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Abstract
The Watchman Route Problem (WRP) is
the problem of finding a closed minimal-
length path which, if followed by a robot,
enables it to see the whole environment.
A decoupled approach to WRP consists
of first partitioning the environment into
such areas that, if all are visited by the
robot, it sees the whole environment, and
of finding a minimal-length closed path
that visits all areas. This thesis deals
with the second part of this decoupled
approach. The problem is called the Trav-
elling Salesman Problem with Neighbor-
hoods (TSPN). The neighborhoods in this
thesis are polygoncircles. A polygoncircle
is a geometrical area constructed by clip-
ping half-planes from some circle. The
GLNS heuristic algorithm, originally de-
veloped to solve the Generalized Travel-
ling Salesman Problem (GTSP), was mod-
ified for polygoncircles. For this purpose,
the Touring Polygon Problem was also
modified and a new algorithm called Point
– Polygoncircle – Point was developed. For
some two points and a polygoncircle, this
algorithm finds a point on the polygoncir-
cle that is closest to the two points. The
GLNS algorithm was further modified to
work in an environment with obstacles.
The algorithm was tested on several maps
and for several visibility ranges of the
robot. The generated paths were com-
pared with paths generated by a similar
algorithm developed by J. Mikula and
M. Kulich. Our implementation mostly
produced comparable or slightly worse re-
sults.
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Abstrakt
Problém hledání cesty hlídače (WRP) je
problém hledání uzavřené cesty minimální
délky, kterou když robot projede, uvidí
celé prostředí. Sdružený přístup k WRP
spočívá zaprvé v rozdělení prostředí na
takové plochy, které když robot všechny
projede, uvidí celé prostředí, zadruhé v
nalezení cesty minimálí délky, která pro-
chází přes všechny plochy. Tato práce se
věnuje druhé části sdruženého přístupu
k WRP. Tento problém se nazývá Pro-
blém obchodního cestujícího se soused-
stvími. V rámci této práce jsou soused-
ství tvořena polygonkruhy, tedy geomet-
rickými plochami, které vznikly ořezáním
kruhu polorovinami. Heuristický algorit-
mus GLNS, který byl původně vyvinutý
pro řešení Problému obecného obchod-
ního cestujícího, byl upraven pro polygon-
kruhy. Pro polygonkruhy byl též upraven
Problém procházení polygonů (Touring
Polygon Problem) a vyvinut nový algorit-
mus nazvaný Bod – polygonkruh – bod.
Pro dva libovolné body a polygonkruh
najde tento algoritmus takový bod na po-
lygonkruhu, který je těmto dvěma nej-
bližší. GLNS algoritmus byl dále upraven
tak, aby fungoval i v prostředích s pře-
kážkami. Algoritmus byl testován na ně-
kolika mapách a na několika poloměrech
viditelnosti. Nalezené cesty byly následně
porovnány s cestami nalezenými podob-
ným algoritmem vyvinutým J. Mikulou a
M. Kulichem. Výsledky našeho algoritmu
vycházely srovnatelné nebo o něco horší.

Klíčová slova:

TSPN, WRP, TPCP, GLNS,
Polygonkruh, Polygonální doména

Překlad názvu:
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Chapter 1

Introduction

This thesis introduces several heuristic algorithms that can be used for solving
the watchman route problem (WRP). Assume a mobile robot that sees with its
sensors a certain portion of the environment around itself, where this environment
is of a finite size and known in advance. The WRP is the problem of finding a
closed minimal-length path which, if followed by the robot, enables the robot to
see the whole environment.

Several variants of this problem exist. In this version of the WRP, the robot is
represented by a point, the portion of the environment that it sees in an open
space without obstacles is a circle of radius d (visibility radius) with the center
coinciding with the position of the robot, and the environment is represented in
2D as a polygon with polygonal holes. Such environment is called a polygonal
domain. A polygonal domain can be visualized as a map with polygonal border
and polygonal obstacles (Fig. 1.1).

Figure 1.1: Examples of maps with polygonal border and polygonal obstacles.

The WRP models many real-life problems. Consider the case of a museum night
security guard. He knows the environment of the museum and must do periodic
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1. Introduction ........................................
rounds around the whole building. It is desirable to perform these rounds in an
effective manner, that is, the rounds should cover the whole building but they
should be as short as possible.

In this thesis, the WRP is not solved as a whole. Instead, it is divided into two
subproblems. This thesis describes an algorithm that solves the second of these
subproblems.

In the next chapter, the WRP will be formally defined. It will be shown how the
WRP can be divided into two subproblems. The second of these subproblems is
the so-called Travelling Salesman Problem with Neighborhoods (TSPN).

The third chapter describes several heuristic algorithms that together can solve the
TSPN. The algorithms are described in their basic form, that is, for environments
without obstacles. At the end of the chapter, a modification for environments
with obstacles is described.

In the fourth chapter, the algorithm is evaluated. Its performance is compared
with a similar algorithm known to produce very good results. Pictures showing
paths found on several maps are also presented.

4



Chapter 2

Problem Specification

The Watchman Route Problem is the problem of finding a closed path such, that
by following it, the robot sees the whole environment. The shape of a closed
path is a closed polyline, which can be represented by a sequence of vertices
{P1, P2, . . . , Pn}.

