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Abstract
Surface quality is one of the most im-
portant road attributes in the context of
path planning for bicycle users. Unfortu-
nately, this attribute is often incorrectly
filled in or missing from the used map
data. Many published approaches suc-
cessfully used data gathered using high-
frequency sensors such as gyroscopes or
accelerometers to model the surface qual-
ity. However, gathering these measure-
ments at large scale is problematic, and
the resulting datasets are impractical to
work with due to their size. In this thesis,
we used data in the form of GPS mea-
surements gathered by cycling volunteers.
Our model based on graph neural net-
works successfully predicted the surface
quality achieving RMSE of 0.72. We used
the model to predict the surface quality
of the roads and paths with inaccurate
information and manually validated the
results in several places. In this thesis, we
showed that using GPS measurements is a
viable option to model the surface quality
in large areas.

Keywords: navigation graph, GPS
measurements, cycling, machine learning,
graph neural networks

Supervisor: Doc. Ing. Michal Jakob,
Ph.D.
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Abstrakt
V kontextu plánování cyklistických tras je
kvalita povrchu jednou z nejdůležitějších
vlastností cest. Tento atribut je bohužel
často v používaných mapách špatně vypl-
něn nebo úplně chybí. V minulosti byla
kvalita povrchu úspěšně modelována po-
mocí dat nasbíraných z vysokofrekvenč-
ních senzorů jako je gyroskop nebo akcele-
rometr. Nasbírat tato data ve velkém mě-
řítku je však problematické a práce se zís-
kanými daty je kvůli jejich velikosti kom-
plikovaná. V této práci jsme použili data
ve formě GPS měření nasbíraných dob-
rovolníky. Náš model založený na grafo-
vých neuronových sítích úspěšně modelo-
val kvalitu povrchu a dosáhl chyby RMSE
v hodnotě 0.72. Tento model jsme použili
k predikci kvality povrchu na cestách s ne-
přesnými informacemi a manuálně zkon-
trolovali několik výsledků. V této práci
jsme ukázali, že GPS měření jsou použi-
telná k predikci kvality povrchu na velkém
území.

Klíčová slova: navigační graf, GPS
měření, cyklistika, strojové učení, grafové
neuronové sítě

Překlad názvu: Automatické
zpřesňování cyklistických navigačních
grafů ze záznamů dat o projetých trasách
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Chapter 1
Introduction

1.1 Problem and motivation

Riding a bicycle has become very popular as a way to exercise and relax as
well as a viable way to travel in cities with increasingly heavier tra�c. There
are many reasons to use bicycles over cars such as to reduce the pollution[38]
and noise[10], both of which have negative e�ects on health. Another reason
may be the bene�ts of regular exercise or convenience. Some European cities
are famous for successfully making the city easy to travel by a bicycle [47].

Since the boom of smartphones, many di�erent apps enhancing the experi-
ence and the e�ectiveness of riding a bicycle have become popular. A very
important role is played by the navigation apps. These apps, just like their
automotive counterparts, aim to provide the user with a way to plan paths
based on the user's preferences. The main priority of car drivers is usually
the time of travel. For bicycle riders, there are many more desired properties
of the path, such as elevation, tra�c, or surface quality. These properties
depend on the cyclist's preferences, physical capabilities, or bike type, which
signi�cantly vary across di�erent cyclists. Moreover, these properties have the
potential also to a�ect the travel time more dramatically. It is thus crucial for
the apps to work with the correct information about the real-world state of
the roads. Unfortunately, the maps currently used often contain incomplete
or wrong information.

In this thesis, we will focus on the attribute of the edges, which rates the
quality of the surface, which is a very important attribute in the context of
planning a path for a bicycle, but an attribute that is very often missing or
incorrectly �lled in the map data. Many successful approaches have been
proposed in the past, which used the data from high-frequency sensors to
predict the road surface. However, this kind of data is di�cult to collect and
work with at a large scale. In this thesis, we will try to model the surface
quality using the data from the GPS measurements, which consist of the
position and the velocity of the user and can be gathered using a wide variety
of devices such as smartphones, smartwatches, or �tness trackers.

The goal of the thesis is to propose, implement and evaluate an algorithm
that will be able to automatically improve the accuracy of the surface quality
label in the given map using the user-generated tracking data.
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1. Introduction .....................................
1.2 Thesis structure

This thesis consists of eight chapters:..1. Introduction � in this chapter, we introduce the problem of the auto-
mated graph re�nement and the motivation for its solution...2. Related work � in this chapter, we summarize the published approaches
to solving the problem...3. Task speci�cation � in this chapter, we formally de�ne the problem
and set the goal of this thesis...4. Theoretical background � in this chapter, we describe the machine
learning techniques which we used in the practical part of this thesis...5. Data and preprocessing � in this chapter we describe our data sources
and the process that led to creating the �nal dataset...6. Solution approach � in this chapter, we describe the approach we have
chosen to solve the problem and some technical details regarding the
used techniques...7. Results � in this chapter, we evaluate our approach on the available
data...8. Conclusion � in this chapter, we summarize the results of this thesis
and discuss the limitations of the selected approach.

2



Chapter 2
Related work

We can divide the existing approaches into two main categories. The �rst
category aims to improve the topology of the navigation graph. The second
category focuses on correcting or adding node and edge attributes.

