
Instructions

Virtual prototyping is currently a popular method used for the inspection and review of 3D CAD

engineering models. In the case the model being reviewed is not feasible and needs to be edited, a

considerable amount of manual work has to be repeated before the model could be visualized again.

The aim of this Bachelor thesis is to design such a workflow that would eliminate the need to repeat

the work manually and reduce the production time.

1. Analyse available solutions.

2. Describe the current industry workflow used for the creation of virtual prototypes and propose an

improved solution, such that it would require less or no repetition of manual editing of the reviewed

model.

3. Implement the software needed for the designed workflow.

4. Test the software and create documentation.

5. Evaluate the results and describe possible extensions.

Electronically approved by Ing. Radek Richtr, Ph.D. on 1 November 2021 in Prague.

Assignment of bachelor’s thesis

Title: Non-destructive workflow for repeatable creation of virtual prototypes from

CAD data

Student: Gabriela Havranová

Supervisor: Ing. Jan Buriánek

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Computer Graphics

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Insert here your thesis’ task.

Bachelor’s thesis

Non-destructive workflow for repeatable
creation of virtual prototypes from CAD
data

Gabriela Havranová

Department of software engineering
Supervisor: Ing. Jan Buriánek

May 11, 2022

Acknowledgements

First of all, I would like to thank my supervisor Ing. Jan Buriánek for his
guidance and insightful suggestions to this thesis. Another huge thank you
belongs to my family and friends for their sincere support and encouragement
during my whole studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 11, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Gabriela Havranová. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Havranová, Gabriela. Non-destructive workflow for repeatable creation of vir-
tual prototypes from CAD data. Bachelor’s thesis. Czech Technical University
in Prague, Faculty of Information Technology, 2022.

Abstrakt

Virtuálna prototypizácia je pred vytvoreńım fyzického modelu jednou z mož-
ných alternat́ıv na otestovanie návrhu prototypu. Ak sa počas použ́ıvatel’ského
testovania ukáže, že je návrh nevhodný, všetky vykonané zmeny na virtuálnom
prototype sa zahodia a nová verzia prototypu sa vytvára zo zdrojov odznova.
Táto práca predstavuje návrh a softvérovú implementáciu procesu na opa-
kovanú tvorbu virtuálneho prototypu, ktorý opätovne použ́ıva zmeny z pred-
chádzajúcich verzíı prototypu a aplikuje ich na novú verziu. Implementovaný
nástroj automaticky detekuje zodpovedajúce časti verzíı prototypov a aktua-
lizuje geometriu zdrojovej verzie modelu, č́ım šetŕı čas potrebný na opakovanú
výrobu prototypu.

Kl’́učové slová virtuálna prototypizácia, virtuálne CAD modely, proces vi-
zualizácie, virtuálny dizajn, digitálne dvojča

Abstract

Virtual prototyping is one of the feasible alternatives for testing a proto-
type design before committing to creating the physical model. When the user
testing indicates the prototype design was improper, all the post-processing
changes made on the virtual prototype are discarded, and the improved pro-
totype version is created from the scratch. This thesis proposes a design and
software implementation for a non-destructive workflow for repeatable vir-
tual prototype creation, that reuses changes from previous prototype versions
and applies them to a new version. Implemented tool automatically detects
corresponding sub-parts of the prototype versions and updates the geometry
of the source model version, therefore saving required time for the repeated
prototype production.

Keywords virtual prototyping, virtual CAD models, visualizing workflow,
virtual design, digital twin

Contents

Introduction 1

Goals and subtasks 3
Subtasks . 3

1 Analysis 5
1.1 3D data structures . 5

1.1.1 Precise - CAD formats 5
1.1.2 Approximated formats 6

1.2 From mathematical model to graphics card 6
1.2.1 Tessellation . 6
1.2.2 Mesh healing . 7
1.2.3 Mesh decimation . 8
1.2.4 Mesh post-processing . 8

1.3 Data comparison . 9
1.3.1 Briefly on hash functions 10
1.3.2 Compare-by-hash . 10

1.4 Virtual reality . 10
1.4.1 Extended Reality (XR) 11

1.5 Virtual prototyping (VP) . 11
1.5.1 Virtual prototyping workflow 12

1.6 Available solutions . 12
1.6.1 3D modelling software 12

1.6.1.1 Autodesk Maya 13
1.6.1.2 Blender . 14
1.6.1.3 3ds Max . 14

1.6.2 Available solutions for virtualizing CAD data 14
1.6.2.1 Unreal Datasmith 14
1.6.2.2 Pixyz Studio 15

xi

1.6.2.3 Okino polytrans 15
1.6.3 Conclusion of available solutions 15

2 Design of the solution 17
2.1 Repetition of post-processing in detail 17
2.2 Proposed change in workflow 17
2.3 Tool for reapplying changes . 19
2.4 Comparison of the sub-parts . 20
2.5 Chosen technologies . 21
2.6 GUI design . 21
2.7 Tool architecture . 23

3 Implementation 25
3.1 Registering the tool . 25
3.2 Setting up GUI . 26
3.3 Load source model . 27
3.4 Subpart comparison . 29
3.5 Merge the versions . 31
3.6 User documentation . 32

3.6.1 How to install the tool 32
3.6.2 Usage . 32

4 Testing 35
4.1 First iteration . 36
4.2 Second iteration . 37
4.3 Third iteration . 38
4.4 Summary of the testing . 39

Conclusion 41
Possible extensions . 41

Bibliography 43

A Acronyms 47

B Contents of enclosed CD 49

xii

List of Figures

1.1 Model of a car in CAD format vs. its tessellated version 7
1.2 Dense tessellated mesh of large model 7
1.3 Faulty mesh after CAD model tessellation 8
1.4 Difference between correctly tessellated models vs. model with

non-continuous and overlapping mesh 9
1.5 Distinction of virtual technologies 11
1.6 Workflow for virtual prototype creation 12
1.7 Usecase diagram for virtual prototype creation 13

2.1 Activity diagram for currently used workflow 18
2.2 Activity diagram for the proposed workflow 19
2.3 GUI buttons mockup . 22

3.1 Registering the tool . 25
3.2 Final version of the GUI . 26
3.3 Setting up the GUI . 27
3.4 Definition of LoadModelOperator class 28
3.5 Load method of Model class . 28
3.6 ComputeHash method implemented on Subpart class 29
3.7 Snippet of matchCorrespondingSubparts function 31
3.8 Updating source mesh geometry with new one 32

4.1 A simple background scene created in Blender 35
4.2 Initial version of the model in Blender scene. 36
4.3 Linking of the sub-parts . 37
4.4 Difference between versions . 38
4.5 3rd version of the virtual prototype 39

xiii

Introduction

In the process of product development, before committing to making a physical
prototype, the method of virtual prototyping is often used to validate the
design. For engineering purposes, the mathematical description of 3D models
is considered the industry standard for its precision, and it is mostly used
in modern CAD software modelers. However, CAD formats, in general, are
computationally difficult to manipulate with outside CAD-aimed software,
and computer graphic cards are optimized for rendering triangular meshes
instead of parametric equations, therefore the model needs to be tessellated
before it can be virtually visualized.

Tessellation is a process of approximation of mathematically described
model surfaces with triangular mesh. Unless there are no curved surfaces in
the model, the tessellated mesh can never be as precise as the original model.
The precision of tessellation is defined by the chosen level of detail. The higher
the level of detail, the more precise is the mesh approximation. On the other
hand, if the chosen level of detail is too high, the number of vertices used for
model description can drastically grow, which leads to performance reduction.

The resulting tessellation can considerably vary in visual quality depending
on the tool used, the quality of the original CAD model, and other factors.
These imperfections of the mesh are typically manually edited in 3D editors,
e.g., Blender. Mesh optimizations, texture additions, and other minor changes
are being done in this process too, to enhance the visual output of the resulting
model. This process would be later referred to as mesh post-processing. After
the post-processing, the model is ready to be used as a virtual prototype in
any preferred software.

