
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

FitLife – game about studying at FIT

Duc Minh Pham

Ing. Radek Richtr, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2022/2023

Instructions

Fitlife is a game project about studying at the faculty. The goal of the bachelor's thesis is

to create a software engineering design, GDD and refactoring of the previous state of

FitLife. On the graphical side, work with graphics designer David Mikulka.

1) Summarize the game plan in a game design document.

2) Analyze games of similar range and theme.

3) Create a complete SE design

4) Based on the prototype of the game, and its user testing perform refactoring and UX

changes

5) Sufficiently test the game.

Electronically approved by Ing. Michal Valenta, Ph.D. on 4 February 2022 in Prague.

Bachelor’s thesis

FitLife - a game about studying at FIT

Pham Minh Duc

Department of Software Engineering
Supervisor: Ing. Radek Richtr, Ph.D.

May 11, 2022

Acknowledgements

I would like to thank Ing. Radek Richtr, Ph.D. for his guidance during the
creation of this thesis, my thanks also go to my family, who supported me
during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 11, 2022 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Minh Duc Pham. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Pham, Minh Duc. FitLife - a game about studying at FIT. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2022.

Abstrakt

Cílem této práce je navrhnout a dokončit hru FitLife. Na procesu finalizace
hry se podílejí dva lidé, a proto bude proces rozdělen do dvou bakalářských
prací. Tato práce se zaměří na softwarově inženýrský aspekt vývoje hry. Při
návrhu a implementaci klíčových back-endových komponent hry budou pou-
žity návrhové vzory.

Klíčová slova Unity, 2D-RPG Hra, UML, Návrhové vzory

Abstract

The goal of this thesis is to design and finalize the game of FitLife. The game
is being finalized by two people, and thus the process be split into two theses.
This thesis will focus on the software engineering aspect of game development.
Design patterns will be used in the design and implementation of key back-end
components of the game.

Keywords Unity, 2D-RPG Game, UML, Design patterns

vii

Contents

Introduction 1

The main goal 3

I Analysis 5

1 Video game analysis 7
1.1 World representation . 7
1.2 Camera types . 8
1.3 Genre . 8

1.3.1 Simulation . 8
1.3.2 Adventure . 9

1.4 Analysis of similar games . 9
1.4.1 Stardew Valley . 10
1.4.2 Pokémon Diamond and Pearl 12
1.4.3 Undertale . 14
1.4.4 Octopath Traveler . 15

1.5 Game analysis conclusion . 17

2 Design patterns 19
2.1 What is a design pattern . 19
2.2 Design pattern use in Video games 20
2.3 Observer pattern . 20
2.4 Decorator pattern . 21
2.5 Singleton pattern . 21
2.6 Service locator pattern . 22
2.7 State machine pattern . 23

3 FitLife analysis - prequel 25
3.1 User testing analysis . 26
3.2 User interface . 27
3.3 Game timer . 27
3.4 Quest system . 28

ix

3.5 Player status . 28
3.6 Audio manager . 28
3.7 Interactions . 29

II Design 31

4 Design of FitLife 33
4.1 General game design . 33
4.2 Game managers . 35

4.2.1 Status controller . 35
4.2.2 Quest system . 36
4.2.3 Game timer . 38
4.2.4 Player status . 40
4.2.5 Interaction tracker . 42
4.2.6 Interactive . 42

5 Game design document 45
5.1 Introduction . 45
5.2 Target System . 45
5.3 Development System . 45
5.4 Target Audience . 46
5.5 Specification . 46
5.6 Gameplay . 48

5.6.1 Story . 48
5.6.2 Stats . 49
5.6.3 Grading system . 49
5.6.4 Quests . 50
5.6.5 Characters . 51
5.6.6 Level design . 53
5.6.7 Music and effects . 53
5.6.8 In-game controls . 54
5.6.9 User interface . 54
5.6.10 In-game pause menu . 55

5.7 First launch . 56

IIIRealisation 57

6 Development 59
6.1 Used unity features . 59

6.1.1 Canvas components . 60
6.2 UI scaling . 61
6.3 Camera scaling . 61

x

6.4 Game managers . 63
6.5 Implementation curiosities . 68

7 User testing 71
7.1 Testing description . 71

7.1.1 The questionnaire questions 71
7.2 Testing conclusions . 73

Conclusion 75

Bibliography 77

A Acronyms 79

B Contents of enclosed SD-Card 81

xi

List of Figures

1.1 Types of third person cameras . 9
1.2 Stardew Valley . 10
1.3 Pokémon Diamond . 12
1.4 Undertale . 14
1.5 Octopath Traveler . 16

2.1 Observer pattern . 20
2.2 Decorator pattern . 21
2.3 Singleton pattern . 22
2.4 Service locator pattern . 22
2.5 State machine pattern . 23

4.1 Functional and Non-functional requirements of FitLife 33
4.2 Functional and Non-functional requirements of game managers . . 34
4.3 Status controller class diagram . 35
4.4 Quest tracker class diagram . 36
4.5 Quest tracker activity diagram . 37
4.6 Game timer class diagram . 38
4.7 Game timer activity diagram . 39
4.8 Player status class diagram . 40
4.9 Player status activity diagram . 41
4.10 Interaction tracker class diagram 43
4.11 Interaction tracker activity diagram 43

5.1 Game activity diagram . 47
5.2 The player, during one of the lectures 48
5.3 ZMA exam minigame . 49
5.4 Main character . 51
5.5 Level design . 52
5.6 UI layout - wireframe . 55
5.7 Day and Night cycle . 56

6.1 Text window . 61
6.2 Expanded text window . 61
6.3 Phone . 64

xiii

6.4 Hint window . 65
6.5 Status change event . 66
6.6 Quest menus . 68

xiv

List of Tables

3.1 The people who participated on the project 25

List of Code listings

6.1 Camera resizing calculation . 62
6.2 Camera follow calculation . 62
6.3 Status controller - Service Locator 63
6.4 Game Timer - Observer pattern 64
6.5 Interaction tracker - dialogue history 65
6.6 Dialogue hashing . 65
6.7 Player stats management . 66
6.8 Quest tracker . 67
6.9 School quest . 67
6.10 Scratching and typing animation effect 69
6.11 Coroutine queue . 70

xv

Introduction

Games have been a prevalent part of many people’s childhoods. We play games
to pass the time, make friends or learn something new. We will primarily focus
on computer games, which are played on a Personal computer (PC). These
digital programs are platforms with unbelievable potential for story-telling and
entertainment. The player experiences a world crafted to perfection by teams
of developers of various sizes and experiences, each adding a subtle touch to
the final product.

I was a part of such a team during SP1 and SP2 subjects, where we de-
veloped a fun simulator game called FitLife. The game did not end up as we
expected, so me and my colleague David Mikulka [1] took it upon ourselves
to finish the game as part of our Bacherlor’s thesis.

The motivation for this work is to create a game set in the scenery of
Czech Technical University (CTU) campus. Simulating how a student feels in
his first semester of school at Faculty of Information Technology (FIT) CTU.

1

The main goal

This thesis focuses on the design and finalization of the game FitLife. As part
of this goal, we will demonstrate how design patterns allow us to develop more
stable and extensible code. The game is developed in Unity and will target
the WebGL platform.

Design patterns will be used in the designing and implementation of critical
components that drive the inner workings of the game.

The game has been in creation for one year and has been in the hands of
several developers. It has been user-tested after this period, and the feedback
will be used to improve the game.

There are many obstacles along the way, as many game components need
to be reworked.

3

Part I

Analysis

5

CHAPTER 1
Video game analysis

This section is dedicated to discovering various aspects of computer games,
about what makes the games fun for the end-user and therefore successful in
the vast selection of games. First, we will categorize video games by their
genre-defining features, and then we will take inspiration from some specific
games and apply them to FitLife.

1.1 World representation
There are two main types of world representation: 2D and 3D. A 2D world con-
sists of objects which are flat and drawn using flat images∗, 3D world objects
are defined using materials and 3D modeled objects onto which the materials
are rendered. There is a vast difference in scope and system requirements
between 2D and 3D projects.

• 2D - a simple representation of the game world, defined using the x and
y-axis. Typically used in platform games and top-down games

• 3D - with the addition of the z-axis, object representation and physics
become more complicated. It becomes very demanding on the end user’s
machine but allows for a more immersive experience.

• 2D with perspective - using 2D with depth projection, a sort of 2.5D
is achieved, combining graphic simplicity and depth perception.

∗In Unity these objects are called Sprites

7

1. Video game analysis

1.2 Camera types
Cameras are objects through which the player sees the game world. There are
many variations in the implementation of cameras. We will focus on the most
relevant for 2D development.

• First-person - The camera is in the place of the character’s eyes/chest.
This type of camera is impossible for 2D games

• Third-person - Detached from the body of the main character, the cam-
era usually views the character itself and its close proximity

– Side view (Figure 1.1a) - This type of camera is typically used for
platforming games or fighting games. All objects are viewed from
the side, and there is little to no depth perceived.

– Isometric projection (Figure 1.1c) - This atypical view allows for
3D representation of objects. All axes are the same length and
angle from each other (120° degree angle).

– 3/4 view (Figure 1.1b) - A mix of the above two camera types,
where both the top and side textures are shown. This type was
used for many games in the 90s

1.3 Genre
Game genres group games into categories with similar mechanics and core
gameplay. There are a considerable number of genres circulating the industry
like shooters, puzzlers, platformers, multiplayer battle arena games, sports
games, and fighters. We will be focusing on Simulation games and Adventure
games as they are most relevant to FitLife.

Some games are so revolutionary in their gameplay that they introduce
a whole new subgenre. There are examples like Soulslike games, which are
inspired by the game Dark Souls, or Roguelike, inspired by the game Rogue.

1.3.1 Simulation
Simulation games are unique that they cannot be represented by a single way
the game should be played. The developers set out to simulate a real or
fictional world in which the player is free to roam around, explore and com-
plete objectives. Simulation games often have difficulties keeping the player
interested in exploring all aspects of the game. Simplification and retracting
of complicated concepts are crucial to keeping the game accessible to more
audiences.

