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Abstract

In this thesis, we address periodic schedul-
ing problem with precedence constraints,
which is strongly NP hard. We show
the connection of this problem to guillo-
tine packing, which is a special case of
2D packing. We present algorithm, that
searches for its feasible solution and prove
its completeness. We also suggest a search
algorithm for finding the optimal solution.
Based on the tests, we evaluate the quality
of solution.

Keywords: tabu search, local search,
periodic scheduling, 2D bin packing,
guillotine packing, periodic scheduling
with precedence constraints, level
algorithms

Supervisor: prof. Dr. Ing. Zdeněk
Hanzálek

Abstrakt

V této práci se zabýváme problémem pe-
riodického rozvrhování s relacemi násled-
nosti a jeho souvislostí se specifickým pří-
padem dvojdimenzionálního bin packing
problému. Prezentujeme vlastní algorit-
mus, který hledá jeho řešení bez ohledu
na hodnotu objektivní funkce a dokážeme
jeho správnost. Navrhneme také metodu
lokálního prohledávání pro nalezení jeho
optimálního řešení. Na základě testů vy-
hodnotíme kvalitu řešení.

Klíčová slova: tabu search, lokální
prohledávání, periodické rozvrhování, 2D
bin packing, guillotine packing,
periodické rozvrhování s relacemi
následností, level algorithms

Překlad názvu: Periodické rozvrhování
s relacemi následnosti
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Chapter 1

Introduction

Periodic Scheduling Problem (PSP) is an important class of various optimiza-
tion problems with different purposes. In general, the problem deals with
assigning resources to given set of jobs or tasks in time. It has numerous
applications in different areas, such as information technology, transportation,
production and many others.

There are multiple variations of this common problem given by a different
nature of tasks, resources or some other additional conditions. Many of that
may significantly affect the time complexity of the solution. The identical
aspects of the problem may be addressed by a different nomenclature or
notation in literature. In order to deal with this inconvenience, [GLLK79]
comes up with a universal notation of this class of tasks. Its structured
overview may be found in [MH21]. The problem studied in this work may
therefore be addressed as PD|T harm

i , jiti = 0, chains|
∑

δ, but we will provide
its detailed formal definition in the following chapter.

A simplified version of this problem with harmonic execution times and
no objective function was proved by [KAL96] to be solvable in polynomial
time, but [HMH20] shows that this problem is strongly NP hard. [MH21]
mentions, that non-harmonic zero jitter case with constant processing times
on a single machine with no objective function has also been proven to be
strongly NP hard.
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Chapter 2

Problem Statement

In this chapter, we provide a formal description of the scheduling problem
considered in this work.

2.1 Specification of Tasks

We are given an unempty set of tasks T = {τ1, . . . , τn} and an unempty set
of machines M =

{
µ1, . . . , µ|M|

}
. Each task τi ∈ T is further described by

three mappings

m : T 7→ M,

p : T 7→ Z+,

T : T 7→ Z+.

For any task τi ∈ T , mapping m specifies a machine µj ∈M on which τi is
to be executed. We say that machine µj is dedicated to task τi or that task
τi is assigned to machine µj .

Mapping p assigns each task τi the number of time units needed to its
single execution p(τi) and is referred to as the processing time of task τi.

Mapping T gives the exact number of time units T (τi) after that the
execution of task τi needs to be repeated. T (τi) is referred to as the period
of task τi. Note that T (τi) ≥ p(τi) for any τi ∈ T .

3



2. Problem Statement ..................................
Let T (T ) = {T (τi) | τi ∈ T } denote the set of all possible periods of tasks

τi ∈ T . Set T (T ) is harmonic, formally

∀i, i′ ∈ {1, . . . , n} :
(
T (τi) | T (τi′)

)
∨
(
T (τi′) | T (τi)

)
.

Apart from that, we are also given a partition C =
{
C1, . . . , C|C|

}
of the

set of tasks T into pairwise disjoint unempty ordered sets C1, . . . , C|C|, such
that for every k ∈

{
1, . . . , |C|

}
, any two tasks C l

k, C
(l′)
k from the ordered set

Ck =
(
C1

k , . . . , C
|Ck|
k

)
have the same period. Sets Ck are referred to as chains

or precedence chains. The order of task C l
k in chain Ck indicates the order

in which the task C l
k is executed with respect to other tasks of chain Ck.

We say that task C l−1
k is the predecessor of task C l

k for any k ∈
{
1, . . . , |C|

}
and l ∈

{
2, . . . , |Ck|

}
. Similarly, the task C l+1

k may be referred to as the
successor of task C l

k for any k ∈
{
1, . . . , |C|

}
and l ∈

{
1, . . . , (|Ck| − 1)

}
.

Denote T (Ck) = T (C1
k) = · · · = T (C |Ck|

k ) the common period of tasks in
chain Ck.

2.2 Schedule

In order to solve the given problem, we need to find mapping s : T 7→ Z+
0

assigning each task τi ∈ T its first starting time s(τi) in time units, so that
the following conditions are met. Note that time 0 denotes the beginning of
execution of the set of tasks T and the starting time of any task is measured
in time units from this point of time.

(C1) Task τi is executed by machine m(τi).

(C2) Each execution of task τi takes p(τi) time units.

(C3) Each execution of task τi is restarted after exactly T (τi) time units.

(C4) Once a machine starts to execute a task, its execution cannot be inter-
rupted by execution of any other task.

(C5) There is at most one task being executed by each machine at any moment.

(C6) The execution of task C l
k can only begin after the execution of task C l−1

k

has ended for any k ∈
{
1, . . . , |C|

}
and l ∈

{
2, . . . , |Ck|

}
.

Mapping s is referred to as a schedule.

4



...................................... 2.2. Schedule

Conditions (C1) –(C3) guarantee that s is a schedule for the given set
of tasks T specified by mappings m, p and T respectively. Condition (C3)
can also be called a zero jitter condition, since it requires a strictly periodic
execution of tasks.

Condition (C4) guarantees that given scheduling task is non-preemptive.
As a consequence of conditions (C2) –(C4) the time of z-th execution of
task τi ∈ T for any z ∈ Z+ is given by the interval

E(τi, z) =
[
s(τi) + (z − 1) · T (τi), s(τi) + p(τi) + (z − 1) · T (τi)

)
.

Condition (C5) says that there are no collisions in schedule s. In other
words, if we choose the time intervals of arbitrary executions of a pair of
different tasks assigned to the same machine, its intersection should be empty,
formally

∀τi, τi′ ∈ T , m(τi) = m(τi′), τi ̸= τi′ , ∀zi, zi′ ∈ Z+ :
E(τi, zi) ∩ E(τi′ , zi′) = ∅. (2.1)

Statement (2.1) gives an infinite number of conditions for any pair of tasks
assigned to the same machine. According to [KALW91] and due to harmonic
property of T (T ), statement (2.1) is equivalent to

∀τi, τi′ ∈ T , m(τi) = m(τi′), τi ̸= τi′ , T (τi) ≤ T (τi′) :
p(τi) ≤

(
s(τi′)− s(τi)

)
(mod T (τi)) ≤ T (τi)− p(τi′), (2.2)

which gives only one condition for any pair of tasks assigned to the same
machine.

Condition (C6) defines the precedence relations and can be formally
denoted as

∀k ∈
{
1, . . . , |C|

}
, |Ck| > 1, ∀l ∈

{
2, . . . , |Ck|

}
: s
(
C l

k

)
+ p

(
C l

k

)
≤ s

(
C l+1

k

)
.

Schedule s fulfilling conditions (C1) –(C6) above is called a feasible
schedule.

5



2. Problem Statement ..................................
2.3 Optimization Criterion

For any feasible schedule s and a chain Ck =
(
C1

k , . . . , C
|Ck|
k

)
∈ C, we define

the end-to-end latency of the chain Ck as

L(Ck) =
(
s
(
C

|Ck|
k

)
+ p

(
C

|Ck|
k

))
−
(
C1

k

)
.

It can be understood as the amount of time in time units needed to complete
all of tasks in the chain Ck according to the schedule s with respect to the
given precedence constraints.

The degeneracy δs(Ck) of the chain Ck is defined as δs(Ck) =
⌈

L(Ck)
T (Ck)

⌉
− 1.

Similarly to end-to-end latency, the degeneracy of the chain Ck can also
be understood as the amount of time needed to complete all tasks in the
chain Ck, measured in number of periods of the chain Ck and lowered by 1.
Furthermore, we define degeneracy δ(s) of the schedule s as

δ(s) =


∑

Ck∈C
δs(Ck), if the schedule s is feasible,

+∞, otherwise.
(2.3)

The goal of the periodic scheduling problem is to find the optimal schedule
s∗ : T 7→ Z+

0 assigning each task τi ∈ T its starting time s∗(τ) so that the
degeneracy of the schedule is minimal:

s∗ = arg min
s:T 7→Z+

0

δ(s).

[HMH20] shows, that this problem is strongly NP hard.

6



Chapter 3

Harmonic PSP with Precedence
Constraints and 2D Bin Packing Problem

In this chapter, we discuss the connection between the original harmonic
periodic scheduling problem and the 2D bin packing problem. We show how
to derive the 2D bin packing problem associated with the original harmonic
periodic scheduling problem and discuss some of its properties.

3.1 Equivalence of Periodic Scheduling and
2D Bin Packing

According to section 3 in [HH20], finding a feasible solution to the periodic
scheduling problem with harmonic periods on a single machine without
precedence constraints is equivalent to finding a solution to a specific case of
2D bin packing problem. Let us show that precedence constraints have no
effect on the problem feasibility.
Property 3.1. Suppose we have an instance of periodic scheduling problem
with harmonic periods and a schedule s fulfilling conditions (C1) –(C5) .
Schedule s can then be modified so that condition (C6) also holds.

Proof. If schedule s fulfills the condition (C6) , there is no need for modifi-
cation. For contradiction, suppose the condition (C6) does not hold. That
means, there exists a chain having two consecutive tasks, such that the execu-
tion of the successor begins before the execution of the predecessor is finished.

7



3. Harmonic PSP with Precedence Constraints and 2D Bin Packing Problem ..........
That is,

∃Ck′ ∈ C,∃l′ ∈
{
2, . . . , |Ck′ |

}
: s(C l′−1

k′ ) + p(C l′−1
k′ ) > s(C l′

k′).

