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Abstract
To meet the combination of perfor-

mance, ASIL safety standards and cost-
effectiveness, many new architectures in
the automotive industry are adopting a
heterogeneous design combining scalar,
and vector DSP processors. The aim
of this thesis is to create a set of tools
and functions to support the new TC4xx
family of microcontrollers adopting the
heterogeneous design. Furthermore, high-
level tools are analyzed and used to enable
accelerated development processes.

The scope of this thesis further in-
cludes an implementation of basic soft-
ware support consisted of multi-core boot-
ing, initialization of essential peripherals,
easy-to-use registration of interrupt ser-
vice routines and printing to UART with
multi-core synchronization. Further it
contains, the inter-processor communica-
tion allowing data exchange between indi-
vidual cores, and thus offloading computa-
tionally intensive operations on a parallel
computing unit.

To demonstrate the capabilities of the
vector processor, two experiment applica-
tions were developed - a Kalman filter-
based application to estimate the speed
of the lead vehicle and a convolutional
neural network trained to recognize the
drowsy driver.

The correct functionality was verified
by running the programs in a simulation
environment and subsequently on the first
prototype of the evaluation board.

Keywords: Aurix TC4xx,
Pre-development, BSP, SIMD, ADAS,
Model-based design, Embedded code
generation, Kalman filter, Convolutional
neural network

Supervisor: Ing. Radek Olexa

Abstrakt
V mnohých nových architektúrach v au-
tomobilovom priemysle sa využíva hete-
rogénny dizajn kombinujúci skalárne a
vektorové DSP procesory s cieľom splniť
výkonové kritériá, bezpečnostné normy
ASIL a kompetitívnu cenu. Cieľom tejto
práce je vytvoriť súbor nástrojov a funk-
cií na podporu novej rodiny mikrokont-
rolérov TC4xx s heterogénnym dizajnom.
Okrem toho sa analyzujú a využívajú vy-
sokoúrovňové nástroje, ktoré umožňujú
zrýchliť vývojové procesy.

Táto práca ďalej zahŕňa implementáciu
základnej softvérovej podpory pozostávaj-
úcej z bootovania viacerých jadier, iniciali-
zácie základných periférií, ľahko použiteľ-
nej registrácie funkcií obsluhy prerušenia
a výpisu do UART so synchronizáciou vi-
acerých jadier. Ďalej implementuje medzi-
procesorovú komunikáciu umožňujúcu vý-
menu údajov medzi jednotlivými jadrami,
a tým aj odľahčenie výpočtovo náročných
operácií na paralelnej jednotke.

Na demonštráciu možností vektorového
procesora boli vyvinuté dve aplikácie -
algoritmus založený na Kalmanovom fil-
tri na odhad rýchlosti vedúceho vozidla a
konvolučná neurónová sieť natrénovaná na
rozpoznávanie ospalého vodiča. Správna
funkcionalita bola overená spustením pro-
gramov v simulačnom prostredí a následne
na prvom prototype evaluačnej dosky.

Klíčová slova: Aurix TC4xx,
Pre-development, Základná softvérová
podpora, Paralelné výpočty, Asistenčné
systémy vodiča, Generovanie kódu,
Kalmanov filter, Konvolučná neurónová
sieť
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Chapter 1
Introduction

The pressure to improve driver safety through neural network-based algo-
rithms in driver assistance systems is forcing automotive microcontroller
manufacturers to create new architectures satisfying the latest safety and
security standards while delivering adequate performance to utilize complex
algorithms.

This is also the case with Infineon’s new TC4xx family of microchips, which
has adopted a heterogeneous architecture consisting of TriCore safety micro-
controllers and an ARC71 Parallel Processing Unit optimized for compute-
intensive operations. Currently, TC4xx is in an early development phase
where support is being gradually built up. A simulation environment is
provided to speed up SW development before the hardware availability and
can be used to perform the initial tests. The same code is reused on hardware
later on.

This thesis focuses on developing a set of software tools and features
allowing to boot the platform, provide basic run-time capabilities, establish
communication between computing modules, and explore the capabilities of
PPU using parallel algorithms. Another objective is to use modern high-level
approaches to model complex algorithms and generate optimized code for the
PPU unit, replacing the hand-written code.

After the analysis of TC4xx architecture in Chapter 2, requirements for the
essential software tools are listed in Chapter 3. Their correct functionality
is verified by a multi-core application that properly initializes all cores and
utilizes interrupts for LED flashing.

The following Chapter 4 describes en early development process of the
TC49x device, analyses the simulation environment, and depicts encountered
problems and their workarounds for the first hardware samples.

The processing capabilities of a Parallel Processing Unit unit for offloading
computationally intensive operations and algorithms are provided in Chapter
5. It also builds support for booting PPU and notifying TriCores using
inter-core interrupts. Chapter 6 specifies an inter-processor communication
between scalar and vector cores using shared memory and software mailboxes
and creates an application demonstrating the use of a vector processor for

1



1. Introduction .....................................
offloading tasks. Following on from this, several experiments are carried out
to demonstrate the advantages and disadvantages of using a vector processor
within the TC4xx architecture in Chapter 7.

Last but not least, the possibilities of speeding up development with the
use of high-level tools that enable code generation are studied in Chapter
8. The following Chapter 10 specifies the requirements of modern ADAS
on embedded devices and compares frequently used architectures. A model-
based approach using Matlab Simulink is applied to model and deploy the
estimation algorithm using a Kalman filter. The neural network mapping
tool is used to tailor CNN for the target embedded implementation.

1.1 Motivation
This thesis was created in cooperation with HighTec EDV company, a supplier
of Toolchain for AURIX Tricore architecture. This cooperation allowed
us to use the prototype of the development board, draft versions of other
development tools, and documents currently unavailable to the general public.
The following projects have been developed and documented in details and
are available to HighTec’s customers as a support for TC49x compiler:

. tc49x-bsp-example [7]. tc49x-uart-example [9]. tc49x-ppu-base-example [8]

2



Chapter 2
Aurix TC4xx

In 1999, the first TriCore microcontroller family called AUDO was launched.
Its focus was real-time performance and functional safety features. It was
used in many automotive applications like braking systems, electric power
steering systems or airbags.

The following TC2xx family has adopted a multicore architecture which
significantly increased its performance. Thanks to this design, several safety
applications can run simultaneously on one platform, which subsequently
speeds up achieving the ASIL certification necessary for critical systems in
automotive.

Another TC3xx family has increased the number of cores to 6 and extended
its peripheral set of Signal Processing Units, Gigabit Ethernet and additional
CAN FD and LIN interfaces. Together with a higher temperature range and
40 nm flash technology [3], the use case has further expanded to domain
control and data fusion applications.

