
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Compute Science

Master’s Thesis

Variance Reduction in One-Sided
Partially Observable Stochastic
Games

Ondřej Kubíček

20.05.2022
Supervisor: doc. Mgr. Branislav Bošanský, PhD.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474745Personal ID number:Kubíček OndřejStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Variance Reduction in One-Sided Partially Observable Stochastic Games

Master’s thesis title in Czech:

Redukce variance v jednostranně pozorovatelných stochastických hrách

Guidelines:

One-Sided Partially Observable Stochastic Games are dynamic games with infinite horizon where only one player has
imperfect information and the opponent has full information. The original algorithm for solving this class of games has
limited scalability. One possible way to improve the scalability is to replace the exact submethods for solving stage games
with approximate iterative algorithms. However, usage of approximate methods (e.g., in combination with approximate
representation of value functions) can lead to increased variance and slow convergence. The expected approach is as
follows.
1. Get familiar with the algorithm PG-HSVI, analyze the variance in values in the current version of the algorithm.
2. Survey the existing variance-reduction techniques used for sampling-based game-theoretic algorithms.
3. Analyze compatibility of methods from the previous step, adapt, and implement selected methods into the HSVI for
PG-HSVI.
4. Compare these methods and analyze the impact of these techniques on the speed of the convergence in POSGs.

Bibliography / sources:

[1] Horák, K., Bošanský, B., & Pěchouček, M. (2017). Heuristic Search Value Iteration for One-Sided Partially Observable
Stochastic Games. In AAAI (pp. 558-564)
[2] Horák, K., Bošanský, B., Kovařík, V., & Kiekintveld, C. (2020). Solving Zero-Sum One-Sided Partially Observable
Stochastic Games. arXiv preprint arXiv:2010.11243.
[3] Schmid, M., Burch, N., Lanctot, M., Moravcik, M., Kadlec, R., & Bowling, M. (2019, July). Variance reduction in monte
carlo counterfactual regret minimization (VR-MCCFR) for extensive form games using baselines. In Proceedings of the
AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 2157-2164).

Name and workplace of master’s thesis supervisor:

doc. Mgr. Branislav Bošanský, Ph.D. Artificial Intelligence Center FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 28.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signaturedoc. Mgr. Branislav Bošanský, Ph.D.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to thank my supervisor,
doc. Mgr. Branislav Bošanský, Ph.D.,
for his guidance throughout my studies
and especially throughout the work on
this thesis. I would also like to thank
Bc. Jakub Brož and MSc. Dominik
Andreas Seitz for their part in studying
OS-POSGs and to Ing. Karel Horák,
Ph.D., whose work started the research
in these games. Furthermore, I would
like to thank my family for their sup-
port during my studies. Lastly, I would
like to thank Zichovec brewery for help-
ing me with my studies.

I declare that this thesis has been
composed solely by myself and that it
has not been submitted, in whole or in
part, in any previous application for a
degree. Except where stated otherwise
by reference or acknowledgement, the
work presented is entirely my own.

In Prague 20.5.2022

. .

v

Abstrakt / Abstract

Hledání téměř optimálních strategií
ve hrách s neúplnou informací není
obecně jednoduché. Posilované učení lze
použít pro hledání přibližných řešení v
takto složitých hrách. Tyto metody jsou
zatíženy nezanedbatelným rozptylem,
který je způsobený vzorkováním herního
stromu. Několik metod pro snižovaní
rozptylu bylo vytvořeno, aby došlo k
jeho snížení a tím ke zrychlení algoritmů
posilovaného učení.

V této práci se snažíme ukázat jak
jedna hodnotová funkce ovlivňuje roz-
ptyl ve stochastických hrách. Dále zkou-
máme jak dvě hodnotové funkce, pou-
žité jako dolní a horní odhad, ovlivňují
rozptyl ve stochastických hrách pro dva
hráče a jednostranných částečně pozoro-
vatelných stochastických hrách.

Dále představujeme nový způsob pro
řešení stochastických her pro dva hráče
se simultánními pohyby a pro řešení jed-
nostranných částečně pozorovatelných
stochastických her pomocí minimalizace
lítosti. Také představujeme vylepšenou
verzi ekvilibria kvantové odpovědi pro
řešení těchto her. Tyto přibližné metody
na aproximace Nashova ekvilibra tvoří
dodatečné chyby při výpočtech. Empi-
ricky odhadujeme rozptyl, který tyto
metody tvoří a zkoušíme jak jednot-
livé techniky redukce rozptylu ovlivňují
celkovou konvergenci algoritmů.

Klíčová slova: částečně pozorovatelné
stochastické hry, častečně pozorovatelné
Markovské rozhodovací procesy, redukce
rozptylu, ekvilibrium kvantové odpo-
vědi, Nashovo ekvilibrium, hodnotová
funkce

Překlad titulu: Redukce variance v
jednostranně pozorovatelných stochas-
tických hrách

Finding near-optimal strategies in im-
perfect information games is generally
intractable. Reinforcement learning is
used to find approximate solutions in
such complicated games. These meth-
ods often deal with significant variance
caused by a sampling of the game tree.
Multiple variance reduction techniques
were developed to reduce the variance
and speed up the convergence of rein-
forcement learning algorithms.

In this work, we show the effect of
a single value function on variance in
stochastic games. Furthermore, we in-
vestigate how two value functions, used
as a lower and upper bound, affect vari-
ance in two-player stochastic games with
simultaneous moves and one-sided par-
tially observable stochastic games.

We introduce a new way to solve two-
player stochastic games with simultane-
ous moves and one-sided partially ob-
servable stochastic games by regret min-
imization. We also refine the quantal re-
sponse equilibrium method for solving
these games. These different methods
of approximating Nash equilibria intro-
duce additional errors into the compu-
tation. We also empirically estimate the
variance introduced by these errors and
test if variance reduction techniques im-
prove the overall convergence of the al-
gorithms.

Keywords: partially observable
stochastic games, one-sided partially
observable stochastic games, partially
observable Markov decision processes,
variance reduction, quantal response
equilibrium, Nash equilibrium, value
function

vi

Contents /

1 Introduction 1
1.1 Outline 2

2 Partially Observable
Markov Decision Processes 3

2.1 Markov Decision Processes 3
2.2 Partially Observable

Markov decision Processes 5
2.3 Heuristic Search Value Iteration . 7

2.3.1 HSVI Value Functions 7
2.3.2 Presolving Value Functions . 8
2.3.3 Heuristic Exploration 9

3 Game Theory 11
3.1 Example: Battle of sexes 12
3.2 Zero-sum Games 13
3.3 Two-Player Stochastic

Games with Simultaneous
moves 14

3.3.1 Value Iteration 14
3.3.2 Heuristic Search Value

Iteration 15
3.4 One-Sided Partially Ob-

servable Stochastic Games . . . 16
3.4.1 Bellman Update 17
3.4.2 Presolving 20
3.4.3 Exploration 20

3.5 Quantal Response Equilibrium 21
3.6 Regret Minimization 22

4 Variance Reduction in Re-
inforcement Learning 24

4.1 Control Variates 24
4.1.1 Example: Estimating

Definite Integral 25
4.2 Reducing Reward Variance . . 26
4.3 Baselines for values 26

5 Two-Player Stochastic
Games with Simultaneous
moves 27

5.1 Value Iteration with
Stochastic Exploration 27

5.2 Quantal Response Equilibrium 27
5.3 Regret Minimization 28

5.3.1 Regret Minimization
with baselines 29

6 One-Sided Partially Ob-
servable Stochastic Games 30

6.1 Iterative Stage Games Solving . 30
6.1.1 Example: Adding new

𝛼-vector and belief
point to the value function 31

6.2 Removing Linear Programs . . 33
6.3 Exploration 33

7 Experiments 35
7.1 Game Domains 35
7.2 Fully Observable Stochas-

tic Games 35
7.3 Regret Minimization with

baselines 40
7.4 Effect of 𝜆 parameter in QRE . 42
7.5 One-Sided Partially Ob-

servable Stochastic Games . . . 45
8 Conclusion 48

8.1 Future work 49
A Additional plots 51

A.1 Policies in the initial state
in deterministic PEG 51

A.2 Policies in two non-initial
states in deterministic PEG . . 53

A.3 Policies in the initial state
in stochastic PEG 57

A.4 Policies in two non-initial
states in stochastic PEG 59

A.5 Expected values and policy
variance in different PEGs . . . 63

A.6 Expected values and poli-
cy in non-initial states in
PEGs with the usage of
baselines 65

A.7 Expected values and policy
in different PEGs with the
usage of baselines 68

B Implementation 72

References 73

vii

Tables / Figures

3.1 Utilities for both players in
battle of sexes 12

4.1 Results of Monte Carlo inte-
gration with control variates. . . 25

6.1 Value function when stage
game is reached 32

6.2 Lower bound after update 32
6.3 Discretized upper bound 32
6.4 Discretized upper bound af-

ter update . 32
6.5 Updated value function 32
7.1 Pursuit Evasion Game Ex-

ample . 36
7.2 Expected value in the initial

state in a 4 × 4 PEG 36
7.3 Expected value in the two

states in a 4 × 4 PEG 37
7.4 Policy variance in the initial

state in a 4 × 4 PEG 38
7.5 Policy variance in the two

states in a 4 × 4 PEG 38
7.6 Expected value in the initial

state in a 4 × 4 stochastic
PEG . 39

7.7 Expected value in the two
states in a 4 × 4 PEG 39

7.8 Policy variance in the two
states in a 4 × 4 PEG 40

7.9 Variance of policies for each
player with and without
baselines . 41

7.10 Expected value in the initial
state in a 4 × 4 PEG 41

7.11 Expected value in the initial
state in a 4 × 4 PEG with
stochastic transitions. 42

7.12 Variance of policies for each
player with and without
baselines in game with
stochastic transitions. 42

7.13 Expected value with different
settings of QRE 𝜆 43

7.14 Expected value with different
settings of QRE 𝜆 43

7.15 Policy variance with different
settings of QRE 𝜆 44

7.16 Policy variance with different
settings of QRE 𝜆 44

7.17 Policy variance with different
settings of QRE 𝜆 45

viii

7.18 Expected value in the initial
belief in a 3 × 3 partially
observable PEG 46

7.19 Policy variance in the initial
belief in a 3 × 3 partially
observable PEG 46

7.20 Expected value in the initial
belief in a 3 × 3 partially ob-
servable PEG with stochastic
transitions . 47

7.21 Policy variance in the initial
belief in a 3 × 3 partially ob-
servable PEG with stochastic
transitions . 47

A.1 Policies for each player in a
4 × 4 PEG in the initial state . 51

A.2 Policies for each player in a
4 × 4 PEG in the initial state . 52

A.3 Policies for each player in a
4 × 4 PEG in the initial state . 53

A.4 Policies for each player in a
4 × 4 PEG in the non-initial
state . 53

A.5 Policies for each player in a
4 × 4 PEG in the non-initial
state . 54

A.6 Policies for each player in a
4 × 4 PEG in the non-initial
state . 55

A.7 Policies for each player in a
4 × 4 PEG in the non-initial
state . 56

A.8 Policies for each player in a
4 × 4 PEG in the non-initial
state . 57

A.9 Policies for each player in a
4 × 4 stochastic PEG in the
initial state . 57

A.10 Policies for each player in a
4 × 4 stochastic PEG in the
initial state . 58

A.11 Policies for each player in a
4 × 4 stochastic PEG in the
initial state . 59

ix

A.12 Policies for each player in a
4 × 4 stochastic PEG in the
non-initial state 59

A.13 Policies for each player in a
4 × 4 stochastic PEG in the
non-initial state 60

A.14 Policies for each player in a
4 × 4 stochastic PEG in the
non-initial state 61

A.15 Policies for each player in a
4 × 4 stochastic PEG in the
non-initial state 62

A.16 Policies for each player in a
4 × 4 stochastic PEG in the
non-initial state 63

A.17 Expected value in a 5 × 4
PEG in the initial state 63

A.18 Policy variance in a 5 × 4
PEG in the initial state 63

A.19 Expected value in a 5 × 5
PEG in the initial state 64

A.20 Policy variance in a 5 × 5
PEG in the initial state 64

A.21 Expected value in a 5 × 4
stochastic PEG in the initial
state . 64

A.22 Policy variance in a 5 × 4
stochastic PEG in the initial
state . 64

A.23 Expected value in a 5 × 5
stochastic PEG in the initial
state . 65

A.24 Policy variance in a 5 × 5
stochastic PEG in the initial
state . 65

A.25 Expected value in a 4 × 4
PEG in non-initial states 65

A.26 Policy in a 4 × 4 PEG in a
non-initial state 66

A.27 Policy in a 4 × 4 PEG in a
non-initial state 66

A.28 Expected value in a 4 × 4
stochastic PEG in non-initial
states . 67

A.29 Policy in a 4 × 4 stochastic
PEG in a non-initial state 67

x

A.30 Policy in a 4 × 4 stochastic
PEG in a non-initial state 68

A.31 Expected value in a 5×4 and
5 × 5 PEG in the initial state
with and without baselines 68

A.32 Policy in a 5 × 4 and 5 × 5
PEGs in a initial state with
and without baselines 69

A.33 Expected value in a 5×4 and
5 × 5 stochastic PEGs in the
initial state with and without
baselines . 70

A.34 Policy in a 5 × 4 stochastic
PEG in a initial state with
and without baselines 70

A.35 Policy in a 5 × 5 stochastic
PEG in a initial state with
and without baselines 71

xi

Chapter 1
Introduction

Sequential decision-making is an important part of artificial intelligence. Things like
autonomous cars [1][2], robotic movement [3], and network security [4] all use sequential
decision making for a long time planning. However, it is sometimes necessary to plan
while considering other agents in the environment. These agents may have malicious
intents, so it is necessary to act in such a manner that cannot be exploited by the
opponent. Game theory provides a mathematical framework for studying these multi-
agent environments, in which each agent maximizes its profit.

Often the agent does not have the full information about the environment, which
could be dynamic, or affected by the other agents. Solving such problems in a multi-
agent setting is notoriously difficult. One-sided partially observable stochastic games
(OS-POSGs) [5][6] are a subset of such games, which are played by just two players,
and one player gain is other players lost. Additionally, one of the agents has complete
information about the environment, while the other has only partial information. This
makes the solution of such a game the worst-case scenario for the agent with partial
knowledge.

Modification of heuristic search value iteration initially developed for partially ob-
servable Markov decision processes may be used to solve OS-POSGs [5]. This algorithm
uses lower and upper bound, and at each stage, it solves linear programs, which up-
dates both of these bounds until the gap between bounds gets sufficiently small. Linear
programming solves the game precisely, but it may require a lot of time and space.
Therefore other approaches could be used to avoid one or both of these problems.
Quantal response equilibrium was already tried on these games with a moderate suc-
cess [7]. In this work, we also try different approaches based on regret minimization.
These approximate methods do not find Nash equilibrium exactly, but only approx-
imately, and therefore their convergence requires necessarily more iterations to reach
the same precision.

Reinforcement learning suffers from similar issues as the approximate methods for
solving OS-POSGs. It requires many iterations to converge somewhat closely to the
optimal strategy. One technique that allows the reinforcement learning algorithm to
converge more quickly is variance reduction. The variance which is being reduced by
this technique is mainly caused by the sampling of the game tree instead of solving each
trajectory in the tree.

Measuring variance in OS-POSGs becomes difficult because of the continuous belief
space. Additionally, there is only one algorithm heuristic search value iteration for
solving these games. Stochastic games with simultaneous moves provide full information
to both players. Therefore it has discrete state space, making it easier to estimate the
variance. There are multiple algorithms to solve stochastic games with simultaneous
moves. This makes it possible to compare them based on convergence and variance.

This work focuses on how variance reduction may be used in both stochastic games
with simultaneous moves and OS-POSGs. It also studies whether this technique would
be helpful because, unlike the reinforcement learning techniques, the heuristic search

1

1. Introduction .
value iteration already stores information about the whole belief space in the form of
upper and lower bound. It also evaluates the variance for individual methods of solving
the game.

1.1 Outline
The second chapter describes the basics of single-agent sequential decision making. The
third chapter introduces concepts from game theory, which are essential throughout the
whole thesis. The fourth chapter introduces the most used variance reduction technique
of control variates. This chapter also presents a couple of ways control variates are used
in reinforcement learning. Chapter 5 offers a way to use quantal response equilibrium
and regret minimization to solve stochastic games. It also shows a new algorithm that
is an intermediate step between value iteration and heuristic search value iteration and
how it can be used with action baselines as a variance reduction technique. Throughout
Chapter 6, we introduce the same notion for one-sided partially observable stochastic
games. In the seventh chapter, we show the empirical evaluation of all the concepts
presented in the previous sections.

2

Chapter 2
Partially Observable Markov Decision
Processes

Decision making of a single agent under uncertainty is a well studied problem in ar-
tificial intelligence [8][9][10]. Markov decision processes (MDPs) [11] have been found
quite useful in this field. However, MDPs assume that the environment has a fully
observable state. This may not be the case even for single-agent applications [12]. Par-
tially observable Markov decision processes (POMDPs) were developed to handle even
environments without fully observable states [13]. We will formally define MDPs in
this chapter and present the value iteration algorithm, which is capable of solving them
to arbitrary precision. Then we will define POMDPs with the heuristic search value
iteration algorithm, which is used to solve them.

2.1 Markov Decision Processes

Definition 2.1. [11]
Markov decision process (MDP) is a tuple (𝑆, 𝐴, 𝑇 , 𝑅, 𝑠(0), 𝑆(end), 𝛾), where
𝑆 is a finite set of state.
𝐴 is a finite set of actions.
𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is a transition function, where 𝑇 (𝑠′|𝑠, 𝑎) is a conditional
probability that the game transitions from state 𝑠 ∈ 𝑆 to state 𝑠′ ∈ 𝑆 after agent
chooses action 𝑎 ∈ 𝐴.
𝑅: 𝑆 × 𝐴 → ℝ is a reward function, where 𝑅(𝑠, 𝑎) is a reward given to agent, if it
chooses action 𝑎 ∈ 𝐴 in state 𝑠 ∈ 𝑆.
𝑠(0) ∈ 𝑆 is a initial state of the process.
𝑆(𝑒𝑛𝑑) ⊆ 𝑆 are terminal states of the process.
𝛾 ∈ [0, 1] is a discount factor, used to prefer earlier rewards.

