Master Thesis

Czech
Technical
University

in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

NLP Methods for Word Problems

Bc. Ronald Krist

Supervisor: Ing. Jan Drchal, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2022

ctuthesis t1606152353

i

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

(PFijmeni: Krist Jméno: Ronald Osobni &islo: 434780
Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl
Studijni program: Oteviena informatika

L Specializace: Uméla inteligence

Il. UDAJE K DIPLOMOVE PRACI

Nazev diplomové prace:
Metody zpracovani pfirozeného jazyka pro reseni slovnich tloh
Nazev diplomové prace anglicky:

NLP Methods for Word Problems

Pokyny pro vypracovani:

Seznam doporucené literatury:

[1] Wang, Lei, et al. "Mathdgn: Solving arithmetic word problems via deep reinforcement learning." Proceedings of the
AAAI Conference on Artificial Intelligence. Vol. 32. No. 1. 2018.

[2] Zhang, Dongxiang, et al. "The gap of semantic parsing: A survey on automatic math word problem solvers." IEEE
transactions on pattern analysis and machine intelligence (2019).

[3] Wang, Lei, et al. "Translating a math word problem to an expression tree." arXiv preprint arXiv:1811.05632 (2018).
[4] Devlin, Jacob, et al. "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint
arXiv:1810.04805 (2018).

Jméno a pracovisté vedouci(ho) diplomové prace:

Ing. Jan Drchal, Ph.D. centrum umélé inteligence FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 21.02.2021 Termin odevzdani diplomové prace: 20.05.2022

Platnost zadani diplomové prace: 19.02.2023

Ing. Jan Drchal, Ph.D. podpis vedouci(ho) Ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis deékana(ky)

G

ll. PREVZETi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramen(a jmen konzultantu je tfeba uvést v diplomové praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

ctuthesis t1606152353

iv

Acknowledgements

I would like to thank the supervisor of this
thesis, Ing. Jan Drchal, Ph.D. for always
being nice and helpful.I’'m also thankful for
the support of my family and the moral
support of my friends and my cat and spo-
tify playlists, which possibly kept me from

going insane.

Declaration

I hereby declare that the presented thesis
is my own work and that I have cited all
sources of information in accordance with
the Guideline for adhering to ethical prin-
ciples when elaborating an academic final
thesis. I acknowledge that my thesis is sub-
ject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copy-
right Act, as amended, in particular that
the Czech Technical University in Prague
has the right to conclude a license agree-
ment on the utilization of this thesis as a
school work under the provisions of Article
60 (1) of the Act.

In Prague on 16. May 2022

ctuthesis t1606152353

Abstract

This work explores methods for adapting
existing approaches of automatic solving
of math word problems into the Czech lan-
guage. It explores the use of machine trans-
lation to overcome data limitations. It eval-
uates the results on two models based on
recurrent neural networks and the trans-
former architecture, including employment

of pre-trained language models.

Keywords: word problems, natural
language processing, transformers,

machine translation

Supervisor: Ing. Jan Drchal, Ph.D.

ctuthesis t1606152353

vi

Abstrakt

Tato préace zkouma zpiisoby adaptace exis-
tujich postupit automatického feseni slov-
nich tloh pro tlohy v Ceském jazyce. K pre-
konani nedostatku dat zkousi vyuziti au-
tomatického prekladu. Vysledky vyhodno-
cuje na dvou modelech zalozenych na reku-
rentnich neuronovych sitich a transforme-
rech. Zkousi také pouziti predtrénovanych

jazykovych modelt.

Klicova slova: slovni ulohy, zpracovani
prirozeného jazyka, transformers, strojovy

preklad

Pteklad nazvu: Metody zpracovani
prirozeného jazyka pro feseni slovnich

uloh

Contents [3 Method 27

1 Introduction 3.1 Used Data X
3.2 Translation @
2 Background E
3.3 Data processing @
2.1 Problem description............. E
3.3.1 Number Tagging @
2.1.1 Properties of MWPs.......... a
3.3.2 Problem Selection........... @
2.2 Solver development E
34 Solvers @
2.2.1 First phase.................. B
3.5 Experiment design @
2.2.2 Second phase H
4 Experiments
2.2.3 Neural NLP 11 P 39
4.1 Implementation details
2.2.4 Third Phase................ 15 P b
42Results ...l @
2.3 Word problem solving in Czech . . @
4.2.1 Data analyzing phase........ @
2.4 Datasets @

4.2.2 Adapt to native Czech phase . @

2.4.1 English data @
4.2.3 Unleash the power of pre-trained
2.4.2 Chinese data @ language models phase @
243 Czechdata @
5 Conclusion @
2.5 Comparison @

A Bibliography @

vii ctuthesis t1606152353

Figu res 2.10 State-of-the-art from 2019 survey,
reprinted from [ZWZT19]..........

2.1 Process of updating the world states

in ARIS, reprinted from [] e E

2.2 Two variants of trees representing

an arithmetic expression, reprinted

from [] e E

2.3 Attention weights during machine

translation, reprinted from [] @

2.4 Tllustration of the multi-head dot

scaled dot product self-attention used

in Transformer, from [] @

2.5 Example of the idea of
deconstructing MWPs into subgoals,

reprinted from [] @

2.6 Schema of the GTS tree-based

decoding process, reprinted from

XS1G]. oo 17

2.7 Specific words to which the most
attention was paid by the constrained
model with no word order

information, reprinted from [] @

2.8 Schema of the generate-rank

approach, from [] @

2.9 Variations applied in mutating the

ASDiv seed examples in the creation

of SVAMP, reprinted from [] @

ctuthesis t1606152353 Viii

Tables 4.1 Hyperparameters used for the

2.1 Example of an arithmetic word

problem H 4.2 Performance of baseline models on

different data selections. Performance

on Gri is on the train-test split

2.2 Common features used in MWP provided by authors instead of

solvers, based on [EWZ*1]........ @ cross-validation. The numbers
represent percentages of predicted
2.3 Comparison of state-of-the-art equations that are evaluated into the
mOdelS. . - b3 correct numeric value. * Is taken from

e m

3.1 Example of MWP translated

automatically from English to Czech.

4.3 Table comparing the results in % of
our solvers on the data in English and
their translated Czech equivalents. . @

3.2 Example of MWP translated

automatically from Chinese to 4.4 Results for Math23k. Tested on our
English. @ selection of the original Chinese
problems, the two versions of Chinese
3.3 Example of a problem without to English translation and the English
explicitly expressed variable. The (Baidu) translation to Czech
explicit expression found by our translation. @

procedure contained square root,

therefore was unusable and the 4.5 Generalization experiments - results

problem was discarded. @ on the whole WP500CZ for solver
trained on the translated data. @

3.4 Summary of used dataset selections.

SH presents selections provided in the 4.6 Comparison of performance of

paper on shallow heuristics [] solvers with input embeddings

Gri presents selections used by provided by pre-trained models. All

[] Math23k-Zh is our selection results are provided as percentages.

of original Chinese problems. We kept The metric used is whether the

only those for which we recovered produced equation is evaluated into
their translation in the Baidu set.
Math23k-B is the set translated by

Baidu, -H by Helsinki............. @

the correct numeric value. 'x’ means

we chose to not run the experiment. @

ix ctuthesis t1606152353

4.7 Results in % of the solvers trained
on the translated data and tested on
the whole native WP500CZ dataset. @

4.8 Generalization experiments,
including - results on the whole
WP500CZ for solver trained on the
translated data. @

ctuthesis t1606152353

Chapter 1

Introduction

The ability to work with numbers and to reason with quantities, is neces-
sary for any deeper reasoning about our reality, including reasoning about text
in natural language. To get meaningful information out of a text like I woke up
at 11 and went to work one hour later, we need to recognize that the strings
”11” and "one” represent a number, parse them into their respective numeric
values, deduce that the number 11 represents time of the day and 1 represents
additive quantity relative to it, add the numbers to get the time of departure
to work and infer from common sense that it’s probably quite late []

Natural language processing (NLP) systems rarely give special consideration
to numbers and approach them in a fashion similar to other words, which con-
trasts with the consensus in neuroscience suggesting that numbers in the brain

are represented differently.

[] suggests a taxonomy of tasks for researchers working on improving
the numerical reasoning capabilities of NLP systems. They divide the tasks
into four types. This division is based on granularity - whether they work with
exact or approximate quantities - and units - whether they work with abstract
or grounded units. They come up with seven types of tasks: simple arithmetic
- the task of doing arithmetic operations over numbers alone, numeration - de-
coding numbers from strings, magnitude comparison, learning exact common

sense numeric facts, like that lion has four legs, estimation of common sense

1 ctuthesis t1606152353

1. Introduction

quantities, eg. how tall are spruces, numeric language modeling and math word

problems.

The last type, math word problems, is recently enjoying increasing attention,
owing to the growing popularity of employing deep learning in NLP tasks. A
math word problem is a short narrative in natural language presenting some
state of the world including numeric quantities and a question asking to deduce
some unknown quantity from the description. Such problems are commonly
solved during elementary school education. Development of an automatic com-
puter solver is challenging due to the difficulty in parsing natural language into
machine-understandable logic. Hence, a system that reliably solves math word
problems could prove decent ability of quantitative reasoning in natural lan-

guage and be a milestone toward general Al [ZWZ119].

One interesting research direction lies in probing how the ability of current
solvers is affected by language. For example, how well will they work in lan-
guages with more relaxed word order, like the Czech language [KP20]. This
thesis aims to explore the popular state-of-the-art solvers and datasets and as-

sess the performance on data in the Czech language.

ctuthesis t1606152353 2

Chapter 2
Background

This chapter presents the theoretical background from which our work

stems. The chapter is divided into five sections:

® The first section describes the goal of our work.

B The second section gives an overview of the development of attempts to

solve the problem, ending with the current state-of-the-art.

® The third section presents to our awareness the only preceding attempt to

solve Czech math word problems.

® The fourth section provides an analysis of data used for training and eval-

uation of the state-of-the-art solvers.

® The last section provides an overview and comparison of the performance

of the state-of-the-art solvers.

[2.1 Problem description

The typical math word problem (MWP) is a short narrative in natural

language describing partial state of the world, including some explicitly stated

3 ctuthesis t1606152353

2. Background

Body "There are fifty-eight students trying out for the school’s trivia
teams. If twenty-eight of them didn’t get picked for the team

and the rest were put into five groups,”

Question “"how many students would be in each group?”
Quantities | 58, 28, 5

Expression | (58-28)/5

Solution 6

Table 2.1: Example of an arithmetic word problem.

quantities, and poses some queries about unknown quantities - variables.

There are several types of MWPs depending on the type and number of op-
erations required to compute the queried quantities. Our work focuses only on
a subset of MWPs, arithmetic word problems, which are problems with one
unknown quantity that can be computed using basic arithmetic operators. The
other, more complex MWP types include problems requiring a set of equations

or more complex mathematical operations.

