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Abstrakt / Abstract

Control systems engineering plays a
crucial role in the rapid development of
human technology, hence the demand
for more user friendly and open-source
tools for systems design is significantly
growing. PysimCoder is a Rapid Proto-
typing Control application, which can
be used to graphically design control
systems schematics for the purpose of
generating real time code for differ-
ent targets. Its main advantages are
that it is freely available, open source,
and it supports both NuttX RTOS
and GNU/Linux targets, all of which
enhance the educational experience.

The pysimCoder application is far
from being mature, however the further
extension of the project could be a
great win for education, industry, and
recreation. The main goals of this thesis
will be focused on adding new features
to the project, such as support of vector
signals, as well as device support for
the ESP32C3 (using NuttX RTOS) and
Xilinx Zynq based MZ_APO education
kits (using GNU/Linux). Throughout
this document there will be demon-
strations of each extension that was
added, as well as full descriptions of the
approaches used to implement them.
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Chapter 1
Introduction

Today we live in a heavily automated world, where almost every industry is re-
liant upon multiple complex control systems. In fact, the rate at which technology is
developing is very related to our ability to control and automate the processes around
us. Considering the importance of this field, the need for more control tools and engi-
neers is becoming apparent. At the time, there are already many tools which are used
for designing real control systems, such as Simulink, XCos, LTSpice, OpenModelica,
CODESYS, and many more.

Freely available and open-source programs are the future, therefore having control
systems tools which meet these requirements is beneficial for industry, education, and
enthusiasts. One program which complies with this idea is pysimCoder, a graphical
control systems design tool which can generate code for microcontroller units. The
application is far from its paid counterparts in terms of development. Nevertheless its
open source nature allows anyone to extend the program, and is very useful for educa-
tional purposes. PysimCoder will be the heart of my thesis work, since the main goals
are related to enhancing and extending the features of the tool. The full description of
the application and its source code can be read in chapter 2.

In order to fulfill the requirements of this thesis, my work will revolve around
three main features to be added. These will be to add vector support for the signals, to
extend the support for different hardware running on LinuxOS, as well as to test and
enhance the support for NuttX RTOS using a RISC-V architecture board.

Vectors are a topic that even children learn in school, due to their very wide usage
in various fields of mathematics. Most technical fields will use vector mathematics
for one purpose or another, including even control engineering. Therefore having the
ability to work with vectors in pysimCoder will be very useful, especially in terms of
mathematical operations. In chapter 3 it will be explained not only why, but also how
this feature can be implemented.

In pysimCoder, it is already possible to generate code for real-time Linux targets.
Nevertheless, a lot of the code necessary for microcontroller hardware operations will
be specific to the hardware being used. In the case of the MZ_APO educational
kit, full support will be added from scratch, due to its previous nonexistence. The
RaspberryPi already has support, however it will be extended for 3-phase motor control
demonstration. The hardware and software necessary for these implementations will
be covered in chapter 4.

NuttX is a real-time operating system (RTOS) which is is developed mainly for for
small and constrained MCU environments. Using the NuttX blocks in pysimCoder, it
will be possible to test a control system on a RISC-V based board such as the ESP32C3
development kit. In chapter 5, I will explain how the work done for the RasperryPi
extension can be used to demonstrate motion control of a 3-Phase motor, even using a
small board with weaker capabilities.
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Chapter 2
PysimCoder

All of the work done towards the completion of this thesis is related to the pysim-
Coder project. Considering this the program must be fully explained, from the user
interface perspective, as well as the source code perspective. This will help to better
understand any of the implementations covered in the succeeding chapters.

2.1 Introduction to the PysimCoder Tool

2.1.1 Control Systems and their Design Tools

“A control system is an interconnection of components forming a system configuration
that will provide a desired system response.“[1, chapter 1]

We as a species have thrived upon the idea of controlling the processes around
us. Of course, there are many natural occurrences that we cannot prevent nor avoid
(yet), however we still maintain an increasing ability to control and automate all types
of processes that can be used to our benefit. This concept of automated control sys-
tems has become the engine behind the rapid development of human technology, and
concurrently has changed the way humans live and function as a society.[1] Therefore,
as our technology advances further and faster, the necessity for automation solutions
and engineers will only grow with it.

Due to the wide range of industries and fields which rely heavily on automation,
there are various solutions and tools which offer the ability to design, simulate, and
control real time systems. The software which is used all depends on the application
and hardware which is being targeted. In an industrial setting, one would probably
use TIA Portal [2] or CODESYS [3] to program the controllers of some production
line in a factory. For designing and simulating complex electrical circuits, AutoDesk
Fusion360 [4] would be a perfect environment for high accuracy and modern solutions,
while LTspice [5] is more useful for simpler analog circuits.

For many fields of engineering, there is a corresponding software which is used for
control design of a certain type of system, however for the purpose of this thesis I will
focus on solutions which are meant for mathematical simulations, and code generation
for microcontroller units. These include programs such as MATLAB and Simulink,
which make up a very elaborate tool for designing a system controlled by a micropro-
cessor unit, and for visualizing the data coming from the physical system in real-time.
In essence, Simulink is a graphical tool for creating block diagram schematics which
represent a particular system using mathematics. Furthermore, users of Simulink can
create their own blocks, not only for mathematical calculations, but even for control
of physical hardware. Using this feature, one can combine the mathematical blocks
with hardware-related blocks in order to generate binary code for execution on a MCU,
which can then control different types of hardware connected to it. [6]

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Introduction to the PysimCoder Tool

2.1.2 PysimCoder: Control Systems Design and Code Generation
Tool
Another such tool is PysimCoder, which has been the focal point of my diploma

work. Started and developed by professor Roberto Bucher from the University of Ap-
plied Sciences and Arts of Southern Switzerland, PysimCoder is an open-source graphi-
cal tool used for real-time code generation, typically for microcontrollers and PCs which
are controlling some physical peripherals. Additionally, it can also be used as a simula-
tion tool for simple control schemes. Target operating systems include GNU/Linux with
or without preemptive-rt kernel, and NuttX RTOS usually for constrained MCU based
systems. At its core, it is a Rapid Prototyping Control application, similar in style to
programs like Simulink and XCos.[7] This application is still under development, and
it has nowhere near the amount of investment or resources that its alternatives use.
Nevertheless, this application has some advantages which should be considered for a
control system tool, and thanks to its small size and user-friendly interface it can be
an ideal starting point for educational purposes in the topic of control systems.

Firstly, it is open-source and freely accessible, which allows complete introspection
of the generated code, as well as the source code of the application itself. This way, if
there is an error or an issue during usage, anyone with a good knowledge of programming
can go inside the source and fix the bugs as needed. Another great advantage is that
it takes much less memory space, which results in faster installation and overall usage.
At the current moment, the whole project takes up about 100MB of space on my hard
drive, which is negligible compared to the many gigabytes of space which Simulink
requires. This is immediately noticed when comparing loading times between the two.

Probably the best thing about this program is that it uses Python as a program-
ming language for most of the core functions. Using many Python libraries which are
specialized in control systems mathematics, the application is able to design a schematic
on a source code level. The program can translate this design into C programming lan-
guage, which can ultimately be compiled and deployed to a MCU as machine code.
The combination of Python and C languages is perfect for easy deployment in most
environments, both for the host running PysimCoder, and for the target running the
generated code. [7, chapter 8]

PysimCoder is originally set up for installation in a Linux OS environment, however
due to the many virtualization and containerization techniques used in computers today,
the program can even be run in Windows OS, or Mac OSX [7, chapter 8]. The program
is so light and accessible that you can really run it from any consumer-level operating
system, with barely any strain on the CPU. This, in combination with the free and
open-source nature of the program, makes it perfect for the software requirements of
the future.

It is obvious by now that the paid and closed-source alternatives will have more
features, stronger software stability, higher precision, and overall better performance.
Nevertheless, pysimCoder still has a chance to become just as good, and still remain
free and open-source. This will depend on students and researchers such as myself who
will choose to develop further features and abilities to the program. One feature which
pysimCoder would highly benefit from is being able to generate and use vector signals.
This is something that Simulink already has full support for, therefore having it here
will be one step further to a professional-level software, with virtually no financial cost.

In the next chapter, I will be explaining my journey to the extension of pysimCoder
for support of vector signals and blocks with vector operations. Before that however,
I must explain how the program works internally, and show the code-generation path

3



2. PysimCoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
from Python to C-code. This explanation will help to better understand the logic
behind my implementation of the vector feature, as well as the other features added
based on the requirements of this thesis.

2.2 Code Generation Path of pysimCoder
In order to fully understand the implementation of the features which I have added

in the pysimCoder project, I must initially explain how the source code is organized and
how it functions. When working on an open-source project, the greatest advantage is
that you have complete access to the whole source of the application, however this comes
with great risk as well. Any small change in the core functionality of the program can
lead to unexpected results and errors. Therefore, the developer must always carefully
analyze and understand the source code before they start making changes and adding
new functions.

2.2.1 Graphical User Interface of pysimCoder

From the front-end perspective, pysimCoder is a graphical tool used for designing
block diagram schematics for the purpose of simulation and real-time code generation.
Knowing this, it is only natural that I give a small preview of the GUI of the application.
As seen in Figure 2.1, the pysimCoder tool is very similar to its larger and more costly
counterparts such as Simulink or xCos, as far as the graphical editor is concerned. In
fact, the editor itself is based on the PySimEd project [8] and the qtnodes-develop
project [9], in combination with a lot of common blocks from PyEdit. [7, chapter 7]

Figure 2.1. Simple preview of PysimCoder’s graphical tool

The application is divided in two windows: the library and the diagram canvas. On
the left, we have the library window which contains all the blocks which are supported
on pysimCoder. From here the user will be able to drag and drop different types of
blocks onto the canvas, depending on their control needs. Then on the right, there

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Code Generation Path of pysimCoder

is the canvas window where the user will be able to interconnect all the blocks that
were added there from the library. On the top of this window there is a toolbar and a
menu bar from which the user is able to perform a handful of operations necessary for
their design. The most note-worthy buttons used are: Generate C-code, Simulate,
and Settings. These operations are essential to the code-generation and simulation
functions of the application.

Regardless of the complexity of the diagram, the work flow (set of operations) will
always be the same getting from design to code generation. The blocks are dragged
to the canvas from the library, then interconnected based on the user’s design. Once
the blocks are nicely organized and connected, the user will then have to tune any
block parameters that must be changed for their particular system. After verifying
the correctness of the diagram, the user will have to choose a target-specific template
Makefile which will tell the program which compiler to use for the current project.
Finally, the user must save the project, and the Generate C-code button will be pressed
in order to build a binary executable file. In case of a simple simulation running on the
host computer, the Simulate button can also be pressed in order to execute the file in
the same terminal where the pysimCoder application is running. [7, chapter 7]

Every instruction given above will be related to the next part of this section,
where I will explain in simple terms how the source code is reacting to the different
operations we are performing in the graphical tool, and what is the final result of the
code generation performed by the application.

