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Abstract

This thesis seeks to examine the design and implementation of a framework for ma-
chine learning, namely, the domain of predictive sports analysis. The mentioned
framework’s main objective is to enable the creation of respective workflows rep-
resented by graphs of individual operations ranging from data transformations to
model training. Moreover, these workflows are especially complex given the con-
text of predictive sports analysis, mainly due to the time-dependent characteristics
of competitors and the frequent hierarchical composition of heterogeneous predictive
models. Additionally, this thesis documents the categorisation of existing sports and
models allowing a more seamless transfer between domains and the implementation of
new workflows. The advantages of such framework are then displayed by presenting
selected case studies describing the libraries’ possibilities and its use.
Keywords: sport prediction, framework, machine learning workflows

Abstrakt

Práce pojednává o návrhu a implementaci frameworku pro strojové učení v doméně
prediktivní sportovní analýzy. Hlavním cílem framworku je umožnení tvorby přís-
lušných workflows, reprezentujích grafy podléhající operacím, od transformací dat až
po trénování modelů. V doméně prediktivní sportovní analýzy jsou tyto workflows
poměrně komplexní. To je způsobeno především časově závislou charakteristikou
soutežicích a častým hierarchickým skládáním heterogenních prediktivních modelů.
Součástí práce je také kategorizace existujících sportů a modelů, umožňující snadnější
přenos mezi doménami a implementaci nových workflows. Přínostnost frameworku
je pak demonstrována na vybraných případových studiích, které popisují možnosti
knihovny a její použití.
Klíčová slova: sportovní predikce, framework, machine learning workflows
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Chapter 1

Introduction

Predictive sports analytics gained a lot of popularity in recent years, mainly due to
increased computational power and new models and ideas introduced in the machine
learning domain. Most sport prediction workflows are based on the same processes
consisting of various data loading, transformation, training, and testing parts. But
these processes are typically created by many different people, and consequently their
interfaces are not unified for efficient reuse. As a result of this, a problem arises in
that it is difficult to combine the existing processes or even just their parts, such as
the predictive models. This is then desired in common practice, where we typically
have our own data and we want to experiment with some interesting models from
other works. Or, on the contrary, when we implement a new model and want to
run experiments with different kinds of data. If we then have multiple heterogeneous
models, data transformations and processes we would like to reuse from others works
on sports predictions, it is often easier to just re-implement these from scratch to be
used in our workflow, which becomes quickly intangible.

Perhaps surprisingly, the structure of a typical sports prediction workflow is ac-
tually quite complex. Competitors in every sport develop and their performance is
dynamically changing throughout the years, months and even weeks. This has to be
captured in the machine learning process which reflects itself through cycles present
in the respective workflows. Another important characteristic is the common usage of
outputs of one model as an input to another model, which reflects itself in hierarchical
nesting of the nodes in the workflows. Together with the various data transforma-
tions and preprocessing steps necessary around these, this presents a considerable
complication w.r.t. to the standard, static, linear machine learning pipelines.

1.1 Goals

The goal of this thesis is to design and implement a framework that will be used to
build and run complex machine learning workflows for sports predictions. The frame-
work must provide support for different sport data and models for easier reusability
and extensibility. Finally, working examples will be demonstrated.

1



CHAPTER 1. INTRODUCTION

1.2 Structure

To successfully satisfy these goals, this thesis consists of four main parts. First,
we get to know some specifics about this problem, gather requirements, and based on
them, look at related work in Chapter 3. Then, in the following Chapter 4 our own
solution to the problem will be presented. From this we can move to implementation
Chapter 5, where we cover the development process. Lastly, selected use cases will
be presented to demonstrate the use of the resulting framework for building complex
machine learning workflows.

2



Chapter 2

Background

First it is necessary to establish the basic terminology in terms of sports machine
learning. We describe general machine learning, and then some concrete models used
for sport predictions. We also explore the question of how we can make the models
better with hyperparameter optimization and lastly the whole concept of machine
learning operations and workflows, which is the core of this thesis and the framework.

2.1 Machine Learning

Machine learning is a subset of Artificial Intelligence. The widely used definition
is credited to Arthur Samuel: "Field of study that gives computers the ability to learn
without being explicitly programmed"[19], even though this statement is not exactly
given in his work. This gives us an abstract idea of machine learning. In 1997 Tom
Mitchell and McGraw Hill came up with a little more formal definition: "A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E."[14] Some deeper meaning and explanation will be presented in
the next section.

There are three main areas of machine learning - reinforcement, supervised and
unsupervised learning [18]. The only relevant area for this thesis is supervised learn-
ing. It consists of the training phase where the data are used with labels and the
testing phase where there are no labels present.

2.2 Models

For now we can view a computer program mentioned in the previous section as a
model with parameters. In general, it can be much more complex, with many nested
models, etc. The model can learn and improve from experience or, in other words, it
updates its parameters to make better predictions for the mentioned tasks. Updates of
parameters based on predictions are made through the performance measure, which
gives us feedback on how the model is performing. Inputs to models are features,

3



CHAPTER 2. BACKGROUND

and outputs are predictions, most often in terms of the probability distribution over
outcomes. We will take a look at some basic models and describe them here.

2.2.1 Standard models

We start with models that are commonly used in machine learning. Here we have
a vector x ∈ Rn of features and a vector y ∈ Rn of labels or target values.

Regression aims to predict some continuous value y based on the inputted vec-
tor x [2]. Some basic types are Linear regression and Polynomial regression. Linear
regression expects linear relationship between x and y and on the other hand Polyno-
mial regression works with relationship of x and y as polynomial function of the nth
degree.

Classification does not assign a continuous value, but a set of numerical values
that can have some meaning in the real world such as cat and dog, which are called
classes [4]. If we have more than two classes it is called multiclass classification. One
of such popular classifiers is called SVM (Support Vector Machine).

Neural network is a composition of simple functions, which are commonly called
layers [20]. Inside each layer are neurons that accept input x and give output y based
on its weights and bias. The last layer is usually some function, for example SoftMax,
that normalizes the output values into a distribution. There are many special classes
of neural networks, such as the Graph Neural Networks (GNN) [21].

In addition to these we will also cover models that are more specific to sport
machine learning in the following sections.

2.2.2 Statistical models

Statistical models work on the basis that the vector x is drawn from some dis-
tribution. In the area of result based predictions, we take as x the number of goals
scored by each competitor. We present the data to the model and try to adjust the
distribution parameters to maximize the likelihood function [11]. We will cover the
Double Poisson model and show its basic workings.

Double Poisson model assumes that the number of goals of the competitors in
the match is independent and is modeled by the Poisson distribution (Equation 2.2)
with means characterizing the strength of the competitor in attack and the weakness
in defense [13]. In more detail, the means are defined as Equation 2.1 where Att is
the strength in attack and Def weakness in defense, respectively, for the home or away
competitor and H is home advantage.

log(λH) = AttH −DefA +H

log(λA) = AttA −DefH
(2.1)

These means are then used in the Poission models through which we can state the
probability of number of scored goals for each team.

4



2.3. HYPERPARAMETER OPTIMIZATION

P (GH = x,GA = y|λH , λA) =
λx
He

−λH

x!
· λ

y
Ae

−λA

y!
(2.2)

This way we have many variables; it is possible to use only one strength parameter
for a competitor that halves their number [11].