Arithmetic word problems (AWPs) query for a single variable, which can be
expressed by an equation made from numbers, four fundamental operators and

priority brackets, O = (,),+,—,*,/ .

Since the problem body - the narrative describing state of the world, the prob-
lem question and numeric quantities all form a logically different part of the
problem, we choose to represent them independently. Formally, the problem in-

put [is then represented as two sequences of k; and k, words <wb0, Wy s -y wbkb>
and <wq0, Wy, s - quq> and n quantities mentioned in the text, qi1,q2, .., ¢n.
The goal is to detect and resolve some unknown quantity z mentioned in the
text. This is usually done by mapping the problem input [into an arithmetic
expression F, which can be evaluated to provide the unknown quantity x.

We can think of the solver as a mapping function S : I— > F.

An example of an AWP is provided in table

ctuthesis t1606152353 4

2.1. Problem description

M 211 Properties of MWPs

The difficulty of various MWPs depends on the various properties of the
problem. It is beneficial for researchers to be aware of the types of the problems,

as it can help them detect directions for improving their solvers.

One of the basic properties of an arithmetic word problem is whether it is a
single-step or multi-step problem. Single-step problems require just one math-
ematical operation, while multi-step two or more. Historically, datasets often
contained only single-step problems, however, all commonly used modern bench-
mark data include multi-step problems too.

Another solver-relevant property is whether the problem contains irrelevant in-
formation, typically some irrelevant quantity or ”red-herring” sentences, sen-

tences that provide no useful information for the derivation of the solution.

Problems can also contain background knowledge, which is information that
is assumed the solver should know, therefore not explicitly stated in the prob-
lem text. Typically it is common sense knowledge or specific domain knowledge.
For example, the value of pi or that dog has four legs. Modern datasets usually
have few problems with this property. For the purposes of this thesis, we will

not work with these problems.

One way to further categorize the problems is according to the school grade
level in which they are typically solved. This should provide basic insight into
the difficulty of the problem. Most datasets don’t label their examples with this
information, ASDiv [MLS21)] categorizes them ranging from grade 1 to grade 6.

A different attribute is the primary mathematical procedure or ”"thought pat-
tern” required to solve the MWP. This doesn’t mean only the mathematical
operations in the expression but also the thought patterns behind them, there-
fore two problems with the same target expression can be categorized differently.
There isn’t a unique, clear taxonomy and the categorization is mostly left to
each author’s insight. ASdiv [MLS21] labels problems with their own catego-
rization system. The details of their categorization will be provided later in our

work.

5 ctuthesis t1606152353

2. Background

[2.2 Solver development

This chapter reviews methods developed for automatic solving of math

word problems. The history of designing automatic solvers for MWPs goes
back to the 1960s, when the first solver, STUDENT, was developed [ZWZ*19].
Historically, [ZWZ119] suggests that three major directions were taken to ad-
dress the problem. The oldest one, which was dominant up to around the year
2010, is based on rule matching methods. Methods based on semantic parsing
and statistical machine learning became popular after, and deep neural learning
approaches gained traction recently.
Automatic MWP solving is an active research field. Solvers capable of solving
most AWPs in general, without additional constraints on the input or expression
format, were developed only recently. And even these still can’t solve specific
types of AWPs, specifically problems with implicit quantities and background
knowledge, though the latter is starting to be addressed too.

B 221 First phase

In the first pioneering stage, roughly from the year 1960 to 2010, systems
such as STUDENT, DEDUCOM, WORDPRO and ROBUST depend on man-
ually crafted rules for matching patterns in the input text. The input usually
must be preprocessed into some specific format on which the solvers can oper-
ate.

For example, WORDPRO takes the problem in the form of sequential proposi-
tions.

CHIPS and ARITHPRO solve problems in which owner of some objects trans-
fers them to their receiver. The first input sentence must be the number of
objects the owner has and the second sentence must contain the word "gave”
to signalize the operation of transfer of the owner’s objects to their receiver.
The most recent solver ROBUST is capable to solve multi-step problems.

The main drawback of these solvers is their reliance on specific input formats and
rigid rule sets, therefore they heavily rely on human rule handcrafting and can
only resolve a limited number of scenarios defined in advance. This approach
is only historical now [ZWZ*19][MGOg].

ctuthesis t1606152353 6

2.2. Solver development

W 222 Ssecond phase

Since the 2010s, researchers started to incorporate the power of machine

learning into their works. The base of these approaches is to use semantic
parsing to map the sentences of the MWP into some structured logic repre-
sentations and then use these representations to make the final inference. To
improve their performances, the developers employed various techniques from
feature engineering and statistical machine learning.
The usual approach is to predefine some internal problem representation tem-
plates and learn classifiers to identify the required entities, quantities, and op-
erators to fill the templates and yield the resulting expression using a simple
logical procedure [ZWZ*19].

[RVR15] uses a simple template consisting of two variables and an operator
to solve single-step AWPs. It employs three classifiers, one to detect two rele-
vant quantities in the problem text, one to infer which operator to use, and the

last one for the order of the quantities, if the operation isn’t commutative.

More complex approaches are needed for multi-step reasoning. One such ex-
ample is ARIS [SK15], which defines a logic template called schema, containing
a set of entities, their containers, attributes, quantities and relations. The text
is split into fragments using hand-crafted rules, which work on POS tagging,
dependency parsing, and coreference resolution of the problem text. Each frag-
ment contains one entity with associated quantity and attributes inside one
or two containers and one verb. Quantities in the entities are then updated
according to a classification of the fragment verb. The verbs are categorized
into seven classes and an SVM classifier is trained to predict them during in-
ference. The feature vector of the classifier is composed from the similarity
of the classified verb to a set of seed verbs, categories of the classified verb in
WordNet, the frequencies with which the verb appeared in each category in the
WordNet reference corpus, and the dependency relations with other words in

the fragment.

7 ctuthesis t1606152353

2. Background

Liz had 9 black kittens. She gave some of her kittens to Joan. Joan has now 11 kittens. Liz has 5 kitten S5 }iz N
left and 3 has spots. How many Kkittens did Joan get? [N:5
S i S N S < E: Kitten
2| Liz 3| Liz 4| Liz A: Black
) ~ N\ - Y U B
- N:9-L, N:9-L,
1] Liz E: Kitten E: Kitten Joan
(N N A: Black A: Black N: 11
:> N9 DI\ J |\ Je—| E: Kitten
Liz had 9 E: K‘I“S“ She gave some Joan Joan has now| Joan Liz hzllsfS And 3 has A: Black
ok Kittens || A: Black f her kittens t i kitten left spots -
black kittens \) ;aa:f iens 11 kittens N 11 P unknown
E: Kitten E: Kitten N:3)
A: Black A: Black A: Black E: Kitten

Figure 2.1: Process of updating the world states in ARIS, reprinted from [SK15].

In general, these methods have two important drawbacks. Firstly, the inter-
nal templates and classifier features have to be handcrafted, which complicates
adaption to new circumstances, like adding a new operator.

For example, ARIS is developed to work only on addition and subtraction prob-
lems. Extending it to multiplication and division would require determining
additional verb categories with no guarantee of satisfactory results. Differently,
a new dataset could feature significant amount of problems with different logical
structures or "thought patterns” required to solve them. An approach tailored
for the original data may not work very well on them.

The second problem is that most of these methods require additional training
data annotations, like the verb categories in case in ARIS.

A positive aspect compared to the deep learning methods is that it’s still some-
times possible to see steps used in answer derivation, for example in the devel-

opment of the world states by ARIS.

An important direction in development first considered during this phase rests
on the fact that arithmetic expressions can be expressed as binary trees. Such
tree has quantities as leaf nodes and operators as inner nodes, going from low-
est priority operators in the top parts of the tree to the highest priority at the
bottom. See figure. The idea is to transform the derivation of the expression
into constructing the equation tree. From high level perspective, the usual pro-
cedure starts with detecting possibly relevant quantities in the problem text.
Relevant quantity means a quantity which appears in the solution expression.
Then the possible candidate trees are enumerated. Finally classifiers are used to
select a tree with the highest likelihood of providing the correct expression. The
classification typically uses sum of local classifiers determining the likelihood of
connecting two nodes with their parent operator and a global classifier based
on the features of the whole tree. Using this approach, developers avoid both

additional data annotations and specific templates.

ctuthesis t1606152353 8

2.2. Solver development

Expression Tree Equation Tree

Figure 2.2: Two variants of trees representing an arithmetic expression, reprinted from
[ZWZ'19).

As mentioned before, these models strongly rely on handcrafted features used
in their classifiers. The selection should reflect properties of the text thought to
be necessary for solution. As such, they deserve special mention. Table shows

commonly used features during the second phase.

9 ctuthesis t1606152353

2. Background

Feature Type Example

Quantity refers to rate? Quantity ”Each ride costs 5 tickets” - 5 is related to rate

Is between 0-1 Quantity

Is 1 or 27 Quantity

Context Lemmas Context “Connie has 41.0 red markers.” (around 41.0, window size
4) -> Connie, have, red, marker.

Context POS tags Context “A chef needs to cook 16.0 potatoes.” (around 16.0, win-
dow size 2) -> TO, VB, NNS.

Context Dependencies Context “Ned bought 14.0 boxes of chocolates candy.” (root
bought, window size 2) -> (boxes, 14.0) — (num), (boxes,
of)— (prep), (bought, Ned) — (nsubj)

Comparative adverbs Context For “If she drank 25 of them and then bought 30 more.” ,

“more” is a comparative term in the window of quantity
“307 .

Same unit?

Quantity-pair

“Student tickets cost 4 dollars and general admission tick-

ets cost 6 dollars” ; 4 and 6 have same unit.

If quantity associated with rate,
is the second quantity associated

with its unit?

Quantity-pair

For “each box has 9 pieces” and “Paul bought 6 boxes of
chocolate candy”, “9”is related to a rate (i.e., pieces/box)

and “6” is associated to the unit “box” .

Appear in the same sentence?

Quantity-pair

First quantity > other?

Quantity-pair

Unit or related noun phrase of | Question

quantity in question?

Unit or related noun phrase of | Question For the question “How many apples are left in the box?”

quantity has the highest number and a quantity 77 that appears in “77 apples in a box” ,

of match tokens with the ques- there are two matching tokens (” apples” and “box”)

tion

Number of quantities which hap- | Question ”Rose have 9 apples and 12 erasers. 3 friends. How

pen to have the maximum num- many apples dose each friend get?”, the number of match-

ber of matching tokens with the ing tokens for quantities 9, 12 and 3 is 1, 0 and 1. There

question are two quantities with the maximum matching token
number.

Any component of the rate is | Question “How many blocks does George have?” and a quantity 6

present in the question? associated with rate “blocks/box” , the feature indicator
is set to 1 since block appears in the question.

Terms like ”each” or ”per” in | Question

question

Comparison terms like "more” or | Question

”less” in question?

