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Annotation

This thesis focuses on developing a method for avoiding collisions between multiple
Unmanned Aerial Vehicles (UAVs) flying in a shared space. The aim to design and
implement a decentralized technique for collision avoidance and verify it using sim-
ulated experiments. The thesis develops a probabilistic motion prediction method
and uses a re-planning algorithm to fly collision-free trajectories around obstacles
and other UAVs.
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Abstract

A system composed of multiple UAVs can solve several complex tasks which are
either difficult or unfeasible with a single UAV. Safe and fast operation are crucial
when multiple UAVs are simultaneously working in a shared environment. This thesis
focuses on studying and developing a method for collision-free trajectory planning
by a multi-UAV system. The proposed method uses sensors on-board the UAV to
create an online map of the environment and detect the motion of other UAVs.
These detections are employed to predict the future trajectory of the UAVs. The
map along with the predicted trajectories is used to design a collision-free trajectory
to a pre-specified goal. The proposed method is decentralized and does not require
any prior information about the environment or other UAVs which makes it easier
to scale to large multi-UAV systems. The method is also independent of any external
localization infrastructure making it ideal for real-world applications.

Keywords Unmanned Aerial Vehicles, Multi-UAV Path Planning, Collision Avoid-
ance, Decentralized Systems, Motion Prediction
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Abstrakt

Systém slozeny z nékolika bezpilotnich helikoptér muze fesit komplexni tikoly které
jsou slozité nebo nékdy i neproveditelné jedinou helikoptérou. Rychla a spolehliva
reakce je kriticka pro jejich nasazeni nékolika helikoptér ve sdileném prostoru. Tato
prace je zaméfend feSersi a vyvoj metod pldnovani bezkoliznich trajektorii pro
skupinu bezpilotnich helikoptér. Prezentované feseni vyuziva senzory umisténé na
palubé helikoptéry pro vytvoreni aktudlni mapy prostiedi a pro detekci pohybu
ostatnich helikoptér. Série detekei jsou poté pouzity pro predikci jejich budoucich
trajektorii. Mapa prostiedi dohromady s predikcemi pohybu je vyuzita pro nalezeni
bezkolizni trajektorie do cilové pozice. Prezentovand metoda je decentralizovand a
nevyzaduje zadnou pfedem zndmou informaci o prostiedi nebo o ostatnich robotech
v tymu. Diky tomu je metoda vhodné i pro velké multi-robotické systémy. Dalsi
vyhodou navrhovaného feSeni je nezavislost na externi lokaliza¢ni infrastrukture.
Tato nezavislost vytvaii dobry pfedpoklad pro jeho redlné nasazeni.

Kliéova slova bezpilotni helikoptéry, multi-robotické planovani, vyhybani se
kolizim, decentralizované systémy, predikce pohybu
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Abbreviations

SCP Sequential Convex Programming
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Chapter 1

Introduction

Humans have been designing and developing increasingly complex machines for sev-
eral centuries. The Industrial Revolution boosted their development to facilitate the life of
humans in various ways. Cars and trains transformed the ways of travel, and the assembly
lines of the big industries revolutionized production. However, most of these machines were
merely mechanical apparatus with no autonomy and always relied on the expertise of human
operators. The Information Revolution in the last century brought the age of robots. Since
their conception, robots have been designed to help reduce human effort. The last few decades
have seen rapid improvement in robot autonomy and design. They have also been readily ac-
cepted across industries and daily public life. Several examples like delivery!, extraterrestrial
exploration?, and even medical surgery® are shown in Figure 1.1.

Figure 1.1: Examples of autonomous robots used for delivery, extraterrestrial exploration, and
even medical surgery.

Although different robots are suited for different applications, UAVs have gained im-
mense popularity in the last decade due to their wide range of real-world applications. Their
use is no more limited to the research community but has seen acceptance across several indus-
tries. Unlike ground robots, these aerial vehicles can quickly move through different terrains
and environments. They can also travel more considerable distances in a shorter time due to
the absence of obstacles in the air. These abilities, combined with the small form factor of
modern UAVs, have contributed to the success of the UAV-based systems. Figure 1.2 shows

applications of UAVs in delivery?, surveillance® and Mars exploration®.

In most applications, UAVs are primarily used as standalone devices, often controlled
by a pilot who navigates the UAV according to the mission requirements. Commercial plat-

"https://www.serverobotics.com/
2https://mars.nasa.gov/resources/
3https://www.avatera.eu/en/home
“https://www.amazon.com/Amazon-Prime-Air/
SReuters

Shttps://mars.nasa.gov
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Figure 1.2: Application of UAVs in delivery, surveillance and Mars exploration.

forms developed by DJI?, Skydio® and Autel Robotics ¢ can be successfully used for such
applications. However, in applications like Search-And-Rescue (SAR) missions [13], [16], [21],
[33] and [31], using multiple UAVs simultaneously can drastically reduce the time needed
to scout a particular region. Like a team of firefighters or emergency respondents, a team
of UAVs can search large areas of disaster-stricken region for fires [25], [27], animals [19],
[29], and humans [18]. Multi-UAV systems can also provide rich and extensive data about an
environment, which is crucial for monitoring hazardous environments [35] or missions where
redundant data is needed for analysis [12].

When multiple UAVs are working simultaneously in a shared environment, avoiding
collisions is crucial for safe flight. However, collision avoidance can become a challenge for
human pilots with the increasing number of UAVs in the environment. Safe and collision-free
motion often requires autonomous mapping and planning algorithms for these multi-UAV
systems. Although the commercial platforms from Skydio and DJI are equipped with collision
avoidance and mapping algorithms, their application in multi-UAV settings is minimal. One
standard method to avoid collisions is to share the position and future trajectory among all the
UAVs in the system. Such a system needs a common reference frame like Global Navigation
Satellite System (GNSS) to localize all the UAVs. However, obtaining reliable GNSS signal is
challenging in many real-world scenarios involving forests and cluttered environments. Relying
on such a centralized infrastructure can create a single point of failure, which may lead to
the failure of the entire system. Recent progress in relative pose estimation of UAVs has led
to the development of decentralized motion planning methods which do not rely on GNSS.
Such approaches continuously synchronize the relative reference frames among all the UAVs
by sharing information over a communication network.

Although relative pose estimation makes the multi-UAV system independent of the
GNSS localization infrastructure, synchronization of reference frames still relies on high band-
width communication. However, radio communication is often limited by bandwidth and is
prone to errors. Also, communication range can become a huge bottleneck when scaling the
multi-UAV system to a large size. Thus, several solutions in the literature focus on carefully
selecting the content and amount of information to communicate over the shared network.
However, even when the UAVs can communicate the entire future trajectory, it is challenging
to guarantee collision avoidance in a decentralized system. Since each UAV generates an inde-
pendent motion plan, it is challenging to synchronize their future motion. Online replanning is
often used to react to the changes in the future trajectory of other UAVs, but it is insufficient
to ensure safety.

"https://www.dji.com/cz/mavic-3
Shttps://www.skydio.com/skydio-2-plus
https://auteldrones.com

CTU in Prague Department of Computer Science
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This thesis aims to design a decentralized motion planning method for multi-UAV sys-
tems with limited use of communication. The proposed system uses relative pose estimation
along with shared information between UAVs to modify the future motion plan of each UAV.
We explicitly model the uncertainty in the future motion of the UAVs to mitigate the stochas-
tic nature of the real world. The independence from GNSS makes the system suitable for many
challenging missions involving forests and cluttered urban environments. The limited commu-
nication requirement also opens the possibility of scaling the system to a large team of UAVs.

The remainder of the thesis is organized as follows. The introduction chapter explores
state-of-the-art methods and ends with a brief list of contributions. Chapter 2 describes the
problem statement and the necessary assumptions. This is followed by a detailed description of
the method in Chapter 3 and its application to real-time collision avoidance in Chapter 4 and 5.
Chapter 6 presents the experimental analysis of the proposed method and its verification in
different scenarios. A brief comparison with the existing literature is presented in Chapter 7.
The thesis concludes with remarks on the successfully achieved tasks and ideas for future
work.

1.1 Related works

Multi-robot cooperation is a well-studied problem in the literature due to its varied
applications in several real-world scenarios. One of the crucial properties of a multi-robot
system is planning collision-free paths through the environment. This section explores and
analyzes the existing methods from the literature.