2.1 Improving the graph topology

Due to the constant change of the road networks caused by the construction
of the new roads or demolition of the existing ones, the navigation graph has
to be periodically updated. However, doing so manually would require large
amounts of human work. For this reason, great e�orts have been made to
update the navigation graph automatically.

The authors of [25] used GPS trajectories gathered by car navigation
devices to update the existing digital maps. They presented a method to
detect new roads and roundabouts. In [26] the method was extended to detect
incongruences of di�erent road geometry, alterations of junction positions,
prohibited maneuvers, and tra�c directions. Authors of [ 19] used an arti�cial
neural network model to add new roads to the network, based on the GPS
data collected from the car-navigation systems of the users. In [5], a system
capable of creating the navigation graph entirely from the GPS measurements
was developed. The system was proven to be working correctly by showing
the generated and real graph to be identical.

It is also possible to use satellite imagery to update the the navigation
graph. A framework for road change detection and map updating based on
imagery was proposed in [59] and [6].

2.2 Adding and correcting attributes

The navigation graph can contain attributes useful for using the map, such
as the types of the roads or the position of the points of interests. The
approaches to the modi�cation or creation of the graph attributes can be
divided into three categories based on the type of data that is used.

3



2. Related work.....................................
2.2.1 Attribute correction based on GPS data

The GPS measurements provide precise information about the travel of the
user in the road network by measuring the geographical coordinates and
the velocity of the user. To collect such data, either smartphones or car
navigations are used.

In [15] the authors presented a simple method based on the data analysis
and thresholding, which is able to estimate the location of stop signs and
location/timing of tra�c lights with more than 90% accuracy from the GPS
data.

The GPS data can also be useful to model the tra�c condition, which is
a very important feature for path planning. In [ 56], the authors propose a
simple yet e�ective way to model the tra�c condition based on measuring
statistics such as the average velocity or the stopping times.

2.2.2 Attribute correction based on images

Another type of data that can be used is satellite or aerial imagery. Its
biggest advantage is that, unlike the GPS measurements, the satellite imagery
already covers the majority of the Earth's surface, so there is no need for
data collection. The disadvantage is that to infer some information from
the pictures, more sophisticated models and computational power is usually
needed. Moreover, the resolution of the satellite and aerial imagery may not
be high enough to reliably recognize the di�erent types and qualities of the
surface.

In [12] the satellite imagery is used to predict the road quality using a
convolutional neural network (CNN), which achieves the accuracy of 73%.
The authors of [29] apply a similar approach but also use a graph neural
network model to predict the attributes using the embeddings created by a
CNN from the satellite images.

2.2.3 Attribute correction based on data from accelerometer
and/or gyroscope

The type of data which provides perhaps the most accurate information about
the nature of the travel can be obtained from sensors such as gyroscope and
accelerometer. This type of data is especially useful for predicting the type
or quality of the surface of the road. The disadvantage of this type of data
is that of the three presented types of data, it is perhaps the hardest one to
collect at a large scale and the most sensitive to the equipment used to collect
it, For example, di�erent bicycle forks or tires can transmit the vibrations of
the road very di�erently, as was studied in [32].

In [30] a special device mounted on a bicycle handlebar containing an
accurate accelerometer and gyroscope was used. In [35] a smartphone built-in
accelerometer was used. Both approaches achieved a very high accuracy of
99% and 97%, respectively. However, the model from [30] was unable1 to

1 It achieved only 26% accuracy.

4



................. 2.3. Di�erence in approach in this thesis and the previous work

correctly classify the data from a di�erent type of bicycle, and in [35], the
authors did not evaluate the model's transferability to a di�erent bicycle. This
indicates that it may be problematic to predict the road surface using data
generated by users riding di�erent types of a bike without some sophisticated
data preprocessing. The sensor does not need to be mounted on a bicycle.
The authors of [22] used the data from the vibration sensors in the smartphone
placed in the car to compute the IRI (international roughness index) [43].

2.3 Di�erence in approach in this thesis and the
previous work

The main di�erence between our approach and the previous work is in the used
data. Our user-generated dataset does not contain measurements from sensors
other than GPS. In the previous subsections, we cited successful attempts
to model the surface type or quality using data from an accelerometer or
gyroscope. However, these measurements are hard to collect at such a large
scale. Another problem is the amount of data these high-frequency sensors
produce. While the GPS measurements in our data were taken roughly every
two seconds, the number of measurements these sensors make can be up to
hundreds per second. We believe that the relationship between the surface
quality and travel velocity, together with other road properties, is strong
enough to reliably model the quality of the surface.

5
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Chapter 3
Task speci�cation

The task of the graph re�nement consists of taking a navigation graph and
modifying it in such a way that it describes the real-world transport network
more accurately. In this chapter, we will �rst formally de�ne this concept.
Then we will present an overview of the existing approaches. Finally, we will
state the goal of this thesis.

3.1 Formal problem de�nition

In this section we will formally de�ne the general task of the graph re�nement.