Some other model is, for example, Bivariate Poisson, which adds dependency
between the goals scored to the Double Poisson model.

2.2.3 Rating systems

Rating systems assign ratings to every competitor, and we commonly use these
as a feature to other models, for example, classification [11]. The well-known Elo
rating assumes that the performance of competitors is normally distributed around
their skills with some variance [9]. This describes that competitors do not perform to
the same level every match and have good days and bad days. The expected outcomes
of the match are numerically expressed between zero and one and are computed using
the Equation 2.3 for the home competitor and the away competitor, respectively.

EH =
1

1 + c(RA−RH)/d

EA = 1− EH
(2.3)

Actual outcomes are defined as one for a win, half for a draw and zero for loss. If we
have calculated the expected outcomes, we can update the ratings to better reflect the
competitor skill using Equation 2.4 where R represents the competitor’s rating, k is a
learning rate, δ is an absolute value of the goal difference, and γ is a metaparameter
that influences the change in rating based on the goal difference and finally SH is the
actual outcome.

Rt
H + 1 = Rt

H + k(1 + δ)γ · (SH − EH)

Rt
A + 1 = Rt

A + k(1 + δ)γ · (SH − EH)
(2.4)

Another rating system is TrueSkill [11], which is similar to Elo in using Normal
distribution to model skill but here is also updated the variance, and can also be
used for multiple competitors in one match [9]. Then we also have Pi-ratings, Berrar
and Steph ratings [11]. Rating systems do not have to have just one rating for
each competitor, but can have defensive and offensive or home and away or expected
number of goals in the match.

2.3 Hyperparameter optimization

Most models have parameters that can specify the structure or some inner work-
ings, such as the speed of convergence. These parameters say how the learning process
should go and are specified before the learning starts, and they obviously affect the

5



CHAPTER 2. BACKGROUND

overall quality of the predictions. But they are not strictly given, as they can per-
form on different types of datasets differently, and for that we use hyperparameter
optimization, which is the process of searching for the best configuration of these
hyperparameters based on performance.

There are many algorithms for such an optimization, for example, grid search
or Bayesian optimization [22]. The first one just searches through all possibilities
and picks the one with the best result. The Bayesian optimization is well suited for
complicated objective functions that are costly to evaluate or have noise. The idea is
based on the Bayes theorem with objective function modeled as posterior probability
[6].

2.4 Machine learning operations

Machine learning operations (MLOps) is based on a popular set of software de-
velopment practices called development operations (DevOps), which aims to make
software development and deployment easier and faster through automation. MLOps
has similar goals, but unlike classic software, machine learning is more complex mainly
due to the use of learning data. This adds practices such as data validation and work-
flows [5]. In Figure 2.1 we can see the intersection of DevOps, Machine learning and
Data engineering which results in MLOps. This simply explains that it consists of
already mentioned DevOps regarding deployment, then machine learning concerning
models and use of data engineering for data processing. Data engineering can be
viewed as a workflow of data that is continuously processed. These processes can be
cleansing, feature extraction, and data preprocessing in general [17].

Figure 2.1: MLOps definition diagram [5]

6



2.4. MACHINE LEARNING OPERATIONS

In this thesis, we will not concern ourselves much with deployment, the main
topic being data and workflows, which can be viewed as machine learning and data
engineering combined.

2.4.1 Workflows

Workflows are a way to automate the process of data extraction, training and
testing [8]. We can imagine it as a graph where each vertex represents some functional
part and edges specify flow of data between them. In standard machine learning tasks
the graph is simple and consists of just a few sequential parts, which mainly are loading
data, transformation, extraction of features, training, testing and evaluation. This
simple sequential workflow is called a pipeline. However, in general, the workflows
can be much more complex. The integral part of workflows is modularity, which
means that we can easily change the already mentioned parts, which helps to speed
up development.

7
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Chapter 3

Problem analysis

This chapter covers the requirements for the framework. On the basis of them, we
can take a look at other frameworks that could satisfy these requirements. But first
we will describe the specifics of the data in sports and other specifics emerging from
sport related machine learning topics.

3.1 Sport machine learning

Sport machine learning is a little different from normal machine learning, mainly
due to the nature of sport data. The main specialty is time dependence, which
means that competitors change their performance over time. If we are interested in
predicting outcomes of matches of some team, last season or recent matches are much
more relevant than how the team was performing five years ago, which actually does
not interest us at all. This requires some kind of iterative training and prediction
making that enables us to work with time periods. A similar complexity is when we
want to use computed outputs from a model as features to another model, but we
want both of these learnings to be related to some time period.

3.1.1 Time-dependent learning

We introduced this problem in the previous section and now we will take a look
at it in more detail with an example. We stated that we are interested in training
and predicting in some iterative manner over time periods. These periods can be, for
example, a one-month window, where we take the first month of the dataset, train on
it, and then make predictions on the next month, and this continues until we iterate
through the whole dataset; this is called rolling strategy. The other strategy is named
expanding, which means that the training phase does not consist only of one month,
but is expanding, so every new training keeps all the previous months and adds a new
month. This enables us to find out how good the model is for continuous prediction
with new data coming in every period. We will call these time periods windows and
this whole concept window shifting or window shifting strategy, as we are moving
these windows based on selected logic.

9



CHAPTER 3. PROBLEM ANALYSIS

Then we also briefly discussed the issue of using outputs of some model or models
as input to some other model with iteration over time periods. The time periods
were already covered in the previous paragraph and we established them as windows.
Thus, the iteration is called window shifting. So we have data, two models and for each
model one window for training and one for predicting. We also know which model’s
predictions are used as features to the other one or in other words which model is
nested inside the other one. Now we can do one round of training and prediction on
the nested model based on the starting state of the windows. This outcome is then
used for training and predicting in the outer model, based on the starting state of
the windows of this outer model. Then we update all windows to next state and this
process keeps repeating. It can also be shown with a simple example of the Elo rating,
which we consider as a model and a classifier. First, we make predictions for a month
with Elo, so we get ratings for competitors in that month. That we use as features to
classifier and that gives us probabilities of the possible results. And then we move on
to the next month. Based on the nested nature of the models, we will call this nested
learning.

3.1.2 Workflows

Workflows in sport machine learning are usually more complex than what was
presented in Section 2.4.1. They are not just simple sequential steps, instead, they
can be looked at as a graph with cycles. Cycles are present mainly due to the time-
dependent learning mentioned above. In Figure 3.1 such a workflow is depicted using
a diagram with data flow and composition.

Figure 3.1: A nested workflow diagram

This workflow is similar to the example used in the previous section concerning

10



3.1. SPORT MACHINE LEARNING

nested learning. We load data that are then passed to the transformation, which adds
a number identification to every competitor for better manipulation inside the mod-
els. Then we have FeatureExtraction that contains some Rating system and scope,
which is just an object representing windows shifting strategy. This is inside Win-
dowedLearner which has some model, for example, the regression classifier and scope.
The logic is that WindowedLearner passes data to FeatureExtraction, which returns
computed features based on the given state of the scope from which WindowedLearner
makes predictions based on its scope. This repeats until we iterate through the whole
dataset. Finally, we evaluate the performance of the workflow.