The usual purpose of virtual prototyping is to review the model and edit
its possible shortcomings. In the case some adjusting of the model is needed,
it needs to be done in the original CAD model, as it is industry standard
for manufacturing and construction. After re-adjusting the CAD model, the
prototype needs to be reviewed again, firstly tessellated mesh is becoming
useless and re-tessellation is necessary. This leads to the main goal of this

1

Introduction

bachelor’s thesis. To be able to visualize the newly tessellated mesh, the post-
processing edits, which were already done once, need to be repeated. The main
aim of this thesis is to eliminate the need to reproduce the same edits whenever
possible. Further manual editing would be needed on the adjusted parts of
the CAD model only, which implies a reduction of the total time needed for
prototype creation. Reducing the production time of the prototype creation
naturally lowers the total cost of the project which is one of the biggest benefits
of this thesis.

The next chapter Analysis starts with the requisite theoretical background
for the understanding scope of this thesis. Then I will continue with a descrip-
tion of the currently used workflow for virtual prototyping creation. I was not
able to find any other thesis or existing software solving this issue, however,
there are some tools already resolving similar problems, which I will mention
at the end of the chapter. In the second chapter, I will describe my proposal
for an improved workflow together with the design of the software needed for
this workflow. The third and fourth chapters will be dedicated to the imple-
mentation and testing of the software. At the end of the thesis, I am going
to sum up the results of this thesis and add the list of a bibliography I have
used.

At the end of this introduction, I would like to emphasize that there already
are automatic tools allowing to visualize 3D CAD models directly in virtual
reality, without any further effort needed. The difference is that this thesis is
aiming at more complex sceneries, where we expect the final product to be
visually appealing, so the post-processing part of the workflow is a must.

2

Goals and subtasks

The main goal of this Bachelor thesis is to improve the current virtual pro-
totyping workflow so that the repeated visualizing of the given model will
take less time (on average). This includes the design and implementation of
software needed for this workflow to work.

Subtasks

Analysis of available solutions on the market
Analyse relevant solutions already available on the market and describe their
advantages and drawbacks.

Description of current industry workflow
Explain what exactly virtual prototyping is, and describe the current industry
workflow used for the creation of virtual prototypes together with its draw-
backs.

Proposal for an improved workflow
Propose an improvement in a workflow so that the repetitive model post-
processing will not be needed. Choose the technologies for the implementation
of the given software and explain the choice.

Implementation and testing
Implement the software needed and test it on a sample model. Create brief
user documentation on how to install and use the tool.

3

Chapter 1
Analysis

In this chapter, I will explain the requisite theoretical background for un-
derstanding the subject of this thesis. I will address the common 3D data
structures, how they are implemented and what impact it has on their practi-
cal usage. Then, I will describe the current industry workflow used to visualize
3D CAD data. The end of this chapter will be dedicated to a list of available
solutions on the market together with my conclusion on their usage.

1.1 3D data structures

To visualize any 3D models, we have to store them first. It may sound like
a matter of course, but there are a few different approaches for 3D data rep-
resentation. I have logically divided available formats into two main groups:
Precise formats and Approximated formats.

1.1.1 Precise - CAD formats

This group of 3D file formats is mainly used in technical fields and industries
such as automobile, engineering, building, and architecture [1]. They use
mathematical equations for the model representation which implies their main
advantage, accuracy. I will refer to this group of precise formats as CAD
formats because of their broad usage in computer-aided design software. This
group includes:

• Constructive solid geometry (CSG)
This type of representation uses boolean operators and transformations
to create complex models from a set of simple primitives. An object is
stored as a tree with operators at the internal nodes and simple primi-
tives at the leaves. [2]

• Boundary representation (BREP)
Object in BREP is described by its surface boundaries: vertices, edges,

5

1. Analysis

and faces. [2] These elements define the boundary between interior and
exterior points. Boundary representation of the model can be either an
approximation or precise description, which depends on whether chosen
format supports precise curved surfaces (bicubic surfaces, NURBS sur-
faces...) or the curved surfaces of the model have to be approximated
with polygon mesh.

1.1.2 Approximated formats

In this group, I consider all 3D formats which do not support precise curved
surface representation. These surfaces have to be described in another way,
e.g. they can be approximated with polygon mesh. The 3D object itself can
be either stored as a set of vertices and faces which create a continuous mesh
describing the whole model or as a BREP. Approximation of curved surfaces
with polygon mesh naturally creates deviations from the original model. With
advanced texturing, this is usually not a problem for artistic purposes.

1.2 From mathematical model to graphics card

Modern graphic cards are designed and optimized for rendering a polygonal
mesh, rather than B-Rep models. Visualizing solid models currently relies
on the tessellation of the models before passing them onto the graphics card
(GPU). [3] Direct rendering on the GPU, without a tessellation pre-processing,
is currently not widely implemented. Despite its pixel-level quality, smaller
memory requirements, and less pre-processing, one of the main problems with
existing solutions for rendering solid models directly, is the appearance of
crack or gap artifacts between faces due to the approximations of the trimming
curves. This prevents the usage of direct GPU rendering in CAD systems. [4]

1.2.1 Tessellation

Tessellation, in computer graphics generally, refers to a process that divides
a polygon primitive into smaller structures suitable for rendering. [5] The
tessellation of Computer-Aided Design models aims to generate a discrete
mesh that approximates the model with simple discrete elements. For a surface
mesh are often used triangles or quads. [6] [7] In this thesis we will focus
especially on triangular surface mesh generation because of its simplicity and
flexibility.

Although numerous meshing methods are available, automated generation
of high-quality meshes remains a challenge. [6] Even with modern commer-
cial software (e.g., Ansys and Hypermesh) and open-source packages (e.g.,
Netgen/NGSolve), generating correct and satisfying meshes is still a time-
consuming process that involves an excessive amount of human effort. As the

6

1.2. From mathematical model to graphics card

Figure 1.1: CAD model of a car [8] (left) and its triangular tessellation created
by CAD Assistant [9] (right)

complexity of the constructed CAD products increases, existing methods can-
not always achieve accurate output due to incorrect, degenerate, or ambiguous
geometric designs in the CAD system. Even post-processing with mesh repair
algorithms experiences difficulties in dealing with these problems. Moreover,
some CAD models can also contain many small-scale features within large
ones. Preserving such small features in detail creates highly dense mesh lo-
cally, which can lead to performance issues. [7]

Figure 1.2: Common issues with mesh generated by tessallating CAD models
- too dense mesh can lead to performance problems in large scenes. Original
3D model from this [10] source, tessellated with CAD Assistant. [9]

1.2.2 Mesh healing

Unfortunately, not all source CAD models are made keeping conventions in
mind. Slivers, cross-overs, surfaces with multiple unnecessary patches, super-

7

1. Analysis

Figure 1.3: Common issues with mesh generated by tessallating CAD models
- even after shape healing algorithms the mesh can contain gaps. [11]

small model entities, and many other issues that are encountered are often
being found in the sourcing CAD model, making the meshing process compli-
cated, and often the results are not as perfect as they are expected to be. [3]
Resulting tessellated mesh can be very uneven, overlapping or even gaps and
tears occur. [11]

1.2.3 Mesh decimation

Tessellation of source CAD model with lots of details and curves can produce
too dense mesh for visualizing. If the response rate of the virtual scene is
low, it is feasible to reduce the complexity of the tessellated model by making
the mesh more sparse. Instead of manual time-consuming editing, a mesh
decimating algorithm can be used to automatically reduce polygon count in
the model. The fundamental goal of the decimation algorithm is to reduce the
total number of triangles in a triangle mesh while preserving as much accuracy
to the original model as possible. [12] [13]

1.2.4 Mesh post-processing

Before the tessellated model is ready to be visualized in virtual reality, it has
to be processed first to receive visually appealing results. As described in
section tessellation, the process can be fault-prone and result in a defective
or unevenly dense mesh. In this part of the process, the graphical engineer
fixes and optimizes the mesh to have the least amount of triangles possible
(to retain a high frame rate) while maintaining satisfactory visual quality.

