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Abstract
Surface quality is one of the most im-
portant road attributes in the context of
path planning for bicycle users. Unfortu-
nately, this attribute is often incorrectly
filled in or missing from the used map
data. Many published approaches suc-
cessfully used data gathered using high-
frequency sensors such as gyroscopes or
accelerometers to model the surface qual-
ity. However, gathering these measure-
ments at large scale is problematic, and
the resulting datasets are impractical to
work with due to their size. In this thesis,
we used data in the form of GPS mea-
surements gathered by cycling volunteers.
Our model based on graph neural net-
works successfully predicted the surface
quality achieving RMSE of 0.72. We used
the model to predict the surface quality
of the roads and paths with inaccurate
information and manually validated the
results in several places. In this thesis, we
showed that using GPS measurements is a
viable option to model the surface quality
in large areas.

Keywords: navigation graph, GPS
measurements, cycling, machine learning,
graph neural networks
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Abstrakt
V kontextu plánování cyklistických tras je
kvalita povrchu jednou z nejdůležitějších
vlastností cest. Tento atribut je bohužel
často v používaných mapách špatně vypl-
něn nebo úplně chybí. V minulosti byla
kvalita povrchu úspěšně modelována po-
mocí dat nasbíraných z vysokofrekvenč-
ních senzorů jako je gyroskop nebo akcele-
rometr. Nasbírat tato data ve velkém mě-
řítku je však problematické a práce se zís-
kanými daty je kvůli jejich velikosti kom-
plikovaná. V této práci jsme použili data
ve formě GPS měření nasbíraných dob-
rovolníky. Náš model založený na grafo-
vých neuronových sítích úspěšně modelo-
val kvalitu povrchu a dosáhl chyby RMSE
v hodnotě 0.72. Tento model jsme použili
k predikci kvality povrchu na cestách s ne-
přesnými informacemi a manuálně zkon-
trolovali několik výsledků. V této práci
jsme ukázali, že GPS měření jsou použi-
telná k predikci kvality povrchu na velkém
území.

Klíčová slova: navigační graf, GPS
měření, cyklistika, strojové učení, grafové
neuronové sítě

Překlad názvu: Automatické
zpřesňování cyklistických navigačních
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Chapter 1
Introduction

1.1 Problem and motivation

Riding a bicycle has become very popular as a way to exercise and relax as
well as a viable way to travel in cities with increasingly heavier traffic. There
are many reasons to use bicycles over cars such as to reduce the pollution[38]
and noise[10], both of which have negative effects on health. Another reason
may be the benefits of regular exercise or convenience. Some European cities
are famous for successfully making the city easy to travel by a bicycle [47].

Since the boom of smartphones, many different apps enhancing the experi-
ence and the effectiveness of riding a bicycle have become popular. A very
important role is played by the navigation apps. These apps, just like their
automotive counterparts, aim to provide the user with a way to plan paths
based on the user’s preferences. The main priority of car drivers is usually
the time of travel. For bicycle riders, there are many more desired properties
of the path, such as elevation, traffic, or surface quality. These properties
depend on the cyclist’s preferences, physical capabilities, or bike type, which
significantly vary across different cyclists. Moreover, these properties have the
potential also to affect the travel time more dramatically. It is thus crucial for
the apps to work with the correct information about the real-world state of
the roads. Unfortunately, the maps currently used often contain incomplete
or wrong information.

In this thesis, we will focus on the attribute of the edges, which rates the
quality of the surface, which is a very important attribute in the context of
planning a path for a bicycle, but an attribute that is very often missing or
incorrectly filled in the map data. Many successful approaches have been
proposed in the past, which used the data from high-frequency sensors to
predict the road surface. However, this kind of data is difficult to collect and
work with at a large scale. In this thesis, we will try to model the surface
quality using the data from the GPS measurements, which consist of the
position and the velocity of the user and can be gathered using a wide variety
of devices such as smartphones, smartwatches, or fitness trackers.

The goal of the thesis is to propose, implement and evaluate an algorithm
that will be able to automatically improve the accuracy of the surface quality
label in the given map using the user-generated tracking data.
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1. Introduction .....................................
1.2 Thesis structure

This thesis consists of eight chapters:..1. Introduction – in this chapter, we introduce the problem of the auto-
mated graph refinement and the motivation for its solution...2. Related work – in this chapter, we summarize the published approaches
to solving the problem...3. Task specification – in this chapter, we formally define the problem
and set the goal of this thesis...4. Theoretical background – in this chapter, we describe the machine
learning techniques which we used in the practical part of this thesis...5. Data and preprocessing – in this chapter we describe our data sources
and the process that led to creating the final dataset...6. Solution approach – in this chapter, we describe the approach we have
chosen to solve the problem and some technical details regarding the
used techniques...7. Results – in this chapter, we evaluate our approach on the available
data...8. Conclusion – in this chapter, we summarize the results of this thesis
and discuss the limitations of the selected approach.
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Chapter 2
Related work

We can divide the existing approaches into two main categories. The first
category aims to improve the topology of the navigation graph. The second
category focuses on correcting or adding node and edge attributes.

2.1 Improving the graph topology

Due to the constant change of the road networks caused by the construction
of the new roads or demolition of the existing ones, the navigation graph has
to be periodically updated. However, doing so manually would require large
amounts of human work. For this reason, great efforts have been made to
update the navigation graph automatically.

The authors of [25] used GPS trajectories gathered by car navigation
devices to update the existing digital maps. They presented a method to
detect new roads and roundabouts. In [26] the method was extended to detect
incongruences of different road geometry, alterations of junction positions,
prohibited maneuvers, and traffic directions. Authors of [19] used an artificial
neural network model to add new roads to the network, based on the GPS
data collected from the car-navigation systems of the users. In [5], a system
capable of creating the navigation graph entirely from the GPS measurements
was developed. The system was proven to be working correctly by showing
the generated and real graph to be identical.

It is also possible to use satellite imagery to update the the navigation
graph. A framework for road change detection and map updating based on
imagery was proposed in [59] and [6].

2.2 Adding and correcting attributes

The navigation graph can contain attributes useful for using the map, such
as the types of the roads or the position of the points of interests. The
approaches to the modification or creation of the graph attributes can be
divided into three categories based on the type of data that is used.

3



2. Related work.....................................
2.2.1 Attribute correction based on GPS data

The GPS measurements provide precise information about the travel of the
user in the road network by measuring the geographical coordinates and
the velocity of the user. To collect such data, either smartphones or car
navigations are used.

In [15] the authors presented a simple method based on the data analysis
and thresholding, which is able to estimate the location of stop signs and
location/timing of traffic lights with more than 90% accuracy from the GPS
data.

The GPS data can also be useful to model the traffic condition, which is
a very important feature for path planning. In [56], the authors propose a
simple yet effective way to model the traffic condition based on measuring
statistics such as the average velocity or the stopping times.

2.2.2 Attribute correction based on images

Another type of data that can be used is satellite or aerial imagery. Its
biggest advantage is that, unlike the GPS measurements, the satellite imagery
already covers the majority of the Earth’s surface, so there is no need for
data collection. The disadvantage is that to infer some information from
the pictures, more sophisticated models and computational power is usually
needed. Moreover, the resolution of the satellite and aerial imagery may not
be high enough to reliably recognize the different types and qualities of the
surface.

In [12] the satellite imagery is used to predict the road quality using a
convolutional neural network (CNN), which achieves the accuracy of 73%.
The authors of [29] apply a similar approach but also use a graph neural
network model to predict the attributes using the embeddings created by a
CNN from the satellite images.

2.2.3 Attribute correction based on data from accelerometer
and/or gyroscope

The type of data which provides perhaps the most accurate information about
the nature of the travel can be obtained from sensors such as gyroscope and
accelerometer. This type of data is especially useful for predicting the type
or quality of the surface of the road. The disadvantage of this type of data
is that of the three presented types of data, it is perhaps the hardest one to
collect at a large scale and the most sensitive to the equipment used to collect
it, For example, different bicycle forks or tires can transmit the vibrations of
the road very differently, as was studied in [32].

In [30] a special device mounted on a bicycle handlebar containing an
accurate accelerometer and gyroscope was used. In [35] a smartphone built-in
accelerometer was used. Both approaches achieved a very high accuracy of
99% and 97%, respectively. However, the model from [30] was unable1 to

1It achieved only 26% accuracy.

4



.................2.3. Difference in approach in this thesis and the previous work

correctly classify the data from a different type of bicycle, and in [35], the
authors did not evaluate the model’s transferability to a different bicycle. This
indicates that it may be problematic to predict the road surface using data
generated by users riding different types of a bike without some sophisticated
data preprocessing. The sensor does not need to be mounted on a bicycle.
The authors of [22] used the data from the vibration sensors in the smartphone
placed in the car to compute the IRI (international roughness index) [43].

2.3 Difference in approach in this thesis and the
previous work

The main difference between our approach and the previous work is in the used
data. Our user-generated dataset does not contain measurements from sensors
other than GPS. In the previous subsections, we cited successful attempts
to model the surface type or quality using data from an accelerometer or
gyroscope. However, these measurements are hard to collect at such a large
scale. Another problem is the amount of data these high-frequency sensors
produce. While the GPS measurements in our data were taken roughly every
two seconds, the number of measurements these sensors make can be up to
hundreds per second. We believe that the relationship between the surface
quality and travel velocity, together with other road properties, is strong
enough to reliably model the quality of the surface.

5
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Chapter 3
Task specification

The task of the graph refinement consists of taking a navigation graph and
modifying it in such a way that it describes the real-world transport network
more accurately. In this chapter, we will first formally define this concept.
Then we will present an overview of the existing approaches. Finally, we will
state the goal of this thesis.

3.1 Formal problem definition

In this section we will formally define the general task of the graph refinement.

3.1.1 Definitions

Navigation graph

The navigation graph G is a tuple (V, E, fV , fE), where. V is a finite non-empty set of vertices. Also denoted by V (G).. E is a finite set of edges. Also denoted by E(G). (V, E) form a simple directed graph, which means..1. The edges are ordered pairs of vertices, where e = (v1, v2) ∈ E
denotes that edge e starts at v1 and ends at v2...2. There are no multiple edges. This holds automatically as we defined
E to be a set...3. There are no loops - ∀(v1, v2) ∈ E : v1 ̸= v2.. fV : V → Rk is a function assigning a feature vector to each vertex.

Typically the features are latitude, longitude and elevation.. fE : E → Rl is a function assigning a feature vector to each edge. The
features are typically some real-world properties of the edge, such as
type of surface or maximal allowed speed.

Navigation graphs are used to represent real-world transport networks. In
the navigation graphs, we can use the graph-search algorithms to find paths
with desired qualities (such as distance, time travel or traffic density).

7



3. Task specification...................................
Trip

The trip t = (x, M) is a pair of a vector x and an ordered list M =
(m1, m2, . . . , mn) of measurements mi = (lat, lon, v, ts, b), where. x contains meta information about the whole trip, such as user id or

type of the bike, that was used.. lat is the measured latitude.. lon is the measured longitude.. v is the measured velocity.. ts is the measured timestamp. Timestamps within a trip are non-
decreasing with respect to the order of the measurements.. b is the measured bearing in degrees.