3.1.3 Data

Sports data are mostly also complicated as it is difficult to divide sports into strict
groups based on their similarity of organization, rules and format. The most obvious
division is into matches and races. Matches are played as one competitor against
another competitor, competitors can be individuals or teams. This means that match
results are given as home and away scores with the names of the two opponents.
However, a race involves many competitors and the result is given in most cases as
their order. This makes it difficult to use the same models for those two types, even
though we can convert race to matches, but that is not very efficient. Then we can
also find similarity in the type of sports played in the format of round-robin where
each competitor plays every other competitor at least once, which we will call league-
based and other group of sports which are based on elimination tournaments. But
these are not that strictly given, as many sports based on leagues such as football
or hockey have not only competitions as elimination tournaments but also play-offs
after the round-robin leagues. This has to be resolved with some preprocessing or
selection of nice data as it does not have a general approach. Now we take a look at
the relevant features to this thesis.

3.1.3.1 Features

Features are taken from the provided database which is based on data from the
Flashcore1 website. For score-based predictions these are the basic features indepen-
dent of the type of sport: the date, the name of competition and the season. Match
based sports have home and away scores and names for home and away opponent.
Races have the ordering and name of the competitor. Some sports, usually elimina-
tion tournament based, also have categories, for example ATP (Association of Tennis
Professionals), which could be analogous to leagues as in them meet only some group
of competitors.

There are, of course, some peculiar cases that do not fit this. For example, boxing
is a match but the result is not in the form of a score. But even if the sports have
a score, they differ in the quantity of points which is important, as the score or the
difference of the score between opponents is input to every model discussed in this
thesis.

1https://www.flashscore.com/
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3.2 Requirements

Requirements were obtained from the needs of the IDA group2 under the Depart-
ment of Computers, mainly the part of the group that conducts research on sport
predictions. As mentioned in Chapter 1 there is a need for unification to improve and
accelerate the development of machine learning workflows. These are the requirements
for the framework:

• Ability to create complex workflows with time-dependent learning

• Easily extendable with new models and transformations

• Parameterizable and hyper-parameterizable models and workflows

• Efficient reuse over common sports categories

• Executing parts of workflow in parallel

• Can be deployed to HPC clusters

3.3 Related work

In this section, some of the related frameworks for machine learning operations
will be presented and compared with the gathered requirements.

3.3.1 Scikit pipelines

Scikit pipeline is a module from Scikit library for building simple sequential work-
flows [15]. It does not handle problems that are necessary for this project. Also, as
pointed out in the first sentence, it is capable only of creating sequential workflows,
which is not enough. Another disadvantage is the narrow scope of Scikit models that
must be used.

3.3.2 Ploomber

Very plain and simple framework for constructing workflows [16]. The pipeline
is defined through a YAML file, where we characterize for every node the input and
output or, in the Ploomber terminology, upstream and product. These have to be
serialized, which is not a problem, but there is a problem with importing classes
and their methods if used as nodes, which is not very easy to get to work. Another
disadvantage is that workflow cycles are not supported, which is the main requirement.
A nice feature is the possibility of caching the output of nodes and reusing them in
repeated runs.

2https://ida.fel.cvut.cz/
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3.3.3 Kedro

Kedro belongs to the more popular frameworks. It is used to create machine
learning pipelines with good software engineering practices to make the pipelines easily
reproducible, modular and well documented [12]. It also contains a nice visualization
tool and the overall usability is simple. It supports deployment using many other
frameworks, such as Kubeflow [1]. However, it does not support workflows with
cycles.

3.3.4 MLflow

Mlflow is mainly a framework for tracking and logging parameters in pipeline runs
[7]. It also has project and model components that are meant for easier reproducibility
in different environments. Based on that, we can say that this framework has different
goals than the previous ones. It certainly does not support any workflow creations
on the atomic level with cycles, etc. It is more suited as a secondary tool for the
mentioned tracking and it can be easily integrated into a project.

3.3.5 Kubeflow

Widely used MLOps framework of the Kubernetes family of tools meant for Ku-
bernetes containers[3]. Provides a complex software development kit (SDK) for the
implementation of pipelines and a user interface for their management and deploy-
ment. Everything happens inside the framework, including training, which results
in complicated code with a lot of lines that are just for configuration of the frame-
work. It is capable of storing and reusing components for faster building. It is a very
powerful framework, which is also its downside given the necessities of this project.
Additionally, it does not support the creation of workflows with sport specifics, such
as cycles.

3.3.6 Conclusion

Based on the reviewed frameworks and libraries, it can be stated that none of
them fully meets the requirements given. Of course, these are not all the projects
concerning the studied problem, but these were selected as the ones most commonly
used and also as a good representation of the others. Consequently, it is necessary to
design our own solution to meet the requirements.

13



CHAPTER 3. PROBLEM ANALYSIS

14



Chapter 4

Design

In this chapter we present the design of the framework with descriptions of how
some key parts should work. We start with an architecture that will outline the
fundamental components of the project that will be necessary. After that, we look at
whether we can find some common elements between sports and group them. There
will then be a section on parameterization and how it will be realized. Finally, we
discuss usage in terms of server deployment.

4.1 Architecture

The whole framework will be built around workflows and sports. As these are
problems that we have already covered, we can use it to analyze which parts will be
needed. First, we need some object for loading data from different types of source,
which we will call a data loader. Then it is necessary to have an object that holds
data and information about the data which will be passed on from one part to another
through the workflow, this object will be called data wrapper. In addition, we need
feature extractions and other processing of the data, called transformers. Of course,
the main part of the framework is training and testing on some model for which we will
also need some object that we will name learner. Finally, we evaluate how the model
performed. This is a basic description of parts in some workflow. In the following
sections, we will characterize these parts in more detail and add some others.

4.1.1 Data Loaders

Data loaders will be used to load data from the source. The source can be a
database or a CSV (comma-separated values) file. Every sport will have its own
data loader for better usability, as we can pre-specify some parameters for the default
database, which is based on data from the Flashscore1 website.

1https://www.flashscore.com/
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4.1.2 Data Wrappers

Data wrapper is meant to hold the loaded data and relevant information, such
as the type of sport and the names of columns containing features and labels. Each
sport will be represented with one wrapper and they will be part of hierarchy based
on types of sports such as match, race, league and elimination tournament. Data
Wrappers will also be created for specific groups of sports, which are all described
in Section 4.2. The idea is to pass the data wrapper from one component of the
workflow to another, gradually gaining columns with new data computed from those
components.

4.1.3 Transformers

Transformers will be used mainly to extract features from the data or polish the
data that are not perfect. Some examples of transformers are converting names of
competitors to number identifications, as models do not work with string values, or
removing seasons from the data because there are small number of teams competing,
which is important for some types of models or feature extractors. There is a need for
transformers that keep some inner state, these could be called stateful, then we need
also updating transformers that are able to update their state based on some logic.

4.1.4 Scopes

Scopes are for selecting some subset of the data. Mainly used for the window
shifting strategy described in Section 3.1.1. Two basic scopes will be enumeration
scope for iterating over some list of values and number scope where you need to
specify the starting and ending numbers and also size of the step which will be taken
every iteration and size of window. The number scope also needs to support the
window shifting strategies named rolling and expanding.