Each Markov decision process starts in a state 𝑠(0) and at each step 𝑡 in state 𝑠(𝑡) ∈ 𝑆,
the agent chooses one action 𝑎(𝑡) ∈ 𝐴, which transfers it to the new state 𝑠(𝑡+1) ∈ 𝑆
based on 𝑇 (𝑠(𝑡+1)|𝑠(𝑡), 𝑎(𝑡)) and receives a reward 𝑅(𝑠(𝑡), 𝑎(𝑡)). Reward may also be
defined as 𝑅(𝑠(𝑡), 𝑎(𝑡), 𝑠(𝑡+1)) or 𝑅(𝑠(𝑡)). We have decided to use 𝑅(𝑠(𝑡), 𝑎(𝑡)), due to
similarities with OS-POSGs as defined in [5]. Transition function 𝑇 depends only on
the current state and the taken action. This is called Markov property [14], and it is
a fundamental assumption for any model to be considered a Markov model. Because
of the Markov property, we know that no matter when the agent reaches some state,
it always expects the same payoff, therefore its optimal strategy is only dependent on
the state. This state-dependent strategy is called policy

3

2. Partially Observable Markov Decision Processes .

Definition 2.2.
Let 𝐺 = (𝑆, 𝐴, 𝑇 , 𝑅, 𝑠(0), 𝑆(end), 𝛾) be a MDP.
Policy 𝜋: 𝑆 → [0, 1]|𝐴| is a probability distribution over actions in state 𝑠 ∈ 𝑆.
𝜋(𝑠) denotes a probability distribution vector over all actions in state 𝑠 ∈ 𝑆 and
𝜋(𝑠, 𝑎) denotes a probability of choosing single action 𝑎 ∈ 𝐴 in same state.

∑
𝑎∈𝐴

𝜋(𝑠, 𝑎) = 1 ∀𝑠 ∈ 𝑆

Playing the same action in the same state may result in a different next state in
MDP. Therefore employing the same policy may lead to vastly different results. To
compare policies, we have to use the expected value

Definition 2.3.
Let 𝐺 = (𝑆, 𝐴, 𝑇 , 𝑅, 𝑠(0), 𝑆(end), 𝛾) be a MDP.
Expected value of policy 𝜋 in state 𝑠 ∈ 𝑆 is

𝑉 𝜋(𝑠) = 𝔼𝜋[
∞

∑
𝑡=1

𝛾𝑡𝑅(𝑠(𝑡), 𝑎(𝑡))]

Optimal policy is such a policy 𝜋∗ for which holds

𝜋∗(𝑠) = argmax
𝜋

𝑉 𝜋(𝑠)

Optimal value is a expected value of optimal policy.

𝑉 ∗(𝑠) = max
𝜋

𝑉 𝜋(𝑠)

The expected value may be rewritten recursively, where current values from all pos-
sible future states are used to compute the value of the current state.

𝑉 𝜋(𝑠) = max
𝑎∈𝐴

𝑅(𝑠, 𝑎) + ∑
𝑠′∈𝑆

𝛾𝑇 (𝑠′|𝑠, 𝑎)𝑉 𝜋(𝑠′) (2.1)

Equation (2.1) is called Bellman equation [11]. Due to the usage of max operator, it is
not possible to simply solve the system of linear equations. However, it is possible to
improve values to arbitrary precision iteratively, this approach is called value iteration
Since the values are iteratively improved in each state, they may be initialized arbi-
trarily, but closer to the optimal value, fewer iterations are required to reach the target
precision. The easiest initialization is to set each value to zero. Value iteration is de-
scribed in Algorithm 1. Pure policy in each state may then be extracted by using the
following equation

𝑎∗ = argmax
𝑎∈𝐴

𝑅(𝑠, 𝑎) ∑
𝑠′∈𝑆

+𝛾𝑇 (𝑠′|𝑠, 𝑎)𝑉 (𝑠) (2.2)

4

. 2.2 Partially Observable Markov decision Processes

Algorithm 1 Value Iteration

1: function Value Iteration(S,A, T,R, γ, ε)
2: V (s)← 0 ∀s ∈ S
3: ∆← ε
4: while ∆ ≥ ε do
5: ∆← 0
6: for s ∈ S do
7: v ← maxa∈AR(s, a) + γ

∑
s′∈S T (s′|s, a)V (s′)

8: ∆← max(∆, v − V (s))
9: V (s)← v

10: end for
11: end while
12: end function

Value iteration could also be written as following LP, where we would recompute values
for each state until we converge to the desired precision. This linear program allows
mixed policies, which are not possible in the usual value iteration algorithm.

max
𝑉 (𝑠),𝜋

𝑉 (𝑠) (2.3a)

s.t. 𝑉 (𝑠) ≤ ∑
𝑎∈𝐴

𝜋(𝑠, 𝑎)[𝑅(𝑠, 𝑎) + ∑
𝑠′∈𝑆

𝛾𝑇 (𝑠′|𝑠, 𝑎)𝑉 (𝑠′)] (2.3b)

∑
𝑎∈𝐴

𝜋(𝑎) = 1 (2.3c)

𝜋(𝑎) ≥ 0 ∀𝑎 ∈ 𝐴 (2.3d)

2.2 Partially Observable Markov decision Processes

Giving the agent only partial information makes it significantly harder to find the
optimal policy. The agent has to argue about multiple states that it might be in and
act accordingly. Based on taken actions and received observations, the agent stores its
belief about the current state, which is a probability distribution over all states.

Definition 2.4.
Let 𝑆 be set of MDP or POMDP states.
Belief 𝑏 → [0, 1]|𝑆| is a probability distribution over all states 𝑠 ∈ 𝑆

∑
𝑠∈𝑆

𝑏(𝑠) = 1

Each POMDP starts by sampling the initial state 𝑠(0) ∼ 𝑏(0) and at each step 𝑡 in state
𝑠(𝑡) ∈ 𝑆 the agent chooses one action 𝑎(𝑡) ∈ 𝐴, which transfers it to the state 𝑠(𝑡+1) ∈ 𝑆
and gives it an observation 𝑜(𝑡) ∈ 𝑂 based on 𝑇 (𝑠(𝑡+1), 𝑜(𝑡)|𝑠(𝑡), 𝑎(𝑡)). The Player also
receives a reward 𝑅(𝑠(𝑡), 𝑎(𝑡)). Process terminates when agent reaches some terminal
state 𝑠(end) ∈ 𝑆(end). If 𝑆(end) = ∅, then the process never ends. If each observation
is unique to one state, the POMDP simplifies into MDP. Therefore the belief is every
time non-zero in exactly one state.

5

2. Partially Observable Markov Decision Processes .

Definition 2.5.
Partially observable Markov decision process (POMDP) is a tuple
(𝑆, 𝐴, 𝑂, 𝑇 , 𝑅, 𝑏(0), 𝑆(end), 𝛾), where
𝑆 is a finite set of state.
𝐴 is a finite set of actions.
𝑂 is a finite set of observation.
𝑇 : 𝑆 ×𝐴×𝑂×𝑆 → [0, 1] is a transition function, where 𝑇 (𝑠′, 𝑜|𝑠, 𝑎) is a conditional
probability that the game transitions from state 𝑠 ∈ 𝑆 to the state 𝑠′ ∈ 𝑆 and the
agent receives observation 𝑜 ∈ 𝑂 after it chooses the action 𝑎 ∈ 𝐴.
𝑅: 𝑆 × 𝐴 × ℝ is a reward function, where 𝑅(𝑠, 𝑎) is a reward given to agent, if it
chooses an action 𝑎 ∈ 𝐴 in a state 𝑠 ∈ 𝑆.
𝑏(0): 𝑆 → ℝ is a initial belief agent has about the environment, where 𝑏(0)(end)(𝑠)
is a probability that the POMDP is in state 𝑠 ∈ 𝑆 at the beginning.
𝑆(end) ⊆ 𝑆 are terminal states of the process.
𝛾 ∈ [0, 1] is a discount factor, used to prefer earlier rewards.

Even when transitions between states are the same as in MDP, the agent also has
to transition in its belief. After playing an action 𝑎 ∈ 𝐴 and receiving an observation
𝑜 ∈ 𝑂, the agent changes its belief in the following way

𝑏′(𝑠′) = 𝜏(𝑏, 𝑎, 𝑜)(𝑠′) =
∑𝑠∈𝑆 𝑏(𝑠)𝑇 (𝑠′, 𝑜|𝑠, 𝑎)

∑𝑠∈𝑆 ∑𝑠′′∈𝑆 𝑏(𝑠)𝑇 (𝑠′′, 𝑜|𝑠, 𝑎)
(2.4)

Expected value, optimal policy, and optimal value are defined similarly to the MDP.
However, belief is used instead of the state.

Definition 2.6.
Let 𝐺 = (𝑆, 𝐴, 𝑂, 𝑇 , 𝑅, 𝑏(0), 𝑆(end), 𝛾) be POMDP.
Expected value of policy 𝜋 in a belief 𝑏 is

𝑉 𝜋(𝑏) = 𝔼𝜋,𝑏[
∞

∑
𝑡=1

𝛾𝑡𝑅(𝑠𝑡, 𝑎𝑡)]

Optimal policy is such a policy 𝜋∗ for which holds

𝜋∗(𝑏) = argmax
𝜋

𝑉 𝜋(𝑏)

Optimal value is a expected value of optimal policy.

𝑉 ∗(𝑏) = max
𝜋

𝑉 𝜋(𝑏)

Rewriting the expected value to be computed recursively results in a Bellman equation
for POMDPs.

𝑉 𝜋(𝑏) = max
𝑎∈𝐴

∑
𝑠∈𝑆

𝑏(𝑠)𝑅(𝑠, 𝑎) + 𝛾 ∑
𝑜∈𝑂

𝑉 𝜋(𝜏(𝑏, 𝑎, 𝑜)) ∑
𝑠∈𝑆

∑
𝑠′∈𝑆

𝑏(𝑠)𝑇 (𝑠′, 𝑜|𝑠, 𝑎) (2.5)

States in MDP are defined as a discrete set, while belief in POMDP is a continuous dis-
tribution over all states. Therefore the expected value for POMDPs is also a continuous
function.

The optimal Value function for POMDPs was proven to be convex [15].

6

. 2.3 Heuristic Search Value Iteration

2.3 Heuristic Search Value Iteration
The major disadvantage of the usual value iteration in MDPs is that many iterations
are required to fully converge to optimal values, and we do not know how close to the
optimal value we are. Heuristic search value iteration (HSVI) deals with this issue by
maintaining upper and lower bound, which are getting more tight with each iteration.
Full implementation of HSVI for POMDPs is shown in the Algorithm 3.

2.3.1 HSVI Value Functions
Since the optimal value function is convex, we could approximate it by using several
linear functions. These functions are called 𝛼-vectors [15], and we could do value
iteration in POMDPs by using these functions.

Definition 2.7. [15]
α-Vector is a linear function 𝛼: 𝑆 → ℝ, where 𝛼(𝑠) is a expected value in state
𝑠 ∈ 𝑆.
Expected Value of 𝛼-vector 𝛼 in belief 𝑏 is then

𝛼(𝑏) = ∑
𝑠∈𝑆

𝑏(𝑠)𝛼(𝑠)

Γ is a set of 𝛼-vectors.
Γ = {𝛼0, …, 𝛼𝑛}

The value function with 𝛼-vectors is then defined as

𝑉 Γ
LB(𝑏) = max

𝛼∈Γ
𝛼(𝑏) (2.6)

With this usage of the 𝛼-vectors, the value function is restricted to be always less or
equal to the optimal value function. Otherwise, adding the 𝛼-vector to the set Γ would
not improve the value function without removing some 𝛼-vector from Γ. This suggests
that the values may not be initialized arbitrarily because this property has to hold

𝑉 Γ
LB(𝑏) ≤ 𝑉 ∗(𝑏) (2.7)

Γ is a lower bound of optimal solution.
When creating a new 𝛼-vector to update the value function, we will use Bellman

equation (2.5), but with slight modification to use 𝛼-vectors. We will start with selecting
the 𝛼-vector for each action and observation, which has the highest expected reward
after the belief transition.

𝛼𝑎,𝑜 = argmax
𝛼∈Γ

∑
𝑠∈𝑆

𝛼(𝑠)𝑏(𝑠) (2.8)

Bellman equation is then performed for each action

𝛼𝑎(𝑠) = 𝑅(𝑠, 𝑎) + 𝛾 ∑
𝑠′∈𝑆

∑
𝑜∈𝑂

𝛼𝑎,𝑜(𝑠′)𝑇 (𝑠′, 𝑜|𝑠, 𝑎) (2.9)

The new 𝛼-vector, which should be added to the value function, is selected by maxi-
mizing the expected reward.

𝛼∗ = argmax
𝛼𝑎

∑
𝑠∈𝑆

𝛼𝑎(𝑠)𝑏(𝑠) (2.10)

7

2. Partially Observable Markov Decision Processes .
HSVI maintains upper bound as a lower convex hull of points in |𝑆|+1-dimensional
space.

Definition 2.8. [16]
Value point (𝑏, 𝑦) ∈ 𝑅|𝑆|+1 is a |𝑆|+1-dimensional point, for which first |𝑆| dimen-
sions represents belief 𝑏 and last dimension is a value 𝑦 in this belief.
Υ is a set of value points.

Υ = {(𝑏0, 𝑦0), …, (𝑏𝑛, 𝑦𝑛)}

Value function with value points is defined as

𝑉 Υ
UB(𝑏) = min {

𝑛
∑
𝑖=1

𝜆𝑖𝑦𝑖∣𝜆 ∈ ℝ𝑛
≥0:

𝑚
∑
𝑖=1

𝜆𝑖𝑏𝑖 = 𝑏} (2.11)

Similarly to the value function using 𝛼-vectors, it is necessary to ensure that the value
of each point is always higher or equal to the optimal value.

𝑉 Υ
UB(𝑏) ≥ 𝑉 ∗(𝑏) (2.12)

Now lower bound is improved by constructing a new 𝛼-vector and adding it to the Γ
and the upper bound by constructing a new value point and adding it to the Υ. Both
of them may be constructed by using Algorithm 2. Before updating the value function,
there have to be some initial values for both the lower and upper bound.

Algorithm 2 Point-Based Update

1: function update(b)
2: αa,o ← arg maxα∈Γ

∑
s′∈S τ(b, a, o)(s′)α(s′) ∀(a, o) ∈ A×O

3: αa(s)← R(s, a) + γ
∑
o∈O

∑
s′∈S T (s′, o|s, a)αa,o(s′) ∀(s, a) ∈ S ×A

4: Γ← Γ ∪ arg maxαa

∑
s∈S b(s)α

a(s)

5: Υ← Υ ∪maxa∈A

[∑
s∈S b(s)R(s, a) + γ

∑
o∈O V

Υ
UB(τ(b, a, o))

∑
s∈S

∑
s′∈S b(s)T (s′, o|s, a)

]
6: end function

2.3.2 Presolving Value Functions
Lower bound initialization is done by constructing 𝛼-vector, which corresponds to play-
ing a uniform strategy. First, we will define initial values in 𝛼-vector, which corresponds
to receiving the smallest possible reward for each action. Because of the discount factor
𝛾, this value is bounded if the rewards themselves are bounded.

𝛼0(𝑠) = min
𝑠′∈𝑆,𝑎∈𝐴

𝑅(𝑠′, 𝑎)
1 − 𝛾

∀𝑠 ∈ 𝑆 (2.13)

The uniform strategy for an agent is used to update each coordinate in 𝛼-vector until
the changes between each iteration become less than some 𝜀 > 0.

𝛼𝑡+1(𝑠) = ∑
𝑎∈𝐴

1
|𝐴|

[𝑅(𝑠, 𝑎) + 𝛾 ∑
𝑜∈𝑂

∑
𝑠′∈𝑆

𝑇 (𝑠′, 𝑜|𝑠, 𝑎)𝛼𝑡(𝑠′)] (2.14)

If the uniform strategy is optimal, then the lower bound is presolved to the optimal
value. Otherwise, the value function has to be lower than the optimal one.

8

. 2.3 Heuristic Search Value Iteration

While presolving the upper bound, the partial observability is removed from the
POMDP. MDP techniques like Value Iteration may then be used for the presolve. The
points constructed by this fully observable MDP are in the vertices of the belief simplex.
The property (2.12) has to hold after the presolve part. The value iteration has to start
with greater values than the optimal ones to ensure this. A similar approach to the
lower bound in (2.13) is used for the upper bound.

𝑦 = max
𝑠′∈𝑆,𝑎∈𝐴

𝑅(𝑠′, 𝑎)
1 − 𝛾

(2.15)

Since this is done for each state, there are |𝑆| points after the presolve part. If the
POMDP has the same solution as MDP, then after the presolve these points correspond
to the optimal solution. Otherwise, the values are higher than the optimal ones because
adding information to the agent can’t make the value worse. It is possible to use
Algorithm 1 or linear program (2.3a)-(2.3d) to presolve upper bound as MDP.

2.3.3 Heuristic Exploration
Solving MDPs by value iteration requires solving each state separately. In POMDPs,
we are dealing with continuous belief space. Therefore we would have to solve the game
in infinitely many beliefs. It is possible to leverage the fact that the POMDPs dynamics
are known in advance, as well as the initial belief, and solve only in those beliefs which
are reachable from the initial belief. This does not resolve the issue because the process
may still be infinitely long, but we may restrict only to those beliefs that are reachable
with at most 𝑡 steps. The heuristic can be used to solve only relevant parts of the belief
space. This could speed up convergence in the initial belief, but it does not guarantee
that the gap between the lower and upper bound is less than 𝜀 in each belief.

The heuristic chooses the action with the highest expected utility in the upper bound.

𝑎∗ = argmax
𝑎∈𝐴

∑
𝑠∈𝑆

𝑏(𝑠)𝑅(𝑠, 𝑎) + 𝛾 ∑
𝑜∈𝑂

𝑉 Υ
UB(𝜏(𝑏, 𝑎, 𝑜)) ∑

𝑠∈𝑆
∑
𝑠′∈𝑆

𝑏(𝑠)𝑇 (𝑠′, 𝑜|𝑠, 𝑎) (2.16)

In order to only explore those parts of belief space, which are not yet sufficiently ex-
plored, the excess gap is defined as

𝑒𝑡(𝜏(𝑏, 𝑎, 𝑜)) = 𝑉 Υ
UB(𝜏(𝑏, 𝑎, 𝑜)) − 𝑉 Γ

LB(𝜏(𝑏, 𝑎, 𝑜)) − 𝜀𝛾−𝑡 (2.17)

Additionally, the gap for each observation is weighted by the probability of receiving
such observation after action 𝑎∗.