Denote

z =
⌈

s(C l′−1
k′ ) + p(C l′−1

k′ )− s(C l′
k′)

T (Ck′)

⌉
. (3.1)

Note that z is a positive integer, because both numerator and denominator
are positive. Let us define a new schedule s′, such that

s′(C l
k) =

{
s(C l

k) + z · T (Ck), if k = k′ and l = l′

s(C l
k), otherwise,

(3.2)

and show that s′(C l′−1
k′ )+p(C l′−1

k′ ) ≥ s′(C l′
k′) and that s′ still fulfills conditions

(C1) –(C5) . Postponing execution of one particular task has clearly no effect
on conditions (C1) –(C4) , but it might cause a collision of C l′

k′ with some
other task. From 2.2, we have

∀τi ∈ T , m(τi) = m(C l′
k′), τi ̸= C l′

k′ , T (τi) ≤ T (Ck′) :
p(τi) ≤

(
s(C l′

k′)− s(τi)
)

(mod T (τi)) ≤ T (τi)− p(C l′
k′), (3.3)

and

∀τi′ ∈ T , m(C l′
k′) = m(τi′), C l′

k′ ̸= τi′ , T (Ck′) ≤ T (τi′) :
p(C l′

k′) ≤
(
s(τi′)− s(C l′

k′)
)

(mod T (Ck′)) ≤ T (Ck′)− p(τi′). (3.4)

We need to show that the same inequalities hold also for s′. From 3.4, we get
∀τi′ ∈ T , m(C l′

k′) = m(τi′), C l′
k′ ̸= τi′ , T (Ck′) ≤ T (τi′) :

s′(τi′)− s′(C l′
k′)

(3.2)= s(τi′)− s(C l′
k′)− z · T (Ck′) (3.5)

and therefore also(
s′(τi′)− s′(C l′

k′)
)

(mod T (Ck′)) (3.5)=
(3.5)=

(
s(τi′)− s(C l′

k′)− z · T (Ck′)
)

(mod T (Ck′))
=
(
s(τi′)− s(C l′

k′)
)

(mod T (Ck′)).

which proves that 3.4 holds for s′. Similarly, from 3.3 and harmonic property
of periods, we can easily obtain that

∃z1 ∈ N : T (Ck′) = z1 · T (τi). (3.6)

Then ∀τi ∈ T , m(τi) = m(C l′
k′), τi ̸= C l′

k′ , T (τi) ≤ T (Ck′) :

s′(C l′
k′)− s′(τi)

(3.2)= s(C l′
k′) + z · T (Ck′)− s(τi)

(3.6)= s(C l′
k′) + z · z1 · T (τi)− s(τi),

(3.7)

8



....3.2. Derivation of 2D Bin Packing Problem Associated with the Periodic Scheduling Problem

and therefore also

(
s′(C l′

k′)− s′(τi)
)

(mod T (τi))
(3.7)=

(3.7)=
(
s(C l′

k′) + z · z1 · T (τi)− s(τi)
)

(mod T (τi))
=
(
s(C l′

k′)− s(τi)
)

(mod T (τi)),

which proves that 3.3 holds for s′. By

s′(C l′
k′)

(3.2)= s(C l′
k′) + z · T (Ck′)

(3.1)
≥ s(C l′

k′) +
s(C l′−1

k′ ) + p(C l′−1
k′ )− s(C l′

k′)
T (Ck′) · T (Ck′)

= s(C l′
k′) + s(C l′−1

k′ ) + p(C l′−1
k′ )− s(C l′

k′)
= s(C l′−1

k′ ) + p(C l′−1
k′ )

(3.2)= = s′(C l′−1
k′ ) + p(C l′−1

k′ ),

we prove that s′ fulfills condition (C6) for consecutive tasks C l′−1
k′ and C l′

k′ .
Note that if we iterate through each chain form the first task to the last and
perform schedule modification 3.2 in case condition (C6) is not met, we do
not influence already checked relations, because postponing the successor has
no effect on any preceding task.

Property 3.1 shows that precedence relations do not have to be considered
during construction of any feasible schedule and finding feasible schedule can
therefore be reformulated equivalently as a set of 2D bin packing problems
for each separate machine. But still, according to [MH21] or [HH20], the
problem of finding feasible solution is also NP hard.

3.2 Derivation of 2D Bin Packing Problem
Associated with the Periodic Scheduling Problem

As already mentioned above in the Problem Statement chapter, the periodic
scheduling problem with harmonic periods is defined by a set of tasks T =
{τ1, . . . , τn} and a set of machines M = {µ1, . . . , µ|M|}. Each task τi ∈ T
is further specified by its dedicated machine m(τi), processing time p(τi),
and period T (τi). Let Tµj = {τi ∈ T | m(τi) = µj} denote the set of tasks
assigned to machine µj and T (Tµj ) = {T (τi) | τi ∈ Tµj} the set of all possible
periods of tasks in T assigned to machine µj . Since T (T ) is harmonic and
Tµj ⊆ T for any µj ∈M, T (Tµj ) is also harmonic.

9



3. Harmonic PSP with Precedence Constraints and 2D Bin Packing Problem ..........
The 2D bin packing problem associated with the original periodic scheduling

problem on machine µj ∈ M is defined by a bin Bj of width W (Bj) and
height H(Bj) and a set of rectangles Rj = {Rτ | τ ∈ Tµj}, each rectangle of
width w(Rτ ) and height h(Rτ ). According to [HH20], the dimensions of any
rectangle Rτ ∈ Rj would be

w(τ) = p(τ), (3.8)

h(τ) =
max

(
T (Tµj )

)
T (τ) . (3.9)

The dimensions of the bin Bj would be

W (Bj) = min
(
T (Tµj )

)
, (3.10)

H(Bj) =
max

(
T (Tµj )

)
min

(
T (Tµj )

) . (3.11)

Note that values H(Bj), W (Bj), w(τi) and h(τi) are positive integers for any
j ∈

{
1, . . . , |M|

}
and any τi ∈ T due to the problem definition and the fact

that T (Tµj ) is harmonic for any µj ∈ M. Also, max
(
T (Tµj )

)
is referred to

as hyperperiod of machine µj .

The rectangles Rτ ∈ Rj are to be positioned into the bin Bj . Let (xτ , yτ )
denote the coordinates of the lower-left vertex of rectangle Rτ in bin Bj for
Rτ ∈ Rj . Note that the lower-left vertex of bin Bj has coordinates (0, 0) and
the upper-right vertex has coordinates

(
W (Bj), H(Bj)

)
, so for any τ ∈ Tµj ,

we have 0 ≤ xτ < xτ + w(τ) ≤W (Bj) and 0 ≤ yτ < yτ + h(τ) ≤ H(Bj). For
any rectangle Rτ that is placed in bin Bj , it must also hold the following:

yτ ≡ 0 (mod h(τ)). (3.12)

The goal is to position rectangles from set Rj into the bin Bj so that condition
(3.12) holds and no collision occurs.

For better clarity, the indices and arguments referring to the tasks and
machines of the original periodic scheduling problem will be omitted in the
following text. So the definition of the 2D bin packing problem on one
machine will be newly denoted as packing the set of n rectangles R = {Ri |
i = 1, . . . , n} of width wi and height hi for i ∈ {1, . . . , n} into bin B of width
W and height H so that no collision occurs. The coordinates of the lower-left
vertex of rectangle Ri in the bigger rectangle B will be denoted as (xi, yi) for
any i ∈ {1, . . . , n} and

∀i ∈ {1, . . . , n} : yi ≡ 0 (mod hi). (3.13)

According to [HH20], collision between rectangles Ri and Ri′ such that hi′ ≤ hi

occurs if and only if (yi ≤ yi′ < yi + hi) ∧ (xi < xi′ + wi′) ∧ (xi′ < xi + wi).

10



.................. 3.3. Other Properties of PSP and 2D Bin Packing Problem

From that we can derive that there is no collision in 2D bin packing if and
only if

∀Ri, Ri′ ∈ R, Ri ̸= Ri′ , hi′ ≤ hi :
(yi > yi′) ∨ (yi′ ≥ yi + hi) ∨ (xi ≥ xi′ + wi′) ∨ (xi′ ≥ xi + wi). (3.14)

3.3 Other Properties of PSP and 2D Bin Packing
Problem

Property 3.2. Suppose we have an instance of a 2D bin packing problem.
If the sequence of rectangles {R1, . . . , Rn} is sorted by its height in non-
increasing order, it is also sorted in non-decreasing order by the periods of
tasks associated with those rectangles.

Proof. The sequence of rectangles {R1, . . . , Rn} is sorted by its height in
non-decreasing order, so

∀i, i′ ∈ {1, . . . , n}, i < i′ : hi ≥ hi′ .

Using the definition (3.9), we get

maxτ∈T T (τ)
T (τi)

≥ maxτ∈T T (τ)
T (τi′) .

By the definition of processing time, it holds that ∀i′′ ∈ {1, . . . , n} : T (τi′′) >
0, so we can multiply the inequality by

(
T (τi) · T (τi′)

)
:

T (τi′) ·max
τ∈T

T (τ) ≥ T (τi) ·max
τ∈T

T (τ),

and finally, since the maximum of finite set of positive integers is a positive
integer, we can also divide the inequality by

(
maxτ∈T T (τ)

)
getting

T (τi′) ≥ T (τi).

Property 3.2 also implies

T (τ1) = min
τ∈T

T (τ) (3.15)

for a sequence of rectangles sorted by its height in non-increasing order.

11



3. Harmonic PSP with Precedence Constraints and 2D Bin Packing Problem ..........
Property 3.3. Suppose we have an instance of periodic scheduling problem
and the associated 2D bin packing problem. If the set of periods of all the
tasks {T (τ) | τ ∈ T } is harmonic, then the set of heights {hi | i = 1, . . . , n}
of rectangles R = {R1, . . . , Rn} is also harmonic.

Proof. Suppose the set of periods of the tasks {T (τ) | τ ∈ T } is harmonic.
That means,

∀i, i′ ∈ {1, . . . , n} ∃z ∈ Z+ :
(
T (τi) = z · T (τi′)

)
∨
(
T (τi′) = z · T (τi)

)
.

Using (3.9), we get(
maxτ∈T T (τ)

hi
= z ·maxτ∈T T (τ)

hi′

)
∨
(

maxτ∈T T (τ)
hi′

= z ·maxτ∈T T (τ)
hi

)
.