8

1.4. Analysis of similar games

(a) Side view [2] (b) 3/4 view [3]

(c) Isometric projection [4]

Figure 1.1: Types of third person cameras

1.3.2 Adventure

The adventure games are story-oriented. The player is part of a grand ad-
venture with an exciting story completed by the end of the game. The player
is often portrayed as the main protagonist battling evil and destroying it by
the end. This genre is prevalent, and for a good reason. There are parallels
drawn to literature and movies with enormous appeal and massive audiences.
After reading a book or watching a movie, experiencing a game in the same
world is often sought after.

Non player characters are also important as they are a vital part of the ad-
venture game genre. NPCs are characters whose actions cannot be controlled
by the player. They are in the game to interact with players: participating in
banter, fighting, or giving the player quests to complete.

1.4 Analysis of similar games

FitLife will be taking inspiration from games in the similar genre of 2D 3/4
view Role playing game (RPG) simulator/adventure games.

9

1. Video game analysis

Figure 1.2: Stardew Valley [5]

1.4.1 Stardew Valley
Stardew Valley is a third-person 2D simulator role-playing game, it is an
homage to “Harvest moon,” a casual farming simulator. The player begins his
adventure as a new citizen of a small town named Stardew Valley, who has
inherited a vast farm from his grandfather. The player is then free to explore
his newly acquired land and the nearby village. In doing so, he discovers that
the village is lively and active. There are many hidden interactions for the
discover.

There are different environments the player can be found in. The farm
is where the player can interact with the surroundings the most; the other areas
consist of the cave and village, which are more limited. The farming aspect
is deep and well developed. The player is pushed to expand and upgrade/fix
his gear and buildings. This doubles as a sort of organic achievement system,
giving the player a sense of accomplishment.

NPCs
The game features around 46 NPCs, each with its own story. In the town cen-
ter, we find a calendar that shows each NPC’s birthdays. Exploring the town
and talking to them builds relationships between the player and the charac-
ters. They offer a range of quests for which the player is rewarded with items
that help him grow his farm. Further interactions allow the player to continue
relationship building, allowing marriage to available bachelors/bachelorettes.

10

1.4. Analysis of similar games

Defining characteristics
• Engaging NPC characters

• Pixel art - This type of art fits the game well, it is expressive and colorful.
The colors change with the season, and it is portrayed well in the game.

• Farming - This is the game’s defining feature and main mechanic. Taking
care of the farm is intricate and time-consuming but somehow addicting
and relaxing.

• Time - The game portrays time in an interesting way. Keeping time
is quite important for the gameplay, the town’s people have a schedule
that dictates if they are available to the player or not. The people are
sleeping early in the morning and are also not available at night time.

11

1. Video game analysis

Figure 1.3: Pokémon Diamond [6]

1.4.2 Pokémon Diamond and Pearl

A third-person RPG game set in a fictional universe shared with an anime
TV Series with the same name. Pokémon Diamond and its Pearl version are
iconic games released for the Nintendo DS. Pokémon games are often released
in two versions, each having exclusive Pokémon that cannot be found in the
other version. Diamond and Pearl are located in the fictional region of Sinnoh.

The games are iconic and (except for graphical improvement) do not differ
much from previous generations. A turn-based battle system with collection
of a huge amount of Pokémon as the core of the gameplay. This template has
been successful in every generation bringing new and old nostalgia-driven∗

players to buy, making them wildly popular with both younger and older
audiences.

The fighting system between trainers is engaging and involved. Pokémon
have various classes and have synergies with each other. Often the rarer the
pokémon are, the stronger they are. Leveling the pokémon also increases their
strength. After a threshold, they evolve into stronger versions, establishing
natural player progression without being too repetitive.

∗Many returning players have played the game before at a younger age, returning to the
same type of game brings nostalgia.

12

1.4. Analysis of similar games

NPCs
There are several types of characters, varying from friendly to villainous.
Players are offered trading, battles, or gifts from various characters living
in Sinnoh. The vast majority of NPC interactions lead to pokémon battles.
Pokémon battles are turn-based, using the collected pokémons to defeat the
opponent’s pokémon.

Hidden themes often occur when traveling the world, e.g., the trainer in
a rocky mountain has rocky pokémon, and a timid trainer owns a timid poké-
mon. This leads to the concept of regionalism [7] and the game’s connection
to Japan.

Defining characteristics
What is important is the gameplay and interactions with wild Pokémon and
Pokémon trainers. The player learns about the world and becomes closer to
the character through conversations with other NPCs. The NPC interactions
are brief and text-based. The soothing music and sound effects bring this
game to life.

The game story is quite simple, yet because the Pokémon games are
so iconic, they spawned an anime television series (that is extremely popu-
lar), which compensates in this aspect.

• Simple story

• Interesting mechanics - Wild pokémon hunting encourages exploration
of the whole world multiple times. The battling system brings strategic
and engaging gameplay.

• Huge world - The world is massive yet does not feel empty due to random
encounters with Pokémon and trainers.

13

1. Video game analysis

Figure 1.4: Undertale [8]

1.4.3 Undertale
A simple-looking game with a surprising amount of plot and story. Undertale
is a 2D adventure role-playing game with pixel graphics. The player controls
a child who finds herself in the Underground. The player is tasked with
escaping this place, but many monsters stand in the way. During fights, the
player controls a small heart moving inside a square playing area. When
encountering these monsters, there are choices to be made, either defeating
them via dealing damage resulting in killing them or finding ways to avoid
killing them and sparing them. These actions affect the ending of the game
in a significant way.

There are several endings based on the player’s actions or the lack of them.
The game has many easter eggs hidden all over the game world. Some even
require editing game files to find. Finding these will not reward the player
with much more than a good feeling, but they serve to further expand the
complexity of the world.

NPCs
The NPCs have personalities and emotions, which are portrayed during the
combat and conversation. Ultimately they [9] evoke thoughts about respon-
sibility and raise the player’s awareness of violence and its consequences. In
the end, the player is judged for his actions toward other characters. The
encounters are turn-based and are similar to Pokémon.

14

1.4. Analysis of similar games

Defining characteristics
Undertale’s graphics are deceivingly simple, but it makes up for it in the story
and a relatively large world. Undertale includes many easter eggs, while ex-
ploring the world, the player is rewarded with the satisfaction of finding these
objects. These Easter eggs are often hard to find but entertaining nonetheless.

• Simple graphics - Not a downside, but rather a characteristic feature of
the game.

• Emotion-provoking story - The best part of the game, the player chooses
to act a certain way throughout the game and is judged at the end.

• Memorable characters - Each character has a unique style. The game
perfectly portrays the emotions of the characters with visual effects,
fighting style and sound effects.

1.4.4 Octopath Traveler
Octopath Traveler is an open-world RPG game released by Square Enix. In-
spired by retro 2D graphics, Octopath traveler brings a unique take on the 2D
adventure genre, sporting retro pixel-art sprites mixed with HD special effects.
The player is put into the shoes of one of the eight main characters, each with
their own story. The player is given complete freedom to roam the vast world
of Orsterra, to discover the stories of its inhabitants. The personalities of each
of the travelers are important. They develop the character as the player learns
more about their backstory. There are many hidden artifacts throughout the
game, encouraging the player to push through challenging environments and
fight through the enemies to perhaps discover a secret, boosting their favorite
characters’ powers.

The gameplay revolves around its turn-based battle system. There are
complex synergies and interactions between party members, chosen by the
player.

NPCs
The main interactions happen between the travelers and NPCs from their
storylines. Each of the characters has a special ”Path Action” The travelers
do not participate in banter during the long enemy-ridden trips between zones.

15

1. Video game analysis

Figure 1.5: Octopath Traveler [10]

Defining characteristics
Beautiful graphics and animations, extensive world, and length of story. Oc-
topath Traveler explores the retro 2D with new innovative style. Sadly the
combat system becomes repetitive a while into the game.

• Travel freedom - The massive world is open and free to explore

• Character uniqueness - The main eight characters have very different
unique personalities, and it is easy to connect with one of the travelers

• Beautiful graphics - The game is beautiful, it is the perfect synergy of
retro gameplay and current graphics

16

1.5. Game analysis conclusion

1.5 Game analysis conclusion
FitLife will carry inspiration from each of the mentioned games. Specifically:

• Importance of time of day (Stardew Valley) (Section 1.4.1)
The days are dynamic and the lighting changes throughout the day/night
cycle. Events driven by the time of day, make sure that the player pays
attention to what time it is. The player is punished for staying outside
too long.

• World exploration (Pokémon) (Section 1.4.2)
Pokémon manages to organically motivate the player to explore the
world by rewarding them with special Pokémon that live there. Not
only that but the world is detailed and fun to explore.

• Easter eggs and interesting dialogue (Undertale) (Section 1.4.3)
There are many easter eggs in Undertale, most do not add much in terms
of gameplay advantage. They are like hidden achievements which the
player can find in obscure places. It gives the player more to learn from
the world.

• Adding animations for a lively game (Octopath Traveler) (Section 1.4.4)
Octopath Traveler is a beautiful game, it has the retro pixel art style,
but combines it with 3D effects, and the 2.5D world ties it all together.

17

CHAPTER 2
Design patterns

This chapter is dedicated to the research of Design Patterns, describing their
use cases including their benefits and pitfalls of using such design patterns.

“A well designed game programming that offer great flexibility,
code reusability, extensibility, and low maintenance costs is highly
desired.“

(J. Qu, Y. Song and Y. Wei — Design patterns applied for game
design patterns [11])

2.1 What is a design pattern
“Each pattern describes a problem which occurs over and over
again in our environment and then describes the core of the solu-
tion to that problem, in such a way that you can use this solution
a million times over, without ever doing it the same way twice. “

(Christopher Alexander — Design patterns elements of Reusable
Object Oriented Software [12])

Design patterns are by nature, universal. They are not bound by a language
or specific technology, rather they describe a concept that is widely adopted
and defines a ”best practice”∗ way of approaching it. Using design patterns
is not only recommended but in some cases absolutely vital for correct imple-
mentation.