3.1.1 De�nitions

Navigation graph

The navigation graph G is a tuple (V; E; f V ; f E ), where. V is a �nite non-empty set of vertices. Also denoted byV(G).. E is a �nite set of edges. Also denoted byE(G). (V; E) form a simple directed graph, which means..1. The edges are ordered pairs of vertices, wheree = ( v1; v2) 2 E
denotes that edgee starts at v1 and ends atv2...2. There are no multiple edges. This holds automatically as we de�ned
E to be a set...3. There are no loops -8(v1; v2) 2 E : v1 6= v2.. f V : V ! Rk is a function assigning a feature vector to each vertex.

Typically the features are latitude, longitude and elevation.. f E : E ! Rl is a function assigning a feature vector to each edge. The
features are typically some real-world properties of the edge, such as
type of surface or maximal allowed speed.

Navigation graphs are used to represent real-worldtransport networks. In
the navigation graphs, we can use the graph-search algorithms to �nd paths
with desired qualities (such as distance, time travel or tra�c density).

7



3. Task speci�cation...................................
Trip

The trip t = ( x; M ) is a pair of a vector x and an ordered list M =
(m1; m2; : : : ; mn ) of measurementsmi = ( lat ; lon; v; ts; b), where. x contains meta information about the whole trip, such as user id or

type of the bike, that was used.. lat is the measured latitude.. lon is the measured longitude.. v is the measured velocity.. ts is the measured timestamp. Timestamps within a trip are non-
decreasing with respect to the order of the measurements.. b is the measured bearing in degrees.

The trip t represents real-world movement of a user from start(lat1; lon1) to
destination (latn ; lonn ).

3.1.2 Task

Input

The instance of the problemI is a tuple I = ( G; T; d), where. G = ( V; E; f V ; f E ) is a navigation graph.. T = f t1; t2; : : : ; tng is a set of trips.. d : G � G ! R+
0 is a distance function on G, which is the space of all

navigation graphs. d satis�es the following axioms for all G1; G2; G3 2 G:..1. d(G1; G2) = 0 () G1 = G2..2. d(G1; G2) = d(G2; G1)..3. d(G1; G2) + d(G2; G3) � d(G1; G3)

Admissible solution

An admissible solution to the problem instanceI is an updated navigation
graph G0 = ( V 0; E 0; f 0

V ; f 0
E ), where. V 0 = V [ Vnew and Vnew contains newly added vertices.. E 0 = E [ Enew and Enew contains newly added edges.. f 0

V : V 0 ! Rk assigns new features to the vertices fromVnew and preserves
the features of the vertices fromV (8v 2 V : (f v(v) = f 0

v(v)).. f 0
E : E 0 ! Rl0 assigns new features to the edges fromEnew and also

possibly corrected features to the edges fromE. It can also introduce
some new features.

8



................................... 3.2. Goal of the thesis

Goal

Let G� be a navigation graph that describes the real-world properties of the
transport network completely, without any mistakes or simpli�cations. Given
the problem instanceI = ( G; T; d), the goal is to �nd an admissible solution G0,
such that d(G0; G� ) < d (G; G� ). Ideally, we would like the value of d(G0; G� )
to be as close to zero as possible. Note, thatd(G0; G� ) = 0 () G0 = G� :

In other words, we want to �nd a G0, which describes the real-world
properties of the transport network better than G. To do that, we will use
the user-generated tripsT.

3.2 Goal of the thesis

In this thesis, we will focus on correcting the edge features. More speci�cally,
we will only focus on one of the features, namely, the surface quality.Vnew and
Enew will then be empty sets, and the distance functiond will only compare
the di�erences between the edges surface quality. LetG0 = ( V; E; f V ; f 0

E )
and G� = ( V; E; f V ; f �

E ) be two navigation graphs which di�er only in edges'
surface quality denoted asf E (e)S. More formally, for the functions f 0

E and
f �

E , the following holds:

8(e 2 E; i 6= S) : ( f �
E (e) i = f 0

E (e) i ):

The distance between the two graphs will be de�ned as

d(G0; G� ) =
1

jE j

X

e2 E

(f 0
E (e)S � f �

E (e)S)2;

i.e., the mean squared di�erence between the edges' surface qualities. It is
easy to see thatd satis�es the axioms from the input speci�cation 3.1.2.

We will approach this problem as a machine learning problem. We will
divide the edges of the input graph into two categories: edges with the correct
label and edges with an incorrect or missing label. We will train a model of
the surface quality using the former part of the edges and then use the model
to correct or �ll in the labels of the latter part of the edges.

Even though by only focusing on one edge feature, we signi�cantly restrict
the solution space of the general problem we de�ned in the previous section,
the surface quality is one of the most important properties of the roads and
paths in path-planning, especially for bike riders. Improving the accuracy of
this feature in the navigation graph will lead to a better experience for the
bike users planning their trips in the graph.

9
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Chapter 4
Theoretical background

In this chapter, we will describe the theory behind the tasks and models,
which we will then use to solve our problem. The chapter aims to provide a
thorough explanation of the used terms so that the reader can understand
the inner workings of the used machine learning algorithms as well as the
choices made during the design of the algorithm solving our task. The �rst
section of the chapter formally de�nes the machine learning tasks, and the
second section describes three models which can be used to solve the de�ned
tasks. In the �nal section, we describe the evaluation metrics that will be
used in the practical part of the thesis.