We can multiply both equations by positive integers hi and hi′ and divide
them by positive integer

(
maxτ∈T T (τ)

)
resulting in

∀i, i′ ∈ {1, . . . , n} ∃z ∈ Z+ : (hi′ = z · hi) ∨ (hi = z · hi′),

which means that the set of heights {hi | i = 1, . . . , n} of rectangles in R is
harmonic.
Property 3.4. Suppose we have an instance of periodic scheduling problem
with harmonic periods and the associated 2D bin packing problem defined as
described in subsection 3.1. Then at least one rectangle of the set of rectangles
R = {R1, . . . , Rn} has the same height as bin B.

Proof. Without loss of generality, we can assume that the sequence of rect-
angles {R1, . . . , Rn} is sorted in non-increasing order by heights. Using the
previous results and the definitions, we can see that the height h1 of the first
rectangle R1 is equal to the height H of the bin B, formally

h1
(3.9)= maxτ∈T T (τ)

T (τ1)
(3.15)= maxτ∈T T (τ)

minτ∈T T (τ)
(3.10)= maxτ∈T T (τ)

L

(3.11)= H.

We have shown that the rectangle R1 has the same height as the bin B, so
the statement holds.

Property 3.4 also implies that the second coordinate of this rectangle of
height H is 0 because otherwise, the rectangle would not fit into the bin.
Property 3.5 (Necessary condition for feasibility 1). Suppose we have a feasible
instance of periodic scheduling problem. Then

∀µj ∈M :
∑

τi∈T
m(τi)=µj

p(τi)
T (τi)

≤ 1. (3.16)

12
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Proof. According to the definitions in chapter 2, the execution of task τi takes
p(τi) time units and is restarted every T (τi) time units. Since τi is assigned
to µj , its execution takes up p(τi)

T (τi) of the total time of machine µj since its
first execution. If we sum up proportional expressions of time consumption
for all the tasks assigned to the machine µj , we get exactly

∀µj ∈M :
∑

τi∈T
m(τi)=µj

p(τi)
T (τi)

,

which therefore can not exceed 1, because that would cause a contradiction
to condition (C5) .

The sum from Property 3.5 is sometimes referred to as utilization of machine
µj .
Property 3.6 (Necessary condition for feasibility 2). Suppose we have a feasible
instance of periodic scheduling problem. Then

∀τi, τi′ ∈ T , m(τi) = m(τi′) : T (τi) ≥ p(τi′).

Consequently,

∀µj ∈M : min
τi∈T

m(τi)=µj

T (τi) ≥ max
τi∈T

m(τi)=µj

p(τi′). (3.17)

Proof. For contradiction, suppose

∃τi, τi′ ∈ T , m(τi) = m(τi′) : T (τi) < p(τi′). (3.18)

From the definition in chapter 2, we can derive that execution of task τi takes
exactly p(τi) time units of any time interval of length T (τi) since the first
occurrence of task τi. Any execution of task τi′ takes p(τi′) time units and
can not be interrupted. Since T (τi) < p(τi′) according to 3.18, there exists
a time interval I of length T (τi) such that I ⊊ E(τi′ , z) for some positive
integer z. During the whole interval I, the machine m(τi′) executes task
τi′ , but since interval I is of length T (τi), the same machine m(τi) = m(τi′)
should also execute task τi for p(τi) time units during I. In case τi′ ̸= τi, we
get a contradiction to condition (C5) . Otherwise, we get τi′ = τi. From 3.18,
we get T (τi) < p(τi), which is also a contradiction – no task can have period
shorter than execution time. We have therefore proven that the proposed
formula holds.

For any µj ∈ M, Tµj is a finite set and therefore, we can pick τ̂i so that
T (τ̂i) = min{T (τ)|τ ∈ Tµj} and τ̂i′ so that p(τ̂i′) = min{p(τ)|τ ∈ Tµj} and
get 3.17.

Note that the equality in 3.17 holds only if Tµj = {τ̂} and T (τ̂) = p(τ̂).
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Chapter 4

Finding a Feasible Solution

There are several approaches proposed in literature to solve problems similar
to the one considered in this work. [HMH20] proposes a local search algorithm,
that considers the exact same problem as was introduced in chapter 2. [Nv09]
mentions several heuristics for 2D oriented offline strip packing problem for
rectangular items, which is similar to the 2D bin packing problem associated
with our original PSP. [KAL96] proposes an approach to solving the PSP if
both periods and processing times of tasks are powers of 2. [KAL96] also
claims that the proposed approach can be generalized for solving the PSP if
periods and processing times are harmonic.

In this chapter we describe the mentioned approaches and some of their
properties. We also look for modifications that would allow us to use similar
approach for our case of PSP.

4.1 The Queue Approach

We primarily consider the approach from [HMH20], because there is no
modification needed. The goal of the proposed local search heuristics is to
generate the optimal schedule. The process is iterative. At first, an initial
schedule is created. The current schedule is then modified in order to find
a schedule with a lower degeneracy.
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4. Finding a Feasible Solution...............................
4.1.1 Initial Queue

Schedule is represented by a queue given by an ordered list of tasks of the
instance. The initial queue meets the following conditions

. the task with the shorter period is queued earlier than the task with the
longer period,

. in case the periods are equal, the task with the longer processing time is
queued earlier than the task with the shorter processing time.

4.1.2 Reconstruction of Schedule out of the Queue

In order to reconstruct the schedule, we iterate through the queue and schedule
the tasks in the given order. Once the task is scheduled, its position can
not be changed. Each task is scheduled at the earliest possible time on the
dedicated machine so that

. its first execution does not start earlier than the first execution of any
already scheduled task on the same machine finishes,

. its execution does not collide with the execution of any other task on
the same machine (periodic execution of tasks is considered),

. its first execution does not start earlier than the first execution of its
predecessor finishes, if the predecessor of the task has already been
scheduled.

Note that this reconstruction does not always find a feasible solution (in
such case, the queue is slightly modified). It also allows relaxation of some
precedence constraints. Specifically, if there are two consecutive tasks queued
in reverse order, it may happen that the precedence constraint for these tasks
will not be fulfilled. To fix this, we can delay the execution of the successor
task as proposed in 3.1.

16



................................... 4.2. Level Algorithms

4.1.3 Properties of the Approach

The queue representation provides a simple way of modifying the schedule by
rearranging the queue. According to [HMH20], the reconstruction function
should guarantee that a minor adjustment of the queue of tasks causes only
a small change in the respective schedule, which is the advantage of this
approach. On the other hand, there is no bijection between the state space
of all possible schedules and the queues for a given problem instance. In
Figure 4.1, we provide an example of a simple schedule that can not be
represented by a queue in the proposed way. Also a small adjustment of

Figure 4.1: An example of a schedule that can not be represented by a queue.

the queue may result in no change in the schedule (for example permutation
of tasks consecutive in the queue that are pairwisely dedicated to different
machines and are not consecutive in any chain). As a result, this approach
may not be able to find a feasible solution for every feasible instance.

4.2 Level Algorithms

Several methods that can be slightly modified and used to find a solution of
the associated 2D bin packing problem have been mentioned in [Nv09]. The
purpose of original algorithms is to solve the offline strip packing problem. In
the strip packing problem, the strip (corresponding to the initial bin in our
concept) has only one fixed dimension. The other dimension (the height) is
not bounded. The general idea of the approaches is to sort the rectangles and
position them to horizontal planes of the strip. There are several different
variants of the algorithm, but we will focus on two of its basic variants.

4.2.1 The Next-Fit Algorithm

The next-fit algorithm processes one rectangle at the time. The first level
of the strip corresponds to its lower side. The first rectangle is positioned
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4. Finding a Feasible Solution...............................
to the left side of the first level – to the lower left vertex of the strip. Every
other rectangle is then positioned to the current level right next to the right
side of the previously positioned rectangle. If this is not possible due to the
insufficient width of the unoccupied space on a current level, a new level
is created in the height given by the highest rectangle and the currently
processed rectangle is placed to the left side of this level. The lower levels
are not revisited any more. The possible packing obtained by this algorithm
is depicted in Figure 4.2a.

4.2.2 The First-Fit Algorithm

The first-fit algorithm works very similarly to the next-fit algorithm. The
main difference is that it allows to revisit the lower levels with unoccupied
space. In general, the currently processed rectangle is placed leftmost possible
on the lowest level into which it fits. The possible packing obtained by this
algorithm is depicted in Figure 4.2b.

(a) : Next-Fit packing (b) : First-Fit packing

Figure 4.2: The examples of possible packings obtained by level algorithms on
the same list of rectangles.
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4.2.3 The Initial Order of Rectangles

As it was already mentioned at the beginning of this section, the initial order
of rectangles affects the results. We will further explore the most intuitive
variants, which are decreasing height and decreasing width ordering.

4.2.4 Algorithm Customization

Since the problem addressed in this work differs from the problem for which
the algorithms were originally designed, it is necessary to adapt the algorithm.

The strip unbounded in one dimension is replaced by a bin with with
specified finite dimensions. This fact allows us to create levels in the bin
in two different dimensions (or equivalently rotate the entire instance 90
degrees).

Apart from the no collision constraint, the 2D oriented offline strip packing
problem has no other requirements on the position of the rectangle. However,
the 2D bin packing problem associated to our original PSP requires meeting
the condition 3.13. Whenever we find a possible position for rectangle
according to the original algorithm, we consult it with the condition 3.13 and
shift the rectangle up (or to the right in the rotated case).

4.2.5 Implemented Versions of Level Algorithm

Given the options we propose above, we get eight possible versions of the
algorithm. The differences are in the basic strategy of positioning the rectan-
gles (either next-fit or first-fit), the order of rectangles (descending either in
height or in width) and the instance rotation. All eight options have been
implemented and tested. Note that in the rotated version of any strategy
with rectangles sorted by height in the descending order, there is no need
to consult the condition 3.13. It is automatically met due to the harmonic
property of heights.
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4.2.6 Properties of the Approach

The advantage of this approach is its simplicity. The methods can be easily
implemented. However, the algorithms are also not complete and therefore
do not provide a feasible solution for every feasible instance.