"how many” like terms in ques- | Question

tion

Dependent verb of quantity Verb

Distance vector between verb | verb

and few seed verbs

Two quantities have same depen- | verb “In the first round she scored 40 points and in the second

dent verb? round she scored 50 points” , “40” and “50” both have
the same verb “scored” .

Both dependent verbs refer to | verb “She baked 4 cupcakes and 29 cookies.” , “4” and “29”

the same verb mention? both shared the verb “baked” .

Number of quantities in the text | global

Table 2.2: Common features used in MWP solvers, based on [ZWZ*119].

ctuthesis t1606152353

10

2.2. Solver development

In our opinion, for the general research in artificial intelligence, perhaps
the biggest drawback of these methods is their reliance on rigid manual feature
engineering. The solvers are limited by the quality of the feature design, while
the deep learning models are allowed to distill the features from the data on
their own. This amounts to a higher level of abstraction and transferability to

different domains and tasks.

B 223 Neural NLP

Following broader trends in modern machine learning, researchers recently
started to leverage the power of deep learning to learn features automatically
with minimal handcrafting, therefore providing more robust and generalizable
performance. They constitute the state of the art of MWP solving. This sec-
tion follows the development of modern deep learning-powered NLP from the

perspective of MWP solvers.

| General architecture

The types of deep neural models used to solve MWPs are usually the
seq2seq models. On a high level, they take a sequence as input and trans-

form it into a different sequence on output.

Typically, seq2seq models are based on encoder-decoder architecture.

They use two neural networks, an encoder and a decoder. The encoder creates
vector representation (embedding) of the input. This vector embedding is sup-
posed to provide encoded summarization of the meaning of the input sequence.
The embedding is then passed to the decoder, which produces the desired so-
lution step by step. This approach allows variable input and output sequence
lengths [ZDLS20].

11 ctuthesis t1606152353

2. Background

| Recurrent neural networks and attention

Until recently, recurrent neural nets were typically used in state-of-the-art
seq2seq models. Recently, the use of transformer-based architectures is be-
coming dominant [ZDLS20]. State-of-the-art MWP solvers still feature RNNs

sometimes.

Conceptually RNNs work by taking the first element of the sequence, pass-
ing it into the network, and getting output. Then the second sentence element
is passed along with the previous hidden state together, producing the second
output. The process is repeated until all elements in the sequence are processed.
Due to the sequential nature of this process, the last output should retain some
information from the whole sequence.

Typical RNN-based architecture for seq2seq modeling employs RNNs for both
the encoder and decoder. The encoder’s last output vector, sometimes called
the embedding vector, is used by RNN decoder, which produces the output se-

quence step by step until a specific end of sequence token is generated.

Vanilla RNNs have problems with long-term dependencies. This means that the
information from the first elements of the sequence tends to get lost in the final
embedding. These distant elements are called long-term dependencies [Hoc98].
To address this issue, specialized network architectures were developed. One
of the most used are LSTMs (Long Short Term Memory Units)[HS97]. Along
with the output they also pass memory data and allow the network to explicitly
control how the memory should be updated and added to the output. They use
three types of gates, forget gate, input gate, and output gate. The forget gate
allows to partially delete (multiply it with value between (0-1)) the memory
data. The input gate allows to add part of the current output to the memory

and the output gate adds part of the memory to the output.

The attention mechanism [BCB14] attempts to further reduce this problem.
The idea is instead of using just the encoder embedding vector, save the en-
coder’s hidden states for each element in the input sequence. The hidden states
are then along with the current decoder output fed into a specialized neural
network. This network has a softmax layer in the end, producing a vector of
weights associated with the encoder’s hidden states. This weight vector signifies

the importance ("attention”) with which the decoder should regard (7attend”)

ctuthesis t1606152353 12

2.2. Solver development

the encoder hidden states in output generation. The Sum of the encoder’s hid-
den states weighted by the weights vector is called the ”context vector” and is

used along with the base decoder output to produce the final output.

agreement
on
European
Economic
Area

was
signed

in

August
1992
<end>

[
E
=

the

L
accord

sur

la

zone
économique
européenne
a

été

signé

en

aolt

1992

<end>

Figure 2.3: Attention weights during machine translation, reprinted from [BCB14].

Despite this effort, RNNs still have their limitations. Their sequential na-
ture prohibits parallelization within training examples [VSP*17]. The next idea
was to stop using them completely and instead use an architecture based only
on a version of the attention mechanism called self-attention. Self-attention is
using the attention mechanism to compute attention of each element in a se-
quence to each other. This was proposed in an influential paper with a cute
title Attention Is All You Need [VSP*17], introducing the Transformer network

model.

| Transformer

The original transformer model replaces the sequential processing of RNNs

with blocks of self-attention layers.

The self-attention in the Transformer uses three sets of vectors called Queries,

Keys and Values. The general idea is to construct the weight vector w by eval-

13 ctuthesis t1606152353

2. Background

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix /° to
with weight matrices Q/K/V matrices produce the output of the layer

X W@

74‘_'7‘ WoV =
I V

w,@

*1n all encoders other than #0, Q1
w

we don't need embedding. W,V : i :
Vv
We start directly with the output T } v T :!:

of the encoder right below this one

EERS B o

Figure 2.4: TIllustration of the multi-head dot scaled dot product self-attention used

in Transformer, from [Ala]

uating the similarity between Queries and Keys. The context vector is then
computed as the sum of Values weighted by w. The self in self-attention means

that the same input is used to construct the Queries, Keys and Values.

More technically, each layer has input dimension max_ sequence_length x
Amodel- Amoder 18 the dimension of the token representations. Three learnable
linear transformations then project this input into the Queries, Keys and Val-
ues sets. First, we compute the dot product between each vector in Keys and
Queries and softmax the results. The resulting weight vectors then represent the
attention on each value in Values. New token representation is then acquired
by summing the values weighted by the weight vector.

The transformer uses multi-head attention. The idea is to have h differently
parametrized, parallel attention processes. This is achieved by lowering the
”embedding” dimension of the projections and then concatenating the results
to return to the input dimension. According to the authors, this facilitates the
ability to look for patterns in different projection spaces. Each layer of the
encoder has a sublayer of these self-attention blocks connected with a two-layer
feedforward network. The encoder is then just N of these layers connected.
The decoder block additionally has the same attention layer, where the queries
and keys are outputs from the last block of the encoder. The decoder is then

analogically constructed by this decoder blocks stacked after each other.

ctuthesis t1606152353 14

2.2. Solver development

N Language models

Language models are systems trained primarily on token prediction tasks,

ie. predicting the likelihood of some token given its preceding or surrounding
context. They have gone through rapid evolution in recent years, going from
n-gram models through RNN-powered ones best known for producing word em-
beddings with the attempt to map their semantic relationships into vector space,
finally to transformer-based large pre-trained networks providing the backbone
to many downstream tasks [BGMMS21].
Modern NLP is powered by large (featuring billions of parameters and gigantic
training datasets) pre-trained models typically based on a transformer-like archi-
tecture. These models are meant to provide a general understanding of natural
language and as such provide the base for finetuning for specialized downstream
tasks. For this reason, they are being increasingly employed in MWP solving
[LZSZ21],[PBG21],[SYL*21].

One of the most influential examples is Google’s BERT (Bidirectional Encoder
Representations from Transformers) [DCLT18§].

BERT is trained on unlabeled data with two tasks. The first task is called
masked language modeling. BERT is presented with a sequence of tokens, some
of them randomly replaced by a special token <MASK>. The goal is to correctly
predict the masked tokens. The second task is called next sentence prediction.
The model is presented with two sentences and asked to decide whether the
second sentence follows the first. Training data contains text with about 800
million words from BooksCorpus and 2.5 billons words from English Wikipedia
[DCLT1§].

Other well-known examples include the GPT series or BART.

B 224 Third Phase

The idea which started the use of deep learning in MWP solving was to use
the seq2seq architecture to "translate” the problem into the equation directly.
The pioneering solver DNS (Deep Neural Solver) came out in 2017 [WLS17]. In
the first step, the DNS creates a mapping to replace the numbers in the text

with a list of number tokens. This is done to reduce the output space and to

15 ctuthesis t1606152353

2. Background

avoid generating irrelevant numbers. For example, the following MWP:
"Robin was making baggies of cookies with 6 cookies in each bag. If she had 23
chocolate cookies and 25 oatmeal cookies, how many baggies could she make?”
will be mapped to: "Robin was making baggies of cookies with num0 cookies in
each bag. If she had numl chocolate cookies and num2 oatmeal cookies, how
many baggies could she make?”

The solution expression is then (numl + num?2)/num0. These equations with
numbers substituted by tokens num<order of the number in the problem text>

are called equation templates.

The idea caught on and is continuously being refined in new works. The
early challenges the seq2seq approach presented were the production of syn-
tactically invalid expressions and the large space for duplicate equation tem-
plates. This was subsequently addressed by using implicit or explicit tree struc-
tures[ZWZ119]. [GK21|] resolved this ambiguity by transforming expressions

into postfix notation, which led to substantial performance improvement.

An influential idea was presented first in GTS (Goal-driven tree-structured
MWP solver) [XS19]. The idea is to use a decoder capable of iteratively pro-
ducing an expression tree. Authors of GTS present the idea as mimicking the
human decision process, in which the solver identifies top layer goals and re-
cursively decides if the goals are finished or depend on the solutions of further
subgoals.

For illustration, the goal deconstruction of the above presented MWP is pre-

sented below.

Goal: How many baggies she could make
Context: 6 cookies in each bag; She had 23 ---------------- ~
chocolate cookies and 25 oatmeal cookies

Goal: How many cookies she had in total ™ Goal: H o i

Context: She had 23 chocolate cookies === =================-=-- (6 - 0a: HOW maiy CooXIcs In cach bag
. Context: 6 cookies in each bag

and 25 oatmeal cookics

Goal: How many chocolate cookies she had
Context: She had 23 chocolate cookies

Goal: How many oatmeal cookies she had
Context: She had 25 oatmeal cookies

Figure 2.5: Example of the idea of deconstructing MWPs into subgoals, reprinted
from [XS19].

The decoder contains three neural modules, the predictor, generator, and

ctuthesis t1606152353 16

2.2. Solver development

merger. The general process starts by using the encoder embedding as the top
goal vector. From this vector, the predictor predicts the tree node token. It can
be either an operator, a predefined numeric constant, or a quantity from the
problem text. If the token is an operator, the generator creates two subgoals
and a new goal vector for the left subgoal from the current goal vector and the
predicted token. This process continues iteratively in a depth-first fashion until
a leaf node (quantity) is reached. Then the process backtracks and the merger
creates subtree embeddings while revisiting parent nodes. The generator then
uses these subtree embeddings along with the parent goal vector and token

embedding to create the right subgoal.

e
@LeftGoal ,,—""‘\'10—’ +>
Generation -~ —

) ¢ (DRight Goal
h __‘:':-_.:_..q;peration

[
1
|

@Left Goal = Sl
/
Generation __-----_d1—> +\

t (23425) g 6))

@Right Goal @ Tree Embedding

Generation *,

/

<] SR

-

| Ep s

[5]
&
N

(3)Leaf Embedding (3) Leaf Embedding

Figure 2.6: Schema of the GTS tree-based decoding process, reprinted from [XS19].