A formal definition of the problem follows: A polygonal domain W is given. The
task is to find the shortest closed path π represented by a sequence of points
Spath = {P1, P2, . . . , Pn} such that it lies insideW and for all points Q ∈ W , there
exists a point Px ∈ π such that the line-segment QPx lies inside W and its length
is smaller or equal to d. The existence of point Py for every point Px means that
all points in W will be seen from at least one point on route π.

The algorithms described in this text assume a decoupled approach to the WRP.
The decoupled approach splits the WRP into two subproblems:. The algorithm finds a set of areas whose union gives W. Each one of these

areas must satisfy the following requirement: The robot must see the whole
area from any location on that area.. The Travelling Salesman Problem with Neighborhoods (TSPN) is solved on
the set of the found areas. A solution of the TSPN is a closed path represented
by a sequence of points Spath = {P1, P2, . . . , Pn} such that for each area q, at
least point from the sequence Spath lies on q.

The requirement that the whole area is visible to the robot from all its points
implies that the area must be convex and the distance between any two points
must be smaller than visibility radius d.

The areas used in the algorithms described in this thesis we call polygoncircles.
A polygoncircle is a geometrical shape that can be constructed by clipping half-
planes from an original circle. More formally, a polygoncircle is a set of points
Ppc = [xpc, ypc] defined by a set of inequalities:. The inequality (xpc − xcenter)2 + (ypc − ycenter)2 ≤ r2 represents the original

circle with center in point Pcenter = [xcenter, ycenter] and with radius r.

5



2. Problem Specification ....................................
. The inequalities axpc + bypc ≤ c represent the half-planes clipped from the

original circle.

From the definition, it is clear that polygoncircles are convex.

The distance between any two points in any polygoncircle on W must be smaller
than the visibility radius d. That means that in the context of this thesis, r = 1

2d.

Thus, polygoncircle is a geometrical shape that satisfies the requirements when
using a decoupled approach to solve WRP.

If no halfplane is clipped from the original circle, the polygoncircle is a circle
(Fig. 2.1a). If a polygoncircle was clipped in such a way that its border has no
circular parts, it is a polygon (Fig. 2.1b). If a polygoncircle is neither a circle,
nor a polygon, it is a proper polygoncircle (Fig. 2.1c). The border of each proper
polygoncircle has both circular and linear parts (Fig. 2.2).

(a) : Circle. (b) : Polygon. (c) : Proper polygoncircle.

Figure 2.1: Polygoncircle types.

A circular part of the border of a polygoncircle we call c-section. Each part of
the border of the original circle of a polygoncircle that is not c-section we call
p-section.

c-section

c-section

p-section

p-section

Figure 2.2: c-sections and p-sections.

If a set of polygoncircles with r = 1
2d, which coverW is found, every closed path π

that has at least one common point with every polygoncircle from that set enables
the robot to see the whole polygonal domain W.

6



.................................... 2. Problem Specification

The problem of finding such closed path π that traverses through every polygoncir-
cle, while minimizing its length, is called the Travelling Salesman Problem with
Neighborhoods (TSPN).

The TSPN is usually presented as solving instances consisting of circles in an
environment without obstacles. However, the redefinition of the TSPN problem
to solving instances consisting of polygoncircles in an environment with obstacles
is straightforward.

There exist various approaches to solving TSPN. The approach described in
this text uses a modified version of the GLNS heuristic [2], which was originally
developed for solving the generalized travelling salesman problem (GTSP).

(a) : Finding a set of covering areas. (b) : Solving TSPN.

Figure 2.3: Illustration of the decoupled approach to WRP using polygoncircles.
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Chapter 3

Solution Description

This chapter describes the algorithms that are used to solve the TSPN on a set of
polygoncircles. Given a polygonal domainW and a set of polygoncircles that cover
W, finding a good-quality solution to TSPN means also finding a good-quality
solution to WRP. The algorithms are first described in their basic form for maps
without obstacles.

First, the Point – Polygoncircle – Point (PPCP) algorithm is described. It is used
to find point Popt on a polygoncircle p such that the sum of distances from Popt

to two other fixed points is minimal.

Second, the Touring – Polygoncircle – Problem (TPCP) algorithm is presented.
The TPCP algorithm optimizes a closed path on a sequence of polygoncircles,
while keeping the order of polygoncircles fixed. To optimize the path, it uses the
PPCP algorithm.

Third, a description of the GLNS algorithm is given. This algorithm uses PPCP
and TPCP algorithms to find an optimal path through a set of polygoncircles
while the order of polygoncircles is not fixed.

After describing the algorithms in their basic form, some changes are proposed to
solve TSPN instances on maps with obstacles.

3.1 Point – Polygoncircle – Point (PPCP)

The PPCP problem can be formulated in the following way: Assume a polygoncircle
p and points A and B. Find point P ∗ on p such that it minimizes the sum of
distances between points A and P ∗ and between points B and P ∗. More formally:

P ∗ = arg max
P∈p

{dist(P,A) + dist(P,B)}

9



3. Solution Description.....................................

Figure 3.1: PPCP examples.