𝑜∗ = argmax
𝑜∈𝑂

𝑒𝑡+1(𝜏(𝑏, 𝑎∗, 𝑜)) ∑
𝑠∈𝑆

∑
𝑠′∈𝑆

𝑏(𝑠)𝑇 (𝑠′, 𝑜|𝑠, 𝑎) (2.18)

The exploration is finished when the excess is negative for the future belief after picking
the action-observation pair (𝑎∗, 𝑜∗).

𝑒𝑡(𝜏(𝑏, 𝑎∗, 𝑜∗)) < 0 (2.19)

9

2. Partially Observable Markov Decision Processes .

Algorithm 3 Heuristic Search Value Iteration

1: Initialize V Γ
LB, V Υ

UB

2: while V Γ
LB(b0)− V Υ

UB(b0) > ε do
3: explore(b0, ε, t)
4: end while
5:

6: function explore(b, ε, t)
7: if V Γ

LB(b)− V Υ
UB(b) > γ−tε then

8: update(b)
9: a∗, o∗ ← selectAO(b)

10: explore(τ(b, a∗, o∗), ε, t+ 1)
11: update(b)
12: end if
13: end function

10

Chapter 3
Game Theory

Game theory is a mathematical framework used for sequential decision making in a
multiagent environment called a game by rational agents called players. Each player
employs a strategy and receives utility based on its and other player strategies. Each
player aims to maximize its utility while also taking into account the rationality of other
players.

Definition 3.1. [17]
Normal-form game 𝒢 is a tuple (𝒩, 𝒮, 𝑢), where
𝒩 is a set of players 𝑖 ∈ 𝒩 = {1, …, 𝑛}, −𝑖 denotes all players except 𝑖.
𝒮 is a set of all pure strategies 𝒮 = 𝒮1 × 𝒮2 × … × 𝒮𝑛.
𝑢 is the utility function 𝑢𝑖: 𝒮 → ℝ, ∀𝑖 ∈ 𝒩.

Normal-form games are often described using n-dimensional matrices, where each
dimension corresponds to one player’s strategy. Each player picks a strategy and then
plays according to it. Playing just the pure strategy may not be desirable for some
players. Imagine a game of rock-paper-scissors playing just the pure strategy could
easily be exploited. We introduce the notion of mixed strategies, where the player
alternates between multiple strategies with some probability.

Definition 3.2. [17]
Let 𝒮𝑖 be all pure strategies for player 𝑖 ∈ 𝒩.
Mixed strategy 𝜎𝑖 is a probability distribution over 𝒮𝑖.

𝜎𝑖 = {𝑝𝑖 ∈ ℝ|𝒮𝑖||
|𝒮𝑖|

∑
𝑗=1

𝑝𝑖
𝑗 = 1 ∧ 𝑝𝑖

𝑗 ≥ 0}

Strategy profile 𝜎 is then defined as (𝜎1, 𝜎2, …, 𝜎𝑛).

The player is incentivized to play the best strategy to maximize utility. This strategy
is called a best response. We use 𝑢𝑖(𝜎𝑖, 𝜎−𝑖) to denote that player 𝑖 ∈ 𝒩 expects to
receive utility 𝑢𝑖, if it plays mixed strategy 𝜎𝑖, while other players play mixed strategy
𝜎−𝑖.

Definition 3.3. [17]
Let 𝑢 be utility function in game 𝒢 and 𝜎−𝑖 be a strategy for each player except 𝑖.
Best response 𝜎∗

𝑖 is such strategy, that for player 𝑖 and ∀𝜎𝑖 holds

𝑢𝑖(𝜎∗
𝑖 , 𝜎−𝑖) ≥ 𝑢𝑖(𝜎𝑖, 𝜎−𝑖)

11

3. Game Theory .
When all players play the best response against all other policies, we get a stable

solution in which neither player can improve its utility by changing strategy. Such a
solution is called Nash equilibrium

Definition 3.4. [18]
Let 𝑢 be utility function in game 𝒢
Nash equilibrium is such strategy profile 𝜎∗, for which holds

𝑢𝑖(𝜎∗
𝑖 , 𝜎∗

−𝑖) ≥ 𝑢𝑖(𝜎𝑖, 𝜎∗
−𝑖) ∀𝜎𝑖, ∀𝑖 ∈ 𝒩

ε-Nash equilibrium is such strategy profile 𝜎∗, for which holds

𝑢𝑖(𝜎∗
𝑖 , 𝜎∗

−𝑖) ≥ 𝑢𝑖(𝜎𝑖, 𝜎∗
−𝑖) − 𝜀 ∀𝜎𝑖, ∀𝑖 ∈ 𝒩, 𝜀 > 0

John Nash has proved that each game has at least 1 Nash equilibrium if mixed
strategies are allowed [18].

Theorem 3.1. Nash’s existence theorem [18]
For each game 𝒢, there exists at least 1 strategy profile 𝜎∗, which is Nash equilib-
rium.

3.1 Example: Battle of sexes
The wife and her husband decide whether they go to ballet or soccer. Man prefers the
soccer match, while woman prefers the ballet. However, they will not go anywhere if
they do not agree on an evening activity, which is something neither of them wants.
Utilities for both of them are presented in Table 3.1, where the first value always
describes utility for the wife and the second describes utility for the husband [19].

Ballet Soccer
Ballet 3;2 0;0
Soccer 0;0 2;3

Table 3.1. Utilities for both players in battle of sexes

Battle of sexes has 2 pure Nash equilibria and 1 mixed Nash equilibrium.

𝜎∗
1 = (1, 0) 𝜎∗

2 = (1, 0) 𝑢∗ = (3, 2) (3.1a)
𝜎∗

1 = (0, 1) 𝜎∗
2 = (0, 1) 𝑢∗ = (2, 3) (3.1b)

𝜎∗
1 = (0.6, 0.4) 𝜎∗

2 = (0.4, 0.6) 𝑢∗ = (1.2, 1.2) (3.1c)

where 𝜎∗
𝑖 = (ℙ(𝑠𝑖 = Ballet), ℙ(𝑠𝑖 = Soccer)) and 𝑢∗ = (𝑢∗

1(𝜎∗
1, 𝜎∗

2), 𝑢∗
2(𝜎∗

1, 𝜎∗
2)). We can

see that each Nash equilibrium results in a different utility for each player and that
only the mixed equilibrium has the same expected utility for both players.

12

. 3.2 Zero-sum Games

3.2 Zero-sum Games
We mainly focus on a subset of games, namely two-player zero-sum games. In zero-sum
games for any mixed strategy, the sum of utilities is zero.

Definition 3.5. [17]
Let 𝒢 = (𝒩, 𝒮, 𝑢) be a game.
Zero-sum game is a game for which holds

∑
𝑖∈𝒩

𝑢𝑖(𝜎𝑖, 𝜎−𝑖) = 0 ∀𝜎𝑖, 𝜎−𝑖

In two-player zero-sum games, the utility of the first player is the negative utility
of the second player. Therefore maximizing utility for the first player is the same as
minimizing utility for the second player.

𝑢1(𝜎1, 𝜎2) + 𝑢2(𝜎2, 𝜎1) = 0 ⇒ 𝑢1(𝜎1, 𝜎2) = −𝑢2(𝜎2, 𝜎1) (3.2)

Computing Nash equilibrium in general-sum games is proven to be a PPAD-complete
problem [20], but in zero-sum games, it is possible to use the notion of the maxmin and
minmax strategies to compute Nash equilibrium in polynomial time by using the linear
programming.

Definition 3.6. [17]
Let 𝒢 = (𝒩, 𝒮, 𝑢) be a game.
Maxmin strategy for player 𝑖 ∈ 𝒩 is

argmax
𝜎𝑖

min
𝜎−𝑖

𝑢𝑖(𝜎𝑖, 𝜎−𝑖)

Definition 3.7. [17]
Let 𝒢 = (𝒩, 𝒮, 𝑢) be a game.
Minmax strategy for player 𝑖 ∈ 𝒩 is

argmin
𝜎𝑖

max
𝜎−𝑖

𝑢𝑖(𝜎𝑖, 𝜎−𝑖)

In a two-player zero-sum setting, it was proven by John von Neumann [21] that each
Nash equilibrium is equal to maxmin and minmax value.

Theorem 3.2. Minimax theorem [21]
In any finite, two-player zero-sum game, in any Nash equilibrium each player
receives a payoff that is equal to both its maxmin value and its minmax value.

It is possible to rewrite 3.6 as linear program in a following way

13

3. Game Theory .

max
𝑉𝑖,𝜎𝑖

𝑉𝑖 (3.3a)

s.t. 𝑉𝑖 ≤ ∑
𝑠𝑖∈𝒮𝑖

𝜎𝑖(𝑠𝑖)𝑢(𝑠𝑖, 𝑠−𝑖) ∀𝑠−𝑖 ∈ 𝒮−𝑖 (3.3b)

∑
𝑠𝑖∈𝒮𝑖

𝜎𝑖(𝑠𝑖) = 1 (3.3c)

𝜎𝑖(𝑠𝑖) ≥ 0 ∀𝑠𝑖 ∈ 𝒮𝑖 (3.3d)

In this linear program, value 𝑉𝑖 is the expected utility for player 𝑖 ∈ 𝒩 and 𝜎𝑖 denotes
a mixed strategy for the same player. Since we are in the zero-sum setting, expected
utility for the other player is 𝑉𝑖 = −𝑉−𝑖.

3.3 Two-Player Stochastic Games with Simultaneous
moves

Before stepping out to partially observable two-player stochastic games, we will focus
on games where both players have full information about the state of the game. These
games bear a resemblance to Markov decision processes.

Definition 3.8. [22]
Two-player stochastic game with simultaneous moves (SG) is a tuple
𝒢 = (𝑆, 𝐴1, 𝐴2, 𝑇 , 𝑅, 𝑠(0), 𝛾) where
𝑆 is a finite set of state.
𝐴1 is a finite set of actions for first player.
𝐴2 is a finite set of actions for second player.
𝑇 : 𝑆 × 𝐴1 × 𝐴2 × 𝑆 → [0, 1] is a transitions function, where 𝑇 (𝑠′|𝑠, 𝑎1, 𝑎2) is a
conditional probability that the game transitions from state 𝑠 ∈ 𝑆 to state 𝑠′ ∈ 𝑆
after players play actions 𝑎1 ∈ 𝐴1 and 𝑎2 ∈ 𝐴2.
𝑅: 𝑆 × 𝐴1 × 𝐴2 → ℝ is a reward function of the first player, where 𝑅(𝑠, 𝑎1, 𝑎2) is
a reward given to first player after players play actions 𝑎1 ∈ 𝐴1 and 𝑎2 ∈ 𝐴2 in
state 𝑠 ∈ 𝑆.
𝑠(0) ∈ 𝑆 is a initial state of the game.
𝛾 ∈ [0, 1] is a discount factor of the game.

Each game starts in state 𝑠(0) and at each stage 𝑡 in state 𝑠(𝑡) both players choose
actions 𝑎(𝑡)

1 ∈ 𝐴1, 𝑎(𝑡)
2 ∈ 𝐴2 simultaneously and the game transitions to the new state

𝑠(𝑡+1) based on 𝑇 (𝑠(𝑡+1)|𝑠(𝑡), 𝑎(𝑡)
1 , 𝑎(𝑡)

2). First player then receives reward 𝑅(𝑠(𝑡), 𝑎(𝑡)
1 , 𝑎(𝑡)

2)
and second player receives −𝑅(𝑠(𝑡), 𝑎(𝑡)

1 , 𝑎(𝑡)
2).

3.3.1 Value Iteration
Value iteration in MDP updates the expected value for each state in each iteration.
The expected value for games has to take into account the policy of both players [23].

𝑉 𝜋1,𝜋2(𝑠) = ∑
𝑎1∈𝐴1

∑
𝑎2∈𝐴2

𝜋1(𝑠, 𝑎1)𝜋2(𝑠, 𝑎2)(𝑅(𝑠, 𝑎1, 𝑎2) + 𝛾 ∑
𝑠′∈𝑆

𝑇 (𝑠′|𝑠, 𝑎1, 𝑎2)) (3.4)

14

. 3.3 Two-Player Stochastic Games with Simultaneous moves

With the notion of maxmin and minmax strategies, the resulting Bellman update is

max
𝜋1

min
𝜋2

𝑉 𝜋1,𝜋2(𝑠) = min
𝜋1

max
𝜋2

𝑉 𝜋1,𝜋2(𝑠) (3.5)

This may be rewritten as a linear program, which updates the value of a single state.
Both players may use the same LP to update its value. The only real difference is that
the second player receives reward −𝑅(𝑠, 𝑎1, 𝑎2).

max
𝑉 ,𝜋1

𝑉 (𝑠) (3.6a)

s.t. 𝑉 (𝑠) ≤ ∑
𝑎1∈𝐴1

𝜋1(𝑠, 𝑎1)𝑅(𝑠, 𝑎1, 𝑎2) + 𝛾 ∑
𝑎1∈𝐴1

∑
𝑠′∈𝑆

𝜋1(𝑠, 𝑎1)𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2) ̂𝑉 (𝑠′)

∀𝑎2 ∈ 𝐴2 (3.6b)
∑

𝑎1=𝐴1

𝜋1(𝑠, 𝑎1) = 1 (3.6c)

𝜋1(𝑠, 𝑎1) ≥ 0 ∀𝑎1 ∈ 𝐴1 (3.6d)

Value iteration uses the LP (3.6a)-(3.6d) for each state for 𝑖 iterations or until the
largest change between values in each iteration is less then some 𝜖 > 0. The second
variant is shown in Algorithm 4

Algorithm 4 Value Iteration for SGs

1: function Value Iteration(ε)
2: Initialize V (s)
3: ∆← ε
4: while ∆ ≥ ε do
5: ∆← 0
6: for s ∈ S do
7: v, π1, π2 ← Solve(s)
8: ∆← max(∆, v − V (s))
9: V (s)← v

10: end for
11: end while
12: end function

3.3.2 Heuristic Search Value Iteration
HSVI was mainly developed for POMDPs. However, it could be slightly modified for
solving MDPs and fully observable two-player games. The main idea to keep upper and
lower bound remains the same. The initial lower bound and the upper bound is set to
the smallest and the highest reward given to the player indefinitely.

𝑉𝐿𝐵(𝑠) = min
(𝑠,𝑎1,𝑎2)∈𝑆×𝐴1×𝐴2

𝑅(𝑠, 𝑎1, 𝑎2)
1 − 𝛾

(3.7)

𝑉𝑈𝐵(𝑠) = max
(𝑠,𝑎1,𝑎2)∈𝑆×𝐴1×𝐴2

𝑅(𝑠, 𝑎1, 𝑎2)
1 − 𝛾

(3.8)

HSVI uses excess gap to decide where to explore the state space and whether the
exploration should continue or not. This excess gap ensures that in depth 𝑖, the gap
between the lower and upper bound is not already sufficiently small. The HSVI for
the stochastic games with simultaneous moves defines the excess gap same way as the
HSVI for OS-POSGs [6].

𝑒𝑡(𝑠) = 𝑉UB(𝑠) − 𝑉LB(𝑠) − 𝜌(𝑡) (3.9)

15

3. Game Theory .
𝜌(0) = 𝜀 (3.10)

𝜌(𝑡 + 1) = 𝜌(𝑡) − 2𝛿𝐷
𝛾

(3.11)

where 𝐷 ∈ (0, (1−𝛾)𝜀
2𝛿) is a neighbourhood parameter. If 𝐷 = 0, the resulting excess is

the same as with the HSVI for POMDPs and larger 𝐷 results in the algorithm exploring
deeper. If 𝐷 ≥ (1−𝛾)𝜀

2𝛿 , then it may happen that 𝜌(𝑡 + 1) ≤ 𝜌(𝑡), which could cause the
algorithm to explore indefinitely.

The action 𝑎∗ of player 1 and the next state 𝑠∗, which should be explored from state
𝑠 is found as

(𝑎∗, 𝑠∗) = argmax
(𝑎1,𝑠′)∈𝐴1×𝑆

𝜋1(𝑎1) ∑
𝑎2∈𝐴2

𝑒𝑡(𝑠′)𝜋2(𝑎2)𝑇 (𝑠′|𝑠, 𝑎1, 𝑎2) (3.12)

The exploration is stopped when

𝜋1(𝑎∗) ∑
𝑎2∈𝐴2

𝑒𝑡(𝑠∗)𝜋2(𝑎2)𝑇 (𝑠∗|𝑠, 𝑎∗, 𝑎2) ≤ 0 (3.13)

Full implementation is in Algorithm 5.

Algorithm 5 Heuristic Search Value Iteration for SGs

1: Initialize VLB, VUB

2: while VLB(s(0))− VUB(s(0)) > ε do
3: explore(s(0), ε, t)
4: end while
5:

6: function explore(s, ρ, t)
7: πLB

1 , πLB
2 , vLB ← solveLB(s)

8: πUB
1 , πUB

2 vUB ← solveUB(s)
9: VLB(s) = vLB

10: VUB(s) = vUB

11: a∗, s′ ← selectAS(s)
12: g ← et(s

′)
∑
a2∈A2

πUB
1 (a∗)πLB

2 (a2)T (s′|s, a∗, a2)
13: if g > 0 then
14: ρ← ρ−2δD

γ

15: explore(s′, ρ, t+ 1)
16: πLB

1 , πLB
2 , vLB ← solveLB(s)

17: πUB
1 , πUB

2 vUB ← solveUB(s)
18: VLB(s) = vLB

19: VUB(s) = vUB

20: end if
21: end function

3.4 One-Sided Partially Observable Stochastic Games
Solving general partially observable stochastic games with two players becomes difficult
because each player has to argue its strategy based on the opponents’ belief, but this
belief is affected based on the belief of the other player. This cycle of arguing about
opponents’ knowledge is infinite. Therefore it is challenging to compute reasonable
strategies. This problem is called the nested beliefs problem [24]. We will focus on a
subclass of two-player zero-sum games named one-sided partially observable stochastic
games. In these games, one player has imperfect information about the game’s current
state, while the other one has complete information. We will call them imperfect in-
formation player and perfect information player, respectively. Thanks to this property,

16

. 3.4 One-Sided Partially Observable Stochastic Games

the perfect information player knows exactly the opponent’s belief, and the imperfect
information player knows its opponent has this knowledge. Such games may be used
to model several security problems [6]. Based on the similarities between one-sided
partially observable stochastic games and POMDPs, a variant of the HSVI algorithm
was developed for solving these games [5].