4.1.5 Learners

As mentioned at the beginning of this section, the learner will be an object that
contains an interface for training and testing. As we have different complexity of
learning due to the possible nested learning and window shifting introduced in sub-
section 3.1.1, it is necessary to have multiple objects for that. Basic learner with
scope that only selects data based on scope and performs training and testing with-
out updating the scope. Learner with iterative training, testing and updates of the
scope known as window shifting. This one will also support nested learning. Fi-
nally, a learner without scope to cover all the possibilities. Any learner will have the
possibility to be used only for training or testing.
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4.1.6 Blocks

All these components mentioned above are foundation stones from which you can
build workflows, but it would be tedious and not effective if it was necessary to
write these workflows every time from scratch. Workflows can be very similar, and
sometimes the difference is just in a different model or other component. For this case
there are components called blocks, which can encapsulate working part of a workflow
for reusability. This will make the code more sleak, short and user-friendly.

4.2 Data sport structure

In the previous chapter, we dived into sports and how they have differences among
themselves. These distinctions must be taken into account when designing the frame-
work, as it is its main domain. We want to find common elements between sports
to create some categorical structure. This allows us to know which sports are inter-
changable and also we can specify what category of sports can be used as input to
models or transformers.

The basic categories are match and race, which were described in Section 3.1.3.
Then we can divide sports into individual and team, which would be important for
models with more detailed features. These were general characteristics that do not
ensure large similarity that would be necessary for learning. For that purpose, it will
be useful to create groups containing sports with similar features such as format, rules
and mainly mean of goals scored in matches.

As part of the thesis, we identified the following groups:

• Tennis, badminton and beach volleyball

– Very similar format.
– Mostly played as best of two and as tournaments with eliminations.

• American football, rugby league and rugby union

– Similar sports and score.
– It could appear that Australian football should be included, but the score

is much bigger.

• Field hockey and ice hockey

– Again, very similar in all aspects.

These groups will be represented as different data wrappers, as discussed in the
previous section.

Another distinction between sports is mentioned in the description of the groups.
Some of them could be described as league based and others as elimination tournament
based. This was already mentioned in Secction 3.1.3 and for these cases special data
wrappers will be created.
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4.3 Platform

There was no requirement for the programming language. The two main choices
are Java and Python mainly because of the author’s proficiency in those two. Java is
more suited for object-oriented programming and the author has more experience in
it. On the other hand, almost every relevant sport machine learning project is written
in Python and because those projects will be used with this framework, it is much
easier to stay in Python. Of course, there is the possibility of calling Python programs
from Java, but that would not be efficient, and more importantly, a new project would
have to be done in Java as it had to comply to the framework architecture to make
use of the framework. From all this, it is decided to use Python as a simpler and more
logical solution.

4.4 Parameterization

Parameterization is an essential feature of the whole framework. In the preceding
section, we named some basic components and almost all of them need parameteri-
zation. Thus, we will describe the basic design in detail here.

It will be realized through a JSON file. This format is easily readible, which is
very important as it will be up to the user to understand it and make changes. In
the file will be parameters ordered in reflection of the structure of the workflow, that
should enable simple editability as you know exactly what you are editing even in
complex workflows and also give the user feedback whether the structure is what it
should be.

1 {
2 "learner": {
3 "model": {
4 "alpha" : 1,
5 "type" : "lgbfs"
6 }
7 }
8 }

Listing 1: JSON example as parameters file

Another point is hyper-parameterization that has to be somehow connected with
the normal parameterization. The best solution for now is to use a different file for
that, where you just specify what parameters you want to optimize, but in the same
structure. Because the optimizer needs more information than just one value, the
structure will be a little bit more complex.
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1 {
2 "learner": {
3 "model": {
4 "alpha" : {
5 "lb": 0,
6 "ub": 1,
7 "precision": 0.1
8 }
9 "type" : "lgbfs"

10 }
11 }
12 }

Listing 2: JSON example as hyper parameters file

A more detailed description will be further given in Chapter 5.

4.5 Cluster Usage

One of the requirements is to be able to run workflows on a server and use paral-
lelism. In the previous chapter, we covered some frameworks that are used for running
workflows. Because they are already implemented for this task, we can use them on
top of this framework. The most suitable one is Ploomber as it is easy to use and
satisfies the server requirements. This does not mean that the framework will not be
runnable without it, nor that the Ploomber will be enforced.
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Chapter 5

Implementation

In the previous chapter, we designed our own custom solution that contains a
framework to create learning workflows in the sport machine learning environment.
In this phase, we are going to implement that solution and describe the individual
steps. To best describe the key parts, we will use code snippets taken directly from the
custom framework implementation, which will demonstrate the discussed functionality
better than an auxiliary textual description. 1

5.1 Parameterization

For the purpose of parameterization, we created a Parameterizable class. As
it is very important, we will describe it in a little more detail. The constructor
accepts three arguments: parameters, hyper_parameters and name. Name variable
is string, parameters is the dict type or Parameters class and hyper_parameters is
HyperParameters class. The general idea is to have default values for parameters
and name, which is achieved through the class variables name and init_parameters,
which all inheriting classes should override if its relevant to them, as seen in Listing 3.
These are then set in the __init__ method as instance variables mainly using the
set_parameters method. Setting variables to default values can be done using the
reset_state method, which can be useful in the optimization process.

1Note that all the library’s code is authors own work
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1 name = "scikit_classifier"
2 init_parameters = {
3 name: {
4 "model_type":"LR",
5 'model_params':{
6 "multi_class": "multinomial",
7 "solver": "lbfgs"
8 }
9 }

10 }

Listing 3: Default parameters of ScikitClassifier class

The method set_parameters shown in Listing 4 accepts parameters and checks if
they are relevant to the instance by name. If they are, it iterates over init_parameters
and takes values from the variable parameters based on the key; if not present, it uses
the default value.

1 def set_parameters(self, parameters:Parameters):
2 """Sets parameters based on input and class variable

init_parameters.↪→

3

4 Parameters
5 ----------
6 parameters : Parameters
7 Parameters/dict object containing parameters for given
8 class
9 """

10 if self.name in parameters:
11 self.parameters = parameters[self.name]
12 if self.init_parameters is not None:
13 for param,value in

self.init_parameters[self.name].items():↪→

14 if param in self.parameters:
15 setattr(self,param,self.parameters[param])
16 else:
17 setattr(self,param,value)
18 if 'optimization' in self.parameters:
19 self.optimization = self.parameters['optimization']

Listing 4: Method set_parameters in Parameterizable class

Sometimes we need to set as a value some class or even method. For this purpose,
it is better suited to use as a holder for parameters the dictionary type in Python file
as opposed to JSON file, so we do not have to concern ourselves with transforming
the dot convention and creating instances, etc. We can simply import the class and
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use it in the parameters dictionary as shown in Listing 5. This simplifies everything,
even the user experience. And it also preserves the readability of the JSON format,
which is very important.