3.1.1 Geometrical Approach to PPCP

The set of points Q such that dist(Q,A) + dist(Q,B) = k, where k is constant, is
an ellipse with focal points in A and B. Call this ellipse ε(k).

By setting k = dist(AB), ε(k) degenerates to line-segment AB. By gradually
increasing k, the circumference of ε(k) increases (Fig. 3.2).

Figure 3.2: Ellipses with the same focal points but different sizes.

Assume a polygoncircle p such that line-segment AB does not intersect p. Call
k∗ the smalles value of k such that the intersection of ε(k) and p is non-empty.
The intersection when k = k∗ contains just a single point P ∗. This point is the

10



............................ 3.1. Point – Polygoncircle – Point (PPCP)

solution of the PPCP problem instance consisting of points A, B and polygoncircle
p (Fig. 3.3).

Figure 3.3: The smallest ellipse intersecting a polygoncircle.

The important property of an ellipse ε with focal points F1 and F2 is that for all
points Q ∈ ε, the normal at point Q bisects the angle ]F1QF2 (Fig. 3.4). That
implies that a ray from one focal point is reflected by ellipse ε to the second focal
point.

Figure 3.4: A ray from one focal point is reflected to the second focal point.

To build an algorithm which solves the PPCP problem, several subproblems of
geometrical nature need to be solved. In the following sections these subproblems
will be described.

11



3. Solution Description.....................................
3.1.2 Point – Circle – Point (PCP)

Assume a circle c and points A and B, where A and B are both outside c and
line-segment AB does not intersect c. The PCP is the problem of finding point
P ∗ on c such that it minimizes the sum of distances between points A and P ∗ and
between points B and P ∗. Formally in mathematical notation:

P ∗ = arg min
P∈c

{dist(P,A) + dist(P,B)}

It can be seen that the PCP problem is an instance of the PPCP problem because
any circle is an instance of polygoncircle.

Figure 3.5: PCP is an instance of PPCP.

Call ε the smallest ellipse with focal points in A and B such that it has a non-empty
intersection with c. This intersection contains just a single point P ∗. The PCP
problem is equivalent to the problem of finding P ∗.

Point P ∗ is the point where circle c and ellipse ε touch. In this point the tangent
of c is equal to the tangent of ε. The PCP problem can therefore be equivalently
formulated in the following way: Find point P ∗ on c such that a ray from A is
reflected in P ∗ to B (Fig. 3.3).

The solution of this problem is described in detail in L. Fanta’s master thesis [3].
It is not trivial and requires solving a fourth-degree equation.

3.1.3 Point – Line-segment – Point

Assume a line-segment l with end-points C and D and points A and B, where A
and B both lie on one side of line CD. The task is to find point P ∗ ∈ l such that
it minimizes the sum of distances between points A and P ∗ and between points
B and P ∗. In mathematical notation:

12



............................ 3.1. Point – Polygoncircle – Point (PPCP)

Figure 3.6: Ellipse and circle touch in optimal point.

P ∗ = arg max
P∈l

{dist(P ∗, A) + dist(P ∗, B)}

Call ε the smallest ellipse with focal points in A and B such that it has a non-empty
intersection with l. This intersection contains just a single point P ∗. Either l is
tangent to ε (Fig. 3.7a) or ε touches l in one of its endpoints (Fig. 3.7b). If l is
tangent to ε, P ∗ is the point where a ray from A reflects to B.

A B

(a): (b):

Figure 3.7: Two cases of Point – Line-segment – Point.

Therefore the Point – Line-segment – Point problem can be equivalently formulated
as: Find point P ∗ ∈ l such that the angles ]AP ∗C and ]BP ∗D are equal and if
no such point exists, choose P ∗ from points C and D.

First, the space is transformed in such a way that point C moves to the origin and
line-segment l lies on the x-axis. This transformation consists of one translation and
one rotation. Points A and B are also transformed. The transformed points will
be called A′, B′, C ′, D′ and their coordinates [a′x, a′y], [b′x, b′y], [c′x, c′y], [d′x, d′y]. The
transformed line-segment l will be called l′. The optimal point in the transformed
space will be called P ′ and its coordinates [p′x, p′y].

13



3. Solution Description.....................................
Due to the space transformation, the task is significantly simplified. Since the
optimal point P ′ lies on x-axis, p′y = 0 and P ′ can be found by computing p′x
(Fig. 3.8). Due to the properties of similar triangles, the following equation can
be made:

a′x − p′x
a′y

= b′x − p′x
b′y

The solution is:

p′x =
a′xb
′
y − a′yb′x
a′y − b′y

If 0 ≤ p′x ≤ d′x then the final value of p′x was found. If p′x < 0, p′x is assigned value
0. If d′x < p′x, p′x is assigned value d′x. After d′x is determined, P ′ is known. The
inverse transformation applied to P ′ yields the optimal point P ∗.

Figure 3.8: Point C moves to the origin and line-segment l lies on the x-axis.

3.1.4 Point – Polyline – Point

The Point – Polyline – Point problem is similar to the Point – Line-segment –
Point problem but the optimal point P ∗ lies on a polyline (Fig. 3.9).