2.2.2 Source Code of pysimCoder

The core functionality of the pysimCoder project is enabled by three main lan-
guages: Python, C , and Makefile. Python is the engine behind the graphical tool, and
the back-end processes related to the operation of the tool, and also handles the C-code
generation. The generated C code will contain the whole system design with all of
its blocks, and their respective parameters and interconnections. Makefile is used for
organizing the compilation of the .c files of the blocks, installing all modules necessary
for use of pysimCoder, as well as for producing the final executable file which is the
end result of the design made in the GUI. Figure 2.2 gives a more simplistic view of
the code generation path, from GUI to the executable generation.

Each block from the Library window has three main components which complete
its functionality in the code. Firstly, before any code generation takes place, there is
the .xblk file which holds all the info of the block which the graphical interface can
interpret. These include necessary information such as number of inputs and outputs,
assignment of editable parameters along with their default values, name of the block,
and also name of the .py file which will be essential to the further processing of the
block.

The reference to the .py file specified in the .xblk file is the next step once we want
to move towards code generation. This .py file is responsible for calling a python class
named RCPblk, whose purpose is to create an object from the current state of the block
to be used in the main code connecting it to the other components of the schematic.

Last but not least, the block needs a C-code function that will be used in the main
C code generated by Python. This function will contain the actual code necessary for
achieving the desired output of the block.

Now I will break down the path of the source code based on the work-flow presented
earlier in the GUI. In the initial phase, the design of the schematic is taking place. This
includes everything from dragging and dropping blocks onto the editor, making con-

5



2. PysimCoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C-code

Code generation script

Block library Main with the RT thread

Binary Executable

Python script

Basics of Code Generation

Figure 2.2. Code path from GUI to executable file, inspired by presentation from Prof.
Roberto Bucher [10].

nections between them, setting their parameters and choosing the simulation settings.
During the design phase, various Python tools from the path /toolbox/supsisim/src
are being utilized to run the graphical tool, and to ultimately save the state of the
current project into a file with .dgm extension. This .dgm file will contain everything
known about the design before code generation takes place, which mainly includes the
edited .xblk of each block, the connections between the blocks, and the simulation
settings.

Once the design of the schematic is completed and saved into a .dgm file, the
code generation can finally take place. In this phase, the same tools from the path
/toolbox/supsisim/src will be used. When the Generate C-code button is pressed
in the toolbar, the supsisim toolbox will create a file called tmp.py in the working
directory, and run it in a separate python3 instance. This script will be responsible
for collecting all the blocks and their interconnections, and using them to generate the
main C-code. Then it will create a folder in the same path, and it will store there
the main C-code that was generated, and also a Makefile. The last step of the tmp.py
file will be to call the Makefile, which will finally compile the generated C-code into
a binary executable. This binary file is the end-product which is obtained from the
simulation design, and is the only file necessary for the execution of the simulation on
the target-hardware.

The representation seen in the following page shows the directory tree of the pysim-
Coder project. Most of the core work being done by the program is happening at the
toolbox folder. In the resources folder there is all the .xblk and .py files of each
block, as well as all the images used for the blocks’ thumbnails. For all code generation
purposes of the program, the folder CodeGen will be used. Here lies all the C files
containing the functions specific to each block (including their dependencies), as well
as all the template Makefiles used for the various targets that are supported. These
three directories are essential to the pysimCoder application, and work closely together
during the path from the GUI to the binary executable generation.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Code Generation Path of pysimCoder

Although there are a few parts of the source code I have not explained, there is
already enough information given to be able to clearly understand the different imple-
mentations and changes that will be made in the forthcoming chapters. Some topics
which might be more relevant to a certain feature, will be explained in further detail
in its corresponding chapter.

-BlockEditor # Python programs
-Book # Documentation
-CodeGen # C resources for blocks and simulations

-Common
-linux_mz_apo
-LinuxRT
-nuttx
-Raspberry_PI
-SAMD21
-src
-STM32H7
-templates # Makefiles for targets

-DriverNRT
-resources

-blocks
-blocks # .xblk files of block
-Icons
-rcpBlk # python files of block

-icons # block thumbnails
-Tests

-ControlDesign # Examples
-BallOnWheel
-Disks
-DisksAndSpring
-InvertedPendulum
-PidExample

-toolbox # Python Control and Simulation Libraries
-myEnv
-supsictrl
-supsisim

-userLib

7



Chapter 3
Vector Support

As mentioned in the previous chapter, it would be of great benefit to the pysim-
Coder project to have some type of vector support. This is especially true for con-
trol engineering tools, since there are many situations where a vector signal might be
necessary. In this chapter, the first attempt of experimenting with vector signals in
pysimCoder will be described.

3.1 Vectors in Control Systems
As remembered from any elementary mathematics or physics class, a vector is a

directed line segment. Usually a vector can be visualized on a line, a plane, or a space,
otherwise known as the three spatial dimensions. In other words, a vector is a set of
numbers, which represent a line with a direction in an N-dimensional space (see Fig.
3.1). Although vectors can have a finite or infinite number of dimensions, they have
already played a significant role in mathematics and physics even with only the three
spatial dimensions that we are closely familiar with. The uses of vector mathematics
reach wide across many fields of science, such as classical mechanics, astrophysics,
electronics, and many others.[11] Included here is also control engineering, which uses
vectors for many of its mathematical operations.

Figure 3.1. Visualization of a vector in a 3-dimensional space (x,y,z axes). The point P
represents the direction of the vector, and contains the magnitude as well.

In order to design and analyze control systems, quantitative mathematical models
of these systems must be obtained. This condition is true independently of the type of
dynamic system in question. The mathematical model of the dynamic system is initially
expressed as a set of differential equations, and then usually linearized (if possibe) for
further use. The Laplace mathematical tool is then able to obtain a solution of these
linearized differential equations, and ultimately describe the operation of the system.

8
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Although, today numerical approximations are more generally used for this. [1, chapter
2.1]

Once the mathematical model is simplified with the use of transfer functions, the
input-output relationship can be described. This function is especially useful when
wanting to represent the system as a block diagram schematic (see Fig. 3.2). The
blocks are unidirectional and operate based on the transfer function of the variables to
be controlled.[1, chapter 2.6]

Figure 3.2. Example of usage of block diagram schematics for representation of a closed-
loop feedback control system.

Nowadays all the graphical tools for control systems are based on this concept,
and many of them use vector signals for operation of their blocks. PysimCoder also
uses vectors (and matrices) for many of the mathematical operations necessary for the
simulation of a control system, however before my implementation covered in the next
sections of this chapter, it did not support the use of vector signals as inputs or outputs
of a block. This is a feature that would greatly improve the application, since it can can
simplify the diagram appearance, and it could better utilize many of the mathematical
tools needed for controlling a dynamic system.

Simulink already supports vector signals both in the graphical editor and in the C-
code generation tool (SimulinkCoder). The Constant block has the ability to produce
a single number, but also a vector or matrix. This block can be used to generate a
pure vector signal which is constant on its output. There is also a Mux block [12] which
can combine input signals into a vector, and also its inverse Demux [13] which extracts
each element from the vector signal and outputs them individually. These blocks can
be used in combination with other blocks which may have vectors as an input or output
of their operation. Simulink only has a handful of pure vector blocks, including Mux
and Demux. Most of the other blocks support single-data signals, as well as vectors on
top of that, if the input is given as such.

Many of the same blocks mentioned above that are used in Simulink can be em-
ulated in pysimCoder. Therefore, for the purpose of testing and experimenting with
vector signals for the first time in pysimCoder, I have used the same concept of these
blocks. I started with a Constant Vector block, which could create a pure vector sig-
nal, together with a Print Vector block to print the signal on the terminal. After that
I proceeded with creating the Mux and Demux blocks, since they will be able to convert
vector signals into its individual elements, and back. This can create an interface be-
tween the vector blocks and the normal blocks. The approach to this will be covered
in the next sections of this chapter.
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3.2 Basic Implementation of Vectors in pysimCoder

3.2.1 Method of Approach
Although pysimCoder did not have vector support before this implementation,

it did have a framework for enabling the dimensions of a block. By creating new
pysimCoder blocks which utilize this ability to carry input and output dimensions, I
will be able to test the processing of vectors in the C-function level. In order to achieve
this I will have to make changes in the source of the code generation tool, as well as
adding blocks in a new Vectors library. For initial simplicity, the dimensions will be
set as a block parameter from the user. The automatic setting of dimensions will be
covered later, in the next section of this chapter.

3.2.2 Changes in Python Source and Generated C-code
Before trying to create the new blocks for testing vector signals, first the source

of the pysimCoder project must have the ability to enable vectors for these blocks. By
making some minor changes to the block representation object, as well as the code
generation process, the new blocks will then be able to read their own dimensions in
order to properly process the input data.

To better understand where to make these changes, I will refer to the main elements
of a pysimCoder block from chapter 2: the .xblk file, .py file, and .c function. In fact,
these elements follow a strict hierarchy of representation of a block, as seen in Figure
3.3.

PysimCoder Block

.xblk file 
 

JSON format

 
.c function 

 
python_block  

C-structure

.py file 
 

RCPblk object

Figure 3.3. The supporting files for a pysimCoder block are shown. The green arrows
represent which file contains the specification of the next file or function to be called. The
orange arrow shows the switching of block representations. The general direction of both

arrows show the hierarchy of the code dependencies of the block.

On the GUI level, the block is initially represented in the same format as the .xblk
file, otherwise known as the JSON format (although there is no JavaScript involved).
The corresponding Python function specific to the block is then called with all the
information contained in the JSON, and will ultimately create a Python class called
RCPBlk. This class is the next level of representation, and it will be used while pysim-
Coder is generating the C-code. When Python is generating the code, it will use each
RCPBlk object to initialize the block on the C-code level. To do this it will pass all of
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the block information to a C-structure called python_block, which will enable all the
written C-functions of the block to utilize its own properties for correct functioning of
the code. This C-structure is the last level of representation, and is the only format
needed for running of the code on the target. In other words, the other formats only
serve to generate this final one. [7]

So all these representations seem to be carrying the block information, and the last
two already have some form of support for dimensions of input/output signals. They
are seen in the code below, where both of them have the variables already made to
carry dimension data.