4.3 Guillotine Packing Approach

Section 2 in [KAL96] introduces an algorithm solving a special case of the
periodic scheduling problem where both periods of the given tasks and their
execution times are powers of 2. It is also mentioned that this algorithm can
be generalized for the case of the periodic scheduling problem where both
periods of the given tasks and their execution times are harmonic. According
to [KAL96], the time complexity of this special case with harmonic periods
and execution times is O(nl), where n = |T |, which is the number of the
tasks, and l =

∣∣∣{T (τ) | τ ∈ T
}∣∣∣, which is the number of different periods

of the tasks. Note that the addressed problem is a special case of 2D bin
packing considered in this work.

In this section, we state that the solution of problem considered in this
work is a special case of guillotine packing and propose a complete algorithm
based on [KAL96]. The guillotine cut is formally described in [FMT16].
The basic idea of this principle is to divide the bin into two sub-bins by an
edge-to-edge cut parallel to one of the sides of the divided bin. Iteratively,
any of the sub-bins created from the original bin may be also divided by
another guillotine cut. An example of bin packing that can and can not be
achieved by guillotine cuts is provided in Figure 4.3.

Figure 4.3: An example of bin packing that can be (left) and can not be (right)
achieved by guillotine cutting.
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4.3.1 Basic Idea of the Algorithm for PSP with Harmonic
Periods and Processing Times

If we consider the associated 2D bin packing problem for PSP with harmonic
periods and processing times (which is possible since it is a special case of
PSP considered in this work), the algorithm proposed in [KAL96] can then
be demonstrated as applying the guillotine cuts on the bin in order to divide
it into sub-bins and to place the rectangles into those sub-bins so that each
sub-bin contains either a single rectangle with no unoccupied space or an
unoccupied space only.

4.3.2 The Associated 2D Bin Packing Problem as a Special
Case of Guillotine Packing Problem

The case studied in this work is more general than the special cases considered
in [KAL96], because the processing times of the tasks are not harmonic.
However even this more general problem is a specific case of guillotine packing
problem. Let us show that if an instance of periodic scheduling problem
with harmonic periods considered in this work is feasible, the solution can be
obtained by guillotine cutting applied on the set of associated 2D bin packing
problems for single machines.
Lemma 4.1. If an instance of periodic scheduling problem with harmonic
periods on a single machine is feasible, the solution can be obtained as the
guillotine packing of associated 2D bin packing problem.

Proof. Let us consider an instance of a periodic scheduling problem with
harmonic periods on one machine. That is a set of tasks T = {τ1, . . . , τn},
with processing time p(τi) and period T (τi) for any τi ∈ T and a set of
machines containing only a single machine, M = {µ1}. All the tasks τi ∈ T
are assigned to machine µ1.

The 2D bin packing problem associated with the mentioned periodic schedul-
ing problem is given by a bin B of width W = min{T (τi) | τi ∈ T } and
height H = max{T (τi)|τi∈T }

min{T (τi)|τi∈T } ; and a set of n rectangles R = {R1, . . . , Rn}, each
rectangle Ri for i ∈ {1, . . . , n} having width of wi = p(τi) and height of
hi = max{T (τ)|τ∈T }

T (τi) . Let us denote H = {h1, . . . , hn} the set of all possible
heights of rectangles Ri ∈ R. By Property 3.3, we know that set of heights H
is harmonic. According [HH20], a feasible periodic schedule on one machine
defines a feasible 2D packing such that yi ≡ 0 (mod hi) for any i ∈ {1, . . . , n}.
Our periodic scheduling problem is feasible by assumption, so there are known
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4. Finding a Feasible Solution...............................
coordinates for lower left vertex of each rectangle Ri denoted (xi, yi) defining
a packing with no collision, such that yi ≡ 0 (mod hi) for any i ∈ {1, . . . , n}.

Without loss of generality, assume the sequence of rectangles {R1, . . . , Rn}
is sorted by its height in non-ascending order. By Property 3.2, we also
know the sequence is sorted in non-descending order by the periods of tasks
associated with corresponding rectangles. We will construct the sequence
of guillotine cuts that will separate the rectangles one by one in order of
sequence given above using induction on the cardinality of the set of the
heights of the rectangles. Note that the number of heights is the same as the
number of possible periods of the corresponding tasks.

(Trivial case.) If |H| = 0, the set of the heights of the rectangles is empty,
therefore also the set of rectangles R is empty and the set of tasks T is empty,
which contradicts the Problem Statement. Accordingly, such a case is not
possible.

(Base step.) If |H| = 1, all the rectangles are of the same height. According
to Property 3.4, there is at least one rectangle of height H. Consequently, all
the rectangles are of height H. We show that this case can be solved by a set
of vertical guillotine cuts.

By at most two vertical guillotine cuts of bin B made in coordinates of
vertical sides of rectangle R1 (that is x = x1 and x = x1 + w1), we divide
rectangle R1 from the rest of bin B. Notice that in case the side of the
rectangle coincides with any side of the bin, the corresponding cut is skipped.
All the possible positions of the first rectangle and the necessary cuts are
depicted in Figure 4.4. Since the packing is collision-free, the proposed cuts
do not interfere with other rectangles.

As a result, we are left with up to two smaller sub-bins of height H. Each
of the rectangles {R2, . . . , Rn} (if there are any) is positioned in one of the
new sub-bins. Although each of the sub-bins can be considered separately
(because the cuts made in one sub-bin do not affect the second sub-bin),
they can not be treated as a separate instance, because they might not
contain a rectangle of height H The coordinates of the lower-left vertex of
rectangles {R2, . . . , Rn} in the original bin B can be recomputed with respect
to the newly created sub-bins as follows.

If xi < x1 for any i ∈ {2, . . . , n}, the coordinates in the new sub-bin stay
the same, because the lower left vertex of the new sub-bin corresponds to
the lower left vertex of the original bin B. This is the case of sub-bin B1 in
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(a) : Cut x = x1 (b) : Cuts x = x1 and x = x1 + w1

(c) : Cut x = x1 + w1 (d) : No cuts

Figure 4.4: Possible positions of the rectangle R1 with the necessary cuts.

Figure 4.4a and the sub-bin B1 in Figure 4.4b.

If xi ≥ x1 + w1 for any i ∈ {2, . . . , n}, the new coordinates (x̃i, ỹi) in the
new sub-bin can be recalculated as

(
x̃i, ỹi

)
=
(
xi− (x1 + w1), yi

)
, because the

lower left vertex of the new sub-bin corresponds to the position (x1 + w1, y1)
in the original bin B, which is as a consequence of Property 3.4 equal to
(x1 + w1, 0) in bin B. This is the case of sub-bin B2 in Figure 4.4b and the
sub-bin B1 in Figure 4.4c.

Clearly, the case of x1 ≤ xi < x1 + w1 for any i ∈ {2, . . . , n} causes
a collision of rectangles R1 and Ri and therefore is not possible. It contradicts
the feasibility of given instance.

The process that was described for cutting the rectangle R1 from the bin
B can be repeated to cut any of the other rectangles Ri of the same height as
R1 from the relevant sub-bin in which Ri is located. So the case for |H| = 1
can be solved using only vertical guillotine cuts.

(Induction step.) To prove the induction step, suppose it is possible to
construct the sequence of guillotine cuts for all the instances having |H| = m.
Note that each instance has at least one rectangle having the height of the
bin as was shown in Property 3.4. Let’s show that we can also solve any
instance having |H| = m + 1.
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Consider an instance having |H| = m + 1. Suppose there are exactly

k rectangles having the same height as the first rectangle and the bin B.
According to Property 3.4, k ≥ 1. We have

H = h1 = h2 = · · · = hk > hk+1.

Applying the same reasoning as was used in the base step of this proof, we
can cut the first k rectangles using only vertical guillotine cuts. Note that

|{hk+1, . . . , hn}| = m,

but rectangle Rk+1 is of height hk+1 < hk = H, so we can not use the
induction hypothesis yet.

Cutting off the first k rectangles leaves us with a sequence of (n− k) rect-
angles to be cut and a sequence of sub-bins of height H. Let z ∈ Z+ denote
the number of sub-bins and {B1, . . . , Bz} the actual sequence of the sub-bins.

We already know, that hk > hk+1. Using Property 3.3, we get

∃q ∈ Z+, q > 1 : H = hk = q · hk+1.

At this point, we perform (q − 1) horizontal cuts on all of the sub-bins in
heights y = i · hk+1 for i = 1, . . . , (q − 1). That results in (q · z) new sub-bins
of height hk+1, which allows us to use the induction hypothesis.

We show by contradiction that none of the performed vertical cuts interferes
with any of the rectangles Rk+1, . . . , Rn. For contradiction, suppose that
exists i′ ∈ {1, . . . , (q − 1)} such that vertical cut y = i′ · hk+1 interferes with
a rectangle R′ ∈ {Rk+1, . . . , Rn}.

Denote h′ the height of rectangle R′. Since it has not been cut off yet, it is
positioned in one of the sub-bins of set {B1, . . . , Bz}, denote this sub-bin B′.
By performing only vertical guillotine cuts, the coordinate y′ of its lower side
in bin B could not be changed, so it is also y′ in sub-bin B′, the coordinate
of its upper side is y′ + h′.

The fact that vertical cut y = hk+1 · i′ interferes with a rectangle R′ can
be formally described as

y′ < hk+1 · i′ < y′ + h′. (4.1)

Since the sequence of rectangles was sorted in non-ascending order by their
heights, we can claim that h′ ≤ hk+1. Since the set of periods of tasks in the

24



.............................. 4.3. Guillotine Packing Approach

original problem was harmonic, the set of heights of the rectangles is also
harmonic according to Property 3.3, so we can claim that

∃c ∈ Z+ : hk+1 = c · h′.

Using the latter on (4.1), we get

∃c ∈ Z+ : y′ < c · h′ · i′ < y′ + h′. (4.2)

Further, we can use the condition (3.13) given by definition, saying that

∃d ∈ Z : y′ = d · h′

and transform the inequality (4.2) such that

∃c ∈ Z+ ∃d ∈ Z : d · h′ < c · h′ · i′ < d · h′ + h′. (4.3)

By dividing the inequality by positive integer h′ and subtracting d, we get

∃c ∈ Z+ ∃d ∈ Z : 0 < c · i′ − d < 1. (4.4)

Since c ∈ Z+, d ∈ Z and i′ ∈ {1, . . . , (q − 1)}, the expression c · i′ − d ∈ Z.
That means (4.4) is a contradiction, because there is no integer greater than
0 and smaller than 1 at the same time.