The trip t represents real-world movement of a user from start (lat1, lon1) to
destination (latn, lonn).

3.1.2 Task

Input

The instance of the problem I is a tuple I = (G, T, d), where.G = (V, E, fV , fE) is a navigation graph.. T = {t1, t2, . . . , tn} is a set of trips.. d : G × G → R+
0 is a distance function on G, which is the space of all

navigation graphs. d satisfies the following axioms for all G1, G2, G3 ∈ G:..1. d(G1, G2) = 0 ⇐⇒ G1 = G2..2. d(G1, G2) = d(G2, G1)..3. d(G1, G2) + d(G2, G3) ≥ d(G1, G3)

Admissible solution

An admissible solution to the problem instance I is an updated navigation
graph G′ = (V ′, E′, f ′

V , f ′
E), where. V ′ = V ∪ Vnew and Vnew contains newly added vertices.. E′ = E ∪ Enew and Enew contains newly added edges.. f ′

V : V ′ → Rk assigns new features to the vertices from Vnew and preserves
the features of the vertices from V (∀v ∈ V : (fv(v) = f ′

v(v)).. f ′
E : E′ → Rl′ assigns new features to the edges from Enew and also

possibly corrected features to the edges from E. It can also introduce
some new features.

8



...................................3.2. Goal of the thesis

Goal

Let G∗ be a navigation graph that describes the real-world properties of the
transport network completely, without any mistakes or simplifications. Given
the problem instance I = (G, T, d), the goal is to find an admissible solution G′,
such that d(G′, G∗) < d(G, G∗). Ideally, we would like the value of d(G′, G∗)
to be as close to zero as possible. Note, that d(G′, G∗) = 0 ⇐⇒ G′ = G∗.

In other words, we want to find a G′, which describes the real-world
properties of the transport network better than G. To do that, we will use
the user-generated trips T .

3.2 Goal of the thesis

In this thesis, we will focus on correcting the edge features. More specifically,
we will only focus on one of the features, namely, the surface quality. Vnew and
Enew will then be empty sets, and the distance function d will only compare
the differences between the edges surface quality. Let G′ = (V, E, fV , f ′

E)
and G∗ = (V, E, fV , f∗

E) be two navigation graphs which differ only in edges’
surface quality denoted as fE(e)S . More formally, for the functions f ′

E and
f∗

E , the following holds:

∀(e ∈ E, i ̸= S) : (f∗
E(e)i = f ′

E(e)i).

The distance between the two graphs will be defined as

d(G′, G∗) = 1
|E|

∑
e∈E

(f ′
E(e)S − f∗

E(e)S)2,

i.e., the mean squared difference between the edges’ surface qualities. It is
easy to see that d satisfies the axioms from the input specification 3.1.2.

We will approach this problem as a machine learning problem. We will
divide the edges of the input graph into two categories: edges with the correct
label and edges with an incorrect or missing label. We will train a model of
the surface quality using the former part of the edges and then use the model
to correct or fill in the labels of the latter part of the edges.

Even though by only focusing on one edge feature, we significantly restrict
the solution space of the general problem we defined in the previous section,
the surface quality is one of the most important properties of the roads and
paths in path-planning, especially for bike riders. Improving the accuracy of
this feature in the navigation graph will lead to a better experience for the
bike users planning their trips in the graph.

9
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Chapter 4
Theoretical background

In this chapter, we will describe the theory behind the tasks and models,
which we will then use to solve our problem. The chapter aims to provide a
thorough explanation of the used terms so that the reader can understand
the inner workings of the used machine learning algorithms as well as the
choices made during the design of the algorithm solving our task. The first
section of the chapter formally defines the machine learning tasks, and the
second section describes three models which can be used to solve the defined
tasks. In the final section, we describe the evaluation metrics that will be
used in the practical part of the thesis.

4.1 Machine learning tasks

This section formally defines three machine learning tasks – the general
prediction task, the classification task as a case of the prediction task, and
finally, the task of ordinal regression as a modification of the classification
task.

4.1.1 Prediction task

We present the formal definition of the prediction task as it is defined in [23].
Let. X be a set of input observation,. Y be a set of hidden states,. h : X → Y be a prediction strategy,. (x, y) ∈ X × Y be samples independently1 drawn with p.d.f. p(x, y),. ℓ : X × Y be a loss function.

1Notice that this assumption is violated in our data – the connected roads have higher
probability of having similar properties.

11



4. Theoretical background ................................
Find a strategy with the minimal expected risk

R(h) =
∫

(x,y)∈(X ×Y)
ℓ(y, h(x))p(x, y) dx.

In some cases, when p(x, y) is known, we can solve the problem exactly and
without any samples drawn from X × Y. However, in most cases, p(x, y) is
unknown. In this case, we work with a training set of samples

T = {(xi, yi) ∈ (X × Y) | i = 1, . . . , m}

drawn independently from the same distribution p(x, y). Then using the
training set we find a strategy h. Even though R(h) cannot be computed, it
can be estimated by the empirical risk on a test set S

RS(h) = 1
|S|

∑
(x,y)∈S

ℓ(y, h(x)).

In practice, h is usually found by minimizing the empirical risk on the
training set T with loss function ℓ′, which may but may not be the same as ℓ.

Because the training set contains labeled data, we talk about supervised
learning.

4.1.2 Classification

The classification task is a prediction task where the goal is to classify the
observations into two (binary classification) or more (multi-class classification)
classes. This means that without the loss of generality, we can assume that
Y = {1, . . . , k}, where k is the number of classes. A loss function of a
classification problem is a function that penalizes the model for assigning a
sample to an incorrect class. An example of such a function would be the 0-1
loss:

ℓ(y, h(x)) =
{

0 y = h(x)
1 otherwise

Some models do not predict the class directly, but rather output a probability
distribution over Y: q = (qi, . . . , qk). When the desired output is also a
distribution over Y: p = (pi, . . . , pk), the cross entropy loss function can be
used:

ℓ(p, q) = −
k∑

i=1
pi log(qi).

Notice that if the task is to assign each sample to exactly one class as we
defined it above, the distribution for a given sample with the correct class c
looks like this: p = (0, . . . , 0, 1︸ ︷︷ ︸

c

, 0, . . . , 0). The loss can be simplified as

ℓ(p, q) = − log(qc).

We can see that the functions penalize the model for not predicting the right
class. If we look at both loss functions, we can see that they do not take

12



................................ 4.1. Machine learning tasks

into account which class was predicted instead of the right one. In many
cases, this is the desired behavior. However, there are cases where we are able
to define ordering between the classes and would like the model to predict
the label as close as possible to the right one. This is the task of ordinal
regression.

4.1.3 Ordinal regression

Ordinal regression (or ordinal classification) is a task similar to classification.
The main difference is that it takes into account the given ordering of the
classes. An example of such an input would be to classify the student’s exam
into grades A-F. In this case, when the correct output is A, the model should
be penalized more for predicting E than for predicting B. For this reason,
ordinal regression has the properties of both classification and regression in
the sense that we want the model to classify the samples to the closest class
(ideally the correct one). There are two naive ways to solve this task:. Ignore the ordering and use a classification model. If we are able to

create a model, which very often classifies the samples correctly, we can
get good results even though the model does not take the ordering of
the classes into account.. Use a regression model. We could make a model, which predicts a
real number from [1, k] and train it using a regression loss function, for
example, mean square error. The predictions would be made by rounding
the model’s output to the nearest integer. The problem is in mapping
the classes to the integers from 1 to k. When we do that, we assume
that all classes are the same distance apart. Imagine we try to predict a
test grade A-E. In this case, it may not make sense to assume that B is
twice as bad as A.

Because neither of these approaches is ideal, a number of machine learning
methods have been developed or redesigned to address ordinal regression,
such as perceptron or support vector machines. [17]

One possible approach was introduced in [24]. Using this approach, we
can solve the task of ordinal regression by solving k − 1 binary classification
tasks. The main idea of the approach is to encode the class labels as k − 1
dimensional vectors. When the correct label of a sample is c, we encode it as
(t1, t2, . . . , tk−1), where

ti =
{

1 i < c

0 otherwise
The interpretation of this encoding is, that ti is a probability, that the sample
x belongs in a class c′ > i, i,e, ti = Pr(c′ > i|x). The probability of sample x
belonging to a particular class c can be computed as

Pr(c) =


1 − Pr(y > 1|x) c = 1
Pr(y > c − 1|x) − Pr(y > c|x) 1 < c < k

Pr(y > c − 1|x) c = k.

13



4. Theoretical background ................................
After encoding the labels as vectors, we train a binary classifier on each
element of the vector. The final prediction can be made by computing the
probability of each label and taking the most probable one.

In [17] instead of training k − 1 separate classifiers a neural network with
k − 1 outputs is used instead. To guarantee that each output is in the interval
(0, 1) the sigmoid function is applied to each output:

S(z)i = 1
1 + e−zi

Now to train the neural network using backpropagation (subsection 4.2.2),
we can use either the mean square error loss

MSE(y, ŷ) = 1
k − 1

k−1∑
i=1

(yi − ŷi)2

or binary cross entropy loss2 between the network’s output and the encoded
labels. From the model’s output o = (o1, o2, . . . , ok−1) the predicted class can
be obtained by computing |{i | ∀(j ≤ i) : oj > 0.5}| + 1, i.e. the number of
outputs oi larger than 0.5 from the left plus one. For example (0.7, 0.8, 0)
gets mapped to class 3 and (0.1, 0.0, 0.0) gets mapped to 1.

One problem with this approach is that the model can output inconsistent
predictions. Inconsistent prediction is a prediction whose interpretation
contradicts itself. For example, output vector (0.7, 0.0, 0.6) tells us that the
sample belongs to a class higher than 2 with zero probability, but at the
same time, it says that the sample belongs to a class higher than 3 with
the probability of 0.6. An example of inconsistent prediction can be seen in
Figure 4.1. This problem is addressed in [14], where a CORAL (COnsistent
RAnk Logits) method is proposed. First, a custom output layer is proposed.
The layer is similar to a standard linear layer, but each output has a separate
bias. Moreover, a custom loss function is introduced. The authors provide
theoretical guarantees that a network optimizing the proposed loss function
will make consistent predictions.

4.2 Machine learning models

In this subsection, we will describe three types of models that can be used to
solve the tasks defined in the previous section. The first one is the gradient
boosting method. It assumes independent samples, but it is a very powerful
tool for solving classification problems on tabular data [11]. The second type
is the class of artificial neural networks (ANNs). ANNs are models whose
design is inspired by the human brain. They can be used to solve almost any
machine learning task. The third type of model is a class of graph neural
networks (GNNs). A GNN is a special type of artificial neural network whose
input consists of not only the feature vectors but also the underlying graph
structure – the relationships among the samples.