Depending on the audience of the virtual review, the model can be added
to a more complex scene (e.g. shopping mall can be inserted into the scope of
a city district, even if it is not part of the construction). Advanced texturing

8

1.3. Data comparison

Figure 1.4: Tessellated model with cracked mesh, blue lines represent discon-
nected edges (upper left). Visible cracks in the shaded version of the same
model (upper right). Same tessellated model after applying mesh-healing al-
gorithm (lower left). Shaded repaired model - without visual artifacts (lower
right). [3]

and minor details can be added as well. This process can be heavily time-
consuming, depending on the exact model and conditions of production.

1.3 Data comparison

While comparing files byte-by-byte can be a working strategy for smaller data
sets, comparing large amounts of data and searching for identical sub-parts
would be ineffective and time-consuming. In the context of this work, I will
describe the strategy to compare tessellated models. Considering the model
as a set of geometries composed of vertices in 3D space, we want to find the
identical subparts in an effective and fast way. We consider two models (or
parts of the model) as identical when all the vertices, normals, and triangles
are the same.

9

1. Analysis

1.3.1 Briefly on hash functions

A cryptographic hash function is a mathematical algorithm that maps data
of arbitrary size to a bit array of a fixed size - hash value. It is a one-way
function, that is, a function for which it is practically impossible to reverse
the computation and obtain the input value from the given output. In the
ideal case, the only way to find a message that produces a given hash is to
attempt a brute-force search of possible inputs to see if they produce a match.
Cryptographic hash functions are a basic tool of modern cryptography. A hash
function must be deterministic, meaning that the same message always results
in the same hash. As a reference for this summary about hash functions was
used this [14] article.

1.3.2 Compare-by-hash

Apart from cryptography use, hash functions are helpful in a technique called
Compare-by-hash. It is a well-known technique for testing two files for equal-
ity. The technique utilizes a cryptographic hash function, such as SHA1 or
MD5, to compare the files. [15] Rather than comparing the files byte-by-byte,
we compare their hashes instead. If the hashes differ, then the files are cer-
tainly different; if the hashes agree, then the files are almost certainly the
same (apart from the unlikely event of collision).

1.4 Virtual reality

Virtual reality (VR) simulates the virtual environment for the user to ex-
perience a computer-generated world as if it was real, producing a sense of
presence, usually by using a VR headset. [16]

Augumented reality (AR) is an experience where designers enhance
parts of the physical world with computer-generated input. Designers create
inputs—ranging from sound to video, to graphics or GPS overlays in digi-
tal content which respond in real-time to changes in the user’s environment,
typically movement. [17] Digital elements in AR typically have limited inter-
activity with the real-world environment.

Mixed reality (MR) refers to the blending of the virtual and physical
world. It is similar to AR, which simply overlays digital content onto a camera
feed of the physical space, but includes an additional understanding of the
three-dimensional environment and objects in it. [18] This enables virtual
objects to appear to be both in front of and behind physical objects in the
space, or appear to interact with them.

10

1.5. Virtual prototyping (VP)

1.4.1 Extended Reality (XR)

XR is an emerging umbrella term for all the currently used immersive tech-
nologies — augmented reality, virtual reality, and mixed reality and those
that will be created as well. All immersive technologies extend the reality we
experience by either blending the virtual and real worlds or by creating a fully
artificial experience. [19]

In this thesis, I will mostly use the term virtual reality. However, it includes
every possible way of prototype virtualization.

Figure 1.5: Distinction of virtual technologies [18]

1.5 Virtual prototyping (VP)

Considering common principles of human-centered design, the end-user and
other stakeholders should be involved in the engineering and design process.
[20] Virtual prototyping is an eligible way to get professionals and decision-
makers involved by allowing them to interact within the virtual environment
rather than simply evaluate the design and product features on a 2D desktop
monitor.

VP is the testing and evaluation of specific characteristics of a product
or a manufacturing process with the use of a digital model called a virtual
prototype in virtual reality. Virtual prototyping aims to detection of faults
that can be detected in a compressed time frame before great expenditures
are committed. This significantly reduces the number of physical iterations

11

1. Analysis

and thereby the associated manufacturing overheads that lead to faster and
cost-effective product development. [21]

In the context of this thesis, I have focused on virtual prototyping and
the validation of product design. This includes various analyzes regarding
design validation, such as functional testing, form-and-fit testing, or ergonomic
testing, which are performed on a model in the virtual environment.

1.5.1 Virtual prototyping workflow

Even though the process of virtual prototype production is not universal,
analysis of a few existing workflows [20] [21] [22], all of them have a similar
structure as depicted in a Figure 1.6.

Figure 1.6: Workflow for virtual prototype creation [20]

The process starts with an engineering model prototype (CAD model),
where all requirements and ideas are processed by an engineer or architect.
Then the model is passed to the graphical designer who adds materials, light-
ing, and other effects to the model to achieve visually appealing results. Fi-
nally, the model is then passed to the virtual environment of choice and user
tests are being performed. In the case the design was not feasible, the source
model is reprocessed and the workflow starts over again. The interaction of
different actors is depicted in a Figure 1.7

1.6 Available solutions

This section is dedicated to a summary of existing solutions available on the
market and all software that I found relevant to this thesis. I will use this
section in the next chapter Design of the solution as a reference.

1.6.1 3D modelling software

3D modelling software is a program used for the creation of a digital repre-
sentation of any three-dimensional object. Generally, both engineering and
artistic-aimed programs are considered 3D modellers. As later shown, the
improved workflow will be independent of the source CAD modeller used.

12

1.6. Available solutions

Figure 1.7: Usecase diagram for virtual prototype creation

Therefore I will refrain from listing the CAD modellers and I will focus on the
ones oriented toward artistic production.

1.6.1.1 Autodesk Maya

Autodesk Maya is a professional application for creating 3D graphics in dig-
ital media. It is one of the most popular programs for creating animated
films, 3D film effects, video advertising, the television industry, or creating
computer games. [23] Maya integrates 3D modeling, animation, visual effects,
and rendering. Creative tools for character creation are included, as well.

Maya is based on an open architecture. Thus, all operations can be scripted
using its application programming interface (API) or directly in one of the
built-in scripting languages, Maya Embedded Language (MEL) or Python.
On the other hand, Maya is not free and the license can be costly for smaller
businesses or individuals.

13

1. Analysis

1.6.1.2 Blender

Blender is the free and open-source 3D creation suite. It supports the entirety
of the 3D pipeline—modeling, rigging, animation, simulation, rendering, and
even video editing and game creation. Blender offers API for Python scripting
to customize the application and write specialized tools as well. [24] Blender is
a community-driven project under the GNU General Public License, making
it free to download and use.

1.6.1.3 3ds Max

3ds Max is another solution from Autodesk, used for architectural and design
visualization and animation. It offers interactive environments, fast rendering,
and virtual reality (VR) tools. An extensive library of additional plug-in
applications from other developers is available, as well. 3ds Max has its own
MAXScript language, which is specifically designed to complement 3ds Max
and is used for extending the software’s functionality. [25]

1.6.2 Available solutions for virtualizing CAD data

There are multiple similar solutions available, however, after closer examina-
tion and testing I have found that none of them is actually offering satisfactory
results and in every case, at least some additional work in other 3D editor is
needed, which again leads to work repetition and unnecessary time expenses.
Let’s focus on the three following, which I have found the most useful.