1.1.1 Centralized collision avoidance

Several different approaches have been proposed to solve this collision avoidance prob-
lem. One of the most common methods is centralized path planning. In such planning tech-
niques, a central motion planner with information about the state of the robots and the envi-
ronment plans collision-free paths for all the robots. [23] presented a centralized method for
multi-robot trajectory generation under non-convex environmental constraints. They formu-
late trajectory planning as a single optimization problem to obtain collision-free trajectories
for all the robots. Similarly, the authors in [28] also solve the trajectory generation prob-
lem as a centralized optimization task. However, they consider higher-order dynamics of the
robots rather than simpler models used in [23]. Although these methods optimize for several
cost functions to account for time-optimality, trajectory smoothness, and collision avoidance,
they do not consider the physical properties of UAVs. The work presented in [22] explicitly
design the method for UAVs with a multi-level software pipeline. They address the issues
related to solving the optimization problem in real-time and downwash from the flying UAVs.
The methods in [23], [28] and [22] solve the multi-robot collision avoidance problem and, the
resulting trajectories are time and space optimal. However, they rely on the assumption of
having precise information about the states of all the UAVs and precise trajectory tracking.
Although it is possible to obtain a reasonably precise state estimate using GNSS or Real-time
Kinematic (RTK), precise trajectory tracking is challenging to achieve with flying UAVs.
Moreover, these methods are not designed for real-time re-planning, which is crucial for safe
flight in any real-world mission.

CTU in Prague Department of Computer Science
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1.1.2 Decentralized and distributed collision avoidance

The centralized path planning techniques rely on a central system (external source or
a robot) to plan the desired paths for all the robots. As the failure of the central system can
stop the entire mission, it can be challenging to deploy such systems in a real-world environ-
ment. Several methods use distributed and decentralized techniques to avoid this centralized
bottleneck. In a decentralized multi-robot system, the robots do not rely on a central au-
thority. The work presented in [32] decouples the centralized trajectory optimization problem
into individual problems for each robot. The optimization problem on each robot is then
solved using Sequential Convex Programming (SCP) with constraints relaxation to find fea-
sible solutions in a shorter time. [11] also presented an online, distributed Model Predictive
Control (MPC) method for collision-free trajectory planning. The MPC is coupled with a re-
planning technique to avoid collisions caused by disturbances or errors in trajectory tracking.
However, they use event-triggered re-planning with no checks for collisions after re-planning.
Both these works use B-splines to represent the trajectories of the robots or UAVs, which is
faster than computing a trajectory directly in R3. To make the trajectory computation faster,
the authors in [1] present a decentralized multi-robot trajectory planner which uses the trajec-
tory representation from [14]. They show that using [14], the computation time for trajectory
planning can be reduced by almost two orders of magnitude when compared to the commonly
used B-spine representation. They also present a re-planning technique with several checks to
ensure smooth and collision-free flight when moving around other UAVs. Similarly, [8] uses
the trajectory representation from [14] to solve a spatio-temporal optimization. [8] uses un-
constrained optimization along with local re-planning for collision avoidance. But unlike [1],
the authors in [8] demonstrate their method in real-world experiments in a cluttered envi-
ronment. The distributed and decentralized optimization techniques used in these methods
are vital to avoid the risk of a centralized failure. The online re-planning techniques further
increase the utility of these methods in a real-world deployment. However, these methods still
rely heavily on precise state estimation of all the UAVs in the multi-UAV system. They also
assume that the UAVs can always share their current trajectories with others without any
lag in communication. However, these assumptions are not valid in many real-world scenarios
as the communication between the UAVs is often limited by the channel bandwidth. [8] also
uses a frame alignment method to continuously integrate the deviations between relative UAV
frames when moving in a forest. This frame alignment is highly dependent on broadcast com-
munication which has bandwidth limitations. Also, to use the shared information, the UAVs
need to agree on a common frame of reference. As discussed earlier, GNSS and RTK can be
used to provide a common reference frame, but they have degraded performance in forests
and dense urban environments.

1.1.3 Collision avoidance without communication

The centralized path planning techniques rely on a central system (external source or
a robot) to plan the desired paths for all the robots. When working with UAVs in real-world
missions, it is challenging to maintain communication links and other external infrastructure.
Communication can become a bottleneck in missions where the UAV collision avoidance can
not work without shared information. [9] presented a decentralized collision avoidance method
that does not need any communication between the UAVs. The UAVs are assumed to be
able to detect the position and velocity of other UAVs at all times and use an MPC to
find optimal trajectories. The uncertainty in estimating the position and velocity of other

CTU in Prague Department of Computer Science
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UAVs is modeled as a Gaussian distribution using a Kalman filter. Similarly, authors in [4]
solve the multi-UAV trajectory planning problem using the position and velocity estimation
rather than sharing information. However, they model the motion uncertainty of the UAVs
using convex polygons around the estimated position of UAVs. These methods do not use
a collision check like [1] and [8] but instead use the Reciprocal Collision Avoidance (RCA)-
based methods to avoid collisions when moving near other UAVs. The RCA generates a convex
polygon around the moving object parametrized by the relative velocity of the object. If the
position and velocity uncertainty is bounded, avoiding the RCA generated polygon provides
guarantees on collision avoidance. The simplicity of RCA based collision avoidance is beneficial
for real-time re-planning and collision avoidance but has its limitations. The convex polygons
generated for several moving obstacles and UAVs can over-constrain the optimization problem
leading to infeasibility. The work in [6] presents a unified approach combining the advantages
of trajectory optimization without communication and strict collision checks. The authors
use a hierarchical structure composed of discrete path planning and trajectory optimization
only using the position and velocity estimate of other moving robots. The discrete planning
can often provide a good initial solution for trajectory optimization, thus accelerating the
entire motion planning process. The collision checks help the UAVs to continuously evaluate
the trajectories or stop moving if the check fails. The decentralization of decision-making
to individual UAVs and independence from communication are crucial for rapid real-world
deployment of a large multi-UAV system. The methods in [4], [9] and [6] are ideal candidates
for such a system. However, in all these methods, the uncertainty in the motion of other UAVs
is implicitly modeled in the convex polygons used to constraint the trajectory optimization.
These polygons are often insufficient to represent moving objects. In the worst case, the
polygon surrounding the moving object can make the problem infeasible when operating in a
cluttered environment.

1.1.4 Collision avoidance with uncertainty models

The centralized path planning techniques rely on a central system (external source or
a robot) to plan the desired paths for all the robots. Modeling the moving UAVs using static
convex polygons ignores their future motion. As the UAVs can not stop or change their direc-
tion of motion arbitrarily, they can end up in a region where a future collision can no longer be
avoided. Thus, in an environment cluttered with several obstacles, the UAV trajectory should
avoid collisions with the current and possible future positions of other UAVs. One way to rea-
son about the future trajectory is to model the motion uncertainty of the UAVs explicitly. The
work presented in [2] uses a probabilistic model for collision avoidance in a multi-UAV system.
The authors model the motion uncertainty of the UAVs as a Gaussian Mixture Model (GMM)
and use it to generate probabilistic constraints for the trajectory optimization problem. The
method is decentralized and does not need to communicate any information among UAVs.
However, the authors do not consider any obstacles in the environment, making it unsuitable
for use in cluttered environments as static or dynamic obstacles can often make the trajectory
optimization infeasible.

This thesis focuses on designing a decentralized collision avoidance method by explicitly
modeling the motion uncertainty. The presented method uses a motion planner to avoid the
static obstacles and moving UAVs using an occupancy prediction method. We develop on
the work presented in [17] for multi-UAV collision avoidance. The authors in [17] present a
method where the UAVs communicate their future trajectories for collision avoidance and
estimate the motion of the humans using a Bayesian model. This Bayesian model uses a

CTU in Prague Department of Computer Science



CHAPTER 1. INTRODUCTION 6/47

reward function parametrized by the goal of the human. As the environment is cluttered with
other humans, obstacles, and UAVs, the simple goal-directed reward function cannot account
for the various sources of uncertainties in human motion. Thus, the Bayesian model is further
parameterized by the confidence of the UAV in the model of human motion. We use this
technique to model the motion of UAVs using the parametrized Bayesian model. However,
we do not assume any humans in the environment. We also present a cooperative re-planning
technique to avoid deadlocks between the UAVs. This cooperative re-planning is based on
communicating a preference number over a shared network. The UAVs also communicate
their respective goals for Bayesian motion prediction. The method proposed in this thesis
is decentralized, so each UAV makes an individual decision about its future trajectory. The
UAVs do not communicate their position and velocity but use direct observation for online
estimation. The proposed method does not depend on a GNSS or RTK, which makes it useful
for real-world deployment.

1.2 Contributions

The main contributions of this thesis are the described below.

1. A decentralized method for collision-free motion planning for a multi-UAV system op-
erating in a cluttered environment.

2. A probabilistic approach for modeling future trajectory of the UAVs which is robust to

modeling and sensory errors.

A cooperative re-planning technique to avoid deadlocks in a cluttered environment.

4. A multi-UAV system which shares very small amount of information and only in the
local neighborhood. This makes the system easily scalable to large group of UAVs. The
method is independent of any global localization system which is crucial for real-world
deployment.

w

1.3 Mathematical notation

The rest of the thesis uses the following mathematical notation.