...
typedef struct {

int nin; /* Number of inputs */
int nout; /* Number of outputs */
int * dimIn; /* Port signal dimension */
int * dimOut; /* Port signal dimension */
int *nx; /* Cont. and Discr states */
void **u; /* inputs */
void **y; /* outputs */
double *realPar; /* Real parameters */
int *intPar; /* Int parameters */
char * str; /* String */
void * ptrPar; /* Generic pointer */

}python_block;

For python_block there is nothing to change, however in the RCPBlk object, all of
the dimension information seems to be defaulted to 1 for all inputs and outputs. This
is the first change to make, so that when the RCPBlk is called from the block’s Python
code, the dimension will pass from the user’s input to the python_block. Otherwise it
would just default to 1, making vectors impossible to use here.

...
self.name = None
self.fcn = fcn
self.pin = array(pin)
self.pout = array(pout)
self.dimPin = ones(self.pin.shape)
self.dimPout = ones(self.pout.shape)
self.nx = array(nx)
self.uy = array(uy)
self.realPar = array(realPar)
self.realParNames = []
self.intPar = array(intPar)
self.intParNames = []
self.str = str

...

After that is settled, the block can then take a dimension as an input parameter
from the user, and pass it on to the other representations. This is key to the whole
feature, since now I will be able to show how the source code can use this information
in order to create actual memory space for the signal.
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In pysimCoder, the main file which deals with code generation is RCPgen.py. In

that file is where all the blocks of the simulation are gathered and interconnected,
and then generated as C-code. The tool uses the RCPblk objects of each block in
order to propagate the information to the python_block structure. The blocks are
interconnected using nodes. A node in terms of pysimCoder is a connection between
an output of a block, and the inputs of one or many other blocks. The node will carry
the values from one block to another, however the source only generates one value per
node. This is another barrier preventing the program from enabling vector support,
and it is the next change to be made to prepare the blocks for using vector signals.

In the current version of RCPgen.py, it seems that there is only one value given for
each node. This setup will not allow any vectors to be generated or used, therefore a
short algorithm will be developed to set the correct array space for each node. Generally
the nodes must be as large as the inputs and outputs it is connected to, so the array
length of each node can be set by the (mutual) dimensions of the connected blocks.
Considering this fact, the algorithm will simply go through each block’s output, find
the dimension of that output, and then append this value to a list which will hold all
the nodes’ dimensions. Then later on when the nodes are being initialized in C-code,
the array length will be set based on the dimension found in the list. The application of
this small algorithm will allow the generated C-code to propagate vector values, since
it now has memory space to do so.

3.2.3 New Blocks for Vector Testing

After the changes made to the source as explained above, the new vector blocks will
finally be able to pass vector signals and use their dimensions for the correct functioning
of the C-code. The first vector block to create will be the Constant block, as seen in
Simulink. This will be able to create a vector output signal based on the input array
given from the user. Then to test if the vector signal is actually passing correctly, there
is a need for a Print block which will be specific to printing vector signals as an array
on the main terminal of pysimCoder. These two blocks will become the first experiment
on vector signals.

The next blocks to be created will be related to mathematical operations on vectors.
The Gain block takes each element of the input vector and multiplies it by the factor
given by the user. In fact the Gain block already existed in pysimCoder, however it has
never been used with vectors as its input. Then two very simple arithmetic operations
will be implemented for vectors: summing and subtracting. Describing what they do is
somewhat redundant, however it’s worth noting that the input vectors of both blocks
must be of equal dimension for correct operation. By refining these blocks, I will be
able to prove that vectors can be passed, and processed in a mathematical way.

Finally there are two very important blocks which have a special role with vectors
in a block diagram schematic. These are the Multiplexer and Demultiplexer blocks,
otherwise known as Mux and Demux. Mux is responsible for generating a vector from
many single inputs, while Demux breaks down the vector into many single outputs.
This functionality will be especially useful in the future, when normal blocks want to
interact with vector-able blocks.

These are all of the vector blocks that have been crafted for the purpose of testing
vectors in pysimCoder. It is worth mentioning that some blocks are able to know their
dimension even without any user input. If the dimensions can be found using some
mathematical relation, then it can be passed automatically from the Python file which
calls RCPBlk. Otherwise, the dimension will have to be given explicitly from the input
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parameters of the block, therefore it will pass first from the .xblk representation. In
the next section I will explain my extended implementation of vectors, where all the
dimensions are set automatically by an algorithm, and no user input is needed.

3.2.4 Demonstration of Basic Vector Support (Static Dimension
Setting)
To demonstrate the functionality of the first vector feature in pysimCoder, I have

prepared some short examples which are using vector blocks. The diagram seen in
Figure 3.4 showcases the usage of blocks with mathematical operations (subtraction,
sum, gain) on vectors. The vector is summed with itself, and then subtracted by itself,
and finally amplified by a gain of 10. The output is shown in the terminal, found in
the bottom right corner of the figure. The result should be the same vector, multiplied
by 10 (the gain). On the left of the terminal, there is also a small window where the
setting of the dimensions can be seen. Further to the left is the Library, where all the
vector blocks can be dragged and dropped to the diagram.

Figure 3.4. Diagram demonstrating usage of mathematical operations on vectors in pysim-
Coder. Dimensions here are set statically from the user input, as seen in the small window

to the left of the terminal output.

In the next figure (Fig. 3.5), there is a very insightful example, which involves
the Mux and Demux blocks. Since the two are an inverse to each other, it is possible
to connect them to each other, and get the same result from which it started with.
Although this seems redundant in a real-life engineering situation, it is in fact a helpful
test to see if the two blocks work correctly. As seen in Figure 3.5, the diagram starts
with a vector, gets broken down by Demux, and then recollected with Mux. Then the
signal is printed on the terminal, and the vector appears to be the same as the input
given for the Constant block. This result means that everything is working correctly.
The diagram can also be reversed (Mux-Demux), but then the general Constant and
Print blocks would be used instead of the new vector versions.
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Figure 3.5. Example using Mux and Demux blocks to test each other, as seen from the
pysimCoder GUI and terminal. The result of the Print block should be the same as the

vector from the Constant block.

3.3 Vectors with Dynamic Dimension-setting
Algorithm

3.3.1 Method of Approach

In the initial functionality made for vector support, all the dimensions were either
set manually, or set automatically from their internal properties. In this section I
will cover the automatic setting of dimensions for all blocks which cannot know their
dimensions by their own.

To do this, I will create an algorithm which will find each of these blocks, and set
their dimensions based on the output of the preceding block. The detection and setting
of dimensions must happen during the code generation process. By implementing this
algorithm, the dimensions will not be passed as integer parameters anymore, but will
use the appropriate variables for dimensions of input and output seen in the RCPBlk
object class, and the python_block C structure.

It is worth to be noted that there are many approaches to setting dimensions
automatically in a block diagram schematic which supports vectors. However, for the
purpose of showcasing an experimental version which works with the previously working
setup of the vector feature, I have chosen the above methodology. In the future I hope
that pysimCoder developers including myself will use this proof as a motivation for a
more general and organic solution for this feature.

3.3.2 Development of Algorithm

As seen in the last section, some vector blocks seem to know their dimensions
internally, such as Constant, Mux, and Demux. The first two of these also seem to be
generating a vector output. For the purpose of the explanation of this dimension setting
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algorithm, I will denote these two blocks as Source blocks. It is important for this
implementation that the source blocks always know their dimensions internally, since
their dimensions will be passed on down the line.

Other blocks, which previously needed their dimensions to be specified, will then
be split into two groups. The middle blocks are vector blocks with both input(s) and
output(s), while the destination blocks are those with only vector input(s). Since
the latter only have input signals, then they can simply inherit the dimension from
the output of the preceding block. However for the middle blocks, there is also the
setting of the output signal dimensions, which will need further processing.

To find a way to set the output dimensions of a middle block, each input/output
relationship must first be investigated. In the best case scenario, the output signal would
inherit the dimension from the corresponding input signal, assuming a 1:1 mapping of
dimensions. In this case, all the middle vector blocks which were previously created (see
section 3.2) have a 1:1 ratio of input/output dimensions, which will make the processing
much easier. Nevertheless the chance of having a different ratio when working with
vectors in the future is quite high, therefore I have ensured to leave a framework for
making blocks which have a more complicated I/O relationship.

To describe the I/O relationship of a block on a mathematical level, I will use
the notion of the dimension ratio. In other words, this is the ratio between the
input dimension and the output dimension. Just earlier it was mentioned that the
current middle vector blocks all have a 1:1 ratio, which means that the value of the
input dimension will be equal to the value of the output dimension. In other cases,
the output dimension would have to be multiplied by some factor in order to achieve a
natural number. This is the exact reason why I have decided to make a new parameter in
the RCPblk class by the name of dimRatio. This parameter will hold the information
of the I/O dimension ratio, ultimately guiding my new algorithm on how to set its
output dimensions.

Now I will proceed to explain the inner workings of the dimension setting algorithm
for vector blocks, using the flowchart given in Figure 3.6. The first part of the algorithm
will be dealing with the middle blocks, as seen in the left half of the diagram. Once that
part is resolved, the algorithm can then continue to process the destination blocks. This
has to happen in this order since the destination blocks usually get their dimensions
from a middle block.

Initially the middle blocks must be found and accessed (Steps 1 and 2). Then
the program must iterate through all the inputs of that block, and proceed to find the
parent block which contains an output connected to the current input selected (Steps
3,4,5). This input will then inherit its dimension from the corresponding output of the
parent block. The output signals of the middle block on the other hand, will be based
on the dimension ratio parameter contained in the block (Step 6). If all the inputs
have been dealt with, the algorithm will then move to the next phase, involving the
destination blocks.

For the destination blocks, the same idea will be applied as for the middle blocks.
The main difference here, will be that for destination blocks there are only inputs. This
means there is no need for any dimension ratio to help select an output dimension,
since there are no outputs. Therefore the inputs of the block will simply inherit their
dimension from the parent block’s output, and the algorithm will be done (Steps 8-13).
Most of the steps are identical as for middle blocks, except for Step 9 and 11.

Although the flowchart seems a bit complex, the idea behind the algorithm is not
so hard to understand. The goal is to propagate all the vector dimensions, from a
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Loop through the blocks

Go to each input

Find parent block and  
loop through the outputs

Is it a middle block?

Is the output connected to  
the same node as the input?

Set input dimension based on
output of parent block 

Set output dimension based on
dimRatio

Are the dimensions of  
each input and output set?

yes

no

Loop through the  
blocks again

Repeat steps 3 to 5

Is it a destination
block?

Set input dimension based on
output of parent block

Are the dimensions of  
each input set?

All dimensions
are set!

yes

yes

no

no

no

no

yes

yes

Figure 3.6. Flowchart explaining the path to setting dimensions automatically for vector
blocks which previously needed input. Chart is divided in two parts: the left shows the
setting of middle block dimensions, while the right is for the destination blocks. The

starting point of the flowchart is at the block on the top left.

source block, through the middle blocks, and onto the destination blocks. To
do this the algorithm simply goes to each middle block, sets the dimensions based on
the block preceding it, and then continues to do the same for all the destination blocks.
Also, it is very important that there is a source block preceding all the other ones, and
it must have static dimensions which were set internally.

