
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Measurement

Software-defined oscilloscopes with terminal interface

Bc. Jozef Dujava

Supervisor: doc. Ing. Jan Fischer, CSc.
May 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

466177Personal ID number:Dujava JozefStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Measurement

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Software-defined oscilloscopes with terminal interface

Master’s thesis title in Czech:

Softwarově definované osciloskopy s terminálovým rozhraním

Guidelines:
Design and implement software-defined instruments with a terminal user interface. Display the measurements graphically
on a PC. The ''Dataplotter'' application may be used for this purpose. The design shall focus on real-time and equivalent-time
sampling oscilloscopes which will be used for teaching purposes. Additionally work on instruments such as: logic analyzer,
event logger, counter, pulse and signal generators. Implement these on STM32 microcontrollers (primarily F303, F446,
G431, F103, L072, F042, L412). Design the firmware so that only small modifications will be required to implement similar
instruments on other types of STM32 microcontrollers.
Design a terminal user interface for controlling multiple instruments, fully implemented in the microcontroller firmware
(without the need for specialty PC software). Also design any necessary additional electronic circuits (amplifiers, signal
shapers) and verify their function in the implemented instruments. Determine the parameters and practical limits of such
instruments.

Bibliography / sources:
[1] Yiu, J.: The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors,
[2] STMicroelectronics: RM0316, STM32F3 Reference manual
[3] Maier, J.: Univerzální GUI pro osciloskopické PC aplikace, BP, ČVUT- FEL, 2021

Name and workplace of master’s thesis supervisor:

doc. Ing. Jan Fischer, CSc., Department of Measurement, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 29.06.2021

Assignment valid until:
by the end of winter semester 2022/2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signaturedoc. Ing. Jan Fischer, CSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

iv

Acknowledgements

I would like to thank my supervisor, doc. Ing. Jan Fischer, CSc., for his patient guidance and insight.
I also thank my family for supporting me throughout my studies.

v

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of information
in accordance with the Guideline for adhering to ethical principles when elaborating an academic final
thesis.

In Prague on 17 May 2022

.
Bc. Jozef Dujava

vii

viii

Abstract

This thesis is focused on the design and implementation of software-defined instruments, primarily
for teaching purposes. The main instrument is a mixed-signal oscilloscope capable of both real-time
and equivalent-time sampling. Additionally, pulse generators, arbitrary generators and a frequency
counter were also implemented. The implemented firmware was adapted for multiple types of STM32
microcontrollers. A terminal user interface for the software-defined instruments was implemented
directly within the microcontroller firmware. The universal PC application ’Data Plotter’ is used
to display acquired oscilloscope data and access the terminal user interface. The parameters of the
developed instruments were measured and evaluated.

Keywords: oscilloscope, software-defined instrument, virtual instrument, terminal user interface,
stm32 microcontroller

Supervisor: doc. Ing. Jan Fischer, CSc.

Abstrakt

Táto práca sa zaoberá návrhom a realizáciou softvérovo definovaných prístrojov na výukové účely.
Hlavným prístrojom je mixed-signal osciloskop vzorkujúci ako v reálnom tak aj v ekvivalentnom čase.
Taktiež boli implementované ďalšie prístroje a to pulzné generátory, funkčné generátory a frekvenčný
čítač. Implementovaný firmvér bol adaptovaný pre viaceré typy mikrokontrolérov STM32. Tieto
softvérovo definované prístroje využívajú terminálové používateľské rozhranie implementované priamo
vo firmvéri mikrokontroléru. Na zobrazenie záznamov osciloskopu a terminálového používateľského
rozhrania je využitá univerzálna PC aplikácia ’Data Plotter’. Parametre vyvinutých prístrojov boli
zmerané a vyhodnotené.

Kľúčové slová: osciloskop, softvérovo definovaný prístroj, virtuálny prístroj, terminálové
používateľské rozhranie, stm32 mikrokontrolér

Preklad názvu: Softvérovo definované osciloskopy s terminálovým rozhraním

ix

x

Contents

1 Introduction 1

2 Analysis 3
2.1 Motivation . 3
2.2 State of the art . 3
2.3 Goals of this work . 5
2.4 Overview of considered STM32 microcontrollers . 6

3 Developed software-defined instrument platform 13
3.1 Development of SDI firmware for STM32 microcontrollers . 16
3.2 Using STM32 microcontroller timers . 19

4 User interface for software-defined instruments 25
4.1 Possibilities for terminal user interfaces using Data Plotter . 26
4.2 Developed terminal user interface . 28

5 Mixed-signal oscilloscope 33
5.1 Real-time sampling . 38
5.2 Equivalent-time sampling . 41
5.3 Interleaved sampling . 45
5.4 Supported MSO channel configurations . 45

6 Pulse generators 63
6.1 Synchronization of pulse generators . 65
6.2 Previous pulse generator project . 66

7 Arbitrary generators 67
7.1 Using custom waveforms with arbitrary generators . 70
7.2 Synchronization of arbitrary generators . 71
7.3 Arbitrary generator output impedance and slew rate . 72

8 Frequency counter 73

9 Instrument configuration profiles 77

10 Versions of developed SDI platform (supported MCUs) 81
10.1 STM32F303RE version of developed SDI platform . 81
10.2 STM32G431KB version of developed SDI platform . 90

11 Evaluation of results 99
11.1 Comparison with existing SDI platforms . 100

xi

xii CONTENTS

12 Conclusion 103
Bibliography 105
A List of symbols 109
B Contents of the enclosed CD 113
C User manual for developed SDI platform 115

Figures

1.1 General diagram of a microcontroller-based software-defined instrument 1

3.1 Diagram of the developed software-defined instrument platform . 13
3.2 Developed software-defined instrument platform in use on a breadboard (STM32G431KB) . . 14
3.3 Block diagram of software-defined instruments implemented for STM32G431KB 14
3.4 Main program loop of the developed SDI firmware . 15
3.5 CubeMX software for generation of STM32 startup code using HAL libraries 17
3.6 General-purpose timer block diagram . 21

4.1 Oscilloscope GUI in PC application used by Little Embedded Oscilloscope (LEO) 25
4.2 Motor controller TUI created using ANSI escape sequences . 26
4.3 Data Plotter PC application with empty terminal window in the sidebar 27
4.4 Data Plotter terminal options . 28
4.5 Implemented terminal user interface . 29
4.6 Toggle setting in terminal user interface . 30
4.7 Drop-down menu in terminal user interface . 30
4.8 Numeric editor in terminal user interface . 31
4.9 Direct TUI parameter value entry using Data Plotter . 32

5.1 Commercially available mixed-signal oscilloscope . 33
5.2 Implemented software-defined mixed-signal oscilloscope used within Data Plotter 34
5.3 Block diagram of implemented mixed-signal oscilloscope . 35
5.4 Use of the analog watchdog ADC feature for oscilloscope trigger . 36
5.5 Mixed-signal oscilloscope firmware acquisition loop . 37
5.6 Real-time sampling at 2 samples per period (Nyquist limit) . 38
5.7 Real-time sampling at 4 samples per period . 39
5.8 Real-time sampling at 8 samples per period . 39
5.9 Sampling settings in TUI, MSO in real-time sampling mode . 40
5.10 MSO input signal connected directly to the STM32 ADC . 40
5.11 Use of amplifier to buffer high-impedance MSO input signal . 40
5.12 Usual method of equivalent-time sampling . 41
5.13 Equivalent-time sampling at 4 samples per period with 1 whole period between samples . . . 42
5.14 Equivalent-time sampling at 4 samples per period with 2 whole periods between samples . . . 42
5.15 Equivalent-time sampling at 8 samples per period with 1 whole period between samples . . . 43
5.16 Equivalent-time sampling at 16 samples per period with 1 whole period between samples . . 43
5.17 Mixed-signal oscilloscope TUI tab (equivalent-time sampling mode) . 44
5.18 Timing diagram of two active DMA channels on AHB bus . 45
5.19 Legend for MSO waveform buffer diagrams . 46

xiii

xiv FIGURES

5.20 Legend for MSO timing diagrams . 46
5.21 MSO timing diagram, digital channels only . 46
5.22 MSO waveform buffer, digital channels only . 47
5.23 MSO timing diagram, digital channels only, interleaved by 2 DMA channels 47
5.24 MSO waveform buffer, digital channels only, interleaved by 2 DMA channels 47
5.25 MSO timing diagram, 1 analog channel (MCU with 1 ADC) . 48
5.26 MSO waveform buffer, 1 analog channel (MCU with 1 ADC) . 48
5.27 MSO timing diagram, 2 analog channels (MCU with 1 ADC) . 49
5.28 MSO waveform buffer, 2 analog channels (MCU with 1 ADC) . 49
5.29 MSO timing diagram, 4 analog channels (MCU with 1 ADC) . 50
5.30 MSO waveform buffer, 4 analog channels (MCU with 1 ADC) . 50
5.31 MSO timing diagram, 1 analog channel (MCU with 2 ADCs) . 51
5.32 MSO waveform buffer, 1 analog channel (MCU with 2 ADCs) . 51
5.33 MSO timing diagram, 1 analog channel, interleaved by 2 ADCs (MCU with 2 ADCs) 52
5.34 MSO waveform buffer, 1 analog channel, interleaved by 2 ADCs (MCU with 2 ADCs) 52
5.35 MSO timing diagram, 2 analog channels (MCU with 2 ADCs) . 53
5.36 MSO waveform buffer, 2 analog channels (MCU with 2 ADCs) . 53
5.37 MSO timing diagram, 4 analog channels (MCU with 2 ADCs) . 54
5.38 MSO waveform buffer, 4 analog channels (MCU with 2 ADCs) . 54
5.39 MSO timing diagram, 1 analog channel (MCU with 4 ADCs) . 55
5.40 MSO waveform buffer, 1 analog channel (MCU with 4 ADCs) . 55
5.41 MSO timing diagram, 1 analog channel, interleaved by 2 ADCs (MCU with 4 ADCs) 56
5.42 MSO waveform buffer, 1 analog channel, interleaved by 2 ADCs (MCU with 4 ADCs) 56
5.43 MSO timing diagram, 1 analog channel, interleaved by 4 ADCs (MCU with 4 ADCs) 57
5.44 MSO waveform buffer, 1 analog channel, interleaved by 4 ADCs (MCU with 4 ADCs) 57
5.45 MSO timing diagram, 2 analog channels (MCU with 4 ADCs) . 58
5.46 MSO waveform buffer, 2 analog channels (MCU with 4 ADCs) . 58
5.47 MSO timing diagram, 2 analog channels, each interleaved by 2 ADCs (MCU with 4 ADCs) 59
5.48 MSO waveform buffer, 2 analog channels, each interleaved by 2 ADCs (MCU with 4 ADCs) 59
5.49 MSO timing diagram, 4 analog channels (MCU with 4 ADCs) . 60
5.50 MSO waveform buffer, 4 analog channels (MCU with 4 ADCs) . 60

6.1 Examples of pulse generator output signals . 63
6.2 Pulse generators tab in terminal user interface . 64
6.3 Block diagram of implemented pulse generators . 65
6.4 Pulse generator settings in TUI tab with and without synchronization enabled 65
6.5 Pulse generator application and TUI developed in previous project . 66

7.1 Examples of arbitrary generator output signals . 67
7.2 Arbitrary generators tab in terminal user interface . 68
7.3 Block diagram of implemented arbitrary generators . 69
7.4 Arbitrary generator settings in TUI tab when using custom waveforms 70
7.5 Arbitrary generator tab in terminal user interface when synchronization is enabled 71
7.6 Output loading effect of the LD2 green LED on arbitrary generator (Nucleo-F303RE) 72
7.7 Comparison of pulse and arbitrary generator output signal slew rates (STM32F303RE) 72

8.1 Frequency counter tab in terminal user interface . 73
8.2 Block diagram of implemented frequency counter . 74
8.3 Frequency counter firmware algorithm diagram . 75

FIGURES xv

9.1 Configuration profiles TUI tab with open file selection dialog . 77

10.1 Nucleo-F303RE development board with STM32F303RE MCU . 81
10.2 Pinout of SDIs developed for STM32F303RE (Nucleo-F303RE development board) 82
10.3 Waveforms captured by STM32F303RE oscilloscope in RTS mode at 5.1 MSps 84
10.4 Waveforms captured by STM32F303RE oscilloscope in RTS mode at 10.3 MSps (2 ADCs
interleaved) . 84

10.5 Waveforms captured by STM32F303RE oscilloscope in RTS mode at 18 MSps (4 ADCs
interleaved) . 85

10.6 Waveforms captured by STM32F303RE oscilloscope in ETS mode at 71.9 MSps (equivalent) 85
10.7 Output signals of STM32F303RE pulse generators . 87
10.8 Measured frequency characteristic of STM32F303RE pulse generators 87
10.9 Output signals of STM32F303RE arbitrary generators . 88
10.10 Output signals of STM32F303RE arbitrary generators . 89
10.11 Measured characteristic of STM32F303RE frequency counter . 89
10.12 Pinout of SDIs developed for STM32G431KB (LQFP32-to-DIP adapter) 90
10.13 Waveform captured by STM32G431KB oscilloscope in RTS mode at 3.4 MSps 92
10.14 Waveform captured by STM32G431KB oscilloscope in RTS mode at 6.5 MSps (2 ADCs
interleaved) . 92

10.15 Waveform captured by STM32G431KB oscilloscope in RTS mode at 6.5 MSps (2 ADCs
interleaved) . 92

10.16 Waveforms captured by STM32G431KB oscilloscope in ETS mode at 104 MSps (equivalent,
HSI RC clock) . 93

10.17 Waveforms captured by STM32G431KB oscilloscope in ETS mode at 108.1 MSps (equivalent,
HSE crystal clock) . 93

10.18 Output signals of STM32G431KB pulse generators . 95
10.19 Measured frequency characteristic of STM32G431KB pulse generators (HSI RC clock) 95
10.20 Output signals of STM32G431KB arbitrary generators . 96
10.21 Output signals of STM32G431KB arbitrary generators . 96
10.22 Measured characteristic of STM32G431KB frequency counter (HSI RC clock) 97
10.23 Measured characteristic of STM32G431KB frequency counter (HSE crystal clock) 97

xvi

Tables

2.1 Overview of STM32F303RE MCU capabilities . 6
2.2 Timers available in STM32F303RE . 6
2.3 Overview of STM32G431KB MCU capabilities . 7
2.4 Timers available in STM32G431KB . 7
2.5 Overview of STM32F103C8 MCU capabilities . 8
2.6 Timers available in STM32F103C8 . 8
2.7 Overview of STM32F042F6 MCU capabilities . 8
2.8 Timers available in STM32F042F6 . 9
2.9 Overview of STM32L072KZ MCU capabilities . 9
2.10 Timers available in STM32L072KZ. 9
2.11 Overview of STM32L412KB MCU capabilities . 10
2.12 Timers available in STM32L412KB . 10
2.13 Overview of STM32F446RE MCU capabilities . 11
2.14 Timers available in STM32F446RE . 11

4.1 Supported metric unit prefixes . 31

9.1 Mixed-signal oscilloscope configuration profile parameters . 78
9.2 Pulse generator configuration profile parameters . 79
9.3 Arbitrary generator configuration profile parameters . 79

10.1 Maximum MSO sampling rates for STM32F303RE with arbitrary generators disabled 83
10.2 Maximum MSO sampling rates for STM32F303RE with arbitrary generators enabled 83
10.3 Maximum MSO record lengths for STM32F303RE . 83
10.4 Maximum MSO sampling rates for STM32G431KB with arbitrary generators disabled 91
10.5 Maximum MSO sampling rates for STM32G431KB with arbitrary generators enabled 91
10.6 Maximum MSO record lengths for STM32G431KB . 91

A.1 Established acronyms . 109
A.2 Software-defined instrument acronyms used in this work . 110
A.3 Mixed-signal oscilloscope symbols . 110
A.4 Pulse generator symbols . 111
A.5 Arbitrary generator symbols . 111
A.6 Frequency counter symbols . 111
A.7 Microcontroller hardware symbols . 112

xvii

Chapter 1
Introduction

Laboratory instruments such as oscilloscopes and signal generators are indispensable for teaching
and development of electronics. Unfortunately, professional commercially available instruments are
generally costly and often not affordable for students or hobbyists. However, low-cost software-defined
instruments (SDI) can prove to be adequate alternatives for many use cases. Also known as virtual
instruments (VI), these may typically consist of a microcontroller (MCU) connected to a PC with min-
imal additional hardware necessary as the MCUs typically feature timers, Analog-to-Digital converters
(ADCs) and Digital-to-Analog converters (DAC). Figure 1.1 shows a diagram of such an instrument.

1 8

2 7

3 6

4 5

DUT

25 16

26 15

27 14

28 13

29 12

30 11

31 10

32 9

1

24

2

23

3

22

4

21

5

20

6

19

7

18

8

17

MCU

SDI application Commands

Measured
data

SDI inputs

SDI outputs
SDI FW

PC

Figure 1.1: General diagram of a microcontroller-based software-defined instrument

The aim of this work was to implement these types of software-defined instruments for STM32
microcontrollers. These microcontrollers are utilized in various courses at the Faculty of Electrical
Engineering, CTU, often being provided to students for use at home as well. Therefore, developing
software-defined instruments for them allows most assignment troubleshooting to be done at home.
This lets class time be used more effectively, focusing on teaching new concepts instead. Indeed,
multiple software-defined instrument platforms for STM32 microcontrollers had been created at the
Department of Measurement in the past for this purpose. However, the SDI platform developed in this
work is more universal and provides additional functionality.

A unique feature of the implemented SDI platform is an oscilloscope capable of equivalent-time
sampling. This allows sampling periodic input signals with a significantly higher equivalent sampling
rate. An interesting application of this sampling method is step response analysis, where both the
input and output signals of a system (device under test) can be captured with a significantly higher
resolution than is possible with real-time sampling. Additionally, instruments such as a frequency
counter and precise, synchronizable pulse and arbitrary generators were also developed.

1

2

Chapter 2
Analysis

2.1 Motivation

In both electronics development and teaching, laboratory measurement instruments such as oscilloscopes
or logic analyzers are often a necessity. They allow the user to visualize signals in the tested circuit
and greatly ease troubleshooting thereof. Other instruments such as signal generators can also prove
to be very useful. Unfortunately, laboratory-grade instrumentation is typically rather costly and out
of reach of many hobbyists and students. When students do have access to laboratories during their
courses, such as at the Faculty of Electrical Engineering, CTU, there is often a certain time pressure
or not enough instruments for everyone to use concurrently. Sometimes it may not even be possi-
ble to access the laboratories, such as the recent period of distant teaching during the Covid-19 pandemic.

To solve these issues and allow students to work on assignments and projects at home, an alternative
approach using low-cost software-defined instruments (SDI) can be used. These can be based on STM32
microcontroller kits which are loaned out to students as part of multiple courses anyway. Then, to
troubleshoot the assignments, two students can use one of their kits as a measurement instrument to
test their firmware running on the other kit. Besides this application, such instruments can also be of
good use to hobbyists for very little investment. The aim of this work is to implement such an SDI
platform and make it available for a variety of STM32 microcontrollers.

2.2 State of the art

Multiple SDI projects have been created at the Department of Measurement, FEE CTU, in the
past. These include oscilloscopes, logic analyzers, frequency counters and various types of generators.
Typically, they combine the firmware of the microcontroller with a PC application created specifically
for that project. This not only greatly increases the complexity of the initial implementation, but also
makes adding features and support for other microcontrollers in the future more difficult. Some of the
most recent and relevant SDI projects are listed below.. LEO - Little Embedded Oscilloscope [1]. Provides multiple software-defined instruments:. 4-channel oscilloscope, sampling at up to 4 MSps. 2-channel signal generator/DC voltage source. 4-channel voltmeter.Only implemented for the STM32F303RE microcontroller. The associated PC application only works on Windows

3

2. Analysis ..
. Zero eLab Viewer (F0-Lab, G0-Lab) [2]. Provides multiple software-defined instruments:. 3 or 4-channel oscilloscope. 3-channel voltmeter. pulse generator. Has versions for STM32F042F6 [7], STM32G030J6 [8], STM32F103C8 [6]. The "Zero eLab Viewer" PC application works on Windows and Linux. EMBO - Embedded Oscilloscope [4]. Provides multiple software-defined instruments:. 4-channel oscilloscope. 4-channel logic analyzer. 4-channel voltmeter. 2 pulse generators. 1 signal generator. frequency counter. Adapted for STM32F103C8, STM32F103RE, STM32F303RE, STM32L412KB. The associated PC application works on Windows, MacOS and Linux. Created for the "Software defined oscilloscope based on STM32F103" master’s thesis [10]. ELA - Logic Analyzer [3]. A logic analyzer with:. 8 channels. up to 12 MHz sampling frequency. I2C, SPI, UART and Neopixel protocol decoding. 2 pulse generators.Only implemented for the STM32F303RE microcontroller. Uses the open source "PulseView" PC application – works on Windows, MacOS and Linux. Created for the "Microcontroller Based Logic Analyser" bachelor’s thesis [9]. STM32 Virtual Counter [5]. A frequency counter with:. frequency, period, frequency ratio measurements. duty cycle measurement. 2 synchronizable pulse generators. Adapted for the STM32F042F6, STM32F042K6, STM32F303RE microcontrollers. The associated PC application works on Windows, MacOS and Linux. Created for the "Microcontroller-based Virtual Instrument for Signal Analysis in the Modula-

tion Domain" bachelor’s thesis [11]

4

... 2.3. Goals of this work

2.3 Goals of this work

The aim of this work is to implement a more universal SDI platform with additional instruments and
features compared to the previously described projects. Specifically, the following instruments shall be
included:.Oscilloscope.Multiple analog channels. Normal and auto trigger. Support for both real-time and equivalent-time sampling. Precise sampling frequency adjustment. Logic analyzer. As many channels as possible. Higher sampling rate than oscilloscope (for digital signals). Pulse generators. As many as possible. Precisely adjustable frequency and duty cycle. Signal generators. As many as possible. Selection of generated function (e.g. sine wave, sawtooth). Adjustable frequency, amplitude, DC offset and duty cycle. Frequency counter. High frequency resolution. Large input frequency range

The capabilities of the developed software-defined instruments are ultimately decided by the MCU
used. Given this variability, it was determined a terminal user interface (TUI) implemented in the MCU
firmware would be best suited for this application. By using a universal terminal user interface, the
need to create a custom PC application is eliminated, allowing a general-purpose terminal application
to be used instead. The implemented terminal user interface shall:. Facilitate full control of every virtual instrument. Display precise values of measurements instrument parameters. Be clear and easy to use, displaying only relevant information

Finally, all developed firmware shall be modular, automatically adapting to the capabilities of a
given MCU. It shall also be portable, not requiring large modifications in order to add support for a
new microcontroller.

5

2. Analysis ..
2.4 Overview of considered STM32 microcontrollers

2.4.1 STM32F303RE microcontroller overview

The STM32F303RE is an ARM Cortex-M4 32-bit microcontroller with rich analog peripherals including
4 ADCs and two DAC channels. Table 2.1 shows a brief overview of the capabilities of this MCU.
Table 2.2 describes the timers available in this microcontroller.

fCP U Up to 72 MHz

Flash 512 KiB

SRAM 64 KiB

CCMRAM 16 KiB

ADCs Four 12-bit ADCs, up to 5 MSps

DACs Two 12-bit DAC channels

DMA Two controllers, 12 channels total

Table 2.1: Overview of STM32F303RE MCU capabilities
Functional overview STM32F303xD STM32F303xE

26/173 DocID026415 Rev 5

Note: TIM1/8/20/2/3/4/15/16/17 can have PLL as clock source, and therefore can be clocked at
144 MHz.

3.18.1 Advanced timers (TIM1, TIM8, TIM20)

The advanced-control timers (TIM1, TIM8, TIM20) can each be seen as a three-phase
PWM multiplexed on six channels. They have complementary PWM outputs with
programmable inserted dead-times. They can also be seen as complete general-purpose
timers. The four independent channels can be used for:

• Input capture

• Output compare

• PWM generation (edge or center-aligned modes) with full modulation capability (0-
100%)

• One-pulse mode output

In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.

Many features are shared with those of the general-purpose TIM timers (described in
Section 3.18.2) using the same architecture, so the advanced-control timers can work
together with the TIM timers via the Timer Link feature for synchronization or event chaining.

3.18.2 General-purpose timers (TIM2, TIM3, TIM4, TIM15, TIM16, TIM17)

There are up to six synchronizable general-purpose timers embedded in the
STM32F303xD/E (see Table 5 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.