X a vector

X a unit vector

L0 an identity matrix, a zero matrix
.,n]  a matrix column, [start, end]

b
) the state and position at the time ¢, p¢ = x![1 : 3]
A, B /u the LTI system matrix, input matrix and input vector

Table 1.1: Mathematical notation, nomenclature and notable symbols.

CTU in Prague Department of Computer Science
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Chapter 2

Problem Description

This thesis considers a cooperative group of multiple UAVs operating in a shared en-
vironment. Depending upon the task specification, the UAVs are assigned individual goal
positions in the environment. Figure. 2.1 presents a simple example of a UAV planning its
motion in the presence of other UAV. The thesis aims to design a motion planning method for
collision-free navigation to the respective goals of each UAV. The proposed method is decen-
tralized, where each UAV in the multi-UAV system makes independent decisions without the
need for a centralized authority. The UAVs only use onboard sensors for motion planning and
navigation and share their goal positions over a communication network. The thesis focuses
on developing and implementing the method such that the UAVs can be deployed at arbitrary
positions in the shared environment.

UAV1 UAV2
/S \ \ J\
/ N\ / \
\ J T \ J
N/ N/

Figure 2.1: The red line represents the trajectory of UAV1 moving towards its goal. The dotted
green lines are the possible trajectories for UAV2.

The multi-UAV system is assumed to operate in an environment with obstacles and
other UAVs moving towards their respective goals. UAVs must be aware of the obstacles and
moving UAVs to reach the goal safely. So each UAV uses a Simultaneous Localization And
Mapping (SLAM) system for self localization and creating a map of the unknown environment.
We assume that the UAVs do not have a common world reference frame, and they do not
share their position with other UAVs. Instead, each UAV uses the Ultraviolet Direction And
Ranging (UVDAR) system [15], [20], [24] for camera-based relative pose estimation to obtain
a position and velocity estimate of other UAVs. As the UAVs only use onboard sensors,
the multi-UAV system is independent of any external localization. Each UAV uses a motion
planner to obtain a collision-free path toward its goal. When multiple UAVs are moving in a
shared space, the proposed method uses their position and velocity estimates to predict the
future trajectory of the UAVs. The predictions are based on a Bayesian prediction model which

CTU in Prague Department of Computer Science



CHAPTER 2. PROBLEM DESCRIPTION 8/47

describes the probability of occupancy for any region around the UAVs, at a specific time.
When the UAVs move around each other, this occupancy probability guides the re-planning
process of the motion planner. As all the UAVs might re-plan their paths in response to the
other UAVs, it can lead to a deadlock where UAVs keep re-planning their paths continuously.
To avoid such a situation, this thesis also presents a cooperative re-planning technique based
on sharing a preference number. The UAV with a lower preference number re-plans its path
while the one with higher number continues to move without re-planning. All the UAVs in our
multi-UAV system are identical, so the rest of this thesis will describe everything with respect
to one of the UAVs, hereafter called the focal UAV. Note that in the proposed decentralized
system, all the decisions are made by the individual UAVs making it possible to describe the
method from the point of view of the focal UAV.

2.1 UAYV model

Generally, the UAVs are modeled in a high dimensional state space to be able to control
the motion precisely and with high fidelity. However, it can often be difficult and computa-
tionally expensive to use such a model for real-time motion planning. The multi-UAV system
might need frequent re-planning when operating around other moving UAVs in an unknown
environment. So, we model each UAV by the following simplified model.

x't = Ax' + Bu, (2.1)

where x?

= [x,y, 2, 1,7, 2] represents the state of the UAV and u’ is the control input, at
time t. We assume that the motion of the UAV can be controlled using velocity input, so the
control input u’ = [vg, vy, v,], where each component is the velocity in x, y, z axis, respectively.
As the control input represents the velocity, it is bounded by the physical properties of the
UAV. Both the state x and input u are expressed in a world coordinate frame as shown in

Figure. 2.2. The matrices A € R6%6 and B € R%*3 are the system and input matrices given

by
[y O[]

where dt is the time step. Since the multi-UAV system is cooperative, the UAVs are aware of
the motion model of others and use it for predicting their future trajectory.

2.2 Prediction of future trajectories

The UAVs might encounter each other several times while moving towards their goals. In
the proposed multi-UAV system, each UAV uses onboard cameras for relative pose estimation
[15] and does not share its position with others. However, in order to predict the motion of
surrounding UAVs using the motion model in (2.1), the focal UAV must know the control
inputs of the observed UAVs. We assume that the UAVs do not share their control input
and the velocity. Instead, the focal UAV estimates the state x := [z,y, 2, &, ¥, 2] using an
Extended Kalman Filter (EKF). Since the moving UAVs can be occluded by the obstacles
in the environment and change their paths by re-planning, the motion model in (2.1) is
insufficient to estimate the state. Building on the work in [30], the EKF estimate is based on
the position of the surrounding UAV as observed from the onboard cameras.
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Figure 2.2: The position p and control input u of UAV in the world reference frame.

Unfortunately, the estimate of the current state x is often not enough to avoid collisions
with a moving UAV. The future trajectory of UAVs is needed to provide stronger guarantees on
collision avoidance [7]. Due to their large size, sharing motion plans or future trajectories can
be demanding on the communication network. Several checks are also needed to synchronize
the motion plans according to the shared trajectories. Instead, in the proposed multi-UAV
system, each UAV shares its goal g € R?. The focal UAV uses a Bayesian predictive model to
estimate the future trajectory of the surrounding UAVs using the goal g; of the i-th UAV. As
the motion model (2.1) is deterministic, the future trajectory 7(x!, u®**7) of the i-th UAV
can be described as

T(X§7 u?t—i_T) = (pfv p§+17 L) p§+T)7 (23)
p; = x/[1:3], (2.4)
M = AxF 4+ Buf ke {t, ..t +T -1}, (2.5)

where Xﬁ is the starting state and u?HT is the sequence of control inputs to be applied to Xg.

T represents the prediction time horizon and is a design parameter. Note that, any possible
future trajectory from a given state x! can be described by an appropriate sequence of control
inputs u***t7. Thus, we define the set of all possible reachable positions from x* in time horizon
T as

R(xi,t) = {pi: /""" p; € r(xt,ul"*")}. (2.6)

The set R(x;,t) is called the reachable set of the i-th UAV (see Figure. 2.3). The reachable set
is bounded by the 3D space that can be traversed by the UAV using a bounded control input
in time horizon T. The probability P(p¥;g;) of any position p; € R(x;,t) then describes the
occupancy of the position at time k : ¢ < k < ¢+ T. This occupancy probability is used by
the motion planning method to design a collision-free path. Chapter 3 discusses the process
of obtaining and updating the occupancy probability P(p';g) in more detail.

The reachable set of positions can grow significantly with an increase in the time horizon
T. Updating occupancy probability on such a large set is computationally expensive. However,
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Figure 2.3: Reachable set of positions.

it is often not needed to keep track of the trajectories of UAVs far away as a collision might
only occur far in the future or not at all. So we define the set of immediate neighbors of the
UAV at time t as

N* = {i:|p' = pill < Do}, (2.7)

where p’ is the position of the focal UAV and p! is the estimate of the position of i-th UAV,
at time ¢. Dy is the minimum distance needed to be considered a neighbor.

2.3 Motion planning

A motion planning algorithm uses information about obstacles in the environment to
generate a collision-free trajectory towards a given goal. The motion planner must know the
positions of static obstacles and trajectories of moving obstacles to generate this collision-free
motion plan. We represent the path generated by the planner as

7:[0,1] — R3, (2.8)

where 7(0) = x* and (1) = g. So, the motion plan starts at the position of a UAV at time ¢
and ends at the goal position. Given the motion plan of a UAV, we say that the motion plan
has a collision with a neighbor i € A" if the following condition is satisfied for any k € [0, 1].

(k) € R(xi, 1), (2.9)

where R(x;,t) is the reachable set of positions from state x; at time ¢.
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Ideally, the motion planner can generate a collision-free path by avoiding all the positions
in the reachable sets of all its neighbors. However, the reachable set often encompasses a large
volume even for shorter time horizons. Planning a path with such strong constraints can often
make it impossible to find a path towards the goal. Fortunately, in many cases it is not needed
to avoid all the possible future positions of the neighbors as the UAVs do not move arbitrarily
but towards their respective goals. We model the future motion of the neighbor UAVs and
use the occupancy probability to ensure collision-free motion. The occupancy probability is
also parameterized by the confidence of the focal UAV in the model of its neighbor.

For each neighbor in AV'*, the focal UAV computes the occupancy probability at all the
positions inside the reachable set. Thus, the UAV maintains a probability distribution over
the reachable set of positions for each time instance k : ¢t < k <t + T. A path is discarded
if the collision probability is more than a pre-defined threshold value. The motion planner
then plans a new path with a modified map of the environment to avoid the previously found
collisions.