3.3.3 Changes in Source Code
After understanding the core logistics of the dimension setting algorithm, a decision

must be made on where to apply the algorithm, and what other changes must be made.
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The main changes in the source code will be related to the code generation process,
and also to the block definitions of the vector-enabled blocks. Before I explain my
choice, it is worth noting that there are many places in the source where the algorithm
can be implemented. The only condition is that it is done before the variables of the
dimensions are initialized in the code generation process.

Most of the C-code writing that pysimCoder does is occurring in RCPgen.py, from
the supsisim toolbox (see subsection 2.2.2). Therefore this file in a way would be the
first place to put the algorithm, right before the variables of the dimensions and the
nodes are initialized in the C-code. Although this placement works and is more direct
in terms of implementation, other methods should be considered for the future. For
example it can also be written as a function, and imported externally for this feature, in
order to shorten the code in RCPgen.py. Another consideration would be to apply the
algorithm on the GUI level. This could be handy for seeing all the dimensions before
the code is even generated. Nevertheless, the first option has been chosen as a testing
ground for the more advanced versions to come.

In order for the algorithm to function, it needs to be able to interact with a
parameter used for the dimension ratio, which describes the I/O relationship of the
vector block. This parameter will be called dimRatio, and it will be placed in the
RCPblk class. The reason for this placement in the block representation hierarchy, is
the fact that the algorithm itself is placed in the RCPgen.py file, as mentioned above.
The dimRatio will be a list with two elements, representing the ratio. The first element
is the numerator, and the last is the denominator. In future implementations, the
algorithm must be able to use this parameter for all types of ratios that could occur.
However, for the current blocks which are contained in the Vectors library, there are
only 1:1 ratios used (as seen in last subsection). For the destination blocks, who
don’t have any outputs at all, I will use the 0:0 ratio, so that the algorithm can know
how to process it.

For the blocks to be able to adapt to these changes in RCPblk and RCPgen,
all of the block file dependencies must be changed. First the input parameter must
be removed from the .xblk definition, so that the user will not be able to input any
dimension manually. Then the dimRatio variable must be enabled in the .py file of
the block, and set to the corresponding ratio involved. Then the C function will also
be changed, so that all the functions of the vector blocks will be using the dimIn and
dimOut variables defined in the python_block structure. Previously the blocks were
using the intPar to pass the dimensions in the C-code level, however after the next
changes that will be mentioned below, all the blocks will be able to read their dimensions
from the newly enabled variables.

I will finish this subsection by mentioning the other changes that were made in
RCPgen.py. After the algorithm achieves its goal, the variables in the main C file which
will hold all the dimension values will then be initialized. The nodes variables will also
be initialized with the correct length of array (as seen in section 3.2), however this time
it will simply read the dimension from the node output and directly use that value. In
the first implementation of vectors, these values were buffered through a Python list.
Last but not least, the python_block structures given for each block in the diagram
will then take the values from the aforementioned dimension variables, and pass them
onto the structure’s internal dimension variables (dimIn/dimOut).
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3.3.4 Demonstration of Automated Dimension Setting
Since most of the changes in this section had no effect on the GUI, I will show

a very similar demonstration to the first one seen in the basic vector implementation
(from previous section). The difference here will be that there is no input dimensions
given. If the output on the terminal is correct mathematically, and there are no other
errors, then the algorithm has proven itself to work. This proof can be seen in Figure
3.7, however this is a best-case scenario situation. In more complex diagrams there
could be some issues.

Figure 3.7. View of diagram with mathematical blocks which previously needed dimensions
as input parameter, but is now solved automatically from the new algorithm. The result
seen on the terminal output is correct, therefore the algorithm has succeeded (since no

dimensions were given before).
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Chapter 4
Extending Support of GNU/Linux Targets in
pysimCoder

As mentioned in chapter 2, pysimCoder can generate code for many different real-
time operating systems. One of the main goals of this thesis is to add support for
different boards which support GNU/Linux OS. Therefore this chapter will cover all
the support added for the Xilinx Zynq based boards, and also the extension of support
for the RaspberryPi boards.

4.1 PysimCoder for Xilinx Zynq Based MZ_APO Kit
In the following section I will describe how the first implementation of a Zynq

target has been achieved. Most of the code is based on an existing Simulink project,
and then adapted for deployment in pysimCoder.

4.1.1 Hardware Introduction

The MZ_APO educational kit is a microcontroller unit based on the Zynq-7000
SoC family, designed by Ing. Petr Porazil at PiKRON sro (Fig. 4.1). The board offers
many peripherals and interfaces, which is why it is used as an educational tool for many
courses in CVUT such as Computer Architectures, Advanced Computer Architectures,
and Real-Time Systems Programming. It uses the ARM architecture, and supports
GNU/Linux as its operating system. The details of the board are presented in the
following list(full details found at [14]).

. Base Chip: Xilinx Zynq-7000 All Programmable SoC. Type: Z-7010, part XC7Z010. CPU: Dual ARM Cortex ™ -A9 MPCore ™ @ 866 MHz (NEON ™ Single/Double
Precision Floating Point). 2x L1 32 kB data + 32 kB instruction, L2 512 KB. FPGA: 28K Logic Cells ( 430K ASIC logic gates, 35 kbit). Computing units in FPGAs: 100 GMACs. FPGA memory: 240 KB. Memory on MicroZed board: 1GB. Operating system: GNU/Linux. GNU LIBC (libc6) 2.28.1 + deb8u7. Linux kernel 4.19.59-rt22-00005-gedf9096397ae. Distribution: Debian Jessie

To interact with the device, many common interfaces are supported such as USB,
Gigabit Ethernet, UART1 serial port and even a slot for microSD card storage. The
peripherals included on the board are various, as it can be seen in the list of the following
page (full list at [14]).
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Figure 4.1. The hardware design of the MZ_APO kit is presented. Some main peripherals
that can be noticed easily are the LCD screen, three rotary knobs, GPIO pins, LEDs, and
the interfaces on the edges of the board. It is commonly used as educational kit for some

courses in the Czech Technical University and was designed by Ing. Petr Porazil [14].

. Small 16-bit parallel bus connected LCD display (480× 320, RGB 565). 32 LEDs for direct visualization of 32-bit word (SPI connected). 2× RGB LED (SPI connected, 8-bit PWM). 3× incremental encoder rotary knob (RGB 888, SPI connected). 1× 40 pin FPGA IO connector, 36 FPGA 3.3 VDC signals, jumper enables +5 VDC
power, signals match Altera DE2 kits. 2× PMOD connectors extended by optional +5 VDC power, each provides 8 FPGA
signals shared with FPGA IO connector. 2× parallel camera interface, one 10-bit and one 8-bit. audio output by simple PWM modulator, on-board speaker and JACK available. audio input to Xilinx integrated ADC, on-board microphone and JACK

Many of the peripherals above can be implemented in pysimCoder as blocks,
however for the scope of this thesis I will be working with the rotary knob
incremental encoders, as well as the PMOD connectors. These two peripherals
are already implemented as Simulink blocks, as it will be presented in the next
subsection.

The three incremental encoders are physical rotary knobs which can change values
in an 8-bit field (from 0 to 255). These can be useful in pysimCoder for adding variability
to a signal using some human input. The implementation will be covered in the next
parts of this section. [14]

The PMOD connectors are also of high interest for this thesis, as they will be the
interface between the board and some DC motor. There are two of these slots, and
they will in fact be connected to some DC motor driver, which will handle the actual
output of the voltage on the motor. [14]
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4.1.2 Existing Simulink Project
Since pysimCoder and Simulink are very similar in the aspect of code generation,

it is sometimes possible to translate blocks from one program to another. Thankfully,
there is already a Simulink project which can generate real-time C code for control-
ling the peripherals of the MZ_APO educational kit. The source of these blocks can
be found in a public online repository [15], and has been developed while using the
ert_linux target for Simulink.

Ert_linux is a code generation target for Simulink which is specifically tailored
for preempt_rt Linux distributions. The project offers an alternative to the existing
Linux code generation targets offered by MathWorks which seem to have some short-
comings. The main advantage ert_linux has over the default targets is that it uses
clock_nanosleep instead of POSIX timers, which results in better real-time perfor-
mance in the preempt_rt Linux versions [16]. The source found in Github [17] consists
mainly of the main program template and the Makefile template, both of which are
analogous to the templates of pysimCoder used for generating real-time code meant to
run in a Linux OS environment.

The zynq-rt-control project (also found in Github [15]) contains Simulink blocks
and diagrams which are used for controlling the peripherals of the MZ_APO Zynq-
based board. In order to use these resources to generate code however, it must use
the ert_linux target for Simulink, since it was designed using this template. Before
translating these blocks into the pysimCoder environment, it is important that the
Simulink diagrams are tested and verified on actual hardware. In this case there are
only two peripheral blocks used: knob input (incremental encoders), and DC motor
(PMOD connectors). The rotary knobs are already embedded on the board, so that
can be tested out of the box. For the testing of the other block, a DC motor and driver
which connects to a PMOD connector is required. The proper connection of such a
device will be presented at the end of this section.

From the ert_linux repository, it will be helpful to extract which cross-compiler
must be used for generating code on the Zynq board. Then most of the C code needed
for the peripheral control will be contained in the zynq-rt-control repository. By
combining elements of these two projects, a similar implementation can be applied in
the pysimCoder application. Therefore the work done on these projects will be the base
of my work on adding support for the MZ_APO educational kit.

4.1.3 Integration with pysimCoder
In this subsection I will be explaining my approach to translating and integrating

the Simulink projects mentioned above, into the pysimCoder environment. This will
be the first implementation of a Zynq-based board, therefore a new template Makefile
must be created, as well as new blocks with all their supporting files.

To construct the template Makefile for a Linux target such as the MZ_APO kit, the
same cross-compiler specified in the ert_linux project should be used. The rest of the
structure of the Makefile will then be taken from the existing real-time Linux targets
supported in pysimCoder (found in source path /CodeGen/templates/rt.tmf). The
compiler specification will be switch from gcc to arm-linux-gnueabihf-gcc, which
ensures that the host will be able to compile binary code compatible with the Zynq
based board.

Next the existing Simulink blocks must be translated into pysimCoder blocks. For-
tunately, the C code functions which the two use are very similar. Although in Simulink
there are many more functions, some of them are not related to the target manipulation,
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but are rather concerned with the simulation properties. The most relevant functions
are presented below.