2special case of the cross entropy loss (4.1.2) with only two labels
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.
Figure 4.1: An example of inconsistent and consistent predictions for predicting
an age group. Image taken from [14]

4.2.1 Gradient boosting method

Gradient boosting is an ensemble machine learning method that consists of
iteratively training an ensemble of weak learners. The general algorithm,
together with its application to optimizing different loss functions from both
regression and classification tasks, was introduced in [27]. Algorithm 1 shows
the procedure. The initial model is a constant model predicting the value
minimizing the average loss on the training dataset. Then in each iteration,
the gradient vector gk is computed. It contains the partial derivatives of
the loss function with respect to the predicted values. After that, a new
weak learner is trained to predict the values of −gk with the squared error
loss. Then the weak learner will be multiplied by coefficient βk and added
to the model from the ensemble model from the last iteration3, forming the
ensemble model for the current iteration. The coefficient βk can either be
found by line search or set constant for all iterations.

We can see that this general algorithm is able to optimize any differentiable
loss function. For example, if we are solving a regression problem using least
squares, we get the gradient vector

(gk)i = ∂

∂fk(xi)

(1
2(yi − fk(xi))2

)
= fk(xi) − yi.

Solving a classification problem with K classes is slightly more complicated.
The loss function will be the cross-entropy loss described in 4.1.2. We will
proceed by training K models. Let fk be the kth model. Now we will apply

3by performing arithmetic on the models, we mean performing arithmetic on the
corresponding predicted values
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4. Theoretical background ................................
the softmax function to the outputs. The predicted probability of a sample x
belonging to a class k will be computed as

qk(x) = efk(x)∑K
i=1 efi(x)

.

Substituting qk into the loss function, we get the gradient for the kth model:

(gk)i,k = ∂

∂fk(xi)

[
−

K∑
c=1

yi,c log(qc(xi))
]

= pk(xi) − yi,k

where yi,k = 1 if and only if xi belongs to class k. In both cases, we ended
up with the learners being fit to the ensemble model’s residuals. Intuitively
this means the weak learners try to correct the ensemble model’s mistakes
instead of predicting the true values.

Even though theoretically, we could use a wide variety of machine learning
models as the weak learners, in practice, the decision trees are used almost
exclusively. The algorithm is then often referred to as gradient boosted trees.
In general, a decision tree consists of a root node, a number of interior nodes,
and a number of terminal nodes. The root node and interior nodes, referred to
collectively as nonterminal nodes, are linked into decision stages; the terminal
nodes represent final classifications. [46] The decision trees are grown by
recursively selecting a feature and a split point and splitting the current node
into two daughter nodes. The procedure stops after a predefined stopping
condition is triggered; for example, the tree reaches the maximum depth.
Popular methods measuring the quality of a split are based on information
gain [44] for classification and squared error for regression.

Algorithm 1 Gradient boosting machine
Input:
Training set T = {(x1, y1), (x2, y2), . . . , (xm, ym)} ⊆ (X × Y)n

Differentiable loss function ℓ : Y × Y → R
Number of iterations K ∈ N
Output:
Trained model h : X → Y

1: f0(x) = arg minγ

∑n
i=1 ℓ(yi, γ)

2: for k = 1 to K do
3: gk =

[
∂ℓ(yi,fk(xi)

∂fk(xi)

]n

i=1
4: θk = arg minθ = ∑m

i=1[(−gk)i − b(xi; θ)]2
5: βk = arg minβ

∑m
i=1 ℓ (yi, fk(xi) + βb(xi; θk)

6: fk(x) = fk−1(x) + βkb(x; θk)
7: return h = fK

4.2.2 Artificial neural networks

Artificial neural network (or simply neural network) models are models
inspired by the functioning of the human brain. Recently neural networks
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.
Figure 4.2: An example of a decision tree which decides whether the given
person will die young or old. Image taken from [3]

have gained huge popularity for achieving great results in almost any field
of artificial intelligence. However, the first mathematical models of a neuron
were devised as early as 1943 by McCulloch and Pitts [37]. An illustration
of the model can be seen in Figure 4.3. The model consists of weights, bias,
and the activation function. An example of an activation function is sigmoid:
φ(z) = 1

1+e−z . The output is computed by computing a linear combination
of the inputs with the weights, adding the bias, and applying the activation
function.

A neural network is just a collection of units connected together; the
properties of the network are determined by its topology and the properties
of the neurons. [42] The neural networks are built by connecting multiple
layers together. In Figure 4.4, we can see a neural network with five inputs
and five outputs. In between we can see two hidden layers, each with twelve
neurons. Notice how every neuron in one layer is connected to every neuron
in the next layer. These layers are called fully connected or dense. Each layer
performs an affine transformation on its input:

y = Ax + b,

Where x ∈ Rn, A ∈ Rm×n and y, b ∈ Rm. After that, the activation function
φ is applied on y. The purpose of the activation function is to introduce
non-linearity. Since a composition of affine transformations is also an affine
transformation, there would be no advantage in using more than one layer.
Moreover, the network would be able to model only linear relationships. There
are many different types of layers, such as convolutional or pooling layers.

When computing the output of the network, we can think of the information
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4. Theoretical background ................................
traveling from the input layer to the output layer through the connection
only in one direction (in Figure 4.4 it would be "left to right"). This kind
of architecture is called feedforward neural network. Neural network archi-
tectures that allow the connections between the nodes to form a cycle are
called recurrent neural networks. In this thesis, we will only talk about the
feedforward neural networks.

For the neural network to solve a task, many parameters, for example, the
weights in the dense layers, need to be set. To do that, we need a training set
and a loss function ℓ. We want the parameters to be set so that the empirical
loss on the training dataset is minimized:

θ∗ = arg min
θ

L(θ) = arg min
θ

1
M

M∑
i=1

ℓ(yi, fθ(xi)),

where fθ(xi) denotes the network’s output given xi as the input with θ as the
parameters. To do that, we can use the gradient descent algorithm. Thanks
to the properties of the derivative, the gradient of L is the gradient of ℓ
averaged over all training samples. In each iteration, the gradient of the loss
function with respect to the network’s parameters is computed. Then the
parameters are moved in the opposite direction. It is necessary that every
layer in the network represents a differentiable function. Because the output
of the network can be thought of as a composition of multiple functions (one
for each layer), the gradient can be computed by repeatedly applying the
chain rule:

∂ℓ(fθ(xi))
∂θ

= ∂ℓ(fθ(xi))
∂fθ(xi)

· ∂fθ(xi))
∂θ

.

Because fθ(xi) is a composition of multiple functions, the chain rule can be
applied again on the term ∂fθ(xi))

∂θ . This process of computing the gradient
is called backpropagation. Since most of the training computation time is
spent computing the gradient, it is important that the implementation is well
optimized. In practice computing, the network’s output and the gradient can
be realized by performing matrix multiplications. Since this operation can be
easily parallelized, being able to run the computation on special hardware
such as graphics processing units (GPUs) provides a significant speedup.

Algorithm 2 Gradient descent
Input:
Learning rate α
Loss function L
Output:
Local optimum θ∗

1: initialize θ
2: while not converged do
3: ∇L = ∂L(θ)

∂θ
4: θ = θ − α∇L
5: return θ∗ = θ
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Figure 4.3: Mathematical model of a neuron. It computes y = φ(
∑m

i=1 xiωi + b).
Image taken from [18].

The outline of the algorithm can be seen in the algorithm 2. Notice that
in each iteration, the gradient is computed using all samples in the training
dataset. This is called the full-batch approach. The opposite approach would
be to use a subset of the training dataset – the mini-batch approach. The
modification to the gradient descent using this approach is called stochastic
gradient descent (SGD). There are many other different algorithms that aim
to optimize the empirical loss, such as Adam [33] or Adadelta [58], but they
are all based on optimizing the loss function using the computed gradient.

4.2.3 Graph neural networks

Graph neural network (GNN) is a type of neural network architecture whose
input is in the form of a graph. Depending on the architecture, GNNs can
work with node features, edge features and weights, and different edge types.
Some architectures can even work with hypergraphs – a generalization of
graphs where the edges can join an arbitrary number of vertices. [7] Examples
of real-life data which can be an input to the graph neural network include
models of molecules, social networks, financial transactions, or navigation
graphs. The applications include node classification, node representation
learning, graph classification, graph generation, and link prediction. [54]

In [54] the graph neural network are divided into five categories:.Graph Convolution Networks (GCNs) – Generalize the operation of
convolution from traditional data (images or grids) to graph data. For a
given node, the output of the graph convolution layer depends on the
outputs of the previous layer for its neighbors..Graph Attention Networks - Similar to GCNs, the difference is they
assign larger weights to more important nodes. The weights are learned
together with the network’s parameters.
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Figure 4.4: A neural network fith five inputs, five outputs and two hidden layers.

. Graph Auto-encoders – Aim to find a low-dimensional representation of
the graphs using the auto-encoder architecture.. Graph Generative Networks – Able to generate plausible graph structures
from the given data..Graph Spatial-temporal Networks – Aim to learn unseen patterns from
spatial-temporal graphs. spatial-temporal graphs are graphs whose
features can change over time.

For the rest of this thesis, we will only talk about the graph convolution
networks and graph attention networks because we think they are the most
relevant for our task. The graph convolution networks can be further divided
into two categories:. Spectral-based – these methods are based on performing the eigen de-

composition of the Laplacian matrix4 of the graph. The convolution is
performed as a matrix multiplication in the Fourier domain.. Spatial-based – these methods work by using the local neighborhoods of
the vertices to update the representation vector of each vertex.

The graph convolution networks work by generalizing the convolution
operator to work with arbitrary graph structures. The essential idea is to
iteratively update the node representations by combining the representations

4Laplacian matrix L is equal to D − A, where D is the degree matrix and A is the
adjacency matrix.
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Figure 4.5: Difference between convolution on a grid (left) and a graph (rights).
The convolution is computed for the red node. Image taken from [53]

of their neighbors and their own representations. [53] To find a representation
of the nodes, multiple graph convolutional layers can be stacked together.
There are many proposed graph convolution operators, but most of them can
be characterized by the following schema:

h(k+1)
u = UPDATE(k)

(
h(k)

u , AGGREGATE(k)({h(k)
v | v ∈ N (u)}

)
.

Let us look at the equation and explain all the used variables and symbols.. h
(k+1)
u is a representation vector of node u in the (k+1)th layer.. UPDATE is a function whose input is the representation of the node in

the previous layer and aggregated representation of the node neighbors.
The output is a new representation of the node.. AGGREGATE is a function whose input is the representations of a
node’s neighbors, and the output is their aggregated representation. It
should be permutation invariant which means that its value does not
depend on the order in which the neighbors are processed.5.N (u) is the set of the neighbors of u.