Table 5. Timer feature comparison

Timer type Timer
Counter

resolution
Counter

type
Prescaler

factor

DMA
request

generation

Capture/
compare
channels

Complementary
outputs

Advanced
TIM1, TIM8,

TIM20
16-bit

Up, Down,
Up/Down

Any integer
between 1
and 65536

Yes 4 Yes

General-
purpose

TIM2 32-bit
Up, Down,
Up/Down

Any integer
between 1
and 65536

Yes 4 No

General-
purpose

TIM3, TIM4 16-bit
Up, Down,
Up/Down

Any integer
between 1
and 65536

Yes 4 No

General-
purpose

TIM15 16-bit Up
Any integer
between 1
and 65536

Yes 2 1

General-
purpose

TIM16, TIM17 16-bit Up
Any integer
between 1
and 65536

Yes 1 1

Basic
TIM6,
TIM7

16-bit Up
Any integer
between 1
and 65536

Yes 0 No

Table 2.2: Timers available in STM32F303RE (adapted from [23, p. 26])

6

.............................. 2.4. Overview of considered STM32 microcontrollers

2.4.2 STM32G431KB microcontroller overview

The STM32G431KB is an ARM Cortex-M4 32-bit microcontroller. Its analog peripherals are inferior
to the STM32F303RE, however its maximum clock frequency is significantly higher. Table 2.3 shows a
brief overview of the capabilities of this MCU. The timers available are detailed in Table 2.4.

fCP U Up to 170 MHz

Flash 128 KiB

SRAM 22 KiB

CCMRAM 10 KiB

ADCs Two 12-bit ADCs, up to 4 MSps

DACs Two 12-bit DAC channels

DMA Two controllers, 12 channels total

Table 2.3: Overview of STM32G431KB MCU capabilities

Table 2.4: Timers available in STM32G431KB (adapted from [29, p. 32])

7

2. Analysis ..
2.4.3 STM32F103C8 microcontroller overview

The STM32F103C8 is a widely used ARM Cortex-M3 32-bit microcontroller. Table 2.5 shows a brief
overview of the capabilities of this MCU. The timers available are detailed in Table 2.6.

fCP U Up to 72 MHz

Flash 64 KiB

SRAM 20 KiB

ADCs Two 12-bit ADCs, up to 1 MSps

DMA One 7-channel controller

Table 2.5: Overview of STM32F103C8 MCU capabilities

Table 2.6: Timers available in STM32F103C8 (adapted from [34, p. 17])

2.4.4 STM32F042F6 microcontroller overview

The STM32F042F6 is an ARM Cortex-M0 32-bit microcontroller. Table 2.7 shows a brief overview of
the capabilities of this MCU. The timers available are detailed in Table 2.8.

fCP U Up to 72 MHz

Flash 32 KiB

SRAM 6 KiB

ADCs One 12-bit ADC, up to 1 MSps

DMA One 5-channel controller

Table 2.7: Overview of STM32F042F6 MCU capabilities

8

.............................. 2.4. Overview of considered STM32 microcontrollers

Table 2.8: Timers available in STM32F042F6 (adapted from [36, p. 21])

2.4.5 STM32L072KZ microcontroller overview

The STM32L072KZ is an ultra-low-power ARM Cortex-M0+ 32-bit microcontroller. Table 2.9 shows a
brief overview of the capabilities of this MCU. The timers available are detailed in Table 2.10.

fCP U Up to 32 MHz

Flash 192 KiB

SRAM 20 KiB

ADCs One 12-bit ADC, up to 1 MSps

DMA One 7-channel controller

Table 2.9: Overview of STM32L072KZ MCU capabilities

Table 2.10: Timers available in STM32L072KZ (adapted from [39, p. 31])

9

2. Analysis ..
2.4.6 STM32L412KB microcontroller overview

The STM32L412KB is an ultra-low-power ARM Cortex-M4 32-bit microcontroller. Table 2.11 shows a
brief overview of the capabilities of this MCU. The timers available are detailed in Table 2.12.

fCP U Up to 80 MHz

Flash 128 KiB

SRAM 40 KiB

ADCs Two 12-bit ADCs, up to 5 MSps

DMA Two controllers, 14 channels total

Table 2.11: Overview of STM32L412KB MCU capabilities

Table 2.12: Timers available in STM32L412KB (adapted from [37, p. 40])

2.4.7 STM32F446RE microcontroller overview

The STM32F446RE is a high-end ARM Cortex-M4 32-bit microcontroller with rich analog peripherals
including 3 ADCs and two DACs. It also offers the largest variety of timers among all considered
STM32 microcontrollers. Table 2.13 shows a brief overview of the capabilities of this MCU. Table 2.14
describes the timers available in this microcontroller.

10

.............................. 2.4. Overview of considered STM32 microcontrollers

fCP U Up to 180 MHz

Flash 512 MiB

SRAM 128 KiB

ADCs Three 12-bit ADCs, up to 2.4 MSps

DACs Two 12-bit DAC channels

DMA Two controllers, 16 channels total

Table 2.13: Overview of STM32F446RE MCU capabilities

Table 2.14: Timers available in STM32F446RE (adapted from [33, p. 30])

11

12

Chapter 3
Developed software-defined instrument platform

A firmware package implementing a variety of software-defined instruments for multiple types of STM32
microcontrollers was developed in this work. It provides the following instruments: mixed-signal
oscilloscope, pulse generators, arbitrary generators, frequency counter. Each type of instrument and
its implementation are discussed in detail in chapters 5 through 8. The developed SDI platform was
named "Versatile STM32 Virtual Instrument (VSVI)". In order to use it, the MCU must first
be programmed with the VSVI firmware. Then, the MCU is connected to any desktop or laptop PC
via USB. The PC provides the user interface and power supply (USB) for the SDI platform. If the
microcontroller does not have a USB peripheral, a USB-to-UART converter (e.g. CH340 or ST-Link)
is used. A diagram of the implemented virtual instrument is shown in Figure 3.1.

Frequency counter

Arbitrary generators

Pulse generators

Oscilloscope

FirmwareHardware
MCU

1 8

2 7

3 6

4 5

IC

USB

UART UARTUSB

19 12

20 11

21 10

22 9

23 8

24 7

1

18

2

17

3

16

4

15

5

14

6

13

STM32

Inputs/outputs

PC

Data Plotter

USB

or

Figure 3.1: Diagram of the developed software-defined instrument platform

Instead of developing a specialized accompanying PC application, the already existing "Data Plotter"
application [12] is used. It provides a comprehensive GUI for oscilloscope-type instruments. It can
receive waveform data and send commands to the connected MCU as serial data via USB in Virtual
COM Port mode. A terminal emulator window is also embedded in the application. This is used
to display a terminal user interface (TUI) implemented within the VSVI firmware, as detailed in
chapter 4. This interface gives the user full control of all the implemented virtual instruments. No
modifications of the Data Plotter application were necessary, demonstrating the truly universal nature
of this terminal-based approach. Figure 3.2 shows the typical breadboard-based usage of the VSVI
platform, specifically with the STM32G431KB microcontroller. The corresponding block diagram
of the available software-defined instruments is shown in Figure 3.3. The main program loop of the
implemented VSVI firmware is illustrated in Figure 3.4.

13

3. Developed software-defined instrument platform...............................

USB
connector

board

MCU on

adapter

board

SDI

inputs,

outputs

USB cable

(to PC)

Reset

button

3.3 VDC

voltage

regulator

Figure 3.2: Developed software-defined instrument platform in use on a breadboard (STM32G431KB)

Mixed-signal

oscilloscope

(MSO)
DIN 0
DIN 1

DIN 7

AIN 1
AIN 2
AIN 3
AIN 4

Analog
channel

inputs

Digital
channel

inputs

Frequency counter
(CNT)
CNT

Pulse generator

(PWM 1)

PWM 1A
PWM 1B

Pulse generator

(PWM 2)

PWM 2A
PWM 2B

Pulse generator

(PWM 3) PWM 3A

Arbitrary generator

 (ARB 2) ARB 2

Arbitrary generator

 (ARB 1) ARB 1Comm. interface

(USB)
USB DM
USB DP

VSVI - Versatile STM32 Virtual Instrument

(STM32G431KB)

Counter
input

To PC

Pulse
generator
outputs

Arbitrary
generator
outputs

PWM 1C

Figure 3.3: Block diagram of software-defined instruments implemented for STM32G431KB

14

...............................3. Developed software-defined instrument platform

Connected

to PC

No

Yes

Have new

input freq.

Configure Data
Plotter, show TUI

Initialize all

peripherals, SDIs

MCU reset

Received

command Process command

Yes Recalculate MSO

ETS, RTS freq.

Yes

No

Yes

Acquire a single
waveform

Switch MSO into
Stop mode

No

No

Send acquired

wavefom to PC

Yes

No

MSO in
Stop mode

MSO in
Single mode

Figure 3.4: Main program loop of the developed SDI firmware

15

3. Developed software-defined instrument platform...............................
The implemented firmware was optimized primarily for the mixed-signal oscilloscope, which is the

main focus of this work. Nonetheless, all instruments can be used concurrently without any issues.
However, there are certain STM32 MCU hardware limitations (e.g. DMA throughput) that affect the
maximum achievable SDI specifications, for example the maximum oscilloscope sampling rate. The
VSVI firmware automatically adapts to these limitations by not allowing the user to set instrument
parameters outside their reliable ranges – ensuring the correct functionality of the SDIs at all times.
This feature stands in contrast to other previously developed SDI platforms such as LEO or EMBO
where corruption of the measured data is expected in some use cases.

3.1 Development of SDI firmware for STM32 microcontrollers

The firmware developed in this work primarily had to implement a variety of different types of
software-defined instruments. This includes configuration and utilization of MCU hardware resources
and sending measured data to the PC. The firmware also receives and processes various instrument
commands from the PC. Additionally, it is also responsible for displaying the terminal user interface,
including dynamic updates based on instrument configuration. All of this is achieved from within
the main program loop illustrated in Figure 3.4. As can be seen, the operation of the firmware
revolves mainly around the mixed-signal oscilloscope. Received commands are only processed when
the oscilloscope acquisition is stopped, as PC communication interferes with its sampling by increasing
load on the CPU and DMA controllers. The implementations of each type of instrument and the
terminal user interface are described in more detail in the following chapters 4 through 8.

3.1.1 HAL library and CubeMX software

A Hardware Abstraction Layer (HAL) library is provided for STM32 microcontrollers by their manu-
facturer, STMicroelectronics. This library serves to simplify the low-level programming of the MCU
hardware. The programmer needs only to use the CubeMX software (shown in Figure 3.5) to select
and configure a given microcontroller – the startup configuration code is generated automatically. This
approach may be suitable for most applications, but is not ideal for this work for a variety of reasons:

. The CubeMX software only generates startup code, but the hardware configuration of the MCU
must often change at runtime in this application.

. HAL library functions are generally not suitable for low-latency applications, as they include a lot
of code that is not strictly necessary.

. The HAL library code introduces substantial Flash size overhead. For example, when using the
HAL library for timers, the resulting firmware was over 10 kiB larger compared to a version using
the MCU registers directly.

. Using the HAL library has not proved to significantly ease programming. The documentation for
this library is often sparse and not straightforward. It is often not clear what exactly a certain
function will do, or when it should be called. This often lead to analyzing the source code of HAL
functions while debugging – rendering using the library rather pointless.

16

......................... 3.1. Development of SDI firmware for STM32 microcontrollers

Compared to the HAL library documentation, the reference manuals for each MCU are much
more detailed in the capabilities of each peripheral as well as the steps necessary to achieve a given
functionality. It was therefore decided the firmware would be programmed primarily using MCU
registers directly. Nonetheless, the HAL library and the CubeMX software were still used for some
parts of the firmware, namely:. Clock configuration (RCC). USB interface (Virtual COM Port). Programming Flash memory

These parts of the firmware would be tedious to implement using registers only, and even more difficult
to adapt to multiple types of microcontrollers. They are also well suited for HAL since they do not
need to change at runtime and are not part of time-intensive procedures.

Figure 3.5: CubeMX software for generation of STM32 startup code using HAL libraries

17

3. Developed software-defined instrument platform...............................
3.1.2 Effects of STM32 MCU differences on firmware development

One of the major objectives of this work was to develop firmware that would be easily adaptable
for many types of STM32 microcontrollers. This is a significantly more difficult task than may be
obvious at first glance due to the many differences among these MCUs. Parameters like maximum clock
frequency or Flash and SRAM size are relatively easy to adapt to, although they limit the performance
of the virtual instruments. However, there are also multiple differences which are significantly more
difficult to account for, such as the number and capabilities of:

.Analog-To-Digital converters (ADCs): Ranging from a single ADC capable of sampling at
only 1.1 MSps (STM32L072KZ) to 4 ADCs sampling at up to 5.1 MSps (STM32F303RE).

.Timers: Ranging from just 4 (STM32L072KZ) to 11 (STM32F303RE) with different capabilities

.Digital-To-Analog converters (DACs): Ranging from 2 DAC channels with update rate 1
MSps (STM32G431KB, STM32F303RE, STM32L072KZ) to none (STM32F103C8, STM32L412KB).

More substantial differences are found in the embedded Direct Memory Access (DMA) controllers.
There are either 1 or 2 in a given MCU, often depending on the package size. DMA controllers have
different number of channels with differing request mapping methods:

.DMAMUX: Additional peripheral that allows arbitrary mapping of any DMA request to any
channel of any DMA controller. Can also generate its own requests with multiple synchronization
options (STM32G431KB) [31, p. 405].

. Logical OR: Multiple requests are connected to a single channel via a logical OR function. A
small number of requests may be remapped between DMA controllers using SYSCFG registers
(STM32F103, STM32F303)[26, p. 268].

.Per-channel multiplexing: Multiple requests are connected to each channel via a multiplexer.
A configuration register selects a specific request to be connected through to the DMA controller
(STM32F446, STM32L072, STM32L412)[38, p. 296].

The STM32F103C8 microcontroller even differs in basic functionality such as selecting the GPIO
pin alternate function – using a set of alternate function registers (AFIO) to both configure the EXTI
interrupt lines and to select the alternate function from a set of remaps on a per-peripheral basis (e.g.
TIM CCx) [35, p. 175]. In the other microcontrollers, the EXTI lines are configured using SYSCFG
registers while alternate functions are selected on a per-pin basis using GPIO configuration registers.

Outright firmware compatibility is not guaranteed even when two microcontrollers offer the same
feature, controlled by the same registers. This is due to differences in register naming in the MCU
driver, i.e. header file containing macros with register addresses. For example, the EXTI pending
register is named "PR" in the STM32G431KB driver but "PR1" in the STM32F303RE driver. Both
registers are named "EXTI_PR1" in the respective MCU reference manuals. The GPIO registers are
similarly problematic, for example the "OSPEEDR" register is incorrectly named "OSPEEDER" in the
STM32F303RE driver.

18

................................... 3.2. Using STM32 microcontroller timers

3.1.3 Overview of developed firmware code base

All parts of the code developed in this work use the APP_ prefix to distinguish them from other code (HAL
and standard C libraries). The firmware is divided into modules corresponding to specific MCU periph-
erals and software-defined instruments. Each module consists of a header file (/Inc/APP/<module>.h)
and a source file (/Src/APP/<module>.c). Header files contain macros, type definitions and function
declarations. The source files contain the actual implementation, which is kept as MCU-agnostic as
possible. However, C preprocessor conditionals had to be used to select the appropriate implementation
in some places, such as DMA request mapping or alternate function configuration mentioned in section
3.1.2. These apply to a whole family of MCUs, therefore their modification should not be necessary in
most cases.

Each instance of a peripheral or SDI has a dedicated configuration (APP_<module>_cfg) and
data (APP_<module>_data) structure. Data structures are variable (stored in SRAM) and hold all
state variables of a given instance. Configuration structures are constant (stored in Flash) and
contain configuration parameters specific to the MCU used. All of them are consolidated in one
source file (/Src/APP/platform/<platform>.c) for easy portability. An accompanying header file
(/Inc/APP/platform/<platform>.h) contains all platform-specific macros and type definitions. The
MCU-specific configuration files contain parameters such as:

. The number of instruments available for each type and their specifications, e.g. maximum
oscilloscope sampling rates. Peripheral (TIM, ADC, DAC, DMA) configurations for each instrument. Interrupt vectors and handlers.GPIO pin assignments, alternate functions

A set of utility macros and functions was also implemented, for example simplified functions for
converting floating point values to strings and vice versa – saving a large amount of Flash by not using
the _printf_float functions from the stdio.h library. Similarly, a sine function approximation using
Taylor series was implemented in order to avoid including the math.h library. Other implemented
functions include GPIO configuration, string alignment and Base64 en/decoding (used to store arbitrary
waveform data more efficiently in configuration profiles).

3.2 Using STM32 microcontroller timers

The STM32 microcontroller timers are used by each implemented software-defined instrument. As
such, it was necessary to understand their operation and develop a set of functions for using them (to
avoid using HAL libraries as previously mentioned). There are various types of timers with different
capabilities embedded within STM32 MCUs, namely basic, general-purpose and advanced timers. The
block diagram of a general-purpose timer is shown in Figure 3.6. The operation of a timer is controlled
by its registers, primarily:.PSC: Prescaler – divides the frequency of the incoming clock signal such that a single positive

output signal transition is generated after every PSC positive input signal transitions..CNT: Counter – incremented with each positive transition of the signal coming from the prescaler.

19

3. Developed software-defined instrument platform...............................
.ARR: Auto-Reload Register – a timer update is generated when the counter reaches the value in

this register. This resets the counter and optionally generates an update interrupt (UI) or DMA
request.

.CCRx: Capture/Compare register of channel "x". In input capture mode, the value of CNT
is captured in this register when the capture event occurs, typically when an edge is detected
on the "CHx" input. In output compare mode, the comparison between CNT and CCRx values
determines the output value of the timer channel according to the output compare mode used. A
capture/compare interrupt (CCxI) or DMA request can also be generated.

Typically, all of the CNT, ARR and CCRx registers are 16 bits wide, with values between 0 and 65535.
Some MCUs offer a single 32-bit timer (still with 16-bit prescaler). The frequency of the CHx output
compare signals and the timer updates is given by

f =
fT IM

(PSC + 1) · (ARR + 1), (3.1)

i.e. 1 must be added to the values of the PSC and ARR registers to determine the actual number of
cycles within a timer period. The output compare modes used in this work are:

.Toggle: The output signal is toggled (high-to-low or low-to-high) every time the counter register
value matches the capture/compare register value, i.e. when

CNT = CCRx. (3.2)

.PWM mode 1: The output signal is high while the counter register value is below the capture/-
compare register value, i.e. when

0 ≤ CNT < CCRx. (3.3)

The output signal is low for the rest of the timer period, i.e. when

CCRx ≤ CNT ≤ ARR (3.4)

The duty cycle of the output signal is then

D =
CCRx

ARR + 1 · 100 %. (3.5)

Therefore, if multiple output compare channels of the same timer use this mode, all of their rising
edges are aligned (with the start of the timer period) while their pulse widths/duty cycles can
vary according to the values of their CCRx registers. Both the input capture/output compare
modes are configured using the CCMRx register.

20

................................... 3.2. Using STM32 microcontroller timers

Another important feature of the STM32 timers are their trigger and slave mode controllers. These
allow synchronization of timers with other timers or other peripherals, e.g. using a timer as a timebase
for triggering ADC conversions. The timer slave modes used in this work include:.Trigger: The timer is started on a rising edge of the trigger signal..Gated: The timer runs while the trigger signal is high, stops when the trigger signal goes low.. External clock mode 1: The timer is clocked by the trigger signal, incrementing the counter

on every rising edge.

These slave modes are configured using the SMCR register, while the trigger output (TRGO) signal is
selected within the CR2 register. The trigger signal can come from another timer via the ITRx internal
trigger connection, the external trigger (ETR) pin, or the filtered input channel 1 or 2 [26, p. 650].

General-purpose timers (TIM2/TIM3) RM0376

446/1010 RM0376 Rev 6

Figure 94. General-purpose timer block diagram

U

U

U

CC1I

CC2I

Trigger
controller

+/-

Stop, clear or up/down

TI1FP1
TI2FP2

ITR0
ITR1
ITR2 TRGI

Output
control

TRGO

OC1REF

OC2REF

U

UI

Reset, enable, up, count

CK_PSC

IC1

IC2 IC2PS

IC1PS
TI1FP1

TGI

TRC

TRC

ITR
TRC

TI1F_ED

CC1I

CC2I

TI1FP2

TI2FP1
TI2FP2

TI1

TI2

TIMx_CH1

TIMx_CH2

OC1

OC2 TIMx_CH2

TIMx_CH1

to other timers
to DAC/ADC

Slave
controller

mode

PSC
prescaler CNT counter

Internal clock (CK_INT)

CK_CNT

TIMxCLK from RCC

ITR3

MS19673V1

XOR
Input filter &
edge detector

 Capture/Compare 1 register

Notes:

Reg Preload registers transferred
to active registers on U event
according to control bit

Event

Interrupt & DMA output

Auto-reload register

Capture/Compare 2 registerPrescaler

Prescaler

Input filter &
edge detector

Output
control

U

U

CC3I

CC4I

Output
control

OC3REF

OC4REF

IC3

IC4 IC4PS

IC3PS

TI4FP3
TI4FP4

TIMx_CH3

TIMx_CH4

OC3

OC4 TIMx_CH4

TIMx_CH3Input filter &
edge detector

 Capture/Compare 3 register

Capture/Compare 4 registerPrescaler

Prescaler

Input filter &
edge detector

Output
control

TRC

TI3FP3
TI3FP4

TRC

CC3I

CC4I

TI3

TI4

Encoder
interface

TIMx_ETR Input filterPolarity selection & edge
detector & prescaler

ETR ETRP

ETRF

ETRF

Figure 3.6: General-purpose timer block diagram. Adapted from [40, p. 446].

21

3. Developed software-defined instrument platform...............................
3.2.1 Algorithm for computing STM32 timer register values (PSC, ARR)

An algorithm for computing the values of the PSC and ARR registers needed to achieve a given timer
frequency according to 3.1 was developed. This algorithm iteratively finds the two closest factorizations
of the integer frequency ratio

Nf =
⌊

fT IM

f

⌋
(3.6)

where fT IM is the MCU’s timer clock frequency and f the requested frequency. The algorithm ensures
that the requested frequency falls between the two actually achievable frequencies given by the two
sets of factors computed. In the end, the option that is closest to the requested frequency is picked.
The algorithm works as follows:..1. Initialize the loop variables ARR, PSC to 1, the low and high register values PSCL, ARRL and

PSCH , ARRH to 0. Also initialize the minimal remainders RL,min, RH,min to infinity...2. Set

PSC =
⌈

Nf

ARRmax

⌉
, (3.7)

this is the minimum prescaler value which ensures ARR ≤ ARRmax...3. While PSC2 ≤ Nf , do:. Compute

ARR = bNf /PSCc, (3.8)
RL = Nf mod PSC, (3.9)
RH = PSC −RL. (3.10). If RL < RL,min, set

RL,min = RL, (3.11)
ARRL = ARR− 1, (3.12)
PSCL = PSC − 1. (3.13). If RH < RH,min, set

RH,min = RH , (3.14)
ARRH = ARR, (3.15)
PSCH = PSC − 1. (3.16). Set PSC = PSC + 1...4. Now,

NL = (PSCL + 1)(ARRL + 1) (3.17)

is the closest possible frequency ratio such that NL ≤ Nf and

NH = (PSCH + 1)(ARRH + 1) (3.18)

is the closest possible frequency ratio such that NH ≥ Nf .

22

................................... 3.2. Using STM32 microcontroller timers..5. Compute the two frequencies

fL = fT IM

NL
, (3.19)

fH = fT IM

NH
(3.20)

and find the absolute errors between them and the desired frequency f , i.e.

eL = |f − fL| , (3.21)
eH = |f − fH | . (3.22)..6. Finally, pick the set of values that gave the frequency with the lower absolute error. This is the

closest frequency that can be generated.

The loop variables ARR, PSC are the actual factors of Nf as used in eq. 3.6, while ARRL, PSCL

and ARRH , PSCH are timer register values where 1 is subtracted from the real factor values. It is
only necessary to increment PSC up to the square root of Nf in order to find all the factors, since
those above the square root will have been computed as ARR values already. This also ensures that
PSC ≤ ARR which gives the highest possible duty cycle resolution.

23

24

Chapter 4
User interface for software-defined instruments

The typical approach of SDI platforms implemented in the past was to pair the MCU firmware with
a custom PC application to provide a graphical user interface (GUI) for displaying measured data
and controlling the instruments. The PC application for the popular Little Embedded Oscilloscope
(LEO) platform is shown in Figure 4.1 as an example. This approach certainly has advantages, such as
familiar user experience and visual appeal. However, it is not without its disadvantages, namely the
need to implement this specialized PC application in the first place. Moreover, it needs to be adapted
every time changes are made to the SDI firmware, such as adding new features or support for new
MCUs with different capabilities.

Figure 4.1: Oscilloscope GUI in PC application used by Little Embedded Oscilloscope (LEO)

25

4. User interface for software-defined instruments
A terminal (text-based) user interface (TUI) is a simpler alternative to a GUI. Traditionally, these

were used by computer terminals before the advent of GUIs, however they are still commonly used in
terminal emulators, predominantly on Unix-like systems. A terminal user interface consists primarily
of text without advanced graphical features. However, when supported, ANSI escape sequences can be
used to format the displayed text, e.g. changing its position, foreground and background colors. These
sequences were first standardized in ECMA-48 [14], then incorporated into the ANSI X3.64 standard
[15]. Using these, certain parts of the interface can be emphasized and distinct graphical elements such
as buttons, panels and toolbars can be created. Figure 4.2 shows an example of a TUI created using
ANSI escape sequences.

.
Figure 4.2: Motor controller TUI created using ANSI escape sequences. Adapted from [16, 42]

While a terminal user interface is not generally as easy to use or as visually appealing as a GUI,
it is much simpler to implement and lends itself well to being incorporated into the STM32 MCU
firmware itself. That way, all changes due to differing MCU capabilities and available features are
constrained to the MCU firmware, with no need to modify a PC application. Moreover, a universal
terminal emulator application can then be used to display the TUI. This approach is therefore very
flexible when it comes to adding new features or support for new microcontrollers which is why it was
used in the VSVI platform implemented in this work.

Some measurements such as oscilloscope waveforms cannot be displayed in a terminal though. The
data can be transferred to the PC but a separate application is needed to view it. Ideally, such an
application would also incorporate a terminal emulator in which the TUI could be displayed directly.
This application would then have the advantage of being universal in terms of the user interface and
easy to support by MCU firmware if a simple data format for oscilloscope waveforms is used. The Data
Plotter application [12] shown in Figure 4.3 fulfills these requirements and was therefore chosen to be
used with the VSVI platform. This application was developed for this exact use case as part of the
bachelor’s thesis "The Universal GUI for PC Based Oscillographs"[13].

4.1 Possibilities for terminal user interfaces using Data Plotter

Data Plotter provides a universal GUI for oscilloscope-like instruments with a multi-channel waveform
display, including analog and digital/logical channels. It also provides a plethora of display options
(waveform colors, scaling, zoom, etc.) and math including FFT analysis. Crucially, it also incorporates
a terminal emulator window in the sidebar on the right side of the window. The terminal supports
ANSI escape sequences, allowing the creation of various graphical elements.