2.4 Cooperative re-planning

As the UAVs make individual motion plans, it is not possible to synchronize the re-
planning process when a collision is detected with another UAV. Thus the UAVs can keep
re-planning a new path in response to the motion of the other UAV which creates a deadlock
situation. To avoid such a situation, a preference number is shared between the neighbor UAVs.
The focal UAV uses these preference numbers to select neighbors for collision avoidance. The
rest of the unselected neighbors are assumed to avoid the focal UAV by re-planning their
paths.
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Chapter 3

Confidence-aware motion prediction

While moving in a cluttered environment, a UAV can encounter several different types of
obstacles. The static obstacles that form part of the environment are represented in the map by
most of the standard SLAM algorithms. However, moving objects are hard to represent in such
a map as most SLAM algorithms rely on static landmarks. The noise in sensor measurement
also makes it difficult to represent a moving object reliably. As seen in Figure. 3.1, the object
is represented by a trail of blue boxes which do not reflect original size. Thus, it is often easier
to model these objects separately from the static map of the environment and reason about
them independently. Due to their dynamic nature, collision avoidance with moving objects is
complex and might not be guaranteed in many cases. When the UAV moves around another
moving object, it must reason about the current and possible future states of the object to
prevent any collisions. Not considering the future motion of a fast object can easily lead the
UAV to a state where the collision can no longer be avoided. This chapter develops a motion
prediction method to obtain a probability distribution describing the occupancy of the region
around a moving UAV.

Figure 3.1: SLAM suffering from moving objects. The floating blue boxes inside the green
circle show a moving object as represented by the SLAM algorithm.

In the problem discussed in this thesis, the only moving objects are UAVs, which col-
lectively form the multi-UAV system. One of the difficulties in developing a predictive model
is correctly describing the motion the moving object. However, in our cooperative multi-UAV
system, the UAVs are aware of the motion models which simplifies this problem. The motion
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model described in (2.1) evolves as a function of the control input u provided at any time t.
When the UAV follows a motion plan, the control input can be obtained from the trajectory
generated using the motion plan.

Rather than sharing the entire motion plan, the UAVs share their respective goals with
other UAVs. Ideally, the focal UAV can use the goal of the neighbor UAV to find the future
trajectory. However, multiple optimal paths can exist toward a goal so it is not feasible to
find the exact future trajectory of the neighbor UAV. Instead, we use the goal information
to model the motion of the UAV. We also explicitly model the confidence of the focal UAV
in the motion prediction and update it as the neighbor UAV moves around the environment.
Inspired by the Markovian agent models used in [38], we model the neighbor UAVs as agents,
optimizing a reward function that increases in value as the UAV moves towards its goal. This
reward r(pg, uﬁ; g;) is a function of UAV position and control input and is parameterized by the
corresponding goal. Given this reward function and under the maximum entropy assumptions
described in [36], the probability of choosing a control input at a given position is defined as

0Q(pf,ul;g:)

Sy 0 Q(pl gi)’ (3.1)

P(uf|p; o, gi) =

where Q(+) is the value function corresponding to the reward r(-) and « is the model confidence.
The Q-function is given as

Qpi,ufieg) = b —aill. (32)
The Q-function gives the value of choosing control input u! in position p! when moving
towards the goal g;. The probability in (3.1) is normalized over all the possible control inputs
at p'.

Figure 3.2 shows an example of the probability distribution described in (3.1). It is
important to note that the reward and subsequently the probability of choosing a particular
control input does not depend on the position of any other agent. This assumption does not
hold in practice as the UAVs are re-planning their motion to avoid collisions with others.
But this interaction can be extremely challenging to model in a simple reward function. It is
also computationally expensive to calculate all the possible interactions that might happen
even between two UAVs. Instead of reasoning about the interaction of UAVs in the reward
function, we limit the re-planning to only one of the UAVs in any pairwise interaction. This
is further discussed in Chapter 5.

3.1 Model confidence update

The probability distribution described by (3.1) is also parameterized «. This distribution
gets skewed towards the control input leading to the goal, with increasing values of a. Thus,
a can be treated as the confidence of the focal UAV in the reward function being able to
model the actual motion of the neighbor. As the UAV moves around obstacles and reacts
to the motion of other UAVs, the motion modeled by our simple reward function no longer
represents the actual trajectory. Thus, a constant value of model confidence o can result
in extreme deviation in predicting the probability of control input which makes the model
ineffective. In such cases, the model benefits from a time-varying value of model confidence. It
is also essential to incorporate the position and velocity observations into the model confidence
to track the discrepancy in the reward model.
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Figure 3.2: Each arrow represents a possible control input for the UAV. The longer and darker
arrows have a higher probability than the shorter and lighter ones.

As described in [10], we maintain a Bayesian belief over a set of « values B, which inform
our model in (3.1). Since the prediction method is online, performing a Bayesian update over
a large set of values is not feasible. Fortunately, as shown in [10], it is sufficient to use a set
|B| = 5 to obtain a reasonable real-time performance. The values of « in B are distributed on
a log scale to cover a large spectrum of confidences.

When reasoning about a finite set of the model confidence values in B, we can model
them as a state inside a Hidden Markov Model (HMM). The probability distribution over
«a € B describes the belief in each confidence value. For simplicity we start with a uniform
probability h(a)?, «a € B. However, other distributions can be used for initial probabilities. As
the focal UAV observes the position and velocity of the corresponding neighbors, it updates
the posterior probability f(a)! = P(a|pYt, ud?).

The states of an HMM may transition to other states between two consecutive time
instances. Such transitions can occur due to unmodeled dynamics of the HMM states or
unobserved variables affecting the states. In the particular case of the UAVs, the model con-
fidence can change as the UAVs re-plan to accommodate new obstacles and other UAVs.
If the new path agrees with the reward more than the previous one, it will increase model
confidence. However, it can be tricky to model the transition probabilities in the absence of
information about re-planning and the paths of other UAVs. Similar to [10], we use a naive
transition model for h(a)! := E,[P(c/|a)] as

h(@); = vh(@)] + (1 =) f(a)i !, (3.3)

where h()? is the initial probability and f(a)!™! is the belief from the last time instance.
v € [0,1] is a design parameter. Indeed, h(a)f is the expected conditional probability of any «
over the set B. In each time step, the a value may be re-sampled from the initial distribution
h(c)? with probability v or remain the same with probability 1 —~. When a v is selected very
close to 1, it will correspond to the case where the UAV can not rely on the previous belief
over the a values and must start reasoning from the initial distribution. On the other hand,
small v values propagate the previous beliefs to the subsequent time steps.
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Although the UAV is not aware of the current trajectory of its neighbors, it can still
observe their position and velocity. These observations are crucial as they can act as evidence
when trying to update the belief f (a)f. Using the Markov assumption, the update step for
beliefs can be described as

f(Oé)t _ P(uﬂpf7 «, gl)h(a)f

" Ya Pujlpiia, gi)h(a)’
where, u! is the observed velocity control input and p! is the estimated position of i-th
UAV. The belief in model confidence a for various velocity observations is discussed in the
experimental results in Chapter 6. The belief for higher values of a increases if the control
input moves the neighbor UAV towards its goal, i.e.,the observations support the reward
model of the UAV. However, if the control input deviates from the reward model, the belief
for higher values of o decreases while the belief for lower values increases.

(3.4)

3.2 Motion prediction

As mentioned earlier in this chapter, the focal UAV is aware of the dynamic model of
other UAVs and their respective goals. However, this knowledge is still not enough to predict
the actual trajectory of the neighbor UAV. Even with the neighbor trajectory information,
it can be challenging to find a path as the trajectories of other UAVs constrains the motion
planner. Instead of reasoning about the possible trajectories, the presented motion predic-
tion method reasons about the occupancy probability of a particular volume of space. The
occupancy probability of position pit' can be given by P(pit!|p¥t, ul*; a,g;) for any i-th
neighbor UAV. Since the UAV motion does not depend on all the previous positions and
control inputs (2.1), we can reduce this term under the Markovian assumption to obtain

P(pitYa,gi) = Y P(pi|pl,uf; o, 8i) P(u)|p; o, gi) P(P); o, i), (3.5)
P ,u;
for a particular value of a. As the UAV motion model is deterministic, the expression can be
further reduced by summing over the set Z of positions and control inputs that lead to p'fl.
This set Z is given as

T ={(p},uf) : x;"' = Ax] + Buj}. (3.6)
The occupancy probability is then rewritten as
Pt o) = Y P(uilp};a,&) PP} o, 8i), (3.7)
(pf,uf)ez

which represents the probability under a particular value of model confidence at time t. As
the model confidence is a random variable, marginalizing over o we obtain

P(pi™igi) = Ea[P(P]; . ). (3.8)

The occupancy probability in (3.8) describes the prediction of the future motion of
the i-th neighbor UAV. Figure 3.3 shows the occupancy probability example for a moving
UAV. The expectation over the probability distribution of « incorporates the belief of varying
degrees of confidence in the reward maximizing model of the neighbor UAV. Equipped with
this prediction for any position at future time k : ¢ < k < T, the focal UAV can determine
the collision probability at time k.
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Figure 3.3: Occupancy probability of the region around a moving UAV. The UAV is moving
towards the top-right corner in the presented grid.