1.6.2.1 Unreal Datasmith

“Datasmith is a collection of tools and plugins that bring entire preconstructed
scenes and complex assets created in a variety of industry-standard design
applications into Unreal Engine” [26]

Unreal’s tactic is based on omitting the middleware software and offers the
option to load CAD models directly into their visualization software where
tessellation and automatic mesh optimization are taking place. Results are
seemingly promising. However, Unreal is still not a full-featured 3D geometry
editor, rather than visualizing engine. If further post-processing is not needed,
Datasmith offers a reasonably good solution. In the other case, it still does not
resolve the problem of post-processing repetition. As of spring 2022, Unreal’s
“Creators license” is free of charge, and you can use it for personal and free
projects. If you want to sell your resulting models, you would have to use
another licensing plan and pay royalties to Unreal, which may be another
downside for some users.

14

1.6. Available solutions

1.6.2.2 Pixyz Studio

“Pixyz Studio is a unique 3D data preparation tool providing the best-in-class
Tessellator, enabling the transformation of CAD data from industry-leading
solutions (Catia, NX, SolidWorks. . .) into the lightweight, optimized meshes.”
[27]

Pixyz Studio is used for the import and tessellation of 3D CAD models
and optimization of the generated mesh. The resulting model is almost ready
to be used in visualizing software. Almost, because again, it does not solve the
problem, when source geometry changes – every change on the resulting model
has to be repeated again. Studio claims that you can semi-automate these
processes with python scripting, however, the user would have to customize
the script for every particular model which leads to additional work and time
expenses. Pixyz studio seems to be easy to use, has a simple interface, creates
high-quality tessellation, and provides useful semi-automatic mesh decimation
tools. A license can be costly (around 1800 € per year, tax excluded).

1.6.2.3 Okino polytrans

Again, mainly tessellation software does not offer the option to further edit
the details of the model & advanced texturing. Cheaper than piXYZ studio
(around 500 $ per license plus costs of additional packages).

1.6.3 Conclusion of available solutions

After considering all the options above, none of them offers the option to
further process the generated mesh from the source CAD model manually.
The algorithms used are still not advanced enough to rely on automatic mesh
generation exclusively. Furthermore, even in the case, the generated mesh
would be perfect, in most cases, the virtual prototype is inserted into a more
complex scene to outline the surroundings and this function is not offered by
any of the mentioned tools. Thus, I consider creating a new tool, enabling the
user to post-process the prototype, as reasonable and supposedly beneficial.

15

Chapter 2
Design of the solution

In this chapter, I will describe my approach to solving the problem of repetitive
model post-processing and propose an improved workflow for repeated virtual
prototype creation.

2.1 Repetition of post-processing in detail

As a conclusion of the currently used virtual prototyping workflow, described
in Chapter 1, I have created an activity diagram (Figure 2.1) of virtual pro-
totype creation, aimed especially at visualizing CAD data. Red lines which
form a loop emphasize the repetitive process of prototype creation, if the user
testing or model inspection indicated that the prototype design was not eligi-
ble. In the current workflow, whenever the prototype is not feasible, all the
changes made by the 3D graphic designer are discarded, the model is edited
in the source CAD file and a new version of the virtual prototype is created
from the scratch.

2.2 Proposed change in workflow

The main problem of the typical workflow is that even when the changes
on the original CAD model are minimal, mesh and scene changes made in
the resulting virtual scene are not reused and have to be made all over again.
Therefore is natural to try to come up with some way to reapply these changes
and save the time needed for repeated virtual prototype production. Figure
2.2 represents the proposed change in the current industry workflow. For the
most part, it is identical to Figure 2.1. In the first iteration of the virtual
prototype creation, the process remains exactly the same. The change occurs
in the second and every next iteration of the virtual prototype creation. In
the case that the source model was not feasible and had to be changed, the
graphical designer receives the new CAD model version which they tessellate.

17

2. Design of the solution

Figure 2.1: Activity diagram for currently used workflow

Now, instead of doing every change on the tessellated model again, the new
geometry is only merged into the existing model, while keeping most of the
already made changes. This process basically costs no additional time and can
save up to hours of repetitive man-work. In the worst-case scenarios, when
either the whole model changes, or the tessellated mesh is not divided into
sub-parts and the model this method will not save any time, but it will not
add any overhead either.

18

2.3. Tool for reapplying changes

Figure 2.2: Activity diagram for the proposed workflow

2.3 Tool for reapplying changes

My aim is to create such a tool, that would reapply once made model changes.
At first, I intended to make use of Blender’s Python API (mentioned in the
previous chapter). This API enables the user to replicate any changes made in
the classic graphical user interface and 3D scene editor. My idea was to save a
log file with all changes applied to the first version of the model and then in the
second iteration just call all these methods again on the new model version.
The problem with this approach was that not every change was logged to the

19

2. Design of the solution

console so I could not automatically save the exact changes and even in cases
when the logging of the commands was successful, even the slightest changes
on the model made most of the called methods not applicable anymore. After
a few days of playing with this approach, I had to give up this idea.

My second proof-of-concept was more successful. Instead of reapplying the
commands, the idea is to load the second tessellated model version in the first
version of the resulting virtual scene and move it to the same location in the
scene as the first version. Then the script compares respective sub-parts of the
models. If the geometry of the given sub-part match exactly, the first version
which may contain more data is saved and the new is marked to delete. The
remaining sub-parts are tested for similarity. The algorithm tries to calculate,
whether the two sub-parts represent the same visual geometry only with one
having decimated mesh, or the sub-parts have most of the geometry same
and only part of it was changed. If the algorithm determines the former, it
means that the user does not wish to update this exact part and the new un-
decimated version is marked to delete. In the case of the latter, geometry data
of the old sub-part version is replaced by new vertex data, while still keeping
the rest of the sub-part attributes e.g. textures, model hierarchy in the scene...
If everything fails, all unmatched sub-parts from the previous version of the
model are marked to delete and all unmatched sub-parts from the new model
version are marked to keep. As the last step before applying the changes and
deleting all marked sub-parts, the user can edit these suggestions made by
the algorithm and keep sub-parts that are still useful. Moreover, the user
can even mark two sub-parts as a ”tuple” and those parts will be considered
similar and dealt with as explained before. Finally, when everything is ready,
the user will apply the changes by clicking on a single button that deletes all
unused sub-parts from the scene.

2.4 Comparison of the sub-parts

Theoretically, the order of the vertices in tessellated versions of the same
model sub-parts can differ, making it impossible to compare the sub-parts
as files. We have to be able to match those tessellations independently on
the vertex order. I have inspired by the method compare-by-hash, mentioned
in Chapter 1, but instead of using the cryptographic hashing function which
would produce different hashes for the same models with different vertex order,
I use my own sum formula, which multiplies every vertex’s coordinates with
large prime numbers and adds them up. At the end of the computation, it
adds large multiples of the largest coordinates occurring in the model. This
makes hash collisions even less probable. The hash formula ensures that the
output is deterministic - the same input geometry will result in the same hash
value and even though I am not going to compute the exact probability of
the hash collision, by working with large amounts of input vertices the chance

20

2.5. Chosen technologies

of creating the same hash from different inputs is relatively low. Even in
the case of collision, the hashes are only used for fast matching of the same
geometry. In the case of a match, also the dimensions of the sub-parts together
with other attributes are compared, and only if all of them match, the sub-
parts are declared as corresponding. I am aware that making-up own hashing
function would be insane in cryptographic and security context, however, for
the visual and graphical purposes the function worked reliably, without finding
any collision so far.

2.5 Chosen technologies

I have considered multiple options when choosing the suitable technologies
for the purpose of this thesis. It was tempting to write a standalone applica-
tion, with a beautiful, user-friendly GUI which would load, parse and merge
the models by itself. However, on the one hand, it would be another piece
of software that would a graphical engineer have to use during the virtual
prototype creation. On the other, why write complicated and extensive code
just to write some small subset of what the current market already offers for
free. These are the main reasons why I decided to use Blender and its Python
scripting API. I do not have to care about model loading itself, creating GUI
from scratch, complicated overhead, 3rd party libraries, and their support.
Blender already supports the most common 3D file formats and allows me
to directly access internal data structures and manipulate the models with
ease. Moreover, changes made to the model can be immediately seen in the
3D scene window, where the accuracy of the model merging algorithm can be
checked and adjusted in case of need.