26

......................... 4.1. Possibilities for terminal user interfaces using Data Plotter

Figure 4.3: Data Plotter PC application with empty terminal window in the sidebar

A novel feature of Data Plotter’s terminal is the support for clickable buttons within the displayed
terminal interfaces. This is achieved by Data Plotter reading the character displayed in the terminal at
the position of the mouse cursor, then sending this character to the MCU as a response to a mouse
click. This allows the implemented terminal user interface to be controlled in a manner very similar
to a GUI for a user-friendly experience. However, each command can then only be a single ASCII
character. This of course limits the maximum number of commands and the amount of information
contained within each.

Additionally, every occurrence of a command character is equivalent, regardless of whether it occurs
within a button or not – potentially sending unwanted commands to be sent. To alleviate this issue,
Data Plotter supports whitelisting or blacklisting of background colors – a character can be made
clickable only when displayed with certain background colors. These terminal options can be set within
the Data Plotter GUI shown in Figure 4.4 or by commands from the MCU. This way, every clickable
button can be rendered in a color not occurring elsewhere in the TUI to ensure no other characters
remain clickable. Additionally, for a cleaner look, the unique characters within each button can be
hidden by setting their foreground color to be the same as the background – leaving a blank button.

27

4. User interface for software-defined instruments

Figure 4.4: Data Plotter terminal options

Data Plotter also allows the user to send text commands to the MCU directly via the "Send to
device" text field underneath the terminal window, as seen on the bottom of Figure 4.4. The line
endings can be configured while the text field can be pre-filled by a command from the connected
microcontroller. This complements the single-character commands sent from the clickable buttons
described above by allowing the user to enter numeric values, for example. All of these Data Plotter
features are used by the terminal user interface implemented in the VSVI firmware, as detailed in the
following sections.

4.2 Developed terminal user interface

The terminal user interface developed in this work is shown in Fig. 4.5. It is optimized for use with
Data Plotter, relying on clickable buttons for all navigation and commands. The VSVI platform offers
a variety of instruments with numerous parameters and settings, all of which could not be displayed
at once in the relatively small Data Plotter terminal window. Therefore, the user interface has been
segmented into tabs, one for each type of virtual instrument. This way, all the parameters can be
logically grouped together and displayed with sufficient clarity.

28

.................................... 4.2. Developed terminal user interface

Each of the TUI tabs displays only the currently relevant instrument parameters, adjusting dynami-
cally to the instrument configuration. The name of the currently opened tab is displayed at the very
top of the interface. Switching between tabs is achieved via a drop-down menu, as shown in Figure 4.5.
This menu is opened when the user clicks the blue button located to the left of the tab name. This
approach is also used to select certain setting values, as detailed in section 4.2.2.

Figure 4.5: Implemented terminal user interface, showing the oscilloscope tab. Tab selection drop-down
menu opened on the right.

Within each tab, a number of instrument settings/parameters are shown. Their current values are
highlighted in white blocks, with units to their right, if applicable. The width of the value block is
adjusted for the precision with which the value is displayed. If the value of an instrument parameter
can be changed by the user, a clickable "edit" button is shown to the left of the parameter name. This
button is typically blue, with the exception of oscilloscope Run/Single/Stop settings. The behavior of
the TUI when this button is clicked depends on the type of the parameter being changed, as described
in the following sections 4.2.1 through 4.2.4.

29

4. User interface for software-defined instruments
4.2.1 TUI toggle settings

For settings with only a few discrete options, e.g. "on"/"off", repeatedly clicking the edit button cycles
through all the available options. The new value is applied immediately, there is no confirmation
necessary. This input method is implemented by each TUI tab directly.

Figure 4.6: Toggle setting in terminal user interface. The oscilloscope trigger mode setting is shown.

4.2.2 TUI drop-down menu

The "toggle setting" input method described above is very simple to implement but it becomes tedious
when there are more than a few options to cycle through. For this reason, a drop-down menu was
implemented for settings with a larger number of discrete options. This menu is shown under the
parameter value block and lists all the available options, each with a button on the left side. Clicking
one of these buttons selects the corresponding option and applies it immediately. The drop-down
menu is also closed at the same time, no confirmation is necessary. It is also closed if the user click
the edit button of any parameter, leaving the value of the parameter currently being adjusted unchanged.

Figure 4.7: Drop-down menu in terminal user interface. The oscilloscope input frequency source setting is
shown.

This input method is implemented centrally for all TUI tabs. When the user selects a setting for
which the drop-down menu is implemented, the active tab generates the list of menu options. A
centralized TUI function (used by all tabs) then renders the drop-down menu according to this list,
automatically assigning a command character to each (written into the button used to select that
option). This function also handles all the formatting such as matching the width of the drop-down
menu to the width of the parameter value block or selecting between displaying one or two columns of
options based on their width. When the button associated with one of the menu options is clicked, the
received command character is parsed by another centralized TUI function. This function matches
the command to one of the options, which it then returns as a string to the active TUI tab for
processing. This method simplifies the implementation of each individual TUI tab and prevents
firmware redundancy.

30

.................................... 4.2. Developed terminal user interface

4.2.3 TUI numeric value editor

A digit-wise editor displayed in a row under the value block is provided for numeric values. The "<" and
">" buttons select a digit in the value. The "+" and "-" buttons then increment/decrement the selected
digit. The rightmost digit position is a special case, as it contains the metric unit prefix character (as
defined in Table 4.1). Incrementing/decrementing at this position cycles through the available prefixes.
The new value is saved when the user clicks any parameter edit button. There may also be a number
of presets available below, which can be used in the same way as the drop-down menu described above.

Figure 4.8: Numeric editor in terminal user interface. A number of presets are available. The oscilloscope
real-time sampling frequency parameter is shown.

Similarly to the case of the drop-down menu, the numeric value editor is also implemented in cen-
tralized TUI functions. To render the numeric editor, the active tab only passes the current parameter
value as a string to one of the centralized functions. This value is copied into a centralized string buffer.
All subsequent user interaction such as highlighting or changing the selected digit is then also handled
centrally. Finally, when the user finishes the editing process by clicking one of the parameter edit
buttons, the resulting value is passed as a string back to the active TUI tab for processing. If there
are presets available, they’re handled the same way as options in the drop down menu, also returning
the selected value as a string. The tab can then parse this string either as an integer or floating point
number, depending on the type of parameter.

Prefix nano micro mili - kilo mega giga

Character "n" "u" "m" " " "k" "M" "G"

Multiplier 10−9 10−6 10−3 1 103 106 109

Table 4.1: Supported metric unit prefixes

The parameter value entered by the user often cannot be achieved exactly. The
firmware then sets the closest possible value, which is subsequently shown in the TUI.
However, the originally selected value is saved and the firmware will attempt to achieve
a closer match if the instrument configuration is changed later.

31

4. User interface for software-defined instruments
4.2.4 TUI direct value entry using Data Plotter

While the value input options described so far are certainly usable, they are not quite as convenient as
being able to directly type the value on the keyboard. Therefore, another method was also implemented,
using the "Send to device" function of Data Plotter. Located below the terminal window, this text field
is pre-filled with the current parameter value when the value editor (drop-down or numeric) is opened.
The user may then type the desired value in this field directly and apply it by clicking the send button.

Figure 4.9: Direct TUI parameter value entry using Data Plotter. The text field is pre-filled with the current
parameter value.

The text received by the MCU when using this option is parsed by the same centralized function
that parses all other TUI commands, distinguished by the end of line character. When a parameter
value is received in this way, it is passed directly to the active TUI tab as a string. The tab then
processes it the same way as if it came from the drop-down menu or numeric value editor.

32

Chapter 5
Mixed-signal oscilloscope

Oscilloscopes are among the most important types of test equipment for electronics development or
for teaching electronics. They can be used to analyze the signals at various points of a circuit under
test, allowing the user to verify its functionality or find any potential issues. Unfortunately, affordable
low-end oscilloscopes may only offer two channels or lack other important features. Moreover, the
proportion of digital circuits in electronics is ever-increasing, and with that comes the need to analyze
many digital signals at once, for example data buses and interfaces such as SPI or I2C. This often
exceeds the 4 channels found on standard oscilloscopes.

However, in most cases, there is no need to visualize the actual waveforms of digital signals, only to
differentiate between high and low logical levels. This can be achieved by logic analyzers which are
typically more affordable and offer significantly more channels than oscilloscopes, e.g. 8 or 16. The
two types of instruments are often combined into a mixed-signal oscilloscope (MSO). An example of a
commercially available MSO with 4 analog and 8 digital channels is shown in Figure 5.1. This type of
instrument has the advantage of synchronized sampling of all analog and digital channels, allowing the
user to time-correlate events happening in the digital and analog parts of the tested circuit. However,
these instruments are often more than double the price of a comparable standard oscilloscope.

Figure 5.1: Commercially available mixed-signal oscilloscope – Keysight MSOX2014A. Adapted from [20].

The main goal of this work was to implement low-cost, portable alternatives to these instruments
in the form of a software-defined oscilloscope and logic analyzer implemented for various STM32

33

5. Mixed-signal oscilloscope...
MCUs. Upon consideration, the decision was made to combine the two instruments and create a
software-defined mixed-signal oscilloscope with synchronous sampling of 4 analog channels and up
to 16 digital channels. This is a novel approach compared to the SDI platforms described in section
2.2, in that these platforms always implemented oscilloscopes and logic analyzers separately, with
no means to trigger each other or time-correlate acquired waveforms. Additionally, the MSO instru-
ment implemented in this work adds support for equivalent-time sampling, dramatically increasing
the effective sampling rates achievable for periodic input signals. As can be seen in Figure 5.2, the
oscilloscope relies on the aforementioned Data Plotter PC application to display the acquired waveforms.

Figure 5.2: Implemented software-defined mixed-signal oscilloscope used within Data Plotter

The block diagram of the implemented MSO, including the STM32 hardware resources used is shown
in Figure 5.3. The analog channels are implemented using the analog-to-digital converters embedded
in the STM32 MCUs. These offer 12-bit resolution with max. sampling rates between 1 MSps and 5
MSps depending on the MCU (see section 2.4). The timing of their sampling is tightly controlled by
triggering the ADC conversions from the sampling timer. After each ADC conversion, the sample data
is transferred by a DMA controller from the ADC data register to a circular waveform buffer within
the embedded SRAM memory.

34

...5. Mixed-signal oscilloscope

The digital channels are essentially just digital GPIO pins in input mode. The current state (logical
low or high) of each of up to 16 pins of a given GPIO port (e.g. GPIOA, GPIOB) can be read from
the GPIO input data register (IDR). As such, up to 16 digital channels can be sampled by a single
register read operation if all of them are assigned to pins of the same GPIO port. The sampling of
digital channels is performed directly by a DMA controller, transferring the value of the GPIO IDR
register to a circular waveform buffer in SRAM. The request for this transfer comes from one of the
capture/compare channels of the sampling timer. This guarantees precise sampling rate control and
synchronicity with analog channels sampled by ADCs. However, as ADC conversions are significantly
slower than DMA transfers, the digital channel sampling rates can be greatly increased when all analog
channels are disabled.

i

Timebase

Mixed-signal oscilloscope (MSO)

Analog channels

Sampling

TIM

DIN 0
DIN 1

DIN 7

Waveform

buffer

SRAM

AWD flag EXTI flagTrigger

(firmware)

ADC

Digital channels

ADC

GPIO

IDR

AIN 1
AIN 2
AIN 3
AIN 4

fSR

fSYS

fINETS/RTS
freq. calc. fPWMx

fARBx

fCNTPSC

ARR

fSR

Figure 5.3: Block diagram of implemented mixed-signal oscilloscope

Standard "Stop/Run/Single" oscilloscope modes are used, accompanied by a "Force trigger" option.
The oscilloscope trigger is implemented by firmware within the acquisition loop illustrated in Figure
5.5. The oscilloscope can be triggered when a rising or falling edge is detected within the input signal.
Auto trigger is also supported, forcing the MSO to trigger when more than 5 record lengths have
elapsed with no normal trigger event detected, i.e. when

NA ≥ 5 ·NR, (5.1)

where NA is the number of acquired samples and NR is the MSO record length.

35

5. Mixed-signal oscilloscope...
The analog watchdog (AWD) feature of the STM32 analog-to-digital converters is used for triggering

from an analog channel. The analog watchdog sets the AWD flag in the ADC status register and
optionally issues an interrupt if the value of the last ADC sample is outside the watchdog "guarded"
area [31, p. 653]. However, this feature cannot actually detect an edge in a signal, only indicating
when the sample value is above or below a given threshold. Because of this, a two-stage approach is
needed, as illustrated in Figure 5.4. For example, when triggering on a rising edge, the guarded area is
first set to the area above the trigger level. Then, when the first sample goes below the trigger level,
the first AWD flag is set. The guarded area is then changed to be the area below the trigger level. The
trigger event occurs when the second AWD flag is set, as the input signal had by that point necessarily
made a transition from below to above the trigger threshold.

Figure 5.4: Use of the analog watchdog ADC feature for oscilloscope trigger. A rising edge is detected.

When triggering from a digital channel, the extended interrupts and events controller (EXTI) is
used to directly detect rising or falling edges in the input signal. This is achieved by a pair of hardware
edge detectors feeding into the EXTI controller with configurable edge polarity. Whether the edge
detection is active on any given GPIO pin can also be configured, allowing the trigger to occur
from any digital channel selectively. Typically, an interrupt would be generated when an event is
detected. However, interrupts introduce additional delays before the interrupt handler function code is
executed, on the order of tens of CPU cycles [19]. Therefore, the implemented acquisition loop (see
Figure 5.5) reads the EXTI interrupt pending register (PR) instead. A logical high value in this regis-
ter indicates an input signal edge has been detected since the last time the firmware cleared this register.

Since the trigger is only firmware-based, there is some inherent delay between the trigger event and
the firmware loop acknowledging it. This issue is particularly exacerbated if an interrupt occurs around
the same time as the trigger event. This causes the recorded trigger time (sample index) to be delayed
from the actual trigger time. To compensate for this issue, the following steps are taken:. An extra NE = 16 samples are added to each acquisition beyond the user-selected record length.. At the end of each acquisition, the firmware checks the waveform buffer at the recorded trigger

sample index to determine if the selected trigger edge occurred at that point.. If no edge is found, the firmware steps backwards through the previous samples to determine the
actual position of the trigger.. In case no edge is found within the extra samples, the contents of the waveform buffer are discarded
and a new acquisition is started.

36

...5. Mixed-signal oscilloscope

Yes

Acquisition

start

Enable ADCs,

start sampling TIM

No Acquired
pre-trigger

Pending

AWD flag

Pending

AWD flag

Enable analog
watchdog (AWD)

Invert active

area of AWD

Analog

trigger

Yes

No Acquired
post-trigger

Stop sampling

timer via OPM

Yes

Yes

Yes

No

No

No

NoEnable EXTI

edge detector

Pending

EXTI flag

No

Yes

Figure 5.5: Mixed-signal oscilloscope firmware acquisition loop

37

5. Mixed-signal oscilloscope...
5.1 Real-time sampling

Typically, oscilloscopes use real-time sampling (RTS) of their input channels. Using RTS, samples
are captured at the real-time sampling frequency fSR, i.e. with the real-time sampling period of TSR

between subsequent samples. In accordance with the well-known Nyquist theorem, this sampling mode
only captures the input signal correctly if the highest frequency fIN,max in the signal is lower than the
Nyquist frequency, i.e.

fIN,max < fNY Q (5.2)

fIN,max <
fSR

2 . (5.3)

When this condition is not satisfied, aliasing occurs. In other words, the oscilloscope must capture
more than 2 samples per each period of the input signal. This is only an absolute minimum value,
however – the record length would need to be very large to accurately represent the signal by averaging
many acquired periods. A more practical lower bound is approximately 10 samples per period. The
following figures 5.6 through 5.8 illustrate real-time sampling at various sampling rates (samples
per period). In figure 5.6, the input signal frequency is equal to the Nyquist frequency, causing the
reconstructed signal to be a constant zero – this case demonstrates why the Nyquist theorem requires
the input frequency to be strictly lower than the Nyquist frequency.

Figure 5.6: Real-time sampling at 2 samples per period (Nyquist limit). Real-time sampling period is
TSR = 1/2 · TIN . Acquired samples are all zero, producing an incorrect signal reconstruction.

38

.. 5.1. Real-time sampling

Figure 5.7: Real-time sampling at 4 samples per period. Real-time sampling period is TSR = 1/4 · TIN .
Reconstructed 1 signal period from acquired samples.

Figure 5.8: Real-time sampling at 8 samples per period. Real-time sampling period is TSR = 1/8 · TIN .
Reconstructed 1 signal period from acquired samples.

39

5. Mixed-signal oscilloscope...
However, the real-time sampling mode may not be suitable in all cases, for example with a high-

impedance input signal source. This source must charge the ADC sampling capacitor within the
sampling time tLAT R which is rather short (tens of nanoseconds) at high sampling rates. The sampling
capacitor charging rate is limited by the source impedance RAIN . Effectively, a low-pass RC filter is
formed, as can be seen in Figure 5.10. This significantly lowers the usable analog bandwidth of the
oscilloscope. To resolve this issue, a buffer amplifier can be used to present a low-impedance source
to the ADC as shown in Figure 5.11. The firmware always maximizes the sampling time (for a given
sampling rate) and displays it in the TUI alongside other MSO parameters, as seen in Figure 5.2.

Figure 5.9: Sampling settings in TUI, MSO in real-time sampling mode

-
+

Signal source

Buffer amplifier

STM32 ADC

Signal source
STM32 ADC

Figure 5.10: MSO input signal connected directly to the STM32 ADC. Adapted from [23, p. 144].

-
+

Signal source

Buffer amplifier

STM32 ADC

Signal source
STM32 ADC

Figure 5.11: Use of amplifier to buffer high-impedance MSO input signal. Adapted from [23, p. 144].

40

.. 5.2. Equivalent-time sampling

5.2 Equivalent-time sampling

While aliasing is generally an undesirable effect, it can also be utilized to sample periodic signals in
equivalent-time sampling (ETS) mode. Assuming every period of the input signal is equivalent, samples
taken from multiple periods can be combined. Traditionally, this is done by randomly timed sampling,
where the time elapsed since the trigger event is recorded alongside each sample. The waveform can
then be reconstructed by placing each sample at the correct time [17]. This method is visualized in
Figure 5.12;

Figure 5.12: Usual method of equivalent-time sampling. Adapted from [18].

This traditionally used method requires significantly more memory and post-processing, which
would be a rather slow process on the MCUs used. For these reasons, the alternative "stroboscopic"
equivalent-time sampling method is used. This alternative method is demonstrated in Figures 5.13
through 5.16. It involves setting the real-time sampling period TSR to be slightly longer than NP input
signal periods TIN . Then, the equivalent-time sampling rate fSE can be calculated according to

TSR = NP · TIN + TSE ⇐⇒ fSR =
fIN · fSE

fIN + NP · fSE
(5.4)

TSE = TSR −NP · TIN ⇐⇒ fSE =
fIN · fSR

fIN −NP · fSR
. (5.5)

Using this method, periodic signals can be sampled at significantly higher equivalent rates than
using real-time sampling. The limitation is no longer the maximum sampling rate of the ADCs, but
the frequency resolution of the sampling timer. When NP = 1, the max. ETS frequency is equal to the
timer clock frequency (up to 2 orders of magnitude above max. ADC sampling frequency). When more
input periods are skipped between samples, NP > 1, the max. ETS frequency is further multiplied
as is the time needed to acquire a whole waveform. An additional benefit of this sampling method is
that the sampling time can be substantially increased, allowing the use of high-impedance input signal
sources. Since the sampling capacitor voltage tracks the input voltage for a longer time, the effect of
transients is minimized and the full analog bandwidth of the ADCs can be utilized.

41

5. Mixed-signal oscilloscope...

Figure 5.13: Equivalent-time sampling at 4 samples per period with 1 whole period between samples
(NP = 1). Equivalent-time sampling period is TSE = 1/4 · TIN , real-time sampling period is TSR =
NP · TIN + TSE = 5/4 · TIN . Reconstructed 1 period from samples acquired from 5 periods.

Figure 5.14: Equivalent-time sampling at 4 samples per period with 2 whole periods between samples
(NP = 2). Equivalent-time sampling period is TSE = 1/4 · TIN , real-time sampling period is TSR =
NP · TIN + TSE = 9/4 · TIN . Reconstructed 1 period from samples acquired from 9 periods.

42

.. 5.2. Equivalent-time sampling

Figure 5.15: Equivalent-time sampling at 8 samples per period with 1 whole period between samples
(NP = 1). Equivalent-time sampling period is TSE = 1/8 · TIN , real-time sampling period is TSR =
NP · TIN + TSE = 9/8 · TIN . Reconstructed 1 period from samples acquired from 9 periods.

Figure 5.16: Equivalent-time sampling at 16 samples per period with 1 whole period between samples
(NP = 1). Equivalent-time sampling period is TSE = 1/16 · TIN , real-time sampling period is TSR =
NP · TIN + TSE = 17/16 · TIN . Reconstructed 1 period from samples acquired from 17 periods.

43

5. Mixed-signal oscilloscope...
The implemented method of equivalent-time sampling relies on the knowledge of the precise funda-

mental input signal frequency fIN in order to set the real-time sampling frequency fSR so that the
desired fSE is achieved. There are three supported ways to obtain the input signal frequency which
can be selected within the oscilloscope TUI tab shown in Figure 5.17. The options are:.Manual input: The user may simply enter the value of the input signal frequency if it is known.. Self-generated signal: It is ideal if the situation allows for the MSO input signal being measured

to be derived from a signal generated by the MCU itself. This eliminates any effects of frequency
drift, as the MSO sampling clock and the generated signal are both derived from the same clock
source. The MSO can automatically set its input signal frequency value to the output signal
frequency of any pulse or arbitrary generator. This option is particularly useful for performing
step response analysis of a circuit, for example comparing slew rates of the pulse and arbitrary
generator output signals as shown in Figure 7.7.. External signal measured by frequency counter: In case it is not possible to derive the
MSO input signal from the MCU itself, there is also the option to measure the frequency of the
input signal. This is done using the implemented frequency counter described in 8. This option
was used for all ETS mode testing in chapter 10.

In all cases, the frequency of the input signal must remain constant for the whole duration of the
acquisition, otherwise the ETS frequency will exhibit jitter – "stretching" or "squeezing" parts of the
acquired waveform as seen in Figure 10.16.

Figure 5.17: Mixed-signal oscilloscope TUI tab (equivalent-time sampling mode)

Within the oscilloscope TUI tab, the user can set either the equivalent-time or real-time sampling
frequency. There are two modes of operation associated with these settings:. The user sets the "ETS freq." parameter. The firmware then finds an RTS frequency such that

the resulting ETS frequency is as close as possible to the entered value. If the input frequency
changes, the firmware readjusts the RTS frequency to maintain the desired ETS frequency.. The user sets the "RTS freq." parameter. In that case, the "ETS freq." parameter only shows the
calculated ETS frequency, based on the input frequency. If the input frequency changes, the RTS
frequency remains unchanged, while the ETS frequency is recalculated.

44

.. 5.3. Interleaved sampling

5.3 Interleaved sampling

When real-time sampling is used, the maximum oscilloscope sampling rate is severely limited by the
max. sampling rate of the ADCs. Typically, the minimum ADC sampling period is 14 or 15 ADC clock
cycles, while the ADC clock frequency may be reduced compared to the CPU clock. However, if there
are multiple ADCs embedded within the MCU, it is possible to use multiple of them to sample the same
input signal. Since the sampling of each ADC can be started independently by the capture/compare
channels of the sampling timer, a time offset between the ADCs can be set. Interleaved sampling can
thus be achieved by multiple ADCs sampling the input signal alternatively at regular intervals – half
the sampling timer period for 2 ADCs per channel, quarter for 4 ADCs per channel. The effective
MSO sampling rate is then multiplied by the number of ADCs used to sample each channel. Of course,
this mode can only be used if the number of active analog channels is lower than the number of ADCs
available. The following section 5.4 details the supported interleaved sampling modes, depending on
the number of ADCs available in the MCU.

The maximum real-time sampling rate for the digital channels is limited by the duration of a DMA
transfer, i.e. 6 AHB cycles in the best case when GPIO and SRAM are not busy. However, the AHB
bus is only occupied for 3 of those cycles. As illustrated in Figure 5.18, the same DMA controller can
start another channel’s request arbitration during the Ack cycle and the last 2 cycles of AHB bus
access [21, p. 10]. Therefore, it is possible to also use interleaved sampling for the digital channels.
Two channels of the same DMA controller are used, with alternating DMA requests coming from two
capture/compare channels of the sampling timer. The minimum sampling period is then 3 AHB cycles,
doubling the maximum achievable sampling rate for the digital MSO channels.

Figure 5.18: Timing diagram of two active DMA channels on AHB bus. Adapted from [21, p. 10].

5.4 Supported MSO channel configurations

All the supported mixed-signal oscilloscope channel configurations are described in this section. A
channel configuration includes the number of enabled analog and digital channels as well as the number
of ADCs available. Multiple configurations are available when interleaved sampling is used. If the
selected sampling rate exceeds the rate achievable without interleaving, the oscilloscope automatically
switches into the interleaved mode (if the number of enabled analog channels and ADCs allows it). Each
configuration is primarily described by a timing diagram. A corresponding diagram of the waveform
buffer is also included to show the order of the samples within. The firmware must rearrange these
samples into the correct order before the waveform data is sent to Data Plotter and displayed. In order
to save space, the legends for both types of diagrams are shown separately in Figures 5.20, 5.19.

45

5. Mixed-signal oscilloscope...

Figure 5.19: Legend for MSO waveform buffer diagrams

Figure 5.20: Legend for MSO timing diagrams

5.4.1 Digital channel configurations

All supported MCUs are functionally equivalent in terms of digital channels. Interleaved sampling by 2
DMA channels is available. It is activated if all analog channels are disabled or if they are interleaved
by 2 ADCs per channel. Digital channels cannot be enabled if analog channels are interleaved by 4
ADCs per channel – there are no sampling timer capture/compare channels left. The number of digital
channels has no impact on their sampling – each digital sample is 2 bytes long, each bit corresponding
to one digital channel. Therefore, up to 16 digital channels can be sampled by a single DMA transfer. If
analog channels are enabled, the sampling clock of the digital channels is delayed by the ADC sampling
time tSMP and trigger latency tLAT R to ensure synchronization of analog and digital samples.