CTU in Prague Department of Computer Science



CHAPTER 4. OCCUPANCY GUIDED MOTION PLANNING 17/47

Chapter 4

Occupancy guided motion planning

In the proposed multi-UAV system, each UAV moves towards a desired goal state inside
the environment. Commonly, a motion planning algorithm uses the map of the environment to
obtain a collision-free path towards the desired goal. However, it is often difficult to represent
moving obstacles on the map so an independent method is needed to reason about their
motion. This chapter discusses a motion planning method which uses the map of the static
obstacles and the occupancy predictions of moving obstacles (neighbor UAVs) to generate
a collision-free path. Since the predictive model represents the occupancy probability, the
collision-free guarantees are also probabilistic.

4.1 3D motion planning

As discussed earlier, motion planning relies on having a reliable map of the environment.
Such maps are often generated as an output by the SLAM algorithms used for localization
and mapping. Since the UAV position and control input lies in R3, we need to represent the
environment and obstacles in 3-dimensions. In this thesis, we use a volumetric map called
octomap [34] to efficiently represent the obstacles in 3D.

The octomap is a probabilistic occupancy grid map which uses a simple tree structure
called octree to represent a 3D environment. The octree was first introduced by [39] as a
method to efficiently model geometric 3D space. The root node of the tree represents the whole
environment as a cube of specified dimensions. As the name suggests, the tree has a branching
factor of eight. So the volume represented by any node is further subdivided into eight equal
parts, each assigned to a child node. The volume is subdivided until a specified volumetric
resolution is achieved. Thus each node of the octree represents a part of 3D obstacles in
the environment or the open space. In the octomap, the nodes of the octree also specify the
occupancy probability of the corresponding volume. The octomap and corresponding octree
structure is illustrated in Figure. 4.1.

Equipped with a 3D map of the environment, we use the A* [40] path planning algorithm
to find a collision-free path to the goal of the UAV. As the UAV has a finite dimension, it can
not go arbitrarily close to the obstacles in the environment. In order to account for its finite
size, we inflate the obstacles in the octomap by a distance Ry using a Euclidean Distance
Transform method. Thus, in the inflated map, any node at a distance of Ry from an obstacle
is also considered occupied. An example of the inflated map is presented in Figure. 4.2. This
simple procedure is quite effective in accounting for robot dimensions when working with
occupancy maps. The A* algorithm uses a heuristic function to guide the path search. We use
the Euclidean distance metric as the heuristic function which is given by

hp,a) = [lp—dl, (4.1)
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[ [/

Figure 4.1: The volumetric division of space in an octree. The red node represents the root of
the tree and each node has § child nodes.

where p and q are position vectors of any two nodes in the octomap. As the A* algorithm is
optimal under the Euclidean distance heuristic function, the motion plan obtained from the
algorithm is the shortest path from the UAV position to its goal position.

The volumetric partitioning encoded in the octree structure enables efficient search
of neighbors and occupancy of a given volume. Thus the A* algorithm is able to perform
fast neighborhood search in the vicinity of any node of the octree. As the neighborhood
search is one of the computationally demanding parts of the planning process, the structure
of octree is highly beneficial for path planning. Additionally, the hierarchical space partitioning
significantly speeds up the computation of distances between 3D points in the map. These
features make octomap an ideal choice to be deployed on robots for real-time planning in
different kinds of 3D environments [5], [26].

4.2 Neighbor collision avoidance

Unfortunately, the 3D motion planner designed for deterministic obstacles can not be
used directly with predictive models of moving UAVs. The planner relies on checking boolean
occupancy and has no notion of time varying occupancy probability. In order to prevent
collisions with the moving UAVs, the planner must check the collision of a path with the
reachable set of the neighbor UAVs. The occupancy probability of positions in the reachable
set provide the probability of collision if the UAV follows the reward model. The planner can
thus assign a safety value to every path depending upon the probability of collision with any
of the neighbor UAVs.

The collision of a path with a reachable set as defined in (2.9) does not take into account
the finite size of the focal UAV. It also ignores the tracking error of the state of the focal UAV
when following the path. Instead, we use the trajectory of the focal UAV to define the collision
condition with the neighbor i € N as

Ip" — Il < Ro, b € R(xi, 1), (4.2)

where p* is any point in the trajectory 7(x!,u?**7) of the focal UAV. The trajectory is
generated using the path obtained from the motion planner. Thus, a path is in collision with
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Figure 4.2: Inflated map.

the i-th neighbor if any of the points on the corresponding trajectory is within distance Ry
from the reachable set. We define the set of colliding trajectory points as

Cii={p: |Ip— Bll < Ro,p € R(xi, 1), p € 7(x!, u**7)}. (4.3)
Thus, the probability of collision of any point p* on the trajectory is given by

P.(p"€C) = P(d"g),

= argmin {|[p* - p|}, (4.5)
BER (x; 1)

where q is the closest point inside the reachable set. However, this quantity can not be directly
give us the collision probability of the entire trajectory. Using the worst case analysis, we can
upper bound the probability of collision for trajectory 7(x, u**+7) by

t+T
Pcl(T)gpub ::1_HP(pk¢Ci|ps¢Ciat§3<k)a (46)
k=t

where all p € 7(x!, u***7). The right hand side of (4.6) describes the probability that no part
of the trajectory is inside the collision set C;. To evaluate this upper bound, it is necessary
to compute the conditional probability P(p* ¢ C;|p* ¢ Ci,t < s < k). However, this can be
difficult to compute in practice as the number of points outside the set C; is very large. To make
the computation of Py (1) feasible in real-time, we will further simplify the upper bound in
(4.6). We use the analysis presented in [10] to make these simplifications. First, we assume that
the probability of any p* ¢ C; and p? ¢ C; is independent. This assumption effectively removes
the conditioning in the right hand side of (4.6). But this approximation is not necessarily true
for continuous trajectory of a UAV as it dictates that any two points on the trajectory can
independently lie anywhere in the space. To improve upon this approximation we incorporate
the time dependence of collision events into the probability terms. We consider p*? as the
earliest trajectory point to lie inside C;. So any conditional probability term P(p* ¢ C;|p® ¢
Ci,t <s<k),k=t:k0O can be replaced by 1. Since a collision is already detected at k0, we
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ignore the terms for £ > k0. This approximation gives us a lower bound on P, from (4.6).
Py >1-P(p"*¢c)=Ppec). (4.7)

Although this approximation ignores the possibility of future collisions, it still provides a
reasonable probabilistic measure of collision. To further improve the approximation, we use
the maximum probability at point p*°. Thus, the probability of collision of a trajectory can
be approximated as

P, ~ P(q®; g; 4.8
cl(T) se?tlzta}r(T} (q 7gz)v ( )
q = argmin{|p* - p|}.
f)eR(xlvt)

The collision of a trajectory is thus approximated with the detection of collision at any
point in the trajectory as shown in Figure. 4.3. The probability of this collision is then given
by the maximum probability of occupancy of the closest point in the reachable set of the
i-th neighbor. The maximum operator in fact gives the most conservative approximation of
collision at the closest point which improves the approximation of collision. The path planner
discards a path 7t if the corresponding trajectory has a collision probability greater than P,.
Note that, the collision probability P(q®;g;) in (4.8) can be obtained directly from the motion
prediction method. For a finite time horizon, P,;(7) can easily be computed in real-time which
makes it feasible to discard colliding trajectories and computing new paths.

Focal UAV

Neighbor UAV1

Figure 4.3: This figure show the collision between the trajectory of the focal UAV and the
reachable set of UAV1. The red line represents the colliding part of the trajectory where p°
is the earliest colliding point of the trajectory.
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Focal UAV

O

Neighbor UAV1

Figure 4.4: Focal UAV re-planning after collision detection. The dashed line represents the
original colliding path while the solid line represents the new collision-free path.

4.3 Collision aware re-planning

Equipped with the approximation of collision probability, the planner can discard any
paths which collide with probability more than Pj,. In the event of a collision, the planner
must find a new collision-free path for the focal UAV to reach the goal. However, it is necessary
for the planner to account for the detected collision in order to avoid it in the new path. As
discussed in Chapter 2, considering the entire reachable set of a colliding neighbor as an
obstacle can make the planning problem infeasible. Instead, we use the colliding point from
the reachable set to design a static obstacle around the neighbor UAV. We define the set O;
as

Oi={p: b -pill <lla—pil,p € R(xi, 1)}, (4.9)

where q is the closest colliding point from (4.8) and pf is the position of i-th neighbor at time
t. This set contains all the points around the neighbor UAV position that are closer than the
colliding point. Since we assume that the trajectories of the UAVs are continuous, any point
closer than q can also lead to a collision. Thus all the nodes corresponding to the points in the
set O; are marked as occupied in the octomap of the focal UAV. The new path generated after
this modification necessarily avoids any collisions with the reachable set up to the collision
point q. The nodes are reset after the new collision-free plan is generated. The re-plan process
in illustrated in Figure. 4.4.