Definition 3.9. [5][6]
One-sided partially observable stochastic game (OS-POSG) is a tuple 𝒢 =
(𝑆, 𝐴1, 𝐴2, 𝑂, 𝑇 , 𝑅, 𝑏(0), 𝛾) where
𝑆 is a finite set of state.
𝐴1 is a finite set of actions for imperfect information player.
𝐴2 is a finite set of actions for perfect information player.
𝑂 is a finite set of observation for imperfect information player.
𝑇 : 𝑆 × 𝐴1 × 𝐴2 × 𝑂 × 𝑆 → [0, 1] is a transitions function, where 𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2)
is a conditional probability that the game transitions from state 𝑠 ∈ 𝑆 to state
𝑠′ ∈ 𝑆 and imperfect information player receives observation 𝑜 ∈ 𝑂 after players
play actions 𝑎1 ∈ 𝐴1 and 𝑎2 ∈ 𝐴2.
𝑅: 𝑆 × 𝐴1 × 𝐴2 → ℝ is a reward function of imperfect information player, where
𝑅(𝑠, 𝑎1, 𝑎2) is a reward given to imperfect information player after players play
actions 𝑎1 ∈ 𝐴1 and 𝑎2 ∈ 𝐴2 in state 𝑠 ∈ 𝑆.
𝑏(0): 𝑆 → ℝ is a initial belief of imperfect information player, where 𝑏(0)(𝑠) is
probability that the game is in state 𝑠 ∈ 𝑆 at the beginning of the game.
𝛾 ∈ [0, 1] is a discount factor of the game.

Each game starts by sampling single state 𝑠(0) ∼ 𝑏(0). At each stage of the game 𝑡
both players choose actions 𝑎(𝑡)

1 ∈ 𝐴1, 𝑎(𝑡)
2 ∈ 𝐴2 simultaneously and the game transitions

to the new state 𝑠(𝑡+1), which is shown to the perfect information player, and imper-
fect information only receives observation 𝑜(𝑡) ∈ 𝑂 based on 𝑇 (𝑠(𝑡+1), 𝑜(𝑡)|𝑠(𝑡), 𝑎(𝑡)

1 , 𝑎(𝑡)
2).

There is also a reward 𝑅(𝑠(𝑡), 𝑎(𝑡)
1 , 𝑎(𝑡)

2) given to the imperfect information player.
Since the belief of an imperfect information player is known to the perfect information

player, both of them have their strategies dependent on belief. Imperfect information
player has policy 𝜋1(𝑎1) for each of its actions 𝑎1 ∈ 𝐴1. Perfect information player
knows the true state of the game, so its policy has to be dependent on the state. We
will use 𝜋2(𝑎2|𝑠) to denote the conditional probability of playing 𝑎2 ∈ 𝐴2 if the player is
in state 𝑠 ∈ 𝑆. This does not mean there are only |𝑆| policies for a perfect information
player based on state.

Because there is one player, which has full information, only the imperfect informa-
tion player has to have a belief about the environment. In POMDPs, the belief update
is dependent only on the dynamics of the environment. However, in OS-POSGs, it
depends also on the policy played by the perfect information player.

𝑏′(𝑠′) = 𝜏(𝑏, 𝑎1, 𝜋2, 𝑜)(𝑠′) =
∑𝑠∈𝑆 ∑𝑎2∈𝐴2

𝑏(𝑠)𝜋2(𝑎2|𝑠)𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2)
∑𝑠∈𝑆 ∑𝑎2∈𝐴2

∑𝑠′′∈𝑆 𝑏(𝑠)𝜋2(𝑎2|𝑠)𝑇 (𝑠′′, 𝑜|𝑠, 𝑎1, 𝑎2)
(3.14)

3.4.1 Bellman Update
As with the original HSVI for POMDPs, the HSVI for OS-POSGs approximates the
solution by tightening the gap between the lower and upper bound. It also updates the

17

3. Game Theory .
value function by adding a point to the upper bound and 𝛼-vector to the lower bound
after using the Bellman equation to update the values. In OS-POSGs, the expected
value has to take into account the strategies of each player.

𝑉 𝜋1,𝜋2(𝑏) = ∑
𝑎1∈𝐴1

∑
𝑎2∈𝐴2

∑
𝑠∈𝑆

𝜋1(𝑎1)𝜋2(𝑎2|𝑠)𝑏(𝑠)𝑅(𝑠, 𝑎1, 𝑎2) (3.15)

+ 𝛾 ∑
𝑎1∈𝐴1

∑
𝑜∈𝑂

𝜋1(𝑎1)𝑉 𝜋(𝜏(𝑏, 𝑎1, 𝜋2, 𝑜)) ∑
𝑠∈𝑆

∑
𝑎2∈𝐴2

∑
𝑠′∈𝑆

𝜋2(𝑎2|𝑠)𝑏(𝑠)𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2)

With the notion of maxmin and minmax strategies 3.6 the Bellman update for OS-
POSGs is

max
𝜋1

min
𝜋2

𝑉 𝜋1,𝜋2(𝑏) = min
𝜋2

max
𝜋1

𝑉 𝜋1,𝜋2(𝑏) (3.16)

With the usage of 𝛼-vectors, it is possible to perform the Bellman update by using
linear program. It still holds that the value function is the lower bound solution

max
𝑉 ,𝜋1,�̂�,𝜆

∑ 𝑏(𝑠)𝑉 (𝑠) (3.17a)

s.t. 𝑉 (𝑠) ≤ ∑
𝑎1∈𝐴1

𝜋1(𝑎1)𝑅(𝑠, 𝑎1, 𝑎2) + 𝛾 ∑
𝑎1∈𝐴1

∑
𝑜∈𝑂

∑
𝑠′∈𝑆

𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2) ̂𝛼𝑎1,𝑜(𝑠′)

∀(𝑠, 𝑎2) ∈ 𝑆 × 𝐴2(3.17b)

̂𝛼𝑎1,𝑜(𝑠′) =
|Γ|

∑
𝑖=1

𝜆𝑎1,𝑜
𝑖 𝛼𝑖(𝑠′) ∀(𝑎1, 𝑜, 𝑠′) ∈ 𝐴1 × 𝑂 × 𝑆 (3.17c)

|Γ|

∑
𝑖=1

𝜆𝑎1,𝑜
𝑖 = 𝜋1(𝑎1) ∀(𝑎1, 𝑜) ∈ 𝐴1 × 𝑂 (3.17d)

∑
𝑎1=𝐴1

𝜋1(𝑎1) = 1 (3.17e)

𝜋1(𝑎1) ≥ 0 ∀𝑎1 ∈ 𝐴1 (3.17f)
�̂�𝑎1,𝑜

𝑖 ≥ 0 ∀(𝑎1, 𝑜) ∈ 𝐴1 × 𝑂, 1 ≤ 𝑖 ≤ |Γ|(3.17g)

Dual form of this linear program is

min
𝑉 ,𝜋2, ̂𝑉 ,𝜏

𝑉 (3.18a)

s.t. 𝑉 ≥ ∑
𝑠∈𝑆

∑
𝑎2∈𝐴2

𝜋2(𝑠 ∧ 𝑎2)𝑅(𝑠, 𝑎1, 𝑎2) + 𝛾 ∑
𝑜∈𝑂

̂𝑉 (𝑎1, 𝑜) ∀𝑎1 ∈ 𝐴1(3.18b)

̂𝑉 (𝑎1, 𝑜) ≥ ∑
𝑠′∈𝑆

𝜏(𝑎1, 𝑜)(𝑠′)𝛼𝑖(𝑠′) ∀(𝑎1, 𝑜) ∈ 𝐴1 × 𝑂, 1 ≤ 𝑖 ≤ |Γ|(3.18c)

𝜏(𝑎1, 𝑜)(𝑠′) = ∑
𝑠∈𝑆

∑
𝑎2∈𝐴2

𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2)𝜋2(𝑠 ∧ 𝑎2)

∀(𝑎1, 𝑜, 𝑠′) ∈ 𝐴1 × 𝑂 × 𝑆 (3.18d)
∑

𝑎2=𝐴2

𝜋2(𝑠 ∧ 𝑎2) = 𝑏(𝑠) ∀𝑠 ∈ 𝑆 (3.18e)

𝜋2(𝑠 ∧ 𝑎2) ≥ 0 ∀(𝑠, 𝑎2) ∈ 𝑆 × 𝐴2(3.18f)

These presented linear programs are using 𝛼-vectors. However, the upper bound is a
lower convex hull of points. This next linear program shows how to receive value for
each belief from the value function using another linear program, which also ensures

18

. 3.4 One-Sided Partially Observable Stochastic Games

that the upper bound is 𝛿-Lipschitz continuous.

𝑉 Υ
UB(𝑏) = min

𝜆,Δ,𝑏′

|Υ|

∑
𝑖=1

𝜆𝑖𝑦𝑖 + 𝛿 ∑
𝑠∈𝑆

Δ𝑠 (3.19a)

s.t
|Υ|

∑
𝑖=1

𝜆𝑖𝑏𝑖(𝑠) = 𝑏′(𝑠) ∀𝑠 ∈ 𝑆 (3.19b)

Δ𝑠 ≥ 𝑏′(𝑠) − 𝑏(𝑠) ∀𝑠 ∈ 𝑆 (3.19c)
Δ𝑠 ≥ 𝑏(𝑠) − 𝑏′(𝑠) ∀𝑠 ∈ 𝑆 (3.19d)
|Υ|

∑
𝑖=1

𝜆𝑖 = 1 (3.19e)

𝜆𝑖 ≥ 0 1 ≤ 𝑖 ≤ |Υ| (3.19f)

This linear program serves as a basis to formulate a dual formulation to handle points
instead of 𝛼 vectors. The 𝛿 is a Lipschitz constant specific to each game and it is
computed as

𝑅min = min
(𝑠,𝑎1,𝑎2)∈𝑆×𝐴1×𝐴2

𝑅(𝑠, 𝑎1, 𝑎2) (3.20)

𝑅max = max
(𝑠,𝑎1,𝑎2)∈𝑆×𝐴1×𝐴2

𝑅(𝑠, 𝑎1, 𝑎2) (3.21)

𝛿 = 𝑅max − 𝑅min
2(1 − 𝛾)

(3.22)

Replacing the condition (3.18c) by slightly modified version of linear program
(3.19a)-(3.19f) results in dual LP for Bellman update using belief points

min
𝑉 ,𝜋2, ̂𝑉 ,𝜏

𝑉 (3.23a)

s.t. 𝑉 ≥ ∑
𝑠∈𝑆

∑
𝑎2∈𝐴2

𝜋2(𝑠 ∧ 𝑎2)𝑅(𝑠, 𝑎1, 𝑎2) + 𝛾 ∑
𝑜∈𝑂

̂𝑉 (𝑎1, 𝑜) ∀𝑎1 ∈ 𝐴1 (3.23b)

̂𝑉 𝑎1,𝑜 =
|Υ|

∑
𝑖=1

𝜆𝑎1,𝑜
𝑖 𝑦𝑖 + 𝛿 ∑

𝑠∈𝑆
Δ(𝑎1, 𝑜)𝑠 ∀(𝑎1, 𝑜) ∈ 𝐴1 × 𝑂 (3.23c)

|Υ|

∑
𝑖=1

𝜆𝑎1,𝑜
𝑖 𝑏𝑖(𝑠′) = �̂�𝑎1,𝑜(𝑠′) ∀(𝑎1, 𝑜, 𝑠′) ∈ 𝐴1 × 𝑂 × 𝑆 (3.23d)

Δ𝑎1,𝑜
𝑠 ≥ ̂𝑏𝑎1,𝑜(𝑠′) − 𝜏(𝑎1, 𝑜)(𝑠′) ∀(𝑎1, 𝑜, 𝑠′) ∈ 𝐴1 × 𝑂 × 𝑆 (3.23e)

Δ𝑎1,𝑜
𝑠 ≥ 𝜏(𝑎1, 𝑜)(𝑠′) − �̂�𝑎1,𝑜(𝑠′) ∀(𝑎1, 𝑜, 𝑠′) ∈ 𝐴1 × 𝑂 × 𝑆 (3.23f)

𝜏(𝑎1, 𝑜)(𝑠′) = ∑
𝑠∈𝑆

∑
𝑎2∈𝐴2

𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2)𝜋2(𝑠 ∧ 𝑎2)

∀(𝑎1, 𝑜, 𝑠′) ∈ 𝐴1 × 𝑂 × 𝑆 (3.23h)
|Υ|

∑
𝑖=1

𝜆𝑖 = 1 (3.23g)

∑
𝑎2=𝐴2

𝜋2(𝑠 ∧ 𝑎2) = 𝑏(𝑠) ∀𝑠 ∈ 𝑆 (3.23i)

𝜋2(𝑠 ∧ 𝑎2) ≥ 0 ∀(𝑠, 𝑎2) ∈ 𝑆 × 𝐴2 (3.23j)
𝜆𝑖 ≥ 0 1 ≤ 𝑖 ≤ |Υ|(3.23k)

These Bellman updates may then be used to create a new 𝛼-vector and new point in
each stage of exploration. We will call these stages stage games.

19

3. Game Theory .
3.4.2 Presolving

Before solving the game, there have to be some values as upper and lower bounds to our
solution. The same idea as with the original HSVI for POMDPs applies for OS-POSGs,
and we initialize a single 𝛼-vector and |𝑆| belief points, where each belief point is a pure
belief of a single state.

𝛼(𝑠) = 𝑅min ∀𝑠 ∈ 𝑆 (3.24)

𝑦𝑖 = 𝑅max (3.25)

Now the bounds are improved by solving the fully observable variant of a given game,
using value iteration (3.6a)-(3.6d) in the upper bound and by playing uniform strategy
as an imperfect information player in the lower bound. The better the solution from
the presolve part, the less computationally expensive the HSVI itself is.

3.4.3 Exploration
The exploration of HSVI for OS-POSGs is similar to the exploration defined for SGs.
The excess gap is computed for belief rather then state, but the 𝜌 parameter and its
update remains the same as (3.10), (3.11)

𝑒𝑡(𝑏) = 𝑉UB(𝑏) − 𝑉LB(𝑏) − 𝜌(𝑡) (3.26)

Exploration is dependent on the policies of both players. It uses the policy of imperfect
information player from the upper bound and the policy of perfect information player
from the lower bound. The optimal action and observation maximize the excess gap
weighted by the probability of reaching such belief.

(𝑎∗
1, 𝑜∗) = argmax

(𝑎1,𝑜)∈𝐴×𝑂
𝜋1(𝑎1)𝑒𝑡(𝜏(𝑏, 𝑎1, 𝜋LB

2 , 𝑜)) ∑
𝑠∈𝑆

∑
𝑎2∈𝐴2

∑
𝑠′∈𝑆

𝜋2(𝑎2|𝑠)𝑏(𝑠)𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2)

(3.27)
The exploration is again stopped when

𝜋1(𝑎∗
1)𝑒𝑡(𝜏(𝑏, 𝑎∗

1, 𝜋LB
2 , 𝑜∗)) ∑

𝑠∈𝑆
∑

𝑎2∈𝐴2

∑
𝑠′∈𝑆

𝜋2(𝑎2|𝑠)𝑏(𝑠)𝑇 (𝑠′, 𝑜∗|𝑠, 𝑎∗
1, 𝑎2) ≤ 0 (3.28)

Algorithm 6 Heuristic Search Value Iteration for OS-POSGs

1: Initialize V Γ
LB, V Υ

UB

2: while V Γ
LB(b(0))− V Υ

UB(b(0)) > ε do
3: explore(b(0), ε, t)
4: end while
5:

6: function explore(b, ρ, t)
7: πLB

1 , πLB
2 , α← solveLB(b)

8: πUB
1 , πUB

2 , y ← solveUB(b)
9: update(b, α, y)

10: a∗, o∗ ← selectAO(b)
11: g ← πUB

1 (a∗1)et(τ(b, a∗1, π
LB
2 , o∗))

∑
s∈S

∑
a2∈A2

∑
s′∈S π

LB
2 (a2|s)b(s)T (s′, o∗|s, a∗1, a2)

12: if g > 0 then
13: ρ← ρ−2δD

γ

14: explore(τ(b, a∗, πLB
2 , o∗), ρ, t+ 1)

15: πLB
1 , πLB

2 , α← solveLB(b)
16: πUB

1 , πUB
2 , y ← solveUB(b)

17: update(b, α, y)
18: end if
19: end function

20

. 3.5 Quantal Response Equilibrium

3.5 Quantal Response Equilibrium
Nash equilibrium gives us the expected reward for a player and optimal strategy while
playing against a rational and optimally playing opponent. However, knowing the exact
policy may not always be necessary, so we could use a less computationally demanding
methods, which are only suboptimal. One of these methods is called quantal response
equilibrium (QRE) [25].

While computing QRE, a player updates its strategy based on expected utilities, and
it also assumes that other players act in a similar fashion. Quantal response equilibrium
is a fixed point of this process.

Let us assume that player 𝑖 ∈ 𝒩 does observe utility with some error for each of its
pure strategies 𝑠𝑖 ∈ 𝒮𝑖. Therefore the utility becomes

�̂�𝑖(𝜎) = �̂�𝑖(𝑠𝑖, 𝜎∗
−𝑖) = 𝑢𝑖(𝑠𝑖, 𝜎∗

−𝑖) + 𝜀𝑠𝑖
(3.29)

where 𝜀𝑠𝑖
is a error for player 𝑖 ∈ 𝒩 when playing strategy 𝑠𝑖 and opponents play a best

response 𝜎∗
−𝑖. Furthermore 𝜀𝑖 is a vector containing 𝜀𝑠𝑖

for each pure strategy 𝑠𝑖 and
is distributed according to joint distribution with density function 𝑓𝑖(𝜀𝑖). Function 𝑓 is
called admissible if marginal distribution of 𝑓𝑖 exists for each 𝜀𝑠𝑖

and expected value is
zero 𝔼(𝜀𝑠𝑖

) = 0 for each player 𝑖 ∈ 𝒩. We assume that player 𝑖 will choose a best pure
strategy 𝑠∗

𝑖 , which yields in �̂�𝑖(𝑠∗
𝑖 , 𝜎∗

−𝑖) ≥ �̂�𝑖(𝑠𝑖, 𝜎∗
−𝑖), ∀𝑠𝑖 ∈ 𝒮𝑖.

We define region 𝑅𝑠∗
𝑖
(𝑢) ⊆ ℝ|𝑆𝑖|, that specifies a region of errors which has 𝑠∗

𝑖 as a
strategy that should be played by player 𝑖 ∈ 𝒩 if the expected utilities are 𝑢.