Figure 5.21: MSO timing diagram, digital channels only. Record length is k samples after k sampling timer
periods (2 shown).

46

..................................5.4. Supported MSO channel configurations

Figure 5.22: MSO waveform buffer, digital channels only. Record length is k samples after k sampling timer
periods.

Figure 5.23: MSO timing diagram, digital channels only, interleaved by 2 DMA channels. Maximum
sampling rate is doubled (vs. using 1 DMA channel). Record length is 2k samples after k sampling timer
periods (2 shown).

Figure 5.24: MSO waveform buffer, digital channels only, interleaved by 2 DMA channels. Record length is
2k samples after k sampling timer periods.

47

5. Mixed-signal oscilloscope...
5.4.2 Analog channel configurations for MCUs with 1 ADC

Microcontrollers with only a single embedded ADC are the most limited, as detailed in the following
figures. When more than one analog channel is enabled, each is sampled alternately by the ADC,
introducing a time delay between the acquired samples. The maximum real-time sampling rate is
halved if two channels are enabled and quartered if four channels are enabled. Interleaved sampling is
not possible.

MCU with 1 ADC sampling 1 analog channel

Figure 5.25: MSO timing diagram, 1 analog channel (MCU with 1 ADCs). Using 1 ADC independently.
Record length is k samples after k sampling timer periods (2 shown).

Figure 5.26: MSO waveform buffer, 1 analog channel (MCU with 1 ADCs). Using 1 ADC independently.
Record length is k samples after k sampling timer periods.

48

..................................5.4. Supported MSO channel configurations

MCU with 1 ADC sampling 2 analog channels

Figure 5.27: MSO timing diagram, 2 analog channels (MCU with 1 ADC). Maximum sampling rate is
halved (vs. sampling 1 analog channel). Record length is k samples after k sampling timer periods (2
shown).

Figure 5.28: MSO waveform buffer, 2 analog channels (MCU with 1 ADC). Record length is k samples after
k sampling timer periods.

49

5. Mixed-signal oscilloscope...
MCU with 1 ADC sampling 4 analog channels

Figure 5.29: MSO timing diagram, 4 analog channels (MCU with 1 ADC). Maximum sampling rate is
quartered (vs. sampling 1 analog channel). Record length is k samples after k sampling timer periods (2
shown).

Figure 5.30: MSO waveform buffer, 4 analog channels (MCU with 1 ADC). Record length is k samples after
k sampling timer periods.

50

..................................5.4. Supported MSO channel configurations

5.4.3 Analog channel configurations for MCUs with 2 ADCs

Microcontrollers with two embedded ADCs give a modest variety of possible analog channel configura-
tions, as detailed in the following figures. When all four channels are enabled, they must be sampled
alternately, halving the maximum sampling rate and introducing a delay between channel samples. For
two analog channels, the pair of ADCs samples them simultaneously. Interleaved sampling is available
when a single analog channel is enabled, doubling the maximum sampling rate.

MCU with 2 ADCs sampling 1 analog channel

Figure 5.31: MSO timing diagram, 1 analog channel (MCU with 2 ADCs). Using 1 ADC independently.
Record length is k samples after k sampling timer periods (2 shown).

Figure 5.32: MSO waveform buffer, 1 analog channel (MCU with 2 ADCs). Using 1 ADC independently.
Record length is k samples after k sampling timer periods.

51

5. Mixed-signal oscilloscope...

Figure 5.33: MSO timing diagram, 1 analog channel, interleaved by 2 ADCs (MCU with 2 ADCs). Using 2
ADCs independently. Maximum sampling rate is doubled (vs. sampling 2 analog channels). Record length is
2k samples after k sampling timer periods (2 shown).

Figure 5.34: MSO waveform buffer, 1 analog channel, interleaved by 2 ADCs (MCU with 2 ADCs). Using 2
ADCs independently. Record length is 2k samples after k sampling timer periods.

52

..................................5.4. Supported MSO channel configurations

MCU with 2 ADCs sampling 2 analog channels

Figure 5.35: MSO timing diagram, 2 analog channels (MCU with 2 ADCs). Using 2 ADCs independently.
Record length is k samples after k sampling timer periods (2 shown).

Figure 5.36: MSO waveform buffer, 2 analog channels (MCU with 2 ADCs). Using 2 ADCs independently.
Record length is k samples after k sampling timer periods.

53

5. Mixed-signal oscilloscope...
MCU with 2 ADCs sampling 4 analog channels

Figure 5.37: MSO timing diagram, 4 analog channels (MCU with 2 ADCs). Using 2 ADCs independently.
Maximum sampling rate is halved (vs. sampling 2 analog channels). Record length is k samples after k
sampling timer periods (2 shown).

Figure 5.38: MSO waveform buffer, 4 analog channels (MCU with 2 ADCs). Using 2 ADCs independently.
Record length is k samples after k sampling timer periods.

54

..................................5.4. Supported MSO channel configurations

5.4.4 Analog channel configurations for MCUs with 4 ADCs

Microcontrollers with four embedded ADCs give the largest variety of possible analog channel configu-
rations, as detailed in the following figures. When all four channels are enabled, there is one ADC for
each, sampling simultaneously. For two analog channels, a pair of ADCs can be used for interleaved
sampling to double the maximum sampling rate. Finally, for a single analog channel, either two or all
four ADCs can be used for interleaving. The sampling rate is quadrupled in the latter case.

MCU with 4 ADCs sampling 1 analog channel

Figure 5.39: MSO timing diagram, 1 analog channel (MCU with 4 ADCs). Using 1 ADC independently.
Record length is k samples after k sampling timer periods (2 shown).

Figure 5.40: MSO waveform buffer, 1 analog channel (MCU with 4 ADCs). Using 1 ADC independently.
Record length is k samples after k sampling timer periods.

55

5. Mixed-signal oscilloscope...

Figure 5.41: MSO timing diagram, 1 analog channel, interleaved by 2 ADCs (MCU with 4 ADCs). Using 2
ADCs independently. Maximum sampling rate is doubled (vs. sampling 4 analog channels). Record length is
2k samples after k sampling timer periods (2 shown).

Figure 5.42: MSO waveform buffer, 1 analog channel, interleaved by 2 ADCs (MCU with 4 ADCs). Using 2
ADCs independently. Record length is 2k samples after k sampling timer periods.

56

..................................5.4. Supported MSO channel configurations

Figure 5.43: MSO timing diagram, 1 analog channel, interleaved by 4 ADCs (MCU with 4 ADCs). Using
4 ADCs independently. Maximum sampling rate is quadrupled (vs. sampling 4 analog channels). Record
length is 4k samples after k sampling timer periods (2 shown).

Figure 5.44: MSO waveform buffer, 1 analog channel, interleaved by 4 ADCs (MCU with 4 ADCs). Using 4
ADCs independently. Record length is 4k samples after k sampling timer periods.

57

5. Mixed-signal oscilloscope...
MCU with 4 ADCs sampling 2 analog channels

Figure 5.45: MSO timing diagram, 2 analog channels (MCU with 4 ADCs). Using 2 ADCs in dual
simultaneous mode. Record length is k samples after k sampling timer periods (2 shown).

Figure 5.46: MSO waveform buffer, 2 analog channels (MCU with 4 ADCs). Using 2 ADCs in dual
simultaneous mode. Record length is k samples after k sampling timer periods.

58

..................................5.4. Supported MSO channel configurations

Figure 5.47: MSO timing diagram, 2 analog channels, each interleaved by 2 ADCs (MCU with 4 ADCs).
Using 2 pairs of ADCs in dual simultaneous mode (4 ADCs total). Record length is 2k samples after k
sampling timer periods (2 shown).

Figure 5.48: MSO waveform buffer, 2 analog channels, each interleaved by 2 ADCs (MCU with 4 ADCs).
Using 2 pairs of ADCs in dual simultaneous mode (4 ADCs total). Record length is 2k samples after k
sampling timer periods.

59

5. Mixed-signal oscilloscope...
MCU with 4 ADCs sampling 4 analog channels

Figure 5.49: MSO timing diagram, 4 analog channels (MCU with 4 ADCs). Using 2 pairs of ADCs in dual
simultaneous mode (4 ADCs total). Record length is k samples after k sampling timer periods (2 shown).

Figure 5.50: MSO waveform buffer, 4 analog channels (MCU with 4 ADCs). Using 2 pairs of ADCs in dual
simultaneous mode (4 ADCs total). Record length is k samples after k sampling timer periods.

60

..................................5.4. Supported MSO channel configurations

Interleaved sampling issues caused by STM32F303RE erratum

Unfortunately, during the development of the mixed-signal oscilloscope, issues caused by STM32F303RE
microcontroller erratum "2.3.1: DMA Overrun in dual interleaved mode with single DMA channel"
[24] were encountered. The errata sheet states that ADC overruns may occur when dual interleaved
ADC mode is used with MDMA mode (one DMA channel is used to transfer samples from 2 ADCs
simultaneously). The listed workaround calls for separate DMA channels to be used for each ADC.

The dual interleaved mode was used at first in attempts to implement interleaving of 1 analog
channel by 4 ADCs. ADC 1 (master) was triggered first (from TIM CCx). Using dual interleaved
mode, ADC 2 (slave) was set to start its conversion 4 cycles later. ADC 3 (master) was triggered
4 cycles after ADC 2 (8 cycles after ADC 1) from another CCx the same TIM. Finally, ADC 4
(slave) was set to start its conversion 4 cycles after ADC 3 (8 cycles after ADC2, 12 cycles after
ADC1). The interleaved conversion time was therefore 4 cycles, while the time between conversions
of the same ADC was 16 cycles. Since the minimum conversion time of a single ADC with min.
sampling time is 14 CPU cycles, this approach should work. Unfortunately, it did not, regardless
of whether MDMA mode or separate DMA channels were used – ADC overruns still occurred frequently.

In the end, it was found that ADC overruns occurred whenever a master ADC conversion was
started before the end of the associated slave ADC conversion. For example, considering the minimum
conversion time of 14 ADC cycles and a master-slave delay of 4 cycles, overruns occurred whenever the
master ADC was retriggered less than 18 cycles after the first trigger (while the slave ADC conversion
was still ongoing). Again, this occurred with both MDMA mode and when using separate DMA
channels. The reason why the workaround stated in the errata sheet does not work remains unknown.

This issue was eventually resolved by abandoning the dual interleaved mode altogether. Instead, all
four ADCs are used independently, triggered from 4 different TIM capture/compare channels. The
CCRx register values are offset by 1/4 of the ARR register value each (each ADC is delayed by a
quarter of the sampling timer period TST). Unfortunately, this approach involves the use of 4 distinct
DMA channels, with a new DMA request generated every 4 CPU cycles (at the highest sampling rate).
This does not leave sufficient AHB bandwidth for digital channels and especially arbitrary generators,
since DACs are accessed through the APB bus running at half the speed of the AHB bus. Additionally,
any SRAM or ADC access by the CPU also has the potential to cause an ADC overrun. To resolve this,
all firmware variables were moved into the CCMRAM memory – accessing CCMRAM does not conflict
with DMA accesses to SRAM, which remained reserved for the oscilloscope and arbitrary generator
circular buffers. Accesses to the ADC peripherals by the CPU were also reduced to the bare minimum
(checking AWD flags for trigger).

Following this issue and the extensive debugging involved, the dual interleaved mode was no longer
considered reliable and was subsequently avoided even for interleaving 2 ADCs per channel. Instead,
multiple TIM CCx triggers are used with ADCs in independent mode (2 ADCs, 1 channel) or dual
simultaneous mode (4 ADCs, 2 channels). Extensive testing showed no ADC overrun issues with this
implementation.

61

62

Chapter 6
Pulse generators

In the course of electronics work, it is often necessary to not only measure signals but also generate
them. Pulse generators are perhaps the simplest type of signal generators, only capable of generating
square waves as illustrated in Figure 6.1. Typically, pulse generators are used to drive power switches,
modulators or to generate digital clock signals. They can also be used to generate various reference
signals, e.g. for step response analysis of a circuit.

Figure 6.1: Examples of pulse generator output signals

The developed VSVI platform provides one or more pulse generators depending on MCU capabilities.
The pulse generator TUI tab is shown in Figure 6.2. The pulse generators are denoted as "PWM"
and numbered ("PWM 1", "PWM 2", etc.). Each generator can have one or more output channels,
denoted by a letter suffix ("PWM 1A", "PWM 1B", "PWM 2A", etc.). The output signal’s positive
duty cycle/pulse width can be set individually for each channel, while the frequency is the same for
all channels of a given generator. Each channel’s output can be individually disabled, leaving the
corresponding GPIO pin floating (high-Z state).

63

6. Pulse generators ..
Each pulse generator is implemented using one MCU timer as illustrated in Figure 6.3. The frequency

of the generated signal is equal to the timer frequency obtained from the timer clock frequency fT IM

according to equation 3.1. Therefore, all generated frequencies are fractions of the timer clock frequency
and the frequency resolution is greatly diminished when the generated frequencies approach the timer
clock frequency. Theoretically, the maximum output frequency is half the timer clock frequency.
However, it may not be possible to drive the corresponding GPIO output pin at that frequency,
depending on the load capacitance and other factors in accordance with the I/O AC characteristics
found in the MCU datasheet [23, p. 122]. Each output channel corresponds to a capture/compare
channel of the pulse generator’s timer. The "PWM mode 1" output compare mode is used to gen-
erate signals with various duty cycles while keeping their rising edges aligned, as described in section 3.2.

Figure 6.2: Pulse generators tab in terminal user interface

64

................................... 6.1. Synchronization of pulse generators

Trigger

& slave
mode

controller

CCR1

PSC CNT

ARR
UP

CCR2

CCR3

CCR4

CC1

CC2

CC3

CC4

TRGO = CC4 eventITRx

fTIM

CH2

CH3

CH1
PWM 1A

PWM 1B

PWM 1C

Pulse generator PWM 1 (TIM)

Trigger Trigger

& slave
mode

controller

CCR1

PSC CNT

ARR
UP

CCR2

CCR3

CCR4

CC1

CC2

CC3

CC4

TRGO = CC4 eventITRx

CH2

CH3

CH1
PWM 2A

PWM 2B

PWM 2C

Trigger

PWM 3PWM 2

fTIM

Pulse generator PWM 2 (TIM)

Figure 6.3: Block diagram of implemented pulse generators

6.1 Synchronization of pulse generators

If there are multiple pulse generators available, it is possible to synchronize them in a master/slave
scheme. Each generator can be a slave of the previous generator, i.e. the PWM 3 generator can be
a slave of PWM 2, which itself can be a slave of PWM 1. The time delay of the slave generator’s
output signals is configurable from zero (synchronized) up to the period of the master generator.
Alternatively, a phase offset based on the period of the master generator can be set. Additionally, if
frequency synchronization is enabled via the "Sync with PWM X" setting in the TUI, the frequency of
the slave generator is then automatically kept equal to the master generator’s frequency. This option
is demonstrated in Figure 6.4

Figure 6.4: Pulse generator settings in TUI tab with and without synchronization enabled

65

6. Pulse generators ..
The synchronization of pulse generators is implemented using the timer slave controllers. One of the

capture/compare channels of the master generator is used as the TRGO signal which is then connected
to the slave generator via the corresponding ITRx internal trigger connection as shown in Figure 6.3.
The slave timer then uses the "trigger" slave mode to start on a rising edge of the trigger signal. Any
number of generators can be synchronized this way. Perfect synchronization is achieved by subtracting
the inherent resynchronization delay of 2 timer clock cycles from all time delay values.

6.2 Previous pulse generator project

My semestral project in 2021 involved the implementation of software-defined pulse generators with
a terminal user interface. Originally, this firmware was implemented only for the STM32F103C8
microcontroller on the "Bluepill" development board. However, portability was still kept in mind and
this firmware later became the basis of the firmware implemented in this work. The capabilities of the
pulse generators have not changed significantly, but multiple issues were fixed and the user interface
reworked for mouse-based interaction using Data Plotter.

This previous firmware implemented a standalone terminal user interface (shown in Figure 6.5) which
could be used in any terminal emulator application. The terminal user interface was operated via the
keyboard. The user first navigated to the parameter they wished to adjust on a 2D coordinate system
using the W, A, S, D keys. Then, when the spacebar was pressed, a numeric value editor similar to the
one described in section 4.2.3 was shown. This editor could likewise be operated using the W, A, S, D
keys, confirming the selected value with another press of the spacebar.

Figure 6.5: Pulse generator application and TUI developed in previous project

66

Chapter 7
Arbitrary generators

For some applications, it may be useful to generate signals other than just square waves (which can
be generated by the pulse generators described in chapter 6). For example, it may be necessary to
generate sine or triangle waves. Function generators are capable of generating these standard types of
signals. Arbitrary generators can additionally generate atypical, custom waveforms defined by a set of
samples, typically by using a digital-to-analog converter (DAC). An example of the kind of signals that
can be generated by arbitrary generators is shown in Figure 7.1.

Figure 7.1: Examples of arbitrary generator output signals

67

7. Arbitrary generators...
The developed VSVI platform provides a pair of software-defined arbitrary generators for all MCUs

with an embedded DAC. The arbitrary generators are denoted as "ARB 1" and "ARB 2". The
corresponding terminal user interface tab can be seen in Figure 7.2. The frequency of all generated
signals can be set precisely using the STM32 timers. The generated waveforms can be either:. selected from a predefined set of functions:. sine wave ("sinusoid"). triangle wave with adjustable duty cycle ("sawtooth"). square wave with adjustable duty cycle ("square"). DC voltage ("DC only"). fully custom, according to a wave file downloaded from the PC ("from PC"), see section 7.1

When using one of the predefined waveform functions, the output signal amplitude and DC offset
voltages can be adjusted. Additionally, the phases of both generators’ output signals can be set if
synchronization is enabled (see section 7.2).

Figure 7.2: Arbitrary generators tab in terminal user interface

68

... 7. Arbitrary generators

Figure 7.3 shows a block diagram of the implemented software-defined arbitrary generators. The
generators use the two channels of the embedded DAC to convert digital samples into output signal
voltages. The digital-to-analog conversions are clocked from hardware timers to ensure precise control
of the sampling frequency – up to 1 Msps is achievable by the embedded DACs according to the MCU
datasheets [23], [29], [39]. The sample data is transferred from circular buffers in SRAM memory to
DAC registers using DMA transfers. It must be noted that this puts additional load on the DMA
controllers and AHB bus, limiting the maximum sampling rates of the mixed-signal oscilloscope when
arbitrary generators are enabled.

Arbitrary generators (ARB)

DAC channel 1

Sampling

TIM 1

Waveform

buffer

fS1

fSYS

Sampling

freq. calc.

PSC

ARR

fS2

DACARB 1
fARB1

DAC channel 2

Sampling

TIM 2

fSYS

PSC

ARR

SRAM ARB 2
fARB2

1 0Sync

DAC

Figure 7.3: Block diagram of implemented arbitrary generators

Before the generators can be enabled, their circular SRAM memory buffers have to be populated
with the samples representing one period of the signal to be generated. The minimum number of
samples per period is set to

NSX,min = 4, (7.1)

the maximum to

NSX,max = 1000. (7.2)

This maximum amount of samples was deemed to be a suitable compromise between the precision of
the waveform generation and the required size of the SRAM sample buffers. The number of samples
per period NSX used for a given output frequency fARBX is then

NSX = min
(

NSX,max,

⌊
fSX,max

fARBX

⌋)
= min

(
1000,

⌊1 MHz
fARBX

⌋)
(7.3)

69

7. Arbitrary generators...
where

fSX,max = 1 MHz (7.4)

is the maximum sampling frequency of the DACs. The output frequency is limited to

fARBX,max =
⌊

fSX,max

NSX,min

⌋
=
⌊1 MHz

4

⌋
= 250 kHz. (7.5)

Once the SRAM buffers are filled with generated samples, the sampling timers are enabled. These
are basic timers with no capture/compare channels or slave mode circuitry. After each DAC conversion,
a DMA transfer loads the next sample from the circular buffer into the DAC data holding register to
repeat the cycle. The DMA controller is set to circular buffer mode, looping back to the start of the
buffer after each signal period has been generated.

7.1 Using custom waveforms with arbitrary generators

The arbitrary generators provide a number of built-in waveform functions (sine wave, sawtooth, etc.),
but custom waveforms can also be used. In that case, only the frequency of the generated signal can be
set. All other waveform parameters are unavailable as no samples are generated internally. Instead, the
waveform must be loaded from a wave file downloaded via Data Plotter from the connected PC. Figure
7.4 shows the appearance of the TUI throughout this process. The supported wave file format is:. A comma-separated list of numeric values (.csv).. Each value represents a single sample of the output signal, in Volts.. The length of a single value (excl. comma) cannot exceed 62 characters..Metric prefix characters (e.g. ’123m’ for 123 mV) are supported.. Characters other than commas, digits, metric prefix characters and the decimal point are ignored.. Values will be clipped to remain within the generator’s output voltage range.. If there are more values than can be used by the generator, they will be ignored.

Figure 7.4: Arbitrary generator settings in TUI tab when using custom waveforms. States before and after
a wave file is loaded from the PC shown on the left and right respectively.

70

.................................. 7.2. Synchronization of arbitrary generators

7.2 Synchronization of arbitrary generators

The developed firmware also supports arbitrary generator synchronization. When enabled, the output
signal frequency settings of both generators are replaced by a common frequency a common frequency
setting at the top of the TUI tab, as shown in Figure 7.5. The sampling frequency and number of
samples per period is also forced to be identical. This is due to the need to clock both DAC channels
from same timer, as the two basic timers cannot be synchronized. The initial phase of both generators
can be adjusted once synchronization is enabled. If custom waveforms are generated by both generators,
the longer waveform will be truncated to the length of the shorter waveform.

Since the basic timers used by the arbitrary generators cannot be synchronized, it is not possible
to synchronize arbitrary generators with pulse generators either. Whenever the user changes one
of the pulse generator parameters, all pulse generators are stopped and restarted. Similarly, both
arbitrary generators are stopped and restarted whenever one of their settings is changed. Every time
this happens, a different phase offset is introduced between the pulse and arbitrary generators.

Figure 7.5: Arbitrary generator tab in terminal user interface when synchronization is enabled

71

7. Arbitrary generators...
7.3 Arbitrary generator output impedance and slew rate

It must be noted that the DACs embedded in STM32 microcontrollers exhibit high output impedances
in the order of 15 kΩ. This makes the generated signals quite susceptible to electromagnetically induced
noise and crosstalk, particularly from the sharp transitions of the pulse generator signals. It also
limits the kinds of loads that can be connected to the output of the generators – any output current
significantly lowers the output voltage. For example, the LD2 green LED on Nucleo-F303RE boards is
connected via the SB21 solder bridge to the output of the ARB2 arbitrary generator (pin PA5)[27, p.
23]. When this connection is not removed, a significant difference between the two arbitrary generators’
output signals can be seen when both are set to generate the same waveform, as demonstrated by
Figure 7.6. The slew rate of the DAC outputs is also quite limited, as demonstrated in Figure 7.7.
This makes them unsuitable for generating signals with sharp transitions such as square waves.

Figure 7.6: Output loading effect of the LD2 green LED on arbitrary generator (Nucleo-F303RE). The LED
is connected to ground via a 510 Ω resistor [28]. Both generators set to generate the same signal, a 10kHz,
3V peak sine wave. Sampled by VSVI MSO in real-time sampling mode at 4.8 Msps.

Figure 7.7: Comparison of pulse and arbitrary generator output signal slew rates (STM32F303RE). Both
generators set to generate a 10kHz, 3.3V peak, 50% duty cycle square wave. Sampled by VSVI MSO in
equivalent-time sampling mode at 72 Msps.

72

Chapter 8
Frequency counter

The final software-defined instrument implemented in this work is a frequency counter. This instrument
can be used to measure the frequency or period of an external signal, for example clocks in digital
circuitry. However, the primary motivation for its implementation was to allow the mixed-signal
oscilloscope to use equivalent-time sampling with externally-generated signals. The frequency of the
MSO’s input signal is measured by the frequency counter and used by the MSO to calculate an
appropriate real-time sampling frequency. Figure 8.1 shows the terminal user interface tab of the
frequency counter. This is the only TUI tab with no user-configurable settings.

Figure 8.1: Frequency counter tab in terminal user interface

The input frequency is determined by the counter using a modified frequency ratio measurement.
During the gate time tGAT E , the counter counts the number of input signal periods NINP and the
number of reference signal periods NREF . The reference period frequency fREF is known and typically
significantly higher than the input frequency fINP which can subsequently be determined by

fINP = fREF ·
NINP

NREF
. (8.1)

73

8. Frequency counter ...
However, since this naive implementation does not ensure that a whole number of input periods

are counted, it will exhibit large quantization errors when the input signal period approaches the gate
time. In order to surpass this limitation, the measurement method was slightly modified. When the
nominal gate time has passed, the counter does not stop counting immediately but waits until the next
input signal period is counted. This ensures that a whole number of input periods is counted at all
times. The gate time is then

tGAT E = NINP · TINP ≈ NREF · TREF , (8.2)

where TINP , TREF are the input and reference periods respectively. The worst-case frequency resolution
of a frequency counter is the reciprocal value of its gate time. It was determined that a resolution of at
least 1 Hz was necessary, therefore the nominal gate time is set to

tGAT E,nom = 1 s. (8.3)

In order to further increase the counter resolution, the reference frequency is set as high as possible, i.e.

fREF = fT IM . (8.4)

The frequency counter is implemented by an input timer working in conjunction with a reference
timer, as illustrated in Figure 8.2. The counter input pin CNT is connected to an input capture channel
of the input timer. The input timer’s counter is clocked by rising edges of the input signal, using the
"external trigger mode 1" of its slave mode controller. The reference timer is clocked from the internal
timer clock. Figure 8.3 illustrates the operation the frequency counter firmware.