As the set O; uses the Euclidean distance to q it contains several points that are far away
from the colliding trajectory 7(x¢, u**7). This might result in setting unnecessary occupancy
constraints on the octomap around the i-th neighbor. However, this constraint is still better
than considering the entire reachable set as an obstacle. Note that in the worst case, the set
O; can be equal to R(x;,t). So the worst case performance will be equivalent to setting the

entire reachable set as occupied.
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Chapter 5

Cooperative collision avoidance

The focal UAV can predict the future trajectory of moving neighbors and use the motion
planning method to find a collision-free path towards its goal. In the decentralized multi-UAV
system proposed in this thesis, all the UAVs use the same procedure to move towards their
respective goals. However, as the neighbor set A is based on the Euclidean distance, any two
UAVs will be neighbors of each other. As a result, in any encounter with a neighbor, both
the focal and neighbor UAV make independent decisions about avoiding collision with the
other. Such an encounter can easily lead to a situation when both the UAVs keep re-planning
indefinitely by reacting to the decision of the other UAV. These situations are often observed
among human pedestrians when trying to cross paths with each other (see Figure. 5.1).

X
a /i

Figure 5.1: Deadlock created between crossing humans as the red human does not know the
future position of the blue human.

Unfortunately, it is challenging to model this behaviour in a decentralized system with no
hierarchical structure. One of the most common approach is to use a fixed priority of collision
avoidance where only the UAVs with lower priority re-plan. In such a setting, the high priority
UAVs do not change their trajectory even in the presence of moving UAVs. However, fixing a
priority order can often lead to unforeseeable deadlocks in cluttered environments as shown in
Figure. 5.2. For instance, when moving in an region occupied by several obstacles, the lower
priority UAV might not be able to find a feasible path. In such a situation, it would be crucial
for the higher priority UAV to re-plan in order to avoid a collision with the lower priority
UAV.

This thesis uses a random hierarchy structure within the multi-UAV system. Whenever
the UAVs detect a neighbor, both the UAVs share a randomly generated preference number
p ~U(0,1). So the focal UAV re-plans its path with respect to the reachable set of the i-th
neighbor if

where py and p; are preference numbers of the focal UAV and i-th neighbor, respectively. The
preference number is not fixed for any UAV pair and is generated each time a neighbor is
added to the set N*.
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Figure 5.2: Deadlock between UAVs in a cluttered environment. The dashed lines represent
the possible trajectories of the low priority UAV. The high priority UAV does not re-plan and
follows the red trajectory. However, all the possible trajectories of the low priority UAV lead
to a collision.

The randomness introduced by the preference number makes it possible to avoid the
deadlock discussed earlier. However, this method can not guarantee prevention of all deadlocks.
Figure. 5.3 describes the distribution of the difference between two random variables p; and p;.
For a given situation, the deadlock can only be avoided with a specific preference order. Thus,
the difference should always lie on one side of the y-axis. As the distribution in Figure. 5.3
is symmetric around the y-axis, the deadlock is avoided with a 50% chance. This is already
an improvement over the fixed priority case where the deadlock can not be avoided. It is
important to note that the UAVs have a new preference order each time they enter the
neighborhood around others. This dynamic nature of the preference further improves the
chances of avoiding deadlocks. The simplicity of the preference order based avoidance brings
significant advantage when real-time performance is desired. The UAVs in the multi-UAV
system can quickly share the preference numbers and re-plan their respective paths without
the need for regular communication.
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Figure 5.3: Probability density function of the difference between two preference numbers.
The X-axis represents the random variable py — p; while the Y-axis gives the probability of a
particular value of random variable.

CTU in Prague Department of Computer Science



CHAPTER 6. RESULTS 25/47

Chapter 6

Results

This chapter presents the results of various experiments to verify and establish the
utility of the method proposed in this thesis. As stated in Chapter 1, this thesis builds on the
work from [17] and applies the reward-maximizing prediction model to UAVs. In the first part
of this chapter, we verify the Bayesian prediction model from Chapter 3 and analyze its utility
and performance when used for UAVs. The next section presents the application of the motion
prediction to simulated robots in an ideal simulator. We present a comprehensive analysis of
the method in different arrangements of the simulated world. Building upon these results, the
last section presents the experimental evaluation in the popular robot simulator Gazebo [37].
The Gazebo simulator uses a physics engine to simulate physical interactions like collisions
with the environment and other UAVs. Similar to the ideal simulator, the performance of the
method is evaluated in various settings. The physics simulator employs noise models for states
of the UAVs which makes the experiments closer to real-world scenarios.

6.1 Occupancy probability

The Bayesian prediction model presented in Chapter 3 is based on a reward function
parameterized by goal of the neighbor. The predictions are also parameterized by the model
confidence « which is continuously updated using the estimated state of the neighbor UAVs.
We present the occupancy probability of the positions in the reachable set R(x,t) for various
values of the model confidence in this section. To make the analysis easier, we only consider
a single neighbor UAV moving in a 2D grid world. It is assumed that the UAV can move to
any of its 8-neighborhood cells in a single time instance. In order to visualize the occupancy
probability, we limit the size of the reachable set to a grid of size 9 x 9, centered around the
position of the UAV. The motion model from (2.1) was adopted for this case by reducing the
dimensions of the quantities, appropriately. At ¢ = 0, the UAV is at position p = (0,0) and
the goal of the UAV is g = (100, 100). The position and goal of the UAV are in the world
coordinate frame and not with respect to the reachable set. We use o = 1 as the baseline
for comparing the effect of model confidence on the occupancy prediction. As described in
(3.1), the probability of the any control input is dependent on the @Q-function. However,
the @-function does not change significantly with a single cell transition in the grid so the
resulting probability is similar for all the 8-neighborhood transitions. As shown in Figure 6.1,
when o« = 1 the probability distribution spreads towards all the directions with increasing
time. Although the probability is higher for the cells closer to the goal g = (100,100) (near
top-right corner), the difference is not significant as compared to the surrounding cells. As
the probability of control input is also dependent on the model confidence, increasing the
value of o has a significant effect on the occupancy probability. Figure 6.2 illustrates the
case with @ = 10, where the occupancy probability is higher for the cells closer to the goal.
However, when o = 100, the occupancy distribution is limited to a small region, as shown
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in Figure 6.3. The case with a = 100 is similar to the situation when the focal UAV is
overconfident in the reward-maximizing model of its neighbor UAV. Although, the occupancy
probability distribution obtained with o = 100 is precise, it tends to ignore the uncertainty is
the prediction model. On the other hand, the case with a = 1 has high variance and does not
provide enough information about the occupancy at any future time. Thus, when the neighbor
UAV moves in a cluttered environment any single value of model confidence can lead to an
unreliable estimate of the occupancy probability.

Figures 6.4, 6.5 and 6.6 illustrate the occupancy probability for a time horizon T = 11.
For each value of «, the occupancy probability distribution is similar to the corresponding
cases in Figures 6.1, 6.2 and 6.3. As the probability in (3.7) is obtained by computing a sum
over the set of all 8-neighbors, it is computationally expensive for a large reachable set. The
computation also grows linearly with increase in the time horizon. Since the difference in the
distribution from t = 8 to t = 11 is not significant in Figures 6.4, 6.5 and 6.6, choosing a
smaller time horizon can save computation time and resources. Thus we use time horizon
T =5 for the rest of the experiments.

As discussed earlier in Chapter 3, it is possible to use different initial belief distributions
for model confidence a. Figure 6.7 shows the occupancy probability for a Uniform distribution
of belief in a. As the model confidence values are distributed on a log scale the occupancy
probability with a Uniform distribution is still overconfident for ¢ = 5. On the other hand, when
using a Gaussian distribution of belief, the reachable set in Figure 6.8 has a larger variance
in occupancy probability as compared to Figure 6.7. However, as the belief distribution is
updated using the current position and velocity of the moving neighbor, starting with a
Uniform prior does not affect the occupancy probability. The rest of the experiments assume
that the initial belief has a Uniform distribution.

t=20

co O = N O
co O = N O

Occupancy Probability

0w O = N O

Time horizon =5, a = 1

Figure 6.1: Occupancy probability of the reachable set around a neighbor UAV. The current
position of the UAV is at the center of the grid.
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co O = N O

Occupancy Probability

w0 O = N O

Time horizon = 5, a = 10

Figure 6.2: Occupancy probability of the reachable set around a neighbor UAV. The current
position of the UAV is at the center of the grid.