. mdlCheckParameters(). mdlInitializeConditions(). mdlStart(). mdlOutputs(). mdlUpdate(). mdlTerminate()

On pysimCoder there are only four functions used [7], as presented in the list below.
The first function (INIT) is related to the initialization of the block, and is analogous
both to mdlInitializeConditions() and mdlStart() as seen above. The periodic
task functions (OUT and STUPD) are then naturally related to mdlOutputs() and
mdlUpdate. Most of the core computation of the block will be implemented in these
two functions. At the end there is the termination function (END), very obviously
corresponding to mdlTerminate(), which will handle the proper closing of the block
functionality.

. initialization function (INIT). periodic task functions (OUT, STUPD). termination function (END)

Considering the relations shown above, the source code included in the
zynq-rt-control project can now be used for translation. The code from each
function in Simulink, will be copied to the corresponding function in pysimCoder.
Then the main changes which will occur will be related to the usage of parameters
in the code. In the python_block C structure, there are four types of variables for
these parameters (as can be seen in subsection 3.2.2), each of which are pointers to a
different data type sequence. Namely, these will be for integers, floating-point numbers,
strings, and even for hexadecimal values in the case of memory related operations.
Each parameter which was used in the Simulink code must somehow correspond to one
of these four data types, in order to be adapted to the pysimCoder functions. Then
the last part of the translation will simply be to copy all the file dependencies which
are specified at the header of the C file.

With the C functions all translated, a new folder will be created for the MZ_APO
support, located in the pysimCoder/CodeGen/ directory. Inheriting the structure from
the other targets, all the .c files will be contained in a devices folder, the .h files
in include, and the compiled libraries in lib. All the file dependencies for this im-
plementation can be found in the zynq-rt-control source [15], and don’t need any
modifications. A Makefile should also be created in the devices folder in order to
compile all the files in a library. The structure of this file will be based from the one
used for RT Linux, but it will specify a different compiler and archiver which are meant
for the Zynq board.

To complete the integration of this project in pysimCoder, the supporting .xblk
and .py files must also be created for the new blocks. The properties of these block
representations will be set based on similar blocks in pysimCoder, while the parameters
themselves will be almost identical to the parameters used in Simulink.

Two new blocks will be created using this approach, based on the blocks given
in the zynq-rt-control [15] project. One will read the input given from the rotary
knobs, and the other will control a DC motor. The results of this integration will be
showcased in the following subsection.

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 PysimCoder for Xilinx Zynq Based MZ_APO Kit

4.1.4 Demonstration of Results
To prove the functionality of both of the new blocks in one diagram, I have prepared

a demonstration in pysimCoder. There will be two motors used, and one of them will
be following the position of the other. The three rotary knobs embedded on the board
will then be used to tune the values of the PID controller. All the hardware necessary
for this demonstration is listed below, while the source code for running the example
can be found in an online repository [18].

. Host computer with pysimCoder installed. 1x MZ_APO educational kit. 2x DC motor for MZ_APO educational kit. 1x Ethernet Cable. 1x DC power supply (12-24)V. 2x Coaxial male-male cables

First the MZ_APO kit must be connected to two DC motors using the PMOD
slots. Then the three devices must be connected to the power supply in a daisy-chain
pattern, using the two coaxial cables. Last but not least, the Zynq board must be
connected to the same network as the host computer using an Ethernet cable. This
will enable communication between the board and the host. The hardware setup can
be seen in Figure 4.2.

Figure 4.2. The two motors are connected to the Zynq board, while the knobs are used to
tune the PID controller. Both the motors are in the same position, which is the desired

output of this diagram.

With the hardware all set up, the diagram of the example can be opened (see
Fig 4.3), and all the parameters can be edited as needed. There are three encoder
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blocks, and each one of them controls a different part of the PID controller. Although
there exists a PID block in pysimCoder, the parameters can not be variably controlled
by another block. Therefore each individual element of a PID controller has been
deconstructed, and enabled for control by the knobs. One DC motor block is fed by a
zero-voltage value, and it will serve the purpose of setting the IRC reference position
(steering wheel). Another DC motor is connected on the input by the PID controller,
and on the output as a negative feedback loop (to be subtracted with reference), which
produces a control error signal to be fed back to the PID. Naturally it will be seen as
the controlled motor. The TCP block at the right most part of the diagram will then
be used to propagate these signals to a TCP listener with graphing capabilities.

Figure 4.3. Three knob blocks control the PID values. One DC motor is fed by some
constant value, while the other is connected in a negative feedback loop and controlled by

a PID controller. The signals are sent through TCP for recording and graphing.

Finally the code can be generated, while the uploading and execution of the binary
on the Zynq board will be handled by the shell script file found in the online repository
[18]. Inside this file are two commands similar to the ones below, where the HOST and
TARGET environment variables are referenced. These variables can be set through a
terminal, or can be edited in the shell script itself. The commands can also be run
by the user in the same form as below, only replacing the IP addresses based on their
network.

scp DC_PID_follower root@192.168.0.20:/tmp
ssh -t root@192.168.0.20 HOST=192.168.0.100 /tmp/DC_PID_follower

After RTScope.py is started and configured for number of receiving channels, as
well as for desired communication protocol (TCP), the generated application can be
started. Using the TCP block in pysimCoder, some select signals will be transmitted
to the host computer, and visualized in a graph. The terminal commands for achieving
this are below.

./RTScope.py

./DC_PID_follower-run.sh
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4.2 pysimCoder for Raspberry Pi Target
Raspberry Pi support on pysimCoder in fact already exists, however the translation

of an existing Simulink project [19] can be used as a stepping stone for demonstrating
the usage of pysimCoder on an ESP32C3 board with NuttX RTOS (covered in the
next chapter). Due to this fact, the steps for implementing extended support for a
RaspberryPi target will be evidently shorter than the one for the MZ_APO kit.

4.2.1 Hardware Introduction
In the example from the rpi-rt-control project (available on Github [19]),

a RaspberryPi board can control a 3-phase permanent magnet synchronous motor
(PMSM) using code generated by SimulinkCoder. The hardware necessary to test this
example will be covered in the following text.

RaspberryPi is essentially a small computer or a microcontroller, which can interact
with hardware peripherals for various types of projects. It’s easy operation allows people
of all ages and backgrounds to use it, making it a great asset for educational purposes
[20]. The main technical specifications of the device used in this project can be found
in the list below, taken from the official RaspberryPi website [21], while the hardware
itself can be seen in Figure 4.4.

. A 900MHz quad-core ARM Cortex-A7 CPU. 1GB RAM. 100 Base Ethernet. 4 USB ports. 40 GPIO pins. Full HDMI port. Combined 3.5mm audio jack and composite video. Camera interface (CSI). Display interface (DSI). Micro SD card slot. VideoCore IV 3D graphics core

Figure 4.4. The physical appearance of the specific RaspberryPi used in the PMSM control
demonstration for Simulink/pysimCoder. Produced in 2014, it is a Model 2B (v1.1).
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Unfortunately a 3-phase PMSM cannot simply be plugged into this board and used

out of the box. For this reason, additional hardware will be required, such as a 3-phase
motor driver, and a FPGA expansion unit. Luckily, these devices have already been
produced by Petr Porazil from PiKRON for a different project for the Czech Technical
University, while the FPGA design was provided by a Bachelor’s thesis work done by
Martin Prudek (for the same university) [22]. Therefore this hardware can in fact
simply be connected and used, especially for the purpose of motor control (see Fig 4.5).

Figure 4.5. Hardware setup for motion control of 3-phase motor (PMSM) using Raspber-
ryPi board and Simulink. The motor is connected to the motor driver, the FPGA board is
fitted on top of the driver, and the RaspberryPi is connected to the expansion board with
a HAT cable module. Note that the board in this picture is one model older than the one

used in my implementation.

The motor driver board’s main task is to connect all of the I/O cables of the motor
to the expansion unit. This includes connections for the IRC, the Hall effect sensors,
and the 3-phase windings of the motor. It will also serve as the power source of the
motor and the boards attached to it, once it is connected to a DC power supply. Other
components include an ADC, half-bridges, and current measurement signals.

Even with the current amount of hardware, the microcontroller unit still cannot
be attached and used. This is due to the fact that the specific RaspberryPi board used
for this example does not have any IRC input, and only contains one PWM output,
making it unfit for motion control situations [16]. Fortunately, the FPGA expansion
unit was specifically designed to act as a middle-man between the motor driver, and
the pins of the RaspberryPi board.

Field programmable gate arrays (FPGAs) are semi-conductor devices which can
(re)program configurable logic blocks in order to achieve a certain logical system design.
The specific FPGA design for this example can be used in a few different modes. For
example, one mode is used for motion control of a DC motor, where it converts the
IRC signals, and switches PWM to be usable in both voltage directions. Then there
is the mode relevant to this project, which will enable the motion control of a 3-phase
motor. The fully described FPGA design can be found in Martin Prudek’s Bachelor
thesis [22].

To communicate with the FPGA expansion unit, the RaspberryPi board will use
its SPI pins. Then the source of the FPGA will be able to send and receive signals from
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the MCU to the motor driver successfully. In addition to this, the expansion unit also
holds a DC voltage converter which will be able to give a stable 5 Volts that the SoC
needs for operation, while the 3.3V pins of the SoC will route back to the expansion
kit for operation of the FPGA circuitry. More details about this hardware setup and
the PMSM Simulink example can be found online [23].

4.2.2 Existing Simulink Project and Adaptation to pysimCoder

As mentioned previously, I will use an existing project made for Simulink, in order
to make a new block for PMSM control in pysimCoder. The files of interest for the
following implementation can be found in the rpi-rt-control online repository [19].
Only the files related to the PMSM motion control will be used, which include the
block C file and its dependencies, as well as the Simulink diagram used for the control
system.

For the conversion of the Simulink block to a pysimCoder block, the same approach
from the previous section will be utilized. The blocks of code will be extracted from
each Simulink function and copied onto the corresponding pysimCoder function. Then
all the parameters must be adapted to the python_block structure, and the supporting
header files specified on the top of the C file. All the dependencies mentioned must also
be copied onto the devices and include folders of the RaspberryPi target, in order to
enable the proper compilation of the block’s C code.

In this particular Simulink block, there are also vector inputs and outputs. To avoid
possible issues, I have simply split all these signals into individual inputs and outputs,
rather than using the experimental vector feature in pysimCoder. This decision will
ensure that the cause of some error message will more likely be related to the new code
which was added.

A RaspberryPi target for cross-compilation is already supported in pysimCoder,
and in fact there is already a whole library of blocks to generate code for these boards.
Therefore, all the block related files (.xblk, .py, .c) which were adapted for the new
PMSM block can simply be added to their corresponding folders. The C file in particular
should also be compiled in its folder using the make command in a terminal, so that
the code generation tool will be able to use the new block. In other words, there is no
need to create any folders, or to construct any Makefile templates.