4

In 1999, Infineon launched the first generation of the AUDO 
(AUtomotive unifieD processOr) family. Based on a unified 
RISC/MCU/DSP processor core, this 32-bit TriCore™ micro-
controller was a computational power horse. And the com-
pany has evolved and optimized the concept ever since –  
culminating in what is now the sixth TriCore™ generation.

Thanks to its high real-time performance, embedded safety 
and security features, the TriCore™ family is the ideal plat-
form for a wide range of automotive applications. These 
include powertrain engine management and transmission, 
electric and hybrid vehicles, chassis domains, braking 
systems, electric power steering systems, airbags, con-
nectivity and advanced driver assistance systems to sup-
port the trend toward autonomous, clean and connected 
cars. TriCore™-based products also deliver the versatility 
required for the industrial, CAV and transportation sector, 
excelling in optimized motor control applications and 
signal processing. Infineon’s broad product portfolio 
allows engineers to choose from a wide range of memories, 

peripheral sets, frequencies, temperatures and packaging 
options. And all this with a high degree of compatibility 
across generations. 

The TriCore™ success story continues with the AURIX™ 
TC2xx multicore family. AURIX™ combines easy-to-use 

functional safety support, strong performance and a future-
proven security solution in a highly scalable product family.

The next natural evolution in terms of performance is the 
AURIX™ TC3xx, which is manufactured in 40 nm embedded 
flash technology and designed for ultimate reliability in 
harsh automotive environments. As before with AURIX™, the 
dual frontend concept ensures continuous supply. An exten-
sive ecosystem is available including the AUTOSAR libraries 
which Infineon has been developing since 2005. Plus the 
safety software is also available to help manufacturers meet 
SIL/ASIL safety standards.

Evolution of TriCore™ generations

    AURIX™
TC3xxAUDO future AUDO MAX     AURIX™

TC2xx
AUDO NG

(Next generation)AUDO

Figure 2.1: Evolution of TriCore families prior to TC4xx [3]

To further increase the safety and comfort of drivers, a single ECU has
to now provide even more computing resources to integrate multiple func-
tionalities [20]. The latest driver assistance systems based on cameras and
LIDARs like automatic lane-following, drowsy driver detection or intelligent
cruise control require a higher speed of communication peripherals and greater
throughput of the image-processing algorithms. Some even adopted solutions
based on deep learning algorithms that are especially resource-intensive and
can not be effectively executed on multi-purpose CPUs. These reasons have
led to the emergence of a new TC4xx family. It is built on top of the previous
family but offers better performance thanks to increased frequency up to
400MHz and larger memory units. The essential functional blocks are shown
in Figure 2.2.

3



2. Aurix TC4xx .....................................New SoC architecture includes PPU compute cluster to support 

next level of automotive applications

Host-CPU Compute Cluster PPU Compute Cluster

TriCore™ 

0

TriCore™

n

NVM NVM

…

Scalar Core

SIMD Core

System Components
DMA, Shared Memory

System 

DMA
Interconnect Fabric

L1 Memory

I$ D$ I$ D$

System Memory 

HW Peripherals Cyber 

Security
Debug & Trace

ADC
Power 

Management

Timer
COM IFs/ 

Sensor IFs

CSRM Core

Memory

System 

Trace

Debug IF

AURIX™ TC4xx

› Enables affordable artificial intelligence use cases

› PPU is a SIMD vector DSP, speeding up 
computation compared to traditional CPUs

– Matrix operation acceleration

– Data processing

– Neural network based algorithms

– High speed control implementations

AURIX™ TC4xx Parallel Processing 

Unit (PPU) 

AURIX™ TC4xx SoC architecture

› Means that applications can now distributed

to run on TriCores and PPU

2Embedded Solutions Conference 2021 Copyright © Infineon Technologies AG 2021. All rights reserved.

Figure 2.2: Functional blocks of TC4x [24]

Compared to the previous version, TC4xx architecture has several new
features and offers many more peripherals, but in this thesis, only the most
important ones are mentioned:

2.1 Compliance with Safety Requirements
Functional safety is described in detail in the 2018 ISO 26262 standard and
defines automotive safety integrity levels in the automotive industry. There
are four levels, ranging from ASIL-A with the lowest requirements up to
ASIL-D with the highest demands to suppress potential risks. The Aurix
architecture is designed to create applications with the highest level of ASIL-D
certification. It uses two-level memory access protection, so different processes
can access only memory blocks allocated in advance. Another safety feature
is a resource management unit. It implements a protection mechanism for
peripheral access.

2.2 Virtualization
As the computational power of each computing unit increases, one CPU
must serve multiple applications. For the certification mentioned above, it is
necessary to satisfy hard real-time constraints and ensure that the applications
do not interfere with each other and do not use similar hardware resources.
When several processes run on one CPU, their execution must be planned,
and they take turns in the running. Every such exchange is accompanied by
a context switch when current values of essential registers are saved for later
use. This might bring a significant overhead in software virtualisation and
decrease the real-time capabilities.

4



.................................... 2.2. Virtualization

In the case of TC4xx, hardware-based virtualisation solves this issue. It
is the process of isolating applications running on shared hardware using
virtual machines. Virtual machines act as isolation containers and can be
represented by a bare-metal application, task or even fully operating RTOS.
There are three levels of VMs, and each has a dedicated resource set. In total,
up to 8 virtual machines can run on one core:. Hypervisor - runs and schedules other VMs.. Real-time virtual machine - has its own resource set. Context switches

are done in hardware, which brings little overhead and, therefore, it is
suitable for time-critical applications.. Up to 6 other VMs - Share one resource set. A hypervisor must handle
the context switches, so they are used for lower priority tasks.

In summary, the concept of hardware virtualisation enables the combination
of several apps on one MCU. Thanks to two-layer memory protection and
resource allocation mechanisms, the applications are independent of each
other from a hardware point of view. The VMs can be developed using
different tools according to their safety requirements. They might run on
top of different software stacks (AUTOSAR), as Figure 2.3 shows. Existing
monolithic applications could be split into smaller specialised ones, increasing
their security and making the necessary certification process more manageable.

VM0 - Hypervisor

VM1






PPU

Service 3

VM2 VM3

TriCore 1.8


Software stack 3Software stack 2Software stack 1

Service 2Service 1

Figure 2.3: Virtualization in TC4xx

Hypervisor

A Hypervisor is a combination of hardware and software that creates and
runs virtual machines. It must be able to configure and allocate the available
memory and peripheral resources requested by VMs. It is also responsible
for their scheduling based on selected policy, i.e. Round Robin or Priority
scheduling. However, the primary responsibility is to configure and monitor
isolation between applications (freedom-from-interference), which is also
crucial from the safety and security point of view. Some functionalities like
interrupt forwarding or context switching pervade inside the hardware.

