-forgot-your-password/.

47. KENDRA, Cyber. Worst Apache Log4j RCE Zero day Dropped on Internet [on-
line]. 2021 [visited on 2022-04-22]. Available from: https://www.cyberkendra.
com/2021/12/worst-log4j-rce-zeroday-dropped-on.html.

48. GOODIN, DAN. NSA-leaking Shadow Brokers just dumped its most damaging
release yet [online]. 2017 [visited on 2022-04-20]. Available from: https://ars
technica.com/information-technology/2017/04/nsa-leaking-shadow-
brokers-just-dumped-its-most-damaging-release-yet/.

49. REICHLN, Dominik. Security Issues [online]. 2003 [visited on 2022-04-20]. Avail-
able from: https://keepass.info/help/kb/sec_issues.html#keefarce.

50. MICROSOFT. Defragmenting Files [online]. 2021 [visited on 2022-04-30]. Avail-
able from: https://docs.microsoft.com/en-us/windows/win32/fileio/
defragmenting-files?redirectedfrom=MSDN#defragmenting_a_file.

51. MICROSOFT. SDelete v2.04 [online]. 2021 [visited on 2022-05-01]. Available
from: https : / / docs . microsoft . com / en - us / sysinternals / downloads /
sdelete.

52. PHILLIPS, GAVIN. Can SSDs Really Securely Delete Your Data? [Online]. 2020
[visited on 2022-04-30]. Available from: https://www.makeuseof.com/tag/ssd-
secure-delete-data/.

https://www.aljazeera.com/news/2022/1/14/infographic-visualising-race-build-world-fastest-supercomputers-interactive#:~:text=According%5C%20to%5C%20Top500%5C%2C%5C%20which%5C%20ranks,is%5C%20the%5C%20world's%5C%20fastest%5C%20supercomputer.
https://www.aljazeera.com/news/2022/1/14/infographic-visualising-race-build-world-fastest-supercomputers-interactive#:~:text=According%5C%20to%5C%20Top500%5C%2C%5C%20which%5C%20ranks,is%5C%20the%5C%20world's%5C%20fastest%5C%20supercomputer.
https://www.aljazeera.com/news/2022/1/14/infographic-visualising-race-build-world-fastest-supercomputers-interactive#:~:text=According%5C%20to%5C%20Top500%5C%2C%5C%20which%5C%20ranks,is%5C%20the%5C%20world's%5C%20fastest%5C%20supercomputer.
https://www.aljazeera.com/news/2022/1/14/infographic-visualising-race-build-world-fastest-supercomputers-interactive#:~:text=According%5C%20to%5C%20Top500%5C%2C%5C%20which%5C%20ranks,is%5C%20the%5C%20world's%5C%20fastest%5C%20supercomputer.
https://www.aljazeera.com/news/2022/1/14/infographic-visualising-race-build-world-fastest-supercomputers-interactive#:~:text=According%5C%20to%5C%20Top500%5C%2C%5C%20which%5C%20ranks,is%5C%20the%5C%20world's%5C%20fastest%5C%20supercomputer.
https://top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://top500.org/news/japan-captures-top500-crown-arm-powered-supercomputer/
https://davistechmedia.com/can-you-crack-a-keepass-database-if-you-forgot-your-password/
https://davistechmedia.com/can-you-crack-a-keepass-database-if-you-forgot-your-password/
https://www.cyberkendra.com/2021/12/worst-log4j-rce-zeroday-dropped-on.html
https://www.cyberkendra.com/2021/12/worst-log4j-rce-zeroday-dropped-on.html
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://arstechnica.com/information-technology/2017/04/nsa-leaking-shadow-brokers-just-dumped-its-most-damaging-release-yet/
https://keepass.info/help/kb/sec_issues.html#keefarce
https://docs.microsoft.com/en-us/windows/win32/fileio/defragmenting-files?redirectedfrom=MSDN#defragmenting_a_file
https://docs.microsoft.com/en-us/windows/win32/fileio/defragmenting-files?redirectedfrom=MSDN#defragmenting_a_file
https://docs.microsoft.com/en-us/sysinternals/downloads/sdelete
https://docs.microsoft.com/en-us/sysinternals/downloads/sdelete
https://www.makeuseof.com/tag/ssd-secure-delete-data/
https://www.makeuseof.com/tag/ssd-secure-delete-data/

Appendix A

Acronyms

OTP One-time password
TOTP Time-based one-time password
HOTP HMAC-based one-time password

TPM Trusted Platform Module
HMAC Hash-based message authentication code

API Application programming interface
FAPI Feature API

ESAPI Enhanced System API
DPAPI Data Protection API

TCTI TPM Command Transmission Interface
TSS TPM2 Software Stack
2FA Two-factor authentication

CNG Cryptography API: Next Generation
CSP Cryptographic Service Provider
GCP Google Cloud Platform

TSS.MSR The TPM Software Stack from Microsoft Research
TCG Trusted Computing Group

NV Non-volatile
TRNG True random number generator

DLL Dynamic-link library
PASTA The Process for Attack Simulation and Threat Analysis
FLOPS Floating-point operations per second

RCE Remote code execution

41

42 Acronyms

Contents of enclosed SD Card

dll
KeePassVault.dll..Plugin library
readme-dll.md.................Read-me describing installation of the plugin

sim
tss-sim.zip.............................Zip file containing Simulator binary

src
code Directory with source code of the project

KeePassVault...............Directory with source code for Visual Studio
readme-code.md..................Read-me describing project source code

thesis Directory with source code of the thesis
moisikon-bachelor-thesis.zip...............Source code the the thesis
readme-thesis.md.................Read-me describing thesis source code

text
moisikon-thesis.pdf............................Thesis text in PDF format

readme.md Short guide to contents of enclosed SD Card

43

	Acknowledgments
	Declaration
	Abstrakt
	Introduction
	KeePass
	About
	Plugins
	Cloud storage plugins
	OTP plugins
	TPM plugins

	Cloud storage
	About
	Providers

	Viable options
	One-time password
	HOTP
	TOTP
	Conclusion

	Trusted Platform Module
	TPM Software Stack by Microsoft

	Microsoft
	Windows Hello
	CSP and CNG

	Research conclusion

	Implementation
	Google Drive API
	Google Cloud Platform
	Class hierarchy

	TSS.MSR
	TSS.MSR and TPM 2.0
	Basic concepts
	Usage

	Profiling with Windows registry
	KeePass plugin creation
	Testing
	Preparation
	Installation and example

	Security analysis
	Threat model
	Define the objectives
	Define the technical scope
	Decompose the application
	Threat analysis
	Vulnerability detection
	Attack Analysis
	Risk and Impact Analysis

	Discussion and results
	Cloud findings
	Two-factor authentication
	TPM as 2FA

	Conclusion
	Acronyms
	Contents of enclosed SD Card