The solution can be found by sequentially solving the Point – Line-segment –
Point problem on individual line-segments of the polyline. The optimal point P ∗
is chosen from the optimal points found on individual line-segments.

The Point – Polygon – Point problem where P ∗ lies on a polygon can be solved
by the Point – Polyline – Point algorithm because a polygon can be treated as a
closed polyline.

14



............................ 3.1. Point – Polygoncircle – Point (PPCP)

Figure 3.9: The Point – Polyline – Point problem is solved by sequentially solving
the Point – Line-segment – Point problem.

3.1.5 Main Algorithm

The PPCP algorithm has a tree structure. The individual PPCP problem instances
are first classified into categories and then finally solved in the leafs of the tree. Each
individual PPCP problem instance consists of points A and B and a polygoncircle
p. The polygoncircle p was created by clipping half-planes from an original circle
c.

In the first branching of the algorithm tree, the instances are divided into four
categories:. A and B both lie inside c.. A lies inside c and B lies outside c.. A lies outside c and B lies inside c.. A and B both lie outside c.

The other important criterion is whether the polygoncircle p is circle, polygon or
proper polygoncircle.

In the following sections, the working of the PPCP algorithm will be demonstrated
on several examples. These examples should provide a good idea of how the
algorithm works.

Example 1

Polygoncircle p is a circle and points A and B are both outside circle c.

If the intersection of line-section AB and circle c is non-empty, P ∗ can be any
point in that intersection (Fig. 3.10a).

If the intersection of line-section AB and circle c is empty, the PCP algorithm is
used to find P ∗ (Fig. 3.10b).
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3. Solution Description.....................................

(a): (b):

Figure 3.10: Example 1.

Example 2

Polygoncircle p is a polygon and points A and B are both outside circle c.

If the intersection of line AB and circle c is non-empty, the intersection of line-
segment AB and polygon p is checked. If it is non-empty, P ∗ can be any point
from that intersection (Fig. 3.11a). If it is empty, P ∗ is found using the Point –
Polygon – Point algorithm (Fig. 3.11b).

If the intersection of line AB and circle c is empty, P ∗ is found using the Point –
Polygon – Point algorithm (Fig. 3.11c).

(a): (b):

(c):

Figure 3.11: Example 2.

16



............................ 3.1. Point – Polygoncircle – Point (PPCP)

Example 3

Polygoncircle p is a polygon and points A and B are both inside circle c.

If the intersection of line AB and the border of polygon p is non-empty, the
two points in the intersection are named C and D. If the intersection of line-
segments AB and CD is non-empty, P ∗ can be any point from that intersection
(Fig. 3.12a). If the intersection is empty, P ∗ is found using the Point – Polygon –
Point algorithm (Fig. 3.12b).

If the intersection of line AB and the border of polygon p is empty, the Point –
Polygon – Point algorithm is used to find P ∗ (Fig. 3.12c).

(a): (b):

(c):

Figure 3.12: Example 3.

Example 4

Polygoncircle p is a proper polygoncircle, points A and B are both inside circle c.
The intersection of line AB and circle c is a line-segment bounded by points C
and D.

If points C and D both lie on c-section of c, P ∗ can be any point from line-segment
AB (Fig. 3.13a).

If point C lies on c-section and point D lies on p-section of p, the intersection
point of line AB and the polyline associated with point D is found and called
E. If the intersection of line-segments AB and CE is non-empty, P ∗ can be any
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3. Solution Description.....................................
point from the intersection (Fig. 3.13b). If the intersection is empty, P ∗ is found
using the Point – Polyline – Point algorithm (Fig. 3.13c).

The case when point C lies on p-section and point D lies on c-section of p is
symmetric to the previous case.

If points C and D both lie on different p-sections of p, the intersection points
of line AB and the two polylines associated with points C and D are found and
called E and F . If the intersection of line-segments AB and EF is non-empty, P ∗
can be any point from the intersection (Fig. 3.13d). If the intersection is empty,
P ∗ is found using the Point – Polyline – Point on the two polylines associated
with points C and D. P ∗ is chosen from the two optimal points found on the two
polylines (Fig. 3.14a).

If points C and D both lie on the same p-section of p, the intersection of line-
segment AB and the polyline associated with points C and D is checked. If the
intersection is non-empty, any point from that intersection can be returned as P ∗
(Fig. 3.14b). If the intersection is empty, the Point – Polyline – Point algorithm is
used to find P ∗ (Fig. 3.14c).

(a): (b):

(c): (d):

Figure 3.13: Example 4, first four cases.

Example 5

Polygoncircle p is a proper polygoncircle, points A and B are both outside circle
c and line-segment AB does not intersect c. The PCP algorithm is used to find
point C on circle c.
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(a): (b):

(c): (d):

Figure 3.14: Example 4, last four cases.

If point C lies on c-section of p, C is returned as the optimal point P ∗ (Fig. 3.15a).

If point C lies on p-section of p, P ∗ lies on the polyline associated with point C
and the Point – Polyline – Point algorithm can be used to find P ∗ (Fig. 3.15b).