Edge
detector

TRGO = Update/

counter enable

CH1
Input TIM

Trigger

& slave
mode

controller

PSC CNT

ARR
UP

ITRx

fTIM

Reference TIM

Trigger/

gate

CNT

Timer controller

& overflow counter

(firmware in interrupts)

Update flag Slave mode select

Frequency counter

Trigger

& slave
mode

controller

PSC CNT

ARR
UP

Update flagOne-pulse mode

fCNT

Figure 8.2: Block diagram of implemented frequency counter

74

..8. Frequency counter

Input TIM

update

No

Yes

Start input TIM

with CNT = ARR

Meas. start

Increment input
overflow counter

No

Yes

Compute new
frequency value

Stop both TIMs,

set new value flag

Set reference TIM

to trigger mode

Increment reference
overflow counter

Gate time

elapsed

Yes

Yes

Set TRGO=CEN

for input TIM

No

No

Enable OPM

for input TIM

Set reference TIM

to gated mode

Set TRGO=UP

for input TIM

Input TIM

in OPM

Reference
TIM update

Figure 8.3: Frequency counter firmware algorithm diagram

75

8. Frequency counter ...
If the input and reference periods were only counted using the 16-bit hardware timer counter registers,

the maximum count would be 65535 periods. This would limit both the input and reference frequency
to 65.5 kHz if the 1-second nominal gate time were used to yield a frequency resolution of 1 Hz or
better. A workaround was implemented for this issue – both timers generate an interrupt when they
overflow (update interrupt). The interrupt handlers then increment firmware-based overflow counters,
thus removing any limits on the maximum number of periods counted.

Initially, the update event flag is set as the TRGO output of the input timer and the reference timer
is in the trigger slave mode, connected to the input timer via the corresponding ITRx internal timer
trigger connection. In order to start the reference timer immediately when the input timer counts the
first input period, the input timer’s counter is preset to the ARR value – generating an update event
when it is incremented for the first time

When the first reference timer update interrupt occurs, the Counter Enable (CEN) bit as set as
the TRGO signal of the input timer and the reference timer is switched into gated slave mode. That
way, the reference timer will be stopped exactly when the input timer is disabled. The reference
timer update interrupt handler further checks whether the nominal gate time has elapsed (based
on the value in the firmware overflow counter). If it has, the input timer is put into One-Pulse
Mode (OPM) and its ARR value is changed to be the slightly above the current value of the CNT
register. This causes the input timer to be disabled after a few input periods, stopping the reference
timer at the same time. It also generates an update interrupt, whereupon the interrupt handler cal-
culates the newly measured input frequency according to eq. 8.2. This concludes the measurement cycle.

76

Chapter 9
Instrument configuration profiles

The developed VSVI platform provides a large number of user-configurable parameters for the im-
plemented software-defined instruments. Normally, all of these parameters would be reset to default
values after an MCU reset. The user would be required to reconfigure them all every time they wish to
use the instruments, which is rather inconvenient. It would be useful to implement an option to store
these settings such that they persist between MCU resets. To facilitate this, so-called "configuration
profiles" were implemented.

Each profile contains all the user-configurable parameters of every implemented virtual instrument,
The current values can be stored in a profile, while previously stored values can be recalled from one.
Profiles can be stored either in the MCU Flash memory or in the connected PC using Data Plotter.
Figure 9.1 depicts the TUI tab used to manage configuration profiles. A profile is being loaded from
the PC, showing a file selection dialog.

Figure 9.1: Configuration profiles TUI tab with open file selection dialog

77

9. Instrument configuration profiles
The file transfer protocol implemented by Data Plotter is used to store configuration profiles to the

connected PC. This protocol does not support binary data, therefore the profiles must be stored as
text files. The comma-separated value (.csv) format was chosen for its simplicity. All values are ASCII
text strings. The delimiter character is a comma (","). The format of a configuration profile file is as
follows:

. Start of profile character ("#"). Firmware version descriptor, e.g. "G431-LQFP32_R20220416". For each type of instrument:. Start of instrument type character (">"). Instrument code, i.e. "MSO", "PWM" or "ARB". For each parameter:. Instrument instance identifier, e.g. "2" for "PWM 2". Parameter code, see Tables 9.1 through 9.3. Channel instance identifier, e.g. "A" for "PWM 2A". Parameter value, converted to a text string

The inclusion of the firmware version descriptor ensures compatibility – the firmware will reject config-
uration profiles created in another firmware version.

Code Parameter

A Number of enabled analog channels

D Number of enabled digital channels

N Record length (number of samples)

P Trigger position (pre-trigger)

T Sampling mode (ETS or RTS)

S Input signal frequency source

I Input signal frequency

R Real-time sampling frequency

E Equivalent-time sampling frequency

C Trigger source channel

G Active trigger edge

V Trigger level (voltage)

M Trigger mode (auto or normal)

Table 9.1: Mixed-signal oscilloscope configuration profile parameters

78

..................................... 9. Instrument configuration profiles

Code Parameter

S Generator synchronization

F Generator frequency

R Generator period

E Channel output enable

D Channel duty cycle

P Channel pulse width

Table 9.2: Pulse generator configuration profile parameters

Code Parameter

E Generator enable

W Waveform type

A Amplitude (voltage)

C DC offset (voltage)

F Frequency

D Duty cycle

P Initial phase

N Number of samples (per period)

Table 9.3: Arbitrary generator configuration profile parameters

If an arbitrary generator is using a custom waveform (loaded from the connected PC), its samples
are also stored in the configuration profile. Each 12-bit sample value is converted into two ASCII
characters using Base64 encoding. Therefore, including the comma separator, 3 bytes are used to store
every sample in the profile. In the worst-case scenario where both arbitrary generators use custom
waveforms with 1000 samples, the size of the profile will thus be above 6 kB. As such, only one profile
can be stored into the MCU Flash memory. The stringified arbitrary generator sample values are
stored in the profile after the "number of samples" parameter of each arbitrary generator.

79

80

Chapter 10
Versions of developed SDI platform (supported MCUs)

10.1 STM32F303RE version of developed SDI platform

The primary adaptation of the developed VSVI platform is for the Nucleo-F303RE development board
shown in Figure 10.1. This board is based on the STM32F303RE microcontroller in the LQFP64
package and is one of the most widely used STM32 platforms at FEE CTU. It includes an ST-Link V2-1
debugger/programmer which can be used to program the MCU using the onboard Mini-USB connector.
The ST-Link additionally serves as a USB-UART converter, being connected to the USART2 interface
of the STM32F303RE MCU. The ST-Link clock derived from an onboard 8 MHz crystal oscillator is
also used as the clock source for the STM32F303RE MCU in HSE bypass mode. Figure 10.2 shows the
pinout of this version of the VSVI platform.

Figure 10.1: Nucleo-F303RE development board with STM32F303RE MCU. Adapted from [25].

81

10. Versions of developed SDI platform (supported MCUs)

RESET

ARB 2 PA5

PB3PA4 ARB 1
PA1
PA0

VIN
GND
GND
+5V
+3V3

IOREF

GND
E5V
PD2
PC11PC10

PC12
VDD

BOOT0

PA13
PA14
PA15
GND
PB7
PC13
PC14
PC15
PF0
PF1
VBAT
PC2
PC3 PC0

PC1
PB0

PC7
PB6
PA7
PA6

GND
AVDD
PB9
PB8
PC9

PA9

PA8
PB10
PB4
PB5

PA10
PA2
PA3

PC4
AGND
PB13
PB14
PB15
PB1
PB2
GND
PB11
PB12
PA11
PA12

U5V
PC5
PC6
PC8

PWM 3B
PWM 3A

PWM 1A
PWM 1B

PWM 2A
PWM 2BAIN 1 AIN 3

AIN 4

AIN 2

DIN 3
DIN 1DIN 2
DIN 0

CNT

AIN X

PWM XY

Oscilloscope analog channel X input

DIN X Oscilloscope digital channel X input

Pulse generator X channel Y output

ARB X Arbitrary generator X output

CNT Frequency counter input

DIN 4

DIN 5
DIN 6
DIN 8

DIN 9
DIN 11DIN 10

DIN 12

DIN 7

DIN 14
DIN 13

DIN 15
PWM 4A

UART TX
UART RX

LSE OUT
LSE IN
USR BTN

Figure 10.2: Pinout of SDIs developed for STM32F303RE (Nucleo-F303RE development board)

10.1.1 Mixed-signal oscilloscope (STM32F303RE)

. 4 analog channels (inputs AIN 1, AIN 2, AIN 3, AIN 4) with 12-bit resolution

. 16 digital channels (inputs DIN 0 - DIN 15)

.Maximum real-time sampling rate:

. 24 MSps for all digital channels with analog channels disabled. 18 MSps for one analog channel with 4 ADCs interleaving, digital channels disabled. 5 MSps for all digital and analog channels with no interleaving

82

............................ 10.1. STM32F303RE version of developed SDI platform

. Table 10.1 shows all the possible channel configurations and their respective max. sampling
rates when all arbitrary generators are disabled. When any of the arbitrary generators is
enabled, Table 10.2 applies instead..Maximum equivalent-time sampling rate:. Depends on the input signal frequency. Typically up to 72 MSps, max. 720 MSps with 1 sample per 10 input signal periods

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled -
18.0 MSps (i4)
10.3 MSps (i2)
5.1 MSps (-)

10.3 MSps (i2)
5.1 MSps (-) 5.1 MSps (-)

16 channels 24 MSps (-) 10.3 MSps (i2)
5.1 MSps (-)

10.3 MSps (i2)
5.1 MSps (-) 4.8 MSps (-)

Table 10.1: MaximumMSO sampling rates for STM32F303RE with arbitrary generators disabled. Used ADC
interleaving mode indicated in parentheses ("-" = none, "i2" = 2 ADCs/channel, "i4" = 4 ADCs/channel).

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled - 7.2 MSps (i2)
4.8 MSps (-)

7.2 MSps (i2)
4.8 MSps (-) 4.0 MSps (-)

16 channels 8 MSps (-) 5.5 MSps (i2)
4 MSps (-)

5.5 MSps (i2)
4 MSps (-) 3.4 MSps (-)

Table 10.2: Maximum MSO sampling rates for STM32F303RE with arbitrary generators enabled. Used
ADC interleaving mode indicated in parentheses ("-" = none, "i2" = 2 ADCs/channel).

.Maximum record length depends on the number of enabled channels according to Table 10.3

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled - 30.8 kSa 15.4 kSa 7.7 kSa

16 channels 30.8 kSa 15.4 kSa 10.2 KSa 6.1 kSa

Table 10.3: Maximum MSO record lengths for STM32F303RE

. All RTS and ETS configurations, including interleaved sampling modes, were tested as shown in
Figures 10.3 through 10.6.

83

10. Versions of developed SDI platform (supported MCUs)

Figure 10.3: Waveforms captured by STM32F303RE oscilloscope in RTS mode at 5.1 MSps. The test
signals were a 3V peak sine wave (top) and 50% duty cycle square wave (bottom) with a frequency of 1
MHz, generated by the Tektronix AFG3102 function generator. They were captured by both the VSVI MSO
and the Rigol DS1052E oscilloscope.

Figure 10.4: Waveforms captured by STM32F303RE oscilloscope in RTS mode at 10.3 MSps (2 ADCs
interleaved). The test signals were a 3V peak sine wave (top) and 50% duty cycle square wave (bottom)
with a frequency of 1 MHz, generated by the Tektronix AFG3102 function generator. They were captured
by both the VSVI MSO and the Rigol DS1052E oscilloscope.

84

............................ 10.1. STM32F303RE version of developed SDI platform

Figure 10.5: Waveforms captured by STM32F303RE oscilloscope in RTS mode at 18 MSps (4 ADCs
interleaved). The test signals were a 3V peak sine wave (top) and 50% duty cycle square wave (bottom)
with a frequency of 1 MHz, generated by the Tektronix AFG3102 function generator. They were captured
by both the VSVI MSO and the Rigol DS1052E oscilloscope.

Figure 10.6: Waveforms captured by STM32F303RE oscilloscope in ETS mode at 71.9 MSps (equivalent).
The test signals were a 3V peak sine wave (top) and 50% duty cycle square wave (bottom) with a frequency
of 1 MHz, generated by the Tektronix AFG3102 function generator. They were captured by both the VSVI
MSO and the Rigol DS1052E oscilloscope. The VSVI frequency counter measurement was used as the input
signal frequency for ETS mode.

85

10. Versions of developed SDI platform (supported MCUs)
.When interleaved sampling of the analog channels is used, the user must connect

external jumper links between analog input pins:

.When 1 analog channel is enabled and interleaving 2 ADCs per channel, connect:

. AIN 1 (PA1) and AIN 3 (PB13).When 2 analog channels are enabled and interleaving 2 ADCs per channel, connect:

. AIN 1 (PA1) and AIN 3 (PB13). AIN 2 (PA7) and AIN 4 (PB14).When 1 analog channel is enabled and interleaving 4 ADCs per channel, connect:

. AIN 1 (PA1) and AIN 3 (PB13). AIN 2 (PA7) and AIN 4 (PB14). AIN 3 (PA13) and AIN 4 (PB14) or AIN 1 (PA1) and AIN 2 (PA7)

. Some digital channels are limited on stock Nucleo-F303 boards:

. DIN 13 (PC13) is connected to the USER push button, including a 4.7 kΩ pull-up resistor to
the 3.3V rail and a bypass capacitor. External signals should not be connected to this pin
unless the solder bridge SB17 is removed, disconnecting the button circuitry.. DIN 14 and DIN 15 are not available. The corresponding MCU pins PC14 and PC15 are
connected to the 32 kHz LSE crystal oscillator and NOT connected to the pin headers. To
use these digital channels, R34 and R36 must be removed (disconnecting the crystal) and
SB48 and SB49 must be connected (connecting the MCU pins to the pin headers).

10.1.2 Pulse generators (STM32F303RE)

. 4 generators available:

. PWM 1 with two channels (PWM 1A, PWM 1B). PWM 2 with two channels (PWM 2A, PWM 2B). PWM 3 with two channels (PWM 3A, PWM 3B). PWM 4 with one channel (PWM 4A)

. All can run independently or be synchronized with adjustable phase/time delay

.Maximum output signal frequency 72 MHz (50% duty cycle only)

. The output signals were validated and the frequency characteristic measured, as shown in Figures
10.7 and 10.8 respectively.

86

............................ 10.1. STM32F303RE version of developed SDI platform

Figure 10.7: Output signals of STM32F303RE pulse generators. The test signals were 50% duty cycle, 3.3V
peak square waves with frequencies of 1 MHz and 180° phase offset generated by the VSVI pulse generators.
The waveforms were recorded by the Rigol DS1052E oscilloscope sampling at 100 MSps.

Figure 10.8: Measured frequency characteristic of STM32F303RE pulse generators. The test signals were a
50% duty cycle, 3.3V peak square waves generated by the VSVI pulse generators. Their frequencies were
measured from waveforms recorded by the Rigol DS1052E oscilloscope.

87

10. Versions of developed SDI platform (supported MCUs)
10.1.3 Arbitrary generators (STM32F303RE). 2 generators available:. ARB 1. ARB 2. Both can run independently or be synchronized with adjustable phases.Maximum sampling frequency 1 MHz.Maximum output signal frequency 250 kHz (4 samples per period). Up to 1000 samples per period for output signal frequencies ≤ 1 kHz. The output signals were validated as shown in Figures 10.9 and 10.10.

10.1.4 Frequency counter (STM32F303RE). Input signal frequency range: 10 Hz− 72 MHz.Gate time ≈ 1 s gives update rate ≈ 1 Hz. Frequency resolution ≤ 1 Hz using modified frequency ratio measurement (see chapter 8).Measured frequency characteristic shown in Figure 10.11

Figure 10.9: Output signals of STM32F303RE arbitrary generators. The test signals were sine (top) and
triangle (bottom) waves with frequencies of 10 kHz and 0° phase offset generated by the VSVI arbitrary
generators. Their amplitude was set to 1.2 V with a DC offset of 1.6 V. The waveforms were recorded by
the Rigol DS1052E oscilloscope sampling at 10 MSps.

88

............................ 10.1. STM32F303RE version of developed SDI platform

Figure 10.10: Output signals of STM32F303RE arbitrary generators. The test signals were sine (top) and
triangle (bottom) waves with frequencies of 100 kHz generated by the VSVI arbitrary generators. Their
amplitude was set to 1.2 V with a DC offset of 1.6 V. The synchronization was disabled, giving a random
phase offset. The waveforms were recorded by the Rigol DS1052E oscilloscope sampling at 100 MSps.

Figure 10.11: Measured characteristic of STM32F303RE frequency counter. The test signal was a 50% duty
cycle, 3.3V peak square wave generated by the Tektronix AFG3102 function generator. Its frequency was
measured by the VSVI frequency counter.

89

10. Versions of developed SDI platform (supported MCUs)
10.2 STM32G431KB version of developed SDI platform

The VSVI platform was also adapted for the STM32G431KB microcontroller in the LQFP32 package.
The embedded USB peripheral is used for communication with the PC. An external 3.3 V voltage
regulator is needed to supply the VDD supply voltage. An 8 MHz crystal oscillator should also be
connected to the HSE IN, HSE OUT pins with the appropriate load capacitors (see [29, p. 100], [22]).
Using this crystal oscillator significantly improves clock stability and the frequency accuracy of the
generators and frequency counter. It is also absolutely necessary for MSO equivalent-time sampling of
externally-generated signals. In case no crystal oscillator is detected at MCU startup, the internal RC
oscillator (HSI) is used instead. Figure 10.12 shows the pinout of the VSVI platform for this MCU, as
soldered on an LQFP32-to-DIP adapter for use in breadboards.

PWM 3A

AIN X

PWM XY

Oscilloscope analog channel X input

DIN X Oscilloscope digital channel X input

Pulse generator X channel Y output

ARB X Arbitrary generator X output

CNT Frequency counter input

DIN 4

DIN 5
DIN 6
DIN 7

PA8
PA9
PA10
PA11
PA12
PA13
PA14
PA15
PB3
PB4
PB5
PB6
PB7
PB8
GND

VDD
AVDD
AGND
PB0
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
NRST
PF1
PF0
VDD

GND

USB DM
USB DP

SWDIO
SWCLK

PWM 1B

PWM 2B

PWM 1A

PWM 1C

PWM 2A
CNT

DIN 3
DIN 2

DIN 1
DIN 0

AIN 3
AIN 1

AIN 2
AIN 4

ARB 1
ARB 2

HSE OUT
HSE IN

STM32G431KB

BOOT0

Figure 10.12: Pinout of SDIs developed for STM32G431KB (LQFP32-to-DIP adapter)

10.2.1 Mixed-signal oscilloscope (STM32G431KB). 4 analog channels (inputs AIN 1, AIN 2, AIN 3, AIN 4) with 12-bit resolution. 8 digital channels (inputs DIN 0 - DIN 7).Maximum real-time sampling rate:. 20.8 MSps for all digital channels with analog channels disabled. 6.5 MSps for one analog channel with 2 ADCs interleaving, digital channels disabled. 1.7 MSps for all digital and analog channels with no interleaving

90

............................ 10.2. STM32G431KB version of developed SDI platform

. Table 10.4 shows all the possible channel configurations and their respective max. sampling
rates when all arbitrary generators are disabled. When any of the arbitrary generators is
enabled, Table 10.5 applies instead..Maximum equivalent-time sampling rate:. Depends on the input signal frequency. Typically up to 104 MSps, max. 1.04 GSa/s with 1 sample per 10 input signal periods

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled - 6.5 MSps (i2)
3.4 MSps (-) 3.4 MSps (-) 1.7 MSps (-)

8 channels 20.8 MSps (-) 6.5 MSps (i2)
3.4 MSps (-) 3.4 MSps (-) 1.7 MSps (-)

Table 10.4: Maximum MSO sampling rates for STM32G431KB with arbitrary generators disabled. Used
ADC interleaving mode indicated in parentheses ("-" = none, "i2" = 2 ADCs/channel).

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled - 6.5 MSps (i2)
3.4 MSps (-) 3.4 MSps (-) 1.7 MSps (-)

8 channels 13.0 MSps (-) 6.5 MSps (i2)
3.4 MSps (-) 3.4 MSps (-) 1.7 MSps (-)

Table 10.5: Maximum MSO sampling rates for STM32G431KB with arbitrary generators enabled. Used
ADC interleaving mode indicated in parentheses ("-" = none, "i2" = 2 ADCs/channel).

.Maximum record length depends on the number of enabled channels according to Table 10.6

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled - 9.2 kSa 4.6 kSa 2.3 kSa

8 channels 9.2 kSa 4.6 kSa 3.1 KSa 1.8 kSa

Table 10.6: Maximum MSO record lengths for STM32G431KB

. All RTS and ETS configurations, including interleaved sampling modes, were tested as shown in
Figures 10.13 through 10.17.

91

10. Versions of developed SDI platform (supported MCUs)

Figure 10.13: Waveform captured by STM32G431KB oscilloscope in RTS mode at 3.4 MSps. The test
signals were a 3V peak sine wave (top) and 50% duty cycle square wave (bottom) with a frequency of 10
kHz, generated by the Tektronix AFG3102 function generator. Captured by both the VSVI MSO and Rigol
DS1052E oscilloscope.

Figure 10.14: Waveform captured by STM32G431KB oscilloscope in RTS mode at 6.5 MSps (2 ADCs
interleaved). The test signal is a 3V peak, 50% duty cycle square wave with a frequency of 10 kHz, generated
by the Tektronix AFG3102 function generator. Captured by both the VSVI MSO and Rigol DS1052E.

Figure 10.15: Waveform captured by STM32G431KB oscilloscope in RTS mode at 6.5 MSps (2 ADCs
interleaved). The test signal is a 3V peak, 50% duty cycle square wave with a frequency of 1 MHz, generated
by the Tektronix AFG3102 function generator. Captured by both the VSVI MSO and Rigol DS1052E.

92

............................ 10.2. STM32G431KB version of developed SDI platform

Figure 10.16: Waveforms captured by STM32G431KB oscilloscope in ETS mode at 104 MSps (equivalent,
HSI RC clock). The test signals were a 3V peak sine wave (top) and 50% duty cycle square wave (bottom)
with a frequency of 1 MHz, generated by the Tektronix AFG3102 function generator. They were captured
by both the VSVI MSO and the Rigol DS1052E oscilloscope. The VSVI frequency counter measurement
was used as the input signal frequency for ETS mode.

Figure 10.17: Waveforms captured by STM32G431KB oscilloscope in ETS mode at 108.1 MSps (equivalent,
HSE crystal clock). The test signals were a 3V peak sine wave (top) and 50% duty cycle square wave (bottom)
with a frequency of 1 MHz, generated by the Tektronix AFG3102 function generator. They were captured
by both the VSVI MSO and the Rigol DS1052E oscilloscope. The VSVI frequency counter measurement
was used as the input signal frequency for ETS mode.

93

10. Versions of developed SDI platform (supported MCUs)
. It can be seen from Figure 10.16 that the internal HSI RC oscillator is not a stable enough clock

source for ETS mode. The same issue will occur if the MCU clock source was stable (i.e. using
external HSE crystal oscillator) but the input signal frequency is not..When interleaved sampling of analog channel 1 is used, the user must connect exter-
nal jumper links between the following analog input pins:. AIN 1 (PA1) and AIN 2 (PA6)

10.2.2 Pulse generators (STM32G431KB). 3 generators available:. PWM 1 with three channels (PWM 1A, PWM 1B, PWM 1C). PWM 2 with two channels (PWM 2A, PWM 2B). PWM 3 with one channel (PWM 3A). All can run independently or be synchronized with adjustable phase/time delay.Maximum output signal frequency 52 MHz (50% duty cycle only). The output signals were validated and the frequency characteristic measured, as shown in Figures
10.18 and 10.19 respectively.

10.2.3 Arbitrary generators (STM32G431KB). 2 generators available:. ARB 1. ARB 2. Both can run independently or be synchronized with adjustable phases.Maximum sampling frequency 1 MHz.Maximum output signal frequency 250 kHz (4 samples per period). Up to 1000 samples per period for output signal frequencies ≤ 1 kHz. The output signals were validated as shown in Figures 10.20 and 10.21.

10.2.4 Frequency counter (STM32G431KB). Input signal frequency range: 10 Hz− 52 MHz.Gate time ≈ 1 s gives update rate ≈ 1 Hz. Frequency resolution ≤ 1 Hz using modified frequency ratio measurement (see chapter 8). Accuracy is diminished when not using the HSE crystal oscillator as clock source, as demonstrated
by frequency characteristics shown in Figures 10.22 and 10.23.

94

............................ 10.2. STM32G431KB version of developed SDI platform

Figure 10.18: Output signals of STM32G431KB pulse generators. The test signals were 50% duty cycle,
3.3V peak square waves with frequencies of 100 kHz (top) and 200 kHz (bottom) generated by the VSVI
pulse generators. The waveforms were recorded by the Rigol DS1052E oscilloscope sampling at 50 MSps.

Figure 10.19: Measured frequency characteristic of STM32G431KB pulse generators (HSI RC clock). The
test signals were a 50% duty cycle, 3.3V peak square waves generated by the VSVI pulse generators. Their
frequencies were measured from waveforms recorded by the Rigol DS1052E oscilloscope.

95

10. Versions of developed SDI platform (supported MCUs)

Figure 10.20: Output signals of STM32G431KB arbitrary generators. The test signals were sine waves with
frequencies of 1 kHz and 180° phase offset generated by the VSVI arbitrary generators. Their amplitude was
set to 1.2 V with a DC offset of 1.6 V. The waveforms were recorded by the Rigol DS1052E oscilloscope
sampling at 1 MSps.

Figure 10.21: Output signals of STM32G431KB arbitrary generators. The test signals were a 25 kHz sine
wave (top) and 50 kHz triangle wave (bottom) generated by the VSVI arbitrary generators. Their amplitude
was set to 1.2 V with a DC offset of 1.6 V. The waveforms were recorded by the Rigol DS1052E oscilloscope
sampling at 10 MSps.

96

............................ 10.2. STM32G431KB version of developed SDI platform

Figure 10.22: Measured characteristic of STM32G431KB frequency counter (HSI RC clock). The test signal
was a 50% duty cycle, 3.3V peak square wave generated by the Tektronix AFG3102 function generator. Its
frequency was measured by the VSVI frequency counter.