The patterns are divided into three categories: Creational, Structural and
Behavioral. Mentioned will be some, but not all design patterns that exist.

∗A term used in the industry, describing something that is best done in that one for
various reasons, be it readability or functionality.

19

2. Design patterns

Figure 2.1: Observer pattern

2.2 Design pattern use in Video games

Based on this article [13] design patterns find successful use in video game
development. The article showcases three different games of different genres
developed in Unity. The developers found different design patterns useful for
different types of games. The one used most was the singleton pattern.

Another article focusing on FPS games [14] uses a wide selection of design
patterns like Flyweight, State machine, Singleton, Decorator, and Observer
patterns to solve various aspects of the game.

2.3 Observer pattern

Observer patterns (Figure 2.1) are used in one-to-many scenarios. When one
object changes state, all of its subscribers are notified and updated accord-
ingly [12].

Use the pattern when changes in one object require changes in the observer.
This pattern allows for any number of observers without coupling with the
subject. There might even not be any observers.

The concept of loose coupling and minimizing state dependencies is bril-
liantly explained in article [15]. The observer pattern is a powerful tool in
software design, often many components are tightly coupled, but in fact, do
not need to be. Where User interface (UI) elements periodically poll for any
changes in the managing class, they can often be replaced with the observer
pattern. As a subscriber, the UI element waits for the subscribed event to
be invoked. After invocation the subscriber polls for changes made in the
managing object. This saves countless CPU cycles that would be wasted on
checking whether the state had changed.

20

2.4. Decorator pattern

Figure 2.2: Decorator pattern [12]

2.4 Decorator pattern

A decorator pattern (Figure 2.2) is used to extend subclassing, allowing dy-
namically attaching new responsibilities, also known as a wrapper. It allows
for defined objects to have additional functionality based on the decorator.

As an example, a player object is wrapped with a weapon decorator, then
wrapped with a shield decorator. The decorators do not interact with each
other, yet they modify the behavior of the underlying class. Decorators allow
further functionality for the object. The decorators can be stacked indefinitely.

Used when subclassing needs to be reduced as a subclass needs to be cre-
ated for all combinations of decorated objects. Allows for abstract extensions
to objects of a concrete type that can be removed.

2.5 Singleton pattern

A Singleton is an object that restricts its creation to a single instance. This
is both useful and restrictive in some way. They are used for the game con-
troller and persistent aspects between scenes, like time, quests, and music.
The class itself maintains the single instance while providing an access point
for it and disrupts the creation of another.

In applied game development, it is essential to distinguish between correct
uses of this pattern, a player can be set as a singleton, but this would limit
the game to only one player. This pattern must then be modified as a player-
manager – the singleton instance, managing the player instances.

Singleton is used when only one instance of the object must exist. Global
access to the object is required.

21

2. Design patterns

Figure 2.3: Singleton pattern [12]

 Service Locator pattern

Service 4Service 3Service 2Service 1

Service locator

locates

Figure 2.4: Service locator pattern [16]

2.6 Service locator pattern
The service locator pattern can be used as an extension [16] of the singleton
pattern (Section 2.5). This pattern is especially useful in game development
as there are many managing objects that need to be accessed by many different
scripts, based on this article [16] a service locator can be used as a gateway
singleton to manage access to multiple other game systems. This allows for
simpler object management and further extensibility.

The service locator can act as the sole singleton object needed in the game.
A kind of registry keeping track of other ”singleton” objects, without needing
the singleton code to be repeated. It allows for lazy instantiation of objects
required later in the game, reducing the load on the CPU during startup.

Used when many singleton objects are required and their access main-
tained, like sound managers, player managers, scene managers, etc. Which
are then accessible through the registry.

22

2.7. State machine pattern

Figure 2.5: State machine pattern [12]

2.7 State machine pattern
State machine pattern (Figure 2.5) is used on objects that act differently based
on its current state.

This is often done using polymorphism and defining different behavior for
each state. Use this pattern when an object’s behavior depends on its state, or
when large conditional statements are required to check for the current state
of the object [12].

Unity uses developer-defined state machines for animation handling. Based
on which state the state machine hierarchy is in, that animation is played or
transitioned.

23

CHAPTER 3
FitLife analysis - prequel

The game has been in the making for one year. It was a result of subjects
SP1 and SP2. Eight students have worked on the project, every person, who
participated in developing the game is listed in table3.1.

Here we find ourselves at the beginning of the scope of this thesis. We will
be looking into User experience (UX) issues that people encountered during
their time with the game. We will be discussing some of the shortcomings the
game had at this stage.

BI-SP1 BI-SP2
Ing. Skotnica Marek (Teacher) Ing. Skotnica Marek (Teacher)

Pham Minh Duc (myself) Pham Minh Duc (myself)
David Mikulka David Mikulka

Lukáš Jílek Lukáš Jílek
Pham Lan Phuong Josef Havelka

Nguyen Xuan Thang
Dominik Hulina

Nguyen Quynh Chi

Table 3.1: The people who participated on the project

25

3. FitLife analysis - prequel

Most of us did not even know each other before the project inception.
The project started in the third semester of our studies and was led by Ing.
Skotnica Marek. We wanted a 2D game with pixel art, like Pokémon. A couple
of weeks later, our goal was set: develop a game that reflects how a FIT student
feels in the first semester of their studies. Most of the visual part of the game
is covered by my colleague David Mikulka’s Bachelor’s thesis [1].

FitLife was our first big project, and it showed in many lousy development
practices. The code was unstable, unsustainable, and a pain to change. How-
ever, this was to be expected as we were inexperienced. I will not be blaming
anyone in the following critique and subsequent reworking of the workflow and
refactoring of the code.

3.1 User testing analysis
After SP1 and SP2 we held a limited user testing period in which we sent the
game to our friends. We got some feedback on things that do not quite work
correctly or need to be changed.

Around the beginning of 2022, we held another period of user testing which
happened in an online group of game developers of CTU FIT. The user testing
involved a questionnaire which we will provide a summary of:

• Can the game be run in a browser?

Answer summary: No problems.

• Are the controls intuitive and understandable?

Answer summary: Yes, after reading the tutorial, there were no prob-
lems.

• Is the UI designed well?

Answer summary: Mostly yes, a person with a 4k monitor complained
that the game did not scale

• Was the goal of the game communicated well?

Answer summary: The goal was not clear to anyone. There was little
to no way to know where to be and what to do to finish the game
successfully.

• Were you able to reach the minigames (NTK, ZMA & CAO exams)?

Answer summary: There were problems with quest completion, quests
did not match with time. The players had trouble with a quest that was
not fully implemented.

26

3.2. User interface

• How would you improve the game? (Pluses/minuses)
Pluses summary: graphics, idea, controls, soundtrack and dialogues
Minuses summary: there is a problem with waiting on lectures and ex-
ams, big problem with time, broken quest system which needs individual
quest activation, highlighting of some quest objects which are available
is needed

3.2 User interface
The User Interface has several issues. First, the interface was not scalable and
would break if used with a different resolution or screen ratio. This would
sometimes lead to unplayable sequences where a text box or hint window cov-
ered the game. At the latter stages of the development, this was circumvented
by forcing a 16:9 ratio, disabling resizing of the game window, and disabling
fullscreen mode.

Secondly, it is fragmented. There were different instances of the UI ele-
ments in different scenes. Changes made to UI elements in one scene would not
propagate to others, even though they act the same in the background. There
is a dependency between the presentation layer (front-end) and the business
layer (back-end). Changes in objects in the UI elements would lead to errors
in the scripts keeping track of the game’s status. This would discourage team
members from changing visual aspects of the game.

3.3 Game timer
The game timer is unstable. Here UI and Business layer (back end) are entirely
disconnected. The player sees that the time is at 9:00, but in reality, the game
is led by its internal clock, which is different from the one viewed. The problem
would occur when one timer is stopped, but the other is not. Keeping track of
the game time is an essential part of the game, yet it is very difficult working
with this component. Many events of the game are driven by the time of
day∗. The timer is also tightly coupled with the Player Status component
even though they should work fine without one another.

The time was handled with four integers: Days, Hours, Minutes, and
Seconds. This is unwanted in many ways as the component is cluttered with
unnecessary time computation.

∗Like quests mentioned in section 5.6.4, day/time scene changes, and sleep management

27

3. FitLife analysis - prequel

3.4 Quest system
The Quest system requires the player to manually activate each quest, which
are described in section 5.6.4, with a button before completing it, or the com-
pletion would not be logged. The quests do not have any feedback when acti-
vated, completed, or failed. The quests are kept track of at the NPC/objects
which give them out, making it very difficult to add or change quests as the
change needs to be handled in many places. It should observe the internal
clock and update itself based on the quest’s time windows and requirements.

The quest objectives are vague and do not give feedback on when the
quest could be completed. This is especially important for school quests which
require to be present in a tight window of time to be completed successfully.

The quest window is also tightly coupled with the quest manager class.
This would, in some cases, throw null exceptions when changing scenes with
the window open.

3.5 Player status
This is an important aspect of the game. Reaching one of the stats to zero re-
sults in an end game condition. But there is no indication what action changes
the values of these stats or when the stat is added/subtracted. Because the
stats, described in section 5.6.2, are sort of hidden∗ There is also no warning
when the stats become low, so the player needs to make an effort to replenish
them. There are three stats: energy and hunger decay with time, but the so-
cial status does not change whatsoever. Neither does it increases or decrease
throughout the game.

3.6 Audio manager
This is handled during the first visit to the main menu. An object is created
that persists through the whole game. Sadly, it is not used for other sounds
that happen in the game. After ending the game and returning to the main
menu, a new object is created, creating two instances of the same object, po-
tentially playing the music twice. The music control is also lost after returning
to the main menu.

The main theme is quite long, yet after leaving scenes with different music,
the main theme starts from the beginning.

∗Requiring an action (opening the phone), makes the stats more obscure than they
should be.