4.1 Machine learning tasks

This section formally de�nes three machine learning tasks � the general
prediction task, the classi�cation task as a case of the prediction task, and
�nally, the task of ordinal regression as a modi�cation of the classi�cation
task.

4.1.1 Prediction task

We present the formal de�nition of the prediction task as it is de�ned in [ 23].
Let

. X be a set of input observation,

. Y be a set of hidden states,

. h : X ! Y be a prediction strategy,

. (x; y) 2 X � Y be samples independently1 drawn with p.d.f. p(x; y),

. ` : X � Y be a loss function.

1Notice that this assumption is violated in our data � the connected roads have higher
probability of having similar properties.

11



4. Theoretical background................................
Find a strategy with the minimal expected risk

R(h) =
Z

(x;y )2 (X �Y )
`(y; h(x))p(x; y) dx:

In some cases, whenp(x; y) is known, we can solve the problem exactly and
without any samples drawn from X � Y . However, in most cases,p(x; y) is
unknown. In this case, we work with a training set of samples

T = f (x i ; yi ) 2 (X � Y ) j i = 1 ; : : : ; mg

drawn independently from the same distribution p(x; y). Then using the
training set we �nd a strategy h. Even though R(h) cannot be computed, it
can be estimated by theempirical risk on a test set S

RS(h) =
1

jSj

X

(x;y )2S

`(y; h(x)) :

In practice, h is usually found by minimizing the empirical risk on the
training set T with loss function `0, which may but may not be the same as̀ .

Because the training set contains labeled data, we talk aboutsupervised
learning.

4.1.2 Classi�cation

The classi�cation task is a prediction task where the goal is to classify the
observations into two (binary classi�cation) or more (multi-class classi�cation)
classes. This means that without the loss of generality, we can assume that
Y = f 1; : : : ; kg, where k is the number of classes. A loss function of a
classi�cation problem is a function that penalizes the model for assigning a
sample to an incorrect class. An example of such a function would be the 0-1
loss:

`(y; h(x)) =

(
0 y = h(x)

1 otherwise

Some models do not predict the class directly, but rather output a probability
distribution over Y: q = ( qi ; : : : ; qk ). When the desired output is also a
distribution over Y: p = ( pi ; : : : ; pk ), the cross entropy loss function can be
used:

`(p; q) = �
kX

i =1

pi log(qi ):

Notice that if the task is to assign each sample to exactly one class as we
de�ned it above, the distribution for a given sample with the correct class c
looks like this: p = (0 ; : : : ; 0; 1

| {z }
c

; 0; : : : ; 0). The loss can be simpli�ed as

`(p; q) = � log(qc):

We can see that the functions penalize the model for not predicting the right
class. If we look at both loss functions, we can see that they do not take

12
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into account which class was predicted instead of the right one. In many
cases, this is the desired behavior. However, there are cases where we are able
to de�ne ordering between the classes and would like the model to predict
the label as close as possible to the right one. This is the task of ordinal
regression.

4.1.3 Ordinal regression

Ordinal regression (or ordinal classi�cation) is a task similar to classi�cation.
The main di�erence is that it takes into account the given ordering of the
classes. An example of such an input would be to classify the student's exam
into grades A-F. In this case, when the correct output is A, the model should
be penalized more for predicting E than for predicting B. For this reason,
ordinal regression has the properties of both classi�cation and regression in
the sense that we want the model to classify the samples to the closest class
(ideally the correct one). There are two naive ways to solve this task:. Ignore the ordering and use a classi�cation model. If we are able to

create a model, which very often classi�es the samples correctly, we can
get good results even though the model does not take the ordering of
the classes into account.. Use a regression model. We could make a model, which predicts a
real number from [1; k] and train it using a regression loss function, for
example, mean square error. The predictions would be made by rounding
the model's output to the nearest integer. The problem is in mapping
the classes to the integers from 1 tok. When we do that, we assume
that all classes are the same distance apart. Imagine we try to predict a
test grade A-E. In this case, it may not make sense to assume that B is
twice as bad as A.

Because neither of these approaches is ideal, a number of machine learning
methods have been developed or redesigned to address ordinal regression,
such as perceptron or support vector machines. [17]

One possible approach was introduced in [24]. Using this approach, we
can solve the task of ordinal regression by solvingk � 1 binary classi�cation
tasks. The main idea of the approach is to encode the class labels ask � 1
dimensional vectors. When the correct label of a sample isc, we encode it as
(t1; t2; : : : ; tk� 1), where

t i =

(
1 i < c

0 otherwise

The interpretation of this encoding is, that t i is a probability, that the sample
x belongs in a classc0 > i , i,e, t i = Pr (c0 > i jx). The probability of sample x
belonging to a particular classc can be computed as

Pr (c) =

8
>><

>>:

1 � P r (y > 1jx) c = 1

Pr (y > c � 1jx) � P r (y > c jx) 1 < c < k

Pr (y > c � 1jx) c = k:

13



4. Theoretical background................................
After encoding the labels as vectors, we train a binary classi�er on each
element of the vector. The �nal prediction can be made by computing the
probability of each label and taking the most probable one.