𝑅𝑠∗
𝑖
(𝑢) = {𝜀𝑖 ∈ ℝ|𝑆𝑖||𝑢𝑖(𝑠∗

𝑖 , 𝜎∗
−𝑖) + 𝜀𝑠∗

𝑖
≥ 𝑢𝑖(𝑠𝑖, 𝜎∗

−𝑖) + 𝜀𝑠𝑖
∀𝑠𝑖 ∈ 𝑆𝑖} (3.30)

We may then define 𝜍𝑠𝑖
(𝑢), which is a probability that player 𝑖 will choose pure strategy

𝑠𝑖, if the expected utilities are 𝑢.

𝜍𝑠𝑖
(𝑢) = ∫

𝑅𝑠𝑖(𝑢)
𝑓(𝜀)𝑑𝜀 (3.31)

We use 𝜎𝑠𝑖
to denote probability of playing strategy 𝑠𝑖 ∈ 𝒮𝑖 in strategy profile 𝜎 by

player 𝑖 ∈ 𝒩.

Definition 3.10. [25]
Let 𝒢 = (𝒩, 𝒮, 𝑢) be a normal-form game and let 𝑓 be admissible.
Quantal response equilibrium (QRE) is any mixed strategy profile 𝜎 for which
holds

𝜎𝑠𝑖
= 𝜍𝑠𝑖

(𝑢(𝜎)) = ∫
𝑅∗𝑖(𝑢)

𝑓(𝜀)𝑑𝜀

In QRE, the expected utility of strategy 𝑠𝑖 is positively correlated with probability
of playing that strategy.

Theorem 3.3. Existence of quantal response equilibrium [25]
In any normal-form game 𝒢 = (𝒩, 𝒮, 𝑢) and admissible 𝑓, there exists a quantal
response equilibrium.

21

3. Game Theory .
To compute QRE it is necessary to define admissible function 𝑓. We will use logit

equilibrium in this work, which is parameterized by a single parameter 𝜆 ≥ 0. If for
each player the following equation holds, then we have logit QRE [25].

𝜎𝑠𝑖
(𝑢) = 𝑒𝜆𝑢𝑠𝑖(𝜎)

∑𝑠′
𝑖∈𝑆𝑖

𝑒𝜆𝑢𝑠′
𝑖
(𝜎) (3.32)

If 𝜆 = 0, the result is a uniform mixed strategy, if 𝜆 = ∞ the result is a uniform mixed
strategy between actions with the highest expected utility.

Since QRE is a fixed point, it is possible to iteratively update strategies 𝜎(𝑡) at each
step 𝑡 out of expected values computed from 𝜎(𝑡−1), until convergence. We initialize
strategy to the uniform one for each player.

𝜎(1)
𝑠𝑖 = 1

|𝑆𝑖|
(3.33)

Then the new mixed strategy is computed from utility based on (3.32).

𝜎′(𝑡+1)
𝑠𝑖 = 𝑒𝜆𝑢𝑠𝑖(𝜎(𝑡))

∑𝑠′
𝑖∈𝑆𝑖

𝑒𝜆𝑢𝑠′
𝑖
(𝜎(𝑡)) (3.34)

To ensure the strategy convergence, the strategies are summed by using cummulative
moving average [7].

𝜎(𝑡+1)
𝑠𝑖 =

𝑡𝜎(𝑡)
𝑠𝑖 + 𝜎′(𝑡+1)

𝑠𝑖

𝑡 + 1
(3.35)

This process continues for 𝑇 iterations or until the difference between steps becomes
smaller than some 𝜀QRE > 0.

|𝜎(𝑡+1)
𝑠𝑖 − 𝜎(𝑡)

𝑠𝑖 | < 𝜀QRE ∀𝑠𝑖 ∈ 𝒮𝑖, ∀𝑖 ∈ 𝒩 (3.36)

3.6 Regret Minimization
When computing both Nash and quantal response equilibrium, the goal is to maximize
the expected value for each player against the best response of the opponent. However
opponent may not play according to a best response, but it may play entirely randomly.
It may be better for the agent to minimize how much it can lose by playing according
to some strategy instead of maximizing how much it gains by playing according to the
same strategy.

Definition 3.11. [17]
Let 𝒢 = (𝒩, 𝒮, 𝑢) be a normal-form game.
Regret for playing strategy 𝜎𝑖 if the remaining players play 𝜎−𝑖 is defined as

𝑟𝑖 = max
𝑠𝑖∈𝑆𝑖

𝑢𝑖(𝑠𝑖, 𝜎−𝑖) − 𝑢𝑖(𝜎𝑖, 𝜎−𝑖)

The regret says how much we could gain by playing the pure strategy 𝑠𝑖 instead of
strategy 𝜎𝑖 against the fixed strategy 𝜎−𝑖 of all the other players.

22

. 3.6 Regret Minimization

Suppose an online learning algorithm, which computes a mixed strategy profile 𝜎(𝑡) at
each step 𝑡 ∈ {1, . . . , 𝑇 }, the external average regret is defined as

𝑅(𝑇)
𝑖 = 1

𝑇
max

𝜎∗
𝑖

𝑇
∑
𝑡=1

𝑢𝑖(𝜎∗
𝑖 , 𝜎(𝑡)

−𝑖) − 𝑢𝑖(𝜎(𝑡)) (3.37)

If the average regret converges to 0 for each player 𝑖 ∈ 𝒩, then the algorithm is called
no-regret or regret minimization algorithm.

lim
𝑇 →∞

𝑅(𝑇)
𝑖 = 0 (3.38)

23

Chapter 4
Variance Reduction in Reinforcement Learning

Reinforcement learning is a machine learning method that aims to find the best possible
sequence of decisions in an environment. Reinforcement learning does not need to have
the exact model of the environment, but it learns the policy from simulating the game
multiple times. Therefore the agent may view the environment as a black box and acts
just according to the observations and rewards it receives. The fundamental problem
in reinforcement learning is when to explore the environment to get better knowledge
and when to use that knowledge to maximize the reward. This is called exploration-
exploitation dilemma. If the agent only focuses on exploration, it simply chooses random
action, and the expected reward has a substantial variance. On the other hand, if the
agent only focuses on the exploitation and plays such actions with the highest expected
reward, it may easily miss a better solution because we do not explore some parts of
the game that could be more rewarding.

To reduce the variance from the naive random exploration, some algorithms stores
a value function like Q-learning or SARSA, which uses so-called Q-values that assign
value to each state-action pair based on expected reward [26], [27]. Other algorithms
use Monte Carlo sampling based on the current policy of an agent [28]. Both of these
approaches still suffer from high variance, and several methods were introduced to
reduce it.

This chapter will introduce the essential variance reduction technique of control vari-
ates. Furthermore, we will describe multiple already used variance reduction in rein-
forcement learning and argue about its usage in HSVI for OS-POSGs.

4.1 Control Variates
The naive way to reduce variance is by using more samples. However, this increases
the runtime linearly with the number of samples. Control variates can reduce vari-
ance without increasing sample size and with only slight computational overhead by
exploiting the information about the error from samples.

Let 𝑋 be a random variable, which has a mean 𝜇, which we try to estimate from 𝑛
samples as

𝔼[𝑋] = 𝜇𝑋 ≈ ̂𝜇𝑋 = 1
𝑛

𝑛
∑
𝑖=1

𝑋𝑖 (4.1)

We use 𝑋𝑖 to denote the value of 𝑋 in the i-th sample. Let us suppose that we
additionally have a different random variable 𝑌, which is jointly distributed with 𝑋,
and we know its mean.

𝔼[𝑌] = 𝜇𝑌 (4.2)

The main idea of control variates is to use the error between the known mean 𝜇𝑌 and
estimated mean ̂𝜇𝑌, which is computed from samples of 𝑌. We now construct a new
random variable with additional parameter 𝜆 ∈ ℝ.

�̅� = 𝑋 + 𝜆(𝑌 − 𝜇𝑌) (4.3)

24

. 4.1 Control Variates

We now show that the estimated mean is the same for both 𝑋 and �̅�.

𝜇�̅� = 𝔼[�̅�] = 𝔼[𝑋+𝜆(𝑌 −𝜇𝑌)] = 𝔼[𝑋]+𝜆(𝔼[𝑌]−𝔼[𝜇𝑌]) = 𝜇𝑋 +𝜆(𝜇𝑌 −𝜇𝑌) = 𝜇𝑋 (4.4)

We further investigate the variance of �̅�.

Var(�̅�) = Var(𝑋) + 𝜆2 Var(𝑌) + 2𝜆 Cov(𝑋, 𝑌) (4.5)

We may see that the resulting variance depends on the parameter 𝜆, and if we choose
it poorly, the variance of �̅� may be greater than the variance of 𝑋. Finding the best
choice of 𝜆 is a simple optimization task.

𝜆∗ = argmin
𝜆

Var(𝑋) + 𝜆2 Var(𝑌) + 2𝜆 Cov(𝑋, 𝑌) (4.6)

This may be solved by differentiation.
𝑑 Var(�̅�)

𝑑𝜆
= 2𝜆∗ Var(𝑌) + 2 Cov(𝑋, 𝑌) = 0 → 𝜆∗ = −Cov(𝑋, 𝑌)

Var(𝑌)
(4.7)

4.1.1 Example: Estimating Definite Integral
Let us suppose we want to estimate the definite integral of sin(𝑥) from 0 to 1 via Monte
Carlo integration.

∫
1

0
sin(𝑥)𝑑𝑥 (4.8)

We will use 1000 uniformly sampled values from interval [0, 1] to estimate the value of
this integral with regular Monte Carlo integration and then with Monte Carlo integra-
tion with control variate. Usual Monte Carlo integration is

∫
1

0
sin(𝑥)𝑑𝑥 ≈ 1

𝑛

𝑛
∑
𝑖=1

sin(𝑥𝑖) (4.9)

We will use the identity function for our control variate.

𝑓(𝑥) = 𝑥 (4.10)

∫
1

0
𝑥 = 1

2
(4.11)

Our control variate estimation is then

∫
1

0
sin(𝑥)𝑑𝑥 ≈ 𝐼 = 1

𝑛

𝑛
∑
𝑖=1

(sin(𝑥𝑖) + 𝜆(𝑥𝑖 − 1
2

)) (4.12)

We will try to estimate this definite integral with four different settings of 𝜆. 𝜆 =
−0.85578 is an estimation of optimal parameter setting.

𝜆 𝐼 Variance
0 0.452 0.0612
1 0.4432 0.2871
-2 0.4696 0.1097

-0.85578 0.4596 0.0003
Table 4.1. Results of Monte Carlo integration with control variates

The real value is
∫

1

0
sin(𝑥)𝑑𝑥 ≈ 0.4597 (4.13)

25

4. Variance Reduction in Reinforcement Learning .

4.2 Reducing Reward Variance
If the rewards in the environment are corrupted or stochastic, the reward may be seen
as a random variable. In games, this may occur even if the rewards are deterministic
because the rewards depend on other players’ strategies. In [29] it was suggested to
keep the reward estimate, which is then used to compute the value function, instead
of the immediate reward given to the player. It was proven that this approach reduces
variance in the tabular domain, and it was also empirically shown that even in longer
MDPs with stochastic rewards, the variance is reduced.

4.3 Baselines for values
It was suggested by [30] to improve the algorithm Monte Carlo counterfactual regret
minimization (MCCFR) for solving two-player imperfect information games. This al-
gorithm samples playthroughs of the game (one route in the tree) and then updates
each visited state based on the received reward. In the original implementation of MC-
CFR [28], the update to state is done only by the single action, which was played in
the current playthrough. Variance reduction is employed by taking into account values
from all possible actions in a given state based on previous visits of this state.

We will define how the baselines in [30] would work in fully observable setting, while
the original implementation is for imperfect information games. At each iteration 𝑛 of
MCCFR the single trajectory 𝑠(1)𝑎(1)

1 𝑎(1)
2 𝑠(2) . . . 𝑎(𝑇 −1)

1 𝑎(𝑇 −1)
2 𝑠(𝑇) is sampled and then for

each state 𝑠(𝑡) from state 𝑠(𝑇 −1) to 𝑠(1), the algorithm computes utility from trajectory
and expected utility for each action in a following way

𝑢𝑖(𝑠(𝑡), 𝑎(𝑡)
𝑖) =

𝑇 −1
∑
𝑖=𝑡

𝛾𝑖−𝑡𝑅(𝑠(𝑡), 𝑎(𝑡)
1 , 𝑎(𝑡)

2) (4.14)

�̂�(𝑛)
𝑖 (𝑠(𝑡), 𝑎𝑖) = { 𝑏(𝑛)(𝑠(𝑡), 𝑎𝑖) + 𝑢(𝑠(𝑡),𝑎(𝑡)

𝑖)−𝑏(𝑛)(𝑠(𝑡),𝑎𝑖)
�̄�𝑖(𝑠(𝑡),𝑎𝑖) if 𝑎𝑖 = 𝑎(𝑡)

𝑖

𝑏(𝑛)(𝑠(𝑡), 𝑎𝑖) else
(4.15)

where ̄𝜋𝑖 is a sampling policy of a player 𝑖, this policy is not the same as the players
policy, and 𝑏(𝑠(𝑡), 𝑎𝑖) is a baseline, which is updated each time that given state-action
pair is sampled.

𝑏(𝑛+1)(𝑠(𝑡), 𝑎(𝑡)
𝑖) = (1 − 𝛼)𝑏(𝑛)(𝑠(𝑡), 𝑎(𝑡)

𝑖) + 𝛼𝑢(𝑠(𝑡), 𝑎(𝑡)
𝑖) (4.16)

The real expected value, which would be known if we sampled all the possible actions,
is approximated by baseline 𝑏. Therefore the optimal baseline would be the actual
expected reward after picking such action.

26

Chapter 5
Two-Player Stochastic Games with
Simultaneous moves

Two-player stochastic games with simultaneous moves (SGs) are closely related OS-
POSGs, but without partial observability, it is much easier to solve them. This means
that if the significant variance is present in these games, it is most likely present in
OS-POSGs. This chapter will present a slightly modified version of value iteration
for SGs, which uses stochastic exploration to update state values. We will also show
how to avoid linear programming while computing Nash equilibrium in each state and
instead use two iterative approaches based on quantal response equilibrium and regret
minimization. In the last part of this chapter, we will show how the variance reduction
baselines may be used with our version of regret minimization.

5.1 Value Iteration with Stochastic Exploration
Usual value iteration updates each state in each iteration. However, some states may be
reached only with a small probability. Such states only slightly affect the initial state
value and therefore do not have to be approximated as closely as some other states. In
order to solve the game in such states, which are more likely to be reached from the
initial state, we could sample the actions according to the policies of both players. If
some action has zero or near-zero probability in policy, it is never sampled. We offset
the sampling policy to ensure such actions may be sampled. One way of doing so is
𝜖-offset.

̂𝜋𝑖(𝑠, 𝑎𝑖) = (1 − 𝜖)𝜋𝑖(𝑠, 𝑎𝑖) + 𝜖 1
|𝐴𝑖|

∀𝑎 + 𝑖 ∈ 𝐴𝑖 (5.1)

where 𝜋𝑖 is a policy for player 𝑖.
The algorithm then starts in the initial state and samples actions for both players

based on (5.1) and transitions until the terminal state or maximum depth is reached.
Then the value is updated similarly to the usual value iteration. We call this algorithm
value iteration with stochastic exploration (VISE) and it is presented in Algorithm 7.

5.2 Quantal Response Equilibrium
In the previous section, we have presented two variants of value iteration and one
variant of HSVI. Usually, these algorithms solve the game in a given state by solving
linear program (3.6a)-(3.6d), which computes the Nash equilibrium. Computing Nash
equilibrium via linear programs may be computationally demanding both time-wise
and space-wise. Quantal response equilibrium is a different type of equilibrium, which
is computed by an iterative approach. Therefore it avoids constructing and solving the
linear program.

27

5. Two-Player Stochastic Games with Simultaneous moves .

Algorithm 7 Value Iteration with Stochastic Exploration for SGs

1: function Value Iteration Stochastic Explore(T,Dmax, ε)
2: Initialize V (s)
3: for t = {1, 2, 3, . . . , T} do
4: StochasticExplore(s0, ε, 1, Dmax)
5: end for
6: end function
7:

8: function StochasticExplore(s, ε,D,Dmax)
9: if D < Dmax then

10: snew ← Sample according to ε-offset policies
11: StochasticExplore(snew, ε,D + 1, Dmax)
12: v, π1, π2 ← Solve(s)
13: end if
14: end function

When reached a state 𝑠 ∈ 𝑆 for 𝑡-th time, each player computes the expected value
against the opponents current policy as follows

𝑄(𝑡)(𝑠, 𝑎1) = ∑
𝑎2∈𝐴2

𝜋(𝑡)
2 (𝑠, 𝑎2)(𝑅(𝑠, 𝑎1, 𝑎2) + 𝛾 ∑

𝑠′∈𝑆
𝑇 (𝑠′|𝑠, 𝑎1, 𝑎2)𝑉 (𝑠′)) ∀𝑎1 ∈ 𝐴1

(5.2)

𝑄(𝑡)(𝑠, 𝑎2) = − ∑
𝑎1∈𝐴1

𝜋(𝑡)
1 (𝑠, 𝑎1)(𝑅(𝑠, 𝑎1, 𝑎2) + 𝛾 ∑

𝑠′∈𝑆
𝑇 (𝑠′|𝑠, 𝑎1, 𝑎2)𝑉 (𝑠′)) ∀𝑎2 ∈ 𝐴2

(5.3)
Since the value 𝑉 is stored only for player 1, thanks to the zero-sum property, it is
enough to use the negative value −𝑉 to compute value 𝑄 for the second player.

The initial policy is set as a uniform distribution over all actions.

𝜋(1)
𝑖 (𝑠, 𝑎𝑖) = 1

|𝐴𝑖|
(5.4)

New policy increment is then computed as quantal response equilibrium in the following
way

̄𝜋𝑖(𝑠, 𝑎𝑖) = 𝑒𝜆𝑄(𝑡)(𝑠,𝑎𝑖)

∑𝑎′
𝑖∈𝐴𝑖

𝑒𝜆𝑄(𝑡)(𝑠,𝑎′
𝑖) (5.5)

New average policy is computed by moving average.

𝜋(𝑡+1)
𝑖 (𝑠, 𝑎𝑖) = 𝑡𝜋(𝑡)

𝑖 (𝑠, 𝑎𝑖) + ̄𝜋𝑖(𝑠, 𝑎𝑖)
𝑡 + 1

(5.6)

Parameter 𝜆 affects how the differences between values are amplified. High 𝜆 results in
a higher policy increment for action, which has a maximal expected value. If 𝜆 = ∞,
then the resulting average policy converges to the Nash equilibrium.