There is also a Simulink diagram which can be used to test the functionality of the
block on real hardware. The same principles of this diagram will be emulated in the
pysimCoder environment, as it has all the blocks necessary to do so. The implementa-
tion will be covered in the following subsection.

4.2.3 Demonstration of Results

To test whether the adaptation of the block has succeeded, a real-life example
should be tested. Therefore all the hardware must initially be set up (Fig. 4.5), and a
diagram in pysimCoder should be constructed to demonstrate the motion control of a
3-phase motor (see Fig. 4.6).

Fortunately, most of the blocks used in the Simulink diagram, can also be found
in the pysimCoder library. Nevertheless the diagram will be simplified and cut down so
that only the necessary functions will be used. Some parts of the diagram in Simulink
have a lot to do with graphing, however for the purpose of this demonstration only the
signals of higher interest will be visualized.

The new RaspberryPi block has 6 inputs, and 7 outputs. The first three inputs
will be the PWM signals being fed to the motor, while the last three inputs are enable
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Figure 4.6. PysimCoder diagram for control of 3-phase PMSM using RaspberryPi target.
Design has similarities to the original Simulink diagram, however it has been reduced only

to the necessary control signals and blocks.

signals (which allow usage of a certain PWM signal). Then on the first three outputs
are measurements of the current output, one for each phase. The next three are outputs
related to the IRC, and the last output will be for the HAL sensor measurements.

The first three inputs of the PMSM block will be supplied by an Inverse Clarke
math operation block, which is previously fed by an Inverse Park block. Into the
latter, there will be one constant signal (zero for this case), one PID controlled signal,
as well as a feedback signal from the processed HAL measurement. The integrated
pulse wave signal (equivalent to a triangle signal) seen on the far left, will be used as
the reference for this control system, and it will be subtracted with the IRC output
before being fed to the PID controller as a control error signal. At the very right there is
also a TCP block, which will transfer select signal data through a TCP/IP connection
with the host computer. This connection can then be utilized by the RTScope.py
program in order to graph all the incoming data points (same as done in last section).

With the diagram all set up, the C code can finally be generated. The binary will
simply be transferred and executed on the RaspberryPi, considering all the hardware
is connected properly. Although it is possible to interact with the board using the
serial terminal, it is recommended to use an SSH connection instead. Therefore the
RaspberryPi and the host must be connected to the same network (same as for the
MZ_APO demonstration). On the host, the RTScope.py program must be started to
enable the receiving and visualization of the incoming data. A preview of this example
can be seen in Fig 4.7.

The graph in Figure 4.7 is the result of the control system applied in the Raspber-
ryPi board for motion control of a PMSM. In red is the reference signal being fed to
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the system, while in green is the actual motor position (decoded from the FPGA). It is
clearly seen that the two signals are in sync when there is no disturbance to the system.
However, as seen from the control action signal in blue, once a disturbance is applied
the controller will try its best to compensate. The IRC output seems to be slightly
shifted to the right, however it still follows the same rate of change as given from the
input signal. Once the disturbance is removed, the IRC immediately synchronizes with
the input again. This is in fact the desired system response for this setup, therefore
it has been proved that the new PMSM block has been successfully integrated into
pysimCoder.

Figure 4.7. Graph showing select signals from the PMSM motion control example using
the RaspberryPi. The vertical axis will be dimensionless, since the signals graphed do not
have the same units or range of values for that matter. The horizontal axis represents time
in seconds. This graph is a screenshot taken from the RTScopy.py program, and is only

for testing purposes.
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Chapter 5
Testing and Extending NuttX RTOS Support in
pysimCoder

5.1 NuttX RTOS

5.1.1 Introduction

NuttX is a real-time embedded operating system (RTOS) designed for high scala-
bility, small footprint, and standards compliance. It supports architectures from 8-bit
to 64-bit, and is compliant with the POSIX and ANSI standards. Although NuttX
tends to be very small, it is still very rich with features. This is possible since the final
build of NuttX will only import the configured features, leaving all the unused ones
out. [24]

The main supported CPU architectures can be seen below, while the full list and
details can be found online in the NuttX documentation [25]. RISC-V will be of high
interest for the scope of this thesis, therefore its support on NuttX will be crucial to
the rest of this chapter.

. ARM. Intel. RISC-V. Atmel AVR. Freescale. Microchip. Xtensa LX6

As can be noticed from the NuttX documentation online, there is a very long list of
supported features. This raises the question of how it can be so small, and still have all
these features available. Although there are a lot of files in the NuttX source code, the
code contained inside is usually very short and compact (sometimes just a few lines).
This in combination with linking from static libraries can ensure that NuttX can
simply exclude the code which is not necessary for the current build, which ultimately
makes the OS much smaller. [24]

Another trick to keep NuttX tiny is by using configuration files. In this file
all the features can be enabled or disabled depending on the project requirements and
limitations. Additionally, the GNU toolchain supports weak symbols, which help to
keep the size of NuttX down. [24]

It is worth mentioning that NuttX OS is a completely free software, shared online
with a non-restrictive Apache license. The source code can be found on a Github
repository [26], and the true open-source nature of NuttX even allows for anyone to
add their own support on the project, either locally on their computer, or uploaded to
the online repository.
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5.1.2 Existing Support in pysimCoder
In pysimCoder, there is already existing support for NuttX targets. This means

that any microcontroller running NuttX, can also execute binary code generated from
the pysimCoder application. That is an amazing feature, since for most use cases
pysimCoder has hardware blocks which are specific to a certain microcontroller or
architecture. In the NuttX blocks, the code will be identical no matter what CPU
brand is used.

NuttX has many features involving the control of hardware peripherals, therefore
these functions can be used as pysimCoder blocks. In fact there is already some blocks
made for NuttX, such as an ADC, DAC, Digital Input/Output, Encoder, PWM, and a
DHTXX sensor. Some general pysimCoder blocks can also be used, including the TCP,
UDP, UART, and CAN communication protocols. [27]

Although the NuttX blocks will generally work for any NuttX supported micro-
controller, there is still some specification involved in the configuration file. As
mentioned earlier, the RTOS uses configuration files for setting up the system so that
it doesn’t include any redundant code in the final compilation. The configuration of
NuttX should be set up not only to specify the hardware being used, but also to set
certain features that will make the compilation compatible with pysimCoder [27].

NuttX will use this configuration which was set up by the user, in order to compile
only the necessary files. This compilation can then be exported to the pysimCoder
source, and then utilized by the NuttX blocks appropriately. So the various hardware
support of NuttX can in fact be propagated to pysimCoder, however this must be
configured by the user externally. The full configuration and steps can be found in the
online documentation for pysimCoder with NuttX [27].

5.2 ESP32C3 Board with NuttX RTOS
It would be of good interest to the pysimCoder project to somehow test a micro-

controller which uses the RISC-V architecture. NuttX already has support for a board
with this architecture, therefore the hardware can be easily implemented in pysim-
Coder. The following section will describe the simple testing and configuration of the
selected hardware, both in NuttX and pysimCoder.

5.2.1 Hardware Introduction
One of the RISC-V boards which is supported in NuttX is the ESP32C3 produced

by the Espressif company. Fortunately, the Espressif representation in Brno (Czech
Republic) was kind enough to provide my supervisor with some of these boards for the
purpose of student research.

The specific hardware provided is the ESP32-C3-DevKitM-1 (see Fig. 5.1), which is
an entry-level development board popular for its small size and vast IoT capabilities. It
is based on the ESP32-C3-MINI-1, a module which contains a whole system, including
the CPU, the memory, the WiFi and Bluetooth antenna, and many more supported
peripherals. The specifications of the hardware can be seen below, while the full details
can be found online. [28] [29]

. ESP32-C3FH4 or ESP32-C3FN4 embedded, 32-bit RISC-V single-core processor, up
to 160 MHz. 384 KB ROM. 400 KB SRAM (16 KB for cache)
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Figure 5.1. The different components of the ESP32C3-DevKitM-1 board are presented
with labels. On the left is the main chip, while on the right is the micro-USB connection.
The pin headers can be found on the top and bottom. Other components include RGB

LED, Reset and Boot buttons, 5V to 3.3V LDO and more.

. 8 KB SRAM in RTC. 4 MB embedded flash. Wi Fi - IEEE 802.11 b/g/n-compliant, 2412 2484 MHz. Bluetooth® - Bluetooth LE: Bluetooth 5, Bluetooth mesh, up to 2 Mbps. 40 MHz crystal oscillator. GPIO, SPI, UART, I2C, I2S. Remote control peripheral. LED PWM controller. General DMA controller. TWAI® controller (compatible with ISO 11898-1). USB Serial/JTAG controller. temperature sensor. SAR ADC

Considering the very small size of the board, its extensive support of various periph-
erals is impressive. This makes the board very useful in different types of applications,
such as for home automation, industrial automation, smart agriculture, consumer elec-
tronics, health care etc. I hope that by implementing this board in pysimCoder, it will
become apparent that my project will fall in the category of educational automation.
This is one field that was not yet mentioned as an example in the datasheet of the
device. [29]

5.2.2 Installing NuttX RTOS on ESP32C3

Before trying the ESP32C3 on pysimCoder, it will be necessary to load and test
the NuttX RTOS on the board. To do this, the project must first be cloned from the
existing Git repository [26] using the following command:

git clone https://github.com/sonydevworld/spresense-nuttx.git nuttx
git clone https://github.com/sonydevworld/spresense-nuttx-apps.git apps
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Considering there is already support for the ESP32C3 on NuttX, some examples
can be directly loaded. For each board on NuttX there is a corresponding directory
in the source, which is full of ready-made configuration files for that specific hardware.
These setup files can be loaded using a shell script, and can even be modified after
based on the desired features.

There are a few different ways to approach the configuration of NuttX. The best
way to initialize the setup is to run a ready made script who’s purpose is to load a
pre-made configuration file (defconfig). Once that is loaded, there are two graphical
applications which can help to edit the initially loaded configuration, in order to add
or remove features based on the project needs. The first graphical tool can be called by
make menuconfig command, which will bring up an interactive menu in the terminal.
Here the features are presented in a more user-friendly way. There is also another tool
called by make qconfig command, however this will actually load every single feature
possible in the NuttX compilation, therefore it is mostly used for searching through
the variables and setting them manually. Once finished editing, the configuration can
actually be saved into a defconfig file, which can then be loaded by the aforementioned
shell script as an initial setup.

Another possibility can be to find all the configuration variables which are needed,
and their properties, and write them into a defconfig file manually. Then theoretically
this file can in fact be loaded by the shell script, although it is not recommended by
NuttX to do so. A more clean way will always be the method discussed in the last
paragraph. Therefore, that method will be used to initially test NuttX on the RISC-V
board, as seen in the following steps given.