We have shown by contradiction, that the proposed horizontal guillotine
cuts on all the sub-bins {B1, . . . , Bz} in heights y = hk+1·i for i = 1, . . . , (q−1)
do not interfere with any of the rectangles Rk+1, . . . , Rn. Performing the
cuts results in dividing each sub-bin Bi for i ∈ {1, . . . , z} into q new sub-bins
of height hk+1. At this point, we can use the induction hypothesis. Note
that the coordinates of the lower left vertex of rectangles in the new sub-bins
need to be recomputed with respect to the new related sub-bins by a formula
(x̃, ỹ) =

(
x, (y mod hk+1)

)
.

We have shown that any solution of the 2D bin packing considered in this
work is a guillotine packing. The proof of Lemma 4.1 also shows how to use
guillotine cutting to separate the rectangles of any solution of any instance of
the 2D bin packing problem associated with the periodic scheduling problem
with harmonic periods. This procedure will be demonstrated in the following
example of packing depicted in Figure 4.5. Also, the notation of coordinates
of the lower-left vertex of a rectangle R with respect to a new sub-bin denoted
as (x̃, ỹ) will be only used when explaining its computation. At any point,
notation (x, y) will be used for the coordinates of the lower-left vertex of
rectangle R in the sub-bin B and will be referred to as the coordinates of R
in B.
Example 1. Figure 4.5 depicts a solution of a feasible instance of 2D bin
packing problem associated with a PSP with harmonic periods on a single
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Figure 4.5: An example of a guillotine packing of an instance of 2D bin packing
problem.

machine. We will show the sequence of guillotine cuts that divides bin B into
sub-bins containing either a single rectangle or an unoccupied space.

Bin B of height H and width L contains 9 rectangles. The sequence of
rectangles {R1, . . . , R9} is already ordered by its heights in non-ascending
order, so we can process the rectangles in this specified order.

There are 2 rectangles of the same height as bin B marked in Figure 4.6
in red color. The first coordinate of rectangle R1 in bin B is 0. The left

Figure 4.6: Cutting rectangle R1 by one vertical guillotine cut.

cut can be omitted, because it coincides with the left side of the bin B, so
the only cut needed to cut off rectangle R1 is x = x1 + w1 = 0 + w1 = w1
as shown in Figure 4.6 in a dashed line. By this vertical guillotine cut, we
obtain 2 new sub-bins as can be seen in Figure 4.7 – a sub-bin containing
rectangle R1 and nothing else (on the left), and sub-bin B1 (on the right).
The first mentioned sub-bin needs no further action, so it is marked by green
color. Sub-bin B1 contains all other rectangles, since the coordinates of the
lower left vertex of B1 are (w1, 0) with respect to the original bin B, the new
coordinates (x̃i, ỹi) of all the rectangles {R2, . . . , R9} in sub-bin B1 need to
be recalculated as (x̃i, ỹi) = (xi − l1, yi) for all i ∈ {2, . . . , 9}.

Next, we need to cut off rectangle R2 from sub-bin B1. The coordinates of
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Figure 4.7: Cutting rectangle R2 by two vertical guillotine cuts.

the lower left vertex of R2 in B1 are (x2, y2) = (x2, 0). For this, two vertical
guillotine cuts are needed, because none of its vertical sides coincides with
any of the sides of the sub-bin B1. The cuts x = x2 and x = x2 + w2 in
B1 are depicted in Figure 4.7 in a dashed line. Those cuts divide sub-bin
B1 from Figure 4.7 into 3 new sub-bins as can be seen in Figure 4.8. The

Figure 4.8: Cutting each sub-bin by two horizontal guillotine cuts.

coordinates of rectangles in the new sub-bin B1 need no recalculation, and the
first coordinates of the rectangles in the new sub-bin B2 need to be lowered
by x2 + w2.

At this point, all the rectangles of height H are positioned in a sub-bin
containing only that particular rectangle. Since h2 = 3h3, two horizontal
guillotine cuts need to be performed on each of the sub-bins B1 and B2.
The cuts are in heights y = h3 and y = 2h3 as depicted in dashed lines in
Figure 4.8. The result of this cutting can be seen in Figure 4.9. Making
2 horizontal cuts divides each of 2 sub-bins in Figure 4.8 into 3 new sub-bins,
so at this moment, we are left with 6 new sub-bins. Sub-bin B1 in Figure 4.8
was divided into sub-bins B1, B2 and B3 in Figure 4.9 and sub-bin B2 in
Figure 4.8 was divided into sub-bins B4, B5 and B6 in Figure 4.9. The
coordinates of all the rectangles with respect to the new sub-bins need to
be recalculated by formula (x̃i, ỹ)i =

(
xi, (yi mod h3)

)
for i ∈ {3, . . . , 9}.

At this moment, there are 4 rectangles having the same height as the new
sub-bins and we can proceed with vertical cuts.
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Figure 4.9: Cutting rectangle R6 by one vertical guillotine cut.

Both cuts needed to cut off the rectangle R3 coincide with vertical sides of
sub-bin B1 in Figure 4.9, so the cuts can be omitted and the rectangle R3
is already placed in a sub-bin containing nothing else. The same situation
occurs for rectangle R4 in sub-bin B6 and rectangle R5 in sub-bin B4 in the
same Figure. The only rectangle that needs a cut is R6 in B2 - its left side
coincides with the side of B2, so only cut x = x6 + w6 = w6 needs to be
performed on B2 from Figure 4.9. The situation after this cut is depicted in
Figure 4.10. Note that the coordinates of rectangle R8 in the new B2 need to
be recomputed as (x̃8, ỹ8) = (x8 − w6, y8).

Figure 4.10: Cutting each sub-bin by one horizontal guillotine cut.

Once again, all the rectangles of the same height as the sub-bins have
already been processed, so the horizontal cutting follows. Since h6 = 2h7,
only one cut y = h7 needs to be done on each of the sub-bins B1, B2 and B3
in Figure 4.10. The result of this cutting can be seen in Figure 4.11. We
get 3 · 2 = 6 new sub-bins, the coordinates of all rectangles R7, R8 and R9
need to be recomputed with respect to the new sub-bins from Figure 4.11 by
formula (x̃i, ỹ)i =

(
xi, (yi mod h7)

)
for i ∈ {7, 8, 9} and we can proceed with

vertical cuts.

Figure 4.11: Cutting rectangle R9 by one vertical guillotine cut.
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As we can see in Figure 4.11, rectangles R7 and R8 are perfectly fitted into
sub-bins B2 and B3 so that all of the sides of rectangles coincide with the
sides of sub-bins. The last cut needed is x = x9 on sub-bin B5 as depicted in
the dashed line in Figure 4.11 No recomputation of coordinates is needed after
this cut. The result can be seen in Figure 4.12. First 9 sub-bins in Figure 4.12

Figure 4.12: Each sub-bin contains either a rectangle with no unoccupied space
or an unoccupied space only.

contain exactly one rectangle each and no unoccupied space. The remaining
4 sub-bins B1, B2, B3 and B4 contain only unoccupied space, so the original
bin was divided into sub-bins of desired forms using only guillotine cuts. △

4.3.3 Search Algorithm

We have proved that the rectangles of the set of 2D bin packing problems
on single machine associated with the original periodic scheduling problem
with harmonic periods can be separated by guillotine cutting. In order to
be able to solve instances of the given problem, we propose an algorithm
determining the coordinates of the rectangles in the bins for each machine.
The algorithm is based on the depth-first search and generalizes the algorithm
from [KAL96].

At the beginning, we are given a set of n rectangles R = {R1, . . . , Rn}, each
rectangle Ri ∈ R has a specified width wi and height hi (those were derived
from the tasks of the original periodic scheduling problem with harmonic
periods dedicated to one of the machines). By formulas (3.10) and (3.11), we
can derive the width W and the height H of the initial bin B. The goal is to
find the coordinates (xi, yi) of each rectangle Ri ∈ R so that formula (3.13)
holds and no collision occurs, which means also formula (3.14) holds.
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State space

Each state s of the search space is specified by a tuple ⟨B, R̂⟩, where
B = {B1, . . . , B|B|} is an ordered sequence of currently available sub-bins and
R̂ = {R1, . . . , R|R̂|} is an ordered sequence of rectangles without a specified
position. Every rectangle Ri ∈ R̂ is specified by a tuple Ri = ⟨wi, hi⟩, where
hi denotes the height and wi the width of rectangle Ri for i ∈ {1, . . . , |R̂|}.
Every sub-bin Bi ∈ B is specified by a tuple Bi =

〈
Wi, Hi

〉
, where Hi and Wi

denote the height and the width of sub-bin Bi for i ∈ {1, . . . , |B|}. Heights
of all the sub-bins of a given state s are the same as the height of the first
rectangle R1 ∈ R̂, if such exists (otherwise, the heights correspond to the
minimal height of rectangles from R̂ in case there are any sub-bins left). Note
that the algorithm does not distinguish between two sub-bins of the same
dimensions (as well as two rectangles of the same dimensions).

Let us describe the search tree more closely. The initial state (and the root
of the search tree) is specified by a tuple s0 = ⟨B0, R̂0⟩, where the sequence
of sub-bins B0 = {B} contains only the original bin B =

〈
W, H

〉
and the

sequence of rectangles to be positioned R̂0 is the sequence of rectangles
from set R ordered primarily by their heights in non-ascending order and
secondarily (in case the heights are equal) by their widths in non-ascending
order.

Each forward edge form state si = ⟨Bi, R̂i⟩ to state si′ = ⟨Bi′
, R̂i′⟩ in this

search tree represents placing the first rectangle from R̂i = {Ri
1, . . . , Ri

|R̂i|}
into one of sub-bins of Bi. The rectangle is placed to the leftmost position
in the chosen sub-bin. If there is any unoccupied space left in this sub-bin,
a vertical cut is made, which divides the sub-bin into two new sub-bins - one
fully occupied by the rectangle and one fully unoccupied.