(a): (b):

Figure 3.15: Example 5.

3.2 Touring Polygoncircle Problem (TPCP)

The Touring Polygoncircle Problem (TPCP) is the problem of finding a closed
path on a given sequence of polygoncircles with the minimal length. More formally,
for a given fixed sequence of polygoncircles Spolyc = {p1, p2, . . . , pn} find a closed
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3. Solution Description.....................................
path Spath = {P1, P2, . . . , Pn} such that the length of Spath is minimal. A closed
path is defined by a sequence of points where every point Pi lies on polygoncircle
pi. The length of a closed path is defined in the following way:

len(Spath) =
n∑

n=1
dist(Pi, P(i+1)mod(n))

We used an iterative approach to solve the TPCP. It is described by Algorithm 1.
This algorithm is inspired by the Touring Polygon Problem (TPP) algorithm [4],
which solves a similar problem, but instead of polygoncircles, it optimizes a closed
path on a fixed sequence of polygons.

The input of the algorithm is a fixed sequence of polygoncircles Spolyc. The
algorithm’s output is a sequence of points representing an optimized closed path
Spath.

Algorithm 1: TPCP
Input : Sequence of polygoncircles Spolyc

Output :Optimal closed path Spath

1 P ← init_points(Spolyc);
2 while stopping criteria not met do
3 for i← 1 to n do
4 A← predecessor(Pi);
5 B ← successor(Pi);
6 Pi ← find_optimal_point(A,B, pi);

The algorithm starts by initializing the closed path Spath (Line 1). This is done by
randomly choosing a point on every polygoncircle. The main part of the algorithm
consists of two nested cycles. The algorithm is stopped after the stopping criteria
are met. The inner cycle iterates through points in Spath (Line 3) and each point
is updated using the PPCP algorithm (Line 6). More precisely, in the ith iteration
of the inner cycle, the point Pi is updated by applying the PPCP algorithm to
points P(i−1)mod(n) and P(i+1)mod(n) and the polygoncircle pi.

There are two stopping conditions that can stop the execution of the algorithm.
The first condition occurs if some number of iterations of the outer cycle is reached.
The second condition occurs if the difference between the lengths of the closed
path Spath in the previous iteration and in the current iteration is smaller than
some small value ε.

The stopping criteria ensure that the algorithm always stops and also that if
changes in the length of Spath between subsequent iterations become small, the
algorithm does not continue.
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3.3 GLNS for TSP with Polygonal Neighborhoods

This chapter deals with solving the TSPN problem, for which we modified the
GLNS solver [2]. The GLNS solver was originally developed for solving the
exactly-one-in-a set Generalized Travelling Salesman Problem (GTSP), which is a
generalization of the classic Travelling Salesman Problem (TSP).

In the GTSP, a set of vertices is partitioned into disjoined sets and the goal is
to find a closed path of minimal length that passes through at least one point in
each set from the partition.

The advantage of the GLNS solver is that it can easily be modified to solve the
TSPN.

The GLNS solver works under the framework of Adaptive Large Neighborhood
Search (ALNS). The basic idea of ALNS is simple. First, an initial solution is
constructed by some initialization procedure. Then, the solution is iterativerly
partially destroyed and repaired. If in some iteration i a better solution is found,
that solution is accepted and the destroy/repair loop continues until some stopping
criterion is met.

Two types of heuristics are used in the destroy/repair loop. In each iteration
a removal heuristic is chosen to partially destroy the current solution and an
insertion heuristic is chosen to repair the solution.

Each removal and insertion heuristic has an associated weight and in each de-
stroy/repair iteration, the heuristics are chosen according to their weights. The
weights are updated online during the execution of the algorithm in such a way
that a successful heuristic will have a greater probability of being chosen in the
future.

3.3.1 Algorithm Description

The structure of the GLNS solver is described by Algorithm 2. This algorithm
uses a data structure called tour, which describes both a sequence of points and a
corresponding sequence of polygoncircles.

Tour T is a pair (Spath,Spolyc), where Spath is a sequence of points defining a
closed path and Spolyc is the corresponding sequence of polygoncircles.

Like in TPCP algorithm, the input is a sequence of polygoncircles Spolyc. The
output is a tour Tlowest describing an optimal closed path and the corresponding
permutation of the input sequence of polygoncircles Spolyc.

The main body of the algorithm consists of three nested loops. Each iteration of
the first loop is called a cold restart. The number of cold restarts is determined
by the parameter Ncold. In each cold restart, a tour is initialized and saved as
Tbest. Then, unless it is the first cold restart, the weights assigned to removal and
insertion heuristics are updated. The second loop follows.
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3. Solution Description.....................................
The iterations in the second loop are called warm restarts and their number is
determined by the parameter Nwarm. At the beginning of each warm restart, the
parameter Tcurrent is initialized with the current value of Tbest. The third loop
follows.