5



2. Aurix TC4xx .....................................
2.3 Cyber-security Cluster

Even in safety-critical applications, MCUs use sensor data from different
domains. If the cross-domain communication is not secured, it is susceptible to
potential manipulation. A cyber-security cluster is a combination of modules
and functions that support safety and security standards defined by ISO 26262
[28]. It contains hardware accelerators for different hashing algorithms and
AES symmetric cryptographic operations. It is also capable of accelerating
higher-level secure protocols like IPSec.

2.4 Parallel Processing Unit
Existing safety-critical MCUs cannot deliver the required performance to
execute computationally intensive algorithms like image-processing or sensor
fusion, which are inherent in ADAS applications. Automotive uC vendors
(including Infineon) are increasingly adopting heterogeneous architectures
that incorporate a high-performance processor specialised in matrix and
vector applications. The parallel processing unit is a vector processor based
on DesignWare EV71 from Synopsys. The Vector DSP Unit is its central
part and allows SIMD (Single Instruction Multiple Data) computations
based on 512-bit wide vector registers designed for high-performance parallel
programming. The programmable CNN engine is also a part of the PPU and
is optimised to compute Multiply-Accumulate (MAC) operations, which is
the basis for inferencing neural networks. Its functionality is further described
in Chapter 5.

2.5 Summary
The AURIX TC4xx family of microcontrollers was created to meet the
increased requirements for performance, safety, and individual parts’ ability
to work independently of each other. The heterogeneous architecture consists
of scalar computational units focused on functional safety, a cyber-security
cluster to secure cross-domain communication and a parallel unit designed
for computing complex algorithms and inferencing neural networks.

6



Chapter 3
Basic Software Support

TC4xx is at an early stage of development. From the compiler vendor’s
side [21], it is crucial to create and provide basic software support for the
customers as a basis for further development.

A board support package (BSP) is an essential code and other tools required
to run a computer hardware device. In addition to the previous, a BSP can
contain directives and compilation parameters.

The term BSP is mainly used in the context of real-time operating sys-
tems. The reason for using this term is that this thesis will serve as a basis
for developing a certified real-time operating system PxRos on the TC4xx
architecture.

Software support must perform all necessary initialisations and, at the
same time, be easy to use. The following is a more detailed list of expected
functionalities:

. Initialisation of all the necessary things (stack pointer, trap vectors,
vector table, ...).. Initialisation system and peripheral clocks to a maximum frequency
according to [26].. Easy interrupts handler registration.. Implementation of trap handlers for better error tracking. All the memory access protection features, as well as safety features
(Secure Core), are turned off. They are used in the later stages of a
development cycle.. Virtualisation has to be turned off. The functionality will be used
primarily with the real-time operating system.. Shared-code implementation - all the TriCores execute the same code.

Based on the previous requirements, the basic software support has been
created and consists of the components shown in Figure 3.1.
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Figure 3.1: Components of BSP [7]

3.1 C run-time Initialization
C run-time initialisation is a set of execution startup routines that performs
any initialisation required before calling the main function. It is usually
written in assembly language because function calling generally requires a
stack to be initialised, which is not the case at the beginning of run-time.
Because the stack is decreasing in Aurix architecture, it is initialised simply by
setting the corresponding register to the end address of the memory segment
allocated to it in the linker script (section 3.3)

CSA Initialization

The state of a task or function is defined by its context. It is a set of values
of address registers. When a function call occurs or when an interrupt is
triggered, the context of the currently running task of function must be saved
for later use. Context save areas is a special feature for Aurix™architecture
[24]. It is a linked list of saved contexts and must be initialised prior to any
function call or interrupt.

Global Variables Initialisation

Global initialised, and uninitialised data are stored in the volatile memory
during run-time. The following script shows examples of both variable types:
int var_init = 7;
int var_uninit;

void main(void)
{

static int var_static_init = 9;
static int var_static_uninit;

}

Volatile memory maintains its data only when the device is powered. Due
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........................................ 3.2. BSP

to this reason, global initialises data are loaded into the flash memory. At
the beginning of run-time, they must be copied to the RAM at the beginning
of the program. Linker script (described in 3.3) groups them together and
creates copy tables. One entry of the copy table contains:. Source address – start address of the table stored in a flash,. Destination base address – start address in target memory,.Memory size that should be copied.

In the case of uninitialised data, the initial value should be 0. It is sufficient
only to clear the target memory. Linker script also creates clear tables, where
one entry contains the destination base address and memory size that should
be cleared.

3.2 BSP
The basic set of functions consists of three sub-modules as shown in Figure
3.1. This ensures modularity for different versions of the microcontroller or
evaluation board.

Uc Sub-module

The functions in BSP uC sub-module are tied up to a particular uC version.
In this case, there is just one TC49x step A version.

The sub-module contains functions for initialising the system and peripheral
clocks. It also allows to disable the watchdog and register a vector or trap
table. It also enables to work with the system timer, which is later used to
generate interrupts. The complete table of created functions can be found in
Appendix C.1.

ISR Sub-module

Interrupts are used to respond to asynchronous requests from a specific part
of the microcontroller that needs to be serviced.

A trap is a form of interrupt that occurs due to an exception or illegal
access. Because the traps are always active, trap handlers help users identify
the issue in the program.

The interrupt sub-module creates interrupt and trap tables and registers a
dummy handler for all the interrupts. Thanks to initialised RAM handler
tables, it also creates an easy-to-use interface to register an interrupt handler.
A complete table of functions is available in Appendix C.2.

The main reason for ISR being a separate sub-module is that RTOS’ micro-
kernels handle interrupts themselves. In such a case, the module is not
used.
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3. Basic Software Support ................................
Board Sub-module

Some functionality of the microcontroller depends on the evaluation board
used. The functions of this sub-module take into account the mapping of
peripherals to hardware pins and allow the initialisation and use of LEDs
or external crystal oscillator. A complete table of functions is available in
Appendix C.3

3.3 Linker Script
The compilation process in C consists of 4 steps: pre-processing, compilation,
assembly and linking.

The linker takes output of the assembler - one or more objects or archive
files and combines them into an output file (an executable or another object
file).

TTT ttttt dddd DDDD 00000

ttttt

dddd

00

Partial program #1

TTT

DDD

000

Partial program #2

text
data
bss

0x0 ...

...

Linked program

text data bssAddresses

Fig. 2. Sections

ld.lld also assigns run-time addresses to sections and it resolves references to other code or data. This
process is called relocation. Relocation might also involve generating special code constructs to increase the
jump range of branch instructions, in case branch targets are out of range. To let the linker know how
certain relocations should be resolved, the compiler inserts relocation details where relocations are
necessary (e.g. jump targets). This tells the linker if a relocation should for example be resolved as a relative
PC offset or as an absolute address.

6.2.1. Common Sections

A program usually contains at least the following 4 sections. Any of them may be empty and the program
might contain other sections in addition.

.bss

This sections holds uninitialized data that contribute to the program’s memory image. The section
occupies no file space.