From the other 3D graphic editors I was also considering using Autodesk’s
Maya. As described in previous Chapter 2 - Analysis, Maya is one of the most
popular editors on the current market which also offers extensive Maya API to
work with. The main reason, why I have chosen Blender, is simple - Blender
is free to download and use, while Maya license can be costly for individuals
and small businesses. I would like to support the graphical content creators
community and create something which everybody can use. Moreover, Maya
supports Python scripting as well. In case of need, only replacing Blender
API calls would have to be replaced by corresponding Maya API calls, which
are in my opinion structurally similar. Thus, it would not cost much work
to make the tool work for Maya too and I consider it as one of the possible
extensions of this thesis.

2.6 GUI design

Because the tool should be as automatic as possible, the user interface will
be very simple, containing only a few buttons. Blender offers a few different

21

2. Design of the solution

ways to implement UI for custom tools. I have chosen to create it as a side
panel inside the Scene Properties with the name Model merging tool because
I have found it the most appropriate for this purpose. GUI mockup can be
seen in Figure 2.3.

Figure 2.3: GUI buttons mockup

First, the user is expected to load the initial version of the tessellated
model, which the first button Load Source Model will be programmed to.
Clicking on this button will open a basic context window for the user to
choose the source model path. The second button from the top, Load New
Model Version, will be from the user’s point of view almost identical, it will
show the context window for choosing the model source path as well. The third
button Link Selected can the user use when the automatic subpart matching
algorithm incorrectly decides, that two versions of the same parts are different,
or if the user is aware that the geometry changed too much. There will be a
constraint that this button can be used only when exactly two sub-parts are
selected and are from different model versions. Otherwise, the button will be
inactive. The fourth button Apply changes is for merging confirmation. The
last button Start over will delete all metadata stored in the scene. This will
not delete anything from the scene, but no model will be marked as a source,

22

2.7. Tool architecture

the process has to start all over again from the beginning.
All the buttons will be activated and disabled depending on the context.

The user can not load any model if it was just loaded and not confirmed yet.
On the other hand, buttons Link selected and Apply changes can be only used
if a new model version was loaded and the merge was not finished yet.

2.7 Tool architecture

Even though Blender supports the source code of the custom tools to be
separated into multiple files, I have decided to keep the whole implementation
in a single Python file. Splitting the implementation would be appropriate in
the case of further functional extension of the tool.

There are two main classes used for model manipulation and storage of
the data:

1. class Model - this class represents whole loaded model as a single entity

2. class Subpart - represents a single piece of geometry in Blender’s Scene
collection

The remaining classes are implementing Blender operators. Model in-
stance stores its Sub-parts in a member dictionary, where the key is the Sub-
part’s hash and the value is a list of all sub-parts with the given hash. For
the storage of an object’s state are used Blender custom properties. Once
the scene is initialized, the scene has a defined custom property state tag,
determining which part of the merging is the tool at the moment. There are
three possible states of the tool, START, READY and MERGING. START
represents the state when no model has been loaded yet. After loading the
source model version, the state is switched to READY, which indicates that
the updated version of the model can be loaded. Last state MERGING rep-
resents the state during the merging of two model versions when the linking
of sub-parts is possible. After confirming the merge process, the tool switches
back to state READY.

23

Chapter 3
Implementation

As explained in previous Chapter 2 - Design of the solution, I will implement
the tool as a Blender script using Python. I will use the latest Blender version,
which is currently version 3.1 (spring 2022). This version supports Python of
version 3.10.

In this chapter I will explain the parts of the code I have found essential
or interesting for the reader. Code snippets will be included too.

3.1 Registering the tool

Blender modules loaded at startup require register() and unregister() func-
tions. These are the only functions that Blender calls from the code, which is
otherwise a regular Python module. [28] I have stored all the classes names
inside a list so the functions register and unregister can simply iterate through
them as seen on 3.1.
classes = [LoadModelOperator,

LoadNewVersionOperator,
FinalizeMergeOperator,
LinkSubpartsOperator,
DeleteMetadataOperator,
ToolGUIPanel]

def register():
for cls in classes:

bpy.utils.register_class(cls)

def unregister():
for cls in classes:

bpy.utils.unregister_class(cls)

Figure 3.1: Registering the tool

25

3. Implementation

3.2 Setting up GUI

Final user interface inside Blender’s side panel is shown on Figure 3.2. As
designed, the buttons’ activity is toggled on and off, depending of the context.
Each of the operators can define class method poll [28] which determines
whether the operator’s execute method can be run.

Figure 3.2: Final version of the GUI

Whole panel is defined inside ToolGUIPanel class shown on Figure 3.3,
which is subclass of an existing Blender type bpy.types.Panel. Class members
prefixed with bl are used to define the settings and location of the tool. Class
method draw defines the visual layout of the tool. Blender offers various
input methods to use like sliders, drop-down lists, radio buttons and others,
however, for the purpose of this tool I used only simple buttons as there are
no additional inputs to get from the user. Buttons in UI are divided into three
sections: Load a model, Merging and General.

26

3.3. Load source model

class ToolGUIPanel(bpy.types.Panel):
"""
Creates a Panel in the scene context of the properties editor
"""
bl_label = "Model merging tool"
bl_idname = "SCENE_PT_layout"
bl_space_type = 'PROPERTIES'
bl_region_type = 'WINDOW'
bl_context = "scene"

def draw(self, context):
layout = self.layout

layout.label(text="Load a model")
row = layout.row()
row.operator(LoadSourceModelOperator.bl_idname)
row.operator(LoadNewVersionOperator.bl_idname)

layout.label(text="Merging")
row = layout.row()
row.operator(LinkSubpartsOperator.bl_idname)

row = layout.row()
row.operator(FinalizeMergeOperator.bl_idname)

layout.label(text="General")
row = layout.row()
row.operator(DeleteMetadataOperator.bl_idname)

Figure 3.3: Setting up the GUI

3.3 Load source model

For source model loading is responsible class LoadModelOperator shown on
Figure 3.4. By inheriting from ImportHelper type we can show a context
window for the user to choose their source model. The model path is then
stored into filepath property which is used to load the model itself. When the
loading is done, scene state is then switched to next state g READY. User can
no longer load the source model, until the Start Over button is clicked and
state is equal to g START again.

27

3. Implementation

class LoadModelOperator(bpy.types.Operator, ImportHelper):
'''
Load .obj model from a file and mark it as a source version.
'''
bl_idname = "gh.func_1"
bl_label = "Load Source Model" # button label

filter .obj models only
filter_glob: StringProperty(
default="*.obj",
options={'HIDDEN'},
maxlen=255) # Max internal buffer length

@classmethod
def poll(cls, context):

return scene_state in bpy.context.scene
and bpy.context.scene[scene_state] == scene_state_start

def execute(self, context):
models["source"].load(self.filepath, is_source=True)
bpy.context.scene[scene_state] = scene_state_ready
return {'FINISHED'}

Figure 3.4: Definition of LoadModelOperator class

On the code snippets 3.4 and 3.5 you can see that actual model loading
is performed by Model class method load, with two parameters, filepath and
is source. This method calls Blender’s function to load a model from a file.
Then the model’s Subparts member is initialized. Finally, the model is marked
as a source by adding a source tag set to True into custom properties of all
sub-parts.

def load(self, model_path, is_source):
deselectAll()
bpy.ops.import_scene.obj(filepath=model_path)
self.subparts = self.loadSubparts(

bpy.context.selected_objects,
is_source)

Figure 3.5: Load method of Model class

Function deselectAll() is called before the actual model loading to eas-
ily distinguish the parts of the model which were loaded most recently and
remain selected after loading. Then the selection is passed to the loadSub-
parts method as a parameter. Even though this method has access to the
bpy.context, I have passed it as a parameter to highlight the fact that only the

28

3.4. Subpart comparison

selected parts are the new ones. Subparts of the model are stored in a Python
dictionary. The computed hash value is used as a key and because of some
(even though very small) possibility of hash collision, instead of storing the
Subpart directly as a value, all Subparts with the same hash are stored inside
a list.