The third loop does not have a fixed number of iterations. In each iteration
of the third loop, the number Nr of vertices to remove by removal heuristic is
uniformly randomly selected. The removal heuristic R and insertion heuristic I
are selected randomly using the selection weights. Nr vertices and polygon circles
are removed by R from Tcurrent and the partially destroyed Tcurrent is then rebuilt
by adding Nr polygoncircles and vertices using I. If the new tour is accepted, the
Tcurrent will hold this new tour. If not, Tcurrent will have the old value. If the new
tour Tcurrent is better than Tbest, Tcurrent is optimized and Tbest is updated. The
shortest tour from Tbest found in all cold restarts will be optimized and returned
by the algorithm as the resulting tour Tlowest.

Algorithm 2: GLNS
Input : Sequence of polygoncircles Spolyc

Output :Optimal tour Tlowest

1 Tlowest ← init_tour(Spolyc);
2 for i← 1 to Ncold do
3 Tbest ← init_tour(Spolyc);
4 if i > 1 then
5 Update selection weights;
6 for j ← 1 to Nwarm do
7 Tcurrent ← Tbest;
8 while stopping criterion not met do
9 From {1, . . . , Nmax} uniformly randomly select the number Nr of

vertices to remove;
10 Select a removal heuristic R and an insertion heuristic I using

the selection weights;
11 Create a copy of Tcurrent called Tnew;
12 Use R to remove Nr vertices and polygoncircles from Tnew;
13 For each removed polygoncircle, use I to add that polygoncircle

and a point on it to Tnew;
14 if accept_tour(Tnew, Tcurrent) then
15 Tcurrent ← Tnew;
16 if len(Tcurrent) < len(Tbest) then
17 optimize(Tcurrent);
18 Tbest ← Tcurrent;

19 if len(Tbest) < len(Tlowest) then
20 Tlowest ← Tbest;

21 optimize(Tlowest);
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3.3.2 Removal Heuristics

Three types of removal heuristics are used to remove polygoncircles and points
from Tnew in the remove/insert cycle:. Segment removal. Distance removal.Worst removal

There is only one segment removal heuristic but the other two types are further
parametrized by parameter λ.

The segment removal heuristic consists of uniformly randomly choosing an index i
of some vertex in Tnew and then erasing a continuous segment of Nr vertices and
the associated polygoncircles from Tnew starting from index i.

The distance removal heuristic starts by randomly uniformly choosing an index
i of some vertex in Tnew. That vertex Pi is erased from Tnew along with the
corresponding polygoncircle pi. A loop with Nr − 1 iterations follows. In each
iteration, the remainingM vertices are sorted by their distance from Pi in ascending
order. The parameter λ is used to construct an unnormalized discrete probability
mass function [λ0, λ1, . . . , λM−1]. After normalization, this function is used to
randomly select a vertex from the sorted sequence of vertices. The selected vertex
is erased from Tnew along with the corresponding polygoncircle. Next iteration
follows.

The worst removal heuristic also uses the parameter λ to construct a probability
mass function to choose the vertex that will be removed from Tnew. It consists
of a loop with Nr iterations. In each iteration, the vertices in Tnew are sorted
by their removal cost value in ascending order and then a vertex and the corre-
sponding polygoncircle is chosen and removed using the probability mass function
[λ0, λ1, . . . , λM−1]. The removal cost value of vertex Pi is computed in the fol-
lowing way. The predecessor of Pi in Tnew is named Pj and its follower Pk. The
removal cost of Pi is then computed as dist(Pi, Pj) + dist(Pi, Pk)− dist(Pj , Pk).

3.3.3 Insertion Heuristics

Two types of insertion heuristics are used to repair Tnew in the remove/insert
cycle:. Cheapest insertion. Unified insertion

Assume a partial tour T = (Spath,Spolyc), where Spath = {P1, P2, . . . , Pm} and
Spolyc = {p1, p2, . . . , pm}. Call T ′ the set of all polygoncircles not in T . An
insertion heuristic chooses a polygoncircle pin ∈ T ′ that will be inserted into T ,
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3. Solution Description.....................................
computes point Popt ∈ pin using PPCP algorithm and inserts polygoncircle pin

and point Popt into a position in T called emplace index.

The emplace index iemplace is the position in T that minimizes the insertion cost
of point Popt. The insertion cost cinsert of point Popt that is inserted between a
pair of neighboring points Pj and Pk in partial tour T is defined in the following
way:

cinsert(Popt, Pj , Pk) = dist(Popt, Pj) + dist(Popt, Pk)− dist(Pj , Pk)

The procedure that searches for an optimal index iemplace is called emplace
point heuristic. This procedure optimizes the insertion cost cinsert for a given
polygoncircle pin. It therefore optimizes iemplace and Popt ∈ pin at the same time:

Popt, iemplace = arg min
P∈pin,i∈{1,...,m}

{cinsert(P, P(i−1)mod(m), Pi)}

The cheapest insertion heuristic consists of a loop with Nr iterations. In each
iteration pin, Popt and iemplace are chosen so as to minimize cinsert:

pinsert, Popt, iemplace = arg min
p∈T ′,P∈p,i∈{1,...,m}

{cinsert(P, P(i−1)mod(m), Pi)}

The unified insertion heuristic is parametrized by λ. It again consists of a loop
with Nr iterations. In each iteration a pin is chosen from polygoncircles in T ′ and
then Popt and iemplace are found by emplace point heuristic. The procedure for
choosing pin sorts polygoncircles in T ′ according to their distance from T . The
distance of a polygoncircle p from tour T is defined as:

dist(p, T ) = min
pi∈T

dist(centr(p), centr(pi))

The polygoncircle pin is chosen from the sorted sequence of polygoncircles using a
discrete probability mass function [λ0, λ1, . . . , λM−1].