.data

This section holds initialized data that contribute to the program’s memory image.

.rodata

This section holds read-only data that typically contribute to a non-writeable segment in the process
image.

.text

This sections holds the executable instructions of a program.

For an exhaustive list of special sections known in ELF, check section Special Sections on page 1-15 in the
ELF specification document.

6.2.2. Section Attributes

Sections have attributes which provide information to the linker about the properties of these sections.
Attributes provide information like whether a section is executable for example. The following attributes are
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Figure 3.2: Linking of an executable file [21]

In the process of linking, a linker script is run. It must be aware of the
memory regions, their sizes and the requirements for accessing them. The
data are grouped according to their type into sections:

. .text - an executable section that stores code,. .data - global variables with non-zero initial values,. .rodata - constants that can be read-only,. .bss - uninitialized global data with default 0 value.

The sections are then placed in memory so that each Core can access its
data efficiently. As was already mentioned, the initialised data must be copied
into RAM at the beginning of the run-time. For this reason, the sections
have two addresses associated with them:. The virtual memory address, where the program expects to find the

section at run-time.
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................................. 3.4. Example Application

. The load memory address, where the loader places the code.

The linker script creates clear tables and copy tables from these addresses and
section sizes, which are then provided to the C run-time routine to initialise
the data correctly.

3.4 Example Application
A simple multi-core application was created to demonstrate the correct
functionality of the developed tools. The timer of each Core periodically
generates interrupts. When an interrupt is serviced, the LED on the evaluation
board flashes, as shown in Figure 3.3.

Core STM

 TimerMulticoreIsrHandler()

 uc_core_stm_InitChannel()

TC49xA HW interrupt

Shared code

µC_pin
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Bo
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* Inter Core Interrupt

Figure 3.3: Application view of the example [7]

Execution Flow

After power-on reset, only TriCore0 starts its execution. Other cores, including
PPU, are kept in reset.

Certain functions, such as starting other CPUs or initialising peripherals,
are executed only by the reset Core(Figure 3.4). Because the shared-code
approach has been used, the execution of some functions is conditional on
the identification number.

At first, the stack and context-saving units are initialised, which are nec-
essary for function calls and correct interrupt handling. Then, the pre-init
function is executed, which registers vector and error tables, enables access
to peripherals and disables the watchdog. These functions require the highest
access rights of the hypervisor. In the last function before main, the clock
and used peripherals are initialised, including the LEDs on the development
kit.

After entering main function, the interrupt service routine is registered to
handle interrupts triggered by a core timer. In the end, the interrupts are
globally enabled, and the LEDs blink indefinitely at frequencies proportional
to their ID.
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Init uC clock platform
Start all Cores
Init board LEDs
Init core ISR sub-system

RESET Core only

BSPApplicationcrt0

Disable System WDG
Enable peripheral write access
Init trap table pointer
Disable Core WDG
Enable Core Instruction cache
Disable Call Depth Counter
Disable virtualization feature

Crt0PreInit
Sequence of BSP
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Init core STM

Toggle board LED[x]
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Each core executionshared_main

Core[x] STM ISR

Core[x] STM ISR

Figure 3.4: Execution flow of the example [7]

3.5 UART Example
Despite various debugging tools, writing to a terminal application via UART
is still a frequently used technique. For this reason, BSP was extended with
this functionality.

The following features are required from this module:

. use it calling printf function which supports commonly used format,
length and precision specifiers

.multi-core functionality

. possibility to redirect the output to another peripheral

Asclin Module

The Asclin is a hardware peripheral present on Aurix evaluation boards. It
could be configured for ASC (UART), LIN, and Master SPI applications [22].
Asclin module utilises a set of functions for transmission and reception of
data via the UART interface in the polling mode.
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................................... 3.5. UART Example

Figure 3.5: UART data frame [51]

For successful communication, both sides must have equally defined frame
parameters and communication speed parameters - Baudrate. Asclin module
sets the communication speed to:

Baudrate = 115200 Bd/s

and the frame is composed similar to the Figure 3.5:

1 start bit 8 data bits 1 stop bit

The complete list of functions is in Appendix C.6.

Mutex Module

In the multi-core application, it is necessary to control access to the shared
resource (UART). Mutex module provides simplified functionality of handling
exclusive access to the shared resource. The mutex is defined as a structure
consisting of:. State of the mutex (locked/free),.Owner of the mutex (core ID).

The mutex-locking function uses CMPSWAP atomic instruction, which con-
ditionally swaps a source register with a memory word. The execution of
an atomic instruction forces the completion of all data accesses semantically
ahead of the instruction, which ensures that two TriCores can not change
the mutex state simultaneously [24]. The complete list of functions is in
Appendix C.4.

Printf Module

Toolchain Standard Library is not suitable for multi-core applications when
running a shared code. For this reason it was necessary to create a module
that consists of re-entrant functions, is independent of other libraries and
at the same time is compatible with standard functions. Printf module is
an implementation of C’s formatted printing family of functions (C.5) with
the primary use case in embedded systems based on [33]. It supports all
standard specifiers and flags and all width and precision sub-specifiers (shown
in Appendix D). The module does not depend on other packages. It only
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3. Basic Software Support ................................
requires putchar function to be defined by a peripheral, where the output is
redirected. In the initial phase, it was redirected to the simulation output
and after releasing the hardware prototype into the UART channel.

3.5.1 Application

The application is based on a basic example and adds UART functionality.
Each TriCore sends a "Hello world" message via UART at the beginning of
the run. In the main function, reset Core periodically sends current interrupt
count as Figure 3.6 shows.

Figure 3.6: Terminal window view of the application output [9]

3.6 Summary
In this chapter, the basic building blocks of the BSP were described and
implemented.. A set of functions dependent on the evaluation board and microcontroller

used.. A linker script that correctly places the data into different memory blocks
and generates executables.. A multi-core application that demonstrates proper booting sequence,
interrupt handler registration and interrupt handling itself.

To simplify debugging, the functionality has been extended by the possibility
of writing to a UART channel with implemented shared resource protection
for multi-core applications.
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Chapter 4
Preliminary Phase of Development

The initial development phase of an embedded MCU takes place before the
official release. During this period, support from the compiler and debugger
providers and uC vendor is gradually built up. This stage, however, comes
with several challenges:

. Toolchains might contain bugs, which are progressively fixed by frequent
patch releases based on the feedback of other developers.. The supporting documents are in draft versions until the design is
finalised.. As TC4xx is a heterogeneous architecture, several parties have to partic-
ipate in the development, making the whole process more complex.. In the initial phase, development boards were not available, so the virtual
prototype TC49x VKD was used [25]

A virtual prototype is an executable software model that runs on a
host system. It emulates the hardware, including CPU instruction
sets, memory maps, registers, and interrupts, at a sufficient level
that can be tailored for software development. From a software
perspective, it is binary-compatible with the hardware being emu-
lated, allowing users to run unmodified binary images of the entire
software stack. It is a complete functional representation of the
target system on which to develop software [36].