28

3.7. Interactions

3.7 Interactions
There is no interaction history implemented, meaning dialogues can be re-
peated if the player leaves the scene and comes back. This breaks the immer-
sion and does not make much sense.

When an interaction or dialogue is available, a window with a hint is ren-
dered upon the screen, showing when an interaction is available to be accessed.

29

Part II

Design

31

CHAPTER 4
Design of FitLife

We will be processing feedback based on the previous version of the game,
designing improved components which are more stable while fixing the UX
issues.

Based on the research surrounding design patterns, we shall design the
game’s troublesome components with their help. We will be using an activity
diagram, class diagram and functional/non-functional requirements to present
them. In the realization phase, we will be implementing them into the game.

4.1 General game design
The general game design is not what this thesis focuses on, rather this aspect
is explored in Mikulka’s thesis [1]. But there are some functional general
UX issues that belong in this category and are in the scope of this thesis,
particularly listed in figure 4.6.

Functional requirements

F1: Reported usability issues fixed

F2: Scalability

Non-functional requirements

NF1: Design patterns

NF2: Continuous deployment

Figure 4.1: Functional and Non-functional requirements of FitLife

33

4. Design of FitLife

Non-functional requirements

Status Controller

NF2.1: Service locator pattern

NF2.2: Singleton pattern

Quest System

NF3.1: Observer pattern

NF3.2: Invokes quest events

Game Timer

NF4.1: Observer pattern

NF4.2: Stable time representation

NF4.3: Invokes time events

Player Status

NF5.1: Observer pattern

NF5.2: Invokes stats events

Interaction Tracker

NF6.1: Observer pattern

NF6.2: Invokes interaction events

Functional requirements

Status Controller

F2.1: Handles game reset

Quest System

F3.1: Handles all quests

Game Timer

F4.1: Handles in-game time

Player Status

F5.1: Keeps track of player stats

Interaction Tracker

F6.1: Handles interaction history

F6.2: Handles selected interactions

Figure 4.2: Functional and Non-functional requirements of game managers

F1: Reported usability issues fixed

Gameplay problems from the received feedback will be fixed by implementing
a more stable back-end, that is flexible and modular.

F2: User interface scalability

The user interface will be reworked to allow dynamic scalability based on the
screen resolution and ratio.

NF1: Design patterns

Design patterns will be used in the development of key components.

NF2: Continuous deployment

A continuous deployment cycle is developed and used for the deployment
platform

34

4.2. Game managers

 Service Locator pattern

Game Timer

- gameTime : TimeSpan

Player Status

- playerStatus : int[]

Quest Tracker

- quests : Quest[]

Interaction Tracker

- interactionHashes : int[]

Coroutine Queue

- queue : Queue<event>

Audio Manager

- sounds : Sounds[]

Status Controller

+ Instance : GameObject
1

1

locates

IStatusControllerService

+ Reset : void

1

0..*

implementsimplements

Figure 4.3: Status controller class diagram

4.2 Game managers
A component often used throughout the whole game. A game manager is often
used to keep track of key values that drive many other components. Here
a singleton pattern, which is mentioned in section 2.5, is a perfect candidate.
This has the added benefit of being globally accessible for other components
to use. As there are so many they can be grouped together with a service
locator pattern, mentioned in section 2.6, therefore only one master singleton
exists, which further increases accessibility. This class will be called Status
Controller. Functional and non-functional requirements for all game managers
are listed in figure 4.2.

4.2.1 Status controller
This object will act as the service locator of other game manager components.
This object will also be the carrying singleton object (master singleton) al-
lowing programmers easy access to this component from any script in the
scene.

F2.1: Handles game reset

Status controller carries out reset for contained services.

NF2.1: Service locator pattern

Status controller implements the service locator pattern.

NF2.2: Singleton pattern

Status controller implements the singleton pattern.

35

4. Design of FitLife

Quest Tracker

- quests : Quest[]

- handleTimeEvent : void

<<abstract class>>
Quest

questID : int
+ name : string
+ progress : Status
+ isQuestFinishable() : boo
+ isQuestTimedOut() : boo
+ progressQuest() : void
+ failQuest() : void

<<enum>>
Status
inactive
progress

turnIn
completed

failed

Interaction Quest Progtest Quest School Quest

implementsimplementsimplements

1 0..*

<<event>>
Quest Changed Event
+ questId : int

- Invoke() : void

0..* 1

(UI)Quest Display (UI)Quest Notepad

subscribes
to

subscribes
to

<<event>>
15MinutesPassedEvent

subscribes
to

1 1

Observer pattern

Figure 4.4: Quest tracker class diagram

4.2.2 Quest system
It subscribes to the Game Timer for elapsed time events, based on which it
will check for quest requirements and allow progression or cancel them due to
time-out. It itself will invoke events of its own like quest changed events, and
these will be subscribed to by quest handling UI elements, decoupling them
from this component. The Quest system knows nothing about its subscribers,
allowing many or no subscribers to the event without a problem.

F3.1: Handles all quests

This object will handle the business layer of quests. It will act as a database
for quest fetching and also allow for progression, completion, or cancellation
of quests.

NF3.1: Observer pattern

Quest system implements the observer pattern.

NF3.2: Invokes quest events

Quest system invokes events when the quest log changes in any way.

36

4.2. Game managers

Quest progressing
 activity

[Is any quest
 timed-out]

no

Fail the quest

yes [Is quest finishable]

no

Progress quest
yes

15MinutePassedEvent

QuestUpdatedEvent

Figure 4.5: Quest tracker activity diagram

37

4. Design of FitLife

Observer pattern

Game Timer

- gameTime : TimeSpan
- finalDayEvent() : void

<<event>>
MinutePassedEvent

- Invoke() : void

<<event>>
15MinutesPassedEvent
- Invoke() : void

<<event>>
DayPassedEvent

- Invoke() : void

<<event>>
TimePeriodPassed

implements implements implements

0..* 0..* 0..*

111

Figure 4.6: Game timer class diagram

4.2.3 Game timer
There are multiple mechanics tied to the game time ie. nighttime scene
changes, quest acquisition/expiration, and several presentation components.
The game timer is also a good candidate for the observer pattern, it updates
its time internally and sends events based on the time elapsed.

The 15-minute interval events are enough because the School Quests ad-
here to a potential school timesheet which is segmented into 15-minute chunks.

F4.1: Handles in-game time

Game timer manages the in-game time.

NF4.1: Observer pattern

Game timer implements the observer pattern.

NF4.2: Stable time representation

Game timer will use a system class for time representation, making it more
stable than own time representation.

NF4.3: Invokes time events

Game timer will invoke events based on elapsed time chunks.

38

4.2. Game managers

[Is game
 paused]

yes

no

v
v

v

v

Minute passed

15 Minutes passed

Day passed

MinutePassedEvent 15MinutePassedEvent DayPassedEvent

Figure 4.7: Game timer activity diagram

39

4. Design of FitLife

 Player Status

- hunger : int
- energy : int
- socialStatus : int
+ handleTimeEvent() : void
- lowStatEnd() : void

<<event>>
Player Status Changed

- Invoke() : void

0..* 1

(UI)Phone - Stats display

subscribes
to

(UI)Attribute Pop up

subscribes
to

<<event>>
MinutePassedEvent

subscribes
to

Observer pattern

Figure 4.8: Player status class diagram

4.2.4 Player status
This component subscribes to the Game Timer, listening for a sufficient
amount of time passed for changing the values of stats. Sends out attribute
changed event together with information on what attribute and value. The
subscribers are typically in the presentation layer.

F5.1: Handles player stats

Player status keeps track of status attributes, which are described in sec-
tion 5.6.2, ie. Social status, hunger, energy.

NF5.1: Observer pattern

Player status implements the observer pattern.

NF5.2: Invokes stats events

Player status invokes events when stats change in any way.

40

4.2. Game managers

Stats modifying
activity (ex. menza visit)

[Is any stat at 0]

End GameChange status values
yesno

MinutePassedEvent

MinutesBeforeStatDecrease
minutes passed

StatusChangedEvent

Figure 4.9: Player status activity diagram

41

4. Design of FitLife

4.2.5 Interaction tracker
It keeps track of dialogues that already happened, but keeping whole dia-
logues in some kind of array only to compare them to check if they happened
is a waste of space. Another approach would be to assign a unique id to
each dialogue and keep track of those ids in a dictionary. But the best ap-
proach would be to define what a unique dialogue is. A unique dialogue is one
that differs content-wise to another. We will be hashing the contents of these
dialogues and keeping track of those hashes, a sort of signature.

The dialogue history is then cleared once per day. When he approaches
an NPC again next day, the quest is still available, and the NPC is waiting
for the quest to be completed. A subscription to the game timer’s day passed
event will take care of that.

F6.1: Handles interaction history

Interaction tracker will be handling the availability of selected interactions
with the player. If they happened the same day, the interactions will not
happen the second time.

F6.2: Handles selected interactions

It will make sure that the player cannot interact with two Interactive (de-
scribed in section 4.2.6) objects at once.

NF6.1: Observer pattern

The interaction tracker implements the observer pattern.

NF6.2: Invokes interaction events

It will trigger an event when an interaction is available.

4.2.6 Interactive
When added onto an object, this component makes it interactive to the main
character. It controls everything that the player can interact with, i.e. NPCs,
easter eggs, etc... It will need to execute an action after the interaction ex.
start a dialogue, transport the player to a different scene or start a quest. This
component needs to be easy to edit in the editor, allowing simple text changes
or interaction changes to take effect without looking at the code. This is one
of the components that a game designer can interact with, with ease.