3.4 Subpart comparison

Every Subpart object computes its own hash. The computation 3.6 is based
on a weighted sum of coordinates of all of its vertices, where every coordinate
is multiplied by a different, relatively large, prime number, and then the com-
ponents are summed up. The sum ensures that the hash remains the same
if the internal order of the same vertices was different. After summing up
all the vertices, multiplies of Subpart’s dimension extremes are added to the
hash number, together with a number of vertices. This way is the probability
of hash collision even less likely. The coordinates added to the hash sum are
rounded to the three decimal precision to neglect possible small vertex loca-
tion deviations. Lastly, the decimal part of the resulting hash is neglected and
only the whole number part is kept. In the case that the hash is too small,
the decimal point is moved to the right by 5 places and rounded afterward.

def computeHash(self):
hash_sum = 0
for vertex in self.object.data.vertices:

self.updateExtremes(vertex)
v = vertex.co
hash_sum += (round(v.x, 3) * 13931

+ round(v.y, 3) * 74747
+ round(v.z, 3) * 8887)

this should ensure that the hashes will be
different for different models in the most cases
hash_sum += (self.extremes['x_max'] * 13

+ self.extremes['y_max'] * 71
+ self.extremes['z_max'] * 73
+ len(self.object.data.vertices))

round to avoid comparing decimals
hash_sum = (round(hash_sum*10e5)

if hash_sum < 100
else round(hash_sum))

return hash_sum

Figure 3.6: ComputeHash method implemented on Subpart class

29

3. Implementation

When both source and updated model versions are loaded, automatic
model merging is initiated. By default, all subparts of the new version are
marked to keep and source ones to not. The first part of the merging process
is finding corresponding subpart hashes in both model versions. If there is a
match, it means that the subpart did not change and the original textured
version should be kept. The new version is marked to delete and hidden as
well, to indicate the fact to the user visually. If any hash from the source
version was not found, it is stored into unmatched hashes old list for later
processing. The tags, whether to keep the subpart or not are stored as an
object’s custom property.

In the second part of the merging process, the algorithm attempts to find
similar subparts between the versions inside the matchCorrespondingSubparts
function 3.7, which takes two lists of Subparts, one from the source version
and one new. To avoid comparing each old part with each new (O(m*n)
comparisons, where m and n are lengths of lists respectively), both lists are
sorted by locations first. Then, the i-th part from the list of old subparts is
compared only to the range of ⟨i - difference : i + difference⟩ parts from the
other list, at maximum. The difference variable is computed by the sum of the
difference of the lists’ lengths and the addition of the logarithm of the longer
list length. The idea behind this formula is that if some parts were deleted,
the corresponding parts can have a different index. At the same time, some
other parts could be added so the number of the new parts could remain the
same, therefore the logarithm part is added as some relative element to the
size of the input. In edge cases, the formula is still not bulletproof and can
miss some similar parts. However, this is not such an issue because the user
can manually link the subparts in a second. On a snippet below is not the
actual function but the shortened version to outline the idea.

30

3.5. Merge the versions

def matchCorrespondingSubparts(unmatched_subparts_new,
unmatched_subparts_old):

... input lists are sorted here

the best strategy is now try to pair corresponding
subpart in other array, in case something was deleted
we will check *difference* items before and after
old_len = len(unmatched_subparts_old)
new_len = len(unmatched_subparts_new)
difference = math.ceil(abs(old_len - new_len)

+ math.log(max(new_len, old_len), 2))

for first in range(0, old_len):
start = max(0, first - difference)
end = min(new_len, first + difference)

for second in range(start, end):
old_sub = unmatched_subparts_old[first]
new_sub = unmatched_subparts_new[second]
sim_fact = old_sub.getSimmillarityFactor(new_sub)
if (new_sub not in new_subs_matched
and sim_fact > SIM_TOLERANCE):

... here are the parts linked together
break

Figure 3.7: Snippet of matchCorrespondingSubparts function

Subpart method getSimmillarityFactor compares two subparts for similar-
ity and returns a number between 0 and 1, where 1 (with some small deflection)
is considered an exact match. This method compares the dimensions, global
extremes, and a number of vertices, and each match is represented as a part
of the resulting factor. SIM TOLERANCE constant is defined at the begin-
ning of the script and represents a value above which are the parts considered
similar and should be linked. After some tweaking, I have set it to a value of
0.75, which seemingly gave the best results.

3.5 Merge the versions

Most of the actual model merging is already done when loading a new model
version and comparing the subparts as described in the previous section. All
it remains is to actually replace the data if some parts were marked as similar,
either automatically or manually with Link Selected button. All source sub-
parts which were linked to the new version have their geometry data replaced
by a new version, while the material is being preserved. Code snippet 3.8 from
the updateGeometry method shows how is the data replacement performed.

31

3. Implementation

new part has the name of the original part
stored as custom property
source_mesh = bpy.context.scene.objects[new_object[MAPPEDTO_TAG]]
material_backup = source_mesh.data.materials[0]
source_mesh.data = new_object.data
source_mesh.data.materials[0] = material_backup
new_object.hide_set(True)

Figure 3.8: Updating source mesh geometry with new one

After the user confirmation of the merging process by clicking on Confirm
Changes and Finish button, all the parts with tag g KEEP set to False are
simply deleted, merging is done and in case of need, another version can be
loaded again.

3.6 User documentation

As depicted in Figure 3.2, the UI consists of only a few buttons so the usage
is relatively straightforward. However, in order to use the tool, the user has
to download and install it first.

3.6.1 How to install the tool

1. Download the source Python file and move it into install folder/Blender
Foundation/Blender 3.1/3.1/scripts/addons. Change the path accord-
ing your installation folder and Blender version.

2. Open Blender and go to Edit ->Preferences ->Add-ons

3. Add-ons are disabled by default. Find the Model Merging Tool in the
list and activate it by clicking on the tick box next to it. The tool should
be active now. If not, check the Blender’s Python console for possible
errors.

Another alternative is to open the source code in Blender’s Scripting panel
and run it directly.

3.6.2 Usage

In order to start click the Start Over button, which initializes the internal
states needed for correct tool execution. The source model should be loaded by
clicking on Load Source Model button. By using this button instead of built-in
import is ensured that only the loaded geometry is tracked and all remaining
parts of the scene are ignored by the tool. From now on, all other model
versions should be merged with Load New Version button. All unmatched

32

3.6. User documentation

old sub-parts are hidden but the user can link the geometry from new to
the original part by clicking on Link Selected button. This overwrites the
geometry data of the source version with a new one while preserving the
materials. Merging is then confirmed by Confirm Changes and Finish button.
To restart the state of the tool, click on Start Over button. This only sets
the internal state of the tool to the beginning and does not delete any actual
object.

33

Chapter 4
Testing

The script was tested on a model of corporate building from this [29] source.
All model versions were edited and exported from AutoCAD [30] into Wave-
front (.obj) format, which were then imported into Blender using the script.

On a Figure 4.1 is depicted a simple scenery I have modelled, to simulate
the use-case when a more complex scene is visualized apart from the actual
model.

Figure 4.1: A simple background scene created in Blender [24].

35

4. Testing

The Source tessellated model of the building did not have any assigned
materials. In real-world virtual production, a graphic designer would assign
materials and textures which would resemble the final building look as much
as possible. However, for testing purposes, I have only used a single bright-
pink material for the changes and differences to be more visible on the images.
This does not affect nor alter the usual usage of the script.

4.1 First iteration

Firstly, using Load Source Model button I loaded the initial version of the
tessellated model into the scene and moved it a bit further away from the centre
of the scene using Blender’s translate command. This operation simulates the
setting of the model into a more complex scene. For the model post-processing,
I have assigned the bright pink material to all subparts of the given model.
The initial version of the model is depicted in Figure 4.2.