In [17] instead of training k � 1 separate classi�ers a neural network with
k � 1 outputs is used instead. To guarantee that each output is in the interval
(0; 1) the sigmoid function is applied to each output:

S(z) i =
1

1 + e� zi

Now to train the neural network using backpropagation (subsection 4.2.2),
we can use either the mean square error loss

MSE(y; ŷ) =
1

k � 1

k� 1X

i =1

(yi � ŷi )2

or binary cross entropy loss2 between the network's output and the encoded
labels. From the model's output o = ( o1; o2; : : : ; ok� 1) the predicted class can
be obtained by computing jf i j 8(j � i ) : oj > 0:5gj + 1 , i.e. the number of
outputs oi larger than 0:5 from the left plus one. For example(0:7; 0:8; 0)
gets mapped to class 3 and(0:1; 0:0; 0:0) gets mapped to 1.

One problem with this approach is that the model can output inconsistent
predictions. Inconsistent prediction is a prediction whose interpretation
contradicts itself. For example, output vector (0:7; 0:0; 0:6) tells us that the
sample belongs to a class higher than 2 with zero probability, but at the
same time, it says that the sample belongs to a class higher than 3 with
the probability of 0.6. An example of inconsistent prediction can be seen in
Figure 4.1. This problem is addressed in [14], where a CORAL (COnsistent
RAnk Logits) method is proposed. First, a custom output layer is proposed.
The layer is similar to a standard linear layer, but each output has a separate
bias. Moreover, a custom loss function is introduced. The authors provide
theoretical guarantees that a network optimizing the proposed loss function
will make consistent predictions.

4.2 Machine learning models

In this subsection, we will describe three types of models that can be used to
solve the tasks de�ned in the previous section. The �rst one is the gradient
boosting method. It assumes independent samples, but it is a very powerful
tool for solving classi�cation problems on tabular data [11]. The second type
is the class of arti�cial neural networks (ANNs). ANNs are models whose
design is inspired by the human brain. They can be used to solve almost any
machine learning task. The third type of model is a class of graph neural
networks (GNNs). A GNN is a special type of arti�cial neural network whose
input consists of not only the feature vectors but also the underlying graph
structure � the relationships among the samples.

2special case of the cross entropy loss (4.1.2) with only two labels
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.

Figure 4.1: An example of inconsistent and consistent predictions for predicting
an age group. Image taken from [14]

4.2.1 Gradient boosting method

Gradient boosting is an ensemble machine learning method that consists of
iteratively training an ensemble of weak learners. The general algorithm,
together with its application to optimizing di�erent loss functions from both
regression and classi�cation tasks, was introduced in [27]. Algorithm 1 shows
the procedure. The initial model is a constant model predicting the value
minimizing the average loss on the training dataset. Then in each iteration,
the gradient vector gk is computed. It contains the partial derivatives of
the loss function with respect to the predicted values. After that, a new
weak learner is trained to predict the values of� gk with the squared error
loss. Then the weak learner will be multiplied by coe�cient � k and added
to the model from the ensemble model from the last iteration3, forming the
ensemble model for the current iteration. The coe�cient � k can either be
found by line search or set constant for all iterations.

We can see that this general algorithm is able to optimize any di�erentiable
loss function. For example, if we are solving a regression problem using least
squares, we get the gradient vector

(gk ) i =
@

@fk (x i )

�
1
2

(yi � f k (x i ))2
�

= f k (x i ) � yi :

Solving a classi�cation problem with K classes is slightly more complicated.
The loss function will be the cross-entropy loss described in 4.1.2. We will
proceed by training K models. Let f k be the kth model. Now we will apply

3by performing arithmetic on the models, we mean performing arithmetic on the
corresponding predicted values
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4. Theoretical background................................
the softmax function to the outputs. The predicted probability of a sample x
belonging to a classk will be computed as

qk (x) =
ef k (x)

P K
i =1 ef i (x)

:

Substituting qk into the loss function, we get the gradient for the kth model:

(gk ) i;k =
@

@fk (x i )

"

�
KX

c=1

yi;c log(qc(x i ))

#

= pk (x i ) � yi;k

where yi;k = 1 if and only if x i belongs to classk. In both cases, we ended
up with the learners being �t to the ensemble model's residuals. Intuitively
this means the weak learners try to correct the ensemble model's mistakes
instead of predicting the true values.

Even though theoretically, we could use a wide variety of machine learning
models as the weak learners, in practice, the decision trees are used almost
exclusively. The algorithm is then often referred to as gradient boosted trees.
In general, a decision tree consists of a root node, a number of interior nodes,
and a number of terminal nodes. The root node and interior nodes, referred to
collectively as nonterminal nodes, are linked into decision stages; the terminal
nodes represent �nal classi�cations. [46] The decision trees are grown by
recursively selecting a feature and a split point and splitting the current node
into two daughter nodes. The procedure stops after a prede�ned stopping
condition is triggered; for example, the tree reaches the maximum depth.
Popular methods measuring the quality of a split are based on information
gain [44] for classi�cation and squared error for regression.