Occupancy Probability

0 2 4 6 8

t=25
0 2 4 6 8 0
Time horizon = 5, o = 100

Figure 6.3: Occupancy probability of the reachable set around a neighbor UAV. The current
position of the UAV is at the center of the grid.
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Occupancy Probability

Time horizon = 11, a = 1

Figure 6.4: Occupancy probability of the reachable set around a neighbor UAV. The current
position of the UAV is at the center of the grid.
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Occupancy Probability

Time horizon = 11, a = 10

Figure 6.5: Occupancy probability of the reachable set around a neighbor UAV. The current
position of the UAV is at the center of the grid.
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Occupancy Probability

Time horizon = 11, a = 100

Figure 6.6: Occupancy probability of the reachable set around a neighbor UAV. The current
position of the UAV is at the center of the grid.
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Occupancy Probability

0 2 4 6 8
t=5
0 2 4 6 8 0
Time horizon = 5, a with Uniform prior

Figure 6.7: Occupancy probability of the reachable set around a neighbor UAV. The current
position of the UAV is at the center of the grid.

® o e N O
Occupancy Probability

0 O = N O

0 2 4 6 8
t=>5
0 2 4 6 8 0
Time horizon = 5, @ with Gaussian prior

Figure 6.8: Occupancy probability of the reachable set around a neighbor UAV. The current
position of the UAV is at the center of the grid.
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6.2 Model confidence

The experiments from the previous section demonstrate that using a single value of
model confidence can lead to unreliable estimates of occupancy probability. Instead, this
thesis uses a belief distribution over a set B = {0.1,1,10,100,1000} of model confidence
values for each neighbor. The belief distribution described in (3.4) is continuously updated
using the estimated state of the neighbor UAV. Figure 6.9 demonstrates the evolution of belief
distribution for a neighbor UAV moving toward its goal. Since the reward of the neighbor
increases when it moves towards its goal, the focal UAV has higher confidence in the reward-
maximizing model of this neighbor. As seen in Figure 6.9, the belief in higher model confidence
grows rapidly for a neighbor moving to its goal. Similarly, the reward decreases when the
neighbor moves away from the goal which decreases the belief in higher model confidence
values. This is shown in Figure 6.10, where the neighbor is moving away from its goal. However,
in the presence of obstacles and other moving UAVs, the neighbor might not move directly
to the goal. So in Figure 6.11, we show the case when the neighbor velocity is uniformly
randomly distributed and is not directed towards or away from its goal. It can be seen that
the belief update is sensitive to the observed velocity of the neighbor and changes significantly
with each time step. Figures 6.9, 6.10 and 6.11 illustrate that the belief distribution correctly
reflects the confidence of the focal UAV in the reward model of its neighbor.

6.3 Ideal-world simulations

The proposed decentralized collision avoidance method is first verified in an ideal-world
simulation. In this simulator, each UAV is represented using a point object called an agent
which has no physical dimensions. Each agent in the simulator has precise information about
the position and velocity of all agents and is also aware of the static obstacles in the environ-
ment. However, the agents only share goal and preference order information with each other.
The future motion plan and trajectory is not shared and the motion prediction model from
Chapter 3 is used to estimate the future occupancy probability. Including any noise models in
the state estimation of agents and the neighbors can introduce complexity in the simulation.
This complexity is undesired as the experiments aim to verify the effectiveness of motion
prediction and the decentralized collision avoidance method and not the robustness to noise.
The parameters used for the experiments are described in the table 6.1 below.

Variable | Value
DO 5 m
T 9s
Ry 0.5 m
Py, 0.5
ol 0.5

Table 6.1: Parameters used by the ideal simulator.

The first experiment describes a setting where two agents swap their positions in an
environment without any obstacles. Figure 6.12 illustrates the snapshots from the experiment
where the red dot represents agent 0 and the blue dot represents agent 1. In this experiment,
agent 1 has a higher preference so agent 0 generates a new motion plan when a collision is
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t=20 t=1 t =2
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 1 0.4 1
0.2 0.2 0.2
0.0 - 0.0 - 0.0 -
01 1 10 100 1000 01 1 10 100 1000 01 1 10 100 1000
t=3 t=4 t=5
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 1 0.4 1
0.2 0.2 0.2
0.0 - 0.0 - 0.0 -
01 1 10 100 1000 01 1 10 100 1000 01 1 10 100 1000

Distribution of «

Figure 6.9: Belief distribution of a when the neighbor UAV moves towards the goal.

detected with agent 1 while agent 1 keeps moving towards its goal. Since we are interested in
the occupancy probability of agent 1, Figure 6.12 shows the reachable set and belief distribu-
tion for agent 1 as estimated by agent 0. The access to precise information about the position
and velocity of the neighbors makes it easier to estimate their future trajectory. As seen in
Figure 6.12, the belief distribution skews towards higher model confidence within the first few
seconds of the simulation. Thus, the occupancy probability distribution over the reachable set
at time horizon ¢ = 5 has extremely low variance. Using this occupancy probability, agent 0
plans a new collision-free path as soon as a potential collision is detected. Figure 6.12b shows
this collision-free path that avoids the moving agent 1. Once the agents cross paths and no
potential collisions are detected, agent 0 re-plans a shorter path to its goal (see Figure 6.12c).
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t=20 t=1 t =2
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6

0.4 0.4 1
0.2 0.2
0.0 - 0.0 - .
01 1 10 100 1000 01 1 10 100 1000 01 1 10 100 1000
t=3 t=4 t=5
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6

0.1 1 10 100 1000 . 0.1 1 10 100 1000 . 0.1 1 10 100 1000
Distribution of «

Figure 6.10: Belief distribution of o when the neighbor UAV moves away from the goal.

The second experiment shows the agents swapping their positions in the presence of
obstacles. Similar to the previous experiment, agent 1 has higher preference so agent 0 re-
plans the path on detecting a collision. Due to the presence of obstacles, agent 1 has a path
that goes around one of the obstacles. Since the Q-function in (3.2) does not model the
obstacles, the belief in high model confidence decreases when agent 1 is moving around the
obstacles. As a result, the occupancy distribution in Figure 6.13b has a higher variance as
compared to Figure 6.12b. However, the belief for higher confidence increases as soon as the
agents cross their paths and agent 1 directly moves towards its goal. The snapshots presented
in Figure 6.13 demonstrate that belief in model confidence is useful when the agents deviate
from reward-maximizing model. The re-planning method presented in Chapter 4 ensures that
agent 0 only avoids a small region around agent 1. As seen in Figure 6.13d, the trajectory of
agent 0 does not deviate far away from the initial trajectory in fig. 6.13a.

CTU in Prague Department of Computer Science



CHAPTER 6. RESULTS 35/47

t=20 t=1 t =2

1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4

0.2 0.2

0.0 - 0.0 - .

01 1 10 100 1000 01 1 10 100 1000 01 1 10 100 1000

t=3 t=4 t=5

1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

01 1 10 100 1000 . 01 1 10 100 1000 . 01 1 10 100 1000

Distribution of «

Figure 6.11: Belief distribution of o when the neighbor UAV moves randomly.

Lastly, we present an experiment with four agents and two obstacles in Figure 6.14. In
this experiment, additional to agent 0 and 1, the yellow dot represents agent 2 while the green
dot represents agent 3. Each agent swaps its position with the diametrically opposite one. For
the sake of simplicity, we assume that agent with a higher number has higher preference than
any of the agent with lower numbers. Although this preference order represents only one of the
possible preference cases, it does not affect the analysis of the collision avoidance. Since agent
0 has the lowest preference, it plans a path to avoid all other agents. Figure 6.14b illustrates
the collision-free paths of all the agents when they cross each other. Similar to the previous
cases, the agents re-plan a path once they cross the other agents and no future collisions
are detected. This experiment demonstrates the utility of the presented decentralized method
when multiple agents move in a cluttered environment.
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(d) simulation time = 11.0 s

Figure 6.12: 2 agents swapping positions in an environment with no obstacles. The red dot
represents agent 0 while the blue one represents agent 1. The path of the agents are shown in
the corresponding colors.
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Figure 6.13: 2 agents swapping positions in an environment with obstacles. The red dot
represents agent 0 while the blue one represents agent 1. The path of the agents are shown in
the corresponding colors. The obstacles are shown by the black circles.
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Figure 6.14: 4 agents swapping positions in an environment with obstacles. The red, blue,
yellow and green dots represents agents 0, 1, 2 and 3, respectively. The path of the agents are
shown in the corresponding colors. The obstacles are shown by the black circles.
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6.4 Gazebo simulations

The simulations presented in this section are performed in Gazebo simulator. The
method was implemented using libraries from Robot Operating System (ROS) and the MRS-
system [3]. The MRS-system is a set of libraries and tools developed for fast and easy deploy-
ment of both single and multiple UAV missions in the real world. We use the MRS-system to
perform Software-In-The-Loop (SITL) simulations in Gazebo for different scenarios. Gazebo
simulates the UAV as a rigid body with finite dimensions which can collide with other UAVs
and obstacles in the environment. The position and velocity of UAVs is simulated using an
in-built noise model. Similar to the ideal simulator, the UAVs only share their goal and pref-
erence order with other UAVs and a simulated version of UVDAR is used for direct detection
of UAV positions. The snapshots from the Gazebo environments are shown in Figure 6.15.
We use the parameters from Table 6.2 for the experiments presented in this section.