To summarize, the general operator works by updating the node’s representa-
tion by using its previous representation and aggregated representation of its
neighbors. We can see that if we use only one layer, each node’s represen-
tation will be influenced by its own and its neighbors’ representation. If we
add another layer, each node’s representation will also be influenced by its
neighbors’ neighbor’s information. Figure 4.6 shows the computation with
two layers. If we think that there are long-distance dependencies in our graph,
it may be wise to stack many layers on top of each other. On the other hand,
if we think that each node is only influenced by its close neighbors, it can be
sufficient to only use a few layers. When too many layers are used, each node
influences each node, so all the representations may be very similar. This
problem is called over-smoothing [13].

Now that we have explained the general design of a graph convolution
operator, we will describe several existing designs.

5This holds implicitly because we defined the domain of the function to be the power
set of the graph nodes.
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.
Figure 4.6: Graph convolution example with two convolution layers. A repre-
sentation of the node A in the input graph (left) is computed by aggregating the
representations of its neighbours. Image taken from [2]

GraphConv

Operator introduced in [39], the updated representation is computed as

h(k+1)
u = Θ1h(k)

u + Θ2
∑

v∈N (u)
ev,u · h(k)

v ,

where Θ1 and Θ2 are matrices of learnable parameters and ev,u is the weight of
the connection from node v to node u - 1 for unweighted graph. We can clearly
see how the computation follows the general schema. The UPDATE function
multiplies the current representation by Θ1 and adds it to the aggregated
representation of the node’s neighbors. The function AGGREGATE performs
the weighted sum of the neighbors’ representation and multiplies it by Θ2.
Optionally, the AGGREGATE function can be set to return the weighted
mean or maximum.

GATConv

Operator introduced in [49], the updated representation is computed as

h(k+1)
u = αu,uΘh(k)

u +
∑

v∈N (u)
αu,vΘh(k)

v ,

where the attention coefficients αu,v are computed as

αu,v =
exp

(
LeakyReLU(a⊤[Θu∥Θv])

)
∑

w∈N (u)∪{u} exp (LeakyReLU(a⊤[Θu∥Θw])) .

a is a vector of learnable parameters, Θ is a matrix of learnable parameters,
and ∥ represents the concatenation of two vectors. The function LeakyReLU
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is defined as

LeakyReLU(x) =
{

x x > 0
0.01x otherwise.

GINConv

Operator introduced in [55], the updated representation is computed as

h(k+1)
u = hΘ

(1 + ϵ) · h(k)
u +

∑
v∈N (u)

h(k)
u

 ,

where hΘ denotes a neural network, for example, a multi-layer perceptron,
and ϵ is a given constant or learnable parameter.

GCNConv

Operator introduced in [34], the updated representation is computed as

h(k+1)
u = Θ⊤ ∑

v∈N (u)∪{u}

ev,u√
d̂vd̂u

h(k)
v ,

where d̂u = 1 + ∑
v∈N (u) ev,u, where ev,u denotes the edge weight from node

v to node u - 1 for unweighted graph. Θ is a matrix of learnable parameters.

4.3 Metrics

To compare and report the performance of the models, we need suitable
metrics for our task. In this section, we will define the metrics that will be
used in the later chapters of the thesis. The vectors y and ŷ will represent
the true and predicted labels respectively.

4.3.1 Regression metrics

Regression metrics measure the difference between two vectors of values. They
penalize the model based on the distance between the true and predicted
values. They can be used in ordinal regression to measure how close are the
predicted labels to the true ones.

The first metric we will use is called root-mean-square error (RMSE). The
metric is sensitive to outliers because it is based on computing the squared
differences between the values. It is computed as:

RMSE(y, ŷ) =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2.
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4.3.2 Classification metrics

Classification metrics measure the model’s ability to predict a correct label
from the finite set of labels. They treat the set of labels as a nominal quantity
– they do not take into account a possible ordering of the labels.

The most easily interpretable metric is accuracy. It is computed as the
proportion of correctly classified samples:

Accuracy(y, ŷ) = 1
N

N∑
i=1

Jyi = ŷiK6

The accuracy can be misleading when the labels in the dataset are not
represented equally. There are datasets where this is the case, for example,
in fraud detection. A model predicting all transactions to be non-fraudulent
will achieve a very good accuracy score while being useless.

A more suitable metric is the F1 score. It is defined for binary classification
but can be extended for multi-class classification as well. We will define it in
terms of precision and recall. In the binary classification setting, the samples
are often labeled as positive and negative, which means that Y = {+1, −1}.
When a model predicts a sample’s label, there are four different outcomes,
two in which the model is right and two in which the model is not. When
we count the number of the outcomes, we end up with the confusion matrix.
This matrix can be seen in the following table. We will define the metrics in
terms of the values in the confusion matrix instead of as functions of y and ŷ,
which is standard in literature and makes the definitions more readable.

y/ŷ +1 -1
+1 TP FN
-1 FP TN

Table 4.1: Different outcomes in binary classification.

Precision measures what portion of samples the model predicted to be
positive is actually positive:

Precision = TP
TP + FP .

Recall measures what portion of actual positive samples the model predicted
to be positive:

Recall = TP
TP + FN .

The F1 score is computed as

F1 = 2 · Precision · Recall
Precision + Recall .

6J·K is called Iverson bracket and it evaluates to 1 if the statement inside the brackets is
true and 0 otherwise.
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Its value is in the range [0, 1], where the model assigning all labels correctly
will have a score of 1.

When we are dealing with multi-class classification, we can approach it as k
binary classifications - for each label, we divide the samples into those which
are assigned the label and those who are not. This is called the one-vs-all
approach. Then we can calculate the F1 score for each label. There are two
ways to combine the scores into one score:.Weighted – the final score is the weighted mean of the individual scores,

where the weights correspond to the number of samples with the corre-
sponding label..Macro – the final score is the arithmetic mean of the individual scores.

The first approach favors the classes which occur more frequently in the data.
The second approach gives the same importance to all classes. It is, therefore,
more suitable for imbalanced datasets. Another approach is to compute the
sum of the confusion matrices and compute the F1 score as we would for
binary classification. This approach is called micro-averaging, and similarly
to the weighted score, it also favors the more frequent classes.
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Chapter 5
Data and preprocessing

This chapter will focus on the data which we worked with in this thesis. The
data consists of a navigation graph G and a set of user-generated trips T .
We created a data processing pipeline, which used this input data to create
a navigation graph enriched with features extracted from the trips. This
enriched navigation graph will be used as an input of the machine learning
methods described in Chapter 4.

We will begin by briefly describing the steps of the data processing pipeline.
Then we will describe the format and contents of the used data (5.2). After
that, we will describe the individual steps of the data-processing pipeline
(5.3). Finally, we will provide the analysis of the final dataset (5.4).

5.1 Overview of the data processing pipeline

The diagram of the procedure can be seen in Figure 5.1. The procedure begins
by combining the GPS measurements with their matching and computing
the features of each segment. By a segment, we mean one particular traversal
on a particular edge. Because there can be some nonsensical values in the
measurements, some segments are filtered out. After that, several features
are extracted both from the navigation graph and the trip data and added
to the existing edge features of the navigation graph. Finally, some edges
are removed from the navigation graph based on the extracted feature in
the previous step. The output of the pipeline is the subgraph of the original
navigation graph, whose edges were enriched by several extracted features.
The edges, which do not appear in any segment, i.e., they were never visited,
are removed because no features can be extracted for them. This should not be
a problem because the trips cover the majority of the original navigation graph.
Finally, the graph is transformed into the so-called edge-based representation.
This representation is based on transforming the given graph so that the
edges in the original graph are represented as the nodes in the new graph,
and all connections in the original graph are preserved. This way, we can
perform edge classification on the original graph using models designed for
node classification.
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5. Data and preprocessing ................................

Figure 5.1: The data-processing pipeline

5.2 Data sources description

The data was compiled using four data sources:..1. Vertices data – information about the vertices in the navigation graph..2. Edges data – information about the edges in the navigation graph..3. Trips data – raw GPS measurements from the users..4. Map-matched trips – the sequences of the nodes representing each trip
as a path in the navigation graph

Each of the data sources will be described in this section.

5.2.1 Vertices data

The vertices data are stored as a csv1 file. Each line of the file represents one
vertex of the navigation graph and it contains the vertex features separated
by a comma. The vertices have the following features:. Node id – a unique identifier of the nodes. Latitude – latitude of the node’s location

1comma-separated values
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. Longitude – longitude of the node’s location. Elevation in meters – elevation of the vertex above the sea level

5.2.2 Edges data

The edges data are stored in the same format as the vertices data. Each line
represents one edge of the navigation graph. The features of the edges are:. From id – id of edge’s starting node. To id – id of the edge’s ending node. Number of lanes – the number of car lanes on the road in the edge’s

direction..Maximum allowed speed in km/h. Cycle infrastructure – a categorical value representing the type of cycling
infrastructure on the road. Possible values are:. TRACK – dedicated track for cyclists separated from car traffic.. ZONE – pedestrian zone with allowed bike access.. LANE – lane dedicated for cyclists.. SHARROW – advisory cycle lane.. NONE – no cycling infrastructure present.. Road type – a categorical value representing the type of the road. Possible
values are:. PRIMARY – I. class roads.. SECONDARY – II. class roads.. TERTIARY – III. class roads.. SERVICE – generally for access to a building, service station,

industrial estate, etc., or unclassified roads connecting houses and
buildings.. RESIDENTIAL – living streets (streets where the maximum allowed
speed is lowered due to contact with pedestrians)..OFFROAD – roads in the countryside, mostly unpaved.. FOOTWAY – a walk for pedestrians.. CROSSING – a pedestrian crossing - a place designated for pedes-
trians to cross the road.. STEPS – stairs.. CYCLEWAY – dedicated road/street for cyclists.. UNKNOWN. Paved – a boolean value signaling that the road has a paved surface.
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5. Data and preprocessing ................................
. No entry – a boolean value signaling that it is prohibited to travel on

this edge, typically the opposite direction to a one-way street.

. Surface – a categorical value representing information about the quality
of the road’s surface. This is the attribute that we want to correct.
Possible values are:

. UNKNOWN,. EXCELLENT – e.g. brand new asphalt.. GOOD – e.g. old asphalt roads or concrete roads, or paving stones
with very narrow gaps.. INTERMEDIATE – a bit more rugged surface, compacted unpaved
roads.. BAD – e.g. cobblestones with bigger gaps, not compacted unpaved
roads.. HORRIBLE – roads hardly used for a bicycle.. IMPASSABLE – roads that should be used only as a last resort.

UNKNOWN and IMPASSABLE edges are very rare in the data, so we
decided not to include the edges with these labels.

.OSM tags – the attribute Surface is inferred from the following three
categorical features from Open Street Maps. For this reason, these
features cannot be in the input of the models. Moreover, these features
are often missing from the data. When none of the tags are present, the
Surface attribute is derived using simple rules such as "(Road type =
FOOTWAY) =⇒ (Surface = INTERMEDIATE)".

.OSM smoothness2 – classifies physical usability of the edge for
wheeled vehicles, particularly regarding surface regularity/flatness,
it corresponds almost exactly to the feature Surface, an example of
possible values are excellent, intermediate, horrible. OSM tracktype3 – measures how well maintained the edge is, possi-
ble values are grade1, grade2, ..., grade5. OSM surface4 – the type of the surface, example of possible values
are: concrete, cobblestone or grass

The vertices data and edges data together form a navigation graph, which
follows the definition from 3.1.1.