Algorithm 1 Gradient boosting machine
Input:
Training set T = f (x1; y1); (x2; y2); : : : ; (xm ; ym )g � (X � Y )n

Di�erentiable loss function ` : Y � Y ! R
Number of iterations K 2 N
Output:
Trained model h : X ! Y

1: f 0(x) = arg min 

P n

i =1 `(yi ; 
 )
2: for k = 1 to K do
3: gk =

h
@(̀yi ;f k (x i )

@fk (x i )

i n

i =1
4: � k = arg min � =

P m
i =1 [(� gk ) i � b(x i ; � )]2

5: � k = arg min �
P m

i =1 ` (yi ; f k (x i ) + �b (x i ; � k )
6: f k (x) = f k� 1(x) + � kb(x; � k )

7: return h = f K

4.2.2 Arti�cial neural networks

Arti�cial neural network (or simply neural network) models are models
inspired by the functioning of the human brain. Recently neural networks
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.

Figure 4.2: An example of a decision tree which decides whether the given
person will die young or old. Image taken from [3]

have gained huge popularity for achieving great results in almost any �eld
of arti�cial intelligence. However, the �rst mathematical models of a neuron
were devised as early as 1943 by McCulloch and Pitts [37]. An illustration
of the model can be seen in Figure 4.3. The model consists of weights, bias,
and the activation function. An example of an activation function is sigmoid:
' (z) = 1

1+ e� z : The output is computed by computing a linear combination
of the inputs with the weights, adding the bias, and applying the activation
function.

A neural network is just a collection of units connected together; the
properties of the network are determined by its topology and the properties
of the neurons. [42] The neural networks are built by connecting multiple
layers together. In Figure 4.4, we can see a neural network with �ve inputs
and �ve outputs. In between we can see two hidden layers, each with twelve
neurons. Notice how every neuron in one layer is connected to every neuron
in the next layer. These layers are called fully connected or dense. Each layer
performs an a�ne transformation on its input:

y = Ax + b;

Where x 2 Rn ; A 2 Rm� n and y; b 2 Rm . After that, the activation function
' is applied on y. The purpose of the activation function is to introduce
non-linearity. Since a composition of a�ne transformations is also an a�ne
transformation, there would be no advantage in using more than one layer.
Moreover, the network would be able to model only linear relationships. There
are many di�erent types of layers, such as convolutional or pooling layers.

When computing the output of the network, we can think of the information
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4. Theoretical background................................
traveling from the input layer to the output layer through the connection
only in one direction (in Figure 4.4 it would be "left to right"). This kind
of architecture is called feedforward neural network. Neural network archi-
tectures that allow the connections between the nodes to form a cycle are
called recurrent neural networks. In this thesis, we will only talk about the
feedforward neural networks.

For the neural network to solve a task, many parameters, for example, the
weights in the dense layers, need to be set. To do that, we need a training set
and a loss function`. We want the parameters to be set so that the empirical
loss on the training dataset is minimized:

� � = arg min
�

L (� ) = arg min
�

1
M

MX

i =1

`(yi ; f � (x i )) ;

where f � (x i ) denotes the network's output givenx i as the input with � as the
parameters. To do that, we can use the gradient descent algorithm. Thanks
to the properties of the derivative, the gradient of L is the gradient of `
averaged over all training samples. In each iteration, the gradient of the loss
function with respect to the network's parameters is computed. Then the
parameters are moved in the opposite direction. It is necessary that every
layer in the network represents a di�erentiable function. Because the output
of the network can be thought of as a composition of multiple functions (one
for each layer), the gradient can be computed by repeatedly applying the
chain rule:

@(̀f � (x i ))
@�

=
@(̀f � (x i ))

@f� (x i )
�

@f� (x i ))
@�

:

Becausef � (x i ) is a composition of multiple functions, the chain rule can be
applied again on the term @f� (x i ))

@� : This process of computing the gradient
is called backpropagation. Since most of the training computation time is
spent computing the gradient, it is important that the implementation is well
optimized. In practice computing, the network's output and the gradient can
be realized by performing matrix multiplications. Since this operation can be
easily parallelized, being able to run the computation on special hardware
such as graphics processing units (GPUs) provides a signi�cant speedup.

Algorithm 2 Gradient descent
Input:
Learning rate �
Loss function L
Output:
Local optimum � �

1: initialize �
2: while not convergeddo
3: rL = @L (� )

@�
4: � = � � � rL
5: return � � = �
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Figure 4.3: Mathematical model of a neuron. It computesy = ' (
P m

i =1 x i ! i + b).
Image taken from [18].

The outline of the algorithm can be seen in the algorithm 2. Notice that
in each iteration, the gradient is computed using all samples in the training
dataset. This is called the full-batch approach. The opposite approach would
be to use a subset of the training dataset � themini-batch approach. The
modi�cation to the gradient descent using this approach is called stochastic
gradient descent (SGD). There are many other di�erent algorithms that aim
to optimize the empirical loss, such as Adam [33] or Adadelta [58], but they
are all based on optimizing the loss function using the computed gradient.

4.2.3 Graph neural networks

Graph neural network (GNN) is a type of neural network architecture whose
input is in the form of a graph. Depending on the architecture, GNNs can
work with node features, edge features and weights, and di�erent edge types.
Some architectures can even work with hypergraphs � a generalization of
graphs where the edges can join an arbitrary number of vertices. [7] Examples
of real-life data which can be an input to the graph neural network include
models of molecules, social networks, �nancial transactions, or navigation
graphs. The applications include node classi�cation, node representation
learning, graph classi�cation, graph generation, and link prediction. [54]

In [54] the graph neural network are divided into �ve categories:

. Graph Convolution Networks (GCNs) � Generalize the operation of
convolution from traditional data (images or grids) to graph data. For a
given node, the output of the graph convolution layer depends on the
outputs of the previous layer for its neighbors.