3.3.4 Tour Optimization

Apart from remove and insert heuristics, the GLNS algorithm uses two optimization
techniques that can fix some parts of the solution in a short amount of time. These
two techniques are called Re-Opt and Move-Opt.

In Re-Opt heuristic, the positions of points in a tour T are optimized while the
order of polygoncircles remains the same. The TPCP algorithm is used to find
the optimal positions of points on polygoncircles in T .

The Move-Opt heuristic optimizes the order of polygoncircles in T . First, a
point Pi is uniformly randomly selected and removed from T together with the
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associated polygoncircle pi. Then a new point Popt ∈ pi along with position
iemplace that minimize the insertion cost cinsert are computed by emplace point
heuristic and pi and Popt are inserted into T at position iemplace. This procedure
is repeated Nmove times.

3.3.5 Tour Initialization

At the beginning of the GLNS algorithm, an initial tour must be created. In this
version of GLNS algorithm for polygoncircles, the initialization can be done in
two ways:. Random initialization. Random insertion initialization

The random initialization first creates a random sequence of all polygoncircles
Spolyc and then the path Spath is constructed by randomly choosing a point on
every polygoncircle in Spolyc.

The random insertion initialization starts by uniformly randomly choosing two
polygoncircles p1 and p2. The associated points P1 ∈ p1 and P2 ∈ p2 are also
selected randomly. A partial tour T is created by setting Spolyc = {p1, p2} and
Spath = {P1, P2}. The remaining polygoncircles are added to T in a loop where in
each iteration a polygoncircle pi /∈ T is uniformly randomly selected. After pi is
selected, a point Popt ∈ pi along with position iemplace that minimize the insertion
cost cinsert are computed by emplace point heuristic and pi and Popt are inserted
into T at position iemplace. The loop continues until T contains all polygoncircles.

3.4 Environment with Obstacles

When working in an environment with polygonal obstacles, the Euclidean metric
cannot be used to compute distances between points. Instead, the distance between
points Pi and Pj is defined as the length of the shortest collision-free path with
end-points in Pi and Pj . A collision-free path between points Pi and Pj is a
polyline defined by a sequence of points {P1, P2, . . . , Pn}, where P1 = Pi, Pn = Pj

such that it does not intersect any polygonal obstacle.

Working in an environment with obstacles requires changes in the PPCP algorithm.
Assume a polygoncircle p and points Pa and Pb. The version of PPCP algorithm
for an environment with obstacles computes the optimal point P ∗ ∈ p in the
following way. The shortest collision-free paths between points centr(p) and Pa

and between points centr(p) and Pb are computed (Fig. 3.16a). These paths are
represented as sequences of points {P 1

a , P
2
a , . . . , P

m
a } and {P 1

b , P
2
b , . . . , P

n
b } where

P 1
a = centr(p), Pm

a = Pa, P 1
b = centr(p), Pm

b = Pb. The optimal point P ∗ is
found by using the original PPCP algorithm to solve the instance of the PPCP
problem consisting of the polygoncircle p and points P 2

a and P 2
b (Fig. 3.16b).
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(a):

(b):

Figure 3.16: PPCP in an environment with obstacles.

When using the GLNS algorithm in an environment with obstacles, the tour Tlowest

must be reconstructed at the end of the algorithm. Without the reconstruction,
there is no guarantee that the line-segment between consecutive points in Tlowest

does not intersect an obstacle. The reconstruction consists of finding the shortest
collision-free path between each pair of consecutive points in Tlowest. The path
defined by the reconstructed tour Tlowest is guaranteed to be collision-free.

The Fade2D library [5] was used to generate meshes on polygonal maps with
obstacles and the Polyanya solver [6] was used for finding the shortest collision-free
paths between points in environments with polygonal obstacles using meshes
generated by Fade2D library.
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Chapter 4

Results

The heuristic algorithms described in previous chapters were used to solve such
instances of the TSPN, where the set of polygons cover the polygonal map. Solving
the TSPN on such instances also gives solution to the WRP. The algorithms were
implemented in C++ using the C++ 17 standard.

Several polygonal domains were used to experiment with the algorithms: complex2
(Fig. 4.2), jf-jh (Fig. 4.3), jf-pb2 (Fig. 4.4), jf-ta2 (Fig. 4.5), potholes (Fig. 4.6),
warehouse2 (Fig. 4.7). For each of these domains, paths were found for multi-
ple visibility radii. On Figure 4.2, the computed paths are shown along with
polygoncircles.

The files containing map representations and sets of polygoncircles that were
used in tests and experiments were kindly provided by Jan Mikula. In an article
published by Jan Mikula and Miroslav Kulich [1], a procedure generating a set
of polygons that cover a map is described. In the context of that article, sets of
polygons and not polygoncircles are generated. However, a very similar procedure
is used for generating sets of polygoncircles covering some map.