./tools/configure.sh esp32c3-devkit:nsh
make menuconfig
make

For the purpose of initial simplicity, the example which has been chosen to be pre-
loaded is a NuttX application called Nuttshell. This is a terminal console for NuttX
devices, which can be accessed usually over a serial connection (UART or USB). If this
tiny shell console can be opened in the host computer, then it proves that the NuttX
RTOS has been successfully loaded to the board. Before this is verified, the graphical
tools can be used to add more features to the compilation (as seen in second command
above). If the desired configuration is ready and saved, the make command can be
executed in order to perform the compilation of the whole NuttX RTOS in one binary
file. In the case that the configuration needs to be saved for future use, it can be saved
into a defconfig file using the following command.

make savedefconfig

It seems that there were no issues while loading the RTOS in the ESP32C3 board.
The command line terminal did in fact succeed to connect to a serial connection on the
host computer, and even some other examples were added, although not tested. Now
that the installation of NuttX has been verified and described, the actual hardware
peripherals will be tested in pysimCoder. The integration to pysimCoder will be covered
in the remaining parts of this chapter.

33



5. Testing and Extending NuttX RTOS Support in pysimCoder . . . . . . . . . . . . . . . . . . . . . .
5.2.3 Enabling and Testing pysimCoder on ESP32C3
As mentioned beforehand, there is already a full documentation on how to inte-

grate NuttX with pysimCoder [27]. Using that guide, the existing configuration set
up for ESP32C3 (in previous subsection), can be modified so that it can also deploy
pysimCoder code. In other words the two configurations will somehow be merged, so
that they are compatible with each other.

The current ESP32C3 configuration should be opened, preferably with qconfig
tool, and each CONFIG variable seen in the online documentation should be set manually.
Once the changes are saved, the source should be compiled, and ultimately exported
to pysimCoder (see commands below) in the /CodeGen/nuttx directory. When the
CodeGen/nuttx/devices folder is recompiled, pysimCoder will be ready to generate
code for the ESP32C3. Unfortunately there was an issue encountered regarding a miss-
ing header object file specification in the exported build. This was solved by specifying
the header file manually, although this is not a general solution. [27]
make qconfig
make
make export

With the new configuration, the ESP32C3 board will be able to execute some
common blocks of pysimCoder, mostly of those with mathematical functions. However,
to be able to test the NuttX blocks themselves, which are mostly hardware related,
some additional features must be enabled in the configuration which are specific to the
board. To find which variables should be set for this, the purpose of the block should
be reviewed. For example for the ADC block, the term ADC should be searched in the
qconfig tool. If the variable is found and it is specific to the board, then it should be
set to ensure the proper functioning of the block. This example should be followed for
all the NuttX blocks which are used in the system. Some of these variables can be seen
in the code below, taken from the defconfig file. Certain features below are not set
for an entire NuttX block, however they may be related to the proper functioning of a
block.
...
CONFIG_ESP32C3_ADC1=y
CONFIG_ESP32C3_ADC1_CHANNEL0=y
CONFIG_ESP32C3_GPIO_IRQ=y
CONFIG_ESP32C3_LEDC=y
CONFIG_ESP32C3_LEDC_TIM0=y
CONFIG_ESP32C3_SPI2=y
CONFIG_ESP32C3_SPI2_CLKPIN=2
CONFIG_ESP32C3_SPI2_MISOPIN=6
CONFIG_ESP32C3_TWAI0=y
CONFIG_ESP32C3_TWAI0_CLKOUT=y
CONFIG_ESP32C3_TWAI0_RXPIN=5
CONFIG_ESP32C3_TWAI0_TXPIN=4
CONFIG_ESP32C3_UART1=y
CONFIG_SPITOOL_DEFWORDS=16
CONFIG_SYSTEM_SPITOOL=y
...

Considering that all of the configuration has been finally set, and there are no
changes to be made in the NuttX environment anymore, a pysimCoder-generated ap-
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plication can be tested on the ESP32C2 board. During my testing of these blocks I
encountered barely any issues at all, since the NuttX blocks are general and the only
debugging can be done in the configuration file of the RTOS. By verification of these
fairly simple blocks, it is possible to move on to a larger demonstration using this RISC-
V board. The details of this demo will be covered in the next (and last) section of this
chapter.

5.3 Demonstration of Control using ESP32C3 with
NuttX and pysimCoder
One of the main goals of this thesis is to demonstrate the usage of pysimCoder

and NuttX by controlling some peripheral. In the previous chapter, an example of a
RaspberryPi controlling a 3-phase PMSM was demonstrated. In this section it will be
described how that board can be switched for an ESP32C3, and still manage to control
the 3-phase motor, which can be achieved using NuttX and pysimCoder together.

5.3.1 Hardware Requirements

The general idea of this demonstration is not too complicated. Motion control
of a 3-phase PMSM has already been proven to be possible using pysimCoder with
the RaspberryPi board. Fortunately, the ESP32C3 board already has SPI support,
therefore it would be able to communicate with the FPGA expansion unit. It also has
a clock generator with a frequency of 40 MHz, which can be fed into the FPGA board.
There is even 3.3V outputs from the ESP32C3, which will be able to power the FPGA
chip. All of this means that the RaspberryPi can in fact be switched with this RISC-V
board, at least in terms of hardware connections.

In the RaspberryPi version of this demonstration, the 40 external pins of the
board fit directly into the 40-pin connector of the FPGA board, even though many
pins were unused. This was designed in such a way, so that the implementation of
the hardware will look more clean. In the case of using an ESP32C3 board, instead
these pins will have to be routed using jumper cables. In addition to that, this version
will also use the CAN protocol in order to transmit signals from pysimCoder, therefore
some additional hardware will be used. The full list of required hardware for this
demonstration is listed below.

. ESP32C3-DevKitM-1. FPGA expansion unit. 3-Phase Motor Driver. 3-Phase Permanent Magnet Synchronous Motor. UART-to-USB cable. USB2CAN converter. WCMCU-230 - CAN transceiver with LVTTL Rx and Tx signals. Jumper cables. Power supply (12-24)VDC

When doing the same demonstration for the RaspberryPi, the microcontroller
could simply be placed on top of the FPGA expansion board, since both of them have 40-
pin connectors. In the case of the ESP32C3, there are only 30 pins and they are designed
differently from the FPGA connectors. As seen in Figure 5.2, the connection between
the two devices will be made using jumper cables instead. Only the necessary pins of the
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Figure 5.2. Hardware setup for 3-phase PMSM motion control using ESP32C3 with Nuttx
RTOS. Code for controlling the motor was generated by pysimCoder. Hardware connec-

tions are based from same demonstration for RaspberryPi.

expansion board will be connected to the corresponding pins on the microcontroller,
using the mapping (available online [30]) which is specific to the FPGA mode that
controls a 3-phase motor.

Even though the ESP32C3 contains all the pins necessary to connect to the FPGA,
some communication with the host computer still needs to be established. This will
help the user to be able to read, and hopefully visualize the data coming from the
device, as well as to access the NuttShell terminal which runs the main program. For
accessing the NuttShell, a serial connection (UART) must be established with the host.
This can be achieved easily using a UART-to-USB cable, which can connect to most
computers.

For receiving data from the microcontroller, the CAN protocol has been selected.
Another student, Jan Charvát, had been working on the ESP32C3 board for their thesis,
on the topic of NuttX RTOS CAN Bus Driver for Espressif ESP32C3 [31]. Therefore
we have taken this opportunity to test their work on my demonstration. The additional
hardware necessary for CAN communication on the ESP32C3, as well as their respec-
tive pin mappings, have been provided by Mr. Charvát. This includes a WCMCU-230
CAN module, a small peripheral which enables connection to a USB2CAN converter
(also included). These two devices will complete the CAN connection from the micro-
controller to the host computer. All the specific pin connections can be seen in Figure
5.3.

5.3.2 Adaptation of RaspberryPi Project
From the previous subsection it is clear that the interaction between the FPGA

expansion unit and the microcontroller will ultimately be the same, as long as the
FPGA is not set to a different mode or reprogrammed. Therefore, the C functions
which are related to this hardware should also remain the same, with minor changes
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Figure 5.3. Pin assignments for all connections necessary to do motion control of 3-phase
PMSM. In black is Ground connections, in red the voltage connections, in green the FPGA
connectors, in blue the WCMCU-230 connections, orange are for the CAN, and purple is

for the serial connection.

specific to the operating system running on the microcontroller unit. For the current
application in question, the code used in the RaspberryPi PMSM block (described in
section 4.2) can be used as a base for the new NuttX implementation.

In this case, there will be changes even to the dependencies of the block source code.
Considering this, a deeper understanding of the RaspberryPi code must be sought. In
chapter 4, it was mentioned that the C file which was converted from a Simulink block
to a pysimCoder block must specify the same header files. Additionally, it was also
necessary for those files to be copied onto the pysimCoder repository so that they can
be compiled together. Most of the header files are standard C libraries, however the
last three are specific to the RaspberryPi (as seen in the code fragment below).

...
#include "rpi_gpio.h"
#include "rpi_spimc.h"
#include "rpi_gpclk.h"
...

For the ESP32C3 implementation, the clock generator is set up by the NuttX
configuration, while the direct GPIO access and configuration are not needed at all.
Only the SPI functionality will be taken in consideration for this adaptation, and since
these are not common RaspberryPi libraries, the code must be analyzed thoroughly. In
the rpi_spimc.h file, there is a C structure spimc_state_t which holds all the values
related to the SPI interaction, including some related to the current, PWM, IRC, and
HAL sensors. Besides that there are also some constants defined at the top, and two C
functions are referenced at the bottom.
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The two C functions are spimc_init() and spimc_transfer, which are located in

the rpi_spimc.c file. Most of the time these functions are operating on the structure
elements from the .h file, and then sometimes an ioctl() request is made, which is
common for SPI communication. The header files should also be taken account of in
this file, since some of them are specific to Linux. In the main C functions of the block,
there are also a lot of operations on the spimc_state_t structure, as well as some calls
to the two functions described above.

After some short analysis of the RaspberryPi demonstration, it is clear that some
changes will need to be made for the following conversion to happen. First, all the
relevant files should be duplicated in the NuttX folder in pysimCoder, and their names
should be changed to reflect some connection to NuttX. For the most part, the main
C file of the block will be identical, with the only difference being in the header files
and some RaspberryPi specific commands. As previously discussed, the ESP32C3 clock
can be setup in the NuttX configuration and the GPIOs are not used at all, therefore
only the SPI related header file will remain in the code, and it should carry the new
name that was made for it. Then any of the functions used in this file which would be
referenced by the removed header files, should also be removed. The SPI header file
itself can be copied without any changes, since the C structure within will be used in
the same way.