Advantages of Virtual Prototyping

Using a virtual model in the early stages of development brings several
advantages. Firstly, the system can be validated before the hardware design
is completed. This way, many serious flaws or bugs can be found, and the
design can be adapted, which reduces the number of iterations of hardware
prototypes before the official release.

Nowadays, traditional development methods, where software is developed
only after the completion of chip design, do not meet product development
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4. Preliminary Phase of Development ...........................
schedules. An instruction-accurate virtual prototype can be used instead. It
means that unmodified binary can ideally be executed on the actual hardware.
In reality, it was necessary to make specific changes, but the example was
functional within days of silicon availability.

The simulation gives complete visibility into the memory and registers
and gives the possibility to print messages to the output easily. Moreover,
warnings and errors are reported without the need to check uC registers so
that the program can be easily tracked.

Disadvantages of Virtual Prototyping

Using a virtual development model brings with it potential problems. The
quality of the simulator is determined by how detailed the processor is
modelled, which brings a trade-off between speed and precision. Cycle-
accurate models require excessive computational power and take a long time
to model. On the other hand, they can be used for benchmarks, which is not
the case with VDK.

Another problem is that virtual models cannot describe the real behaviour
of hardware peripherals. An example is the frequency stabilisation of a crystal
oscillator or communication peripherals that python scripts must emulate.

4.0.1 First HW Sample

After releasing the first hardware prototype, it was necessary to add func-
tionality such as pin mapping. It had to be taken into account that not all
peripherals were fully functional, and some more complex communication
peripherals like Gigabit ethernet could not be used. The use of the first
hardware prototypes equally brings advantages and disadvantages.

On the one hand, it is possible to benchmark the applications, and programs
can be executed using actual peripherals, which is not possible by using a
virtual prototype.
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The following chapters give a detailed description of the board hardware and how it can be used. The different 

parts of the TriBoard are shown in Figure 2. 

 

Figure 2 TriBoard TC499A COM Board View from the Top 

2.1 Usable devices 

The TriBoard TC499A COM is soldered with an AURIX™ TC499A in the COM package or is a socketed board 

where the device can be easily exchanged. Because the socket is not soldered on the board it is possible to 

reuse the socket on another board or exchange the socket by a soldered device. 

The socketed board can be used with the following device: 

• AURIX™ TC499A in the COM package 

2.2 Power Supply 

The TriBoard TC499A COM must be supplied by an external DC power supply, this can be done via the POWER 

DC plug X601.  For X601 you can use a female DC supply plug with outside diameter of 5.5 mm and inside 

diameter of 2.1 mm or 2.5 mm. The inner contact is positive and the outer contact is ground. The pinout for the 

supply connector is shown in Figure 22. 

The Board has to be connected to a +3,5V to +35V DC power supply. 

The power consumption is not specified yet but a supply with 12V and 1A is recommended. 

Applying a stable supply voltage causes the power on reset after a short period. The three LED's (VCORE, +1V8, 

QUC) indicate the status of the on-board generated voltages. 

Figure 4.1: Triboard TC499A COM [27]
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...................................... 4.1. Summary

On the other hand, the first hardware samples almost certainly contain
bugs. In the case of simulators, the error can be quickly corrected, but with
real hardware, possible workarounds have to be found until the next batch is
released.

The use of a heterogeneous architecture only makes these problems worse.
An embedded-application binary interface (EABI) specifies standard con-
ventions for file formats and data types. Conflicts in EABIs of different
architectures cause inter-processor communication to be restricted only to
data types interpreted similarly by both platforms. Moreover, incompatibility
between different toolchains makes it impossible to fuse projects of distinct
architectures into one executable.

4.1 Summary
The initial phase of development is an integral part of the uC cycle, in which
support is being built, and bugs are being removed. Communication be-
tween partners, flexibility in fixing bugs and providing patch versions and
workarounds are the most important in this phase. Although the simulation
platform is not fully compatible with real hardware, it can speed up develop-
ment thanks to good visibility and debugging capabilities. After the release
of the evaluation boards, the code can be quickly adapted, and the necessary
tests can be performed.
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Chapter 5
Parallel Processing Unit

A parallel processing unit is a processor optimized for high-performance
embedded signal processing or vision applications. It is a part of the TC4xx
to meet the performance requirements of automotive real-time applications.

As seen in the following figure, the PPU combines Synopsys DesignWare
ARC EV71 and infrastructure components that help to link essential signals
(clock, interrupts) to other architecture parts.

5.11 Parallel Processing Unit (PPU)
The PPU offers fully programmable parallel processing capabilities based on the DesignWare EV7xFS processor.
The PPU includes a 32-bit Scalar Unit and a Vector DSP unit which can process vector elements of data type
8-bit, 16-bit, or 32-bit.

Note: PPU documentation should be read in conjunction with the DesignWare ARCv2 ISA Programmers'
Manual. Topics covered by the ISA Programmers' Manual are ARCv2 Baseline ISA, Memory and System
Components, and ARCv2 Vector DSP ISA.

As seen in the following figure, the PPU is a combination of Synopsys DesignWare ARC EV71 with Functional
Safety (FS) extension and infrastructure components which helps to integrate the PPU in the TC4xx architecture.

PPU

Infrastructure 
components

Synopsys 
DesignWare 

ARC EV71  

Figure 71 PPU components

The EV71 is part of a larger ARC processor family, which can be seen in the following figure. Different names for
the target processor are used in the PPU documentation. This is especially true in sections where the described
concept is valid for all sub-members of the processor family. For example if the ARC processor is mentioned, the
described functionality is valid for the complete family and therefore also for EV71.

ARC processors

EV processors

EV7x Family

EM 
processor  
Family

HS 
processor 
Family
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EV72

Vison Core

Cluster Components
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Unit
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DSP Unit
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Figure 72 Overview ARC processors

restricted - NDA required!
AURIX™ TC4xx architecture reference 
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Reference manual 215 V2.0
11/11/2021

Figure 5.1: PPU Components [23]

It integrates a 32-bit scalar core, 512-bit vector DSP and a deep neural-
network accelerator.

The critical feature of DSP is the possibility to execute Single Instruction,
Multiple Data (SIMD) instructions. In one instruction, the same operation
is done on all vector elements (or between two vectors) concurrently. This
way, the execution of applications with a high level of data parallelism can be
significantly accelerated compared to scalar processors. DNN accelerator is a
part of the PPU, adapted for executing neural networks that are increasingly
being used in automotive applications.
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Figure 5.2: Functional blocks of PPU [24]

5.1 Scalar Core
The Scalar Unit fetches and decodes instructions.

Thanks to Very Long Instruction Word Architecture, it can concurrently
execute the instructions in different processor parts. Scalar, branch and jump
instructions are executed by the scalar unit. When a vector instruction is
identified, it is sent to the Vector DSP unit and executed in one out of three
execution slots. Therefore, it can execute three vector instructions and one
scalar instruction each cycle. Another functionality of scalar core is inter-core
interrupt handling. This makes it possible to notify TriCores with minimum
delay.