1 params = {
2 'load_block': {
3 'filter':Equal("Lge", "GER1"),
4 'wrapper':{
5 'class':FootballWrapper,
6 'Football':{
7 'football':{
8 'PSQLSchemaName':'isdb',
9 'DB_name':'bet'

10 }
11 }
12 }
13 }
14 }

Listing 5: Example of parameters dictionary for loading block

5.2 Optimization

Represented with the Optimizable class, which sets the hyper parameters and
performs optimization. It is a subclass of Parameterizable and the idea is that all
classes that should be optimized inherit from this class. If they are optimizable, it
means that they do some computation that can be performed better with different
parameters. That is why we introduce the compute method, which is important as
from now on the only method that is necessary to call in order to execute functionality
regarding some object in the framework is this one. This makes usability easier, as
we can swap classes and the code can stay the same.

Another useful method is optimize shown in Listing 6. As you can see, we can set
a scoring function, which is used to lead the optimization in the direction we want
and the type of optimization framework. For now, there are two frameworks that
perform the optimization Optuna2 and Ray Tune3. Optuna is lighter and provides
a smaller number of tools for parameterization. The big difference is in setting of
hyper parameters, which we will discuss in the next section. The return value is an
object from the completed optimization that contains all the information about the
best run.

2https://optuna.org/
3https://docs.ray.io/en/latest/tune/index.html
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1 def optimize(self, hyper_parameters:dict, wrapper:BaseDataWrapper,
score_function:Callable=None, type=TypeOfOptimization.OPTUNA,
**kwargs):

↪→

↪→

2 """Runs optimization on the class
3

4 Parameters
5 ----------
6 hyper_parameters : dict
7 hyper parameters as a dict
8 wrapper : BaseDataWrapper
9 wrapper on which optimize

10 score_function : Callable, optional
11 evaluation function that is used for optimization
12 type : TypeOfOptimization, optional
13 specifies type of optimization OPTUNA or RAYTUNE
14 (default is OPTUNA)
15 kwargs
16 other parameters passed to selected optimizer
17 """
18 if hasattr(self,'optimization'):
19 if 'score_function' in self.optimization:
20 score_function = self.optimization['score_function']
21 if 'parameters' in self.parameters:
22 kwargs = self.optimization['parameters']
23 result = None
24 if type == TypeOfOptimization.OPTUNA:
25 result = self._optuna_optimize(hyper_parameters,

score_function, wrapper, **kwargs)↪→

26 elif type == TypeOfOptimization.RAYTUNE:
27 result = self._ray_tune_optimize(hyper_parameters,

score_function, wrapper, **kwargs)↪→

28 return result

Listing 6: Method optimize in the Optimizable class

5.2.1 Hyperparameters

Hyper parameters use the format introduced in Listing 2. Which is an input
from the user, but we need different formats for Ray Tune and Optuna. Because
Optuna uses a study object and trials, it means that in every iteration it is necessary
to suggest the parameter space using the trial and obtain the value. On the other
hand, Ray Tune sets the parameter space once at the start, and during iterations we
obtain the values directly. So we have two classes; one is RayTuneHyperParameters
that is initialized with Ray Tune values, and the other OptunaHyperParameters that
contains the inputted hyper parameter values and also the trial object which is then
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used in the object we want to optimize for obtaining the parameters. Unfortunately,
Optuna does not support nested hyper parameters which means we are not able to
easily optimize parameters based on values of other parameters.

5.3 Data Loaders

Data loaders are responsible for retrieving data mainly from a database, but it can
also be from CSV. To select the type of source, we can use the enum class SourceType,
which has two values for now: PSQL and CSV.

As can be seen in the Figure 5.1 diagram, there are classes MatchDL and RaceDL
that do basic parsing on the data depending on the type. Every sport has its own
data loading class that inherits from one of those classes. We can also see that there
is WinterSportDL that covers almost all winter sports such as alpine skiing or classic
skiing. Because this hierarchy was created based on the database used, it contains
these groups, but it does not put any constraints and it is still possible to use a
database with different schema.

Figure 5.1: Sample of data loaders class hierarchy

5.3.1 SQL builder

This class serves as builder for SQL queries based on the passed name of the
schema and the table and the arguments for the where clause. These arguments are
ordering as a tuple value and filter as Filter class.
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5.3.2 Filter

Filter is a general class for making complex filters with binary operators AND
and OR. We can specify attributes with constraints as equal, greater than, and
between. As seen in Listing 7 it is possible to nest filters inside each other as you
would normally in SQL query. The advantage is that it can be reused for different
databases and sources.

1 And(Equal("Lge", "GER1"), Between("Sea",2003,2013))

Listing 7: Filter usage example

5.4 Data Wrapper

As discussed in Section 4.1.2 data wrapper holds data and is passed between
different parts of the workflow. The idea is not to use the DataLoader class explicitly,
but to specify the wrapper that knows which data loader to use. Each wrapper can
have one or more data loaders according to the type of wrapper and the type of
data it represents. This means that calling the compute method calls the data loader
to obtain the data. These data are then passed to the DataHandler object, which is
inside the wrapper and performs basic operations on the data, such as adding columns
and rows. Therefore, it is not just a wrapper for the data, but its job is also to load
the data through DataLoader. The data are in the form of a Pandas library class
DataFrame4 and, as mentioned earlier, in class DataHandler. The wrapper then adds
more specific information about the nature of the data. This leads us to the hierarchy
in Figure 5.2, which is similar to that of the data loaders Figure 5.1.

Figure 5.2: Sample of data wrappers class hierarchy

4https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
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We have basic wrappers such as MatchWrapper, RaceWrapper, LeagueWrapper,
EliminationTournamentWrapper that specify the names of important columns and
other relevant information. Then there are concrete sport wrappers and group wrap-
pers. Group wrappers mirror groups from Section 4.2 and use more data loaders,
which means that for each sport, it contains its data loader. The data of all data
loaders are then merged into one DataFrame.

5.5 Transformers

We have three basic transformer classes: Transformer, StatefulTransformer
and UpdatingTransformer. The stateful one has state, and in order to do some
transformation we first call the fit method that performs fitting of the data and then
the transform method. If we use updating, there is the update method, which is
responsible for updating the state.

5.5.1 Feature Extractor

Building on top of the transformers, we have the FeatureExtractor class, which,
as the name suggests, obtains new columns from the given data and adds them as fea-
ture columns. For example, the NamesToIds class assigns to each competitor a numer-
ical identification, which is then added to each row in DataFrame in the corresponding
way. The first part is in the method fit and the second part in extract_features. As
we mentioned earlier, because it has the fit method, it is stateful FeatureExtractor.
We have several classes of FeatureExtractor, some others are DateFromTime and
ScoreDifference.

Another group inheriting from the FeatuerExtractor class is
StatefulFeatureExtractorModel, where two parts meet, namely models and feature
extractors. This was created to be able to use feature extractors in the learner.

5.6 Learner

Learner represents the training and testing process, where one of them can be
omitted. It accepts a scope to select data from the wrapper, Trainer and Testing
classes that hold the model and provides an interface for training and testing, respec-
tively.

5.6.1 Windowed Learner

Windowed learner is a learner with updating which means it iteratively trains and
tests on selected data based on the scope that is updated every iteration, as discussed
in Section 4.1.5. Other important functionality is nested learning that is done through
learners or feature extractions (discussed in the next section), which are passed as an
argument and then called before every train and test iteration. As can be seen in
Listing 8.
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Figure 5.3: Learner class hierarchy

5.6.2 Feature Extraction

Feature extraction is renamed learner for feature extractors, it has the same func-
tionality, but we want to distinguish between them because learner is used for models
and it does not make sense to have learner for ratings and other feature extractors,
as they usually do not learn anything. There is also a windowed version of this class.