42

4.2. Game managers

Interaction Tracker

- interacionsHashHistory: int[]
- activeInteractionsHash: int[]
+ addInteractionToHistory(int) : void
+ isInteractionAvailable() : bool
- handleTimeEvent() : void

<<event>>
View Hint Event

+ hint : string

- Invoke() : void

(UI)Hint Window

subscribes
to

Interaction

- dialogue : Dialogue[]
+ GetDialogueHash: int

0..* 0..*

<<event>>
DayPassedEvent

subscribes
to

10..*

Observer pattern

Figure 4.10: Interaction tracker class diagram

Player approaches
interactable

[Is this interactable
currently selected]

Player presses
interact button

[Is this interaction
in history]

no

yes

Dialogue perfomed

no

yes

Reset interaction
history

DayPassedEvent

HintAvailableEvent

Figure 4.11: Interaction tracker activity diagram

43

CHAPTER 5
Game design document

5.1 Introduction
The game design document describes the gameplay design of FitLife. It shows
a vision of the final game and specifics about its inner workings and goals.

Scope

This is used by all parties involved during the creation and programming of
the game.

5.2 Target System
The game is played in an internet browser. The target platform is PC (WebGL).

WebGL

WebGL is a platform that allows Unity content to be played inside a web
browser [17]. It is supported in most recent web browsers, including Chrome,
Firefox, and Safari. This platform allows the game to be played without
downloading files and running any executable files. Its drawbacks come from
the lesser performance provided by the browser sandbox.

5.3 Development System
FitLife is developed in Unity, allowing further expansion to other platforms
in the future.

45

5. Game design document

5.4 Target Audience
The target audience are current or future Czech-speaking CTU FIT students.

5.5 Specification
Concept
FitLife aims to simulate what a student in his first semester of CTU FIT feels.
The gameplay is hectic, chaotic, and entertaining.

Setting
The game is set in present-day CTU campus.

Game Structure
There are five environments that the player can freely explore. There are
various NPCs scattered around the game, which are interactable and provide
exciting dialogue. Certain NPCs provide side quests that the player chooses
to complete or not.

Players
The game is played by a single player on a PC.

Graphics
The game has pixel graphics. Most of the graphics, animations, and sprites
shown in the game are created by David Mikulka [1], please refer to his bach-
elor’s thesis to learn about this aspect of the game.

Objective
The objective of the game is to survive the three days at FIT. Try to pass the
semester with good grades at the end. Go to school on time of the lecture,
explore the world and enjoy the environment with many objects to interact
with. The general gameplay loop is shown in an activity diagram 5.1.

46

5.5. Specification

Figure 5.1: Game activity diagram, created in cooperation with Mikulka [1]

Failing conditions

The game is failed upon any of the main stats (Section 5.6.2) reaching zero.

Winning conditions

The game is won if day three midnight (beginning of day 4) is reached. The
player is presented with grades at the end of the semester based on how he
has done, this is further explained in section 5.6.3.

Landscape

The landscape is 3/4 view, 2D with perspective. There are multiple envi-
ronments, e.g., Strahov dormitory, CTU campus, bar, etc. Some NPCs are
animated, including the main character. The screen scrolls with the character
moving left/right/up/down keeping the player in the center. The perspective
is purposefully kept as such to not reveal the whole map to the user. As the
player wanders around the map, he figures out where he needs to go.

47

5. Game design document

Figure 5.2: The player, during one of the lectures

5.6 Gameplay
5.6.1 Story
The player wakes up in his dormitory in Strahov. After acknowledging the
tutorial, he heads out to explore the world. The quest tracker shows him that
he needs to attend school activities. During his exploration, he discovers many
people and their interesting dialogue. After visiting his lectures, he visits the
bar for different quests and interactions and heads off to sleep back in his
dormitory. The next day he receives new school activities in his quest tracker
along with side quests he picked up on his first day. There are new people
around him, and the player continues discovering the world by attending lec-
tures and finishing his side quests from the first day. He discovers that when
working on his homework at the library, he falls asleep and needs to complete
a timed minigame∗ or he will be locked inside the library. After leaving NTK,
he heads off to sleep for his exam day.

On the third day, his school activities consist of exam minigames. Being
successful during these minigames dictates his final score on that subject. At
the end of the day, the player receives a final exam summary and is presented
with the ending screen.

∗A small game within a game, typically with a very simple objective

48

5.6. Gameplay

Figure 5.3: ZMA exam minigame

5.6.2 Stats
Stats include:

• Energy

• Hunger

• Social status

These stats simulate the main character’s (Figure 5.4) well-being. Energy and
Hunger are constantly subtracted during active gameplay (there are events
where this is paused, e.g., pause menu, reading text, etc.) Social status
is granted when talking to NPC characters and subtracted when performing
school activities (Section 5.6.4).

The player is granted an initial amount of stats at the beginning of the
game. If any of these stats reaches 0, the game ends and any progression
is lost.

5.6.3 Grading system
The player is graded by each subject, which are listed in section 5.6.3, at the
end of the game, if he survives. The player for each subject receives a grade (A-
F) based on attendance at school. Going to lectures grants him 1 point, and
attending exams grants him 4 points. Failing an exam in any subject results
in an F. In the end, the scores are tallied and a grade is given according to
the points received (0-5, F-A).

49

5. Game design document

Subjects

Subjects that our protagonist is attending this year. These are categories upon
which the player is graded at the end of the game, specifics are explained in
section 5.6.3.

• PA1

• ZMA

• PS1

• PAI

• CAO

• MLO

5.6.4 Quests
During the gameplay, the player is guided by quests. Finishing these improves
the final ending of the game. The quests are either main quests, which happen
primarily at school, or side quests which are received by NPCs around the
world.

Main quests

Main quests are assigned automatically at the start of a new day. Completing
them will subtract a set of predefined stats, including social status (the player
is studying and does not have time to socialize). They are as follows:

• Day 1: 9:15 - BI-CAO lecture

• Day 1: 11:00 - BI-ZMA lecture

• Day 1: 16:15 - BI-PS1 test

• Day 2: 7:30 - BI-MLO lecture

• Day 2: 9:15 - BI-PA1 lecture

• Day 2: 16:15 - BI-PAI test

• Day 2: 23:59 - Finish Progtest homework (BI-PA1)

• Day 3: 9:15 - BI-ZMA exam

• Day 3: 11:00 - BI-CAO exam

• Day 3: 16:15 - BI-MLO exam

50

5.6. Gameplay

Figure 5.4: Main character

Side quests

Side quests are picked up by talking to certain NPCs marked by an exclama-
tion mark. Completing these quests will grant the player some social status.

• Club house FIT-- - You will need to get past the guards in front of the
club

• NTK ticket - You again do not have your card, get yourself a temporary
ticket

• Stray dog - Dog comes home with you if you find him a treat

• Lost plant - Go fetch the friend in FIT-- his plant

• Lost scripts - A panicking student left his AAG scripts somewhere

• NTK closing minigame - You overslept while doing progtest, get out of
the library before they lock you in

• Lost ISIC card - Attend one lecture while this quest is active so you do
not forget to get the lost card on your way out

• Beer pong - Help fellow FIT-- clubmates find their beer pong ball

5.6.5 Characters
Main character

A new student at CTU FIT, clueless as the player controlling him (Figure 5.4).

Kosta and Filip

Welcoming the player into the bar, they are guarding the entrance to a super-
secret school club FIT--. The player is tasked with getting past them, grant-
ing access to the club on the second floor.

51

5. Game design document

Dog

The dog is sitting on the second floor of the bar. After giving him a treat, he
comes with you and can be seen in your dormitory.

The medicine man

Standing in the FIT-- club, he tells the player that he is missing his favorite
medicine plant. And the player is tasked with retrieving this plant during his
exploration.

Panicking student

A student located on the CTU campus is struggling to find his lost school
book that he lost after a night of partying. The player is tasked with fetching
the book if he finds it.

Ping pong mishap

A pair of students lost their ping-pong ball, the player is tasked with finding
it. It is cleverly hidden in the terrain.

Pedestrians and students

These NPCs are interactable, and have interesting dialogue but do not lead
to any quests. There are there to liven the environment.

Figure 5.5: Level design, cooperation effort with Mikulka [1]

52

5.6. Gameplay

5.6.6 Level design
There are seven scenes that the player can be in. Traversing different scenes are
done through points of transportation (e.g., Bus station to Campus, Door to
the bar, Door to school, etc.) The camera is zoomed in close to the player. The
whole scene is not in his view (except his dormitory), encouraging exploration.

• Strahov dormitory - the introductory scene where the player is intro-
duced to the game, he returns here to sleep every night.

• Strahov - just outside the dormitory, the player is introduced to the
environment with unique people and items.

• Bar first floor - a lively place to meet interesting characters, the entrance
to the second floor is guarded by Kosta and Filip.

• Bar second floor (FIT--) - after finishing the quest, Kosta and Filip
let the player through a place where students from the same school are
gathered to chat and do homework.

• CTU campus - arriving with a bus from Strahov, the player finds himself
at the school campus.

• NTK library - for NTK access, a quest needs to be finished, giving the
player a place to study.

• FIT lecture hall - accessed at CTU campus, main lecture and exam
quests are finished here.

5.6.7 Music and effects
The main background music is generated using AI (Google Magenta) and
seeded with own creation. It is fun and upbeat, giving the game a unique tone
and atmosphere. The rest of the music is composed by David Mikulka [1] and
is expanded upon in his Bachelor’s thesis.

Google Magenta

An open-source research project exploring the role of machine learning as a tool
in the creative process [18]. Using this library and its trained neural network,
I was able to create unique music using various settings and edited the output
tracks into something pleasant.

53

5. Game design document

5.6.8 In-game controls
• ESC - opens the Pause menu

• W, Up arrow - moves the character up

• A, Left arrow - moves the character left

• S, Down arrow - moves the character down

• D, Right arrow - moves the character right

• Q - opens the quest tracker

• Tab - opens side quest menu

• M - opens the phone

• E - interactions with objects and environments

• Space - dismisses the dialogue window

5.6.9 User interface
These components are for informing the player on the current state of the
game. Designed as a presentation layer for the user, an Observer pattern,
described in section 2.3, is a good choice. The presentation layer does not
need to be updated with each frame. Implementing events responding to the
application layer are a vital part in making a well-performing software without
creating dependency spaghetti∗.