Figure 10.23: Measured characteristic of STM32G431KB frequency counter (HSE crystal clock). The test
signal was a 50% duty cycle, 3.3V peak square wave generated by the Tektronix AFG3102 function generator.
Its frequency was measured by the VSVI frequency counter.

97

98

Chapter 11
Evaluation of results

This chapter serves only to summarize this work and evaluate the achieved results, see chapter 10 for
detailed specifications of the developed software-defined instruments. The main capabilities of the
developed VSVI software-defined instrument platform are:

.Mixed-signal oscilloscope. Real-time and equivalent-time sampling mode, both with precise sampling frequency settings. Four analog channels with real-time sampling rates up to 5 MSps (STM32F303RE). Interleaved ADC sampling with real-time sampling rates up to 18 MSps (STM32F303RE) 1. Up to 16 digital channels with real-time sampling rates up to 24 MSps (STM32F303RE). High equivalent-time sampling rates up to 104 MSps (STM32G431KB). Synchronous sampling of analog and digital channels, option to trigger from either 1. Equivalent-time sampling of externally-generated signals using the frequency counter 1

. Pulse generators.One or more generators available for all MCUs. Precisely adjustable frequency and duty cycle.Wide frequency range, from 0.1 Hz up to 72 MHz (STM32F303RE).Option to synchronize all generators with configurable phase/time delays 1

. Arbitrary generators. Two generators available for all MCUs with DACs. Sampling rates up to 1 MSps. Precisely adjustable output frequency up to 250 kHz (4 samples per period). Up to 1000 samples per period for output frequencies below 1 kHz.Generation of DC voltages or function waveforms (sine, sawtooth, square) with precisely
adjustable amplitude, DC offset, duty cycle. Generation of custom waveforms according to wave files downloaded from the connected PC 1.Option to synchronize the two generators with configurable phase angles 1

1Capabilities beyond the scope of the thesis assignment

99

11. Evaluation of results ..
. Frequency counter. Resolution of 1 Hz or better, using a modified frequency ratio measurement.Wide input frequency range, from 10 Hz up to 72 MHz (STM32F303RE). Improved accuracy at low frequencies by always counting whole input signal periods 1. Can be used to support MSO equivalent-time sampling of an externally-generated signal 1. Configuration profiles 1. Support for storing/loading all SDI parameters into/from a configuration profile 1. Profiles can stored into the MCU’s Flash memory or the connected PC (using Data Plotter) 1

The VSVI platform provides a terminal user interface (TUI) implemented using ANSI escape se-
quences within the STM32 firmware. The TUI allows the monitoring and control of all parameters of
the implemented software-defined instruments. The parameters were logically organized into multiple
tabs. The universal PC application Data Plotter is used to display the acquired oscilloscope waveforms
and to enable user-friendly mouse interaction with the TUI. This modular terminal user interface
approach was detailed in this thesis and can serve as inspiration for other similar projects.

11.1 Comparison with existing SDI platforms

This section compares the VSVI software-defined instrument platform implemented in this work to some
of the existing SDI platforms mentioned in section 2.2. In all cases, the integration of equivalent-time
oscilloscope sampling is new and as such not mentioned in every comparison. Likewise, the use of a
terminal user interface with Data Plotter is a novel approach – all discussed SDI platforms require the
use of their custom PC application. The terminal user interface has proven to be almost as easy to use
as a traditional PC application thanks to mouse interactivity enabled by Data Plotter. It also allows
easy addition of new features and MCU support, without the need to obtain and install a new version
of the PC application.

One of the most popular existing SDI platforms is the Little Embedded Oscilloscope (LEO) im-
plemented for the STM32F303RE microcontroller. Compared to it, VSVI adds features such as
digital oscilloscope channels (integrated logic analyzer) and advanced interleaved sampling. The latest
version of LEO does support interleaved sampling, but only for 1 analog channel at up to 8 Msps
(using 2 ADCs). Older versions of LEO do not support interleaved sampling at all. VSVI supports
interleaved sampling of 2 analog channels at up to 10 MSps or of 1 analog channel at up to 18 MSps
(for STM32F303RE). Moreover, VSVI adds additional instruments, namely pulse generators and a
frequency counter. The absence of pulse generators is an issue when a signal with sharp edges (high slew
rate) needs to be generated – this is something that the DAC-based function generators in LEO cannot
achieve. The concurrent functionality of all LEO instruments is also not guaranteed, for example it is
a known issue that corruption of oscilloscope waveform data may occur at high sampling rates when
function generators are enabled (due to increased load on the DMA controllers). In contrast, the VSVI
firmware accounts for these limitations automatically by limiting the max. sampling rate accordingly
to ensure all measured data is correct. Additionally, the VSVI firmware has also been adapted for the
STM32G431KB microcontroller, whereas LEO only supports the STM32F303RE.

1Capabilities beyond the scope of the thesis assignment

100

................................. 11.1. Comparison with existing SDI platforms

Zero eLab Viewer is another popular SDI platform. It is more universal than LEO, being implemented
for multiple types of STM32 MCUs. Compared to it, VSVI offers additional instruments, namely
arbitrary generators and frequency counter. Additionally, the oscilloscope also adds digital channels
and support for interleaved sampling. However, this makes VSVI a larger firmware package with higher
hardware requirements. Therefore, it couldn’t be adapted for the low-end MCUs that work with Zero
eLab Viewer, for example STM32F042F6 and STM32G030J6.

In comparison with EMBO - Embedded Oscilloscope, VSVI adds interleaved oscilloscope sampling
and an integrated logic analyzer with more channels (16 vs. 4 on STM32F303RE) and higher max.
sampling rates (24 MSps vs. 14.4 MSps on STM32F303RE). Is also provides more pulse generators
(four generators with 7 total output channels vs. two channels) and arbitrary generators (two vs.
one). The arbitrary generators also support the generation of custom waveforms, whereas EMBO’s
signal generator can only generate a number of predefined functions (sine, sawtooth, etc.). Lastly, the
frequency counter in EMBO requires switching between slow and fast input signal modes, whereas
VSVI automatically supports a wide range of input frequencies while maintaining its accuracy.

101

102

Chapter 12
Conclusion

The goal of this work was to develop software-defined instruments as a practical low-cost alternative to
professional instruments, mainly for teaching purposes at the Faculty of Electrical Engineering, CTU.
In contrast to similar projects from the past, this work sought to provide a more universal solution by
supporting multiple STM32 MCUs and not relying on a specialized PC application. New features such
as equivalent-time sampling of the oscilloscope were also to be implemented. Additional instruments
(e.g. logic analyzer, signal generators) were also to be included whenever possible given the capabilities
of the microcontroller used.

A versatile software-defined instrument platform was developed in this work. The primary instrument
is a mixed-signal oscilloscope capable of both real-time and equivalent-time sampling. Interleaved
sampling is also supported, multiplying the maximum sampling rate when some analog channels are
disabled. Even higher sampling rates can be achieved for the digital channels. A frequency counter was
implemented to support equivalent-time sampling and for general-purpose use. Additionally, multiple
synchronizable pulse generators with precisely adjustable frequencies, phase delays and duty cycles
were also developed. For MCUs with embedded DACs, a pair of synchronizable arbitrary generators
were also implemented. Besides a number of functions, fully custom waveforms can also be generated
from wave files downloaded from the connected PC. For added convenience, the values of all instrument
parameters can be saved to/recalled from Flash memory or the connected PC.

To control the developed software-defined instruments, a terminal user interface was implemented
within the MCU firmware. It is used in conjunction with the universal, multi-platform PC application
Data Plotter (not developed in this work). This approach simplifies updates to the MCU firmware,
such as adding new features or support for new MCUs and eliminates the need to install a specialized
PC application, as Data Plotter is used by multiple SDI platforms currently in development at the
Department of Measurement, FEE CTU. Moreover, using clickable buttons in the developed terminal
user interface provides a user experience similar to that of typical PC applications.

Additionally, a comprehensive user manual and instruction video for the developed software-defined
instrument platform were also created. All implemented instruments were tested and their capabilities
specified. The developed firmware has been adapted for two STM32 microcontrollers, STM32G431KB
and STM32F303RE. Support for more types of STM32 microcontrollers will continue to be added in
the future. I believe the assignment of this thesis has been fulfilled.

103

104

Bibliography

[1] LEO - Little Embedded Oscilloscope [online]. Available from: https://embedded.fel.cvut.cz/
platformy/leo [accessed 20 Jan, 2022]

[2] Zero eLab Viewer [online]. Available from: https://embedded.fel.cvut.cz/SDI/STM32F042/
Zeroelabwiever[accessed 29 Apr, 2022]

[3] ELA - Logický analyzátor s Nucleo F303RE [online]. Available from: https://embedded.fel.
cvut.cz/platformy/ELA [accessed 29 Apr, 2022]

[4] EMBO - Osciloskop [online]. Available from: https://embedded.fel.cvut.cz/platformy/embo
[accessed 29 Apr, 2022]

[5] Virtuální Čítač na platformě STM32 [online]. Available from: https://mcejp.github.io/
virtual-counter-cz.html [accessed 29 Apr, 2022]

[6] SDI STM32F103 – SDI založené na STM32F103C8, který je použitý také v Blue Pill [online].
Available from: https://embedded.fel.cvut.cz/SDI/STM32F103/ [accessed 29 Apr, 2022]

[7] F0 - Lab [online]. Available from: https://embedded.fel.cvut.cz/platformy/F0_lab [accessed
29 Apr, 2022]

[8] G0-Lab s STM32G030 – Přístroje založené na STM32G030 [online]. Available from: https:
//embedded.fel.cvut.cz/SDI/STM32G030 [accessed 29 Apr, 2022]

[9] VANĚČEK, Vít. Microcontroller Based Logic Analyser. Prague, 2020. Bachelor’s thesis. Czech
Technical University, Faculty of Electrical Engineering.

[10] PAŘEZ, Jakub. Software defined oscilloscope based on STM32F103. Prague, 2021. Master’s thesis.
Czech Technical University, Faculty of Electrical Engineering.

[11] CEJP, Martin. Microcontroller-based Virtual Instrument for Signal Analysis in the Modulation
Domain. Prague, 2017. Bachelor’s thesis. Czech Technical University, Faculty of Electrical Engi-
neering.

[12] Data Plotter [online]. Available from: https://embedded.fel.cvut.cz/platformy/
dataplotter [accessed 22 Apr, 2022]

[13] MAIER, Jiří. The Universal GUI for PC Based Oscillographs. Prague, 2021. Bachelor’s thesis.
Czech Technical University, Faculty of Electrical Engineering.

[14] ECMA. Standard ECMA-48:Control Functions for Coded Character Sets, Fifth Edition [online].
1991. Available from: https://www.ecma-international.org/wp-content/uploads/ECMA-48_
5th_edition_june_1991.pdf [accessed 1 May 2022]

105

https://embedded.fel.cvut.cz/platformy/leo
https://embedded.fel.cvut.cz/platformy/leo
https://embedded.fel.cvut.cz/SDI/STM32F042/Zeroelabwiever
https://embedded.fel.cvut.cz/SDI/STM32F042/Zeroelabwiever
https://embedded.fel.cvut.cz/platformy/ELA
https://embedded.fel.cvut.cz/platformy/ELA
https://embedded.fel.cvut.cz/platformy/embo
https://mcejp.github.io/virtual-counter-cz.html
https://mcejp.github.io/virtual-counter-cz.html
https://embedded.fel.cvut.cz/SDI/STM32F103/
https://embedded.fel.cvut.cz/platformy/F0_lab
https://embedded.fel.cvut.cz/SDI/STM32G030
https://embedded.fel.cvut.cz/SDI/STM32G030
https://embedded.fel.cvut.cz/platformy/dataplotter
https://embedded.fel.cvut.cz/platformy/dataplotter
https://www.ecma-international.org/wp-content/uploads/ECMA-48_5th_edition_june_1991.pdf
https://www.ecma-international.org/wp-content/uploads/ECMA-48_5th_edition_june_1991.pdf

12. Conclusion ..
[15] ANSI. ANSI X3.64 Standard [online]. Available from: https://vt100.net/annarbor/aaa-ug/

section13.html [accessed 1 May 2022]

[16] PETR, David. USB Control Unit for Optoelectronic Incremental Encoder. Prague, 2020. Bachelor’s
thesis. Czech Technical University, Faculty of Electrical Engineering.

[17] Tektronix. Real-Time Versus Equivalent-Time Sampling [online]. Available from:
https://www.tek.com/en/document/application-note/real-time-versus-equivalent-
time-sampling [accessed 30 Dec, 2021]

[18] Test of A/D Converters - Scientific Figure on ResearchGate [online]. Available from: https:
//www.researchgate.net/figure/6-Equivalent-time-sampling_fig2_234091862 [accessed 30
Dec, 2021]

[19] YIU, Joseph. A Beginner’s Guide on Interrupt Latency - and Interrupt Latency of the
Arm Cortex-M processors [online]. 2016. Available from: https://community.arm.com/arm-
community-blogs/b/architectures-and-processors-blog/posts/beginner-guide-on-
interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors [accessed 28
Dec, 2021]

[20] Keysight Technologies. MSOX2014A Mixed Signal Oscilloscope: 100 MHz, 4 Analog Plus 8 Digi-
tal Channels [online]. Available from: https://www.keysight.com/zz/en/product/MSOX2014A/
mixed-signal-oscilloscope-100-mhz-4-analog-8-digital-channels.html [accessed 1 May,
2022]

[21] STMicroelectronics. AN2548 Application note – Using the STM32F0/F1/F3/Gx/Lx Series
DMA controller [online]. Revision 7, 2020. Available from: https://www.st.com/resource/
en/application_note/cd00160362-using-the-stm32f0f1f3gxlx-series-dma-controller-
stmicroelectronics.pdf [accessed 2 May, 2022]

[22] STMicroelectronics. AN2867 Application note – Oscillator design guide for STM8AF/AL/S,
STM32 MCUs and MPUs [online]. Revision 15, 2021. Available from: https://www.st.com/
resource/en/application_note/cd00221665-oscillator-design-guide-for-stm8afals-
stm32-mcus-and-mpus-stmicroelectronics.pdf [accessed 5 May, 2022]

[23] STMicroelectronics. Datasheet - STM32F303xD STM32F303xE [online]. Revision 5, 2016. Available
from: https://www.st.com/resource/en/datasheet/stm32f303re.pdf [accessed 3 Jan, 2022]

[24] STMicroelectronics. STM32F303xB/C Errata sheet [online]. Revision 11, 2022. Avail-
able from: https://www.st.com/resource/en/errata_sheet/es0204-stm32f303xbc-device-
errata-stmicroelectronics.pdf [accessed 1 April, 2022]

[25] STMicroelectronics. STM32 Nucleo-64 development board with STM32F303RE MCU [online].
Available from: https://www.st.com/en/evaluation-tools/nucleo-f303re.html [accessed 4
Jan, 2022]

[26] STMicroelectronics. RM0316 Reference manual [online]. Revision 8, 2017. Available
from: https://www.st.com/resource/en/reference_manual/dm00043574-stm32f303xb-
c-d-e-stm32f303x6-8-stm32f328x8-stm32f358xc-stm32f398xe-advanced-arm-based-mcus-
stmicroelectronics.pdf [accessed 3 Jan, 2022]

[27] STMicroelectronics. UM1724 User manual - STM32 Nucleo-64 boards [online]. Revision
14, 2020. Available from: https://www.st.com/resource/en/user_manual/um1724-stm32-
nucleo64-boards-mb1136-stmicroelectronics.pdf [accessed 1 Jan, 2022]

106

https://vt100.net/annarbor/aaa-ug/section13.html
https://vt100.net/annarbor/aaa-ug/section13.html
https://www.tek.com/en/document/application-note/real-time-versus-equivalent-time-sampling
https://www.tek.com/en/document/application-note/real-time-versus-equivalent-time-sampling
https://www.researchgate.net/figure/6-Equivalent-time-sampling_fig2_234091862
https://www.researchgate.net/figure/6-Equivalent-time-sampling_fig2_234091862
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/beginner-guide-on-interrupt-latency-and-interrupt-latency-of-the-arm-cortex-m-processors
https://www.keysight.com/zz/en/product/MSOX2014A/mixed-signal-oscilloscope-100-mhz-4-analog-8-digital-channels.html
https://www.keysight.com/zz/en/product/MSOX2014A/mixed-signal-oscilloscope-100-mhz-4-analog-8-digital-channels.html
https://www.st.com/resource/en/application_note/cd00160362-using-the-stm32f0f1f3gxlx-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00160362-using-the-stm32f0f1f3gxlx-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00160362-using-the-stm32f0f1f3gxlx-series-dma-controller-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00221665-oscillator-design-guide-for-stm8afals-stm32-mcus-and-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00221665-oscillator-design-guide-for-stm8afals-stm32-mcus-and-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/cd00221665-oscillator-design-guide-for-stm8afals-stm32-mcus-and-mpus-stmicroelectronics.pdf
https://www.st.com/resource/en/datasheet/stm32f303re.pdf
https://www.st.com/resource/en/errata_sheet/es0204-stm32f303xbc-device-errata-stmicroelectronics.pdf
https://www.st.com/resource/en/errata_sheet/es0204-stm32f303xbc-device-errata-stmicroelectronics.pdf
https://www.st.com/en/evaluation-tools/nucleo-f303re.html
https://www.st.com/resource/en/reference_manual/dm00043574-stm32f303xb-c-d-e-stm32f303x6-8-stm32f328x8-stm32f358xc-stm32f398xe-advanced-arm-based-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00043574-stm32f303xb-c-d-e-stm32f303x6-8-stm32f328x8-stm32f358xc-stm32f398xe-advanced-arm-based-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00043574-stm32f303xb-c-d-e-stm32f303x6-8-stm32f328x8-stm32f358xc-stm32f398xe-advanced-arm-based-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf

.. 12. Conclusion

[28] STMicroelectronics. STM32 Nucleo (64 pins) schematics [online]. Version 1.0, 2018. Available from:
https://www.st.com/resource/en/schematic_pack/nucleo_64pins_sch.zip [accessed 1 Jan,
2022]

[29] STMicroelectronics. Datasheet - STM32G431x6 STM32G431x8 STM32G431xB [online]. Revi-
sion 6, 2021. Available from: https://www.st.com/resource/en/datasheet/stm32g431kb.pdf
[accessed 2 Jan, 2022]

[30] STMicroelectronics. STM32 Nucleo-32 development board with STM32G431KB MCU [online].
Available from: https://www.st.com/en/evaluation-tools/nucleo-g431kb.html [accessed 2
Jan, 2022]

[31] STMicroelectronics. RM0440 Reference manual [online]. Revision 6, 2021. Available from:
https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-
armbased-32bit-mcus-stmicroelectronics.pdf [accessed 2 Jan, 2022]

[32] STMicroelectronics. STM32G4 Nucleo-32 board (MB1430) - User manual [online]. Revision 2, 2019.
Available from: https://www.st.com/resource/en/user_manual/um2397-stm32g4-nucleo32-
board-mb1430-stmicroelectronics.pdf [accessed 2 Jan, 2022]

[33] STMicroelectronics. Datasheet - STM32F446xC/E [online]. Revision 10, 2021. Available from:
https://www.st.com/resource/en/datasheet/stm32f446re.pdf [accessed 5 Feb, 2022]

[34] STMicroelectronics. Datasheet - STM32F103x8 STM32F103xB [online]. Revision 18, 2022. Avail-
able from: https://www.st.com/resource/en/datasheet/stm32f103c8.pdf [accessed 6 Apr,
2022]

[35] STMicroelectronics. RM0008 Reference manual [online]. Revision 21, 2021. Available
from: https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-
stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-arm-based-32-bit-
mcus-stmicroelectronics.pdf [accessed 7 Apr, 2022]

[36] STMicroelectronics. Datasheet - STM32F042x4 STM32F042x6 [online]. Revision 5, 2017. Available
from: https://www.st.com/resource/en/datasheet/stm32f042f6.pdf [accessed 10 Apr, 2022]

[37] STMicroelectronics. Datasheet - STM32G431x6 STM32G431x8 STM32G431xB [online]. Revi-
sion 6, 2021. Available from: https://www.st.com/resource/en/datasheet/stm32g431r6.pdf
[accessed 2 Jan, 2022]

[38] STMicroelectronics. RM0394 Reference manual [online]. Revision 4, 2018.
Available from: https://www.st.com/resource/en/reference_manual/rm0394-
stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-
stmicroelectronics.pdf [accessed 2 Jan, 2022]

[39] STMicroelectronics. Datasheet - STM32L072x8 STM32L072xB STM32L072xZ [online]. Revi-
sion 5, 2019. Available from: https://www.st.com/resource/en/datasheet/stm32l072v8.pdf
[accessed 9 Mar, 2022]

[40] STMicroelectronics. RM0376 Reference manual [online]. Revision 7, 2022. Available from:
https://www.st.com/resource/en/reference_manual/rm0376-ultralowpower-stm32l0x2-
advanced-armbased-32bit-mcus-stmicroelectronics.pdf [accessed 10 Mar, 2022]

[41] STMicroelectronics. STM32L07xxx STM32L08xxx Errata Sheet [online]. Revision 7, 2022. Available
from: https://www.st.com/resource/en/errata_sheet/es0292-stm32l07xxxl08xxx-device-
errata-stmicroelectronics.pdf [accessed 2 Apr, 2022]

107

https://www.st.com/resource/en/schematic_pack/nucleo_64pins_sch.zip
https://www.st.com/resource/en/datasheet/stm32g431kb.pdf
https://www.st.com/en/evaluation-tools/nucleo-g431kb.html
https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0440-stm32g4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2397-stm32g4-nucleo32-board-mb1430-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2397-stm32g4-nucleo32-board-mb1430-stmicroelectronics.pdf
https://www.st.com/resource/en/datasheet/stm32f446re.pdf
https://www.st.com/resource/en/datasheet/stm32f103c8.pdf
https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00171190-stm32f101xx-stm32f102xx-stm32f103xx-stm32f105xx-and-stm32f107xx-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/datasheet/stm32f042f6.pdf
https://www.st.com/resource/en/datasheet/stm32g431r6.pdf
https://www.st.com/resource/en/reference_manual/rm0394-stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0394-stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0394-stm32l41xxx42xxx43xxx44xxx45xxx46xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/datasheet/stm32l072v8.pdf
https://www.st.com/resource/en/reference_manual/rm0376-ultralowpower-stm32l0x2-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0376-ultralowpower-stm32l0x2-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/errata_sheet/es0292-stm32l07xxxl08xxx-device-errata-stmicroelectronics.pdf
https://www.st.com/resource/en/errata_sheet/es0292-stm32l07xxxl08xxx-device-errata-stmicroelectronics.pdf

108

Appendix A
List of symbols

Acronym Meaning

MCU Microcontroller

GUI Graphical User Interface

TUI Terminal User Interface

CPU Central Processing Unit (MCU Core)

USB Universal Serial Bus

UART Universal Asynchronous Receiver-Transmitter

DMA Direct Memory Access controller

SRAM Volatile Static Random Access Memory

CCMRAM Core-Coupled Random Access Memory (Routine Booster)

ADC Analog-to-Digital Converter

DAC Digital-to-Analog Converter

AWD Analog Watchdog

GPIO General-Purpose Input/Output

EXTI Extended Interrupts and Events Controller

TIM Timer

PSC Timer Prescaler register

ARR Timer Auto-Reload Register

CCx Timer Capture/Compare channel X

TRGO Timer trigger output

ITRx Timer internal trigger input X

OPM Timer One-Pulse Mode

Table A.1: Established acronyms

109

A. List of symbols...
Acronym Meaning

SDI Software-Defined Instrument

VI Virtual Instrument

VSVI Versatile STM32 Virtual Instrument

RTS Real-Time Sampling

ETS Equivalent-Time Sampling

PWM Pulse generator

ARB Arbitrary generator

CNT Frequency counter

Table A.2: Software-defined instrument acronyms used in this work

Symbol(s) Meaning

fST Sampling timer frequency

TST Sampling timer period

NT Number of sampling timer periods elapsed in an acquisition

fSR Real-time sampling frequency

TSR Real-time sampling period

fSE Equivalent-time sampling frequency

TSE Equivalent-time sampling period

NP Number of input signal periods per sample in ETS mode

fIN Fundamental frequency of input signal in ETS mode

TIN Fundamental period of input signal in ETS mode

fNY Q Nyquist frequency, half of real-time sampling frequency

fIN,max Highest frequency in input signal

NA Current number of samples acquired since start of acquisition

NR Record length – total number of samples acquired per channel

NE Number of extra samples for trigger delay correction

AY
X Value of the "X"-th sample of analog channel "Y"

DX Value of the "X"-th sample of all digital channels

Table A.3: Mixed-signal oscilloscope symbols

110

... A. List of symbols

Symbol(s) Meaning

fP W MX Frequency of the "PWM X" generator

TP W MX Period of the "PWM X" generator

DP W MXY Duty cycle of the "PWM XY" output (channel "Y" of generator "X")

PP W MXY Pulse width of the "PWM XY" output (channel "Y" of generator "X")

Table A.4: Pulse generator symbols

Symbol(s) Meaning

fARBX Frequency of the "ARB X" generator output signal

TARBX Period of the "ARB X" generator output signal

DARBX Duty cycle of the "ARB X" generator output signal

PARBX Pulse width of the "ARB X" generator output signal

fSX Sampling frequency of the "ARB X" generator

TSX Sampling period of the "ARB X" generator

NSXX Number of samples generated per period of the "ARB X" generator

Table A.5: Arbitrary generator symbols

Symbol(s) Meaning

tGAT E Gate time

fINP Input signal frequency

TINP Input signal period

NINP Number of input signal periods counted within gate time

fREF Reference signal frequency

TREF Reference signal period

NREF Number of reference signal periods counted within gate time

Table A.6: Frequency counter symbols

111

A. List of symbols...
Symbol(s) Meaning

fCP U Core (CPU) clock frequency

TCP U Core (CPU) clock period

fT IM Timer clock frequency

TT IM Timer clock period

fADC ADC clock frequency

TADC ADC clock period

RAIN ADC input signal impedance

tLAT R Regular ADC conversion trigger latency

tSMP ADC sampling time

tSAR ADC successive approximation time

tCONV Total ADC conversion time (tSMP + tSAR)