1 def train_test(self, wrapper: BaseDataWrapper):
2 outputs = []
3 copy = wrapper.deepcopy()
4 # iteratively check if still within dataset scope
5 while self.scope.holds():
6 if self.learners:
7 wrappers = []
8 for learner in self.learners:
9 wrappers.append(learner.compute(copy))

10 learner.update()
11 wrapper = self.merger.compute(wrappers)
12 outputs.append(super().train_test(wrapper))
13 self.update()
14

15 if self.tester is not None:
16 if len(outputs) == 0:
17 return pd.DataFrame()
18 features = pd.concat([data for data in outputs])
19 return features
20 return None

Listing 8: Method train_test in the WindowedLearner class
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5.7 Models

Model class has two main methods fit and predict that do not accept DataWrapper
object but DataFrame that is prepared in the Trainer and Tester classes mentioned
above. This way we can somehow separate models from the framework, which can
be useful for feature use. But if it is necessary to also pass information about the
data, there is the method set_parameters_from_wrapper that takes DataWrapper as
an argument and can be implemented in concrete models. If we want to implement
some model, we just have to inherit from this class and it is pretty straightforward.
There are now two exceptions, which are neural models and rating systems.

5.7.1 Neural models

Currently implemented neural models in the framework use the widely known
Torch library. This comes with a problem, as it is needed to use their class as a
parent, etc. For that case a TorchModule class was created, which inherits from
Torch’s Module class and implements its methods. Then we use it in our own classes
for neural models through composition. This way it is possible to replace Torch with
a different library.

Figure 5.4: Neural model class hierarchy

5.7.2 Ratings

As mentioned in Section 5.5.1 ratings are more of a feature extractor, as they
do not train themselves. But we want to use them the same way as models, so a
FeaturesExtractorModel class was created from which the previously discussed
StatefulFeatureExtractorModel inherits and consequently also the ratings.

5.8 Scope

We define two main classes of scopes, that is, EnumScope and NumberScope. The
first is for iterating over some list of values in a given column, and the other is for
iterating from some starting number to ending number by strides while maintaining
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some size of the window or expanding it. As always, these values are set through
the parameters. Some parameters can be omitted and set from the data using the
set_parameters_from_wrapper method.

Usually, there are two scopes used, one for training and one for testing. The
testing scope is usually dependent on the training one because we want to perform
testing on the data that closely follow the training data. So, for this purpose, a
special TestingNumberScope was created that accepts scope and its values are set on
the basis of it. This mainly applies to hyper-parameter optimization as we want to
optimize in synchronization both scope and not have nonsensical values in them.

5.8.1 Data Selector

DataSelector class is meant to perform logic of multiple training and testing
scopes and their updating, transforming etc. It can be seen as interface for these
scopes which results in simpler interaction as we can update both with one method.
This method is called update and performs updates on the training and testing scopes
in synchronized way, so we iterate through all possibilities. It is possible to have differ-
ent number of training and testing scopes, which enables having distinct granularity
of training and testing. The logic of iteration starts on the last scope so if we have two
scopes for testing and only one for training the first iteration updates the second scope
in testing and the one in training. This can be problem as we can have completely
different data in training and testing. However as it goes through all possibilities we
can switch the order of the two scopes and it will work as intended.

5.9 Blocks

The idea behind the blocks is to make it easier to implement new workflows with
prepared cases of useful code blocks. We will cover the basics of the Block class and
also some created example blocks. The creation of our own block and usage will be
presented in Chapter 6.

The Block class as all children of Optimizable has compute and methods re-
garding the setting of parameters. Here, we also have the create_structure method
in which we define the structure of the block with just initialization of classes and
passing these objects into other objects if necessary. This method is called in the
set_parameters method, which does not make much sense, but it is important for
the possibility of parameterizing also the content of the create_structure method. To
actually run the computation of the initialized classes, we call the compute method as
always. This separation enables us to initialize blocks and retrieve configurable pa-
rameters without performing any computation, which of course is valid for all classes
in the framework, as all have the compute method, which makes it then possible to
have this feature in the Block as well.

We will now cover two block examples that are pre-prepared for usage. These
blocks show the usual motivation behind their creation.
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5.9.1 Load Block

Load block serves for creating DataWrapper based on the parameters. The wrapper
is set through the parameters file and initialized during that process. In this case,
the create_structure method is empty since this block is simple. It only does the
initialization and passing parameters forward. After calling compute, we obtain a
wrapper object with data. Example parameters can be seen in Listing 5 and even
more in use cases in Chapter 6.

5.9.2 Statistical Block

This block is intended for basic statistical learning. This time create_structure
is more interesting because it contains more logic. We start by initializing training
and testing scopes, which are then passed to the WindowedLearner class with default
Bivariate Poisson model. Then in compute, the parameters of the wrapper are set to
the scopes, and computation is called on the learner. There are also two attributes
called group_training and group_testing that allow the selection of different scopes.
This can be useful if we want to train on the data of some group of sports and then
test only on the data of one of the sports. Then we do not need the enumeration
scope for selecting sport in the testing phase.
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Chapter 6

Use cases

Following implementation, we will demonstrate few selected use cases of the frame-
work. We start with some basic cases to demonstrate the general idea, and then add
a little more advanced ones. 1

6.1 Basic

General structure of a basic workflow is to create parameters, then load data that
can go through some transformations, then perform training and testing and finally
evaluate the results.

6.1.1 Print parameters

First we take a look at printing parameters which are not a workflow by itself,
but it is an important feature for their creation. Every instance of a class that is
parameterizable has the method print_parameters, if we did not pass any parameters,
it will print the default parameters. In this way, it is possible to get the hierarchy of
parameters that we can use as a template and change values as needed.2

1 LoadBlock().print_parameters()
2 RatingBlock().print_parameters()

Listing 9: Rating workflow

We will show a simple conversion of the output to the input for the LoadBLock.
In Listing 10 we can see that it starts with the key load_block, which is necessary
for the LoadBlock class to know that these parameters belong to it. Under filter key,
some source filtering can be put on the data, for example Listing 7, then we have

1As in the implementation in Chapter 5, all code snippets, such as workflows or parameters, are
part of the custom project and are used to better explain the usage.

2Unfortunately, not all values correspond to the input values needed. It is necessary to replace
false with False, true with True, null with None and class string with the actual class.
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the wrapper key through which we can specify the type as can be seen under the key
class. The next item is Futsal, which again corresponds to the name of the wrapper
used. Then we have parameters for the data loader which is under the futsal key as
it represents FutsalDL class, and there we can define information about the source
connection, etc.

1 {
2 "load_block": {
3 "filter": null,
4 "wrapper": {
5 "class": "<class

'datawrappers.sport.match.FutsalWrapper.FutsalWrapper'>",↪→

6 "Futsal": {
7 "futsal": {
8 "PSQLSchemaName": "futsal",
9 "streaming": false,

10 "chunksize": 10000,
11 "source_type": "<SourceType.PSQL: 'PSQL'>",
12 "DB_name": "flashscore",
13 "PSQLTableName": "Matches"
14 }
15 }
16 }
17 }
18 }

Listing 10: Printed parameters of the rating workflow

Now we must change the class string to the actual class, and depending on our
necessities, we can omit some parameters. The resulting dictionary can look like the
one in Listing 5 or even just like Listing 11.