5.2 Vector DSP
Vector DSP unit is closely coupled with scalar core and has a size of 512 bits
[37]. Depending on the element size, it can contain 16 32-bit elements, 32
16-bit elements or 64 8-bit elements.

Vector instructions are single-instruction, multiple-data instructions that
operate on vector registers in different possible scenarios [39]:

. Vector-Vector Instructions - operate on vector registers (in the vector
register file) as source and destination operands. Vector-Scalar Instructions - The value in the scalar register is duplicated
N times for a vector length of N elements, and then used as the second
source operand in a vector operation.. Vector-immediate Instructions - The immediate value is duplicated N
times to the vector width of N elements and then used as the second
operand in a vector operation. Vector Reduction Instructions - The vector elements are reduced to
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..................................... 5.2. Vector DSP

a single element based on the operation (sum/minimum/maximum of
adjacent elements)

The Table 5.1 shows examples of vector instructions together with equivalent
execution by a scalar core.

Instruction type Example Serial execution

Vector-Vector vvadd vr0, vr1, vr2 for (i=0; i<N; i++)
vr0[i]=vr1[i]+vr2[i]

Vector-Scalar vvadd vr0, vr1, r1 for (i=0; i<N; i++)
vr0[i] = vr1[i] + r1

Vector-immediate vvadd vr0, vr1, 1 for (i=0; i<N; i++)
vr0[i] = vr1[i] + 1

Table 5.1: Examples of vector instructions

Vector instructions execute the same operation on all vector elements.
For correct execution, all vector elements must have the same data type.
Furthermore, these instructions could be applied only to data stored in the
vector memory, which serves as Level 1 (L1) data memory for vectors in the
system memory hierarchy.

Due to this reason, algorithms generally employ a pipeline consisting of
three tasks:

. Bring input data from system memory into VCCM.. Process the data using vector instructions.. Bring output data from VCCM to system memory.

This pipeline could be optimized using the Streaming Transfer Unit, which
can simultaneously bring the data in and out of the vector memory during
processing.

Static data used only by vector processor should be marked with the __vccm
keyword so that Metaware compiler [39] places them in VCCM.

The Vector DSP has a floating-point unit extension that supports additional
math functions like:. Reciprocal square root. Sine function. Cosine function. Logarithm to the base 2. Exponentiation with base 2
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5. Parallel Processing Unit ................................
This feature is used in high-level Model-Based design (described in Chapter

8), where a code-replacement library is used to generate highly optimized
code for the PPU.

5.3 DNN Accelerator
A DNN accelerator employs a specialized architecture for the execution of
neural networks, which require fast memory access and high performance.
According to [12], inferences in CNNs are primarily dominated by multiply-
accumulate operations that implement the networks’ convolution operations.
In some cases, MACs can represent more than 95% of the total arithmetic
operations included in the CNN task.

Figure 5.3: PPU CNN engine [15]

The neural network models are trained in floating-point arithmetic. On the
other hand, embedded devices have limited resources, and float operations
are energy-intensive. For this reason, they mostly use fixed-point arithmetic,
i.e. 16-bit, which slightly decreases their accuracy but enables them to be
executed efficiently on DNN accelerators. Chapter 8 describes this technique
in detail.

5.4 PPU-booting Example
This project aimed to extend the functionality of the BSP example by booting
a parallel unit and generating notification inter-core interrupts, as is shown
in Figure 5.5.

After a power-on reset, TriCore0 is the only core that starts execution.
Other cores, including PPU, are held in reset. For the proper functioning of
the parallel unit, it is necessary to execute the series of steps shown in Figure
5.4 to boot it and initialize its data:
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................................ 5.4. PPU-booting Example
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Figure 5.4: PPU boot sequence
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Figure 5.5: Application view of PPU booting example

In the first step, giving the parallel unit the right to access some memory
blocks is necessary. The parallel processing unit runs on top of the Synopsys
Processor Execution Environment [45], which implements all the initial run-
time routines. Execution starts from the Shared Memory Cluster block, a
volatile memory block that retains its data only while the device is powered.
For this reason, its vector table is placed in flash memory and must be
copied to the correct location before the execution of main function starts.
In addition, the rest of the cluster-shared memory block must be deleted to
prevent possible data inconsistency. Finally, the PPU is released from reset
by clearing the corresponding uC register, and the TriCore must register a
routine for an inter-core interrupt, which is periodically triggered.

In the second step of the booting sequence (Figure C.7), the running
Tricore must know the address and size of the PPU vector table to copy
it into the target memory. However, it is located in another project, and
the memory address and size are resolved by Metaware linker script [40]. A
possible solution would be to link the two projects together. However, this is
a problem because TriCore and the PPU use incompatible compilers. The
only solution to this problem is to define these parameters statically in the
TriCore project:
#define VECTOR_TABLE_LMA (0xB0680000) // lmu7_noncached
#define VECTOR_TABLE_SIZE (0x190u)

Moreover, every change in the PPU project has to be applied to the other
one.
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Chapter 6
Inter-processor Communication

In Chapter 5, PPU booting and triggering of inter-core interrupt in TriCore
was resolved. For successful task offloading, the devices must be able to
exchange the data and synchronize their action. This mechanism is called
Inter-processor communication.

The most important aspect of defining IPC is the memory layout. TC4xx
uses one shared address space with several memory units that are accessible
from all processors. In this case, local volatile memory for general purpose
usage (LMU RAM) is dedicated to information exchange. Because all pro-
cessors can read from and write to the shared memory, mutually exclusive
access to avoid data inconsistencies and race conditions must be implemented.
Chapter 3 covered mechanisms which can be employed to address this issue.

6.1 IPC using software mailboxes
Communication via global data is hard to track and error-prone since pro-
tection mechanisms are application dependent. To suppress this problem as
much as possible, data structures - mailboxes and data exchange functions
can be used.

In this implementation, a mailbox is a data structure used for Inter-
processor communication. It contains all the necessary information for safe
data exchange:. ID of the requested service. data ready flag, which notifies PPU that the request is pending. execution status of the request. number of arguments. pointers to data arguments

Each TriCore uses its mailbox, and, together, they are statically allocated in
the shared memory. They must be accessible by both platforms using the
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6. Inter-processor Communication .............................
same physical addresses. As can be seen in Figure 6.3, there is also a PPU
mailbox which stores its current status and a data structure - mutex, which
is used to provide exclusive access to the memory block. In the context of
TC4xx architecture, the PPU acts as a producer - it can compute several
tasks, also referred to as kernels. These kernels are parts of the application
that will benefit from its vector DSP capabilities.