Further refinements of the GTS differ mainly in the neural architectures
used for the individual steps, most notably for the encoder. GTS uses bidirec-
tional LSTM, next work Graph2Tree [ZWL™*2(] preprocesses the problem text
into graph representations. The idea is that the graph representation could
express the relationships between quantities and other words better than the
linear text sequence. The graph also provides information about which quantity
is larger. This graph is then fed to a transformer-inspired network to produce
a graph embedding used as the first input of the decoder. The latest iteration
Mwp-bert [LZSZ21] uses the pre-trained BERT model as the encoder.

[PBG21]] studied GTS and graph2tree in adversarial context with the conclusion
that they rely on shallow heuristics exploiting artifacts in the datasets (MAWPS

17 ctuthesis t1606152353

2. Background

and ASDiv-a).

They found that the models performed well (up to 78% accuracy on MAWPS)
even when the question parts of the problems were removed in the test set. This
points both to the presence of artifacts in the datasets and that the models ex-
ploit them. Evidence for the latter comes from leaving the questions intact in
the training set, therefore the solvers aren’t forced to exploit them.

Similarly, they found that a model with no word-order information can perform
well too. They constructed a model with a simple feed-forward neural network
serving as the encoder. The first input to the LSTM decoder with attention
is just the sum of hidden states of the last layer of the feedforward network,
which can’t provide any word order information. According to the authors,
this indicates that most of the problems in the datasets can be solved just by
associating the occurrence of specific words to their corresponding equations.
Further, they analyzed the activation of attention weights assigned to the hidden
representations of input tokens in the bag-of-words model. This could explain
its predictions because the hidden states of the feed-forward encoder carry no
context information from the rest of the problem. They found that the model
usually attends to just a single word no matter the context. This suggests that

the models are easily "hackable”. See Figure 2.7 for examples.

Input Problem Predicted Equation Answer

John delivered 3 letters m. house. If he delivered for 8 houses, how many letters did John deliver? 3*8 24V

John delivered 3 letters at house. He delivered 24 letters in all. How many houses did John visit to deliver letters? 3%24 22X

Sam made § dollars mowing lawns over the Summer. He charged 2 bucks for G888 lawn. How many lawns did he mow? 8/2 4v
Sam mowed 4 lawns over the Summer. If he charged 2 bucks for |G lawn. how much did he earn? 4/2 2

10 apples were in the box. 6 are red and the [Ii&§ff are green. how many green apples are in the box? 10-6 4v
10 apples were in the box. [IE@H apple i either red or green. 6 apples are red. how many green apples are in the box? 10/6 167X

Figure 2.7: Specific words to which the most attention was paid by the constrained

model with no word order information, reprinted from [PBG21].

A different approach was presented in Generate & Rank [SYL*21]. The
general idea is to use a seq2seq model, called the generator, to generate the K
best solutions. Then another model, called ranker, is trained to pick the best
solution.

Generate & Rank uses state-of-the-art seq2seq transformer language model,
BART, and fine-tune it for generating the ground truth expressions. Then
they use the fine-tuned BART to produce K best solutions using beam search.
Another L expressions are produced by mutating the solution expression tree.
Both of these expression sets form an "expression bank” for one problem. The

expressions with the same numeric evaluation are considered positive examples

ctuthesis t1606152353 18

2.3. Word problem solving in Czech

and the others negatives. The ranker is the same BART model with multi-layer
perceptron over the last target token for binary classification score.

Using the ranker provides moderate increase in accuracy compared to just the
generator (4-5% for Math23k and MAWPS). The authors especially note the

performance increase on problems with long target expressions.

Shared BART Expression Ground-truth Expression Candidates

Task #1: Generating Task #2: Ranking

(@ Multi-task Training Score

Expression

} \ Generating Loss + Ranking Loss|

/

[Encoder H Decoder]
[Decoder H Encoder }

I
f T

Problem
Expression Problem

cenerate
Expression
Disturb Bank

Figure 2.8: Schema of the generate-rank approach, from [}

(@ Expression Online Updating

Expression

O 2.3 Word problem solving in Czech

To our awareness, only one attempt at solving MWPs in Czech was de-
veloped. For their bachelor’s thesis, [] developed a solver which could be

placed in the second phase of MWP solvers development as mentioned above.

The solver works as a multi-class classifier, mapping the problem into one of the
ten predefined equation templates.

It uses a two-step procedure.

The first step is based on the pattern matching approach of the first phase
solvers, however, the patterns are learned from data instead of being hand-
crafted. The problem texts are lemmatized and adjectives, nouns, and quan-
tities are replaced by their word classes. An algorithm then finds the longest

common subsequence between each pair of converted problem texts with the

19 ctuthesis t1606152353

2. Background

same equation template. The subsequences are saved, enumerated and the most
commonly occurring ones are saved. Subsequences occurring in more problem
classes are discarded. This procedure is done for the problem bodies and ques-

tions independently.

The second step uses an SVM classifier. The dimensionality of its feature vector
is equal to the number of equation templates. The features are computed in the
following way:

We take the lemma of the first word of the problem. We look at how many
times the word occurred in the bodies of the problems with the same equation
template. This number is then weighted by a function assigning weight to each
word class. This procedure is repeated for all words in the input problem body
and the results are summed. The same is done for the problem question. These
two values summed form the first feature. The remaining features are computed
analogically.

The word class weighting function is trained empirically using a genetic algo-

rithm with the performance of the SVM as the objective.

The inference follows the steps:

The solver first tries to match the input problem to some learned pattern from
the first training step and if no pattern matches, the SVM prediction is used.
The author collected 500 problems, dividing them into 250 train and test sam-
ples and the combined approach achieved 75 % success rate on the training
data. The SVM alone achieved 61 %.

The most obvious limitation of this solver is its reliance on defining the tar-
get equation template as a classification class. The solver can’t predict any
equation template which isn’t predefined during training. While it’s trivial to
expand the model to new classes of problems, it’s unclear how well it will per-
form, especially given the fact there can be a lot of new classes with a small

number of training examples.

ctuthesis t1606152353 20

2.4. Datasets

. 2.4 Datasets

This section describes the datasets used in the development and bench-
marking of the current state-of-the-art solvers. The section is divided into three

sections, based on the language of the data.

B 24.1 English data

Following the recent development in the field, larger benchmark datasets
used to evaluate the current state-of-the-art solvers were collected only recently.
Previously, the authors of the models tended to collect their own data for train-
ing and evaluation [ZWZ*19].

The oldest dataset still sometimes used to evaluate the state-of-the-art solvers
is MAWPS(MAth Word ProblemS)[KKRAT16]. The dataset was published in
2016 and features problems from several smaller datasets. It contains problems
of varying complexities, including multi-step problems and problems with irrel-
evant quantities. It allows choosing subsets based on minimal lexical similarity
and overlap in equations. The lexical similarity between two problems is defined
as the proportion of the intersection and union of their unigrams and bigrams.
It features 3913 problems. Its arithmetic subset counts 2373 ones. Only this

arithmetic subset is relevant for our work.

A newer frequently used English dataset is ASDiv(Academia Sinica Di- verse
MWP Dataset) [MLS21]. Released in 2020, the corpus is drawn with the idea of
maximizing lexicon usage. The supposed purpose is to make the dataset more
challenging by restraining the ability to solve it using just mechanical/statistical
pattern matching. The dataset contains 2305 MWPs of different types. The
arithmetic subset ASDiv-a counts 1218 problems.

The data is annotated with problem level difficulties indicated by school level
grades and type of the problem. The problem type is defined as the crucial
thought pattern required to solve the problem. For arithmetic problems, the
types are addition, subtraction, common-division, floor-division, ceil-division,

sum, surplus, number-operation, and three different "Time-Variant Quantities”

21 ctuthesis t1606152353

2. Background

- which mean that the solver should follow and sequentially update an entity-
state variable.

The lexical diversity for a problem P in the context of the whole dataset D is
defined in [MLS21] as:

1 - the largest BLEU score between P and the rest of the problems in D.
Experiments confirmed the higher difficulty of the new dataset, pointing out
that higher lexical and problem type variation provides an additional challenge

to solvers.

Despite ASDiv’s attempt to constrain shallow pattern matching, according to
experiments described previously in the chapter on shallow heuristics, it is still
possible to achieve good results without really "understanding” the text, even
though not as good as on MAWPS.

Based on these experiments and what authors of [PBG21] see as necessary quali-
ties any MWP solver should possess, the authors create a new challenge dataset
called SVAMP (Simple Variations on Arithmetic Math word Problems).

SVAMP is created by taking one hundred seed examples from ASdiv-a and
applying simple variations on the problem texts so that it should be harder
to exploit superficial patterns without making the problem more difficult for

humans.

ctuthesis t1606152353 22

2.4. Datasets

CATEGORY VARIATION EXAMPLES
Original: Allan brought two balloons and Jake brought four balloons to the park. How many balloons
Same Object, Different did Allan and Jake have in the park?
Structure Variation: Allan brought two balloons and Jake brought four balloons to the park. How many more

valloons did Jake have than Allan in the park?

. Original: In a school, there are 542 girls and 387 boys. 290 more boys joined the school. How many
Question Different Object, Same pupils are in the school?
Scnsilivity Structure Variation: In a school, there are 542 girls and 387 boys. 290 more boys joined the school. How many
»oys are in the school?

Original: He then went to see the oranges being harvested. He found out that they harvest 83 sacks per
day and that each sack contains 12 oranges. How many sacks of oranges will they have after 6 days of
harvest?

Variation: He then went to see the oranges being harvested. He found out that they harvest 83 sacks
per day and that each sack contains 12 oranges. How many oranges do they harvest per day?

Different Object,
Different Structure

Original: Every day, Ryan spends 4 hours on learning English and 3 hours on learning Chinese. How
many hours does he spend on learning English and Chinese in all?

Variation: Every day, Ryan spends 4 hours on learning English and 3 hours on learning Chinese. If he
learns for 3 days. how many hours does he spend on learning English and Chinese 1n all?

Add relevant information

. Original: Jack had 142 pencils. Jack gave 31 pencils to Dorothy. How many pencils does Jack have
Reasoning . now?
Ability Change Information Variation: Dorothy had 142 pencils. Jack gave 31 pencils to Dorothy. How many pencils does Dorothy

have now?

Original: He also made some juice from fresh oranges. If he used 2 oranges per glass of juice and he
made 6 glasses of juice, how many oranges did he use?

Variaf He also made some juice from fresh oranges. If he used 2 oranges per glass of juice and he
used up 12 oranges, how many glasses of juice did he make?