1 {
2 "load_block": {
3 "wrapper": {
4 "class": FootballWrapper
5 }
6 }
7 }

Listing 11: Parameters dictionary input for the rating workflow
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6.1.2 Rating workflow

The goal of this workflow is to calculate the ratings and use them in the Scikit
classifier to train and predict the result. We start by loading the parameters from
the ratingParams file, which contains a dictionary named params for this workflow.
This dictionary is passed to the constructor of the Parameters class, which is just a
holder for parameters. Then we use LoadBlock, which we pass the parameters and
call the compute method, which returns a wrapper with data. The type of wrapper is
specified through the parameters shown in Listing 5. Next, we are interested in adding
identification numbers to competitors, which we will do in TransformBlock where we
specify to use the NamesToIds transformation, which is done by this Listing 12 in
parameters.

1 'transform_block':{
2 'names_to_ids':True
3 }

Listing 12: Parameters for transformation block in rating workflow

The output of TransformBlock is a wrapper, but is not the same instance as
the input. This is valid for all compute methods. In line four, we just instantiate
RatingBlock with parameters, so we have a reference to it. RatingBlock contains the
learning and testing with windows shifting strategy. Again, compute is called with the
wrapper and returns the wrapper with probabilities. Then we use EvaluationBlock
which computes the ranked probability score (RPS) and the accuracy. Finally, we
can use the method print_parameters to print the dictionary with the parameters in
the console, which can be used to control the set values.

1 params = Parameters(params=ratingParams.params)
2 wrap = LoadBlock(parameters=params).compute()
3 transformed_wrap = TransformBlock(parameters=params).compute(wrap)
4 rating = RatingBlock(parameters=params)
5 prob_wrap = rating.compute(transformed_wrap)
6 EvaluationBlock().compute(prob_wrap)
7 rating.print_parameters()

Listing 13: Rating workflow

6.1.3 Optimization

Optimization is very important and we will show how to optimize attributes within
RatingBlock. Specifically, which rating model has better performance if Elo or
Berrar. Because it is the rating workflow mentioned above, several first steps are
almost the same. In this case, we also have to load the hyper_parameters dictionary
which is located in the same file as normal parameters. In Listing 14 we can see that
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it represents the workflow hierarchy and that we want to optimize the model, which
is decided by the values key. The value of this key is a list of dictionaries to optimize
between.

1 hyper_parameters = {
2 'rating_block': {
3 'learner': {
4 'feature_extraction':{
5 'model': {
6 'values': [
7 {'class': EloRating},
8 {'class': Berrar}]
9 }

10 }
11 }
12 }
13 }

Listing 14: Rating hyper parameter dictionary

Optimization itself is defined with the OptunaMetaOptimizer class, to which we
pass RatingBlock and hyper_parameters. And, as always, we call compute to run the
optimization. The result contains the return value discussed in Section 5.2. It is also
possible to use the Ray Tune optimizer with the RayTuneMetaOptimizer instead of
the Optuna one. Or we do not have to use these classes and call the optimize method
on the RatingBlock instance, as shown on the ninth line of Listing 15.

1 params = Parameters(params=ratingParams.params)
2 hyper_parameters = ratingParams.hyper_parameters
3 wrap = LoadBlock(parameters=params).compute()
4 wrap = TransformBlock(parameters=params).compute(wrap)
5 rating = RatingBlock(parameters=params)
6 result = OptunaMetaOptimizer(rating, hyper_parameters)
7 .compute(wrap)
8

9 #result = rating.optimize(hyper_parameters, wrap,
type=TypeOfOptimization.OPTUNA)↪→

Listing 15: Optimization workflow

6.2 Advanced

In the previous section, we covered some workflows that should have helped with
a basic understanding of the creation of workflows. Now we can move to a little bit
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more advanced use cases including learning with more type of sports and creating our
own custom blocks.

6.2.1 Rating and statistical optimization

For the case where we want to optimize between two or more models that learn dif-
ferently, for example, statistical models and rating systems with classification model,
we use the OptimizationBlock class. This block contains a variable block, which we
can parameterize. In Listing 16 we can see how the hyper parameters are defined. We
use two categorical values RatingBlock and StatisticalBlock. It is also possible
to optimize nested parameters, which can be seen under the key params, where we
optimize the alpha parameter of the Bivariate Poisson model.

1 'optimization_block': {
2 "block": {
3 'values': [
4 {"class": RatingBlock},
5 {'class': StatisticalBlock,
6 'params':{
7 'statistical_block':{
8 'learner':{
9 "model": {

10 "bivariate_poisson": {
11 "alpha": {
12 "lb": 0,
13 "ub": 0.1,
14 "precision": 0.001
15 }
16 }
17 }
18 }
19 }
20 }
21 }
22 ]
23 }
24 }

Listing 16: Hyper-parameter dictionary for the optimization workflow

Also, it is possible to parameterize other parameters that are not in hyper-parameters
but are nested in the categorical values. We just define it in the normal parameter
dictionary with the same hierarchy as can be seen in the hyper-parameters but, of
course, without the values key for optimization.
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6.2.2 XGBoost workflow

In this example, we will show an XGBoost workflow with computation of several
features. The first two steps are the same as always, then instead of TransformBlock
we use the atomic transformations. They are computed using compute and the re-
turned wrappers are then passed to the compute method of the Merger class, which
merges the wrappers. This is useful for making computations parallelizable, and it
is not restricted to just transformers, but we can basically parallelize this way any
number and any type of computation from which we obtain a wrapper.

1 params = Parameters(params=xgboostParams.params)
2 wrapper = LoadBlock(parameters=params).compute()
3

4 wrapperids = NamesToIds(parameters=params).compute(wrapper)
5 wrapperrnd = RoundFeature().compute(wrapper)
6 wrapper = Merger().compute([wrapperrnd,wrapperids])
7

8 wrapper = XGBFeaturesBlock().compute(wrapper)
9 prob = XGBBlock(parameters=params).compute(wrapper)

10 EvaluationBlock().compute(prob)

Listing 17: XGBoost workflow

Then XGBFeaturesBlock is used, which contains three different feature calcula-
tions. These are described in [10], and on the basis of this article they were reim-
plemented to be used in the framework. The output features are then passed to
XGBBlock where we use the XGBoost model to predict the results.