Table A.7: Microcontroller hardware symbols

112

Appendix B
Contents of the enclosed CD

. This thesis in PDF format (/F3-DP-2022-Dujava-Jozef.pdf). User manual in PDF format (/VSVI_userManual_EN.pdf). Instruction video in MP4 format (/VSVI_instructions_EN.mp4). Source code of the implemented firmware (/<MCU version>/*). Compiled firmware binaries (/<MCU version>/release/*.bin)

113

114

Appendix C
User manual for developed SDI platform

115

Czech Technical University in Prague, Faculty of Electrical Engineering

Department of Measurement, Laboratory of Videometry

VSVI - Versatile STM32
Virtual Instrument

User manual

Bc. Jozef Dujava

Contents

1 Introduction & getting started 3

1.1 Programming the MCU . 4

1.2 Connecting the MCU to the PC . 4

2 Terminal user interface (TUI) 5

2.1 Value editing . 6

3 Mixed-signal oscilloscope (MSO) 8

3.1 Interleaving ADCs . 10

3.1.1 Trigger limitations . 10

3.2 Digital channel skew . 10

3.3 Equivalent-time sampling (ETS) mode . 11

3.3.1 Trigger limitations (digital channels) . 12

3.4 MSO TUI tab: Main controls . 12

3.4.1 Run/Stop . 12

3.4.2 Single . 12

3.4.3 Force trig . 12

3.5 MSO TUI tab: ”Sampling” menu . 12

3.5.1 Mode . 13

3.5.2 RTS freq. 13

3.5.3 Interleaving . 13

3.5.4 Links needed . 13

3.5.5 ETS freq. 14

3.5.6 IN freq. 14

3.5.7 IN freq. source . 14

3.5.8 Sampling time . 14

3.6 MSO TUI tab: ”Trigger” menu . 14

3.6.1 Mode . 15

3.6.2 Source . 15

3.6.3 Edge . 15

3.6.4 Level . 15

3.6.5 Position . 15

3.7 MSO TUI tab: ”Acquire” menu . 15

3.7.1 Record length . 15

3.7.2 Analog ch. 15

3.7.3 Digital ch. 15

4 Pulse generators (PWM) 16

4.1 PWM synchronization . 17

4.2 PWM TUI tab: ”Generator PWMX” menus . 17

4.2.1 Sync with PWMX . 17

4.2.2 Frequency . 17

4.2.3 Period . 17

4.2.4 Phase offset . 18

4.2.5 Time delay . 18

4.3 PWM TUI tab: ”Channel PWMXY” menus . 18

4.3.1 Output . 18

4.3.2 Duty cycle . 18

4.3.3 Pulse width . 18

1

5 Arbitrary generators (ARB) 19
5.1 Custom waveforms . 20
5.2 ARB Synchronization . 20
5.3 ARB TUI tab: ”All generators” menu . 20

5.3.1 Sync . 21
5.3.2 Common freq. 21
5.3.3 Sample count . 21

5.4 ARB TUI tab: ”Generator ARBX” menus . 21
5.4.1 Output . 22
5.4.2 Waveform . 22
5.4.3 Wave file . 22
5.4.4 Frequency . 22
5.4.5 Phase . 23
5.4.6 Duty cycle . 23
5.4.7 Amplitude . 23
5.4.8 DC offset . 23
5.4.9 Sample count . 23

6 Frequency counter (CNT) 24
6.1 CNT TUI tab: Gate time . 25
6.2 CNT TUI tab: ”Input signal CNT” menu . 25

6.2.1 Frequency . 25
6.2.2 Period . 25
6.2.3 Period count . 25

6.3 CNT TUI tab: ”Reference clock” menu . 25
6.3.1 Frequency . 25
6.3.2 Period . 25
6.3.3 Period count . 25

7 Configuration profiles (PRO) 26
7.1 PRO TUI tab: ”Load profile” menu . 26

7.1.1 From PC . 26
7.1.2 From FLASH . 26

7.2 PRO TUI tab: ”Store profile” menu . 27
7.2.1 To PC . 27
7.2.2 to FLASH . 27

8 Versions of VSVI platform (supported MCUs) 28
8.1 ”F303-Nucleo64” for STM32F303RE on Nucleo-F303RE 28

8.1.1 Mixed-signal oscilloscope (STM32F303RE) . 29
8.1.2 Pulse generators (STM32F303RE) . 31
8.1.3 Arbitrary generators (STM32F303RE) . 31
8.1.4 Frequency counter (STM32F303RE) . 31

8.2 ”G431-LQFP32” for STM32G431KB on LQFP32 adapter 32
8.2.1 Mixed-signal oscilloscope (STM32G431KB) . 32
8.2.2 Pulse generators (STM32G431KB) . 33
8.2.3 Arbitrary generators (STM32G431KB) . 34
8.2.4 Frequency counter (STM32G431KB) . 34

9 Known issues 35
9.1 Firmware freezes when configuration profile loading from PC is cancelled 35
9.2 TUI appears truncated after Data Plotter window is enlarged 35

2

1 Introduction & getting started

The Versatile STM32 Virtual Instrument (VSVI) is a software-defined instrument platform implemented
for multiple STM32 microcontrollers. The primary instrument is a mixed-signal oscilloscope with real-
time and equivalent-time sampling capability. Additional instruments include pulse generators, arbitrary
generators and a frequency counter. Very few additional components are necessary besides a supported
STM32 microcontroller (MCU). The virtual instruments are operated from a PC using a terminal user
interface (TUI) implemented within the MCU firmware. If supported, the MCU is connected to the PC
via USB directly, otherwise an external USB-UART converter is used (e.g. CH340, ST-Link).

PC

19 12

20 11

21 10

22 9

23 8

24 7

1

18

2

17

3

16

4

15

5

14

6

13

STM32

Frequency counter

Arbitrary generators

Pulse generators

Oscilloscope

FirmwareHardware

Instrument I/O

MCU

USB
Data Plotter

Figure 1: Diagram of the VSVI platform (USB version)

Frequency counter

Arbitrary generators

Pulse generators

Oscilloscope

FirmwareHardware
MCU

1 8

2 7

3 6

4 5

IC

USB

UART UARTUSB

19 12

20 11

21 10

22 9

23 8

24 7

1

18

2

17

3

16

4

15

5

14

6

13

STM32

Instrument I/O

PC

Data Plotter

Figure 2: Diagram of the VSVI platform (UART version)

The universal Data Plotter PC application is used to display acquired oscilloscope waveforms, access
the TUI and transfer files between the PC and microcontroller. This application was developed by Bc.
Jǐŕı Maier, and is not a part of my thesis. It is listed on the Embedded server1 of the Department of
Measurement, FEE, CTU in Prague. Its source code and binary releases are available from GitHub2.

This manual describes the functionality and usage of the VSVI system. Note that certain features
may only be available on higher-end MCUs, such as the STM32F303RE which is used as an example
throughout this manual. Screenshots show the 17.3.2022 release of Data Plotter3.

1https://embedded.fel.cvut.cz/platformy/dataplotter
2https://github.com/jirimaier/DataPlotter
3https://github.com/jirimaier/DataPlotter/releases/tag/v2.0

3

1.1 Programming the MCU

To use the VSVI platform, the microcontroller must be programmed with the appropriate firmware. This
can be done via an ST-Link or serial (UART) programmer or directly via USB if a USB bootloader had
been programmed previously onto the MCU. If UART is used to communicate with the PC, the baud
rate is fixed within the firmware. Therefore, multiple firmware binaries had been compiled to support
various baud rates. Binaries are named ”VSVI <platform> <comm> <release>.bin”, where:

� <platform>: Name of the hardware platform. Can be either:

– ”<MCU code>−<package>”, e.g. ”G431-LQFP32” for standalone MCUs

– ”<MCU code>−<board name><pin count>”, e.g. ”G431-Nucleo32”, ”F303-Nucleo64”, ”F103-
BluePill48” for development boards

� <comm>: Description of the PC communication interface, can be:

– ”UART−<baud>”: using UART with baud rate <baud>

– ”USB−VCP”: using USB in Virtual COM Port (VCP) mode.

� <release>: Release date in ”R<YYYYMMDD>” format

1.2 Connecting the MCU to the PC

After the MCU has been programmed, connect it to the PC via the appropriate interface, according to
the firmware version as described in the previous section. Also connect the necessary input and output
signals according to the appropriate MCU pinout found in section 8. Open Data Plotter and select the
MCU in the connection tab in the sidebar, as shown in Figure 3. The MCU’s device descriptor should
be listed in the drop-down menu, in this case it is ”ttyACM0 - STM32 STLink”.

If using UART, configure the correct baud rate in the connection window (921600 baud in this case). If
using USB, the baud rate setting is irrelevant. Finally, click the connection button (indicated by cursor)
to connect to the MCU. If the connection is successful, the MCU sends a welcome message which is
displayed in the Data Plotter log. To start using the virtual instruments now, access the terminal user
interface by switching to the terminal tab in Data Plotter.

Figure 3: Data Plotter sidebar on startup (left) and after the MCU is connected (right)

4

2 Terminal user interface (TUI)

The terminal user interface (TUI) is displayed in Figure 4. It is compartmentalized into tabs, one for
each type of virtual instrument. The name of the currently open tab is shown in the white title bar at
the very top. The blue button to the left of the title opens a drop-down tab selection menu containing
the name of every tab. Clicking the corresponding button on the left then opens this tab.

Within each instrument tab, there are a number of settings/parameters displayed. Each group of settings
is described in detail in the ”¡instrument code¿ TUI tab:” sections of this manual. Values are highlighted
in white blocks, with units immediately on their right. If the value of a parameter can be changed by
the user, a typically blue ”edit” button is also shown to the left of the parameter’s name. Its behavior
depends on the parameter type, detailed in the following subsection.

Figure 4: Oscilloscope tab of the TUI (left), with tab menu opened (right)

5

Metric unit prefixes are supported for numeric values, consisting of a single character at the very end of
the value, e.g. ”12.345k”. The available prefixes are listed in the following table. Characters other than
digits, metric prefix characters and the decimal point are ignored.

Prefix nano micro mili - kilo mega giga

Character ”n” ”u” ”m” ” ” ”k” ”M” ”G”

Multiplier 10−9 10−6 10−3 1 103 106 109

Table 1: Supported metric unit prefixes

In many cases, the exact parameter value entered by the user cannot be achieved. The
firmware then sets the closest possible value, which is shown in the TUI. However, the
originally entered value is saved and the firmware will attempt to achieve a closer match if
the instrument configuration is changed later.

2.1 Value editing

Parameter values can be edited in multiple ways, depending on their type. The supported types are:

� Toggle settings: For settings with only a few discrete options, e.g. ”on”/”off”, clicking the edit
button repeatedly cycles through the available options. The new value is applied immediately, there
is no confirmation.

Figure 5: Example of a toggle setting (”Mode” setting of the oscilloscope trigger)

� Drop-down menu: For settings with more discrete options, a drop-down menu is opened under-
neath the parameter’s value block when the edit button is clicked. This menu lists all the available
options, each with a button on the left side. Clicking one of these buttons selects the corresponding
option, applies it immediately and closes the menu. The menu is also closed when the user clicks
any parameter edit button, keeping the old value.

Figure 6: Example of the drop-down menu (”IN freq. source” setting of the oscilloscope)

� Numeric editor: A digit-wise editor displayed in a row under the value block is provided for nu-
meric values. The ”<” and ”>” buttons select a digit in the value. The ”+” and ”-” buttons then
increment/decrement the selected digit or cycle through available metric prefixes if the rightmost
digit position is selected. The new value is saved when the user clicks any parameter edit button.
There may also be a number of presets available below, which work identically to the drop-down
menu described above.

6

Figure 7: Example of numeric editor with presets (”RTS freq.” setting of the oscilloscope)

� Direct value entry (text field): Lastly, it is also possible to enter values directly using the
”Send to device” function of Data Plotter located below the terminal window. This text field is
pre-filled with the current parameter value when the value editor (drop-down or numeric) is opened.

Figure 8: Pre-filled text field of the ”Send to device” function for direct value entry

7

3 Mixed-signal oscilloscope (MSO)

A Mixed-Signal Oscilloscope (MSO) with 4 analog channels and up to 16 digital channels is implemented.
Its exact capabilities depend on the MCU used. The Analog-to-Digital Converters (ADCs) embedded in
the MCU are used for the analog channels. General-Purpose Input/Output (GPIO) pins in input mode are
used for the digital channels. Both the analog and digital channel sampling is triggered by an embedded
timer at a precise sampling frequency. Samples are transferred by DMA controllers into buffers in internal
SRAM memory. After an acquisition is completed, the buffer contents are sent to the PC in order to
display the acquired data in Data Plotter. Both real-time and equivalent-time sampling are implemented.

Figure 9: Oscilloscope being used within Data Plotter

Note that the acquisition is paused whenever the user is interacting with the TUI. This
includes the time it takes to process a button click, as well as the entire time the value editor is open.
This applies even when interacting with a different instrument’s tab. This restriction is necessary to
ensure communication with the PC does not disturb the operation of the oscilloscope at high sampling
rates. Once the setting is stored and editor closed, the acquisition is automatically restarted.

8

In RTS mode, the ADCs sample the inputs at a sampling frequency fSR set by the ”RTS freq.” parameter.
The maximum sampling rate in this mode is not only limited by the maximum ADC sampling rate, but
also other factors such as DMA throughput. For example, the maximum sampling rate is lower when
an arbitrary generator is enabled. If the user enables more analog channels (NC) than there are ADCs
available (NA):

� Each ADC samples multiple input channels alternately.

� The maximum sampling frequency is divided by a factor of

Nalt =
NC

NA
. (1)

� Channel skew (delay) of no more than

Tskew =
TSR

Nalt
=

1

Nalt · fSR
(2)

is introduced between channels sampled by the same ADC.

In summary:

� For MCUs with 4 ADCs (NA = 4):

– There is no sampling rate reduction nor channel skew.

� For MCUs with 2 ADCs (NA = 2):

– For 1 or 2 enabled analog channels (NC ≤ 2, Nalt ≤ 1):

* There is no sampling rate reduction nor channel skew.

– For 4 enabled analog channels (NC = 4, Nalt = 2):

* Max. sampling rate is reduced to 1/2 of the max. sampling rate for NC ≤ 2.

* Channels 1 and 2 are sampled simultaneously.

* Channels 3 and 4 are sampled simultaneously.

* Channels 3 and 4 are are delayed from channels 1 and 2 by at most 1/2 of the sampling
period.

� For MCUs with 1 ADC (NA = 1):

– For 1 enabled analog channel (NC = 1, Nalt = 1):

* There is no sampling rate reduction nor channel skew.

– For 2 enabled analog channels (NC = 2, Nalt = 2):

* Max. sampling rate is reduced to 1/2 of the max. sampling rate for NC = 1.

* Channel 2 is delayed from channel 1 by at most 1/2 of the sampling period.

– For 4 enabled analog channels (NC = 4, Nalt = 4):

* Max. sampling rate is reduced to 1/4 of the max. sampling rate for NC = 1.

* Each channel is delayed from the previous one by at most 1/4 of the sampling period.

9

3.1 Interleaving ADCs

If there are more available ADCs than enabled analog channels (NA > NC , Nalt < 1), ADC interleaving
can be used to achieve a higher sampling rate. This is activated automatically when the user selects a
real-time sampling frequency that is beyond the capabilities of a single ADC. The ”Interleaving” param-
eter appears, displaying the number of ADCs interleaved per analog channel, e.g. ”2 ADCs/ch”. If the
sampling frequency is subsequently decreased, interleaving is disabled again.

In some MCUs, the firmware cannot connect the input pins of analog channels to all the
interleaving ADCs. Therefore, external jumper links between the analog input pins are
required. In that case, a ”Links needed” parameter appears, listing the required connections. These
are shown with a yellow background to alert the user to the necessity of connecting the jumper wires. If
the user fails to do so, samples of different input signals will be combined into one channel, producing
garbled waveform data.

3.1.1 Trigger limitations

When normal trigger mode from an analog channel is used, only one ADC can use the analog watchdog
triggering feature due to limited AHB bandwidth and core speed of the MCU. Therefore, while the
effective sampling rate fS is higher due to using

Nint =
1

Nalt
(3)

interleaving ADCs per analog channel, the rate at which the trigger can detect signal transitions is still
equal to the sampling rate fS1 of a single ADC, i.e.

fS1 =
fS

Nint
. (4)

Therefore, trigger aliasing (using 1 ADC only) will occur before waveform aliasing (using multiple ADCs).
Aliasing occurs when the sampling frequency is at or below the Nyquist frequency. When fS1 is exactly
the Nyquist frequency, all the samples from the trigger ADC will be constant and no trigger will occur
at all. When fS1 is below the Nyquist frequency, trigger events will happen at a reduced rate, missing
some valid signal transitions.

3.2 Digital channel skew

The digital channels may be slightly delayed with respect to analog channels. The digital data is captured
simply by a DMA transfer from the GPIO input data register, there is no sample and hold mechanism.
Ongoing transfers of ADC data for analog channels or DAC data for arbitrary generators occupy the
AHB bus and cause delays of variable durations. Unfortunately, there is no way to alleviate this without
additional input latch circuitry.

10

3.3 Equivalent-time sampling (ETS) mode

Equivalent-time sampling (ETS) mode is supported for periodic input signals. Their frequency fIN must
be known for this implementation. The input frequency can be measured by the frequency counter or
manually entered. The input signal can also be synchronous with an output signal of one of the available
generators, the frequency of which is known. Then, an equivalent-time sampling rate fSE higher than
the maximum fSR can be achieved by acquiring one sample per N input signal periods according to

TSR = N · TIN + TSE ⇐⇒ fSR =
fIN · fSE

fIN + N · fSE
(5)

TSE = TSR −N · TIN ⇐⇒ fSE =
fIN · fSR

fIN −N · fSR
(6)

where TIN , TSR, TSE are the input, RTS and ETS periods respectively.

0 T
SR

2T
SR

3T
SR

4T
SR

Time

A
m

p
lit

u
d

e

Equivalent-Time Sampling (ETS), Example 1
5 periods at 1.25 periods/Sa, equivalent to 1 period at 4 Sa/period

T
SE

T
IN

T
SE

T
IN

T
SE

T
IN

T
SE

T
IN

Input signal
Reconstructed signal
Acquired samples

Figure 10: Equivalent-time sampling (ETS) as implemented in this firmware. Sampling at an equivalent
of 4 samples per period with N = 1.

0 4T
SR

8T
SR

12T
SR

16T
SR

20T
SR

24T
SR

28T
SR

32T
SR

Time

A
m

p
lit

u
d

e

Equivalent-Time Sampling (ETS), Example 3
34 periods at 1.0625 periods/Sa, equivalent to 2 periods at 16 Sa/period

Input signal
Reconstructed signal
Acquired samples

Figure 11: Equivalent-time sampling (ETS) at an equivalent of 16 samples per period with N = 1.

11

3.3.1 Trigger limitations (digital channels)

Input signal edge detection of the EXTI controller is used for digital channel trigger. In ETS mode, this
will cause detection events to happen between samples, stopping oscilloscope acquistion prematurely. In
normal trigger mode, if the selected edge cannot be found in the acquired data, the oscilloscope discards it
and starts a new acquistion without updating the waveform displayed. This would cause the oscilloscope
to appear frozen if a digital channel is used as trigger source in ETS mode with normal trigger. Therefore,
there are two options for triggering in ETS mode:

� Enable at least one analog channel and use it as the trigger source. Both normal and auto trigger
are available and work normally.

� If a digital channel is used, only auto trigger is available. However, input signal transitions are not
detected, trigger only occurs after a number of full buffers have been acquired. For this reason, the
trigger edge selection is hidden for digital channel trigger in ETS mode.

3.4 MSO TUI tab: Main controls

Figure 12: Main oscilloscope controls in Stop, Run and Single mode (from left to right)

3.4.1 Run/Stop

Toggling this setting starts and stops the oscilloscope acquisitions. The button is red in Stop mode, green
in Run mode and blue in Single mode.

3.4.2 Single

Clicking this button enables single mode for the next acquisition, reverting to Stop mode afterwards.
The button is yellow when single mode is active and waiting for trigger, otherwise blue.

3.4.3 Force trig

Forces a single trigger event to occur when clicked.

3.5 MSO TUI tab: ”Sampling” menu

Figure 13: Sampling menu in RTS mode without ADC interleaving

12

Figure 14: Sampling menu in RTS mode with active ADC interleaving

Figure 15: Sampling menu in ETS mode

3.5.1 Mode

� ”real−time”: Oscilloscope uses real-time sampling (RTS mode).

� ”equiv−time”: Oscilloscope uses equivalent-time sampling (ETS mode).

3.5.2 RTS freq.

Real-time sampling frequency, in Hertz. This is the effective sampling rate including interleaving of ADCs
(each individual ADC samples at the corresponding fraction of this frequency when interleaving is active).

3.5.3 Interleaving

Currently active interleaving mode. Only shown when interleaving is active. Selected automatically based
on the sampling rate and number of enabled analog channels, not user-configurable. The options are:

� ”2 ADCs/ch”: There are 2 ADCs sampling every enabled analog channel.

� ”4 ADCs/ch”: There are 4 ADCs sampling every enabled analog channel.

3.5.4 Links needed

A list of jumper links necessary for the currently active interleaving mode. A link connecting analog
input pins ”AIN X” and ”AIN Y” is denoted as ”AINX=AINY”. Only shown when interleaving is active
and the analog inputs cannot be connected by firmware.

13

3.5.5 ETS freq.

Equivalent-time sampling frequency, in Hertz. Only applicable and visible in ETS mode. This is the
equivalent sampling rate for an input signal with frequency equal to the value of the ”IN freq.” parameter.
There are 2 ways this parameter can work:

� The user can set the ”ETS freq.” parameter directly. The firmware then finds an RTS frequency such
that the resulting ETS frequency is as close as possible to the entered value. If the input frequency
changes, the firmware readjusts the RTS frequency to maintain the desired ETS frequency.

� Alternatively, the user can set the ”RTS freq.” parameter. In that case, the ”ETS freq.” parameter
only shows the calculated ETS frequency, based on the input frequency. If the input frequency
changes, the RTS frequency remains unchanged, while the ETS frequency is recalculated.

3.5.6 IN freq.

Input signal frequency, in Hertz. Only applicable and visible in ETS mode. This parameter can be set
manually when the input frequency source (”IN freq. source” parameter) is set to ”none”. Otherwise, it
updates automatically from the selected source and can’t be changed by the user.

3.5.7 IN freq. source

Source of input signal frequency with the following options:

� ”CNT”: Input signal frequency measured by the frequency counter. Automatically updated at the
counter’s update rate (approx. 1 second).

� ”PWMX”: Input signal frequency is set equal to the pulse generator ”X” frequency. Automatically
updated whenever the user changes the generator’s frequency.

� ”ARBX”: Input signal frequency is set equal to the arbitrary generator ”X” frequency. Automati-
cally updated whenever the user changes the generator’s frequency.

� ”none”: No automatically updated source. Input signal frequency can be set manually in the ”IN
freq.” parameter.

3.5.8 Sampling time

The ADC sampling time, in seconds. This is the duration of the sampling phase of the ADC, during which
the sampling capacitor charges from the input pin. It determines the maximum input signal impedance
RAIN for a given ADC resolution. The corresponding values can be found in the MCU datasheet. The
sampling time is automatically set as high as possible for a given sampling rate, it is not
user-configurable.

3.6 MSO TUI tab: ”Trigger” menu

Figure 16: Trigger menu, set to trigger from an analog channel

14

3.6.1 Mode

� ”normal”: Trigger when a transition of the input signal occurs.

� ”auto”: Trigger on a transition, or when 5 full buffers have been acquired.

3.6.2 Source

� ”AINX”: Analog channel X (input pin AIN X) triggers the oscilloscope.

� ”DINX”: Digital channel X (input pin DIN X) triggers the oscilloscope.

Only enabled channels are available in the drop-down menu.

3.6.3 Edge

� ” rising ”: Trigger on a rising edge only.

� ” falling ”: Trigger on a falling edge only.

� ”either”: Trigger on either a rising or falling edge.

3.6.4 Level

Vertical trigger level, in Volts. Hidden when triggering from a digital channel.

3.6.5 Position

Horizontal position of the trigger (pre-trigger) as a percentage of the record length.

3.7 MSO TUI tab: ”Acquire” menu

Figure 17: Acquire menu

3.7.1 Record length

Record length, as the number of samples acquired.

3.7.2 Analog ch.

Selection of enabled analog channels, the options are:

� ”none”: All analog channels are disabled. The digital channels must be enabled in this case.

� ”AIN1”: Only analog channel 1 is enabled.

� ”AIN1,AIN2”: Analog channels 1 and 2 are enabled.

� ”AIN1−AIN4”: All analog channels (1 to 4) are enabled.

3.7.3 Digital ch.

Selection of enabled digital channels, the options are:

� ”none”: All digital channels are disabled. At least one analog channel must be enabled in this case.

� ”DIN0−DINX”: All digital channels (0 to X) are enabled.

15

4 Pulse generators (PWM)

One or more pulse generators (depending on MCU capabilities) are also provided by this firmware. These
can be used for general-purpose tasks or in conjunction with the oscilloscope in ETS mode, generating
reference signals with precisely known frequencies. All generated frequencies are fractions of the MCU
timer clock frequency fTIM (typically equal to the system clock frequency fSY S). Therefore, the avail-
able frequency resolution is diminished when approaching the timer clock frequency. Theoretically, the
maximum output frequency is half the timer clock frequency. However, it may not be possible to drive the
corresponding GPIO output pin at that frequency, depending on the load capacitance and other factors
– consult the MCU datasheet for more details.