Invert Operation

Original: John has & marbles and 3 stones. How many more marbles than stones does he have?

Change order of objects Co
&) Variation: John has 3 stones and 8 marbles. How many more marbles than stones does he have?

Original: Matthew had 27 crackers. If Matthew gave equal numbers of crackers to his 9 friends, how
Structural many crackers did each person eat?
Change order of phrases i . N .
Invariance = Variation: Matthew gave equal numbers of crackers to his 9 friends. If Matthew had a total of 27
crac initially, how many crackers did each person eat?

Original: Jack had 142 pencils. Jack gave 31 pencils to Dorothy. How many pencils does Jack have
Add irrelevant now?
information Variation: Jack had 142 pencils. Dorothy had 50 pencils. Jack gave 31 pencils to Dorothy. How many
pencils does Jack have now?

Figure 2.9: Variations applied in mutating the ASDiv seed examples in the creation

of SVAMP, reprinted from []

| 2.4.2 Chinese data

As large bulk of current research is done by researchers from China, the

largest and most used datasets are in Chinese.

Along with MAWPS, the typical benchmark dataset used since the usage of
deep learning went mainstream is Math23k. It was collected for the training of
the pioneering deep learning seq2seq solver DNS and it features 23162 arithmetic
problems collected from different online education websites. The knowledge of
the value of pi by the solver is assumed. Additionally, unlike in the English
datasets, it is assumed that apart from the quantities in the problem, the solver
can also use the constants 1 and pi. The featured paper contains no information

on the lexical and problem type diversity of the data.

Newer dataset Ape210k presented in 2021 in [LZSZ21] features 130000 us-

23 ctuthesis t1606152353

2. Background

able problems, some requiring additional common-sense background knowledge.
However, according to [ape], the dataset is not publicly available. It is still im-
portant to mention as [LZSZ21] achieves an major improvement also in Math23k

when trained on it.

| 2.4.3 Czech data

The creators of [] collected 500 AWPs from Czech textbooks. Their
difficulty is up to third grade and each of them is solvable in at most two
steps. The problems can contain one irrelevant quantity. There are ten types

of possible equation templates, dividing the dataset into problem classes.

[2.5 Comparison

Now that we have presented both the various approaches used to solve
MWPs and the currently used data, it’s time to compare how successful the

approaches are on current data.

To appreciate the rapid development in recent years, we present results from
state-of-the-art survey from the year 2019. AI2, CC and IL are smaller datasets
with problems similar to those in MAWPS, which used many of their problems.
The Metric used is whether the produced equation template evaluates to the

correct numeric value. The results are in percentages.

[AG [1L | CC | SingleEQ | AllArith][Dolphin5 | MAWPSS | Mahz3K]
¥ problems 395 62 50 508 1 7070 23713 062
operators O -t [=2 [[=0t [=06 [h—oG3) [x5 [o x4
ARTS 004 | 777 - - ® - - - 5
. Schema 7015 | 8864 B
Statistic-based Formula [27] 2016 | 8607 = =
TogicForm [281. 7016 | 848 80.1 535 5 g
ALGES 1] 2015 | 524 729 & 72 504 -
Tree-based | ExpressionTree [30] | 2015 |72 739 52 6,38 794 61T
[UNITDEP[32] | 2017 [362 710 535 7235 817 7878 -
MathDON [17] | 2018 | 783 33 75.5 5296 7268 3006 6035 B
7 SeqXSeqET (15| [2018 |- - - 5 - E - 7
DL-based TRNN [19) 00 - 5 5 s 5 1 68 6.0
StackDecoder [16] | 2010 | - - - B - - - 5]

Figure 2.10: State-of-the-art from 2019 survey, reprinted from []

ctuthesis t1606152353 24

2.5. Comparison

Next we present the results of the state-of-the-art solvers presented in the

chapter on the third phase of development.

MAWPS | ASDiv-a | SVAMP | Math23k

GTS 82.6 71.4 30.8 74.3
GTS-R 88.5 81.2 41.0

Graph2Tree 83.7 77.4 36.5 75.5
Graph2Tree-R 88.7 82.2 43.8

Generate-Rank 84.0 84.3

MWP-Bert 82.0

MWP-Bert Ape 96.2

Gri 93.7

Table 2.3: Comparison of state-of-the-art models.

GTS-R and Graph2Tree-R are the same models with pre-trained RoBERTa
embeddings as inputs, as used in [PBG21]. RoBERTa [LOG'19] is a BERT-like
large pre-trained language model.

"Mwp-bert Ape” refers to the Mwp-bert solver trained on both Math23k and
Ape210k. However, due to Ape210k not being public, it’s not possible to see
how well it deals with other datasets, most notably SVAMP.

Generate-Rank’s result on Math23k illustrates its supposed improved ability in
solving problems with longer equations, as those are more present in Math23k.
The performance of GTS-R, Graph2Tree-R, and MWP-Bert provides evidence

for the power of pre-trained language models.

25 ctuthesis t1606152353

ctuthesis t1606152353

26

Chapter 3

Method

In this chapter we discuss our approach to adapt the state-of-the-art meth-
ods of MWP solving into the Czech language. We describe our data collection

and processing, used solvers and planned experiments.

. 3.1 Used Data

In terms of native Czech data, we have only five hundred MWPs from the
WP500CZ dataset. We assume this is not enough to train the data demanding

deep-learning based solvers.

To overcome this limitation, we turn to machine translation. The rapid ex-
pansion of deep-learning based natural language processing provided us with
decent quality automatic translations, which may be suitable for our task. It
may also be interesting to check how the results are affected by different transla-
tors. Trying multiple translators may not only give us the advantage of choosing
the one best suited for our task, but it also may be an interesting metric for the
quality of the translator itself. This is especially interesting considering that
the largest datasets are in Chinese, and translating from Chinese still seems to
be a difficult task.

27 ctuthesis t1606152353

3. Method

In our experiments, we will use the Czech translations obtained using the
DeepL translator ¥ of the mentioned English datasets: the arithmetic section of
MAWPS (we will address this section just as MAWPS in the rest of our work),
ASDiv-a and SVAMP. We will also use their original versions to compare the

performances.

We will use the native Czech dataset WP500CZ for both training our mod-

els and native data evaluation.

Additionally, we will translate the Chinese Math23k dataset into English and if
we find the results satisfactory, we may further attempt to leverage its Czech

translation.

. 3.2 Translation

For English to Czech translation, we decided to use the DeepL translator,
which is generally considered to provide slightly better translations than the
best known Google translator [col22][tea2ll]. The translated texts were easily
understandable and generally without any unnaturally sounding formulations.
For this reason, we decided to not use other translators.

The translator sometimes changed the formatting of the numbers. The most
notable one is reformating numbers with four or more digits by adding whites-
pace after each multiply of thousand. For example, ”12345” was turned into
712 345”. This introduced ambiguity, as it’s not clear whether the string refers
to one larger number or more smaller ones. Since the solvers are evaluated
on data with already tagged quantities, we resolved this ambiguity manually.
The translation also rarely produced other miscellaneous quirks, one example
is replacing hours in English time format (0-12 am, 1-12 pm) with Czech one
(0-24). This can invalidate the problem if the hour numbers are present in the

equation.

Lhttps://www.deepl.com/, translation of English datasets done in August 2021, the English to Czech
for Math23k in May 2022.

ctuthesis t1606152353 28

3.3. Data processing

English text

"Having been to Paris, Rob also remembered the Eiffel Tower which was
the tallest structure in the world at the time it was built. If the height
of Eiffel Tower is 324 m, how much lower is it compared to 830 m height,

today’ s tallest man-made structure, the Burj Khalifa?”

Czech text

"Po navstévé Pafize si Rob vzpomnél také na Eiffelovu véz, kterd byla v
dobé svého vzniku nejvyssi stavbou na svété. Pokud je vyska Eiffelovy véze
324 m, o kolik je nizsi ve srovnani s 830 m vysokou, dnes nejvyssi stavbou

vytvorenou c¢lovékem, Burdz Chalifou?”

Table 3.1: Example of MWP translated automatically from English to Czech.

We found that the quality of Chinese to English automatic translation is

significantly worse. We tried several translators and decided to use Baidu 2,

which according to our opinion produced the most understandable results. We

also tried the NLP-Helsinki Opus translation system [IT'T20], to compare how

the quality of translation influences the solver performance.

Chinese text

A HER RIS, PRI 45 &, 20 Koei. SEkr 18 Kt
W TS, T RERZ PR

English
text, Baidu

"The air conditioning factory is preparing to assemble a batch of air con-
ditioners. It plans to assemble 45 sets every day and complete them in 20
days. In fact, the task is completed in 18 days. How many sets are actually

assembled every day?”

English
text,
Helsinki

"The air-conditioning plant prepares to assemble a group of air-conditioning
units, and plans to assemble 45 units per day, 20 days to complete. The
actual 18 days have been completed, and how many units per day have

been assembled?”

Table 3.2: Example of MWP translated automatically from Chinese to English.

[3.3 Data processing

The data in their raw form are not suitable for direct use. At the bare mini-

mum, we need to detect words expressing quantities and convert them into their

2https://fanyi.baidu.com/, used through Python API during autumn 2021.

29 ctuthesis t1606152353

3. Method

respective values. Other complications depend on the specifics of the dataset,

and we found some datasets contain problems that aren’t usable in our work at
all.

To our awareness, all of the state-of-the-art solvers have their own data prepro-
cessing procedures. Some authors [GK21] make their preprocessing procedure
public along with the model code, others [XS19][ZWL*20][PBG21] include ei-
ther partially or fully processed data themselves but not the whole procedures.
In either case, neither is directly usable for the translated data.

The primary goals of the data preprocessing are:

#® Convert numeric words into their numeric quantities. We call this task

number tagging and the procedure devised the number tagger.
B Detect unusable problems and either correct them or discard them.

® In the case of MAWPS convert equations into usable explicit forms.

We based our approach on the number tagging on English data from [GK21]
and general text preprocessing from [GK21] and [XS19]. We expanded them
to work on Czech data and to correct or filter unusable problems. Criteria for

considering a problem unusable are specified later.

M 331 Number Tagging

The task of detecting natural language words expressing quantities and
translating them into their numeric values isn’t completely trivial. [GK21] uses
the Python library word2number [w2n], which is based on dictionary matching
of exact words. Methods used by [XS19][ZWL*2(0][PBG21] are not disclosed,
they provide the data with this step already done.

The dictionary matching approach has several drawbacks. The number of rules
needed to separate all words expressing quantities without an error would be
enormous if that is even possible. For example, consider the Czech word ”sed-

mikréaska” (daisy, literally something like ”sevenbeauty”). Other difficulties are

ctuthesis t1606152353 30

3.3. Data processing

misspelled words, merging with punctuation and similar ambiguities. Also, tag-
ging every number may be counter-productive to the solver’s performance, as

it may tag quantities that are almost surely irrelevant to the solution.