The results obtained from solving the TSPN on maps jf-jh, jf-ta2, jf-pb2 and
visibility radii 2, 3, 4, 5, 10 were compared with results in an article published
by J. Mikula and M. Kulich [1]. They also use decoupled approach but partition
the map into polygons, not polygoncircles. Then they discretize the problem by
sampling the polygons and solve the GTSP on the obtained samples.

The experiments were executed within the same computational environment as
in [1] using a single core of the Intel Core i7-6700 CPU (3.40 GHz), 16 GB of
RAM, and running Ubuntu 20.04. The results can therefore be directly compared.

Two parametrizations of the proposed algorithm were used for experiments in [1].
The parametrization named Trade-off provides a trade-off between solution quality
and runtime. The parametrization named Best aims at finding the best quality
solutions regardless of runtime. The results of both parametrizations along with
the results of our experiments are in Table 4.1). Our experiments were given as
input the running times of the TSPN part of the Best parametrization. If the
time limit was reached, our algorithm did not continue with the next cold restart
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4. Results ..........................................
and stopped executing. Each combination of map and visibility radius was solved
20 times.

In the table, d stands for visibility radius. The values of lref are the reference path
lengths taken from [7]. The experimental results in the table are given relative
to these reference values. PDM means PD(lmean) and PDB means PD(lbest),
where lmean is the mean solution and lbest is the best solution from all runs of the
algorithm for some combination of map and d. PD(l) is the percent deviation
from the reference path length lref and is computed as 100(l − lref )/lref . In
experiments done in [1], in each run of the algorith, a new partition of the map is
constructed with possibly different number of polygons. n̄ is the mean number of
polygons from all solutions. In our experiments, the set of polygoncircles for one
combination of map and d was fixed. n is therefore the number of polygons. t̄ is
the average time.

The paths found by our algorithm are almost always better than paths found
by the Trade-off parametrization. However, our algorithm’s t̄ is almost always
bigger. On the other hand, the paths found by the Best parametrization are
always better, but its t̄ is almost always bigger, because it was used as time-limit
to our algorithm.

The GLNS algorithm can be used in multiple modes. It uses many parameters
that affect its execution. In our experiments, the Fast mode was used. Other
modes are not practical for large numbers of polygoncircles because of very long
execution times. The Fast mode is characterized by a small number of cold and
warm restarts. It also uses Re-Opt heuristic only at the end of the algorithm,
before the final path is returned.

For instances with a high number of polygoncircles, it is not immediately clear
why the quality of solution is not better than the Best parametrization of algo-
rithm in [1]. But since we use continuous optimization using PPCP and in [1]
polygoncircles are sampled, it could be expected that at least in instances with
fewer polygoncircles, our solutions should be consistently at least slightly better.
However, this is not the case and a further investigation into this matter should
be made.

The PPCP algorithm was thoroughly tested on millions of randomly generated
instances. The points found by the PPCP algorithm were compared with the
points found by a sampling method: The border of a polygoncircle was sampled by
a large number of points. The best sample was compared with the point computed
by the PPCP algorithm. If the distance between the two points is small, the
computed point is considered to be correct.

The TPCP algorithm is simple and there is not much room for tuning.

The GLNS algorithm, on the other hand, is very complex and parametrized by
many parameters. It is probable that here, many improvements can be made. It
would be useful to create other modes that would be experimentaly found to work
well with polygoncircles.
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(a) : complex2 (b) : jf-jh

(c) : potholes (d) : warehouse2

Figure 4.1: Examples of solutions to WRP.
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(a) : d = 20 (b) : d = 15 (c) : d = 10 (d) : d = 5

(e) : d = 4 (f) : d = 3 (g) : d = 2 (h) : d = 1

Figure 4.2: Different values of d in complex2.

(a) : d = 20 (b) : d = 15 (c) : d = 10 (d) : d = 5

(e) : d = 4 (f) : d = 3 (g) : d = 2 (h) : d = 1

Figure 4.3: Different values of d in jf-jh.
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(a) : d = 20 (b) : d = 10

(c) : d = 3 (d) : d = 1

Figure 4.4: Different values of d in jf-pb2.

(a) : d = 20 (b) : d = 15 (c) : d = 10 (d) : d = 5

(e) : d = 4 (f) : d = 3 (g) : d = 2 (h) : d = 1

Figure 4.5: Different values of d in jf-ta2.
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(a) : d = 20 (b) : d = 15 (c) : d = 10 (d) : d = 5

(e) : d = 4 (f) : d = 3 (g) : d = 2 (h) : d = 1

Figure 4.6: Different values of d in potholes.

(a) : d = 20 (b) : d = 15 (c) : d = 10 (d) : d = 5

(e) : d = 4 (f) : d = 3 (g) : d = 2 (h) : d = 1

Figure 4.7: Different values of d in warehouse2.
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Appendix B

Contents of the attached CD

File Description
code.zip An archive containing C++ source files along with data files

used for testing and generating images.
text.zip An archive containing the text of the thesis.
results.zip An archive containing generated images of maps, polygons and

found paths.
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