2https://wiki.openstreetmap.org/wiki/Key:smoothness
3https://wiki.openstreetmap.org/wiki/Key:tracktype
4https://wiki.openstreetmap.org/wiki/Key:surface
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5.2.3 Trip data

The set of trips T was gathered by around four thousand volunteers, who
rode their bikes with the provided smartphone app turned on. The app
periodically measured their position as well as velocity using GPS. The trip
data are stored as a collection of files in the GPX format, where each file
represents one trip. An example of a GPX file can be seen in Figure 5.2. We
will now describe the contents of the GPX files, which we used to create our
dataset.

User and trip id

This information was not in the GPX file itself but was contained in the
name of the files. The name of each file consisted of a unique id of the user
that made the trip and a unique id of the trip. This means that even though
it is not possible to identify the user in real life, it is possible to figure out
which trips were made by the same user. The trip id was used to find the file
containing the corresponding map-matching.

Bike type

The type of bike that was used to make the trip was in the <type> tag. The
possible values for the bicycle type are:. city_bike – a bicycle meant to be used to travel short distances in the

city, often with limited suspension and transmission. road_bike – a bicycle with thin tires used to travel exclusively on the
road. mountain_bike – a bicycle with good suspension and wide tires, can be
ridden off-road without big discomfort. hybrid_bike – something between a road bike and mountain bike, can
be used to travel both on and off the road. folding_bike – a bicycle with the ability to be folded and carried
around, mainly used to combine with the public transport. electric_bike – any type of bicycle with a battery and electric motor,
which helps the user to ride with less effort. cargo_bike – a bicycle used to transport cargo, for example, small
packages or meals to be delivered. fixie_bike – a bicycle without the freewheel mechanism, often with
one gear ratio. other – any other type of bicycle which does not fall into any of the
previous categories
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Figure 5.2: GPX format

. unknown – the user has not filled in the information about the bicycle
type

GPS measurements

The most important part of the GPX file is the list of the GPS measurements.
The GPS measurements following the definition from 3.1.1 can be found in
the <trkpt> tags. Each measurement contains:..1. Latitude, longitude and elevation – the geographical measurements..2. Time – the timestamp of the measurement. To anonymize the users,

the provided timestamps do not contain the exact time the user started
the trip. Instead, the first timestamp is rounded down to the whole
hours, and the following timestamps represent the relative time change.
For example, instead of having timestamps (12:38, 12:41, 12:43), we
have (12:00, 12:03, 12:05). This way, it would be harder to identify
a specific user based on their habits. Even though this results in a
slight information loss, we do not suppose the exact starting time to the
minutes significantly affects the ride...3. Accuracy – the current accuracy of the geographical measurements in
meters, based on the GPS signal strength..4. Bearing – the direction of the front wheel in degrees

5.2.4 Map-matched trips

The GPS measurements alone do not represent the movement of the user in
the navigation graph. To do that we need a function fG, which for each trip
t assigns a sequence of vertices (v1, v2, . . . , vnt), such that
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Figure 5.3: The GPS measurements (yellow dots) and the corresponding path
(pink lines)

∀i ∈ {1, 2, . . . , nnt − 1} : (vi, vi+1) ∈ E(G).

This function performs the so-called map matching. The desired property
of the function fG is to map the trip to the sequence so that the positions
of the GPS measurements are close to the path defined by the sequence.
Designing nor implementing a map matching algorithm is not the topic of
this thesis, and our data had already been map-matched. An example of a
scalable map-matching algorithm was introduced in [21].

Each map-matched trip was stored as one file containing the list of node ids
– the output of the map matching function. Just like the files containing the
GPS measurements, the name of each file contains the id of the trip that it
represents and the id of the user. An example of a map-matched trip together
with the corresponding measurements can be seen in Figure 5.3.

5.3 Data processing

This section will describe the steps which the data processing pipeline per-
formed in order to create the final dataset. The steps could be seen in Figure
6.1 as the round boxes.
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5. Data and preprocessing ................................
5.3.1 Segment features computation

A segment is one particular traversal of an edge. Using the GPS measurements,
we computed two features of each segment.

Average velocity

For each trip, we computed the average travel velocity on the edges, which
the user traveled on. Given a trip t = (m1, m2, . . . , mn) and its matching
v = (v1, v2, . . . , vm), the average velocity of a segment (vi, vi+1) was computed
as the average of the velocities of the measurements taken in between entering
and leaving the edge (vi, vi+1). The first respectively the last measurement
in the segment is the one closest to the vertex vi respectively vi+1.

j = min
j′

d(vi, mj′),

k = min
j′

d(vi+1, mj′),

velocityt((vi, vi+1)) = 1
k − j + 1

k∑
l=j

v(ml),

where d(v, m) denotes the distance between a vertex v and a measurement
m, and v(m) denotes the measured velocity in of the measurement m.

Bearing swing

For each trip, we computed a metric we call bearing swing. The metric is
computed similarly to the average velocity. We begin by computing the
indices of the measurements closest to the starting and ending points of the
edge – j and k. Then we compute the bearing swing as the standard deviation
of the differences in the bearing of consecutive measurements:

B = {b(ml+1) − b(ml) | l = j, j + 1, . . . , k − 1},

swingt((vi, vi+1)) =
√√√√ 1

|B|
∑
b∈B

(b − b̄)2,

where b(m) denotes bearing of the measurement m and b̄ is the average
element of the set B. The aim of the metric is to detect when the user
makes large steering adjustments. Note that when the user makes smooth
maneuvers, for example, in turns, this metric stays low.

5.3.2 Segments filtering

There were two problems with the user-generated data. The first problem
was caused by the measuring devices failing to take a measurement for a
long period of time, and the second problem was suspicious values in some
measurements.
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Figure 5.4: The differences between consecutive GPS measurements (cut at 100
for visualisation purposes). The y-axis is in log scale.

GPS malfunctions

During the travel, it can happen that the smartphone fails to make the GPS
measurements for some period of time. For our purpose, it is crucial to have
accurate measurements. For example, the traveling velocity on a bike can
change drastically in tens of seconds. For this reason, we tried to detect the
segments of the trip where no measurement was taken for a longer period of
time. The measurements after GPS failure often have the velocity set to zero,
indicating an error. However, we do not want to filter out all measurements
with zero velocity, as it is possible they do not indicate GPS failure, and the
user was forced to stop by the traffic.

Figure 5.4 shows the histogram of differences between consecutive measure-
ments. We can see in the vast majority of times (more than 98% to be more
precise), the next measurement is taken within the next five seconds. However,
there are also some much larger differences and even negative numbers. Both
of these phenomena are most probably the result of some error, and we do
not want these measurements in our data.

To cope with this problem, we marked the measurements more than five
seconds apart as corrupt and deleted the parts of the map-matched sequence
to which these corrupt measurements belonged. The result can be seen in
Figure 5.6. We can see there are three gaps among the measured points.
The segments in the gaps were filtered out. It may seem we lost a lot of
data, but these malfunctions are relatively rare, and this way, we extracted
at least some data that would otherwise be lost had we discarded the whole
trip. Figure 5.5 shows the histogram of velocities before and after doing this
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Figure 5.5: Histogram of segment velocities before and after filtering GPS
malfunctions

operation. We see that the number of segments with zero velocity decreased
to about a fourth, but there is still a noticeable spike around zero. Either we
did not manage to detect all GPS malfunctions, or the remaining zero values
are caused by a different kind of error.

Velocity

When we look at the histogram of segment velocities in the aforementioned
figure 5.5, we see two problems:..1. No segment should have zero velocity as it is impossible to travel non-zero

distance with zero velocity...2. There is a very low number of very high velocities. Even though profes-
sional athletes are able to reach these velocities, it is very probable that
these measurements are the result of either an error or a user forgetting
to turn the app off and traveling by a vehicle.

We solved both of these problems by filtering out the velocities outside the
(0, 50] interval. The resulting histogram can be seen in Figure 5.7. The
distribution looks similar to the normal distribution but slightly skewed right.

5.3.3 Feature extraction

We created the dataset by joining the navigation graph and the user-generated
trips together. This was done by introducing several new features from the
trips and adding them to the features described in this chapter. The added
features can be classified into three main categories.
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(a) : Before filtering (b) : After filtering

Figure 5.6: Detection and filtering of large distance between GPS measurements

Elevation angle

We added one feature that can be computed from the navigation graph alone
without the generated trips. The feature is elevation angle, and it is an
estimate of the angle of the road between two vertices. This feature is very
important in the context of bike riding as the relationship between the travel
velocity and the elevation angle is very strong. However, there are other
factors impacting the velocity, such as the surface quality. By adding this
feature to the data, we will make it easier for the models to decide whether
the users traveled on the given edge slowly because of a bad surface or because
of steep elevation and vice versa. Given two vertices v1 and v2, the elevation
angle can be computed as:

α(v1, v2) = arctan
(

e(v2) − e(v1)
d(v1, v2)

)
,

where e(v) denotes the elevation in meters of the vertex v and d(v1, v2) denotes
the distance between the nodes v1 and v2.

Velocity-based features

These features represent how fast the users traveled on the particular edge.
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Figure 5.7: Histogram of velocities after filtering

. Avg_velocity – the average velocity of the users going through the edge.
It is computed as the mean of the segment velocities computed in 5.3.1.. Avg_velocity_road_bike – the average velocity of users using the road
bike.. Avg_velocity_mountain_bike – the average velocity of users using the
mountain bike.. Avg_velocity_other_bike – the average velocity of users using the rest
of the bike types.

The velocities grouped by the bike types were added based on our hypothesis
that the velocities of the users of the road bike and mountain bikes are quite
different, especially on some surfaces. It is possible that some edges were
not traveled on by any user of the given bike type and the average had to
be computed from the empty set, resulting in NaN results. In that case, we
imputed the missing values by the average of the feature across all edges.

User velocity-based features

It is possible that some edges are traveled on by relatively faster riders. To
compensate for this phenomenon, we devised features that quantify the answer
to the question: "How fast are the users that travel on this edge, relative to
the rest of the population?" We start by computing three score metrics for
each user:

38



................................... 5.3. Data processing

. User_Velocity_score_coef – the user’s velocity coefficient, which is
computed as their velocity divided by the average velocity on the given
edge, averaged over all edges the user traveled on. For example, the
value of 1.1 indicates that the user is on average 10% faster than the
average user.. User_Velocity_score_num_deviations – the number of standard de-
viations of the velocities the user’s velocity on the given edge is higher
(positive number) or lower (negative number), averaged over all edges
the user traveled on.. User_Velocity_score_percentile – the user’s velocity percentile among
the other users’ velocities on the given edge, averaged over all edges the
user traveled on. Unlike the two previous metrics, it does not work with
the statistical properties of the velocities but with the relative ranking
of the users.