6.2.3 Creating custom blocks

Already mentioned blocks and other blocks implemented in the framework were
created for some basic repeating use cases, such as making predictions based on rat-
ings. It can be expected that with time new models and new structures of workflows
will be added, and there will be a necessity of reusing some part of codes, etc. So, we
will now show how to create our own blocks that can be used in different workflows
without duplicated code. We start with a short example of the code in Listing 18
and move it to a new custom block. In the actual framework, we can find different
example of this problem, but it contains a large chunk of code that is not required
for the demonstration of the process.
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1 wrap = WindowedFeatureExtraction(TeamFeatures(), parameters=params,
name='team_features_extraction').compute(wrap)↪→

2 wrap = LeagueFeatures(parameters=params).compute(wrap)
3 wrap = WindowedFeatureExtraction(RankFeatures(), parameters=params,

name='rank_features_extraction').compute(wrap)↪→

Listing 18: Workflow example for creation of custom block

In this code, we are actually on line eight of Listing 17 and these three feature com-
putations are inside XGBFeaturesBlock and we will show how this block could have
been created. So, we already have some wrapper with data under the variable wrap.
We can see that two of the computations are inside WindowedFeatureExtraction
and we pass them the name argument, so it is possible for us to distinguish between
them when we define the parameters. First, we create a new class that we will call
CustomBlock but the name is up to the user. It needs to inherit from class Block
which will require implementing three methods create_structure, compute and re-
set_state, which all will be covered later. Also, it is necessary to define class variables
name and init_paramaters, name is important for setting parameters as it will be
used as a key. Init_parameters does not have to be implemented if there is nothing
to parameterize and the parameters are only passed to the classes contained in it.

Now, we will populate the create_structure method. For this, we need to separate
instantiating of classes from computation and also omit passing parameters inside it.
In addition, it is necessary to create variables for each class so that we have a reference
to them. The resulting content can be seen at line five of Listing 19. After that, we
implement compute which just calls the compute methods on every instance created
in the create_structure. It can also contain different logic as this is the only method
in which we have access to the wrapper, for example, we can pass the wrapper to
the scopes that were not set through parameters. Next, we have the set_parameters
method, where we set parameters for all instances, and also using the super call,
we can set parameters for this block. Lastly, we implement the reset_state method,
which calls this method only on the two feature extractions because it is not necessary
to call it on LeagueFeatures since this class does not have any state.
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1 class CustomBlock(Block):
2

3 name = 'custom_block'
4

5 def create_structure(self):
6 self.team_features =
7 WindowedFeatureExtraction(TeamFeatures(),
8 name='team_features_extraction')
9 self.league_features = LeagueFeatures()

10 self.rank_features =
11 WindowedFeatureExtraction(RankFeatures(),
12 name='rank_features_extraction')
13

14 def compute(self, wrapper):
15 wrapper = self.team_features.compute(wrapper)
16 wrapper = self.league_features.compute(wrapper)
17 wrapper = self.rank_features.compute(wrapper)
18 return wrapper
19

20 def set_parameters(self, parameters):
21 super(XGBFeaturesBlock, self).set_parameters(parameters)
22 self.team_features.set_parameters(self.parameters)
23 self.league_features.set_parameters(self.parameters)
24 self.rank_features.set_parameters(self.parameters)
25

26 def reset_state(self):
27 self.team_features.reset_state()
28 self.rank_features.reset_state()

Listing 19: Examplary implementation of custom block

6.2.4 Rating with different sports

In this use case, we take a look at working with different sports and using them
together. For that, the rating workflow presented in Listing 13 will be used. The
motivation is to be able to seamlessly switch between different sports and also not use
just one sport, but also train on some group of sports and do predictions only for a
subset of them. It will be shown using the tennis group containing tennis, badminton
and beach volleyball. The basic structure of the workflow is in Listing 20, the first
four lines are loadings of different parameter files, and after that we have a well-known
rating workflow.
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1 params = Parameters(params=eloTennisParams.params)
2 #params = Parameters(params=eloTennisGroupParams.params)
3 #params = Parameters(params=eloBadmintonParams.params)
4 #params = Parameters(params=eloBadmintonGroupParams.params)
5

6 wrap = LoadBlock(parameters=params).compute()
7 wrap = TransformBlock(parameters=params).compute(wrap)
8 prob = RatingBlock(parameters=params).compute(wrap)
9 EvaluationBlock().compute(prob)

Listing 20: Rating workflow with different sports

So the interesting part is happening in the parameter files, the first one is simple
training on the tennis data and also testing on it. Then we have training on the
whole group and testing only on tennis, which is done by defining the scopes. In the
RatingBlock are special variables Listing 21 that decide if we want to use EnumScope
or not. In this case, we want to compute ratings and also train the Scikit classifier on
every sport but we want to make a prediction just for one, which corresponds to the
parameters.

1 'group_training_extraction': True,
2 'group_testing_extraction': True,
3 'group_training': True

Listing 21: RatingBlock variables for group learning

Then it is also necessary to specify what sport we want to test on. This is done
as in Listing 22 using parameters for the EnumScope with only tennis as the sport to
predict.

1 "enum_scope": {
2 "col": "Sport",
3 "enum": [
4 "tennis"
5 ]
6 }

Listing 22: Enumeration scope with tennis value

The next parameter file uses just badminton data, and the one after that is sim-
ilar to the thoroughly described tennis group one, but instead of tennis, we predict
outcomes of badminton matches.

Of course, it is also possible to use different rating systems or any other thing
already mentioned, so we can easily change the whole idea of the workflow just through
the parameters.
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Chapter 7

Conclusion

The main goal of this thesis was to design and implement a framework for large
scale assessment of machine learning in sports. This consisted of a few partial goals
presented in Section 1.1. First, we covered some necessary background theory to
understand the problem. We defined general machine learning processes, presented
machine learning models relevant to this thesis and also went over machine learning
operations and workflows which are main topic in this work. Then we dived into the
problem itself while describing sport machine learning and how it is different from clas-
sic machine learning, mainly due to time dependencies and nesting. We also covered
the basic structure of sports data and its features. Then we presented requirements
on the framework. We looked into related works, which were mainly frameworks for
machine learning operations. None of them met the imposed requirements, therefore
we decided to design our own framework.

We started with designing architecture where we came up with basic components
from which the framework should consist to work as intended. This was done on the
basis of the requirements with the use of an example workflow. We also came up with
the hierarchical structure of sports to be used in the framework.

Then we moved on to implementation, which describes the individual components
of the framework and how they were implemented. After the implementation, we
were able to cover a range of use cases and demonstrated how the framework works.

As required, the framework provides categorization in terms of the hierarchy for
sports and also models, which is introduced for easier usage of the framework, which
is discussed mainly in sections concerning solution and implementation. It supports
multiple types of sports, which is demonstrated in the use cases section. Finally, we
created use cases to show how the framework can be used to build workflows.

During the course of the development, we faced countless problems that emerged
from the specifics of sport machine learning, but have been successfully dealt with.
As discussed, part of this work was the creation of working use cases, for which it
was necessary to implement selected models presented in this thesis. Although it was
to an extent possible to reuse implementations from some other works, it was by far
not as straightforward, and required quite some time and effort. That, in turn, nicely
emphasizes the added value of this framework, which spares its future users of that
hassle.
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7.1 Further extensibility

As this project was concerned with the creation of an extensible framework, there
is an expectation of adding new models, transformers, and other functional blocks.
However, the framework should already be prepared for it. A very suitable extension
would be to incorporate the MLflow framework for tracking runs and experiments,
which was not managed as part of this thesis.
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Appendix A

List of Acronyms

CSV Comma-separated values file format

DevOps Development operations

HPC High performance cluster

JSON JavaScript Object Notation file format

MLOps Machine learning operations

PSQL PostgreSQL database

SDK Software development kit

SQL Structured Query Language

Y AML YAML Ain’t Markup Language
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Appendix B

Project structure
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