5.3 Regret Minimization
Instead of approximating Nash equilibrium by maximizing the value, it could be
achieved by minimizing the regret. Regret minimization is also an iterative approach
similar to QRE. With QRE, it is necessary for each state to store the value, the
average policy, and how many times this state was already solved. Regret minimization

28

. 5.3 Regret Minimization

requires additional information about regret for each action in each state. Cumulative
regret at the beginning of the solving stage is defined as

𝑅(0)(𝑠, 𝑎𝑖) = 0 ∀𝑠 ∈ 𝑆, ∀𝑎𝑖 ∈ 𝐴𝑖, ∀𝑖 ∈ {1, 2} (5.7)

Unlike the QRE, where the average opponent policy is used to compute expected values,
the regret minimization employs a method called regret matching [31], which computes
the policy in the following way

̄𝜋(𝑡)
𝑖 (𝑠, 𝑎𝑖) =

⎧{
⎨{⎩

𝑅(𝑡)(𝑠,𝑎𝑖)
∑𝑎′

𝑖∈𝐴𝑖
𝑅(𝑡)(𝑠,𝑎′

𝑖) if ∑𝑎′
𝑖∈𝐴𝑖

𝑅(𝑡)(𝑠, 𝑎′
𝑖) > 0

1
|𝐴𝑖| else

(5.8)

Regret of deviating from this regret matching strategy is then computed as

𝑟𝑖(𝑠, 𝑎𝑖) = ∑
𝑎′

𝑖∈𝐴𝑖

̄𝜋(𝑡)
𝑖 (𝑠, 𝑎′

𝑖)𝑄(𝑡)(𝑠, 𝑎′
𝑖) − 𝑄(𝑡)(𝑠, 𝑎𝑖) (5.9)

To avoid negative policy in (5.8), the cumulative regret has to be non-negative. To
ensure this, we clamp the cumulative regret to 0 if it is negative.

𝑅(𝑡)(𝑠, 𝑎𝑖) = { 𝑅(𝑡−1)(𝑠, 𝑎𝑖) + 𝑟𝑖(𝑠, 𝑎𝑖) if 𝑅(𝑡−1)(𝑠, 𝑎𝑖) + 𝑟𝑖(𝑠, 𝑎𝑖) > 0
0 else

(5.10)

Policy update remains the same as in (5.6).

5.3.1 Regret Minimization with baselines
Action baselines significantly improved the original MCCFR [30] by reducing the vari-
ance in regrets. We tried similair idea with our regret minimization algorithm, which
is based on value iteration. Unlike the MCCFR, which does only hold the regrets for
each state, the value iteration holds expected value associated to the state. We will use
the baseline in a similar fashion to compute the regrets and update the expected value
according to the policy found by regret minimization. The baseline affected value is
defined the same as for the MCCFR.

�̂�(𝑡)(𝑠, 𝑎𝑖) = { 𝑏(𝑡)(𝑠, 𝑎𝑖) + 𝑄(𝑡)(𝑠,𝑎𝑖)−𝑏(𝑡)(𝑠,𝑎𝑖)
�̄�𝑖(𝑠,𝑎𝑖) if 𝑎𝑖 was sampled

𝑏(𝑡)(𝑠, 𝑎𝑖) else
(5.11)

As with the MCCFR the sampling policy ̄𝜋𝑖 is different then the actual policy of player 𝑖.
The value 𝑄(𝑡) is the same as in (5.2) and (5.3). These values are then used instead of
𝑄(𝑡) to compute regret in (5.9).

The MCCFR always updates the baseline of sampled action, because that is the only
value available. However in the value iteration we have values already available for each
state. We leverage this additional information and update baseline for each action in
state 𝑠.

𝑏(𝑡+1)(𝑠, 𝑎𝑖) = (1 − 𝛼)𝑏(𝑡)(𝑠, 𝑎𝑖) + 𝛼𝑄(𝑡)(𝑠, 𝑎𝑖)

29

Chapter 6
One-Sided Partially Observable Stochastic
Games

While solving one-sided partially observable stochastic games to arbitrary precision
with HSVI, the most computationally expensive part is constructing and solving linear
programs. To possibly speed up the convergence of HSVI it is necessary to find dif-
ferent approaches to approximate Nash equilibria, which do not use linear programs.
However these approximations increases variance in both value function and policies.
This chapter presents a way to remove linear programs from the HSVI algorithm and
instead use regret minimization or the computation of quantal response equilibrium to
approximate Nash equilibrium.

6.1 Iterative Stage Games Solving
Quantal response equilibrium and regret minimization may both be used to solve OS-
POSGs. When using these methods while solving SGs, each state had a separate value,
the average policy, visits, and regret, but OS-POSGs have continuous belief space in-
stead of states. Solving imperfect information games with reinforcement learning tech-
niques, like counterfactual regret minimization [31], deals with this issue through the
concept of information sets. Each information set consists of indistinguishable states
by the player, actions the player played, and observations it received. However, this ap-
proach is not scalable enough since the amount of information sets grows exponentially
with the game’s length.

We have decided to store these values separately for the lower and upper bound. Since
the lower bound is constructed by 𝛼-vectors, for each belief, we may assign 𝛼-vector
based on

𝛼∗ = argmax
𝛼∈Γ

∑
𝑠∈𝑆

𝑏(𝑠)𝛼(𝑠) (6.1)

The policies and regrets are then defined for each 𝛼-vector 𝛼 and player.

𝜋(𝑡)
1 (𝛼, 𝑎1) 𝜋(𝑡)

2 (𝛼, 𝑠, 𝑎2) (6.2)

𝑅(𝑡)
1 (𝛼, 𝑎1) 𝑅(𝑡)

2 (𝛼, 𝑠, 𝑎2) (6.3)

Each time the stage game in belief 𝑏 is about to be solved we start with policy 𝜋(𝑡)
𝑖 ,

regret 𝑅(𝑡)
𝑖 and visits 𝑡 from the 𝛼-vector 𝛼∗. After solving the stage game with any

of the approximate method, the new 𝛼-vector is constructed with policy 𝜋(𝑡+1)
𝑖 , regret

𝑅(𝑡+1)
𝑖 and visits 𝑡 + 1.
The upper bound has to be handled differently because the value function is not

entirely made from 𝛼-vector but just from points. We decided to discretize the belief
space and always store policy, regret, and visits in the nearest rounded belief. The
policies and regrets are defined for each discretized belief point 𝑏∗ and player.

𝜋(𝑡)
1 (𝑏∗, 𝑎1) 𝜋(𝑡)

2 (𝑏∗, 𝑠, 𝑎2) (6.4)

30

. 6.1 Iterative Stage Games Solving

𝑅(𝑡)
1 (𝑏∗, 𝑎1) 𝑅(𝑡)

2 (𝑏∗, 𝑠, 𝑎2) (6.5)

After updating values 𝜋(𝑡+1)
𝑖 and 𝑅(𝑡+1)

𝑖 we add new 𝛼-vector with these values, but the
values in the old 𝛼-vector remains the same. However when adding new point, these
values are updated in the discretized belief point. When using the iterative algorithms
for stage game solving, the expected value for each action is defined differently for each
player based one belief.

𝑄(𝑏, 𝑎1) = ∑
𝑎2∈𝐴2

∑
𝑠∈𝑆

𝜋2(𝑎2|𝑠)𝑏(𝑠)𝑅(𝑠, 𝑎1, 𝑎2) (6.6)

+ 𝛾 ∑
𝑜∈𝑂

𝑉 (𝜏(𝑏, 𝑎1, 𝜋2, 𝑜)) ∑
𝑠∈𝑆

∑
𝑎2∈𝐴2

∑
𝑠′∈𝑆

𝜋2(𝑎2|𝑠)𝑏(𝑠)𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2)

𝑄(𝑏, 𝑠, 𝑎2) = ∑
𝑎1∈𝐴1

𝜋1(𝑎1)𝑅(𝑠, 𝑎1, 𝑎2) (6.7)

+ 𝛾 ∑
𝑎1∈𝐴1

∑
𝑜∈𝑂

𝑉 (𝜏(𝑏, 𝑎1, 𝜋2, 𝑜)) ∑
𝑠′∈𝑆

𝜋1(𝑎1)𝑇 (𝑠′, 𝑜|𝑠, 𝑎1, 𝑎2)

𝑉 (𝑏) is either 𝑉 Υ
UB(𝑏) or 𝑉 Γ

LB(𝑏) for upper bound and lower bound respectively. Compu-
tation of quantal response equilibrium and regret minimization in OS-POSGs is then
done the same way as in SGs in (5.5) and (5.8).

6.1.1 Example: Adding new 𝛼-vector and belief point to the value
function

Let us suppose we have a value functions Γ and Υ as in 6.1 and we are about to solve
the stage game with belief

𝑏′(𝑠1) = 0.61 𝑏′(𝑠2) = 0.39 (6.8)

Before we start to solve the lower bound stage game, we find the 𝛼-vector 𝛼∗ according
to

𝛼∗ = argmax
𝛼∈Γ

∑
𝑠∈𝑆

𝑏′(𝑠)𝛼(𝑠) (6.9)

In this case it is 𝛼3. Out of 𝛼3 we get 𝜋(𝑡)
1 (𝛼3, 𝑎1), 𝑅(𝑡)

1 (𝛼3, 𝑎1) ∀𝑎1 ∈ 𝐴1 and
𝜋(𝑡)

2 (𝛼3, 𝑠, 𝑎2), 𝑅(𝑡)
2 (𝛼3, 𝑠, 𝑎2) ∀(𝑠, 𝑎2) ∈ 𝑆 × 𝐴2. These values are then used to solve the

lower bound stage game. The result is a new 𝛼-vector 𝛼5, which is computed using new
policies 𝜋(𝑡+1)

1 (𝛼5, 𝑎1), 𝜋(𝑡+1)
2 (𝛼5, 𝑠, 𝑎2). Regrets 𝑅(𝑡+1)

1 (𝛼5, 𝑎1), 𝑅(𝑡+1)
2 (𝛼5, 𝑠, 𝑎2) are also

saved with this vector. Value function is simply updated as

Γnew = Γ ∪ 𝛼5. (6.10)

Updated lower bound value function with 𝛼5 is shown in 6.2.
For upper bound also find nearest discretized belief as in 6.3, which is

𝑏∗(𝑠1) = 0.6 𝑏∗(𝑠2) = 0.4 (6.11)

This discretized belief is not the closest neighbour to any point in value function. There-
fore it is initialized as

𝜋(1)
1 (𝑏∗, 𝑎1) = 1

|𝐴1|
∀𝑎1 ∈ 𝐴1(6.12)

𝜋(1)
2 (𝑏∗, 𝑠, 𝑎2) = 1

|𝐴2|
∀(𝑠, 𝑎2) ∈ 𝑆 × 𝐴2(6.13)

𝑅(1)
1 (𝑏∗, 𝑎1) = 0 ∀𝑎1 ∈ 𝐴1(6.14)

𝑅(1)
2 (𝑏∗, 𝑠, 𝑎2) = 0 ∀(𝑠, 𝑎2) ∈ 𝑆 × 𝐴2(6.15)

31

6. One-Sided Partially Observable Stochastic Games .
Similarly we end up with new point 𝑦, computed from new policies 𝜋(2)

1 (𝑏, 𝑎1),
𝜋(2)

2 (𝑏, 𝑠, 𝑎2) and regrets 𝑅(2)
1 (𝑏, 𝑎1), 𝑅(2)

2 (𝑏, 𝑠, 𝑎2). New belief point is added the the
value function as shown in 6.4.

Υnew = Υ ∪ (𝑏, 𝑦)

The policy and regret are updated in discretized belief space as 𝜋(2)
1 (𝑏∗, 𝑎1),

𝜋(2)
2 (𝑏∗, 𝑠, 𝑎2), 𝑅(2)

1 (𝑏∗, 𝑎1), 𝑅(2)
2 (𝑏∗, 𝑠, 𝑎2). Note that policies and regrets were com-

puted in belief 𝑏, but they are updated in value function in belief 𝑏∗. Updated lower
and upper bound are shown in 6.5.

Figure 6.1. Value function when stage
game is reached.

Figure 6.2. Lower bound after adding 𝛼-
vector 𝛼5.

Figure 6.3. Discretized upper bound be-
fore solving the stage game.

Figure 6.4. Discretized upper bound after
adding new point 𝑦5.

Figure 6.5. Updated value function after the stage game is successfully solved.

32

. 6.2 Removing Linear Programs

6.2 Removing Linear Programs
Linear programs (3.17a)-(3.17g) and (3.23a)-(3.23k) may be used to construct new 𝛼-
vector and point even when the policies 𝜋1 and 𝜋2 are fixed. However the LPs are not
avoided and therefore the other approaches cannot be more time nor space efficient
then the regular HSVI for OS-POSGs. Constructing new 𝛼-vector and point without
the need of the linear programming is the first step in making HSVI with iterative
stage game solving faster. Point computation may altogether avoid LPs if the policy
𝜋2 is fixed from some iterative approach and ̂𝑉 (𝑎1, 𝑜) is computed without requiring
the solution of LP (3.19a)-(3.19f). Computing lower convex hull in n-dimensional space
is notoriously difficult task [32]. However, we do not necessarily need the complete
lower convex hull, but it is sufficient to know a single |𝑆| + 1 dimensional coordinate
on this convex hull. Since the belief for which we try to compute the value is known
from the belief update (3.14), we require only the single value to be computed. Using
neural network with |𝑆| inputs and single output may be used to approximately find
this upper bound value [7]. This neural network is trained on all points (𝑏, 𝑦) ∈ Υ,
however some beliefs may be solved multiple times, with different values. This makes
multiple inputs, having the different output in training. Reaching target loss with such
configuration may not be possible. To avoid this, pruning is employed, where if the
new belief point (𝑏, 𝑦) is about to be added into Υ, we first find all points (𝑏𝑖, 𝑦𝑖) for
which the following conditions hold.

||𝑏 − 𝑏𝑖||∞ < 𝜀𝑈𝐵 (6.16)

𝑦𝑖 > 𝑦 (6.17)

All points which satisfy both conditions are removed from the Υ. If there is at least one
point for which (6.16) holds but (6.17) does not, then the new point (𝑏, 𝑦) is not added
into Υ. This neural network allows us to completely avoid LPs in the computation of
the new upper bound point if we know the policy 𝜋2. Still, the results suffer from the
error made by the neural network, and it is necessary to periodically retrain the neural
network when new points are created.
Constructing new 𝛼-vector with known policy 𝜋1 requires the knowledge of ̂𝛼𝑎1,𝑜(𝑠′)
in (3.17b) for each (𝑎1, 𝑜) pair. It is not possible to compute such convex combination
of 𝛼-vectors, which maximize (3.17a) for each action of the opponent without the use
of the LP. To simplify this computation we decided to fix ̂𝛼𝑎1,𝑜 to be single 𝛼-vector
which maximizes the value after belief update.

̂𝛼𝑎1,𝑜 = argmax
𝛼∈Γ

∑
𝑠∈𝑆

𝜏(𝑏, 𝑎1, 𝜋2, 𝑜)(𝑠)𝑏′(𝑠) (6.18)

This 𝛼-vector ̂𝛼𝑎1,𝑜 is then used in (3.17b) instead of the LP variable, and such com-
putation may be done algorithmically without the need for linear program. A newly
constructed 𝛼-vector may result in a worse value ∑𝑠∈𝑆 𝑏(𝑠)𝛼(𝑠) than the one created
by the LP, but it completely avoids any usage of linear programs.

6.3 Exploration
When solving the games by LP with such exploration, it is guaranteed that at least
one stage game in any taken trajectory tightens the gap between the Lower and Upper
bound. However, this is not ensured when using the approximate iterative algorithms to

33

6. One-Sided Partially Observable Stochastic Games .
solve the stage games. The algorithm would always choose the same trajectory because
of its deterministic nature without improving the value function. To suppress this effect,
when using iterative algorithms for solving the stage games, the action observation pair
is instead sampled based on the weighted excess gap (3.27). The higher the weighted
excess gap, the higher the probability of (𝑎1, 𝑜)-pair to be sampled.

34

Chapter 7
Experiments

In previous chapters, we have presented new ways to solve fully observable two-player
stochastic games and OS-POSGs using quantal response equilibrium and regret mini-
mization. This chapter will study how using lower, and upper bound in HSVI affects
the convergence compared to only a single value function. Additionally, we will examine
the variance of the regular value iteration, value iteration with stochastic exploration,
and HSVI with iterative stage game solving for fully observable games. We will also
show how the action baselines affect both the variance and the values in the value func-
tion. Lastly, we will focus on how the setting of the 𝜆 parameter in quantal response
equilibrium affects the variance and convergence of the HSVI for OS-POSGs.

All algorithms were implemented and then tested with Julia 1.6.2 [33]. The exper-
iments were run on a desktop computer with Intel Core i5-4690K CPU and 16 GB
DDR3 RAM. All of the plots are also created within Julia 1.6.2 with package Plots.jl
[33].

7.1 Game Domains
We did all of our experiments on the variants of pursuit-evasion games (PEGs) [34].
These games are played by two players, where both of them move on the graph at once
with multiple agents. One player is called the pursuer, and the second is the evader.
The goal of the pursuer is to catch the evader by either entering the same graph vertex
at the same time or moving through the same edge at once.

The basic version of PEGs is entirely deterministic, and the reward given to the
pursuer is constant. We decided to use two different variants of this game. The first one
removes the deterministic element from the game by introducing a non-zero probability
that some action may fail. If the action fails, the agent does not move at all. The
second different variant changes reward. In this version, the reward is dependent on
where the agent was caught and the previous position of both agents. The reward is
either 0.1 with 90% probability or 1 with 10% probability. These two variants were
used to boost the variance. The stochastic transitions increase the variance in game
solutions by adding multiple possible future states after each transition, so there are
much more trajectories in the game tree. Using different values for reward causes both
players to sometimes mix their strategies. It may not be beneficial for the pursuer to
catch the evader as soon as possible because it could catch him later with a higher
reward. The same goes for the evader because it may sometimes prefer to be caught
earlier to deny possibly huge reward to the pursuer.

7.2 Fully Observable Stochastic Games
In a fully observable environment, we can easily examine the effect of the lower and up-
per bound from HSVI on convergence and variance because there are only finitely many

35

7. Experiments .

Figure 7.1. Example of Pursuit Evasion Game on a 4 × 4 grid with two pursuers and one
evader.

states to investigate. We cannot investigate global variance because each algorithm is
making a different amount of iterations based on the way it explores the state space.
This would cause an unfair advantage for value iteration with stochastic exploration
because it has shorter samples. This means that a lot of states remain unchanged for
several iterations. Therefore, the variance would be close to zero, just because the states
are often not visited.