. Graph Attention Networks - Similar to GCNs, the di�erence is they
assign larger weights to more important nodes. The weights are learned
together with the network's parameters.
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Figure 4.4: A neural network �th �ve inputs, �ve outputs and two hidden layers.

. Graph Auto-encoders � Aim to �nd a low-dimensional representation of
the graphs using the auto-encoder architecture.. Graph Generative Networks � Able to generate plausible graph structures
from the given data.. Graph Spatial-temporal Networks � Aim to learn unseen patterns from
spatial-temporal graphs. spatial-temporal graphs are graphs whose
features can change over time.

For the rest of this thesis, we will only talk about the graph convolution
networks and graph attention networks because we think they are the most
relevant for our task. The graph convolution networks can be further divided
into two categories:. Spectral-based � these methods are based on performing the eigen de-

composition of the Laplacian matrix4 of the graph. The convolution is
performed as a matrix multiplication in the Fourier domain.. Spatial-based � these methods work by using the local neighborhoods of
the vertices to update the representation vector of each vertex.

The graph convolution networks work by generalizing the convolution
operator to work with arbitrary graph structures. The essential idea is to
iteratively update the node representations by combining the representations

4Laplacian matrix L is equal to D � A, where D is the degree matrix and A is the
adjacency matrix.
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Figure 4.5: Di�erence between convolution on a grid (left) and a graph (rights).
The convolution is computed for the red node. Image taken from [53]

of their neighbors and their own representations. [53] To �nd a representation
of the nodes, multiple graph convolutional layers can be stacked together.
There are many proposed graph convolution operators, but most of them can
be characterized by the following schema:

h(k+1)
u = UPDATE (k)

�
h(k)

u ; AGGREGATE (k) (f h(k)
v j v 2 N (u)g

�
:

Let us look at the equation and explain all the used variables and symbols.. h(k+1)
u is a representation vector of nodeu in the (k+1)th layer.. UPDATE is a function whose input is the representation of the node in

the previous layer and aggregated representation of the node neighbors.
The output is a new representation of the node.. AGGREGATE is a function whose input is the representations of a
node's neighbors, and the output is their aggregated representation. It
should be permutation invariant which means that its value does not
depend on the order in which the neighbors are processed.5

. N (u) is the set of the neighbors ofu.

To summarize, the general operator works by updating the node's representa-
tion by using its previous representation and aggregated representation of its
neighbors. We can see that if we use only one layer, each node's represen-
tation will be in�uenced by its own and its neighbors' representation. If we
add another layer, each node's representation will also be in�uenced by its
neighbors' neighbor's information. Figure 4.6 shows the computation with
two layers. If we think that there are long-distance dependencies in our graph,
it may be wise to stack many layers on top of each other. On the other hand,
if we think that each node is only in�uenced by its close neighbors, it can be
su�cient to only use a few layers. When too many layers are used, each node
in�uences each node, so all the representations may be very similar. This
problem is calledover-smoothing [13].

Now that we have explained the general design of a graph convolution
operator, we will describe several existing designs.

5This holds implicitly because we de�ned the domain of the function to be the power
set of the graph nodes.
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.

Figure 4.6: Graph convolution example with two convolution layers. A repre-
sentation of the node A in the input graph (left) is computed by aggregating the
representations of its neighbours. Image taken from [2]

GraphConv

Operator introduced in [39], the updated representation is computed as

h(k+1)
u = � 1h(k)

u + � 2
X

v2N (u)

ev;u � h(k)
v ;

where� 1 and � 2 are matrices of learnable parameters andev;u is the weight of
the connection from nodev to node u - 1 for unweighted graph. We can clearly
see how the computation follows the general schema. The UPDATE function
multiplies the current representation by � 1 and adds it to the aggregated
representation of the node's neighbors. The function AGGREGATE performs
the weighted sum of the neighbors' representation and multiplies it by� 2.
Optionally, the AGGREGATE function can be set to return the weighted
mean or maximum.

GATConv

Operator introduced in [49], the updated representation is computed as

h(k+1)
u = � u;u � h(k)

u +
X

v2N (u)

� u;v � h(k)
v ;

where the attention coe�cients � u;v are computed as

� u;v =
exp

�
LeakyReLU(a> [� uk� v])

�

P
w2N (u)[f ug exp (LeakyReLU(a> [� uk� w]))

:

a is a vector of learnable parameters,� is a matrix of learnable parameters,
and k represents the concatenation of two vectors. The function LeakyReLU
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is de�ned as

LeakyReLU(x) =

(
x x > 0

0:01x otherwise.

GINConv

Operator introduced in [55], the updated representation is computed as

h(k+1)
u = h�

0

@(1 + � ) � h(k)
u +

X

v2N (u)

h(k)
u

1

A ;

where h� denotes a neural network, for example, a multi-layer perceptron,
and � is a given constant or learnable parameter.

GCNConv

Operator introduced in [34], the updated representation is computed as

h(k+1)
u = � >

X

v2N (u)[f ug

ev;uq
d̂v d̂u

h(k)
v ;

where d̂u = 1 +
P

v2N (u) ev;u , where ev;u denotes the edge weight from node
v to node u - 1 for unweighted graph. � is a matrix of learnable parameters.