Main menu

The main menu is controlled with the mouse and consists of three buttons:

• Start game - begins the game

• Settings - gives the option to turn off the music

• About authors - gives the list of all participants on the project of FitLife,
listed in table 3.1

• End game - terminates the game
∗This describes the state of complex coupling and unmanageable dependencies through-

out the solution

54

5.6. Gameplay

Figure 5.6: UI layout - wireframe

5.6.10 In-game pause menu
• Sound toggle - toggles the game music

• Continue - unpauses the game

• End game - terminates the game

This menu, when triggered, pauses the game pausing any player movement
and time progression.

Phone

The phone is visible in the bottom right of the screen (Figure 5.6) showing
the current time. It can be expanded using M key with accompanying sound
effects and animation. In the expanded view, the values of the main three
stats, described in section 5.6.2, are visible. The values of the phone are
updated using the constructs of the Observer pattern, described in section 2.3.

Pop up text window

This window at the bottom left (Figure 5.6) is used in many places during the
game. It is one of the main interfaces between the player and the game. Any
text-based information is conveyed using this component, shown during the
tutorial, npc conversation or quest interactions. It needs to be versatile and
universal, expanding based on the size of the text.

An icon portraying the person talking is also included, portraying the
person talking. The icon is set to the main character’s sprite when talking
to himself, it is changed to a question mark when the game is informing the
player about certain events.

55

5. Game design document

(a) Day lighting (b) Night lighting

Figure 5.7: Day and Night cycle

The window is dismissed by pressing space. A queue needs to be imple-
mented, allowing asynchronous tasks to inform the player after he is done
reading the current text. During the active period of this window, the player
is unable to move, and time progression is paused.

Quest display

Quest display (Figure 5.6) shows active quests ready to be completed. The
viewing of quests adheres to the Observer pattern, described in section 2.3.
The quest display updates in reaction to quests changing state, with accom-
panying animation and sound effects.

Location Info

This window in the top right of Figure 5.6 shows the current location the
player is located at, the window will be resizable to fit any reasonably long
text.

Day and Night cycle

After 19:00, the environment transitions into night lighting, and at 6:00 tran-
sitions back into day lighting. If the player is not present at home during
the shifting of days (23:59), the player appears at home with a headache and
is slashed -20 points from each of his stats, encouraging spending the night in
bed instead of falling asleep on the street.

5.7 First launch
The game starts with the unity logo, continuing onto a disclaimer. Warning
the player that the similarities of the interpreted characters are completely
random. The player is prompted with the main menu. Choosing play will
take the player to his dormitory. A tutorial is shown, and after finishing it,
the player is free to roam the world.

56

Part III

Realisation

57

CHAPTER 6
Development

In this chapter, I will be focusing on the programming of the final game. The
designed components will be incorporated into the rest of the game. There
is also a lot of refactoring to do.

The code will be written in C#. The project has been developed in Unity
version 2019.3.10f1, which will be promptly upgraded to 2019.4.33f1 to allow
the use of the new Continuous integration (CI) solution provided by Unity.
The game is deployed at the web address: https://antik98.github.io/FitLife/∗

Please note that not all programming work is showcased here, countless
hours were spent rewriting, integrating, and debugging all components in the
game. Nearly all of the code after SP1 and SP2 has been written by me.

6.1 Used unity features

TextMeshPro

TextMeshPro∗ is an external text package that improves upon Unity’s own
text solution. This is the only external package used in the project.

Coroutines

Coroutines allow segments of code to run asynchronously. This code execution
is used widely throughout the implementation, from basic initialization to
visual effects.

∗Accessed on 10.5.2022, this is not a purchased domain, but rather a platform (Github
pages) provided by Github, and might not be accessible in the future, if that is the case
please use included source code to compile the game

∗Available at: https://docs.unity3d.com/Manual/com.unity.textmeshpro.html

59

6. Development

CI/Continuous delivery (CD)
Unity offered Collaborate∗ solution, which worked for the project since the
beginning of the project was discontinued and replaced by Plastic SCM∗. Pre-
viously the game was built by a developer each time and uploaded by hand
to GitHub pages.

The project needs a CD system, the game will be deployed using Github
Actions [19]. This has been done and the game is distributed using a link
pointing to Github pages. A guide was followed on the Unity-Actions GitHub
repo [20].

Events
Events allow the observer pattern to be implemented. It makes the loose
coupling of the manager class and UI component possible.

Prefab
A Prefab is a group of preset and generalized components. The developer puts
together prefabs of regularly occurring objects from NPC or simple intracta-
bles to UI components and Status controllers, giving freedom to the designer
to place them and modify them without touching the underlying code.

6.1.1 Canvas components
These components were vital in the creation of a scalable User interface, they
manipulate objects in reaction to the screen changing shape and size.

Canvas Scaler

This component is the bread and butter of user interface scaling, yet it is quite
complicated. It has issues with overlay canvases resolution management. This
component allows the game to be run on a 4k monitor, or a 144p monitor if
need be.

Horizontal/Vertical layout group

These two components are what make the UI elements auto-sizing. They are
wildly unintuitive to use and extremely hard to get to work correctly, but
the result is worth every broken keyboard. The UI elements are regardless
of content always perfectly aligned and its container stretched to match the
bounding box of the contents.

∗https://docs.unity3d.com/Manual/UnityCollaborate.html
∗Available at: https://unity.com/products/plastic-scm

60

6.2. UI scaling

Figure 6.1: Text window

Figure 6.2: Expanded text window

6.2 UI scaling
When refactoring the UI, I encountered bad practices with UI object creation,
the objects did not match what was seen in the played game. Now, this
is normally not a problem when the objects are created and used by people
with a monitor of same screen size, ratio and resolution. But when the game
is supposed to be played by more people the size of the screen needs to be
considered.

The UI has been recreated with proper techniques and scales to the cam-
era using various canvas components, listed in section 6.1.1. The automatic
expansion of the layout based on text content and size, like the text window
(Figure 6.2) and (Figure 5.6.10) are handled with Horizontal and Vertical lay-
out groups, described in section 6.1.1. The next thing to tackle is the camera
itself.

6.3 Camera scaling
This is often solved with Unity’s external package Cinemachine [21]. But this
is a simple game and should not require a complex package like that.

A script allows for the dynamic resizing of the camera based on the screen
size (Code listing 6.3). Because of this camera scaling, we need to also scale
our camera boundaries that are used when following the player. That is done
using our calculated camera size dimensions (Code listing 6.3), the constant
is the size of the camera used when setting the boundaries. By subtracting
this constant we are getting the center point of a camera that is touching the
boundaries.

61

6. Development

Code listing 6.1: Camera resizing calculation
// Update is called once per frame
void Update()
{

sizeY = cam.orthographicSize * 2;
ratio = (float)Screen.width / (float)Screen.height;
sizeX = sizeY * ratio;

heightScale = ratio / targetAspect;
widthScale = 1.0f / heightScale;

Rect rect = cam.rect;
rect.width = heightScale < 1 ? 1 : widthScale;
rect.height = heightScale > 1 ? 1 : heightScale;
rect.x = heightScale < 1 ? 0 : (1.0f - widthScale) / 2.0f;
rect.y = heightScale > 1 ? 0 : (1.0f - heightScale) / 2.0f;

cam.rect = rect;
}

Code listing 6.2: Camera follow calculation
//Framerate independent Update()
private void FixedUpdate()
{

Vector3 cameraFollowPosition = GetCameraFollowPositionFunc();
cameraFollowPosition.z = transform.position.z;

Vector3 boundPosition = new Vector3(
Mathf.Clamp(cameraFollowPosition.x,
(minValues.x + 3.200652f - (sizeX / 2) * widthScale),
(maxValues.x - 3.200652f + (sizeX / 2) * widthScale)),

Mathf.Clamp(cameraFollowPosition.y, minValues.y, maxValues.y),
Mathf.Clamp(cameraFollowPosition.z, minValues.z, maxValues.z)
);

Vector3 smoothPosition = Vector3.Lerp(transform.position, boundPosition,
smoothFactor * Time.fixedDeltaTime);

transform.position = smoothPosition;
}

62

6.4. Game managers

6.4 Game managers
For implementaion of the observer pattern I used events and delegates [22]
offered by the C# language. The service locator pattern and Singleton pattern
were extremely useful in the programming of other parts of the game.

Status controller
The script makes sure that only one instance exists, it simply destroys it’s
own game object, taking the rest of the game managers with it. This elegant
solution makes sure that only one instance exists. It has the added benefit
that the other game managers do not need the object management code to be
present.

Code listing 6.3: Status controller - Service Locator
public QuestTracker questTracker;
public GameTimer gameTimer;
public PlayerStatus PlayerStatus;
public InteractionTracker interactionTracker;
public CoroutineQueue coroutineQueue;
public AudioManager audioManager;

public static bool initialized => _instance != null;

private static StatusController _instance;

public static StatusController Instance { get { return _instance; } }

void Awake()
{

if (_instance != null)
{

Destroy(gameObject);
return;

}
_instance = this;

}

63

6. Development

Game timer
The game timer uses System.TimeSpan, instead of own time representation.
I went with System.TimeSpan instead of System.DateTime because there was
no need for such a wide representation.

Code listing 6.4: Game Timer - Observer pattern
public delegate void TimePeriodPassed();
public event TimePeriodPassed BroadcastDayPassed;
public event TimePeriodPassed Broadcast15MinutesPassed;
public event TimePeriodPassed BroadcastMinutePassed;
void InvokeTimePassedEvents()
{

TimeSpan nextTick = gameTime + TimeSpan.FromSeconds(Time.deltaTime *
timeSpeedConstant);

//Called when 15 minutes passed
if(gameTime.Minutes % 15 == 0 && nextTick.Minutes % 15 != 0)
{

Broadcast15MinutesPassed?.Invoke();
}

//Called when 1 minute passed
if(gameTime.Minutes != nextTick.Minutes)
{

BroadcastMinutePassed?.Invoke();
}

// Called when Days change
if (gameTime.Hours >= 0 && gameTime.Hours < 6)
{

BroadcastDayPassed?.Invoke();
}

}

UI element

The phone window UI element (Figure 6.3) subscribes to HandleMinutePassed
event from Game timer to update it’s time, it also subscribes to the Player
status component for its PlayerStatusChanged event for updating the stats
display.