To compute the features of the given edge, we averaged the previously
described score metrics of all users that traveled on the edge.

Average bearing swing

For each edge, we computed the average bearing swing, which we computed
by averaging the bearing swings of all segments belonging to the edge, which
we computed in 5.3.1. The idea behind this feature is that on the bad surfaces,
the users will have to make more sudden movements to select the best trail
by, for example, avoiding the potholes.

Most used bike

For each edge, the most used bike on the edge is computed. We think that
this information can help the model with the surface quality assessment. If,
for example, the most used bike on the edge is a road bike, it may mean that
the surface on the edge is reasonably good.

5.3.4 Edges filtering

We spotted some suspicious values in the elevation angles between the nodes.
Figure 5.8 shows the histograms of elevation angles before and after filtering.
We decided to filter out angles outside the [−0.15, 0.15] interval. Elevation
values higher than 12% (roughly 0.12 radians) are considered dangerous, so
values such as 1 are absurd. We can see that even after filtering, the borders
of the interval contain very few samples. We suppose that the extreme values
of the elevation angle are caused by inaccuracies in the measured elevations,
as relatively small inaccuracy can impact the elevation angle value drastically,
especially on short edges.
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Figure 5.8: Histograms of elevation angles before (left) and after (right) filtering.
The values are in radians.

5.3.5 Encoding of categorical features

Many edge features are categorical, but most machine learning models can
only work with numerical features. We used the most common encoding of
the categorical features called one hot encoding. For each categorical feature
with k possible values, we introduced k new features. The sample having the
ith value of the feature is then encoded by setting the ith new feature to 1
and the rest to 0.

5.3.6 Standardization

Some models, such as SVMs or gradient descent-based models, are sensitive to
features having different scales. For this reason, it is beneficial to standardize
the feature values before applying the algorithms. We standardized the feature
values to have zero mean and unit variance by the following transformation:

x′ = x − x̄

s
,

where x̄ is the sample mean, and s is the sample standard deviation of each
feature’s values.

5.3.7 Transformation into the edge-based graph
representation

Because some models are designed to predict the properties of the nodes
of the graph rather than the edges, it is beneficial to create the edge-based
representation of our graph. Given the graph G = (V, E), its edge-based
representation G′ = (V ′, E′) is constructed as follows:

V ′ = E
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Figure 5.9: The edge based representation (red) of a junction in the original
graph (white).

E′ = {((v1, v2), (v2, v3)) | (v1, v2), (v2, v3) ∈ E},

i.e., the nodes in the new graph are the edges in the original graph, and the
edges in the new graph connect the nodes that represent the edges that are
connected in the original graph. This can be seen more clearly in Figure 5.9.

In the context of the navigation graph, the features of the vertices in the
new graph are the features of the edges in the original graph, there are no
edge features in the new graph, and the vertex features from the original
graph are lost. In our case, this is not a problem because the vertex features
do not contain any useful information.

5.4 Data analysis

The previous section dealt with the process of creating the dataset from the
provided data sources. In this section, we will analyze the output of the data
processing pipeline. Our dataset can be divided into three parts covering
three locations: Prague and surrounding areas, the Jizera Mountains, and the
Beskid Mountains. The corresponding subgraphs can be seen in Figures 5.10,
5.11 and 5.12. Table 5.1 shows the size of the final dataset. Even though the
data from Prague covers the smallest area of the three, the graph is much
denser, and for this reason, it has much more edges. Fortunately, the number
of trips made in that area is also much higher, so the features we from 5.3.3
were not computed using a lower number of trips.

In the filtering steps of the pipeline, around 0.8% of the segments and
0.5% of the edges were filtered out. The number of nodes in the edge-based
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Prague Jizera Mountains Beskid Mountains

Number of trips 33,096 3,757 5,962
Average trip length 7.6 km 7.5 km 8.1 km
Number of edges 212,653 30,992 43,831

Table 5.1: Statistics of the dataset

representation of the graph was roughly 2.5 times the number of edges in
the original graph. In the following subsections, we will analyze the main
attributes of the dataset.

Figure 5.10: Trips from Prague visualised. Brighter color indicates faster average
travel velocity.

5.4.1 Edge features

Figure 5.13 shows the histogram of the surface quality labels. We can see
that the labels are distributed very unevenly, with the majority of the edges
having either EXCELLENT or INTERMEDIATE labels. Figure 5.14 shows
the histograms of the main features of the edges. Note that some plots have a
log-scaled y-axis so that all values can be seen. We can see that the majority
of the edges are paved and have NONE cycle infrastructure. Figure 5.15
shows the Venn diagram of the edges with respect to which OSM tag they
have filled in. We can see that more than half of the edges have the surface
tag while only about 4.8% have the smoothness tag and about 5.5% have the
tracktype tag. Figure 5.16 shows the histogram of the average velocity scores
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Figure 5.11: Data from the Jizera Mountains

on the edges. We can see that on some edges, there are users traveling 20%
faster on average. Figure 5.17 shows the histogram of the number the edges
that were visited. We can see that the majority of the edges were visited less
than 100 times, but some edges were visited as many as 1400 times.

5.4.2 Segment features

Figure 5.18 shows the histograms of the measured velocities and bearing
swings of the segments. We can see, that the average velocity is around 18
km/h and most of the segments have a very low bearing swing.

5.4.3 Relationships between features

Because we will be trying to model the surface quality, it may be useful to
analyze its relationship with the other features. Figure 5.20 boxplots of the
relationship of the surface quality with the velocity and surface quality. We
can see that the worse the surface, the lower the velocity, which is expected.
For the bearing swing, the relationship is not this simple, but still, there
are differences among the different surfaces. In both cases, there are many
outliers, which indicates the influence of other features. Figure 5.22 shows the
relationship between the surface quality, the bike type, and the velocity. We
can see that the road bikes are the fastest on most surface qualities. We would
expect that the mountain bikes would be noticeably faster on low-quality
surfaces, but this seems not to be the case. The fixie bike is by far the fastest
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Figure 5.12: Data from the Beskid Mountains

on the good surface, but as we can see in Figure 5.19, this type of bike is very
rare in the data, so this result is not significant.
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Figure 5.13: Histogram of surface quality types
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Figure 5.14: Histograms of the main features of the edges
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Figure 5.15: Venn diagram showing the percentage of edges with the corre-
sponding OSM tags filled in.
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Figure 5.16: Histogram of the average user velocity scores on the graph edges
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Figure 5.17: Histogram of number of visits of the graph edges
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Figure 5.18: Histograms of the measurements
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Figure 5.19: Histogram of the bike types
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Figure 5.20: Boxplot of average travel velocities grouped by the surface quality
types
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Figure 5.21: Distributions of the velocities grouped by the surface quality types.
The distributions were estimated using Kernel Density Estimate method with
Gaussian kernel.
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Chapter 6
Solution approach

In this chapter, we will describe our approach to solving the task of the
automated graph refinement by combining the machine learning techniques
from Chapter 4 with the enriched navigation graph obtained using the process
described in the previous chapter. First, we provide an overview of the method
and describe the steps in detail. After that, we will discuss the results of the
method in the following chapter.

After obtaining the enriched navigation graph, we split the edges in the
navigation graph into two categories. The first category will contain edges,
which we expect to have a correct surface quality already assigned. The second
category will contain edges, which we suspect might have been assigned an
incorrect surface quality. Then we will use data to train a model of the surface
quality. The model should only use the labels of the correctly labeled edges
to learn; otherwise, it could learn the mistakes in the data. However, it may
use the features and connectivity of the possibly incorrectly labeled edges as
well. This information is particularly useful for models, which are able to
work not only with the given feature vectors but also with the underlying
graph structure. This will be explained in more detail in 6.2.5. Finally, the
model will be used to correct the labels of the edges in the original navigation
graph.

The diagram of the whole procedure can be seen in Figure 6.1

6.1 Ground truth selection

When learning a machine learning model, the quality of the input data
significantly impacts its real-world performance. The truthfulness of the
labels in the training data, therefore, plays an important role in the learning
process. In this thesis, we considered the correctly labeled edges the edges
with at least one of the OSM tags described in 5.2.2 filled in. In the ideal
case, we would only use the edges with the "smoothness" tag as it directly
corresponds to the surface quality, but as we could see in Figure 5.15, these
edges only form a small minority of all edges. Moreover, these edges may
not be a representative sample of all edges. For this reason, we decided to
consider the edges with at least one OSM tag as the ground truth, and we
will try to use the model to correct the rest of the edges.
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Figure 6.1: Graph improvement procedure

We split the ground truth data into training and validation sets in the
80%/20% ratio. The training set will be used to train each model, and the
validation set will be used to select the best model, which will then be used
to correct the labels of the edges.

6.2 Modelling the surface quality

The prediction of the surface quality is an instance of the ordinal regression.
The labels can be ordered from best quality to worst: EXCELLENT ≺ GOOD
≺ INTERMEDIATE ≺ BAD ≺ HORRIBLE. The meaning of the labels was
described in 5.2.2. The labels were encoded as k − 1 dimensional vectors
according to the process we described in 4.1.3. In this section, we will describe
the process of obtaining a surface quality model from the processed data.
Figure 6.2 shows the overview of the process. In 7.1 we will compare the
performance of the models.

6.2.1 Introduction of the used models

In this subsection we briefly describe the models we decided to use. To
model the surface quality, we used four models: XGB, GNNreg, GNNcoral and
GNNcls. All these models are based on the models described in Chapter 4.
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..............................6.2. Modelling the surface quality

Figure 6.2: Procedure of obtaining the surface quality model

XGB

XGB is a chain of k − 1 gradient boosted trees classifiers, each predicting one
element of the encoded labels. The classifiers are chained together, which
means that each classifier can use the predictions of the classifiers, which are
placed before it in the chain. We think that this makes the predictions more
likely to be consistent in contrast with using k − 1 independent classifiers.
For example when Pr(y > i|x) = 0, then it makes no sense to predict
Pr(y > i + 1|x) > 0. When the classifier knows the previous prediction, it
can make use of this property. We used this model as a baseline for the graph
models because even though it does not utilize the underlying graph structure,
it provides a very good out-of-the-box performance on tabular data.

GNN and variants

The rest of the models are graph neural networks. The main difference among
the models is in the last layer. The output layer of GNNreg is a linear layer
with k − 1 outputs and the sigmoid activation. The output of GNNcoral is the
Coral layer with shared weights introduced in [14]. The output of GNNcls
is the linear layer with k outputs and the softmax activation. This model
ignores the ordering of the labels and solves the task as classification. We
included this model to verify that modifying the models to solve ordinal
regression provides better results. The exact architecture of the networks will
be discussed in 6.2.5. The decision to use the graph neural networks for this
task was based on the fact that the connected edges, more often than not,
have similar properties.
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6.2.2 Model training and selection

Obtaining the surface quality model was done in the following steps:..1. Tune hyper-parameters of the models from 6.2.1..2. Select the best model based on the performance on the validation set..3. Re-train the model on all the data

All k - 1 gradient boosted trees classifiers that form the chain in the model
XGB share the same hyper-parameters. Moreover, because the GNN models
are very similar and share the same set of hyper-parameters, we decided
to only tune the hyper-parameters for the model GNNreg and use the same
parameters for the other three GNN models.