The pulse generators are denoted as ”PWM” and numbered (”PWM 1”, ”PWM 2”, etc.). Each generator
can have one or more output channels, denoted by a letter suffix (”PWM 1A”, ”PWM 1B”, ”PWM 2A”,
etc.). The output signal’s positive duty cycle/pulse width can be set individually for each channel, while
the frequency is the same for all channels of a given generator. Each channel’s output can be individually
disabled, leaving the corresponding GPIO pin floating (high-Z state).

Figure 18: Pulse generator TUI tab

16

4.1 PWM synchronization

If there are multiple pulse generators available, it is possible to synchronize them in a master/slave
scheme. The time delay of the slave generator’s output signals w.r.t. the master generator’s is config-
urable from zero (synchronized) up to the period of the master generator. A phase offset based on the
period of the master generator can also be set. Additionally, frequency synchronization can be enabled
via the ”Sync with PWM X” setting. The frequency of the slave generator is then automatically kept
equal to the master generator’s frequency.

Each generator can be a slave of the previous generator, i.e. the PWM 3 generator can be a slave of
PWM 2, which itself can be a slave of PWM 1. Any number of generators can be synchronized
this way, there are no additional unwanted delays introduced.

4.2 PWM TUI tab: ”Generator PWMX” menus

These menus contain all parameters specific to a given PWM X pulse generator.

Figure 19: Generator parameters when frequency synchronization is disabled

Figure 20: Generator parameters when frequency synchronization is enabled

4.2.1 Sync with PWMX

� ”off”: Frequency synchronization is disabled. This generator’s frequency can be set independently.

� ”on”: Frequency synchronization is enabled. This generator’s frequency is kept equal to the fre-
quency of its master (PWM X).

4.2.2 Frequency

Generator frequency, in Hertz. Only visible when frequency synchronization is disabled.

4.2.3 Period

Generator period, in seconds. Only visible when frequency synchronization is disabled.

17

4.2.4 Phase offset

Phase offset of the slave generator w.r.t. the master generator, in degrees. Note the phase angle is relative
to the period of the master generator – i.e. a 360◦ offset represents a delay of 1 master period.

4.2.5 Time delay

Time delay of the slave generator w.r.t. the master generator, in seconds. Maximum delay is 1 master
generator period.

4.3 PWM TUI tab: ”Channel PWMXY” menus

These menus contain all parameters specific to a given PWM XY output channel.

Figure 21: Channel parameters

4.3.1 Output

� ”off”: Output is disabled, leaving this channel’s GPIO output pin floating (high-Z state).

� ”on”: Output is enabled, driving this channel’s GPIO output pin.

4.3.2 Duty cycle

Positive duty cycle of the channel’s output signal, as a percentage of the generator period.

4.3.3 Pulse width

Positive pulse width of the channel’s output signal, in seconds.

18

5 Arbitrary generators (ARB)

One or two arbitrary generators are available in firmware versions for MCUs with embedded Digital-to-
Analog Converters (DACs). These allow the generation of arbitrary signals as configured by the user.
They are denoted as ”ARB” and numbered (e.g. ”ARB 1”, ”ARB 2”). The DAC sampling frequency fS
is generated by a timer, same as the pulse generators. The output signal frequency fO is then

fO =
fS

N
, (7)

where N is the number of samples per period of generated signal. The minimum number of samples
per period is set to 4, giving a maximum generated signal frequency of 250 kHz when considering
the typical max. DAC sampling rate of 1 MSa/s. The max. number of samples per period (at low
output signal frequencies) is typically 1000, but it may depend on the firmware version. Between these
extremes, the number of samples is automatically set to the highest value possible (not user-configurable).

Figure 22: Arbitrary generator TUI tab

19

5.1 Custom waveforms

The arbitrary generators provide a number of built-in waveform functions (sine wave, sawtooth, etc.), but
custom waveforms can also be used. These have to be loaded from the PC using a wave file in accordance
with the following format:

� A comma-separated list of numeric values (.csv).

� Each value represents a single sample of the output signal, in Volts.

� The length of a single value (excl. comma) cannot exceed 62 characters.

� Metric prefix characters (e.g. ’123m’ for 123 mV) are supported.

� Characters other than commas, digits, metric prefix characters and the decimal point are ignored.

� Values will be clipped to remain within the generator’s output voltage range.

� If there are more values than can be used by the generator, they will be ignored.

After a waveform has been loaded into the MCU, it can be retained between MCU resets by saving a
configuration profile to the internal FLASH memory – see section 7.

5.2 ARB Synchronization

If there are two available arbitrary generators, they can be synchronized using the ”Sync” setting. When
enabled, both generators share a common frequency with an identical number of samples per period. The
initial phase of both generators can then be set. Its resolution is determined by the number of samples
per period, giving a worse resolution at higher frequencies (same as duty cycle).

If one of the generators is using a custom waveform, the other generator will be limited to
the same number of samples per period. If both are using custom waveforms, the lower
number of samples among them will be used for both – truncating the longer waveform.

5.3 ARB TUI tab: ”All generators” menu

This menu contains settings affecting all arbitrary generators.

Figure 23: Generator parameters when synchronization is disabled

20

Figure 24: Generator parameters when synchronization is enabled

5.3.1 Sync

� ”on”: Synchronization is enabled, ARB 1 and ARB 2 frequencies are identical.

� ”off”: Synchronization is disabled, ARB 1 and ARB 2 frequencies can be set independently.

5.3.2 Common freq.

Common generated signal frequency, in Hertz. Only visible when synchronization is enabled.

5.3.3 Sample count

Common number of samples per period of generated signal. Calculated automatically, not user-configurable.

5.4 ARB TUI tab: ”Generator ARBX” menus

These menus contain all parameters specific to a given ARB X arbitrary generator.

Figure 25: Generator parameters when the DC only waveform is selected

21

Figure 26: Generator parameters when using a custom waveform, before and after a wave file is loaded
from the PC (ARB1, ARB2 respectively).

5.4.1 Output

� ”off”: Generator output is disabled. The GPIO output pin is left floating (high-Z state).

� ”on”: Generator output is enabled. The DAC drives the GPIO output pin.

5.4.2 Waveform

� ”from PC”: A custom waveform can be loaded from the PC.

� ”DC only”: Only a DC voltage is generated.

� ”sinusoid”: A sinusoid waveform is generated.

� ”sawtooth”: A sawtooth waveform with adjustable duty cycle is generated. Set duty cycle to 50 %
to generate a symmetric triangle waveform.

� ”square”: A square waveform with adjustable duty cycle is generated.

5.4.3 Wave file

Only available when custom waveform is selected. Clicking the corresponding button opens a file selection
dialog allowing the user to select a wave file to load from the PC. The value block shows the loading
status, which can be one of the following:

� ”not loaded”: No file has been loaded since custom waveform was selected. The generator output
cannot be enabled until a file is successfully loaded or the user selects a different waveform type.
Highlighted in yellow to alert the user.

� ”loading ... ”: Wave file loading is in progress.

� ”load error”: An error occurred while loading the wave file. See Data Plotter’s message log for the
associated error message.

5.4.4 Frequency

Generated signal frequency, in Hertz. Only available when synchronization is disabled.

22

5.4.5 Phase

Initial signal phase, in degrees. Only available when synchronization is enabled. Hidden for custom
waveform.

5.4.6 Duty cycle

Positive duty cycle of the generated signal, as a percentage of its period. Hidden for sinusoid, DC only
and custom waveforms.

5.4.7 Amplitude

AC amplitude of the generated signal, in Volts. Not peak-to-peak value. Hidden for DC only and custom
waveforms.

5.4.8 DC offset

DC offset of the generated signal, in Volts. Renamed to ”Voltage” for DC only waveform. Hidden for
custom waveform.

5.4.9 Sample count

Number of samples per period of generated signal. Calculated automatically, not user-configurable.
Hidden when synchronization is enabled.

23

6 Frequency counter (CNT)

A frequency counter is also implemented. It can be used standalone or in conjunction with the oscilloscope
in ETS mode, measuring its input signal frequency. The counter is based on two timers:

� The reference timer, clocked by the MCU timer clock (typically same frequency as system clock)
to measure the time elapsed.

� The input timer, clocked by the input signal being measured by the counter.

The input signal frequency fIN can be determined after the gate time has elapsed from the overall number
of counted periods of both the reference (NREF) and input (NIN) timers by

fIN =
NIN

NREF
· fREF , (8)

where fREF is the clock frequency of the reference timer. The nominal gate time set to 1 s, giving a
worst-case frequency resolution of 1 Hz. This is also approximately the update rate of the counter. The
counter always counts a whole number of input signal periods in order to maintain high accuracy for
low-frequency input signals. This introduces a slight variance in the gate time, dependent on the input
signal frequency. The frequency counter is always-on and cannot be disabled by the user. It only displays
a number of measurements and system parameters, it has no configurable settings.

Figure 27: Frequency counter TUI tab

Note that due to the use of digital timer circuitry, the counter may not give correct readings
for input signals which do not have clean, fast transitions between the logic low and high
level voltages (e.g. slow or noisy analog signals). The counter may also count oscillations
that are too fast to be captured by the oscilloscope.

24

6.1 CNT TUI tab: Gate time

The gate time, in seconds.

6.2 CNT TUI tab: ”Input signal CNT” menu

6.2.1 Frequency

The measured frequency of the input signal, in Hertz.

6.2.2 Period

The measured period of the input signal, in seconds.

6.2.3 Period count

The number of input signal periods counted during the gate time.

6.3 CNT TUI tab: ”Reference clock” menu

6.3.1 Frequency

The known frequency of the reference timer clock, in Hertz.

6.3.2 Period

The known period of the reference timer clock, in seconds.

6.3.3 Period count

The number of reference clock periods counted during the gate time.

25

7 Configuration profiles (PRO)

As the previous sections show, there is a large number of instrument parameters the user can configure. It
would therefore be useful to make them persistent and avoid having to re-configure all of them manually
every time the MCU is reset. To facilitate this, ”configuration profiles” containing all the parameters
of every instrument are implemented. The current parameter values can be stored in a profile, while
previously stored values can be recalled from one.

Figure 28: Configuration profiles TUI tab with open file selection dialog

A single profile can be stored in the MCU’s internal FLASH memory. It can then be loaded even after
an MCU reset or reprogramming. Using Data Plotter, it is also possible to download/upload profiles
to/from the connected PC. The profiles are stored as non-human-readable .csv files. Their size is approx.
500 kB + 3 B per sample of arbitrary generator waveform (if using custom waveform).

Each profile contains a firmware version descriptor to ensure compatibility. Therefore, the
firmware will reject a profile saved from another MCU platform or firmware release.

7.1 PRO TUI tab: ”Load profile” menu

Figure 29: Load profile menu after a profile has been successfully loaded from PC

7.1.1 From PC

Loads instrument parameter values from profile stored in the PC, opening a file selection window.

7.1.2 From FLASH

Loads instrument parameter values from profile stored in the internal FLASH memory.

26

Value fields show the load operation status:

� (blank): Initial state (no profile loaded since last MCU reset).

� ”loading ... ”: Profile loading is in progress.

� ”loaded OK”: Profile has been loaded successfully.

� ”error”: An error occurred while loading profile. See Data Plotter’s message log for the associated
error message.

Figure 30: Load profile menu after an error occurred (left), corresponding error message (right)

7.2 PRO TUI tab: ”Store profile” menu

Figure 31: Store profile menu after a profile has been successfully stored to FLASH

7.2.1 To PC

Stores current instrument parameter values into a profile stored in the PC, opening a file selection window.

7.2.2 to FLASH

Stores current instrument parameter values into a profile stored in the internal FLASH memory.

Value fields show the store operation status:

� (blank): Initial state (no profile stored since last MCU reset).

� ”storing ... ”: Profile storing is in progress.

� ”stored OK”: Profile has been stored successfully.

� ”error”: An error occurred while storing profile. See Data Plotter’s message log for the associated
error message.

27

8 Versions of VSVI platform (supported MCUs)

8.1 ”F303-Nucleo64” for STM32F303RE on Nucleo-F303RE

The primary adaptation of the developed VSVI platform is for the Nucleo-F303RE development board
shown in Figure 32. This board is based on the STM32F303RE microcontroller in the LQFP64 package
and is one of the most widely used STM32 platforms at FEE CTU. It includes an ST-Link V2-1 debug-
ger/programmer which can be used to program the MCU using the onboard Mini-USB connector. The
ST-Link additionally serves as a USB-UART converter, being connected to the USART2 interface of the
STM32F303RE MCU. The ST-Link clock derived from an onboard 8 MHz crystal oscillator is also used
as the clock source for the STM32F303RE MCU in HSE bypass mode. Figure 33 shows the pinout of
this version of the VSVI platform.

Figure 32: Nucleo-F303RE development board with STM32F303RE MCU

28

RESET

ARB 2 PA5

PB3PA4 ARB 1
PA1
PA0

VIN
GND
GND
+5V
+3V3

IOREF

GND
E5V
PD2
PC11PC10

PC12
VDD

BOOT0

PA13
PA14
PA15
GND
PB7
PC13
PC14
PC15
PF0
PF1
VBAT
PC2
PC3 PC0

PC1
PB0

PC7
PB6
PA7
PA6

GND
AVDD
PB9
PB8
PC9

PA9

PA8
PB10
PB4
PB5

PA10
PA2
PA3

PC4
AGND
PB13
PB14
PB15
PB1
PB2
GND
PB11
PB12
PA11
PA12

U5V
PC5
PC6
PC8

PWM 3B
PWM 3A

PWM 1A
PWM 1B

PWM 2A
PWM 2BAIN 1 AIN 3

AIN 4

AIN 2

DIN 3
DIN 1DIN 2
DIN 0

CNT

AIN X

PWM XY

Oscilloscope analog channel X input

DIN X Oscilloscope digital channel X input

Pulse generator X channel Y output

ARB X Arbitrary generator X output

CNT Frequency counter input

DIN 4

DIN 5
DIN 6
DIN 8

DIN 9
DIN 11DIN 10

DIN 12

DIN 7

DIN 14
DIN 13

DIN 15
PWM 4A

UART TX
UART RX

LSE OUT
LSE IN
USR BTN

Figure 33: Pinout of SDIs developed for STM32F303RE (Nucleo-F303RE development board)

8.1.1 Mixed-signal oscilloscope (STM32F303RE)

� 4 analog channels (inputs AIN 1, AIN 2, AIN 3, AIN 4) with 12-bit resolution

� 16 digital channels (inputs DIN 0 − DIN 15)

� Maximum real-time sampling rate:

– 24 MSps for all digital channels with analog channels disabled

– 18 MSps for one analog channel with 4 ADCs interleaving, digital channels disabled

– 5 MSps for all digital and analog channels with no interleaving

29

– Table 2 shows all the possible channel configurations and their respective max. sampling rates
when all arbitrary generators are disabled. When any of the arbitrary generators is enabled,
Table 3 applies instead.

� Maximum equivalent-time sampling rate:

– Depends on the input signal frequency

– Typically up to 72 MSps, max. 720 MSps with 1 sample per 10 input signal periods

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled -
18.0 MSps (i4)
10.3 MSps (i2)
5.1 MSps (-)

10.3 MSps (i2)
5.1 MSps (-)

5.1 MSps (-)

16 channels 24 MSps (-)
10.3 MSps (i2)
5.1 MSps (-)

10.3 MSps (i2)
5.1 MSps (-)

4.8 MSps (-)

Table 2: Maximum MSO sampling rates for STM32F303RE with arbitrary generators disabled. Used
ADC interleaving mode indicated in parentheses (”-” = none, ”i2” = 2 ADCs/channel, ”i4” = 4 ADC-
s/channel).

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled -
7.2 MSps (i2)
4.8 MSps (-)

7.2 MSps (i2)
4.8 MSps (-)

4.0 MSps (-)

16 channels 8 MSps (-)
5.5 MSps (i2)

4 MSps (-)
5.5 MSps (i2)

4 MSps (-)
3.4 MSps (-)

Table 3: Maximum MSO sampling rates for STM32F303RE with arbitrary generators enabled. Used
ADC interleaving mode indicated in parentheses (”-” = none, ”i2” = 2 ADCs/channel).

� Maximum record length depends on the number of enabled channels according to Table 4

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled - 30.8 kSa 15.4 kSa 7.7 kSa

16 channels 30.8 kSa 15.4 kSa 10.2 KSa 6.1 kSa

Table 4: Maximum MSO record lengths for STM32F303RE

� When interleaved sampling of the analog channels is used, the user must connect
external jumper links between analog input pins:

– When 1 analog channel is enabled and interleaving 2 ADCs per channel, connect:

* AIN 1 (PA1) and AIN 3 (PB13)

30

– When 2 analog channels are enabled and interleaving 2 ADCs per channel, connect:

* AIN 1 (PA1) and AIN 3 (PB13)

* AIN 2 (PA7) and AIN 4 (PB14)

– When 1 analog channel is enabled and interleaving 4 ADCs per channel, connect:

* AIN 1 (PA1) and AIN 3 (PB13)

* AIN 2 (PA7) and AIN 4 (PB14)

* AIN 3 (PA13) and AIN 4 (PB14) or AIN 1 (PA1) and AIN 2 (PA7)

� Some digital channels are limited on stock Nucleo-F303 boards:

– DIN 13 (PC13) is connected to the USER push button, including a 4.7 kΩ pull-up resistor to
the 3.3V rail and a bypass capacitor. External signals should not be connected to this pin
unless the solder bridge SB17 is removed, disconnecting the button circuitry.

– DIN 14 and DIN 15 are not available. The corresponding MCU pins PC14 and PC15 are
connected to the 32 kHz LSE crystal oscillator and NOT connected to the pin headers. To use
these digital channels, R34 and R36 must be removed (disconnecting the crystal) and SB48
and SB49 must be connected (connecting the MCU pins to the pin headers).

8.1.2 Pulse generators (STM32F303RE)

� 4 generators available:

– PWM 1 with two channels (PWM 1A, PWM 1B)

– PWM 2 with two channels (PWM 2A, PWM 2B)

– PWM 3 with two channels (PWM 3A, PWM 3B)

– PWM 4 with one channel (PWM 4A)

� All can run independently or be synchronized with adjustable phase/time delay

� Maximum output signal frequency 72 MHz (50% duty cycle only)

8.1.3 Arbitrary generators (STM32F303RE)

� 2 generators available:

– ARB 1

– ARB 2

� Both can run independently or be synchronized with adjustable phases

� Maximum sampling frequency 1 MHz

� Maximum output signal frequency 250 kHz (4 samples per period)

� Up to 1000 samples per period for output signal frequencies ≤ 1 kHz

8.1.4 Frequency counter (STM32F303RE)

� Input signal frequency range: 10 Hz− 72 MHz

� Gate time ≈ 1 s gives update rate ≈ 1 Hz

� Frequency resolution ≤ 1 Hz using modified frequency ratio measurement (see section 6)

31

8.2 ”G431-LQFP32” for STM32G431KB on LQFP32 adapter

The VSVI platform was also adapted for the STM32G431KB microcontroller in the LQFP32 package.
The embedded USB peripheral is used for communication with the PC. An external 3.3 V voltage regu-
lator is needed to supply the VDD supply voltage. An 8 MHz crystal oscillator should also be connected
to the HSE IN, HSE OUT pins with the appropriate load capacitors. Using this crystal oscillator signifi-
cantly improves clock stability and the frequency accuracy of the generators and frequency counter. It is
also absolutely necessary for MSO equivalent-time sampling of externally-generated signals. In case no
crystal oscillator is detected at MCU startup, the internal RC oscillator (HSI) is used instead. Figure 34
shows the pinout of the VSVI platform for this MCU, as soldered on an LQFP32-to-DIP adapter for use
in breadboards.

PWM 3A

AIN X

PWM XY

Oscilloscope analog channel X input

DIN X Oscilloscope digital channel X input

Pulse generator X channel Y output

ARB X Arbitrary generator X output

CNT Frequency counter input

DIN 4

DIN 5
DIN 6
DIN 7

PA8
PA9
PA10
PA11
PA12
PA13
PA14
PA15
PB3
PB4
PB5
PB6
PB7
PB8
GND

VDD
AVDD
AGND
PB0
PA7
PA6
PA5
PA4
PA3
PA2
PA1
PA0
NRST
PF1
PF0
VDD

GND

USB DM
USB DP

SWDIO
SWCLK

PWM 1B

PWM 2B

PWM 1A

PWM 1C

PWM 2A
CNT

DIN 3
DIN 2

DIN 1
DIN 0

AIN 3
AIN 1

AIN 2
AIN 4

ARB 1
ARB 2

HSE OUT
HSE IN

STM32G431KB

BOOT0

Figure 34: Pinout of SDIs developed for STM32G431KB (LQFP32-to-DIP adapter)

8.2.1 Mixed-signal oscilloscope (STM32G431KB)

� 4 analog channels (inputs AIN 1, AIN 2, AIN 3, AIN 4) with 12-bit resolution

� 8 digital channels (inputs DIN 0 − DIN 7)

� Maximum real-time sampling rate:

– 20.8 MSps for all digital channels with analog channels disabled

– 6.5 MSps for one analog channel with 2 ADCs interleaving, digital channels disabled

– 1.7 MSps for all digital and analog channels with no interleaving

– Table 5 shows all the possible channel configurations and their respective max. sampling rates
when all arbitrary generators are disabled. When any of the arbitrary generators is enabled,
Table 6 applies instead.

� Maximum equivalent-time sampling rate:

– Depends on the input signal frequency

– Typically up to 104 MSps, max. 1.04 GSa/s with 1 sample per 10 input signal periods

32

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled -
6.5 MSps (i2)
3.4 MSps (-)

3.4 MSps (-) 1.7 MSps (-)

8 channels 20.8 MSps (-)
6.5 MSps (i2)
3.4 MSps (-)

3.4 MSps (-) 1.7 MSps (-)

Table 5: Maximum MSO sampling rates for STM32G431KB with arbitrary generators disabled. Used
ADC interleaving mode indicated in parentheses (”-” = none, ”i2” = 2 ADCs/channel).

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled -
6.5 MSps (i2)
3.4 MSps (-)

3.4 MSps (-) 1.7 MSps (-)

8 channels 13.0 MSps (-)
6.5 MSps (i2)
3.4 MSps (-)

3.4 MSps (-) 1.7 MSps (-)

Table 6: Maximum MSO sampling rates for STM32G431KB with arbitrary generators enabled. Used
ADC interleaving mode indicated in parentheses (”-” = none, ”i2” = 2 ADCs/channel).

� Maximum record length depends on the number of enabled channels according to Table 7

Digital

Analog
Disabled 1 channel 2 channels 4 channels

Disabled - 9.2 kSa 4.6 kSa 2.3 kSa

8 channels 9.2 kSa 4.6 kSa 3.1 KSa 1.8 kSa

Table 7: Maximum MSO record lengths for STM32G431KB

� When interleaved sampling of analog channel 1 is used, the user must connect external
jumper links between the following analog input pins:

– AIN 1 (PA1) and AIN 2 (PA6)

8.2.2 Pulse generators (STM32G431KB)

� 3 generators available:

– PWM 1 with three channels (PWM 1A, PWM 1B, PWM 1C)

– PWM 2 with two channels (PWM 2A, PWM 2B)

– PWM 3 with one channel (PWM 3A)

� All can run independently or be synchronized with adjustable phase/time delay

� Maximum output signal frequency 52 MHz (50% duty cycle only)

33

8.2.3 Arbitrary generators (STM32G431KB)

� 2 generators available:

– ARB 1

– ARB 2

� Both can run independently or be synchronized with adjustable phases

� Maximum sampling frequency 1 MHz

� Maximum output signal frequency 250 kHz (4 samples per period)

� Up to 1000 samples per period for output signal frequencies ≤ 1 kHz

8.2.4 Frequency counter (STM32G431KB)

� Input signal frequency range: 10 Hz− 52 MHz

� Gate time ≈ 1 s gives update rate ≈ 1 Hz

� Frequency resolution ≤ 1 Hz using modified frequency ratio measurement (see section 6)

34

9 Known issues

9.1 Firmware freezes when configuration profile loading from PC is cancelled

Description

When the user cancels the file selection dialog, no data is received by the MCU. The firmware then keeps
waiting to receive data indefinitely, appearing frozen. Since it is impossible to distinguish between TUI
commands and file contents sent from the PC, the firmware cannot recover from this condition and an
MCU reset is needed.

This does not apply when storing a profile to PC. In that case, the data is transferred to the PC first,
before the file selection dialog is shown to the user. If the user cancels it, the data is discarded by Data
Plotter.

Encountered in Data Plotter release 17.3.2022 and earlier, will be fixed in the next release.

Workaround

Do not cancel the file selection dialog when loading a profile from PC. Otherwise, reset MCU to recover.

9.2 TUI appears truncated after Data Plotter window is enlarged

Description

When the Data Plotter window is resized, the terminal window expands in height but its active area
where the TUI is displayed does not. The TUI then appears truncated.

Encountered in Data Plotter release 17.3.2022 and earlier, will be fixed in the next release.

Workaround

It is still possible to use the TUI and access the hidden elements by scrolling. However, to fully use the
new height of the terminal window, a new MCU connection must be made. Therefore, it’s necessary to
disconnect from the MCU, reset the MCU and reconnect.

35

	Introduction
	Analysis
	Motivation
	State of the art
	Goals of this work
	Overview of considered STM32 microcontrollers

	Developed software-defined instrument platform
	Development of SDI firmware for STM32 microcontrollers
	Using STM32 microcontroller timers

	User interface for software-defined instruments
	Possibilities for terminal user interfaces using Data Plotter
	Developed terminal user interface

	Mixed-signal oscilloscope
	Real-time sampling
	Equivalent-time sampling
	Interleaved sampling
	Supported MSO channel configurations

	Pulse generators
	Synchronization of pulse generators
	Previous pulse generator project

	Arbitrary generators
	Using custom waveforms with arbitrary generators
	Synchronization of arbitrary generators
	Arbitrary generator output impedance and slew rate

	Frequency counter
	Instrument configuration profiles
	Versions of developed SDI platform (supported MCUs)
	STM32F303RE version of developed SDI platform
	STM32G431KB version of developed SDI platform

	Evaluation of results
	Comparison with existing SDI platforms

	Conclusion
	Bibliography
	List of symbols
	Contents of the enclosed CD
	User manual for developed SDI platform