Figure 7.2. Expected value in the initial state in a 4 × 4 PEG with usual value iteration,
value iteration with stochastic exploration and heuristic search value iteration.

Firstly we will focus on PEG with two pursuers and one evader on a 4 × 4 grid as
shown in 7.1, which has randomized rewards but deterministic transitions. This game
has 897 states, 577 pursuer actions, 49 evader actions, and 24001 transitions. The

36

. 7.2 Fully Observable Stochastic Games

convergence of the expected value in the initial state is presented in Figure 7.2. The
value iteration was run with 900 iterations, VISE with 75000 iterations, and HSVI with
6000 iterations. These numbers were selected so that the number of solved stage games
is comparable between the algorithms.

Figure 7.2 shows that both value iteration and value iteration with stochastic explo-
ration converge much faster than the HSVI upper bound. This is possibly caused by
the terminal state not having initialized value to 0 in the upper bound, which is the
true value of this state. It also may be caused by the exploration. In contrast, VISE
has roughly sampled ten states per iteration, and the HSVI samples approximately 100
states. Therefore, the algorithm explores many states which are not easily reachable
from the initial state and do not affect the expected value there. Usual value iteration
could then be faster because it updates states close to the initial one more often than
the HSVI. Notice that there are two different values to which algorithms converge. The
first one is roughly 0.0614, and the second is 0.0788. All of the algorithms which use
QRE to solve a stage game converge to the lower one. This is due to setting of 𝜆 = 100.
Higher 𝜆 should approximate a Nash equilibrium more closely. We will further show
the effect of this parameter in later sections.

Figure 7.3 shows the expected value in two additional states in the game chosen
randomly. The expected value in these states is similar to the initial state, but the
expected value changes only when the state is visited. Since these states are not visited
in each iteration as the initial state, the expected value does not change that often as
in 7.2.

Figure 7.3. Expected value in two different states in a 4×4 PEG with usual value iteration,
value iteration with stochastic exploration and heuristic search value iteration.

These figures show that the expected value for PEGs with randomized reward does
not have significant variance. Therefore we will focus on policy in the same states to
see if the variance is present there. The variance in the initial state, which corresponds
to the Figure 7.2 is shown in Figure 7.4. It was computed with a moving window
that computes the mean variance of each action in the last 100 visits of a given state.
So the first sample is done after 100 visits, second after 101 visits etc. The regret
minimization approaches seem to have a significantly higher variance for both players
than the QRE approaches. When comparing the convergence speed, the QRE seems to
converge slightly faster. This suggests that the higher variance in regret minimization
causes it to converge slightly slower.

We will again show the variance in 2 more states in Figure 7.5. These figures show
that regardless of the algorithm, the variance converges to 0. This is due to computing
the average strategy by moving average, which causes each new increment to change
the overall policy less. However, in one of the states, the policy variance of the pursuer
in the HSVI lower bound with QRE was substantially greater than any other algorithm.

37

7. Experiments .

Figure 7.4. Policy variance across all actions every 100 visits of the initial state in a 4 × 4
PEG with usual value iteration, value iteration with stochastic exploration, and heuristic
search value iteration. The left plot is a variance for pursuer actions and the right for

evader actions. The x-axis is scaled logarithmically.

This was caused because one action had a higher expected value in the first couple of
iterations, so it was prioritized. However, in the later iterations, it was found that this
action would result in worse value than any other action. So the policy dramatically
changes throughout couple more iterations to lower the probability of playing this ac-
tion. This suggests that the randomness from the exploration causes the variance. It
also shows that higher variance may be beneficial because this worse action should not
be played if it results in a worse value. Hence, decreasing the probability of playing
this action in policy is favorable.

We present the individual policies in the Appendix A.1 and A.2.

Figure 7.5. Policy variance across all actions every 100 visits in a 4×4 PEG with usual value
iteration, value iteration with stochastic exploration, and heuristic search value iteration.
Left plots are a variance for pursuer actions, and right plots are for evader actions. The

x-axis is scaled logarithmically.

We have done the same experiment for the PEG on a 4×4 grid with constant reward
but stochastic transitions. This game consisted of 1922 states, 1178 pursuer actions,

38

. 7.2 Fully Observable Stochastic Games

50 evader actions, and 363506 transitions. The probability that the action would fail
was 10%. The value iteration was run with 500 iterations, VISE with 75000 iterations,
and HSVI with 8000 iterations. The Expected value is shown in Figure 7.6. Out of
the tested algorithms, the HSVI converges the slowest. VI and VISE both converge
almost equally fast. Again the QRE does not converge to the same value as regret
minimization. Still, the stochastic exploration value iteration converges the fastest. In
comparison, the HSVI converges more slowly than the other algorithms.

Figure 7.6. Expected value in the initial state in a 4 × 4 stochastic PEG with usual value
iteration, value iterations with stochastic exploration and heuristic search value iteration.

We further show expected value in two randomly selected states in Figure 7.7. These
results are again similar to the value in the initial state. This suggests that both variants
of PEGs are best solved by the value iteration with stochastic exploration, slightly worse
with the usual value iteration, and the worst algorithm for a fully observable case is
HSVI. It is important to keep in mind that HSVI solves each stage game twice in each
iteration, once in the forward pass and the second time in the backward pass.

Figure 7.7. Expected value in two different states in a 4×4 PEG with usual value iteration,
value iteration with stochastic exploration and heuristic search value iteration.

39

7. Experiments .
Policy variance in the initial and one other state is then shown in 7.8. As with

the deterministic version, the variance when algorithm uses QRE is smaller than when
the algorithm uses regret minimization. We again provide the individual policies in
Appendix A.3 and A.4.

Figure 7.8. Policy variance across all actions every 100 visits in a 4×4 PEG with usual value
iteration, value iteration with stochastic exploration, and heuristic search value iteration.
Left plots are a variance for pursuer actions, and right plots are for evader actions. The

x-axis is scaled logarithmically.

We ran the same experiment for two other PEGs. One was on a 5 × 4 grid with 1801
states, 63 evader actions, 962 pursuer actions, and 53321 transitions in the deterministic
version. The stochastic version had 3802 states, 1955 pursuer actions, 64 evader actions,
and 816706 transitions. The second was on a 5×5 grid, where the deterministic version
had 3589 states, 1601 pursuer actions, 81 evader actions, and 117281 transitions. The
stochastic version had 7502 states, 3242 pursuer actions, 82 evader actions, and 1812514
transitions. The results were mostly the same, so we leave them in Appendix A.5.

7.3 Regret Minimization with baselines
In the previous section, we have shown how the variance in policies affects the conver-
gence of the algorithms. This section will focus only on VISE with regret minimization,
and we will compare the results when the baselines are used and when they are not.
We will again focus not only on the variance in policy but also on the expected value.
We will use the same 4 × 4 PEGs which were presented in the previous section.

We have run 20 tests with baselines and 20 without them. We computed policy
variance for each run and computed the confidence interval on these policies. The
results are shown in 7.9. The left plot represents pursuers policy variance, and the
right is evaders policy variance. Pursuer’s policy variance seems roughly the same with
and without baselines. However, the confidence intervals are tighter early on, but later

40

. 7.3 Regret Minimization with baselines

they become wider. Evader’s policy variance is always better without baselines. This
suggests that our implementation of baselines can increase variance, and Figure 7.10
also shows that the convergence of expected value is also worse with baselines than
without them.

Figure 7.9. Variance of policies for each player in a 4 × 4 PEG. Left is a policy variance of
pursuer and right is a policy variance of evader.

Figure 7.10. Expected value in the initial state in 4×4 PEG while solving with or without
baselines.

We again investigated the effect of baselines in multiple other states. Each state
seems to behave similarly to the initial one. The policies are often comparable, and the
baseline policies converge slower or they differ, but the expected value is almost the
same. We provide more policies in this and other states in the Appendix A.6.

Next, we will focus on the PEGs with stochastic transitions. The expected value in
the initial state is shown in Figure 7.11. The resulting variances of policies for a PEG
on a 4 × 4 grid are shown in Figure 7.12.

Again the policy for the evader has lower variance and better confidence intervals
without baselines. On the other hand, the pursuer’s policy variance is roughly the same
regardless of the baselines. With the baselines, the confidence intervals are slightly

41

7. Experiments .

Figure 7.11. Expected value in the initial state in 4 × 4 PEG with stochastic transitions
while solving with or without baselines.

Figure 7.12. Variance of policies for each player in a 4×4 PEG with stochastic transitions.
Left is a policy variance of pursuer and right is a policy variace of evader.

larger. Again, we will keep the additional information about other states and types of
games in the Appendix A.6 and A.7.

7.4 Effect of 𝜆 parameter in QRE
The setting of the 𝜆 in logit QRE affects how closely the Nash equilibrium is approxi-
mated by QRE. If 𝜆 = ∞, then the QRE should give us Nash equilibrium in the limit.
We will show how the three different settings of 𝜆 = 100, 𝜆 = 500, 𝜆 = 5000 changes
the convergence and the variance in policies. We also show results when using regret
minimization to make a clear comparison.

We start by testing QRE with different 𝜆 on the same 4 × 4 PEG with non-constant
rewards. The expected value in initial state is shown in Figure 7.13. As expected the
higher 𝜆, the closer to the optimal value algorithms converge. The regret minimiza-
tion seems to converge to roughly the same expected values as the QRE with high
𝜆. However the QRE seems to converge faster. When using VI and VISE the regret

42

. 7.4 Effect of 𝜆 parameter in QRE

Figure 7.13. Expected value with different settings of QRE 𝜆. First plot is while using
value iteration, second is while using VISE and the last one is while using HSVI.

minimization overshoots the true expected value twice, but the QRE overshoots it only
once.

We will further show the variance of policy based on the QRE 𝜆. The results are
shown in Figure 7.15. The variance is higher with higher 𝜆. On the other hand, except
for the policy of the pursuer with VISE and HSVI, regret minimization always has a
higher variance. This suggests that higher variance caused by higher 𝜆 results in faster
convergence, but the regret minimization converges slower even with higher variance.
It seems that variance may be both beneficial and disadvantageous.

Figure 7.14. Expected value with different settings of QRE 𝜆. First plot is while using
value iteration, second is while using VISE and the last one is while using HSVI.

We ran the same experiment for the stochastic version on a 4×4 grid. The results are
in Figures 7.14. Unlike the version with multiple rewards, the stochastic version does

43

7. Experiments .
not overshoot the value, to which the algorithm converges. When setting the 𝜆 = 100,
the algorithms almost converge as fast as with the higher 𝜆, even when the variance is
much smaller.

Figure 7.15. Policy variance with different settings of QRE 𝜆 in the PEG with non-constant
rewards. First plot is while using value iteration, second is while using VISE and the last

one is while using HSVI.

Figure 7.16. Policy variance with different settings of QRE 𝜆 in the PEG with stochastic
transitions. First plot is while using value iteration, second is while using VISE and the

last one is while using HSVI.

44

. 7.5 One-Sided Partially Observable Stochastic Games

Figure 7.17. Policy variance with different settings of QRE 𝜆 in the PEG with stochastic
transitions. First plot is while using value iteration, second is while using VISE and the

last one is while using HSVI.

7.5 One-Sided Partially Observable Stochastic Games

Previous sections dealt with the convergence in SGs. This section is going to focus on
convergence within the OS-POSGs. Unlike the SGs, the usual value iteration cannot
be used for these games. Therefore, we will use only the HSVI and compare how the
regret minimization compares with QRE. We will also set different values to the QRE
parameter 𝜆 to ensure that findings from SGs are also applicable for OS-POSGs.

OS-POSGs are much more complicated games than the usual SGs, so we compared
algorithms on just a 3 × 3 grid, and we used the deterministic rewards. The pursuer
has only partial information in this version, while the evader knows everything about
the game. Such a game has 144 states, 145 pursuer actions, 13 evader actions, 3
observations, and 2672 transitions. We ran each of the experiments for two hours. In
Figure 7.18, we see that even after three hours, all algorithms closed the gap to roughly a
width of 0.18. The regret minimization converges slightly slower than the QRE in both
lower and upper bounds. Upper bound convergence for all algorithms is much worse
than lower bound convergence. This may be caused because upper bound presolve is
a much more sophisticated method and approximates the actual value better than the
lower bound. It could also be caused by the upper bound value being computed from
the perfect information policy player. This may suggest that computing a better policy
for a perfect information player is for the iterative approach much more difficult. Figure
7.18 shows that regardless of the 𝜆, the QRE converges to almost the same expected
value, but when 𝜆 = 100, the later iterations do not improve the lower bound as with
the higher 𝜆. This suggests that high 𝜆 in QRE with OS-POSGs does not speed up the
convergence. However, it should still converge closer to the optimal policy with enough
time.

45

7. Experiments .

Figure 7.18. Expected value in the initial belief in a 3 × 3 partially observable PEG.

We also present the effect of parameter 𝜆 on variance in policies. The results are shown
in Figure 7.19. In the partially observable setting, higher 𝜆 does not suggest higher
variance like in the fully observable setting. On the other hand, when 𝜆 = 1000, the
upper bound variance increases in the first 100 iterations until it decreases. Yet the
expected value converges fastest.

Figure 7.19. Policy variance across all actions every 100 visits of the initial belief in a 3×3
partially observable PEG. The left plot is a variance for pursuer actions and the right for

evader actions. The x-axis is scaled logarithmically.

We again tried to solve the same game with stochastic transitions. The stochastic
version also has 144 states, 145 pursuer actions, 22 evader actions, and 3 observations,
but it has 9980 transitions. Figure 7.20 shows the expected value in the initial belief
after three hours of runtime. The upper bound does not change the value throughout
the whole run for 𝜆 = 5000 and for regret minimization. We did not manage to find the
core of this issue. In the stochastic version, the lower 𝜆 resulted in better convergence,
but not significantly. This further suggests that the convergence is more dependent on
exploration than the parameter 𝜆.

46

. 7.5 One-Sided Partially Observable Stochastic Games

Policy variance is shown in Figure 7.21. Both players have high variance with regret
minimization. High variance is also caused by the QRE with 𝜆 = 1000. The pursuer
has high variance in the lower bound policy with this setting, while the evader has high
variance in the upper bound. The difference within the expected value between regret
minimization and QRE with 𝜆 = 1000 is quite significant even when the variance is
similar. Both QRE with 𝜆 = 100 and 𝜆 = 5000 have small variance, yet there is a
difference between their upper bound convergence. This suggests that small variance
does not imply faster convergence.

Figure 7.20. Expected value in the initial belief in a 3 × 3 partially observable PEG with
stochastic transitions.

Figure 7.21. Policy variance across all actions every 100 visits of the initial belief in a 3×3
partially observable PEG with stochastic transitions. The left plot is a variance for pursuer

actions and the right for evader actions. The x-axis is scaled logarithmically.

47

Chapter 8
Conclusion

In this work, we have decided to study variance in stochastic games and One-Sided
Partially Observable Stochastic Games (OS-POSGs). We wanted to see if we could
effectively use any of the variance reduction methods from reinforcement learning for
these games. Solving and monitoring the OS-POSGs is tricky because of the continu-
ous belief space. Our goal was to show that either the variance reduction techniques
are applicable in HSVI for OS-POSGs or that the variance present in these games is
necessary to converge to the optimal strategy effectively.

We did not try to employ variance reduction for the linear programming solutions of
the stage games because the result of the linear program is always the Nash Equilibrium
of the current stage game. Therefore, it improves the value function as much as possible
when solving the stage game. Different exploration heuristics may speed up the overall
convergence. Still, the goal of this work was to retain the same exploration because
variance reduction in reinforcement learning speeds up the convergence on the same
samples.

Different approaches to solving the stage game without linear programming cannot
solve each stage game perfectly. Therefore the overall convergence is slowed down.
In this work, we refined an already developed approach for solving the stage games
via quantal response equilibrium [7]. Additionally, we developed a regret minimization
technique to approximate a solution in each stage game. Since these algorithms approx-
imate a Nash equilibrium, we do not get the optimal solution each time, so the variance
reduction could improve the overall convergence while retaining the same samples.

Since using the value function itself is a variance reduction technique, we wanted to
show the effect of two value functions serving as lower and upper bounds in HSVI on
the variance and algorithm convergence. However, HSVI is the only algorithm currently
developed for the OS-POSGs, so we decided to show this effect in a fully observable
setting. We used regular value iteration and the version of HSVI for fully observable
games, but the common value iteration deterministically updates all game states. We
have developed a new version of value iteration called value iteration with stochastic
exploration (VISE), which does not update each state, but samples the path from the
initial state to the terminal and then updates only the states along this path. This
version is more closely related to the HSVI than the regular value Iteration.

We empirically show that value iteration with stochastic exploration converges faster
to the optimal value in a fully observable setting than the HSVI. This is primarily due
to HSVI exploration, which depends on the upper bound policy, and the trajectories in
HSVI are much longer than those from VISE. It also solves each stage game twice, once
in the forward pass and the second time in the backward pass. However, value iteration
does not provide information about how closely the solution approximates the optimal
value. We could not show whether HSVI or VISE has a higher variance on average.
Multiple runs all resulted in different variances for these algorithms. This suggests that
the policy variance mainly depends on the exploration, which is non-deterministic.

48

. 8.1 Future work

We managed to show that updating policies with regret minimization has a higher
variance than updating with QRE regardless of the algorithm. The QRE approach also
converges faster than regret minimization. However, trying multiple settings of 𝜆 shows
that even when the variance is increased, the convergence is not significantly affected.
Regret Minimization is often used for finding optimal strategies in extensive-form games
[35][31], so it is surprising that the QRE works better with value iteration methods in
SGs.

Using baselines similar to those in Monte Carlo Counterfactual Regret Minimization
[30] does not reduce variance in VISE, nor does it reduce the effect of stochastic explo-
ration on the expected value. The VISE with baselines converges slower than without
them. Using baselines altogether in the VISE does not improve anything. This sug-
gests that the value function itself is a better technique for estimating the expected
value than baselines. Baselines were developed for MCCFR, but the HSVI compares
the policy against the best response, which is more similar to CFR-BR. To the best
of our knowledge, there are no variance reduction techniques employed for CFR-BR.
All of the CFR algorithms are mainly used to solve Poker’s variants, whereas we use
the HSVI for vastly different domains in the form of pursuit-evasion games. Poker is a
game that has much higher stochasticity than PEGs. On the other hand, PEGs can be
infinitely long, and there are much more actions applicable in each state.