4.3 Metrics

To compare and report the performance of the models, we need suitable
metrics for our task. In this section, we will de�ne the metrics that will be
used in the later chapters of the thesis. The vectorsy and ŷ will represent
the true and predicted labels respectively.

4.3.1 Regression metrics

Regression metrics measure the di�erence between two vectors of values. They
penalize the model based on the distance between the true and predicted
values. They can be used in ordinal regression to measure how close are the
predicted labels to the true ones.

The �rst metric we will use is called root-mean-square error (RMSE). The
metric is sensitive to outliers because it is based on computing the squared
di�erences between the values. It is computed as:

RMSE(y; ŷ) =

vu
u
t 1

N

NX

i =1

(yi � ŷi )2:
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4.3.2 Classi�cation metrics

Classi�cation metrics measure the model's ability to predict a correct label
from the �nite set of labels. They treat the set of labels as a nominal quantity
� they do not take into account a possible ordering of the labels.

The most easily interpretable metric is accuracy. It is computed as the
proportion of correctly classi�ed samples:

Accuracy(y; ŷ) =
1
N

NX

i =1

Jyi = ŷi K6

The accuracy can be misleading when the labels in the dataset are not
represented equally. There are datasets where this is the case, for example,
in fraud detection. A model predicting all transactions to be non-fraudulent
will achieve a very good accuracy score while being useless.

A more suitable metric is the F1 score. It is de�ned for binary classi�cation
but can be extended for multi-class classi�cation as well. We will de�ne it in
terms of precision and recall. In the binary classi�cation setting, the samples
are often labeled as positive and negative, which means thatY = f +1 ; � 1g.
When a model predicts a sample's label, there are four di�erent outcomes,
two in which the model is right and two in which the model is not. When
we count the number of the outcomes, we end up with theconfusion matrix.
This matrix can be seen in the following table. We will de�ne the metrics in
terms of the values in the confusion matrix instead of as functions ofy and ŷ,
which is standard in literature and makes the de�nitions more readable.

y=ŷ +1 -1
+1 TP FN
-1 FP TN

Table 4.1: Di�erent outcomes in binary classi�cation.

Precision measures what portion of samples the model predicted to be
positive is actually positive:

Precision=
TP

TP + FP
:

Recall measures what portion of actual positive samples the model predicted
to be positive:

Recall =
TP

TP + FN
:

The F1 score is computed as

F1 = 2 �
Precision� Recall
Precision+ Recall

:

6J�Kis called Iverson bracket and it evaluates to 1 if the statement inside the brackets is
true and 0 otherwise.
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Its value is in the range [0; 1], where the model assigning all labels correctly
will have a score of 1.

When we are dealing with multi-class classi�cation, we can approach it ask
binary classi�cations - for each label, we divide the samples into those which
are assigned the label and those who are not. This is called the one-vs-all
approach. Then we can calculate theF1 score for each label. There are two
ways to combine the scores into one score:. Weighted � the �nal score is the weighted mean of the individual scores,

where the weights correspond to the number of samples with the corre-
sponding label.. Macro � the �nal score is the arithmetic mean of the individual scores.

The �rst approach favors the classes which occur more frequently in the data.
The second approach gives the same importance to all classes. It is, therefore,
more suitable for imbalanced datasets. Another approach is to compute the
sum of the confusion matrices and compute theF1 score as we would for
binary classi�cation. This approach is called micro-averaging, and similarly
to the weighted score, it also favors the more frequent classes.
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Chapter 5
Data and preprocessing

This chapter will focus on the data which we worked with in this thesis. The
data consists of a navigation graphG and a set of user-generated tripsT.
We created a data processing pipeline, which used this input data to create
a navigation graph enriched with features extracted from the trips. This
enriched navigation graph will be used as an input of the machine learning
methods described in Chapter 4.

We will begin by brie�y describing the steps of the data processing pipeline.
Then we will describe the format and contents of the used data (5.2). After
that, we will describe the individual steps of the data-processing pipeline
(5.3). Finally, we will provide the analysis of the �nal dataset (5.4).

5.1 Overview of the data processing pipeline

The diagram of the procedure can be seen in Figure 5.1. The procedure begins
by combining the GPS measurements with their matching and computing
the features of each segment. By a segment, we mean one particular traversal
on a particular edge. Because there can be some nonsensical values in the
measurements, some segments are �ltered out. After that, several features
are extracted both from the navigation graph and the trip data and added
to the existing edge features of the navigation graph. Finally, some edges
are removed from the navigation graph based on the extracted feature in
the previous step. The output of the pipeline is the subgraph of the original
navigation graph, whose edges were enriched by several extracted features.
The edges, which do not appear in any segment, i.e., they were never visited,
are removed because no features can be extracted for them. This should not be
a problem because the trips cover the majority of the original navigation graph.
Finally, the graph is transformed into the so-called edge-based representation.
This representation is based on transforming the given graph so that the
edges in the original graph are represented as the nodes in the new graph,
and all connections in the original graph are preserved. This way, we can
perform edge classi�cation on the original graph using models designed for
node classi�cation.
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