Figure 4.2: Initial version of the model in Blender scene.

36

4.2. Second iteration

4.2 Second iteration

Imagine the model was then visualized in VR using a tool of the choice and the
sponsors were not quite satisfied with the design of the building and ordered
to make the right part of the building higher. The engineer had to remake the
source CAD model, then the model was exported and imported to Blender
using the second Load New Model Version button. In the Figure 4.3 on the left
is depicted the result of the automatic version merge, which, as expected, kept
the original textured parts of the building, and the new, edited ones are left
without assigned material. Note, that even though the grid on the right side of
the building’s roof was translated, the algorithm detected the matching shape
and automatically assigned the same material as in the previous version. The
remaining new parts, which could not be matched with any previous versions,
can be linked manually. Changes were not confirmed yet, so all the parts of
the previous version are only hidden. For the next test, I have shown the
previous version of the roof, selected both old and new versions of the roof,
and clicked the Link Selected button. The material was correctly transferred
to the new roof version and the old version was correctly hidden.

Figure 4.3: Linking of the different versions of the same sub-part. Before
linking (left) and after successful linking (right).

For the rest of the model, either the same process of linking or entirely new
materials can be applied. After all parts were linked, the merging is finalized
by clicking on Confirm Changes and Finish button. All hidden unused parts
were removed from the scene, as expected.

37

4. Testing

4.3 Third iteration

The third and final tested iteration was started with the model from the end of
the second iteration. I have assigned the bright-pink material to all remaining
unlinked parts for better visualization. This test case represents the repetitive
process of visualizing and reworking the source models until the sponsors are
satisfied with the results. Imagine the sponsors realized, that they actually do
not like the appearance of the left part of the building’s roof as well. Again,
the engineer changed the source CAD model and it was exported to Blender.
The textured model from the previous iteration and updated tessellated model
without textures can be seen in Figure 4.4.

Figure 4.4: Textured model at the end of the second iteration (left). Updated
tessellated model without textures (right).

Having the textured model loaded from the previous iteration, I loaded the
new version by clicking on Load New Model Version button. Again, all the
unchanged parts were correctly matched and textured versions were preserved
as depicted in Figure 4.5.

38

4.4. Summary of the testing

Figure 4.5: Result after automatic merging of the third model version.

4.4 Summary of the testing

To summarize the results of the testing of the tool, all test results were sat-
isfactory and in compliance with the assignment of this thesis. All the model
versions were correctly merged and moreover, in the second iteration, the roof
grid was automatically matched with its previous version at a different loca-
tion which can be even more helpful for the user. Tool buttons were inactive
or active, depending on the context correctly. Merging of the models could be
canceled anytime by using Start Over button.

39

Conclusion

In this thesis I have analysed the process of virtual prototype creation, focus-
ing especially on virtualising CAD data. After understanding currently used
processes, I analyzed all available solutions on the market, which I have found
relevant in this context. In chapter Analysis, I have mentioned a few tools
enabling the user to directly visualise source CAD data. Therefore, in the case
that the user does not need to post-process the tessellated CAD model and is
willing to pay for the license, they can use the tool directly. In the other case,
when the requirements on the visual quality of the output scene are high and
mesh post-processing is needed, I have designed a non-destructive workflow
for repeatable virtual prototype creation, that enables the user to create new
versions of the virtual prototypes in less time, compared to creating a new
prototype each time the source CAD model changes. In order for this work-
flow to work, I have written a Blender plug-in tool, which enables the user to
merge the changes made on the new version to the previous one.

At first, it was a challenging task for me to come up with a way, to merge
these model versions and my initial idea failed. The second idea was more
successful and as described in previous Chapter 4 - Testing, the tool works
on the given model as expected, which makes me confident to say that it can
help reduce costs related to virtual prototype production.

Possible extensions

One possibility is to improve the heuristics of the subpart comparison. An
improved version of the algorithm could be detecting similarities between hi-
erarchies of multiple sub-parts, e.g. when the whole roof with chimney and
roof window was replaced by other pieces with a different design. However,
this can be matched manually and it does not take too much time to do.

Another functionality extension could be to be able to only highlight the
unmatched geometry of two model versions, keeping the possible mesh deci-
mation in mind. This could be helpful when the virtual prototyping workflow

41

Conclusion

is not abided to, and the new changes are made on the tessellated model first
which results in a state when a sourcing CAD model is not representing the
exact model which the reviewer approved. Engineers who would want to up-
date the sourcing CAD model could tessellate it and visualize the changes
between the models, making it easier to only edit the parts that differ.

42

Bibliography

1. SAMPAIO, Alćınia Z.; FERREIRA, Miguel M.; ROSÁRIO, Daniel P.;
MARTINS, Octávio P. 3D and VR models in Civil Engineering edu-
cation: Construction, rehabilitation and maintenance. 2010. issn 0926-
5805. Available from doi: https://doi.org/10.1016/j.autcon.2010.
05.006.

2. FOLEY, James D. et al. Computer Graphics: Principles and practice.
2nd edition in C. Addison-Wesley Publishing Company, Inc., 1995. isbn
0-201-84840-6.

3. UNITY TECHNOLOGIES. Pixyz Studio 2021.1 Documentation [online]
[visited on 2022-04-13]. Available from: https://www.pixyz-software.
com / documentations / html / 2021 . 1 / studio / AboutTessellation .
html.

4. HANNIEL, Iddo; HALLER, Kirk. Direct Rendering of Solid CAD Mod-
els on the GPU. 2011, pp. 25–32. Available from doi: 10.1109/CAD/
Graphics.2011.63.

5. MARK SEGAL, KURT AKELEY. The OpenGL Graphics System: A
Specification (Version 4.0 (Core Profile) - March 11, 2010) [online]
[visited on 2022-04-13]. Available from: https://www.khronos.org/
registry/OpenGL/specs/gl/glspec40.core.pdf.

6. BAKER, Timothy J. Mesh generation: Art or science? Progress
in Aerospace Sciences. 2005. issn 0376-0421. Available from doi:
https://doi.org/10.1016/j.paerosci.2005.02.002.

7. GUO, Jianwei; DING, Fan; JIA, Xiaohong; YAN, Dong-Ming. Automatic
and high-quality surface mesh generation for CAD models. Computer-
Aided Design. 2019, vol. 109, pp. 49–59. issn 0010-4485. Available from
doi: https://doi.org/10.1016/j.cad.2018.12.005.

8. JOERG SCHMIT. Mercedes Benz 500 K [online] [visited on 2022-04-14].
Available from: https://grabcad.com/library/mb500k-1.

43

https://doi.org/https://doi.org/10.1016/j.autcon.2010.05.006
https://doi.org/https://doi.org/10.1016/j.autcon.2010.05.006
https://www.pixyz-software.com/documentations/html/2021.1/studio/AboutTessellation.html
https://www.pixyz-software.com/documentations/html/2021.1/studio/AboutTessellation.html
https://www.pixyz-software.com/documentations/html/2021.1/studio/AboutTessellation.html
https://doi.org/10.1109/CAD/Graphics.2011.63
https://doi.org/10.1109/CAD/Graphics.2011.63
https://www.khronos.org/registry/OpenGL/specs/gl/glspec40.core.pdf
https://www.khronos.org/registry/OpenGL/specs/gl/glspec40.core.pdf
https://doi.org/https://doi.org/10.1016/j.paerosci.2005.02.002
https://doi.org/https://doi.org/10.1016/j.cad.2018.12.005
https://grabcad.com/library/mb500k-1

Bibliography

9. OPEN CASCADE. CAD Assistant [online] [visited on 2022-05-09].
Available from: https : / / www . opencascade . com / products / cad -
assistant/.

10. YASIN R. Apartment [online] [visited on 2022-04-13]. Available from:
https://grabcad.com/library/apartment-35.

11. PIRET, Cecile; REMACLE, Jean-François; MARCHANDISE, Emilie.
Mesh and CAD Repair Based on Parametrizations with Radial Basis
Functions. 2011. isbn 978-3-642-24733-0. Available from doi: 10.1007/
978-3-642-24734-7-23.