Therefore the i-th level of search tree represents a set of guillotine packings
of rectangles R0

1, . . . , R0
i to sub-bin B, |R̂i| = n − i, and if |R̂i| ≥ 2, then

R̂i′ = {Ri
2, . . . , Ri

|R̂i|} (otherwise rectangle Ri
1 was the last one to position

and R̂i′ is empty). The number of direct successors of state si = ⟨Bi, R̂i⟩
can be computed as the cardinality of set {Bi

k ∈ Bi | wi
1 ≤ W i

k}, a set of
sub-bins that the rectangle Ri

1 fits into. Note that {Bi
k ∈ Bi | wi

1 ≤ W i
k} is

a set – not a sequence – and also that any two sub-bins are considered to
be the same whenever they have the same dimensions. Hence, if Bi is a set
of any number of sub-bins with the same dimension, the cardinality of set
{Bi

k ∈ Bi | wi
1 ≤ W i

k} would be at most one. Direct successors of any state
are ordered in the same order as the sub-bins, in which we have placed the
rectangle Ri

1.
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Deriving the exact form of Bi′ from Bi is more complicated. Suppose
rectangle Ri

1 is to be positioned into sub-bin Bi
k′ (and it is possible to place

it there). In the statement below we will use the following notation:

.H i denotes the common height of sub-bins in Bi,. q denotes hi
1

hi
2
, q ∈ Z+ because of the harmonic property of heights of

rectangles,. B̂i′ denotes a sequence containing the same items as Bi′ , but possibly in
a different order,. Bi

new denotes a new sub-bin having width (W i
k′ − wi

1) and the same
height as sub-bins in Bi,. n×Bi

(k,n) denotes n new sub-bins having the same width as sub-bin Bi
k

and height Hi

n (assuming n ∈ Z+, n | H i ),. n×Bi
(new,n) denotes n new sub-bins having width (W i

k′ −wi
1) and height

Hi

n (assuming n ∈ Z+, n | H i ).

Then

B̂i′ =



{Bi
1, . . . , Bi

k′−1, Bi
k′+1, . . . , Bi

|Bi|}, if (|R̂i| = 1 ∧ W i
k′ = wi

1)
∨ (hi

1 = hi
2 ∧ W i

k′ = wi
1),

{Bi
1, . . . , Bi

k′−1, Bi
new, Bi

k′+1, . . . , Bi
|Bi|}, if (R̂i| = 1 ∧ W i

k′ > wi
1)

∨ (hi
1 = hi

2 ∧ W i
k′ > wi

1),
{q ×Bi

(1,q), . . . , q ×Bi
(k′−1,q),

q ×Bi
(k′+1,q), . . . , q ×Bi

(|Bi|,q)}, if (hi
1 > hi

2 ∧ W i
k′ = wi

1),
{q ×Bi

(1,q), . . . , q ×Bi
(k′−1,q), q ×Bi

(new,q),

q ×Bi
(k′+1,q), . . . , q ×Bi

(|Bi|,q)}, if (hi
1 > hi

2 ∧ W i
k′ > wi

1).

In order to get the exact form of Bi′ , sequence B̂i′ needs to be sorted by
width of sub-bins in non-ascending order.

An example of the proposed search tree for a specific instance can be found
in Figures 4.14 and 4.15 at the end of this chapter. The root of the tree is
on the top of in Figures 4.14. Each node is depicted as two columns, the
left column contains all available sub-bins and the right column all available
rectangles. Indices of both sub-bins and rectangles give their proper order.
The rectangle is in red color if it should be placed in current level, but there
is no suitable sub-bin. The dashed arrows at the bottom of Figure 4.14 and
at the top of Figure 4.15 depict the same edge.
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Completeness

The leaves of the described search tree in level n (which is the number of
rectangles) represent all guillotine packings meeting the following conditions:

∀Ri, Ri′ ∈ R, yi < (yi′ + hi′), yi′ < (yi + hi), xi < xi′ : hi ≥ hi′ , (4.5)

∀Ri, Ri′ ∈ R, xi = xi′ , hi = hi′ , wi > wi′ : yi < yi′ . (4.6)

∀Ri, Ri′ ∈ R, xi = xi′ , hi > hi′ : yi < yi′ , (4.7)

Condition 4.5 claims, that if we consider any rectangle and explore rect-
angles that are packed in the corresponding height in the original bin, all
rectangles of greater height are packed on its left side and all rectangles of
smaller height are packed on its right side. Conditions 4.6 and 4.7 claim that
rectangles having the same first coordinate are packed so that their order
from the bottom of the original bin to its top corresponds to the original order
of the rectangles. All of these conditions are consequences of the ordering of
rectangles (4.5, 4.7) and sub-bins (4.6, 4.7). Apart from that, there are also
conditions on the free space. It holds that on the left side of any rectangle
Ri ∈ R, there is no free space (which is a direct consequence of the fact, that
each rectangle is positioned on the leftmost place in chosen sub-bin).
Lemma 4.2 (Completeness). For any feasible instance of 2D bin packing
problem, there exists a feasible guillotine packing meeting conditions 4.5, 4.6,
4.7 and having all the unoccupied space on right side of all rectangles from R.

Proof. In order to prove the lemma, it is sufficient to provide a transformation
of arbitrary packing into such guillotine packing, that meets the required
conditions.

The process is iterative and handles the rectangles in the order given
by R̂ but at this time, the coordinates of rectangles are taken into account.
Each rectangle is first shifted horizontally so that 4.5 holds and also that
no unoccupied space is left on the left side of any sub-bin (the horizontal
order of the rectangles is correct). After this point, we perform only vertical
movements.

We iterate through R̂ once again and move rectangles vertically, so that
4.6 and 4.7 hold. Hence we want to keep the horizontal ordering, we perform
the shift on whole blocks of rectangles (all the rectangles on the right side of
the misplaced rectangle).
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Lemma 4.2 claims that an arbitrary packing of 2D bin packing problem can
be transformed into a guillotine packing meeting conditions 4.5, 4.6, 4.7 and
having all the unoccupied space on right side of all rectangles form R. Since
the proposed search tree traverses all possible guillotine packings meeting
conditions 4.5, 4.6, 4.7 and having all the unoccupied space on right side of
all rectangles form R, it is also the proof of completeness of the depth-first
search traversal of proposed tree structure.
Example 2 (Demonstration of the transformation from 4.2). Figure 4.13 depicts
the process of transformation of an arbitrary packing into such guillotine
packing which can be obtained via traversing the search tree.

Figure 4.13: Transformation of a 2D bin packing solution.

During the transformation, we iterate through the ordered sequence of
rectangles of the instance and shift some of them. The instance in Figure 4.13
contains 8 rectangles and their indices correspond to the order of R̂.

. Horizontal movements. (1) The first horizontally misplaced rectangle is R2, as can be
seen at the top left packing in Figure 4.13. Condition 4.5 is not
met for three pairs of rectangles – (R2, R3), (R2, R5) and (R2, R6).
Rectangle R2 is marked in green and all the rectangles positioned
on the incorrect side of R2 are marked in red. To fix the order of
the rectangles, R2 needs to be shifted by (x2 − x3) to the left and
rectangles R3, R5, R6 need to be shifted by w2 to the right.. (2) A similar case for R4 (in green at the top middle packing in
Figure 4.13), shift R4 by (x4 − x5) to the left and R5 and R6 (in
red on the same Figure) by w4 to the right.. (3) Rectangle R6 (in green at the top right packing in Figure 4.13)
has an unoccupied space on its left side and therefore needs to be
shifted by (x6 − x5 − w5) to the left.

The horizontal order of the rectangles has been corrected. Let us iterate
through the R̂ once more to fix the vertical order.
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. Vertical movements. (4) The first vertically misplaced rectangle is R3, as can be seen at

the bottom left packing in Figure 4.13. Condition 4.6 is not met
for the pair of rectangles – (R3, R4). Rectangle R3 is marked in
green and all the rectangles of the same height and greater width
having the first coordinate equal to x3 positioned lower than R3 are
marked in red. To fix the order of the rectangles, R3 needs to be
shifted by (y3 − y4) to the bottom, together with R7 and R8. On
the other hand, rectangle R4 needs to be shifted by (y3− y4) to the
top, together with R5 and R6.. (5) The second vertically misplaced rectangle is R6, as can be seen
at the bottom middle packing in Figure 4.13. Condition 4.7 is not
met for two pairs of rectangles – (R6, R7) and (R6, R8). Rectangle
R6 is marked in green and all the rectangles of the lower height
having the first coordinate equal to x6 positioned lower than R6 are
marked in red. To fix the order of the rectangles, R6 needs to be
shifted by (y6 − y7) to the bottom and rectangles R7 and R8 need
to be shifted by (y6 − y7) to the top.

The guillotine packing meeting the required conditions is depicted at the
bottom right part in Figure 4.13. Note that during transformation, the indices
of misplaced rectangles are always lower than the indices of rectangles with
which they are in conflict. That is caused by the fact that we iterate over R̂
in the given order and once we fix position of a rectangle in one dimension, it
is never broken. △

The example above also helps us to derive the proper formulae for two of
the shifts introduced in the proof of Lemma 4.2.

If condition 4.5 does not hold for some rectangle Ri′ , we first need to
identify the set of rectangles

R⋆
i′ = {Ri ∈ R | yi < (yi′ + hi′), yi′ < (yi + hi), xi < xi′ , hi < hi′}.

Denote x⋆
i′ = min{xi | Ri ∈ R⋆

i′} the minimal first coordinate of rectangle
in R⋆

i′ . Then rectangle Ri′ needs to be shifted by (xi′ − x⋆
i′) to the left and

all the rectangles from set R⋆
i′ need to be shifted by wi′ to the right. Note

that shifting rectangles in horizontal direction does not effect feasibility.

If condition 4.6 does not hold for some rectangle Ri, we first need to identify
the set of rectangles

R⋆
i = {Ri′ ∈ R | xi = xi′ , hi = hi′ , wi > wi′ , yi ≥ yi′}.
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Denote R⋆
i = arg min

Ri′ ∈R⋆
i

(yi′) the rectangle form R⋆
i having minimal second

coordinate. Then rectangle Ri needs to be shifted by (yi − y⋆
i ) to the bottom

and rectangle R⋆
i needs to be shifted by (yi − y⋆

i ) to the top. Together
with Ri, we also need to shift all rectangles Ri′′ such that xi′′ > xi and
yi ≤ yi′′ ≤ (yi + hi) by (yi − y⋆

i ) to the bottom and similarly, together
with Ri′ , we also need to shift all rectangles Ri′′ such that xi′′ > xi′ and
yi′ ≤ yi′′ ≤ (yi′ +hi′) by (yi−y⋆

i ) to the top. Hypothetically, moving rectangles
in vertical direction might effect feasibility, but since we are shifting only
rectangles of height hi = hi′ or smaller by a multiple of hi, 3.13 still holds
and even the shifted packing is feasible.