Figure 6.3: Phone

64

6.4. Game managers

Interaction tracker

The implementation of this component is straightforward. Because we are
hashing the dialogue we will be overriding the default Object.GetHashCode()
for the Dialogue class and receiving the correct unique id we are looking for.
We can use System.Linq and some cool functional programming for this job.

Code listing 6.5: Interaction tracker - dialogue history
public delegate void EventTriggeredViewHint(object sender, bool view, string hint);
public event EventTriggeredViewHint HandleEventViewHint;

//This method is triggered when entering/leaving an Interactive hitbox
public void TriggerHint(object sender, bool view, string hint = "")
{

if (view)
{

activeInteractions.Add((sender.GetHashCode(), hint));
}
else
{

activeInteractions.RemoveAll(s => s.Item1 == sender.GetHashCode());
}
HandleEventViewHint?.Invoke(sender, activeInteractions.Any(), activeInteractions.

FirstOrDefault().Item2) ;
}

Code listing 6.6: Dialogue hashing
public Dialogue(string[] sentences)
{

this.sentences = sentences;
}
public override int GetHashCode()
{

return sentences.Aggregate(1, (prod, next) => prod ^ next.GetHashCode());
}

UI element

The hint window UI element (Figure 6.4) subscribes to the HandleEventViewHint
event.

Figure 6.4: Hint window

65

6. Development

Player status

Player status handles the stats values for the game. Stats behavior is described
in section 5.6.2.

Code listing 6.7: Player stats management
public static readonly int minutesUntilStatDecrease = 11;

public int energy { get; private set; }
public int social { get; private set; }
public int hunger { get; private set; }
private IEnumerator OnEnableCoroutine()
{

yield return new WaitUntil(() => StatusController.initialized);
StatusController.Instance.gameTimer.BroadcastMinutePassed += HandleMinuteChanged;

}
private void OnDisable()
{

StatusController.Instance.gameTimer.BroadcastMinutePassed -= HandleMinuteChanged;
}

private void HandleMinuteChanged()
{

if(++minuteCounter == minutesUntilStatDecrease)
{

minuteCounter = 0;

if (energy <= 0 || hunger <= 0 || social <= 0)
{

gameTimer.StopTimer();
lowStatEvent();
return;

}

hunger -= 1;
energy -= 1;
HandleAttributesChanged?.Invoke();

}
}

UI element

The phone stat display (Figure 6.3) subscribes to the HandleAttributesChanged
event. Another UI element subscribing to this component is the Attribute pop
up.

Figure 6.5: Status change event

66

6.4. Game managers

Quest tracker

This component handles the quests assigning, completing or canceling of
individual quests. While also acting as a sort of database for fetching of
these quest objects. It subscribes to the Game timer’s (Code listing 6.4)
Broadcast15MinutesPassed event for the time-out check, relieving many po-
tential CPU cycles. Upon changes done to any quest, an event (Handle-
QuestChanged) is sent signaling which quest has changed.

Below is how the school quest overrides the abstract implementation of
IsQuestTimedOut and IsQuestFinishable. An interaction quest can be fin-
ished anytime, so the method returns true every time.

Code listing 6.8: Quest tracker
public delegate void EventTriggeredQuestChanged(int questId);
public event EventTriggeredQuestChanged HandleQuestChanged;

IEnumerator OnEnableCoroutine()
{

yield return new WaitUntil(() => StatusController.initialized);
StatusController.Instance.gameTimer.BroadcastDayPassed += HandleDayPassed;
StatusController.Instance.gameTimer.Broadcast15MinutesPassed +=

Handle15MinuteIntervalPassed;
}
public void OnDisable()
{

StatusController.Instance.gameTimer.BroadcastDayPassed -= HandleDayPassed;
StatusController.Instance.gameTimer.Broadcast15MinutesPassed -=

Handle15MinuteIntervalPassed;
}

//Quest is abstract , concrete classes override IsQuestTimedOut based on time given
foreach(Quest q in quests)
{

if (q.status == Quest.Status.progress && q.IsQuestTimedOut(gameTimer.gameTime))
{

FailQuest(q.questID);
}

}

Code listing 6.9: School quest
// Is it past deadline?
public override bool IsQuestTimedOut(TimeSpan gameTime)
{

return gameTime > deadline + TimeSpan.FromMinutes(15f);
}
public override bool IsQuestFinishable(TimeSpan gameTime)
{

return gameTime >= deadline - TimeSpan.FromMinutes(15f) && gameTime <= deadline +
TimeSpan.FromMinutes(15f);

}

UI element

The Quest window subscribes to the HandleQuestChanged event, so if any
quest changes when the window is open, it updates itself. Another subscriber
is the quest tracker side menu, which also updates itself on quest change.

67

6. Development

(a) Main quest menu (b) Side quest menu

Figure 6.6: Quest menus

6.5 Implementation curiosities
Quest side menu animation
I did not work on many animations in the game, because I mostly focused on
making all the features work. One of the exceptions was the scratching and
subsequent retyping animation of the quest side menu. This was done entirely
through code. TextMeshPro supports HTML font-modifiers like < b >, or
< s >. So using these font modifiers and moving the terminating modifier one
letter at a time, this scratching effect is achieved.

Note that this is possible because of the observer pattern (Quest tracker)
notifying its subscribers(side quest menu) on quest change of some id. The
WaitForSeconds instantiation is done beforehand to minimize garbage collec-
tion.

68

6.5. Implementation curiosities

Code listing 6.10: Scratching and typing animation effect
private IEnumerator UpdateQuestView(int? questId = null)
{

...
var items = questLines.ToList().Zip(questLinesText.ToList().Zip(questTracker.

getActiveQuests(), (x, y) => (x, y)), (x, y) => (x, y.x, y.y));

foreach (var (title, text, quest) in items)
{

if(questId.HasValue && questTracker.getQuest(questId.Value).name == title.text
)

{
StartCoroutine(ScratchText(title, quest.name));
yield return StartCoroutine(ScratchText(text, quest.notysekText));

}
StartCoroutine(DisplaySentence(title, quest.name));
yield return StartCoroutine(DisplaySentence(text, quest.notysekText));

}
...

}

private IEnumerator ScratchText(TextMeshProUGUI gui, string newText)
{

WaitForSeconds w = new WaitForSeconds(0.02f);
string originalStr = gui.text;
if(newText != gui.text)
{

questAnimator?.SetBool("IsOpen", true);
foreach (int x in Enumerable.Range(0, originalStr.Length))
{

gui.text = "<s>" + originalStr.Substring(0, x) + "</s>" + originalStr.
Substring(x);

yield return w;
}

}
yield return null;

}

IEnumerator DisplaySentence(TextMeshProUGUI gui, string display)
{

...
WaitForSeconds w = new WaitForSeconds(0.02f);
foreach (char letter in display.ToCharArray())
{

gui.text += letter;
yield return w;

}
}

69

6. Development

Coroutine queue
The often occurring problem with Unity projects is that, when switching
scenes, everything is destroyed. All the references to rendered sprites, game
objects and even scripts are destroyed. But there often is some code that
needs to be executed when the player arrives in the next scene. This problem
has plagued this project for the longest time.

For example when going to a school lecture, the scene changes, but when
the scene changes back to campus, how do we know what to execute? This
was from the beginning solved by having massive hardcoded switch blocks,
the input of which was ”previous scene”. This is hilariously bad as it required
inclusive lists of all scenarios of scene switching that could happen, some-
thing like teleporting the player home after sleeping on the street would be
impossible to catch.

After many iterations a quite elegant∗ solution emerged. A CoroutineQueue,
this object would be accessible through the Status Controller which was not
destroyed on scene changes. As input, it would receive a lambda function∗,
which returned true when executed, after execution it would be removed. This
abstract piece of code allowed for trans-scene code execution

Code listing 6.11: Coroutine queue
public delegate bool WaitingForSceneEvent(string sceneName);
public event WaitingForSceneEvent OnSceneChange;

public List<WaitingForSceneEvent > list;

private IEnumerator OnEnableCoroutine()
{

yield return new WaitUntil(() => StatusController.initialized);
OnSceneChange += CheckWaiting;

}

bool CheckWaiting(string sceneName)
{

list.RemoveAll(x => x(sceneName) == true);
return true;

}

∗Subjectively elegant, this is still not perfect as the code written here has no guarantees
what objects are available.

∗In C# a delegate is used

70

CHAPTER 7
User testing

The testing has been done in two phases. The first happened before any
changes were made in the scope of this thesis (Section 3.1). The second has
been done after the changes. From this testing, we should find whether our
changes were effective, whether our UX design improved or whether further
modifications need to be made.

7.1 Testing description
The needed user testing has been compiled into a form, which included a link
to the game (on the continuous delivery platform) and a questionnaire. The
survey was conducted through Google forms, a table encapsulating given ques-
tions and received answers, will be available on the transferable media attached
to this thesis.

7.1.1 The questionnaire questions
The questionnaire contained a pool of questions used for both my and David
Mikulka’s thesis [1]. There was a place provided, at the end of the question-
naire, for ideas on how to improve the game.

Introductory questions

These questions gauge the audience taking the questionnaire. The game has
been tested by students and professors of CTU FIT.

• What is your gender?

• How old are you?

• Have you played FitLife?

71

7. User testing

Answer summary

There were 46.2% Men (6 people), 38.5% Women (5), and 15.4% (2) who
chose not to share their gender.

For the age group representation we ended up with 76.9% 19-29 (10), 15.4%
13-18 (2) and 7.7% 29-39 (1).

The last question if answered yes will let the questionee onto the rest of
the questions, it will end the questioning if otherwise. There were 84.6% who
played the game (11), and 15.4% who did not (2).

General questions

These were a compilation of both game design and game mechanics questions.
I will be focusing on those that matter in the scope of this thesis.

• Did you encounter a bug during your play that forced you to restart the
game?

• Are the controls intuitive and understandable?