Figure 6.15: The Gazebo environments used for the 2 UAV and 3 UAV experiments.

The experiment shown in Figure 6.16 illustrates the scenario with two UAVs crossing
paths with each other. The red and blue arrows represent the trajectories followed by each
UAV. The UAVs start at the position marked in circles and use the motion planning method
presented in Chapter 4 to plan a path. In this experiment, the blue UAV has lower preference
number as compared to the red UAV. As a result, the blue UAV plans a new path when a
collision is detected using the occupancy probability of the red UAV. The deviation in the
trajectory of the blue UAV can be seen in Figure 6.16b. The UAVs also avoid the static
obstacles in the environment when moving towards their goals. Figure. 6.16b shows the online
octomap created with the obstacles, where the darker colors boxes represent the lower altitude
in the map.

The two UAV experiment in Figure 6.16 represents a basic case of multi-UAV interac-
tion. To test the utility of the proposed method in a more complex setting, an experiment
with three independent UAVs in presented in Figure 6.17. As the preference order between the
UAVs can be arbitrary, the collision avoidance can deviate the trajectory of UAVs in several
different ways. In this three UAV experiment, the red UAV has the highest preference number
so it does not need to re-plan its path. The blue UAV has a preference number higher than
the purple UAV so it only re-plans the path when a collision is detected with the red UAV.
The purple UAV has the lowest preference number and must avoid collisions with all the other
moving UAVs. As seen in Figure 6.17a, the red UAV moves directly towards its goal while
the blue UAV deviates from its trajectory when crossing the path of the red UAV. The red
UAYV is moving in a direction opposite to the blue one, so the reachable set has low occupancy
probability for the points on the path of blue UAV. Thus, the blue UAV only needs to avoid
a small volume when re-planning the path. The resulting trajectory of the blue UAV has a
small deviation, as seen in Figure 6.17a. However, as the purple UAV is moving in the same
direction as the blue one, the detected collision is with the future position of the blue UAV.
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The volume occupied by the set O, as described in (4.9), is reasonably large which leads to
significant deviation in the trajectory of the purple UAV. Figure 6.17b shows the purple UAV
moving below the blue UAV in order to avoid a collision.

Variable | Value
Dy 3 m
T 3s
Ry 0.5 m
Py, 0.3
vy 0.5

Table 6.2: Parameters used for the Gazebo simulations.

The experiments in Figures 6.16 and 6.17 demonstrate the utility of the presented decen-
tralized motion planning method. However, due to the presence of obstacles in the environment
and online map generation the motion planner can often fail to find a path in real-time. In
such cases, it is often better to stop and re-plan to a modified goal position. Thus, the UAVs
will not cross the paths at the same time and do not need the motion prediction for collision
avoidance. The experiments in this section were designed to analyze the presented collision
avoidance method so the UAVs always cross paths with each other. A comprehensive analysis
of the decentralized collision avoidance can be performed in randomly generated environments
with different number of UAVs. However, this analysis is not a part of the thesis and is focus
of the future work.

) simulation time = 0 S

) simulation time = 0 s

Figure 6.16: 2 UAVs moving to their goals in a cluttered environment. The red and blue circles
depict the starting positions of the UAVs.
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(b) simulation time = 0 s

Figure 6.17: 3 UAVs moving to their goals in a cluttered environment. The red, blue and
purple circles represent the starting positions of the UAVs.
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Chapter 7

Qualitative comparison

The method presented in this thesis uses an occupancy prediction model to avoid col-
lisions with moving UAVs. The uncertainty in the prediction is explicitly modeled as a belief
distribution over the model confidence. However, the methods discussed in Section 1.1 do not
use a predictive model to solve the multi-UAV collision avoidance problem. As the works in
[4], [9] and [6] employ a combination of different techniques to approach the collision avoid-
ance, direct comparison of theses methods becomes a challenging task. This section presents
a qualitative comparison and analysis of the presented method with several different works
described earlier.

The work presented in [4] models the moving obstacles and UAVs using ellipsoids which
are used to generate constraints for the trajectory optimization problem. Similarly, authors in
[9] use several ellipsoids to bound the volume around the predicted trajectory of other UAVs.
These ellipsoids often constraint a large volume around the UAVs which makes the optimiza-
tion infeasible. [6] uses a discrete motion planner to accelerate the trajectory optimization but
still models the UAVs as fixed size convex polygons. However, the occupancy prediction model
in this thesis only constraints the volume around the UAV when a collision is detected with
a threshold probability. This relaxes the trajectory optimization problem while still avoiding
collisions.

Contrary to other methods, [2] uses probabilistic constraints for the trajectory opti-
mization problem. These constraints explicitly model the uncertainty in the future motion of
the UAVs which is similar to motion prediction presented in this thesis. However, they do not
consider any obstacles in the environment which relaxes the trajectory optimization. Also,
the authors do not have an explicit collision check or re-planning technique which makes it
difficult to compare with the presented method.

As shown in Chapter 6, the Bayesian motion prediction presented in this thesis can
effectively model the motion of moving UAVs and predict collisions. When used in a 3D
environment, the Bayesian update of the positions in the discrete reachable set can become
computationally expensive as compared to the technique presented in [6]. The computation
can be reduced by decreasing the size of the reachable set. However, this would limit the
predictions to a very small time horizon which can lead to future collisions. The computation
can also be reduced by decreasing the resolution of the octomap but this leads to large
constraints for the motion planning method similar to the ellipsoids in [9] and [4].
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Chapter 8

Conclusion

This thesis presented a decentralized method for collision-free trajectory planning in a
multi-UAV systems. The method does not depend on external infrastructure like GNSS or
RTK and uses UVDAR for direct relative estimation of positions of other UAVs. The observed
position is used to estimate the current position and velocity of the moving UAVs. The
presented method only relies on sharing goal and preference order information to perform real-
time collision avoidance. As the UAVs only use onboard sensors for localization, mapping and
detecting other UAVs, the method is completely independent from any external infrastructure.
The decentralized nature of the motion planning method makes the multi-UAV system robust
to individual UAV failures.

The presented method uses a Bayesian model to predict the future occupancy of the
region around the moving UAVs. The probability of this occupancy is updated using the
current position and velocity of the moving UAV and its desired goal. The uncertainty in the
motion of the UAVs is explicitly modeled using a belief distribution over the model confidence
parameter. As the UAV moves towards its goal, the belief distribution is updated to reflect
the similarity between the reward-maximizing model and the observed motion. The method
is verified using an ideal simulator to establish the utility of the prediction method and
performance of re-planning process. After the verification, the method is integrated with the
MRS-system and analyzed using SITL simulations in the Gazebo simulator.

This thesis successfully completed all the points as specified in the thesis assignment.

e An extensive review of the existing methods for multi-UAV collision avoidance is pre-
sented in Chapter 1.

e The Bayesian motion prediction method is selected after identifying the strengths and
weaknesses of the existing approaches.

e The presented method is integrated into the MRS-system and used for verification in
the Gazebo simulator.

e Several different results are presented in an ideal simulator followed by experiments in
Gazebo.

e A qualitative comparison between the presented method and the existing approaches is
also presented in Chapter 7.

8.1 Future work

The presented method uses an occupancy prediction model to maintain the occupancy
probability of the region around a moving UAV. Although this method reduces the constrained
volume in comparison to existing methods, the Bayesian update over a discrete set of points
is computationally expensive. The computational load can be reduced by selecting the size
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of the reachable set and resolution of the octomap. However, more analysis is needed for the
selection of these parameters and is proposed as a part of the future work.

The real-time re-planning technique presented in this thesis uses a modified octomap
to constraint a specific volume around the colliding UAVs. As the size of the constrained
volume depends on the accuracy of the occupancy prediction, it is important to have real-
time prediction updates. However, with a lag in the prediction update, the modified octomap
can often constraint large regions thus making the motion planning unfeasible. It is possible to
use an iterative relaxation of the constrained volume to improve the motion planner. Another
idea would be to add re-planning checks to stop the UAV for some time before re-planning
again. These improvement can make the presented method robust to various failures that
occur during real-world deployment of a multi-UAV system.
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