Employing a context-aware number tagger may provide a little benefit to the
final performance and generalisability to new data and on a more general level,
perhaps it should be considered an ability the solver should possess itself. But
we believe that for the aims of this thesis, the simple dictionary matching pro-

cedure is sufficient.

The word2number library doesn’t support the Czech language, however, it pro-
vides means for a relatively simple extension. We developed it for our number
tagging in the Czech language. Additionally, we included several new rules to
deal with frequent omissions in both Czech and English. For example, the origi-
nal word2number does not translate "twice”, a word that appeared often in the

data. We added a rule to translate it into ”2 times”.

| 3.3.2 Problem Selection

In this subsection we discuss criteria for discarding a problem separately
for each dataset. The basic necessities for a problem included in our final data

are:

® The equation can’t contain numbers which the number tagging procedure

haven’t found in the problem text.
B The expression evaluates into the provided answer.

® The problem isn’t a duplicate of another problem in its dataset.

B mawps

Out of the English datasets, processing the MAWPS is the least trivial and

our selection ended up being substantially different from the ones authors of

31 ctuthesis t1606152353

3. Method

the solvers we use extracted.

Significant amount of problems are dropped from MAWPS due to introduc-
tion of numbers in the equation which weren’t tagged in the problem text. This

includes:

B Problems requiring background knowledge, most often working with per-

centages or converting cents to dollars.

® Number tagger failures, for example the word half is connected to 0.5 in
the equation but isn’t tagged in the text or the word dozen isn’t converted

to 12. Dozen is also wrongly translated few times.

® The number in equation is inverse of the number in the problem text. For
example, for the problem: "The sum of a number and its reciprocal is
3.3333. Find the number.”; the provided equation is "number + (1.0 /
number) = 3.3333”

B A specific type of MWP we discovered, which to our knowledge weren’t
addressed in any of our source texts. It’s a type where the quantity isn’t
explicitly mentioned, but it’s expected that the solver will derive it from

the logic of the problem. For example, consider the following MWP:

” After eating at the restaurant, Sally, Sam, and Alyssa decided to divide
the bill evenly. If each person paid 45 dollars, what was the total of the
bill 77

The correct equation is x = 45 x 3, but the quantity ’3’ has to be de-
duced from the fact that the text presents three people paying the bill.

We call these problems problems with implicit quantities and the current
solvers can’t robustly solve them, because they require the ability to output
arbitrary constants. We believe that their robust solving presents an inter-
esting research direction, as we would consider making these deductions an

elementary numeracy skill.

MAWPS also presents a substantial amount of problems with an equation in

which the queried variable isn’t expressed explicitly. We try to salvage as many

ctuthesis t1606152353 32

3.3. Data processing

Body and Question | The Hudson River flows at a rate of 3 miles per hour. A patrol
boat travels 60 miles upriver , and returns in a total time of 9
hours. What is the speed of the boat in still water?
Expression (200.0 / speed) - 1.0 = 200.0 / (10.0 + speed)

Table 3.3: Example of a problem without explicitly expressed variable. The explicit
expression found by our procedure contained square root, therefore was unusable and

the problem was discarded.

of these problems using symbolic manipulation with the Python library sympy
[MSP*17]. Despite our best efforts, we weren’t always successful. Some of the
equations can’t be expressed without adding the constant 1’ due to factoring
out the queried variable. Another introduce square root into the expression.
Some of the equations can also end up being quite complicated relative to the
rest of the problems. We decided to keep them anyway. We also found signifi-
cant amount of problems with wrong solution or equation. We corrected those

manually and included them in the final set.

To summarize, of the 2373 problems in the Czech translation of the dataset:

B 176 were dropped due to having numbers in their equations which weren’t

tagged in the problem text.

B 26 were dropped due to failure in converting their equation into explicit

form without new symbols.

B 167 were duplicates of other problems.

For the final Czech part, 1996 problems were retained.

For the English part, the number before dropping duplicates was marginally
higher, however, the number of duplicated problems was 227, leading to only
1947 problems in the final set. This difference is caused by the fact that trans-
lations of the same text weren’t always equal, possibly due to the introduction
of some randomness in the translating engine.

Compared to the selection present in [PBG21], our English part retrieved 172
more problems, excluding the duplicates in the [PBG21] selection.

33 ctuthesis t1606152353

3. Method

B AsDiv-a

From ASDiv-a, the arithmetic subset of ASdiv, we decided to drop the floor-

division and the ceil-division problems, as their correct answers are computed
as integer division, which is a different operation from the standard division
used in the rest of this work, practically amounting to a new operator.
Other examples were dropped because of background knowledge expectations,
the dataset contains several problems typically requiring the knowledge of the
number of some specific body part some creature has, ie. a dog has four legs.
There are also several problems requiring implicit deduction, as specified before.
Summarily, out of the 1217 problems, we retained 1179 Czech problems and 1178
English problems.

B Math23k

This Chinese dataset contains 23163 problems, making it by far the largest
one we work with. The original Chinese data doesn’t need number tagging,
as all the relevant numbers are already converted. The problem texts provide
even percentages and inverse numbers in clear form. This however isn’t true for
the translated versions. Large number of problems require adding the constant
one or 3.14 (pi). We decided to drop those problems due to consistency with
the rest of our data, where introducing untagged numbers in the equation is
forbidden.

These problems along with others dropped for untagged equation numbers com-
pose most of the dropped problems. Due to large amount of dropped problems
and generally not so great quality of the translations, we haven’t analyzed rea-
sons for the untagged numbers them further, but generally we expect main

causes come from the translation.

In summary, we recovered 15315 problems from the set translated by Baidu.

From the Helsinki set we recovered 13898.

We decided to translate further into Czech only the Baidu set. Additional 316
problems from the Czech translation were dropped, mostly due to translation

or number tagger errors. Therefore our Czech subset counts 14999 problems.

ctuthesis t1606152353 34

3.3. Data processing

| Others

Preprocessing the remaining two datasets proved to be more straightfor-
ward. WP500CZ contained three problems with a wrong solution and three
problems with a wrong equation. We trivially corrected them. Therefore we
retained all 500 native Czech MWPs.

The SVAMP dataset had three problems with wrong solutions. Two were cor-
rected and one was discarded due to us not being quite sure what is the correct

answer.

Duplicate detection is also necessary when combining datasets. We found that
our selection of MAWPS and ASDiv-a share 99 MWPs in Czech sets and 188
problems in English sets. The difference is again due to the small differences in

translations of the same problems.

Finally, it is worth noting that we encountered a few additional miscellaneous
ambiguities during the text parsing, which we tried to resolve manually. For
example, a number with a minus in the equation can be present as a negative

number in the text.

At the end of the section dedicated to our data, we present a summary table

including some statistics.

35 ctuthesis t1606152353

3. Method

Dataset n problems n problems | duplicates avg tagged | avg equa-
after prepro- numbers tion size
cessing

MAWPS 2373 1947 0 2.70 4.04

MAWPS 2373 1996 0 2.64 4.00

CzZ

MAWPS 2373 1921 149 2.5 3.90

SH

MAWPS 2373 1901 83 2.54 3.82

Gri

ASDiv-a 1218 1178 0 2.32 3.40

ASDiv-a CZ | 1218 1179 0 2.31 3.40

ASDiv-a SH | 1218 1217 0 2.36 3.46

SVAMP 1000 999 0 2.83 3.47

SVAMP CZ 1000 999 0 2.83 3.47

WP500CZ 500 500 0 2.13 3.30

Math23k- 23162 15315 0 2.94 5.25

Zh

Math23k-B 23162 15315 0 3.19 5.28

Math23k-H 23162 13898 0 3.25 5.18

Math23k- 23162 14999 0 3.16 5.22

Cz

Table 3.4: Summary of used dataset selections. SH presents selections provided in
the paper on shallow heuristics [PBG21]. Gri presents selections used by [GK21].
Math23k-Zh is our selection of original Chinese problems. We kept only those for
which we recovered their translation in the Baidu set. Math23k-B is the set translated
by Baidu, -H by Helsinki.

[3.4 Solvers

We have chosen two baseline solvers to run our experiments on. First,
we will use the [GK21] transformer approach, since it’s simple and fast to
train, therefore giving us enough options to experiment with different versions
of datasets and translations. According to the authors, the model provides even
better performance on the MAWPS dataset than the more complex ones, how-
ever, it was tested only MAWPS and a few older smaller datasets, leaving its
performance on the more challenging data unexplored. Considering the relative
simplicity of the approach, we don’t expect its primacy to hold.

The approach consists of using a vanilla transformer model to translate the
problem text into an equation in postfix form. They also experimented with

several new preprocessing steps, from which a procedure called ”label-selective

ctuthesis t1606152353 36

3.5. Experiment design

tagging” proved to be the most successful. The procedure is meant to reduce
the amount of tagged irrelevant quantities by searching for the most common
terms in the problem text and if the problem question contains them, it tags

only numbers relevant to them. We will call this model "Gri” further in our text.

The second solver we will try is the GTS. We chose this one instead of the
similar and marginally superior Graph2Tree because it doesn’t require the com-
plex preprocessing steps required to transform the problem text into its graph
representation. We also believe its difference with Mwp-bert is insignificant
when pre-trained language models are used to provide the input embeddings,
as done in [PBG21].

The best results seem to be currently achieved by combining a large pre-trained,
transformer-based language model providing encoded embeddings of the input
text and a specialized method for decoding, as seen with Mwp-bert and exper-
iments in [PBG21]. In the third phase, we will try to replicate these results
using the approach from [PBG21].

This replication requires the usage of language models trained on the Czech lan-
guage. We test two multilingual versions of classic models, multilingual BERT
(mBERT) [DCLT18] and XLM-RoBERTa [CKG*19] and a BERT-like model
trained specifically on Czech, Czert [SPP*21].

O 3.5 Experiment design

The primary goal of our experiments is to train a solver capable of achieving
the best performance on the native Czech dataset WP500CZ, which we consider
as proof that the state-of-the-art solvers can be well adapted to native Czech
even with limiting amount of native data. Secondarily, if we observe similar
performance on both English and its Czech translation, this may give us an
interesting hint on the quality of the translation itself. Especially if we also find
that the solvers trained only on the translated problems work well on the native
data too. This is especially interesting for translations from Chinese, which are
both more challenging and more important in our contemporary reality.

In the first phase, which we call data analyzing phase, we will:

37 ctuthesis t1606152353

3. Method

® Compare the results of the baseline models Gri, GTS on the MAWPS,
ASDiv-a and SVAMP selections provided in [PBG21]. We denote the au-
thors and their selections with SH (shallow heuristics). We will do the
same with the MAWPS selection used in the Gri paper. The goal is to
find how the differences in preprocessing affect performance and also to

evaluate Gri on the more challenging data.