• Is the quest system intuitive and uncluttered? Please state any problems

• How would you rate the rate of time and stats decay?

• Did you finish the game?

Answer summary

No one encountered any game-breaking bugs which required the game to be
restarted. I find this to be a great success. This game has many edge-cases
and before the big refactoring would encounter random exceptions on every
corner.

Everyone found the controls intuitive and understandable, which also
means that they worked well.

The quest system was rated 90.9% intuitive and uncluttered (10), and
9.1% No (1). There didn’t seem to be any functional problems.

The rate of decay was rated 54.5% neutral (6), 27.3% a little fast(3), and
18.2% very slow (2).

The game was finished by 81.8% (9) people, the rest 18.1% (3) people
found the game too boring or too long.

72

7.2. Testing conclusions

Implemeted changes following testing
People seemed to be confused by repeating dialogues on every new day, this
has been promptly hot-fixed, as this was done deliberately to remind the player
that a quest is available in that spot, this reportedly unintuitive behavior was
described in section 4.2.5.

The testing showed a problem in game design with the unavailability of
replenishing stats at night. After 18:00 when the Coffee shop and Canteen
closed the player would not be able to replenish their stats until the next day.
This was fixed by sleep replenishing energy and moving the closing of the
establishments to 21:00, matching up with the sleep time.

7.2 Testing conclusions
The testing of FitLife was conducted with unmoderated user testing. Eleven
people participated in the testing and gave valuable feedback on their experi-
ences. The questionnaire questions aimed at the shortcomings of the previous
version of the game. The testing showed that issues reported surrounding
various UX problems, described in section3.1, were fixed and improved. The
testers seemed to have a sense of direction, which was lacking previously.

The game seems to be for the most part, enjoyable. I was relieved to
find that the game performed functionally without any discernable issues, but
saddened that the game still has problems that cannot be simply fixed with
code. The game was found by 2 people to be boring/too long. Sadly due to
time reasons, we cannot fix this issue in the scope of this thesis.

The issues with FitLife do not seem to be rooted in implementation or
functionality errors anymore, but in game design. For further project devel-
opment, an improved game design together with more varying content is to
be developed.

73

Conclusion

This thesis aimed to finalize the game of FitLife, a game about studying at
FIT. Inspiration for how a game like this should be implemented was taken
from similar games in the same genre. During the analysis of Design patterns,
it was discovered that Design patterns are useful and applicable in game de-
velopment. The game was a product of SP1 and SP2 subjects, where the game
was in the hands of eight different people. FitLife was unrefined and rough,
which was reflected in the user reviews after this period.

The design tackled issues regarding stability and lack of functionality of
selected back-end components. Design patterns were used in the designing of
each of the components. These components were then charted using class and
activity diagrams.

The implementation consisted of refactoring and fixing of nearly all aspects
of the game. The game was much more functional and stable as it headed into
the second phase of user testing.

In the final user testing phase, there was no regression of issues from the
first user testing, the testing finalized with players rating the game mostly
positively. The feedback from this phase touched mostly on game design
issues, which require time, that was sadly unallocated to correct.

FitLife can definitely be improved upon in the future with more world
to explore, with more quests, with better game design. But hopefully in its
current state, it can bring the target audience and the reader some enjoyment.

75

Bibliography

[1] Mikulka, D.: FitLife - hra o studiu na FIT. Bachelor’s thesis, Czech
Technical University in Prague, Faculty of Information Technology, 2022.

[2] Nintendo: Mario history. 1985, [Online. Accessed: 2022-04-26]. Available
at: https://mario.nintendo.com/history/

[3] Zelda fans: Zelda Wiki. 2007, [Online. Accessed: 2022-04-26]. Avail-
able at: https://zelda.fandom.com/wiki/Locations_in_A_Link_to_
the_Past

[4] Electronic Arts: SimCity 2000. 2016, [Online. Accessed: 2022-04-26].
Available at: https://www.ea.com/games/simcity/simcity-2000

[5] ConcernedApe: Official Stardew Valley website. 2016, [Online. Accessed:
2022-03-20]. Available at: https://www.stardewvalley.net

[6] Pokemon: Official Pokémon website. 2007, [Online. Accessed: 2022-
03-17]. Available at: https://www.pokemon.com/us/pokemon-video-
games/pokemon-diamond-version-and-pokemon-pearl-version/

[7] Hemmann, K.: Mythical Landscapes and Imaginary Creatures: Pokémon
and Japanese Regionalism. Proceedings of the Association for Japanese
Literary Studies, Universidade de Notre Dame, ročník 14: s. 261–271.

[8] Tobyfox: Steam store. 2015, [Online. Accessed: 2022-03-17]. Available at:
https://store.steampowered.com/app/391540/Undertale/

[9] Seraphine, F.: Ethics at Play in Undertale: Rhetoric, Identity and De-
construction. In DiGRA Conference, 2018.

[10] Square Enix: Steam store. 2019, [Online. Accessed: 2022-03-19]. Avail-
able at: https://store.steampowered.com/app/921570/OCTOPATH_
TRAVELER/

[11] Qu, J.; Song, Y.; Wei, Y.: Design patterns applied for game design pat-
terns. In 2016 17th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), 2016, s. 351–356, doi:10.1109/SNPD.2016.7515924.

77

https://mario.nintendo.com/history/
https://zelda.fandom.com/wiki/Locations_in_A_Link_to_the_Past
https://zelda.fandom.com/wiki/Locations_in_A_Link_to_the_Past
https://www.ea.com/games/simcity/simcity-2000
https://www.stardewvalley.net
https://www.pokemon.com/us/pokemon-video-games/pokemon-diamond-version-and-pokemon-pearl-version/
https://www.pokemon.com/us/pokemon-video-games/pokemon-diamond-version-and-pokemon-pearl-version/
https://store.steampowered.com/app/391540/Undertale/
https://store.steampowered.com/app/921570/OCTOPATH_TRAVELER/
https://store.steampowered.com/app/921570/OCTOPATH_TRAVELER/

Bibliography

[12] Gamma, E.; Helm, R.; Johnson, R.: Design patterns elements of Reusable
Object Oriented Software. Addison Wesley, 1998.

[13] Nikolaeva, D.; Safi, M.; Mihailov, M.; aj.: Algorithm A and Design
Patterns used in Unity Video Game development. In 2020 Interna-
tional Conference Automatics and Informatics (ICAI), 2020, s. 1–3, doi:
10.1109/ICAI50593.2020.9311327.

[14] Qu, J.; Wei, Y.; Song, Y.: Design patterns applied for networked first
person shooting game programming. In 15th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD), 2014, s. 1–6, doi:10.1109/
SNPD.2014.6888715.

[15] Szallies, C.: On using the observer design pattern. XP-002323533,(Aug.
21, 1997), ročník 9, 1997.

[16] John French: Game dev beginner blog. 2021, [Online. Accessed: 2022-
04-4]. Available at: https://gamedevbeginner.com/singletons-in-
unity-the-right-way/

[17] Unity technologies: Unity documentation. 2020, [Online. Accessed:
2022-04-3]. Available at: https://docs.unity3d.com/Manual/webgl-
building.html

[18] Google: Google Research - Magenta. 2016, [Online. Accessed: 2022-04-4].
Available at: https://magenta.tensorflow.org

[19] Github: Github Actions. 2019, [Online. Accessed: 2022-04-29]. Available
at: https://docs.github.com/en/actions

[20] GameCI: Unity Actions. 2019, [Online. Accessed: 2022-05-01]. Available
at: https://github.com/game-ci/unity-actions

[21] Unity technologies: Unity. 2017, [Online. Accessed: 2022-04-29].
Available at: https://unity.com/unity/features/editor/art-and-
design/cinemachine

[22] Microsoft: Microsoft docs. 2017, [Online. Accessed: 2022-04-29].
Available at: https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/delegates/

78

https://gamedevbeginner.com/singletons-in-unity-the-right-way/
https://gamedevbeginner.com/singletons-in-unity-the-right-way/
https://docs.unity3d.com/Manual/webgl-building.html
https://docs.unity3d.com/Manual/webgl-building.html
https://magenta.tensorflow.org
https://docs.github.com/en/actions
https://github.com/game-ci/unity-actions
https://unity.com/unity/features/editor/art-and-design/cinemachine
https://unity.com/unity/features/editor/art-and-design/cinemachine
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/delegates/

APPENDIX A
Acronyms

CD Continuous delivery.

CI Continuous integration.

CTU Czech Technical University.

FIT Faculty of Information Technology.

NPC Non player character.

PC Personal computer.

RPG Role playing game.

UI User interface.

UX User experience.

79

APPENDIX B
Contents of enclosed SD-Card

readme.txt the file with SD-Card contents description
src...the directory of source codes

impl..implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format
fitlife_questionnaire.xlsx ... google forms questions and answers

81

	Introduction
	The main goal
	Analysis
	Video game analysis
	World representation
	Camera types
	Genre
	Simulation
	Adventure

	Analysis of similar games
	Stardew Valley
	Pokémon Diamond and Pearl
	Undertale
	Octopath Traveler

	Game analysis conclusion

	Design patterns
	What is a design pattern
	Design pattern use in Video games
	Observer pattern
	Decorator pattern
	Singleton pattern
	Service locator pattern
	State machine pattern

	FitLife analysis - prequel
	User testing analysis
	User interface
	Game timer
	Quest system
	Player status
	Audio manager
	Interactions

	Design
	Design of FitLife
	General game design
	Game managers
	Status controller
	Quest system
	Game timer
	Player status
	Interaction tracker
	Interactive

	Game design document
	Introduction
	Target System
	Development System
	Target Audience
	Specification
	Gameplay
	Story
	Stats
	Grading system
	Quests
	Characters
	Level design
	Music and effects
	In-game controls
	User interface
	In-game pause menu

	First launch

	Realisation
	Development
	Used unity features
	Canvas components

	UI scaling
	Camera scaling
	Game managers
	Implementation curiosities

	User testing
	Testing description
	The questionnaire questions

	Testing conclusions

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed SD-Card