If condition 4.7 does not hold for some rectangle Ri, the situation is similar
to the previous case, but more complex since we have to consult 3.13. We
need to identify the set of rectangles

R⋆
i = {Ri′ ∈ R | xi = xi′ , hi > hi′ , yi ≥ yi′}.

Denote

y⋆
i = max{ŷ ∈ Z+ | ŷ ≡ 0 (mod hi), ∀Ri′ ∈ R⋆

i : ŷ ≤ yi′}.

Then rectangle Ri needs to be shifted by (yi − y⋆
i ) to the bottom. Together

with Ri, we also need to shift all rectangles Ri′′ such that xi′′ > xi and
yi ≤ yi′′ ≤ (yi + hi) by (yi− y⋆

i ) to the bottom. To avoid collision, we need to
shift rectangles Ri′′ such that xi′′ ≥ xi and y⋆

i ≤ yi′′ ≤ (y⋆
i + hi) by (yi − y⋆

i )
to the top.

4.3.4 Properties of the Approach

The algorithm discussed in this section is complete, which is an advantage. At
the same time, it is complicated. The depth-first search algorithm is known
to run in O(|V | · |E|) time, where |V | is the number of vertices and |E| is the
number of edges of the search graph. Our search tree has n + 1 levels and
each vertex has at most H descendants. From that point of view, the time
complexity of the worst case might be exponential in number of rectangles.
On the other hand, the algorithm does not traverse the whole search tree
every time, feasible solution can be constructed from any leaf in the n-th
level. Also, the root is known to have only one descendant, so the above
approximation is probably a loose upper bound.
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Figure 4.14: An example of search tree of proposed DFS (part 1).
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Figure 4.15: An example of search tree of proposed DFS (part 2).
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Chapter 5

Finding an Optimal Solution

In the previous chapter, we have discussed finding a feasible solution for the
presented variant of PSP. In this chapter, we will concentrate on finding the
optimal solution. [HMH20] proposes a local search heuristic for this particular
PSP based on the Queue Approach described in section 4.1. We provide an
overview of this heuristic. Then, we also provide description of local search
method called the tabu search and use this method to search for the optimal
solution of given PSP.

5.1 Overview of Existing Local Search Heuristic

As we have already mentioned, [HMH20] proposes a local search heuristic
which works with the queue of tasks described in section 4.1. The heuristic
is presented in Algorithm 1. The algorithm works in iterations. At first it
initializes a queue of tasks Q, reconstructs a schedule (as was described in
subsection 4.1.2) and determines the degeneracy of current solution δ(Q).

At every iteration, we call the Neighbor function, which takes the current
queue of tasks Q and generates a random neighbouring queue Q′. Based on
queue Q′, we reconstruct a new schedule and determine its degeneracy δ(Q′).
If the degeneracy of the new schedule is lower or equal to the degeneracy
of the previous schedule based on queue Q, we set the current queue to Q′.
Otherwise, current queue stays the same and we proceed to the next iteration.
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Algorithm 1 Local search heuristic [HMH20]

1: sact ← InitializeSolution()
2: δact ← ReconstructAndComputeDegeneracy(sact)
3: if δact = 0 then return sact
4: while elapsedTime < timeLimit do
5: snew ← DeriveNewSolution(sact)
6: δnew ← ReconstructAndComputeDegeneracy(snew)
7: if δnew ≤ δact then
8: sact ← snew
9: δact ← δnew

10: if δnew = 0 then return snewreturn sact

The algorithm terminates either when the time limit expires or when it finds
a schedule with degeneracy of 0, which can not be further optimized. [HMH20]
claims that this solution solves on average 92% of test cases optimally or
almost-optimally.

Due to the design, the algorithm is not able to escape the local optima,
because it always proceeds to better solution. Therefore, the process needs
to be restarted multiple times to reach the mentioned results.

5.2 Tabu Search

Tabu search (TS) is a single-solution local search algorithm introduced in
[Glo86] and described and explained in detail in [Glo90]. It is a metaheuristic
with memory allowing to escape the local optima. Its main idea is to avoid
the states that have been visited recently or the ones that have the same
features as the visited states. The only exception is made when there is an
aspiration for a better result. To remember the recently visited states, the
algorithm uses a tabu list – a queue of restricted features. To evaluate if it is
worth breaking the restriction, a condition called aspiration criterion is used.

The basic run of the tabu search algorithm is depicted in Figure 5.1. In the
beginning, the best solution so far ŝ and an empty tabu list are initialized.
To enter the main loop, a current solution is needed. Therefore the input of
the algorithm is an initial solution, which is also considered to be the best
solution so far ŝ. At first, a list of neighbor solutions is derived from the
current solution. The neighbors are the candidates for the current solution of
the following iteration. All the candidates are evaluated and confronted with
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Figure 5.1: The main loop of the algorithm [Glo90].

a tabu list and aspiration criterion. Out of the suitable neighbors, the best
one is picked. In case the algorithm did not meet the terminal condition, the
current move needs to be recorded to the tabu list, the aspiration criterion is
updated and the chosen neighbor is considered to be the current solution of
the next iteration. Also, the best so far solution ŝ might be updated. If the
terminal condition is met, the run ends and the output is the best solution
so far ŝ.

5.2.1 Neighbor Function

The very first step in the loop is generating a list of neighbors from a current
solution. A state is considered to be the neighbor of the current solution if it
is somehow similar to it. Its particular concept depends on the given problem
and implementation.
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5. Finding an Optimal Solution ..............................
5.2.2 Tabu List

There are many parameters that need to be set during the implementation of
the tabu search. Among them are the properties of the tabu list, such as the
structure of its items and its length.

Whenever we move from the current solution to its neighbor, we should
track the features of the change in a new tabu list item. Therefore the nature
of the change should be captured well by the selected feature. We also have
to keep in mind that every tabu list item possibly decreases the number
of admissible solutions in the state space. If we pick a feature that is too
restrictive, we might come across the situation that no neighbor of the current
solution is admissible.

The length of the tabu list indicates the memory range of the algorithm.
Technically, the tabu list is a queue of the given maximal length. In case of an
attempt to insert an item that would increase its length over the maximum,
the earliest inserted item is removed from the queue. If the list is too short,
the run of the program is more likely to loop and get stuck in the local optima.
On the other hand, if the tabu list is too long, it might prevent the program
from returning to the promising part of state space.

5.2.3 Picking the Best Neighbor

One of the most computationally demanding parts of the whole algorithm
might be the choice of the best neighbor n⋆. The process is depicted in
Figure 5.2.

We iterate over the list of neighbors. At first, the current neighbor is
evaluated. Its value is compared with n⋆ – the best neighbor found so far
within the current round of the main loop. If the value of the current neighbor
is worse than the value of n⋆, we continue to the next iteration (if there is any
left). Otherwise, we proceed to consult the tabu list. The current neighbor is
checked if it contains any feature stored in the tabu list. In case it does not,
we claim that the current neighbor is so far the best admissible neighbor of
this main loop. The current neighbor becomes the new n⋆ and we continue
to the next iteration. Otherwise, we found out that the current neighbor has
some restricted feature and we can consider it to be admissible (and in this
phase also the best admissible neighbor of this main loop found so far, the
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Figure 5.2: Selection of the best neighbor [Glo90].

new value of n⋆) if and only if the aspiration criterion is satisfied. After that,
we can once more continue to the next iteration or step out of the cycle.

As we might have already noticed, the aspiration criterion is a way to
overcome the restrictions given by the tabu list. Hence it is important to
specify it in a way that corresponds to the nature of the given task. The
aspiration criterion is usually related to the calculation of the solution value.

5.2.4 Terminal Condition

The terminal condition in the main loop is not strictly specified and might be
also defined in several ways based on the specific problem. The program might
be limited by time, the number of iterations, etc. The terminal condition
might be also met if the program found a solution that is known to be optimal.
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5.3 Tabu Search with the Queue Approach

Representation of the schedule by the queue brings the possibility of simple
manipulation and fast generation of neighbouring solutions, which seems to be
a good choice for tabu search, since it searches the whole set of neighbouring
solutions in every iteration. Therefore, we tried to use the queue representation
of schedule in tabu search method. This section provides details on the
implementation.

5.3.1 Generating Neighboring Solutions

When generating the list of neighbors from a current solution given by a queue,
we include the queues derived from the current solution

– by swapping two of its tasks,

– by swapping tasks of a chain so that they are ordered according to the
given precedence.

Note that at least two tasks changed their positions in the queue. The size of
the neighbourhood is given by formula

(n
2
)

+ |C|.

5.3.2 Tabu List Items

To track the changes of the current solution during the program run in the
tabu list, we propose to use the original position of the swapped tasks in the
task queue with respect to the adjacent tasks. Each tabu list item is therefore
represented by two triplets of tasks,

{(pred1, moved1, succ1), (pred2, moved2, succ2)},

where

– moved1 and moved2 denote the tasks that changed their positions,
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– pred1 and pred2 denote the tasks that were directly in front of the tasks
moved1 and moved2 respectively in the original queue,

– succ1 and succ2 denote the tasks that were directly behind the tasks
moved1 and moved2 respectively in the original queue.

If any of the tasks which changed their position was the very first or the very
last task in the queue, we use keep predi or succi respectively empty. If there
are more tasks than two that changed their positions, we use the first two of
such tasks.
Example 3. To track the change from queue

(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8)

to the neighbor queue

(τ1, τ5, τ3, τ4, τ2, τ6, τ7, τ8),

we insert
{(τ1, τ2, τ3), (τ4, τ5, τ6)}

into tabu list. △
Example 4. To track the change from queue

(τ1, τ5, τ3, τ4, τ2, τ6, τ7, τ8)

to the neighbor queue

(τ6, τ5, τ3, τ4, τ2, τ8, τ7, τ1),

we insert
{(null, τ1, τ5), (τ2, τ6, τ7)}

into tabu list. △

5.3.3 Tabu List Length

The research of available literature on determination of the tabu list length did
not show any paper addressing optimal tabu list length for PSP. Experiments
described in [ZSRQ01] showed a positive correlation of a proper tabu list
length and the ratio of number of jobs to the number of machines in the
relative job-shop scheduling problem (JSSP).
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5.3.4 Aspiration Criterion

As the aspiration criterion, we use a condition based on the degeneracy of
the current schedule. If value of degeneracy of the current schedule is strictly
lower than the value of degeneracy of ŝ (which is the best found solution so
far within the whole program run), the restrictions given by the tabu list can
be broken.