6.2.3 Training implementation and details

The XGB model was trained by using the class ClassifierChain from the
scikit-learn library [41]. This class creates the chain of classifiers, which we
described in the subsection 6.2.1 using any compatible classifier. For the
classifier, we used the implementation of the gradient boosted trees from
the xgboost library [16]. The GNN models were implemented using the
pytorch-geometric library [20] and trained using the Adam optimizer [33] for
a selected number of epochs.

To compensate for the imbalance of the edge labels, we introduced sample
weights. Each sample was given a weight inversely proportional to the number
of samples with the same labels. When computing the average loss, it is
computed as the weighted mean of the individual sample losses. This forces
the model to learn to recognize all labels equally in contrast with preferring
the more frequently represented labels.

Due to the memory constraints, we trained the models for each of the three
locations1 separately.

6.2.4 Hyper-parameter tuning

All used models have a wide variety of hyper-parameters. To achieve a
good performance, it is essential to fine-tune these parameters. However,
optimizing the performance of the model as a function of its hyper-parameters
is an instance of black-box optimization, i.e., we can observe the output
given the input values but generally do not precisely know how the function
works on the inside. One of the popular approaches is to generate the
configurations randomly from the predefined distributions and select the best-
performing configuration. In this thesis, we used the Sequential Model-based
Global Optimization (SMBO) approach. It works by creating a model of
the optimized function, which is not costly to optimize. In each iteration,
it finds the optimum of the function’s model and obtains the true value by

1Prague and surroundings, the Jizera Mountains and the Beskid Mountains
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evaluating the optimized function. Then it updates the model with the true
value. We used a variant of the algorithm which models the function using
the Tree-structured Parzen Estimator Approach (TPE) [8]. The input of the
method is the configuration space, where each hyper-parameter is specified by
a random distribution, from which we expect the optimal value to be drawn
(the prior). We will not go into details about how this method works in this
thesis.

Another thing that has to be decided is how to define the performance of
the model. There are two main approaches:. Performance on the validation set – set aside a portion of the training

data, which will not be used to train the model. Then measure the
model’s performance on this validation set.. Cross-validation – divide the training data into K parts. Then train the
model K times, and in each iteration i, set i-th part aside and use it
to evaluate the model’s performance. The output is a list of K scores.
Usually, the best model is considered to be the one with the best mean
cross-validation score. The visualization of the splits can be seen in
Figure 6.3.

When it is computationally feasible, it is usually better to use the second
approach because it does not waste any data in the form of the validation set,
and it is a better way to measure the model’s performance on unseen data.

We used the 5-fold stratified cross-validation to select the best hyper-
parameters for each model. This version of the cross-validation tries to split
the data so that each class label is distributed evenly in each split. This is
particularly useful for imbalanced datasets, which was our case. The budget
for the optimization was set to 50 trials. One round of training of took
around 2 minutes for the XGB model and around 10 minutes for the GNNreg
model. The whole hyper-parameter optimization process took around 50
hours (12 × 5 × 50 minutes).

6.2.5 Model configurations

In this subsection, we will describe the configurations of the models and the
final values of their tuned hyper-parameters.

XGB

Table 6.1 contains the parameters of the XGB model, their prior distributions,
and their final values. The n_estimators, eta, and max_depth parameters
determine the number of weak models in the ensemble, the learning rate, and
the max depth of each weak model. The gamma, reg_alpha, and reg_lambda
are the parameters influencing regularization and can prevent over-fitting. The
subsample, colsample_bytree, and colsample_bylevel are the fractions of the
samples, respectively, columns for each tree. Lower values can prevent over-
fitting. min_child_weight is a parameter determining when the algorithm
stops trying to split a node.

55



6. Solution approach...................................

Figure 6.3: Cross-validation visualization with five splits. Image taken from [4].

type prior value
n_estimators int uniform(100,2000) 1900
eta float loguniform(log(0.0001),log(0.5)) 0.01
max_depth int uniform(1,11) 10
gamma float uniform(1,9) 1.04
reg_alpha float loguniform(log(0.0001),log(1)) 0.0006
reg_lambda float loguniform(log(1),log(4)) 2.37
subsample float uniform(0.5,1) 0.78
colsample_bytree float uniform(0.5,1) 0.93
colsample_bylevel float uniform(0.5,1) 0.99
min_child_weight float uniform(0,10) 3.36

Table 6.1: Table of hyper-parameters of XGB model

GNN

The architecture of the graph neural network models was inspired by [57]. It
is summarized in Figure 6.4. It consists of several preprocess layers, several
graph convolution layers, and several postprocess layers. Preprocess and
postprocess layers are fully-connected, and the convolution layers consist of
graph convolution operators from 6.2.5. The input of the network is the
edge-based representation of the subgraph of the navigation graph formed by
edges that are part of at least one trip. The preprocess and postprocess only
use the features, and the convolution layers use features and the connectivity
among the nodes.
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type prior value
num_epochs int uniform(200, 2000) 1800
learning_rate float loguniform(log(0.0001),log(0.1)) 0.007
weight_decay float loguniform(log(0.0001),log(0.1)) 0.0004
hidden_channels int uniform(20, 100) 90
pre_layers int uniform(1, 5) 2
message_passing_layers int uniform(1, 5) 5
message_passing_layer conv operator choice({GraphConv,GAT,GCN,GIN}) GraphConv
post_layers int uniform(1, 5) 5
dropout float uniform(0, 0.5) 0.0
batch_norm bool choice({True,False}) True

Table 6.2: Table of hyper-parameters of the GNN models

It is important to note that when we are computing the network’s output,
we have to evaluate the output for all the nodes in the graph. When a model
works with independent samples, it is possible to evaluate it only on some
part of the data. This is generally not possible to do with the graph models
unless we change the structure of the underlying graph. This is the distinction
between the so-called inductive and transductive learning. Transduction is
reasoning from observed, specific (training) cases to specific (test) cases. In
contrast, induction is reasoning from observed training cases to general rules,
which are then applied to the test cases. [52] Because we want to label the
specific nodes rather than create a general model, the transductive setting
suits our purpose better. When training a graph model, in each epoch, we
compute the output using all the nodes, but to compute the loss and the
corresponding gradients, we only use the data specified for the training. This
is what we meant by saying that the graph models use some information from
all the data at the beginning of this chapter.

We can see that the networks have many hyper-parameters, such as the
number of layers in each of the three parts of the network, the number of hidden
channels, or the type of the convolution operator. All the hyper-parameters,
their prior distributions, and their final values can be seen in Table 6.2.
Apart from the parameters characterizing the network’s architecture, there
are three learning parameters: num_epochs - the number of learning epochs,
learning_rate - the learning rate of the Adam optimizer, and weight_decay -
regularization parameter of the Adam optimizer. We can see that the best
performance was achieved without utilizing dropout. Even though dropout
often prevents over-fitting and leads to better results, in the context of the
graph convolutional networks, this result is consistent with the published
results in [57].

6.3 Graph refinement

The best performing model obtained from steps described in 6.2.2 will be
used to correct the surface quality labels of the edges we specified in 6.1.
The edges will be marked with the predicted labels instead of the original
ones. By doing so, we attempt to move the original navigation graph G
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Figure 6.4: Architecture of the GNNs. Image taken from [57]

closer to the "ideal" graph G∗, therefore reaching the goal of this thesis,
which we specified in Section 3.2 at the beginning of the thesis. Since we do
not consider the original labels as the ground truth, we cannot measure the
model’s performance on the edges. However, we will manually check a small
subset of the edges covered by Google Street View to get an idea of how well
the model predicts the labels. Moreover, the performance of the model on
the validation set provides some approximation of the model’s performance
on unseen data.

6.4 Implementation

This project was written Python [48] 3.10. Python is a very popular inter-
preted language and a very good choice particularly for machine learning
projects due to the vast number of powerful libraries, that are available for
free. We will list the used libraries in the order they were used in the process
from data loading to results visualization.. gpxpy [1] – parsing the GPS data in the GPX format. pandas [51] – manipulation with the data in the tabular form. xgboost [16] – fast implementation of the gradient boosted trees
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. pytorch_geometric [20] – implementation of the graph neural networks
based on pytorch [40]. coral-pytorch [14] – implementation of the Coral layer in the GNNcoral
model. scikit-learn [41] – a machine learning library, we used mainly its utility
functions such as K-fold cross-validation. hyperopt [9] – hyper-parameter optimization using the Tree of Parzen
Estimators algorithm. seaborn [50] – a visualization library based on matplotlib [31]. shap [36] – a library for explaining models using the Shapely values. kepler.gl [28] – a visualization tool for geospatial data

The experiments were run on a personal computer with an Intel i5-4590 CPU
and an Nvidia GTX 970 graphical card.
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Chapter 7
Results

In this chapter, we will present the results of the experiments run according
to the approach we described in the previous chapter. The first section will
present the performance of the four models we introduced in 6.2.1 on the
ground truth part of the dataset. The second section will present the results
of using the best-performing model to correct the labels of the rest of the
edges.

7.1 Surface quality prediction

In this section, we will analyze the prediction error of the models and provide
an explanation of the best-performing model using the feature importances.

7.1.1 Prediction error evaluation

Table 7.1 shows the performance of the models on the validation dataset in
each location. We provide the regression metric RMSE and classification
metric F1-macro for each dataset separately and also the overall performance
in the "All" column. The RMSE metric was computed by mapping the quality
labels to consecutive integers1. We can see that the GNNord achieved the
best overall performance both in regression and classification metrics. On all
datasets, the GNN models significantly outperformed the XGB model. This
confirms our hypothesis that in this application, the information about the
connectivity among the edges is very useful in predicting their properties. We
can also see, that all models performed much better on the datasets from
the mountains than in the Prague dataset. This may be due to the fact
that, especially in the city center, there are factors that affect the nature of
the bike traveling that are not discoverable from the data, such as traffic.
We are not sure why the GNNord outperformed GNN even in terms of the
classification metric. GNNcoral shows the important difference between the
regression and classification metrics. It achieved significantly better results
in terms of RMSE than GNN. On the other hand, its ability to predict the
exact label was worse, resulting in a lower F1-macro score.

1EXCELLENT 7→ 0, GOOD 7→ 1,..., HORRIBLE 7→ 4
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Prague Jizera Mountains Beskid Mountains All

RMSE F1-macro RMSE F1-macro RMSE F1-macro RMSE F1-macro
XGB 1.39 0.42 0.64 0.60 0.71 0.63 1.29 0.47
GNN 1.18 0.59 0.55 0.70 0.56 0.76 1.06 0.63
GNNord 0.80 0.70 0.52 0.70 0.54 0.76 0.72 0.74
GNNcoral 0.88 0.48 0.49 0.71 0.57 0.64 0.81 0.54

Table 7.1: The performance of the models. The best result for each dataset
and metric is shown in bold. For RMSE, lower is better, for F1-macro, higher is
better.