Request from TriCore

Communication is done by remote procedure calls. When a TriCore wants
to use the services of the PPU, it has to lock the shared memory at first. If
another core uses the memory, it must wait until the resource is unlocked. It
then updates its mailbox with the requested function, the number of input
parameters and the pointers to the input parameters. Finally, the data ready
flag is updated, and access to the memory is passed to the PPU. While the
call is being processed, the client is blocked. An inter-core interrupt signals
the TriCore that the kernel has been executed, and output data of executed
function can be accessed.

Try to lock 

shared memory

No

Yes

Locked?

Send request to PPU

Wait for the interrupt
from PPU

Read output data

 from the mailbox

Release the lock

Yes No

Procedure

successful?

Copy input data to

the mailbox


Figure 6.1: Remote procedure call [8]

Request Processing on PPU Side

After the initialization is done, the parallel unit updates its mailbox and
gradually goes through the mailboxes until it hits the data-ready flag. In the
case of the TC4xx microcontroller, only TriCore units can use the atomic
function for exclusive memory access and therefore, the data ready variable
in each mailbox is used for inter-core synchronization. The input data is
then moved to vector memory, where most of the calculations are performed.
In the end, the associated inter-core interrupt is generated, and the whole
process is repeated.
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YesNew request?

Execute kernel
function

Update output data
and mbx. status

Trigger interrupt in

 the corresponding

TriCore

Read kernel ID

and input arguments


No

Read next mailbox

Read the first 

mailbox

Figure 6.2: Remote call processing [8]

6.2 Example Using IPC
First of all, a section for shared memory had to be created in the linker script
of both projects. Then mailboxes and mutex were statically placed in it to
ensure exclusive access.

According to the previous description of the remote procedure call, the
following functions were implemented:. TriCore request. PPU request processing

Finally, algorithms commonly used in automotive applications, which are
at the same time well parallelizable, must have been developed.

Examples of such applications are:. fast Fourier transform, which is widely used in signal processing i.e. in
Radar Signal Processing. The Kalman-based algorithm which is used in sensor fusion algorithms
as well as in estimation algorithms.. Neural network graphs which are increasingly used in vision-based driver
assistant systems.

The first two algorithms have been implemented using a specialized Vector
DSP library [43] and a model-based approach (described in Chapter 8). Since
the neural network model could not be deployed on the evaluation board, this
kernel was replaced by a matrix operation from the Linear Algebra library
[44]. The final project has the structure shown in Figure 6.3.
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Shared memory

TriCore 1.8 TriCore 1.8TriCore 1.8

PPU runtime

TriCore0 Mbx TriCore1 Mbx TriCore2 Mbx

Service matrix
multiplication

Service
KalmanService FFT

PPU MbxSHM mutex

Figure 6.3: IPC setup between TriCores and PPU [8]

6.3 Potential Improvements
Dispatcher[47] and Bare-metal Low-lever Driver[46] are static libraries to
communicate between a TriCore processors and the PPU. Dispatcher is
designed for the PPU and runs on top of Synopsys run-time environment
[45] while the second one is designed for TriCores. Together, they work on
a similar principle as the implemented inter-processor communication. All
communication with a host goes through a shared memory channel. As a
doorbell mechanism, cross-core interrupts are used. They offer more extensive
functionality in comparison to the implemented version.

Figure 6.4: Components of SPEED runtime [45]

The primary improvement is that the communication takes place on multiple
priorities: Normal and Emergency. This reduces the chance that a high
priority emergency task will be waiting at the expense of lower priority ones.

In addition, a Notification buffer is implemented, where the PPU reports all
critical information about execution and possible errors. In remote procedure
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calls, callers generally do not know whether the call was actually invoked.
These problems can be avoided if a notification system is implemented.

A parallel unit can execute a periodic task and thus address the Producer-
Consumer problem. In it, the PPU periodically produces items and stores
them in shared memory. On the other hand, the consumer checks the
availability of items and eventually waits for the producer to create them. In
this way, it can deterministically schedule the execution of the PPU and thus
achieve lower latency than with asynchronous item requests.

Because the current version does not support the development board, so it
was necessary to implement a custom inter-processor communication.

6.4 Summary
The goal of this Chapter was to implement inter-core communication between
vector and scalar processors to allow offloading of computationally intensive
algorithms to the parallel processor. Thanks to the memory layout, it was
possible to use shared memory block for data exchange. To avoid multiple
accesses, a statically allocated structure - mailbox was defined for each scalar
core, and the atomic function CMPSWAP was used for exclusive memory access.

The offloading process was implemented via remote-procedure calls. The
scalar processor must first gain memory access, then shares data with the
vector processor, and waits until the task is executed. In the implementation
process, it was found that some data are interpreted differently due to different
application binary interfaces of AURIX and ARC architectures. In order to
avoid possible errors, the data exchange was limited to specific data types
only. The created application captures a typical example of using a vector
processor to compute:. A Fast Fourier transform implemented in [43].. An estimation algorithm based on the Kalman filter implemented in

Chapter 10..Matrix multiplication linear algebra operation implemented in [44].
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Chapter 7
Application Vectorization

A parallel processing unit is used to improve the application performance
offloaded by scalar TriCores. It uses parallel computing to achieve speed-up,
in which several calculations or processes are carried out simultaneously.

I particular, two types of parallelism are used:. Data-level parallelism. Instruction-Level Parallelism

Instruction-level Parallelism

Instruction-level parallelism is the simultaneous execution of a batch of instruc-
tions. DesignWare EV71 has a Very Long Instruction Word Architecture with
three parallel vector data paths. Since they are all scheduled simultaneously,
three vector and one scalar instructions could be executed each clock cycle,
which might significantly speed up the task. Most of the parallelisation is
carried out by a Metaware compiler[39], but there are some general guidelines
which might improve the compiler’s performance:

. use of unconditional processing loops with a high level of data parallelism
as [38] suggests,. use the supportive macros for how many times a loop is expected to
execute ,(__builtin_assume()). use the supportive macros for loop unrolling (#pragma clang loop unroll())
[48]. Loop unrolling replaces the loop with an enumerated sequence of
loop iterations which eliminates the loop control overhead.

On the other hand, this architecture also has a potential problem, where a
stall (cache miss) in one of the issued slots will stall the execution of the entire
processor. In this case, it is even more critical to avoid cache misses than for
scalar processors. Because the impact of the Instruction-level parallelism is
very application dependent, it will not be evaluated in this chapter.
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Data-level Parallelism

Data-level parallelism occurs when instructions from a single stream operate
concurrently on multiple data elements. The parallel processing unit has 512
bit-wide register, which means that the same operation could be performed
on 16 single-precision floating-point variables.