® Compare the performance achieved on our English selections of MAWPS,
ASDiv-a and SVAMP with their machine translated Czech counterparts.
We hope the performances will be similar to each other, which would pro-

vide us a strong hint that the translations retain their logical structure.

B We will also try to use the two English translations of the Math23K dataset,
analogously first comparing the performance difference between Chinese

and English versions, and if the result is satisfying, further translate into
Czech.

In the second phase, which we call adapt to native Czech phase:

® We will train the baseline models on the native Czech dataset WP500CZ

alone, to receive a baseline upon which we can build further.

® Then we will test the solvers trained only on the translated data on the

native data, hoping they can generalize well.

B Finally, we will train on both the data translated into Czech and the train
split of the Czech native data and hope this joint training helps us improve

the baseline.

And in the final phase, called unleash the power of pre-trained language models
phase we will try to replicate the results from [PBG21] on the translated data.
First, we will use BERT and RoBERTa on the English data. Then we will
try the multilingual models XML-RoBERTa and BERT on both English and
translated and finally try the Czech BERT model Czert on the Czech data,

hoping we can achieve improvements analogous to those of SH.

ctuthesis t1606152353 38

Chapter 4

Experiments

[4.1 Implementation details

We used the default hyperparameters provided by their authors for both
models. For Gri, our work expanded on the publicly provided code. For GTS,

we based our experiments on the setup code provided by SH.

Authors of Gri found that their model performed best using only two trans-
former layers, dmoqer = 256, eight attention heads and 0.1 dropout. They
trained the model using sparse cross-entropy loss and used the Adam optimizer
with beta f; = 0.95 and 8, = 0.99 with a standard epsilon of 1e—9 with batch
size of 128 problems. We trained the models over 200 epochs without further

experiments with this setup.

For GTS, we expand on the public implementation provided by SH. The model
is trained using cross-entropy loss over predicted and target sequence. The
used optimizer is Adam. The encoder is a 2-layer bidirectional LSTM. Due to
relatively high computational demand, we decided to limit the training of the
models only to 20 epochs, which we found sufficient for achieving results analo-
gous to ones found by SH. The input embedding module is either trained from

scratch using the PyTorch Embedding module or provided by a pre-trained

39 ctuthesis t1606152353

4. Experiments

scratch pre-trained
batch size 16 4
embedding size 128 depends on the model
hidden size 512 512
learning rate 2e-3 le-2
embedding learning rate 2e-3 8e-6
dropout 0.5 0.5

Table 4.1: Hyperparameters used for the GTS.

model.
We use the hyperparameters tested by the same authors, which are different for
the variant trained with embedding provided by the pre-trained model and the

one trained from scratch.

The pre-trained models were provided by the HuggingFace Transformers library
[WDS*2(]. Unless specified otherwise, all results were obtained using five-fold
cross-validation or three-fold in the case of experiments featuring Math23k. All
results are provided as percentages. The metric used is whether the produced

equation is evaluated into the correct numeric value.

. 4.2 Results

M 421 Data analyzing phase

The first part is comparing performance of the baseline models with our

English data selections with the selections used by authors of Gri and SH.

ctuthesis t1606152353 40

4.2. Results

MAWPS| MAWPS | MAWPS| ASDiv- | ASDiv- | SVAMP | SVAMP
Gri SH a SH a SH
GTS | 91.4 84.3 81.8 68.5 72.8 30.8%* 32.5
Gri | 93.2 73.4 69.2 42.8 45.5 15.9 17.1

Table 4.2: Performance of baseline models on different data selections. Performance
on Gri is on the train-test split provided by authors instead of cross-validation. The
numbers represent percentages of predicted equations that are evaluated into the cor-

rect numeric value. * Is taken from [PBG21]

The immediately noticeable thing is the suspiciously high performance on
the selection provided by Gri. That result is however consistent with their
claim.

When we analyzed the data, we found that they select the first 200 problems for
the test set without shuffling. This is probably the source of the bias responsible
for the high score, as the problems from the beginning are simpler, for example,
there isn’t a single problem requiring multiplication or division.

Sadly, this explains why this relatively simple model was able to achieve the
state-of-the-art result on MAWPS and the worse performance on the remaining
data.

Another notable thing is that while we expected the models to fare worse on

our selection of the MAWPS, we expected the difference to be larger.

Now we present the comparison between the performance on our English and

Czech selections.

MAWPS | MAWPS CZ | ASDiv-a | ASdiv-a CZ
GTS 81.8 80.4 72.8 70.2
Gri 69.2 60.8 45.5 35.6

Table 4.3: Table comparing the results in % of our solvers on the data in English and

their translated Czech equivalents.

We see that in the case of GTS, the performance is similar. On Gri, it
seems to degrade more significantly. As of now, we don’t have a good hypothe-
sis why this happened.

And finally, we conclude the first phase by evaluating the translations from Chi-

41 ctuthesis t1606152353

4. Experiments

nese. Since training on relatively large amounts of problems is computationally

demanding, we do only three-fold cross-validation and test only on the GTS.

Math23k version | Score (%)
Chinese 67.7

English (Baidu) 59.5

English (Helsinki) 51.7
Czech 56.8

Table 4.4: Results for Math23k. Tested on our selection of the original Chinese
problems, the two versions of Chinese to English translation and the English (Baidu)

translation to Czech translation.

The result for the Baidu translation show more substantial drop compared
to native English-Czech translations. However, we consider the result to be

good enough to warrant further work with the data.

We interpret the worse results on the set translated by Helsinki to be due to

the worse quality of the translation. We decide to not use it further.

W 4202 Adapt to native Czech phase

Our experiment with training on the WP500CZ turned very different for
both models:

GTS achieved 71.8% accuracy, while Gri only 24.4%. This could further sup-
port the hypothesis that the model has problem with Czech data. However
since it was trained from scratch, it’s not clear why that would be the case.
Alternatively, the fact that WP500CZ, with its 500 examples, is the smallest
dataset in our work could have effect too, though we find it hard to believe the
impact would be this large.

Neverless, the good accuracy of the GTS on such small amount of data is per-

haps a bit surprising too.

In the next table, we present the generalization experiments, the results of

solvers trained on translated Czech data, evaluated on the whole native WP500CZ

ctuthesis t1606152353 42

4.2. Results

dataset. We proceed to use the GTS solver only.

Dataset Score (%)
MAWPS CZ 56.3
ASDiv-a CZ 56.2
SVAMP CZ 37.6
MAWPS CZ + ASdiv-a CZ 61.2
MAWPS CZ + ASdiv-a CZ + SVAMP CZ 61.7
Math23k CZ 28.5
All CZ 46.7

Table 4.5: Generalization experiments - results on the whole WP500CZ for solver

trained on the translated data.

. The results are decent enough to prove that the solvers trained on the
translated problems do indeed generalize on the native data. In our opinion,
this is an interesting result, as it could point out multiple things - that the
models really exploit similar patterns in both native English and native Czech
MWPs and the translation preserves them? Alternatively, the translation is
capable of creating the same patterns inherent in native Czech data?

The worse generalization of the solver trained on SVAMP, the dataset designed

to eliminate shallow patterns, suggests the former.

We found the generalization of the Math23k Czech translations was quite diss-
apointing. We haven’t expected them to generalize well, given both the often
spurious translations and contrasting statistics of the data (the set with longest
average vs. shortest average equation length), but the result is still a little sur-

prising. We decided to not work further with them.

And finally, we present the evaluation on solver trained on MAWPS CZ, ASDiv-
a CZ, SVAMP CZ and 350 problems from the native WP500CZ, tested on the
remaining 150 problems in WP500CZ.

We achieved an accuracy of 79.8%, which constitutes better result than the
75% from [KP2(]. However, the results are not directly comparable, because
[KP20] used different train and test sets. It is also an eight percent improvement
from training on WP500CZ alone.

43 ctuthesis t1606152353

4. Experiments

B 423 Unleash the power of pre-trained language models

phase

In the last phase, instead of training the input word embeddings of the
GTS from scratch, we try to provide word embeddings taken from the large
transformer-based pre-trained language models. We use BERT and RoBERTa
on the English data for the baseline and their multilingual versions mBERT and
XML-RoBERTa on all our data sets. We also try the BERT like model Czert,

trained only on Czech. The results are presented in the following tables.

MAWPS | MAWPS CZ | ASDiv-a | ASDiv-a CZ | SVAMP | SVAMP CZ | WP500CZ
baseline 81.8 80.4 72.8 70.2 33.0 32.2 71.8
BERT 84.3 - 77.9 - 34.6 - -
RoBERTa 85.5 - 79.4 - 52.2 - -
mBERT 84.1 80.1 77.3 67.4 35.1 27.6 69.0
XLM-RoBERTa X 77.3 64.1 X 25.7 20.0 X
Czert - 81.1 - 68.1 - 29.8 65.4

Table 4.6: Comparison of performance of solvers with input embeddings provided
by pre-trained models. All results are provided as percentages. The metric used is

whether the produced equation is evaluated into the correct numeric value. 'x’ means

we chose to not run the experiment.

Results for the English data selections show the beneficiality of this ap-

proach, however we failed to unleash their power and demonstrate any improve-

ment on the Czech data. It is worth noting that the multilingual model mBERT

were tried on both Czech and English data with the same setup, providing ben-

efit only for solving the English problems. Also the performance of solver with

XLM-RoBERTa showed to be underwhelming. We could try experimenting

with different hyperparameter settings or more training epochs, however we de-

cided to pursue more promising directions instead and dropped the remaining

evaluations.

In the next step we measure how the pre-trained embeddings influence results

of the generalization experiments.

ctuthesis t1606152353

44

4.2. Results

Data baseline | mBERT | Czert

MAWPS 56.3 57.0 60.0

ASDiv-a 56.2 58.0 58.9

MAWPS + ASDiv-a 61.2 65.1 67.6
SVAMP 37.6 41.7 43.6

MAWPS + ASDiv-a + SVAMP 61.7 63.8 66.7

Table 4.7: Results in % of the solvers trained on the translated data and tested on
the whole native WP500CZ dataset.

While the employment of pre-trained models provided no performance ben-
efit during the evaluation on the translated data alone, we see that they provide
significant benefit on generalization.

We hypothesize this is due to tokenization. The variant trained from scratch to-
kenizes all words it hasn’t encountered during training as the <unk> unknown
token, while we expect that the pre-trained models have vocabularies spanning

space well beyond what was seen during training.

And finally, we repeated our last experiment with solver trained on MAWPS
CZ, ASDiv-a CZ, SVAMP CZ and 350 problems from the native WP500CZ,
evaluating the solvers on the remaining 150 problems in WP500CZ.

Solver | Score (%)
baseline 79.8

Czert 78.0
mBERT 83.5

Table 4.8: Generalization experiments, including - results on the whole WP500CZ for

solver trained on the translated data.