We have also shown that the higher the value of the parameter 𝜆 in a fully observable
setting, the closer to the optimal value the algorithms do converge. However, higher
𝜆 makes the algorithm less numerical stable because the 𝜆 is used as an exponent.
When using smaller 𝜆, all of the algorithms can converge to a fixed point similarly fast.
Therefore using smaller 𝜆 is better if it is not necessary to approximate the solution well
because reducing the effect of numerical instabilities lets us use faster data types. It
also makes sense to increase the 𝜆 throughout the run in order to achieve more precise
results in the end.

In the OS-POSGs, the setting of 𝜆 does not improve the speed of convergence. It
is to be expected that, as with the SGs, the higher 𝜆 would allow the algorithm to
get closer to the optimal value, but it has not been shown in our tests. Solving the
upper bound in the OS-POSGs seems to be a much harder task than the lower bound,
which is especially noticeable in the stochastic version of PEG. Regret minimization in
OS-POSGs converges significantly slower than the quantal response equilibrium com-
putation, but the regret minimization does not have any numerical instabilities like the
QRE. Also, it works without specifying any additional parameters.

Even when regret minimization in OS-POSGs does converge slower and has a higher
variance, we could not show that lower variance speeds up the convergence. When
comparing the QRE, we have a larger variance for some settings, yet the algorithm
converges faster. The higher variance at some stage is an advantage since it reacts
to the changes in value function quicker. Nevertheless, sometimes these rapid changes
favor the action, which may later be proved to be worse. Overall the higher variance
could sometimes be helpful.

8.1 Future work

Our work found that the variance reduction techniques for HSVI for OS-POSGs with
the usage of linear programming cannot improve the convergence. Even when the other
approximate approaches cause a significant variance, the algorithms seem to converge

49

8. Conclusion .
the same or even better. This suggests that further work in variance reduction within
these games is pointless.

The algorithm could further be improved by a different method of solving the stage
games and different exploration heuristics. This could introduce a variance that may
then be reduced by one of the usual variance reduction techniques.

In the presented version, the average policy is computed by moving average, which
gives each policy increment the same weight. Still, newer policies may be valued more
than the old ones. The different methods of computing average policy, like increasing
weight linearly, may improve the overall convergence.

We showed that both SGs and OS-POSGs converge slightly better with QRE than
with regret minimization. The research in different games, like extensive-form games,
which often use regret minimization, could also focus on QRE to evaluate if it also
works better in different settings.

50

Appendix A
Additional plots

A.1 Policies in the initial state in deterministic PEG

Figure A.1. Policies for each player in a 4 × 4 PEG in the initial state. Left is a policy of
pursuer, and right is a policy of evader.

51

A Additional plots .

Figure A.2. Policies for each player in a 4 × 4 PEG in the initial state. Left is a policy of
pursuer, and right is a policy of evader.

52

. A.2 Policies in two non-initial states in deterministic PEG

Figure A.3. Policies for each player in a 4 × 4 PEG in the initial state. Left is a policy of
pursuer, and right is a policy of evader.

A.2 Policies in two non-initial states in deterministic
PEG

Figure A.4. Policies for each player in a 4 × 4 PEG in the non-initial state. Left is a policy
of pursuer, and right is a policy of evader.

53

A Additional plots .

Figure A.5. Policies for each player in a 4 × 4 PEG in the non-initial state. Left is a policy
of pursuer, and right is a policy of evader.

54

. A.2 Policies in two non-initial states in deterministic PEG

Figure A.6. Policies for each player in a 4 × 4 PEG in the non-initial state. Left is a policy
of pursuer, and right is a policy of evader.

55

A Additional plots .

Figure A.7. Policies for each player in a 4 × 4 PEG in the non-initial state. Left is a policy
of pursuer, and right is a policy of evader.

56

. A.3 Policies in the initial state in stochastic PEG

Figure A.8. Policies for each player in a 4 × 4 PEG in the non-initial state. Left is a policy
of pursuer, and right is a policy of evader.

A.3 Policies in the initial state in stochastic PEG

Figure A.9. Policies for each player in a 4 × 4 stochastic PEG in the initial state. Left is a
policy of pursuer, and right is a policy of evader.

57

A Additional plots .

Figure A.10. Policies for each player in a 4 × 4 stochastic PEG in the initial state. Left is
a policy of pursuer, and right is a policy of evader.

58

. A.4 Policies in two non-initial states in stochastic PEG

Figure A.11. Policies for each player in a 4 × 4 stochastic PEG in the initial state. Left is
a policy of pursuer, and right is a policy of evader.

A.4 Policies in two non-initial states in stochastic PEG

Figure A.12. Policies for each player in a 4×4 stochastic PEG in the non-initial state. Left
is a policy of pursuer, and right is a policy of evader.

59

A Additional plots .

Figure A.13. Policies for each player in a 4×4 stochastic PEG in the non-initial state. Left
is a policy of pursuer, and right is a policy of evader.

60

. A.4 Policies in two non-initial states in stochastic PEG

Figure A.14. Policies for each player in a 4×4 stochastic PEG in the non-initial state. Left
is a policy of pursuer, and right is a policy of evader.

61

A Additional plots .

Figure A.15. Policies for each player in a 4×4 stochastic PEG in the non-initial state. Left
is a policy of pursuer, and right is a policy of evader.

62

. A.5 Expected values and policy variance in different PEGs

Figure A.16. Policies for each player in a 4×4 stochastic PEG in the non-initial state. Left
is a policy of pursuer, and right is a policy of evader.

A.5 Expected values and policy variance in different
PEGs

Figure A.17. Expected value in a 5 × 4 PEG in the initial state.

Figure A.18. Policy variance in a 5×4 PEG in the initial state. Left is a policy of pursuer,
and right is a policy of evader.

63

A Additional plots .

Figure A.19. Expected value in a 5 × 5 PEG in the initial state.

Figure A.20. Policy variance in a 5×5 PEG in the initial state. Left is a policy of pursuer,
and right is a policy of evader.

Figure A.21. Expected value in a 5 × 4 stochastic PEG in the initial state.

Figure A.22. Policy variance in a 5 × 4 stochastic PEG in the initial state. Left is a policy
of pursuer, and right is a policy of evader.

64

. A.6 Expected values and policy in non-initial states in PEGs with the usage of baselines

Figure A.23. Expected value in a 5 × 5 stochastic PEG in the initial state.

Figure A.24. Policy variance in a 5 × 5 stochastic PEG in the initial state. Left is a policy
of pursuer, and right is a policy of evader.

Figure A.25. Expected value in a 4 × 4 PEG in non-initial states.

A.6 Expected values and policy in non-initial states in
PEGs with the usage of baselines

65

A Additional plots .

Figure A.26. Policy in a 4 × 4 PEG in a non-initial state. Left is a policy of pursuer, and
right is a policy of evader. Upper plots are without baselines and the bottom ones are with

baselines

Figure A.27. Policy in a 4 × 4 PEG in a non-initial state. Left is a policy of pursuer, and
right is a policy of evader. Upper plots are without baselines and the bottom ones are with

baselines

66

. A.6 Expected values and policy in non-initial states in PEGs with the usage of baselines

Figure A.28. Expected value in a 4 × 4 stochastic PEG in non-initial states.

Figure A.29. Policy in a 4 × 4 stochastic PEG in a non-initial state. Left is a policy of
pursuer, and right is a policy of evader. Upper plots are without baselines and the bottom

ones are with baselines

67

A Additional plots .

Figure A.30. Policy in a 4 × 4 stochastic PEG in a non-initial state. Left is a policy of
pursuer, and right is a policy of evader. Upper plots are without baselines and the bottom

ones are with baselines

A.7 Expected values and policy in different PEGs with
the usage of baselines

Figure A.31. Expected value in different PEGs in the initial state with and without base-
lines. Left figure is a 5 × 4 PEG and right figure is a 5 × 5 PEG

68

. A.7 Expected values and policy in different PEGs with the usage of baselines

Figure A.32. Policy in a 5×4 and 5×5 PEGs in a initial state with and without baselines.
Left is a policy of pursuer, and right is a policy of evader. First row of plots are for a 5 × 4
PEG without baselines, second row is for same game with baselines, third row is for a 5×5

PEG without baselines and last row is for the same game with baselines.

69

A Additional plots .

Figure A.33. Expected value in different stochastic PEGs in the initial state with and
without baselines. Left figure is a 5 × 4 PEG and right figure is a 5 × 5 PEG

Figure A.34. Policy in a 5×4 stochastic PEG in a initial state with and without baselines.
Left is a policy of pursuer, and right is a policy of evader. Upper plots are without baselines

and the bottom ones are with baselines.

70

. A.7 Expected values and policy in different PEGs with the usage of baselines

Figure A.35. Policy in a 5×5 stochastic PEG in a initial state with and without baselines.
Left is a policy of pursuer, and right is a policy of evader. Upper plots are without baselines

and the bottom ones are with baselines.

71

Appendix B
Implementation

The provided code is split into two Julia modules. First is called SGs, and it implements
VI, VISE, VISE with baselines and HSVI for solving the SGs. All of these algorithms
may then be run with different functions for an update in each state. First is Bellman
update computed by linear programming as in (3.6a)-(3.6d), second uses QRE update,
and third uses RM update. The solver for the LP used in this thesis was CPLEX from
IBM [36]. However, Julia is a versatile programming language, and this solver could be
easily swapped with a different solver without many changes in the code.

The second module is called OSPOSGs, and it implements the HSVI for OS-POSGs
with the same methods for solving stage games as in SGs. There is one slight improve-
ment in the OS-POSGs, and that is dividing states into disjunct sets called partitions.
Partition is shown to the imperfect information player. Therefore its belief is only on
a subset of states in the given partition.

We show the structure of the folders in two follwing directory trees.

72

References

[1] Wilko Schwarting, Javier Alonso-Mora, and Daniela Rus. Planning and decision-
making for autonomous vehicles. Annual Review of Control, Robotics, and Au-
tonomous Systems. 2018, 1 187–210.

[2] Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda,
and Tsuyoshi Hamada. An Open Approach to Autonomous Vehicles. IEEE Micro.
2015, 35 (6), 60-68. DOI 10.1109/MM.2015.133.

[3] Sven Koenig, Reid Simmons, and others. Xavier: A robot navigation architecture
based on partially observable markov decision process models. Artificial Intelli-
gence Based Mobile Robotics: Case Studies of Successful Robot Systems. 1998,
(partially), 91–122.

[4] Ondrej Vanek, Zhengyu Yin, Manish Jain, Branislav Bosansky, Milind Tambe,
and Michal Pechoucek. Game-theoretic resource allocation for malicious packet
detection in computer networks.. In: AAMAS. 2012. 905–912.

[5] Karel Horák, Branislav Bošanský, and Michal Pěchouček. Heuristic Search Value
Iteration for One-Sided Partially Observable Stochastic Games. Proceedings of the
AAAI Conference on Artificial Intelligence. 2017, 31 (1),

[6] Karel Horak, Branislav Bosansky, Vojtech Kovarik, and Christopher Kiekintveld.
Solving Zero-Sum One-Sided Partially Observable Stochastic Games. CoRR. 2020,
abs/2010.11243

[7] Jakub Brož. Using Fast Upper-Bound Approximation in Heuristic Search Value
Iteration. 2021.

[8] Richard S Sutton, and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[9] Christopher JCH Watkins, and Peter Dayan. Q-learning. Machine learning. 1992,
8 (3), 279–292.

[10] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Pol-
icy gradient methods for reinforcement learning with function approximation. Ad-
vances in neural information processing systems. 1999, 12

[11] Richard Bellman. A Markovian decision process. Journal of mathematics and me-
chanics. 1957, 679–684.

[12] Reid Simmons, and Sven Koenig. Probabilistic Robot Navigation in Partially Ob-
servable Environments�. 1995,

[13] K.J Åström. Optimal control of Markov processes with incomplete state informa-
tion. Journal of Mathematical Analysis and Applications. 1965, 10 (1), 174-205.
DOI https://doi.org/10.1016/0022-247X(65)90154-X.

[14] Paul A Gagniuc. Markov chains: from theory to implementation and experimen-
tation. John Wiley & Sons, 2017.

73

http://dx.doi.org/10.1109/MM.2015.133
http://dx.doi.org/https://doi.org/10.1016/0022-247X(65)90154-X

References .
[15] Edward J. Sondik. The Optimal Control of Partially Observable Markov Processes

Over the Infinite Horizon: Discounted Costs. Operations Research. 1978, 26 (2),
282–304.

[16] Trey Smith, and Reid G. Simmons. Heuristic Search Value Iteration for POMDPs.
CoRR. 2012, abs/1207.4166

[17] Yoav Shoham, and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2008.

[18] John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences. 1950, 36 (1), 48-49. DOI 10.1073/pnas.36.1.48.

[19] R.D. Luce, and H. Raiffa. Games and Decisions: Introduction and Critical Survey.
Dover Publications, 1989. ISBN 9780486659435.
https://books.google.cz/books?id=msC_h 0wtCO8C.

[20] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The
complexity of computing a Nash equilibrium. SIAM Journal on Computing. 2009,
39 (1), 195–259.

[21] John Von Neumann, and Oskar Morgenstern. Theory of games and economic be-
havior . 2007.

[22] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences.
1953, 39 (10), 1095–1100.

[23] Kristoffer Arnsfelt Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. The
complexity of solving reachability games using value and strategy iteration. In: In-
ternational Computer Science Symposium in Russia. 2011. 77–90.

[24] Luke Zettlemoyer, Brian Milch, and Leslie Kaelbling. Multi-Agent Filtering with
Infinitely Nested Beliefs. In: D. Koller, D. Schuurmans, Y. Bengio, and L. Bot-
tou, eds. Advances in Neural Information Processing Systems. Curran Associates,
Inc., 2008.
https://proceedings.neurips.cc/paper/2008/file/6c3cf77d52820cd0fe64
6d38bc2145ca-Paper.pdf.

[25] Richard D. McKelvey, and Thomas R. Palfrey. Quantal Response Equilibria
for Normal Form Games. Games and Economic Behavior. 1995, 10 (1), 6-38.
DOI https://doi.org/10.1006/game.1995.1023.

[26] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989,
[27] Gavin A Rummery, and Mahesan Niranjan. On-line Q-learning using connectionist

systems. Citeseer, 1994.
[28] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo

Sampling for Regret Minimization in Extensive Games. In: Y. Bengio, D. Schuur-
mans, J. Lafferty, C. Williams, and A. Culotta, eds. Advances in Neural Informa-
tion Processing Systems. Curran Associates, Inc., 2009.
https://proceedings.neurips.cc/paper/2009/file/00411460f7c92d2124a6
7ea0f4cb5f85-Paper.pdf.

[29] Joshua Romoff, Alexandre Piche, Peter Henderson, Vincent François-Lavet, and
Joelle Pineau. Reward Estimation for Variance Reduction in Deep Reinforcement
Learning. CoRR. 2018, abs/1805.03359

[30] Martin Schmid, Neil Burch, Marc Lanctot, Matej Moravcik, Rudolf Kadlec, and
Michael Bowling. Variance Reduction in Monte Carlo Counterfactual Regret Min-
imization (VR-MCCFR) for Extensive Form Games using Baselines. CoRR. 2018,
abs/1809.03057

74

http://dx.doi.org/10.1073/pnas.36.1.48
https://books.google.cz/books?id=msC_h 0wtCO8C
https://proceedings.neurips.cc/paper/2008/file/6c3cf77d52820cd0fe646d38bc2145ca-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/6c3cf77d52820cd0fe646d38bc2145ca-Paper.pdf
http://dx.doi.org/https://doi.org/10.1006/game.1995.1023
https://proceedings.neurips.cc/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/00411460f7c92d2124a67ea0f4cb5f85-Paper.pdf

. .
[31] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione.

Regret Minimization in Games with Incomplete Information. In: J. Platt, D. Koller,
Y. Singer, and S. Roweis, eds. Advances in Neural Information Processing Systems.
Curran Associates, Inc., 2007.
https://proceedings.neurips.cc/paper/2007/file/08d98638c6fcd194a4b1
e6992063e944-Paper.pdf.

[32] Gordon Anderson, Ian Crawford, and Andrew Leicester. Efficiency analysis and
the lower convex hull approach. 2008.

[33] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh
approach to numerical computing. SIAM review. 2017, 59 (1), 65–98.

[34] Rufus Isaacs. Differential games: a mathematical theory with applications to war-
fare and pursuit, control and optimization. Courier Corporation, 1999.

[35] Yoav Freund, and Robert E Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior. 1999, 29 (1-2), 79–103.

[36] IBM ILOG Cplex. V12. 1: User’s Manual for CPLEX. International Business
Machines Corporation. 2009, 46 (53), 157.

75

https://proceedings.neurips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Outline

	Partially Observable Markov Decision Processes
	Markov Decision Processes
	Partially Observable Markov decision Processes
	Heuristic Search Value Iteration
	HSVI Value Functions
	Presolving Value Functions
	Heuristic Exploration

	Game Theory
	Example: Battle of sexes
	Zero-sum Games
	Two-Player Stochastic Games with Simultaneous moves
	Value Iteration
	Heuristic Search Value Iteration

	One-Sided Partially Observable Stochastic Games
	Bellman Update
	Presolving
	Exploration

	Quantal Response Equilibrium
	Regret Minimization

	Variance Reduction in Reinforcement Learning
	Control Variates
	Example: Estimating Definite Integral

	Reducing Reward Variance
	Baselines for values

	Two-Player Stochastic Games with Simultaneous moves
	Value Iteration with Stochastic Exploration
	Quantal Response Equilibrium
	Regret Minimization
	Regret Minimization with baselines

	One-Sided Partially Observable Stochastic Games
	Iterative Stage Games Solving
	Example: Adding new α-vector and belief point to the value function

	Removing Linear Programs
	Exploration

	Experiments
	Game Domains
	Fully Observable Stochastic Games
	Regret Minimization with baselines
	Effect of λ parameter in QRE
	One-Sided Partially Observable Stochastic Games

	Conclusion
	Future work

	Additional plots
	Policies in the initial state in deterministic PEG
	Policies in two non-initial states in deterministic PEG
	Policies in the initial state in stochastic PEG
	Policies in two non-initial states in stochastic PEG
	Expected values and policy variance in different PEGs
	Expected values and policy in non-initial states in PEGs with the usage of baselines
	Expected values and policy in different PEGs with the usage of baselines

	Implementation
	References