12. SCHROEDER, William J; ZARGE, Jonathan A; LORENSEN, William
E. Decimation of triangle meshes. 1992, pp. 65–70.

13. LI, Minglei; NAN, Liangliang. Feature-preserving 3D mesh simplification
for urban buildings. 2021. issn 0924-2716. Available from doi: https:
//doi.org/10.1016/j.isprsjprs.2021.01.006.

14. SOBTI, Rajeev; GEETHA, Ganesan. Cryptographic hash functions: a
review. International Journal of Computer Science Issues (IJCSI). 2012,
vol. 9, no. 2, p. 461.

15. BLACK J. Compare-by-Hash: A Reasoned Analysis [online] [visited
on 2022-04-12]. Available from: https : / / home . cs . colorado . edu /
˜jrblack/papers/cbh.html.

16. BOWMAN, Doug A.; MCMAHAN, Ryan P. Virtual Reality: How Much
Immersion Is Enough? Computer. 2007, vol. 40, no. 7, pp. 36–43. Avail-
able from doi: 10.1109/MC.2007.257.

17. INTERACTION DESIGN FOUNDATION. Augmented Reality [online]
[visited on 2022-04-15]. Available from: https://www.interaction-
design.org/literature/topics/augmented-reality.

18. SAEC/KINETIC VISION, INC. Mixed Reality [online] [visited on 2022-
04-14]. Available from: https : / / kinetic - vision . com / virtual -
interactive-solutions-mixed-reality.

19. QUALCOMM TECHNOLOGIES, INC. Extended Reality [online] [vis-
ited on 2022-04-14]. Available from: https : / / www . qualcomm . com /
research/extended-reality.

20. ALLMACHER, Christoph; DUDCZIG, M.; KLIMANT, Philipp; PUTZ,
M. Virtual Prototyping Technologies Enabling Resource-Efficient and
Human-Centered Product Development. 2018, vol. 21. Available from
doi: 10.1016/j.promfg.2018.02.180.

21. CHOI, S.H.; CHAN, A.M.M. A virtual prototyping system for rapid
product development. Computer-Aided Design. 2004. issn 0010-4485.
Available from doi: https : / / doi . org / 10 . 1016 / S0010 - 4485(03)
00110-6.

44

https://www.opencascade.com/products/cad-assistant/
https://www.opencascade.com/products/cad-assistant/
https://grabcad.com/library/apartment-35
https://doi.org/10.1007/978-3-642-24734-7-23
https://doi.org/10.1007/978-3-642-24734-7-23
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.01.006
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2021.01.006
https://home.cs.colorado.edu/~jrblack/papers/cbh.html
https://home.cs.colorado.edu/~jrblack/papers/cbh.html
https://doi.org/10.1109/MC.2007.257
https://www.interaction-design.org/literature/topics/augmented-reality
https://www.interaction-design.org/literature/topics/augmented-reality
https://kinetic-vision.com/virtual-interactive-solutions-mixed-reality
https://kinetic-vision.com/virtual-interactive-solutions-mixed-reality
https://www.qualcomm.com/research/extended-reality
https://www.qualcomm.com/research/extended-reality
https://doi.org/10.1016/j.promfg.2018.02.180
https://doi.org/https://doi.org/10.1016/S0010-4485(03)00110-6
https://doi.org/https://doi.org/10.1016/S0010-4485(03)00110-6

Bibliography

22. TOVELL, Robert; WILLIAMS, Nina. Genesis: A Pipeline for Virtual
Production. 2018. isbn 9781450358958. Available from doi: 10.1145/
3233085.3233090.

23. AUTODESK INC. Maya: Create expansive worlds, complex characters,
and dazzling effects [online] [visited on 2022-04-19]. Available from:
https://www.autodesk.com/products/maya/overview?term=1-
YEAR&tab=subscription.

24. BLENDER FOUNDATION. The Freedom to Create [online] [visited on
2022-01-20]. Available from: https://www.blender.org/about/.

25. AUTODESK INC. AutoCAD [online] [visited on 2022-05-04]. Available
from: https://www.autodesk.com/products/3ds- max/overview?
term=1-YEAR&tab=subscription.

26. EPIC GAMES. Unreal Engine docs [online] [visited on 2022-02-02].
Available from: https : / / docs . unrealengine . com / 4 . 27 / en -
US/WorkingWithContent/Importing/Datasmith/.

27. UNITY TECHNOLOGIES. pixyz studio [online] [visited on 2022-01-15].
Available from: https://www.pixyz-software.com/studio/.

28. BLENDER FOUNDATION. Python API Overview [online] [visited
on 2022-05-02]. Available from: https : / / docs . blender . org / api /
current/info_overview.html.

29. DAVID MARTINEZ DIAZ. Corporate building [online] [visited on 2022-
05-07]. Available from: https://www.bibliocad.com/en/library/
corporate-building_109399/.

30. AUTODESK INC. AutoCAD [online] [visited on 2022-04-28]. Available
from: https://www.autodesk.com/products/autocad/overview.

45

https://doi.org/10.1145/3233085.3233090
https://doi.org/10.1145/3233085.3233090
https://www.autodesk.com/products/maya/overview?term=1-YEAR&tab=subscription
https://www.autodesk.com/products/maya/overview?term=1-YEAR&tab=subscription
https://www.blender.org/about/
https://www.autodesk.com/products/3ds-max/overview?term=1-YEAR&tab=subscription
https://www.autodesk.com/products/3ds-max/overview?term=1-YEAR&tab=subscription
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/
https://docs.unrealengine.com/4.27/en-US/WorkingWithContent/Importing/Datasmith/
https://www.pixyz-software.com/studio/
https://docs.blender.org/api/current/info_overview.html
https://docs.blender.org/api/current/info_overview.html
https://www.bibliocad.com/en/library/corporate-building_109399/
https://www.bibliocad.com/en/library/corporate-building_109399/
https://www.autodesk.com/products/autocad/overview

Appendix A
Acronyms

CAD Computer aided design

CSG Constructive solid geometry

BREP (B-rep) Boundary representation

NURBS Non-uniform rational basis spline

GPU Graphical processing unit

VR Virtual reality

AR Augumented reality

MR Mixed reality

XR Extended reality

VP Virtual prototyping

API Application programming nterface

GUI Graphical user interface

UI User interface

47

Appendix B
Contents of enclosed CD

src the directory of source codes
code..implementation sources
thesis..............the directory of LATEX source codes of the thesis

sample data the directory containing sample models used for testing
thesis.pdf..............................the thesis text in PDF format

49

	Introduction
	Goals and subtasks
	Subtasks

	Analysis
	3D data structures
	Precise - CAD formats
	Approximated formats

	From mathematical model to graphics card
	Tessellation
	Mesh healing
	Mesh decimation
	Mesh post-processing

	Data comparison
	Briefly on hash functions
	Compare-by-hash

	Virtual reality
	Extended Reality (XR)

	Virtual prototyping (VP)
	Virtual prototyping workflow

	Available solutions
	3D modelling software
	Autodesk Maya
	Blender
	3ds Max

	Available solutions for virtualizing CAD data
	Unreal Datasmith
	Pixyz Studio
	Okino polytrans

	Conclusion of available solutions

	Design of the solution
	Repetition of post-processing in detail
	Proposed change in workflow
	Tool for reapplying changes
	Comparison of the sub-parts
	Chosen technologies
	GUI design
	Tool architecture

	Implementation
	Registering the tool
	Setting up GUI
	Load source model
	Subpart comparison
	Merge the versions
	User documentation
	How to install the tool
	Usage

	Testing
	First iteration
	Second iteration
	Third iteration
	Summary of the testing

	Conclusion
	Possible extensions

	Bibliography
	Acronyms
	Contents of enclosed CD