The most notable changes in fact will be happening in the rpi_spimc.c file. Just
earlier it was mentioned that this file imports some native Linux header files. These files
are directly related to the SPI specifications of the host operating system, therefore they
can be switched for the NuttX SPI header files instead (can be found in the source).
Most importantly, the ioctl() function parameters must be edited to reflect the host
OS specifications for SPI transfers that use this function. These specifications can
be found in spi_transfer.h, and have been used to convert the ioctl() request to
be compatible with NuttX (seen in the code below). The first parameter remains
unchanged. The second parameter is an OS-specific constant used for SPI exchange
operation requests, while the last one is pointing to a C structure which contains all
the information regarding the SPI transfer taking place. Within the spi_sequence_s
structure is specified information like the SPI mode, number of bits, and SPI frequency,
as well as another structure inside it (spi_trans_s) which carries other info such as
the delay, the size of the transfer, and very importantly, the Tx and Rx buffers. All
of the structures and constants necessary have been found in the spi_transfer.h file,
and can be used as NuttX equivalents for this specific application. The result is the
following ioctl() request, with the necessary initialized structures.

struct spi_trans_s transs = {
.delay = (useconds_t)spimc_delay,
.nwords = SPIMC_TRANSFER_SIZE,
.txbuffer = (void*)tx,
.rxbuffer = (void*)rx };

struct spi_sequence_s tr = {
.dev = 23,
.mode = 0,
.nbits = spimc_bits,
.ntrans = 1,
.frequency = spimc_speed,
.trans = &transs };

ret = ioctl(spimcst->spi_fd, SPIIOC_TRANSFER, &tr);
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These are all the changes regarding the C files which are necessary for the new
NuttX block. The .xblk and .py components of the block can be copied directly from the
Raspberry Pi block, only changing the names of the files and the descriptive comments.
As a last step, the configuration of NuttX must also be slightly extended for the demands
of this block. Some features that must be added include SPI, TWAI, and CAN related
configuration variables. Then the same steps as given in the previous section should be
followed in order to save this new configuration to the pysimCoder source.

5.3.3 Demonstration of Simple PMSM Motion Control with
ESP32C3
It should be known by now that a new block can only be tested when placed

in a new diagram. Considering that the block is identical to the RaspberryPi block
(see section 4.2), then in theory the same diagrams can be used. During prior testing
on this new NuttX block on the ESP32C3, it has been found out that designs using
a PID controller cannot be used. Apparently the tiny RISC-V board cannot handle
the sampling frequencies necessary for proper PID control. For this reason a similar
control diagram without a PID block will be used as a base. This diagram is meant
to perform simple synchronous motor control without feedback, only by following the
rotating magnetic field. The TCP blocks must also be replaced with CAN blocks, since
the communication method to the host has changed.

As seen in Figure 5.4, the terminal on the right is receiving data using CAN proto-
col, and printing it in hexadecimal format. By a basic inspection of these hexadecimal
numbers, it can be noticed that the values are changing as expected from the signal
it’s connected to in pysimCoder. The 3-Phase motor on the other hand is also reacting
as expected from the design, therefore it can be said that the demonstration was suc-
cessful. Again, it must be noted that there were some issues when attempting to use a
PID controller, due to a sampling frequency limitation of the ESP32C3 board. This is
one issue to be explored in the future, in order to understand the full limitation of the
hardware.

Nevertheless, this demonstration has proved that the RaspberryPi can be replaced
in a 3-phase motor control system, even with a RISC-V board which is the size of
a human thumb. Of course, the performance will not be as good, considering that
there is quite a large difference in the technical specifications of the two. Furthermore,
NuttX RTOS was used in combination with pysimCoder, to demonstrate the abilities
of the ESP32C3 development board. This particular setup was very important for the
completion of this thesis.
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Figure 5.4. Screenshot demonstrating motion control of 3-Phase PMSM using ESP32C3
with NuttX RTOS. Terminal on right shows a CAN receiver printing in hexadecimal format,
which represents the actual location from IRC input, and sector value obtained from the
HAL sensors on the motor. The window in the middle is for pysimCoder terminal output.
Diagram is similar to RaspberryPi PMSM motion control demo, but uses CAN instead of

TCP for communication.
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Chapter 6
Conclusion

Overall, the main requirements of the thesis have been met, according to all the
work presented in the previous chapters. Nevertheless, there are a lot of areas which
can be improved on or explored in the future. This is partly due to the wide variety of
features that have been added to pysimCoder as a part of this work. These notes will
be described below based on the feature in question.

It was already known beforehand that adding vector signals to pysimCoder is an
experiment rather than a full implementation. Therefore, any initial work done for this
feature will for sure have room for optimization and improvements. At the current state
of the vector feature, pysimCoder is able to propagate vector signals properly. In the
first version of the attempt, all the dimensions are set manually, while in the second
version there is already an algorithm which can set the dimensions automatically. Both
of these versions represent the basic functionality of vector signals in pysimCoder.

First, it is worth mentioning that both versions of the vector support need more
testing, preferably on more complex diagrams. This could ensure the scalability of the
current code for any diagram complexity, not just for the smaller ones. The algorithm
which was applied in order to set the dimensions needs a lot of optimization and re-
structuring. Although it works for relatively simple diagrams, there will be many cases
where the algorithm will not produce the correct dimensions. This is due to the possibly
unsorted way that it propagates the dimension values in a more complex system. The
placement of the algorithm’s code is also questionable. Currently it is set in the code
generation function, however this can even be applied before code generation, in the
case that the dimension values are also given in the .xblk component of the block (cur-
rently not set). Another question is if this algorithm should be optimized, or whether it
should be exchanged for a completely new approach of setting dimensions. The future
possibilities for this initial vector feature are endless.

Two different microconrollers running some form of LinuxOS have been tested and
extended in pysimCoder, using existing Simulink projects as reference. For the Zynq
based board, a whole new library has been added containing not only the implemented
hardware blocks, but even the compilation specifications (Makefile) relevant to this
target. This is rather exciting, since the MZ_APO educational kit is used in a course
offered by the Czech Technical University, and now it can be demonstrated for the
first time using pysimCoder. Generally, the new motor and encoder blocks function
as expected, and don’t leave much room for changes. However it would be useful to
have more blocks for the MZ_APO kit, which is something to think of for the future
extension of this board. There was already pre-existing support for the RaspberryPi
boards, therefore only the new block was added with no further modifications. The
demonstration of controlling a 3-phase PMSM using RaspberryPi in pysimCoder has
already showed that the block is working fine and needs no major editing.

Last, but not least, the ESP32C3 board was able to control a peripheral using
a combination of NuttX RTOS and pysimCoder. The code necessary for controlling
a 3-phase motor with a NuttX device was taken from the previously implemented
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RaspberryPi demonstration, and then edited for compliance with the RTOS. When
using a feed-forward model of the system, the tiny RISC-V based board managed to
do some initial PMSM control. Unfortunately, the same block placed in a feedback
model with PID control does not function well at all, and even shows instability in the
motion of the motor. This is due to the hardware limitation of the ESP32C3 board,
which cannot achieve a high enough sampling frequency for proper motion control.
This is something that can be explored and researched in the future, in order to find
out whether the board can in fact reach those necessary frequencies for real feedback
control.
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Appendix A
Source Code

Here will be listed all the features added to the project, and a corresponding
reference to the online contribution to the project on Github (if applicable).

A.1 Vectors
The source code of the vector features are still in development, therefore they are

located in my fork of the original pysimCoder project. The two branches are listed:

. Vector support with static dimension setting 1. Automatic dimension-setting algorithm for vector support 2

A.2 Linux Targets
For the two boards which were running GNU/Linux, the main contributions to the

pysimCoder and pysimCoder-examples repositories are listed:

. New blocks (DC motor, encoder) and targets for Xilinx Zynq based MZ_APO edu-
cational kit 3. Demonstration of PID controlled motor follower for MZ_APO educational kit in
diagram 4. New block (PMSM) for motion control using RaspberryPi target 5. Demonstration of PMSM RaspberryPi block in diagram (using TCP protocol) 6

A.3 NuttX Targets
For the demonstration realized with the ESP32C3 board, a new block and diagram

has been created for NuttX targets:

. New block (PMSM) for 3-phase motion control using NuttX 7. Demonstration of PMSM NuttX block in a diagram (using CAN protocol) 8

1 https://github.com/beqirdio/pysimCoder/tree/vectors
2 https://github.com/beqirdio/pysimCoder/tree/vectors_v2_0
3 https://github.com/robertobucher/pysimCoder/pull/31
4 https://github.com/robertobucher/pysimCoder-examples/pull/2
5 https://github.com/robertobucher/pysimCoder/pull/49
6 https://github.com/robertobucher/pysimCoder-examples/tree/main/Linux-mzapo/DCmotor
7 https://github.com/robertobucher/pysimCoder/pull/49
8 https://github.com/beqirdio/pysimCoder-examples/tree/main/NuttX/3_phase_PMSM_control
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Appendix B
Glossary

ADC . Analog-to-Digital Converter
ANSI . American National Standards Institute
CAN . Controller Area Network
CPU . Central Processing Unit
CSI . Camera Serial Interface
CTU . Czech Technical University
DAC . Digital-to-Analog Converter
DC . Direct Current
DMA . Direct Memory Access
DSI . Display Serial Interface
FPGA . Field-Programmable Gate Array
GB . Gigabyte
GPIO . General Purpose Input/Output
GUI . Graphical User Interface
HDMI . High Definition Multimedia Interface
I/O . Input/Output
IP . Internet Protocol
IRC . Incremental Rotary encoder
ISO . International Organization for Standardization
I2C . Interface to Communicate
I2S . Inter IC Sound
JSON . JavaScript Object Notation
JTAG . Joint Test Action Group
KB . Kilobyte
LCD . Liquid Crystal Display
LDO . Low-Dropout (regulators)
LED . Light Emitting Diode
LVTTL . Low Voltage Transistor Transistor Logic
MB . Megabyte
MCU . Micro Controller Unit
OS . Operating System
PC . Personal Computer
PID . Proportional-Integral-Derivative (controller)
PMOD . Peripheral Module
PMSM . Permanent Magnet Synchronous Motor
POSIX . Portable Operating System Interface for Unix
PWM . Pulse Width Modulation
RAM . Random-Access Memory
RGB . Red-Green-Blue
ROM . Read-Only Memory
RT . Real Time
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RTOS . Real-Time Operating System
SAR . Successive approximation
SD . Secure Digital
SoC . System-On-Chip
SPI . Service Provider Interface
SRAM . Static Random Access Memory
SSH . Secure Shell
TCP . Transport Control Protocol
TWAI . Two-Wire Automotive Interface
UART . Universal Asynchronous Receiver-Transmitter
UDP . User Datagram Protocol
USB . Universal Serial Bus
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