Figure 7.1 shows the normalized confusion matrices for all models, computed
from all four datasets. At first glance, we can see that the confusion matrix
of GNNord looks the "most diagonal." We can also see that GNNcoral was
often off by one label. Both XGB and GNN often confused the EXCELLENT
label for INTERMEDIATE. Figures 7.3 and 7.4 show the confusion matrices
normalized over the true and predicted values respectively.

Figure 7.2 shows the histograms of absolute errors of GNNord and GNN.
We can see that the counts of the errors are decreasing with the size of the
error for the GNNord model. GNN, on the other hand, made more mistakes
of size 2 than of size 1. This is not unexpected because the GNN was trained
using the classification objective function and, therefore, not penalized for
larger errors.

Because GNNord achieved the best overall results in modeling the surface
quality, we chose to use it in the next and the most important step in the
process - refining the navigation graphs.

7.1.2 Feature importances

Figure 7.5 shows the feature importances of the GNNord model. The impor-
tances were computed using Shapely values [45]. The concept of Shapely
value comes from the cooperative game theory, and it is a way to assign
a fair payoff to each participant of a coalition. It can be used to compute
the feature importances by looking at the features as the participants of a
coalition and the result of the coalition being the output of the model. We
can see that the most important feature was Edge_Paved, but mostly because
of its importance in deciding if the surface is BAD or worse. The second
most important feature was the flag indicating the edge is a crossing. We are
not sure why, but from our experience, the pedestrian crossings usually have
EXCELLENT or GOOD surfaces, so maybe the model learned this property.
The next most important features include the measured velocity, the bearing
fluctuation, the user velocity score, and the elevation angle, which are all
features that we expected to play a large role in the model’s decisions. By
computing the feature importances, we ensured two things:..1. The important features are the ones which we expected to...2. The model uses most of the features, i.e., there is not a small number of

features that dominate in the model’s decision process.
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Figure 7.1: Confusion matrix of the models normalized over all values to display
P (y, ŷ)
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Figure 7.2: Histograms of absolute errors of GNNord and GNN.

7.2 Graph refinement

We used GNNord, the model selected in the previous section, to correct the
surface quality labels of the edges with no OSM tags, as we specified in the
previous chapter. In this section, we will analyze the results.

Figure 7.6 shows the confusion matrix of the model on the edges we selected
to be corrected. We can see that the predicted labels correspond to the original
labels much less than in the case of the validation set in the previous section.
Note that this does not indicate the poor performance of the model. As
we previously emphasized, the labels of these edges were derived using very
simple rules, and we expected many of the original labels to be incorrect.
According to our model, around 41% of the labels are incorrect, and around
30% are incorrect by two or more labels. As we saw in the previous section,
our model predicted the surface quality reasonably well, but it is not perfect,
so the exact numbers may be quite different.

Figure 7.7 and table 7.2 show the distributions of the original labels and
corrected (predicted) labels. We can see that in Prague, there were many
edges with INTERMEDIATE surface. This accounts for the fact that all
pavements are automatically assigned this label. The model assigned part of
the pavements to GOOD and BAD surface. We can also see that the model
reassigned most of the edges with HORRIBLE surface to other labels. We
do not know why the model behaved this way, but from the performance
on the validation set, especially Figure 7.3, we can see that all the models
had problems with correctly assigning this label, so the phenomenon may be
caused by imperfections of our model.
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Figure 7.3: Confusion matrix of the models normalized over the true values to
display P (ŷ|y)

We also analyzed the results by checking some edges that are covered by
Google Street View. We will now present a few types of occurrences we found.
Figure 7.8 shows an edge where the original label was EXCELLENT, and
the model correctly identified it as BAD. In Figure 7.9 the original label was
HORRIBLE, and the model correctly identified the edge as INTERMEDIATE.
In Figure 7.10 we can see a problem that can occur in the cities. While the
surface of the pavement could be considered GOOD or INTERMEDIATE,
the road is BAD or HORRIBLE. The pavement and the road are two separate
edges. Due to the inaccuracies of the GPS measurements, the trip may be
matched to an incorrect edge. In this case, the trip was matched to the
pavement, but the model predicted BAD surface. Another mistake of the
model can be seen in Figure 7.11. The model incorrectly classified the road
as BAD. The model may have made a mistake because the velocity on this
edge was around 8 km/h, but the surface quality was not the reason the user
rode so slowly. This shows the limitations of our approach in relying on the
measured velocities to model the road surface.
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Figure 7.4: Confusion matrix of the models normalized over the predicted values
to display P (y|ŷ)

7.2.1 Estimate of the number of corrected edges

From the performance of the model on the validation set, we can estimate its
performance in solving the task of the graph refinement. The shortcomings
of this approach are:..1. The estimate of the performance on the validation set is biased because

we used it to select the model. A dedicated test set would have solved this
issue. However, we wanted the model to use as much data as possible...2. We have no guarantee that the model will perform on the edges we want
to correct as well as it did on the validation set because by using the
edges with OSM tags for learning, we may have introduced selection
bias.

However, we think that this estimate will provide a general idea of the extent
to which we refined the information on the navigation graph. A very rough
estimate can be done using the model’s accuracy. Although we disregarded
accuracy as a bad performance metric for the classification on imbalanced
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Figure 7.6: Confusion matrix on the edges to be corrected.

Before After
EXCELLENT 76335(0.56%) 92067(0.68%)
GOOD 151(0.0%) 7466(0.06%)
INTERMEDIATE 49880(0.37%) 22003(0.16%)
BAD 1345(0.01%) 13062(0.1%)
HORRIBLE 7761(0.06%) 874(0.01%)

Table 7.2: Distribution of the surface quality labels before and after correction.

datasets, its interpretation as the portion of correctly classified samples is
useful. If we knew the label distribution, we could provide a better estimate2,
but the distribution of the labels can be quite different than in the validation
dataset, and it cannot be estimated as the portion of incorrectly labeled edges
can be arbitrarily large.

The error of the model on the validation dataset was 16.3%, and it predicted
a different label for 41.8% of the edges. In the worst case, the model made
all mistakes on already correctly labeled edges resulting in

((41.8% − 16.3%)︸ ︷︷ ︸
corrected

− 16.3%︸ ︷︷ ︸
wrongly corrected

) = 9.2%

improvement. In the best case, the model’s wrong predictions were right
according to the original labels. In that case, the model made a 41.8%
improvement. This would mean that the model corrected between 12463

2by combining the prior distribution with the estimate of the conditional probabilities
in Figure 7.3
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Figure 7.7: Histograms of the surface quality labels before (left) and after
correction (right).

and 56627 edges. We would once again like to strongly emphasize that the
distribution of the edges and the model’s performance can be very different
than in the validation dataset, so the true numbers can be different.
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Figure 7.8: Original label: EXCELLENT, predicted label: BAD

Figure 7.9: Original label: HORRIBLE, predicted label: INTERMEDIATE
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Figure 7.10: Original label: INTERMEDIATE, predicted label: BAD (edge of
concern is the pavement)

Figure 7.11: Original label: EXCELLENT, predicted label: BAD (average
velocity 8 km/h)
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Chapter 8
Conclusion

In this thesis, we introduced the problem of automated refinement of navi-
gation graphs using user-generated data. First we provided an overview of
the published approaches, formally defined the problem and stated the goal
of the thesis, which was to refine the information about the road surface
quality. Then we provided a theoretical background of the used machine
learning techniques, which we used throughout the work. After that, we
thoroughly described the type and contents of the data we worked with and
proposed to solve the problem by modeling the surface quality using the
previously described machine learning models. We proposed to consider the
task of modelling the surface quality an instance of ordinal regression and to
solve the task using a baseline gradient boosting model, which did not use
the connectivity information in the underlying navigation graph, and graph
neural networks. As a ground truth, we selected the edges with at least one
OSM tag. The graph neural network models consistently outperformed the
baseline model. Based on the performance on the ground truth edges, we
selected the GNNord model - graph convolutional network modified to solve
ordinal regression, which achieved an overall performance of 0.72 RMSE and
0.74 F1-macro. Then we used the selected model to correct the labels of the
edges with no OSM tags. By making a strong assumption, that the model’s
performance on the edges with no OSM tags is similar to its performance
on the validation dataset, we made an estimate, that the model corrected
the labels of 12 to 56 thousand of edges accounting for 4.1% to 19.4% of the
edges in the whole dataset.

Even though the most common approaches to model the road surface use
data from high-frequency sensors such as accelerometer or gyroscope, in this
thesis we have shown, that it is possible to use GPS measurements collected
at large scale to achieve good results. The use of the GPS measurements is
also the most obvious limitation of our approach. It is probably impossible for
any model to predict the surface quality reliably with close to 100% accuracy
using the data we used to train our models.

Another limitation of our approach is in the selection of ground truth. It
may be the case, that only one of the OSM tags is not enough to infer the
surface quality correctly. Ideally, the model should be trained using only
edges, where the label was verified by the users. On the other hand, if most
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8. Conclusion......................................
of the edges already had the correct label, there would be no need to solve
the problem of this thesis in the first place.
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Appendix B
Attachment contents

/
datasets................................a sample of the used data
data_tools.............a python module for working with the data

universal............................universal utility functions
dpnk_tools......functions for working specifically with our data

documents......................... the digital version of this thesis
models........implementation of the used models and their training
notebooks...........Jupyter norebooks used mainly to produce the
visualizations
README.md ....... text file with technical instructions for the project
requirements.txt...............text file with needed dependencies

79


	Introduction
	Problem and motivation
	Thesis structure

	Related work
	Improving the graph topology
	Adding and correcting attributes
	Attribute correction based on GPS data
	Attribute correction based on images
	Attribute correction based on data from accelerometer and/or gyroscope

	Difference in approach in this thesis and the previous work

	Task specification
	Formal problem definition
	Definitions
	Task

	Goal of the thesis

	Theoretical background
	Machine learning tasks
	Prediction task
	Classification
	Ordinal regression

	Machine learning models
	Gradient boosting method
	Artificial neural networks
	Graph neural networks

	Metrics
	Regression metrics
	Classification metrics


	Data and preprocessing
	Overview of the data processing pipeline
	Data sources description
	Vertices data
	Edges data
	Trip data
	Map-matched trips

	Data processing
	Segment features computation
	Segments filtering
	Feature extraction
	Edges filtering
	Encoding of categorical features
	Standardization
	Transformation into the edge-based graph representation

	Data analysis
	Edge features
	Segment features
	Relationships between features


	Solution approach
	Ground truth selection
	Modelling the surface quality
	Introduction of the used models
	Model training and selection
	Training implementation and details
	Hyper-parameter tuning
	Model configurations

	Graph refinement
	Implementation

	Results
	Surface quality prediction
	Prediction error evaluation
	Feature importances

	Graph refinement
	Estimate of the number of corrected edges


	Conclusion
	Bibliography
	Attachment contents