. We believe these results provide more evidence that our approach outper-
forms [KP20].
However, we believe our work makes two more significant contributions than a
few percentage points in this benchmark.
Firstly, we provide evidence that turning to machine translation is a valid direc-
tion in case of scarcity of high-quality data. We document this by the decent
generalizations of solvers trained on the translated data, and by the improve-

ment we see using the translated data along with native ones.

45 ctuthesis t1606152353

4. Experiments

Secondly, we provide an approach that is much simpler to generalize to more
difficult MWPs than the ones featured in the native Czech dataset. Our solvers
can potentially solve MWPs without any limitation on the equation template
and are already trained on a more diverse set of MWPs. We believe this also
means our approach has more perspective to facilitate further developments in
applications requiring more general forms of numeric reasoning, for example in

the development of automatic fact-checkers.

ctuthesis t1606152353 46

Chapter 5

Conclusion

The goal of our work was to evaluate the performance of state-of-the-art
math word problem (MWP) solvers on the Czech language. We studied the
history of the field and found out that its future lies in the employment of the
modern deep-learning-based methods. The currently most promising direction
seems to be in combining the transformer-based pre-trained language models
with domain-specific architectures.

We found only one MWP dataset in native Czech, counting 500 MWPs. We
considered this amount insufficient for full utilization of the power of deep learn-
ing. To address this limitation, we turned to machine translation. The DeepL
translator provided a clearly understandable translation from English to Czech.
However, the largest amount of data is in Chinese. Despite our best attempts
to choose the best translator, the translations obtained by our choice, Baidu,
proved to be dubious sometimes.

We experimented with a relatively simple transformer model and a more com-
plex solver GTS. Performance of the simple model dropped significantly on the
translated data, however, for GTS, the English to Czech translation proved to
have only little effect. The drop in Chinese to English translation was more
notable.

Using the GTS we achieved decent results on the native Czech dataset. The
GTS trained only on the native data achieved surprisingly high accuracy, 71.8%.
Decent accuracy, over 60%, was also achieved with solvers trained only on the

data translated from English, proving the translations generalize. Combined

47 ctuthesis t1606152353

5. Conclusion

training on both native and translated problems achieved results up to around
80%.

Our experiments with the pre-trained models proved their power in English,
however, lead to no significant improvement in Czech when evaluated on the
same dataset they were trained. However, we found that when trained on the
translated data and evaluated on the native, they perform slightly better.

We believe the most unique contribution of our work lies in demonstrating that
machine translation can be a valid alternative for researchers lacking a suffi-
cient quantity of data. We hope our work could provide a useful resource for
researchers wishing to explore various numeracy skills of their machine learning

models further.

ctuthesis t1606152353 48

Appendix A

Bibliography

[Ala] Jay Alammar, The illustrated transformer, https://jalammar.|
github.io/illustrated-transformer, Accessed: 2022-05-18.

[ape] Ape210k: A large-scale and template-rich dataset of math

word problems, https://ui.adsabs.harvard.edu/abs/
2020arXiv200911506Z/abstract, Accessed: 2022-05-20.

[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio, Neu-
ral machine translation by jointly learning to align and translate,
arXiv preprint arXiv:1409.0473 (2014).

[BGMMS21] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and
Shmargaret Shmitchell, On the dangers of stochastic parrots:
Can language models be too big? , Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency, 2021,
pp. 610-623.

[CKGT19] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav
Chaudhary, Guillaume Wenzek, Francisco Guzmén, Edouard
Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov, Un-
supervised cross-lingual representation learning at scale, CoRR
abs/1911.02116 (2019).

[col22] Deepl ws google translate: Which is better? + how
to wuse them (2022), https://translatepress.com/

19 ctuthesis t1606152353

https://jalammar.github.io/illustrated-transformer
https://jalammar.github.io/illustrated-transformer
https://ui.adsabs.harvard.edu/abs/2020arXiv200911506Z/abstract
https://ui.adsabs.harvard.edu/abs/2020arXiv200911506Z/abstract
https://translatepress.com/deepl-vs-google-translate-comparison/
https://translatepress.com/deepl-vs-google-translate-comparison/

A. Bibliography

[DCLT18]

[GK21]

[Hoc98]

[HS97]

[KKRA*16]

[KP20]

[LOG+19]

[LZSZ21]

[MGOS]

deepl-vs-google-translate-comparison/, Feb 2022, Ac-
cessed: 2022-05-18.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova, Bert: Pre-training of deep bidirectional transform-
ers for language understanding, arXiv preprint arXiv:1810.04805
(2018).

Kaden Griffith and Jugal Kalita, Solving arithmetic word prob-
lems with transformers and preprocessing of problem text, arXiv
preprint arXiv:2106.00893 (2021).

Sepp Hochreiter, The vanishing gradient problem during learning
recurrent neural nets and problem solutions, International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems 6 (1998),
no. 02, 107-116.

Sepp Hochreiter and Jirgen Schmidhuber, Long short-term mem-
ory, Neural computation 9 (1997), no. 8, 1735-1780.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman,
and Hannaneh Hajishirzi, Mawps: A math word problem reposi-
tory, Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2016, pp. 1152-1157.

Jan Kadlec and Daniel Prusa, Solvers for mathematical word prob-
lems in czech., ITAT, 2020, pp. 18-25.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi,
Dangi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and
Veselin Stoyanov, Roberta: A robustly optimized bert pretraining
approach, arXiv preprint arXiv:1907.11692 (2019).

Zhenwen Liang, Jipeng Zhang, Jie Shao, and Xiangliang Zhang,
Muwp-bert: A strong baseline for math word problems, arXiv
preprint arXiv:2107.13435 (2021).

Anirban Mukherjee and Utpal Garain, A review of methods for
automatic understanding of natural language mathematical prob-
lems, Artificial Intelligence Review 29 (2008), no. 2, 93-122.

ctuthesis t1606152353 50

https://translatepress.com/deepl-vs-google-translate-comparison/
https://translatepress.com/deepl-vs-google-translate-comparison/

IMLS21]

[MSP+17]

[PBG21]

[RVR15]

[SK15]

[SPP+21]

[SYL+21]

[tea21]

[TPSI21]

A. Bibliography

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su, A diverse
corpus for evaluating and developing english math word problem
solvers, arXiv preprint arXiv:2106.15772 (2021).

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondrej
Certik, Sergey B. Kirpichev, Matthew Rocklin, AMiT Kumar,
Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rath-
nayake, Sean Vig, Brian E. Granger, Richard P. Muller, Francesco
Bonazzi, Harsh Gupta, Shivam Vats, Fredrik Johansson, Fabian
Pedregosa, Matthew J. Curry, Andy R. Terrel, Stépin Roucka,
Ashutosh Saboo, Isuru Fernando, Sumith Kulal, Robert Cim-
rman, and Anthony Scopatz, Sympy: symbolic computing in

python, PeerJ Computer Science (2017).

Arkil Patel, Satwik Bhattamishra, and Navin Goyal, Are nlp mod-
els really able to solve simple math word problems?, arXiv preprint
arXiv:2103.07191 (2021).

Subhro Roy, Tim Vieira, and Dan Roth, Reasoning about quanti-
ties in natural language, Transactions of the Association for Com-
putational Linguistics 3 (2015), 1-13.

Sowmya S Sundaram and Deepak Khemani, Natural language pro-
cessing for solving simple word problems, Proceedings of the 12th
International Conference on Natural Language Processing, 2015,
pp. 394-402.

Jakub Sido, Ondrej Prazak, Pavel Priban, Jan Pasek, Michal
Sejak, and Miloslav Konopik, Czert—czech bert-like model for lan-
guage representation, arXiv preprint arXiv:2103.13031 (2021).

Jianhao Shen, Yichun Yin, Lin Li, Lifeng Shang, Xin Jiang, Ming
Zhang, and Qun Liu, Generate & rank: A multi-task framework
for math word problems, arXiv preprint arXiv:2109.03034 (2021).

Here is how deepl translator and google trans-
late compare, https://revolutionized.com/
deepl-translator-vs-google-translate/, Oct 2021, Ac-
cessed: 2022-05-18.

Avijit Thawani, Jay Pujara, Pedro A Szekely, and Filip Ilievski,
Representing numbers in nlp: a survey and a vision, arXiv
preprint arXiv:2103.13136 (2021).

51 ctuthesis t1606152353

https://revolutionized.com/deepl-translator-vs-google-translate/
https://revolutionized.com/deepl-translator-vs-google-translate/

A. Bibliography

[TT20]

[VSP+17]

[w2n]

[WDS+20]

[WLS17]

[XS19]

[ZDLS20]

[ZWL*20]

[ZWZ+19]

Jorg Tiedemann and Santhosh Thottingal, OPUS-MT — Building
open translation services for the World, Proceedings of the 22nd

Annual Conferenec of the European Association for Machine
Translation (EAMT) (Lisbon, Portugal), 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N Gomez, f.ukasz Kaiser, and Illia Polosukhin,
Attention is all you need, Advances in neural information process-
ing systems 30 (2017).

word2number, https://w2n.readthedocs.io/en/latest/, Ac-
cessed: 2022-05-18.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond,
Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi
Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush, Transformers: State-of-the-art natural
language processing, Proceedings of the 2020 Conference on Em-
pirical Methods in Natural Language Processing: System Demon-
strations (Online), Association for Computational Linguistics, Oc-
tober 2020, pp. 38—45.

Yan Wang, Xiaojiang Liu, and Shuming Shi, Deep neural solver for
math word problems, Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing, 2017, pp. 845—
854.

Zhipeng Xie and Shichao Sun, A goal-driven tree-structured neural
model for math word problems., IJCAI, 2019, pp. 5299-5305.

Ming Zhou, Nan Duan, Shujie Liu, and Heung-Yeung Shum,
Progress in neural nlp: modeling, learning, and reasoning, En-
gineering 6 (2020), no. 3, 275-290.

Jipeng Zhang, Lei Wang, Roy Ka-Wei Lee, Yi Bin, Yan Wang, Jie
Shao, and Ee-Peng Lim, Graph-to-tree learning for solving math

word problems, Association for Computational Linguistics, 2020.

Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian Dai, and

Heng Tao Shen, The gap of semantic parsing: A survey on auto-

ctuthesis t1606152353 52

https://w2n.readthedocs.io/en/latest/

A. Bibliography

matic math word problem solvers, IEEE transactions on pattern
analysis and machine intelligence 42 (2019), no. 9, 2287-2305.

53 ctuthesis t1606152353

	Introduction
	Background
	Problem description
	Properties of MWPs

	Solver development
	First phase
	Second phase
	Neural NLP
	Third Phase

	Word problem solving in Czech
	Datasets
	English data
	Chinese data
	Czech data

	Comparison

	Method
	Used Data
	Translation
	Data processing
	Number Tagging
	Problem Selection

	Solvers
	Experiment design

	Experiments
	Implementation details
	Results
	Data analyzing phase
	Adapt to native Czech phase
	Unleash the power of pre-trained language models phase

	Conclusion
	Bibliography