5.3.5 Terminal Conditions

The terminal condition of our algorithm is the time limit of three minutes,
program also terminates if it finds a schedule having degeneracy equal to zero,
because such value can clearly not be further optimized.

5.3.6 Proposed Modification

During the algorithm implementation, the tests showed that the program is
able to perform only a few iterations in the given time limit of three minutes.
The majority of time was spent on reconstruction of the schedules from
a queue. Testing one specific instance, the algorithm presented in [HMH20]
performed about 21 000 iterations in the given time limit. The implementation
of tabu search on the other hand performed only a few iterations on the very
same instance.

In [KTTH06], several methods are proposed to deal with this issue. The
random neighborhood method (in which the tasks that can be swapped
are randomly chosen and their number is bounded) and the first improving
neighborhood method (where we go for the first neighbor having a smaller
degeneracy) were implemented.
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5.4 Search Algorithm from [HMH20] with
Aspiration Criterion

Since the tabu search algorithm implementation spends too much time on
neighbourhood generation, we propose to enclose the tabu list and the aspi-
ration criterion to the Local search heuristic introduced in [HMH20]. The
original Local search heuristic is described in algorithm 1. Its modification
consists of recording the moves to the tabu list and consulting the tabu list
and the aspiration criterion in case equality occurs on line 7.
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Chapter 6

Experimental Part

In this chapter, we provide the experimental results on the implemented
versions of algorithms mentioned in this work. In order to test the quality of
the implemented algorithms, a set of benchmark tests was randomly generated
by the same instance generator as was used in [HMH20]. At first, let us
describe the nature of generated test instances. Every algorithm is given time
limit of 3 minutes.

6.1 Generated Test Instances

We test the implementation on 7 different sets of 800 instances. Each particular
instance is feasible and its degeneracy is equal to 0. The number of tasks of
each instance is at least 100 and at most 9 000. Each set contains

. 200 instances having T (T ) = {20, 21, 22, . . . , 210} and |M| = 5,. 200 instances having T (T ) = {20, 21, 22, . . . , 210} and |M| = 10,. 200 instances having T (T ) = {2, 10, 20, 100, 200, 1 000, 2 000, 4 000}
and |M| = 5,. 200 instances having T (T ) = {8, 16, 64, 256, 1 024, 2 048} and |M| = 5.
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6. Experimental Part...................................
Each set can be further described by the lower and upper bound of the chain
length – min{|Ck| | Ck ∈ C} and max{|Ck| | Ck ∈ C} respectively – and the
upper bound of machine utilization:

σmax = max
µ∈M

∑
τ :m(τ)=µ

p(τ)
T (τ) .

The exact values of those characteristics are given in Table 6.1

σmax min{|Ck| | Ck ∈ C} max{|Ck| | Ck ∈ C}
Set 1 0.8 5 15
Set 2 0.9 2 5
Set 3 0.9 5 15
Set 4 0.9 15 25
Set 5 0.93 5 15
Set 6 0.96 5 15
Set 7 1 5 15

Table 6.1: Parameters of the generated test sets [HMH20]

In addition the utilization of 95% generated instances in sets 1–6 is at the
same time greater or equal to (σmax − 0.2). All the instances in set 7 have
utilization greater or equal to 0.96 and at least 90% of them have utilization
equal to 1.

6.2 Test Results

6.2.1 The Comparison of Algorithms for Feasibile solution

Table 6.2 provides the results in absolute numbers of instances, because the
differences between algorithms are significant.
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L1 L2 L3 L4 L5 L6 L7 L8 Q DFS
Set 1 16 16 261 363 16 16 261 530 793 799
Set 2 8 8 117 117 8 8 117 242 785 795
Set 3 10 10 93 118 10 10 93 242 795 792
Set 4 5 5 108 118 5 5 108 234 791 798
Set 5 6 6 69 62 6 6 69 138 788 798
Set 6 8 8 52 47 8 8 52 82 783 793
Set 7 1 1 6 7 1 1 6 7 436 782∑

54 54 706 832 54 54 706 1475 5 171 5 557

Table 6.2: Number of solved instances (up to 3 minutes) by test set and algorithm.
L1 – Next-fit, rectangles ordered by width; L2 – Next-fit, rectangles ordered
by height; L3 – Next-fit, rectangles ordered by width, rotated; L4 – Next-fit,
rectangles ordered by height, rotated; L5 – First-fit, rectangles ordered by width;
L6 – First-fit, rectangles ordered by height; L7 – First-fit, rectangles ordered
by width, rotated; L8 – First-fit, rectangles ordered by height, rotated; Q –
Reconstruction from queue of tasks; DFS – Depth-first search.

6.2.2 The Comparison of Algorithms for Optimality

SA SA with AC TS
Set 1 0.0 0.41 14.1
Set 2 10.4 1.29 17.2
Set 3 0.1 3.29 49.9
Set 4 1.5 5.11 7.1
Set 5 2.7 4.39 47.0
Set 6 17.7 11.02 17.9
Set 7 50.8 129.23 90.3

Table 6.3: The comparison of an average value of degeneracy on instances solved
by all compared algorithms SA – the original search algorithm from [HMH20];
SA with AC – search algorithm from [HMH20] with the usage of aspiration
criterion; TS – tabu search with queue implementation.
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Chapter 7

Conclusions

According to the results of feasibility algorithms tests depicted in Table 6.2,
we can conclude that, given any other settings, first-fit algorithm solves at
least as many instances as next-fit algorithm on any test set. From more
detailed results, we could even claim, that this holds for every tested instance
(which meets the assumption). Out of the tested level algorithms, rotated
first-fit algorithm with rectangles ordered by height solves the largest number
of test instances. Also, the level algorithms return the results immediately.
On the other hand, the queue algorithm with reconstructive function and the
depth-first search algorithm run longer, the depth-first search found a feasible
solution in more than 99 % of instances.

Consulting the results of tested algorithms for finding the optimal solution,
none of the tested algorithms returns strictly better results then the others.
in all tested sets of instances. The local search algorithm gets still closer to
the optima. Consulting with the tabu list and aspiration criterion helps only
in some sets of instances.

In this work, we have studied a specific variation of PSP with precedence
constraints. We have shown and demonstrated some of its important prop-
erties. We have also described a relation between the addressed PSP and
a specific variation of 2D bin packing problem. We have proposed several
approaches for finding a feasible and optimal solution. We have implemented
some of the proposed algorithm and tested their performance.

As further work, it might be interesting to dig deeper into the guillotine
packing properties.
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7. Conclusions .....................................
I consider the introduction of dept-first search algorithm finding the feasible

solution in over 99 % of benchmark instances to be the greatest contribution
of this work.
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Appendix A

Attachments

. psp_queue.zip – a modified source code from Richard Hladík containg
his implementation of Search Algorithm from [HMH20], my proposed
modifications and my implementation of tabu search.. pspFeasible.zip – a source code of implemented feasible algorithms.
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Appendix B

Nomenclature

Indices

i an index of a task
i ∈ {1, . . . , n}

j an index of a machine
j ∈

{
1, . . . , |M|

}
k an index of a chain

k ∈
{
1, . . . , |C|

}
l an index of a task in chain Ck for any k ∈

{
1, . . . , |C|

}
l ∈

{
1, . . . , |Ck|

}
Operators

δ(s) degeneracy of schedule s
δ : (s : T 7→ Z+

0 ) 7→ Z+
0 ∪ {+∞}

δs(Ck) degeneracy of chain Ck with respect to schedule s
δs : C 7→ Z+

0

E(τi, z) the time interval of the z-th execution of task τi ∈ T , z ∈ Z+

E(τi, z) ⊆ R+
0

H(Bj) a height of bin Bj

H : B 7→ Z+

h(Rτ ) a height of rectangle Rτ

h : R 7→ Z+
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B. Nomenclature ....................................
L(Ck) the end-to-end latency of chain Ck

L : C 7→ Z+

m(τi) a machine dedicated to task τi

m : T 7→ M

p(τi) a processing time of a task τi

p : T 7→ Z+

s(τi) a starting time of task τi (schedule)
s : T 7→ Z+

0

s∗(τi) the optimal starting time of task τi

s∗ : T 7→ Z+
0

T (τi) a period of task τi

T : T 7→ Z+

T (Ck) the common period of tasks in chain Ck

T : C 7→ Z+

W (Bj) a width of bin Bj

W : B 7→ Z+

w(Rτ ) a width of rectangle Rτ

w : R 7→ Z+

Sets

B a set of bins

C a set of chains

H a set of heights of the rectangles

M a set of machines

R a set of rectangles

Rj a set of rectangles to be positioned in bin Bj

T a set of tasks

Tµj a set of tasks assigned to machine µj

T (T ) a set of all possible periods of tasks τi ∈ T

Other symbols

µj a machine
µj ∈M

τ an arbitrary task from a domain specified in the text
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τi a task
τi ∈ T

B a bin
B ∈ B

Bj a bin
Bj ∈ B

Ck a chain
Ck ∈ C

C l
k the l-th task of chain Ck

C l
k ∈ Ck

H a height of bin B
H ∈ Z+

hi a height of rectangle Ri

hi ∈ Z+

n the cardinality of set T

n⋆ the best neighbour in tabu search

Q a queue of tasks τi ∈ T

Rτ a rectangle associated to task τ
Rτ ∈ R

Ri a rectangle
Ri ∈ R

W a width of bin B
W ∈ Z+

wi a width of rectangle Ri

wi ∈ Z+

xτ the horizontal coordinate of the lower-left vertex of rectangle Rτ in a
specified bin

xi the horizontal coordinate of the lower-left vertex of rectangle Ri in a
specified bin

yτ the vertical coordinate of the lower-left vertex of rectangle Rτ in a
specified bin

yi the vertical coordinate of the lower-left vertex of rectangle Ri in a
specified bin
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