As was stated in Chapter 5, PPU’s Vector DSP unit has three parallel
vector data paths, which means that it is capable of executing three vector
instructions and one scalar instruction each cycle.

The improvement of the task execution time can be evaluated by the term
speed-up, which is the gain in speed made by parallel execution compared to
sequential execution of the task.

s = TDSP

Tseq
(7.1)

In an ideal case, the PPU can theoretically execute 49 single-instruction
floating-point addition operations in one cycle, whereas the scalar processor
requires 49 clock cycles. This task was perfectly vectorizable with speedup:

s = 3 · 16 + 1
1 = 49 (7.2)

Amdahl law (7.3) can be used to estimate the speed-up of a more complex
task because it considers the theoretical speed-up of the PPU s, as well as the
proportion of the execution time p that might be the subject of a speed-up.

Slatency = 1
(1 − p) + p

s

, (7.3)

where Slatency is the theoretical speedup of the execution of the whole task.

The Equation 7.3 shows that the theoretical speed-up of the execution
of the whole task is always limited by the part of the task that cannot be
parallelised. Even if the theoretical speed-up of the PPU was approaching
infinity s → ∞, the resulting speed-up would have been bounded by:

Slatency ≤ 1
(1 − p) (7.4)

If, for example, 90% of the program can be parallelised, the speed-up will
never exceed ten, as Figure 7.1 shows.
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Figure 7.1: Visualization of Amdahl Law [4]

On this basis, it is possible to conclude that offloading tasks on SIMD
architectures is not always advantageous. Some algorithms are serial by their
nature and cannot be efficiently vectorised.

Common examples of such algorithms such as recursive or serial algorithms,
stream parsing, control code or state machines [38] are likely to perform
better in a scalar implementation.

On the other hand, algorithms for image processing, matrix linear algebra
operations or Kalman filter generally have little or no conditional jumps, a
high level of data parallelism, and no dependencies between loop iterations.

Moreover, if their dimensions are multiples of the SIMD width, the maxi-
mum speed-up could be reached using SIMD programming.

7.1 Application Size
As mentioned above, linear algebra matrix operations could generally be
effectively vectorised using SIMD. But there is another important aspect, the
size of the processed dataset.

PPU has 512 bit-wide vector registers, which are 16 single precision floating
numbers. In the experiment performed, the matrix multiplication time of two
square matrices on a scalar and a vector processor was done. The dimension
of the matrices was gradually increased up to 99. Figure 8, comparing the
execution time, shows that the vector processor significantly outperformed
the scalar processor. In addition, there was a significant improvement for
scalar multiples of 16 and 8 and 4 because the performance of vector processor
was maximally used.

33



7. Application Vectorization ...............................

0 5 10 15 20

matrix dimensions[-]

102

103

104

105

106

tim
e[

uC
 ti

ck
s]

Vector CPU
Scalar CPU

0 20 40 60 80 100

matrix dimensions[-]

102

104

106

108

tim
e[

uC
 ti

ck
s]

Vector CPU
Scalar CPU

Figure 7.2: Computation time of matrix multiplication

7.2 Impact of Data Transfers
Offloading tasks to the vector processor brings overhead into the execution.
Before submitting, the TriCore has to prepare all the parameters into a given
data structure and then notify PPU that the data is ready. The Vector
processor accepts the task, but it cannot process the data because SIMD
instructions could be executed only with the data located in the Vector
memory. To execute the kernel using vector instructions, it hast to perform
these steps:. Copy data into VCCM. Process the data on the vector DSP. Copy the result into the system memory

Finally, the host processor needs to handle the notification when the task
completes.

In another experiment, the same matrix multiplication was performed with
the difference that the calculation time was compared with the total execution
time of the task. From Figure 7.3, it can be observed that the overhead
associated with the data transfer significantly increases the total time.

The overhead could be further reduced by fully exploiting the functionality
Streaming Transfer Unit, which enables the stream of the data in or out of
VCCM simultaneously with processing. This functionality is implemented
in PPU Dispatcher [47] which runs on top of Synopsys Processor Execution
Environment for DSP [45]. Unfortunately, it is currently running only in a
Virtual environment and was not used in our case.

From this, it is possible to conclude that if the matrix dimensions are
significantly lower, they do not take full advantage of SIMD possibilities,
and overhead with task offloading might cause the scalar code to be more
effective.
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Figure 7.3: Effect of data transfer in task offloading

7.3 Effect of Multi-core Application
TC4 microcontroller contains up to 7 TriCores but only one Vector processor.
When the virtualisation feature is turned on, up to 50 virtual machines
might use the services of the PPU. Depending on the workload of the vector
processor, the latency of task completion may be affected.

7.4 Summary
In this chapter, the process of task offloading on a vector processor was
described. Based on the analysis and experiments carried out, it is possible to
conclude that multiple things have to be taken into account when vectorising
tasks:

The algorithm must be well parallelisable to take advantage of the SIMD
functionality of the vector processor.

Within the TC4xx architecture, offloading of tasks introduces overhead.
For the benefits of vectorising an application to outweigh the disadvantages
associated with the necessary data offloading, the application must have
sufficient complexity.

When the vector processor is heavily loaded, it may not be beneficial to
offload more tasks, as the latency for getting responses can increase in such a
situation.

35



36



Chapter 8
Model-based Design

In automotive, the demand on processing power is constantly increasing.
MCUs must be able to run more complex algorithms to increase driver safety
and developers have to adhere to more strict functional safety standards.
These factors together with shorter development timelines cause that tradi-
tional methods for embedded software development are insufficient to address
today’s complex tasks while taking into account the safety and real-time
requirements, CPU consumption and aggressive development timeline [20].

Model-based design performs verification and validation through testing in
the simulation environment. It covers various disciplines, functional behavior,
and cost/performance optimization to deploy a product from early concept
of design a final validation and verification testing [20].

The centre of the design process is the model of the system in the Simulink
environment, which is a graphical extension of the Matlab computing and de-
velopment tool for modelling and simulating dynamic systems. The Simulink
tool is based on an intuitive block diagram environment and enables simulation
and analysis of a wide range of engineering systems and tasks.

3 Foundations

In the following sections, we present foundations and techniques necessary to interpret
this work’s results. For this, we introduce and analyze the case studies, present the
selected verifiers along with their technical approaches, and lastly introduce possible
leverage points to improve on verification results.

3.1 Case studies

The verification experiment in this analysis is applied to two case studies from the au-
tomotive domain that were made available by our research partner, Ford: An Electronic
Clutch Control (ECC) and a Driveline State Request (DSR). Distinguishing features of
both will be outlined. Both share a general structure and features as well as a common
library code base, all of which we discuss in the next subsection.
Each implementation has previously defined specifications to adhere to. They are given
in the form of a Functional Requirements Document (FRD), and described in the second
half of this section.

3.1.1 Code

A model-based design approach was chosen for both case studies. Such a development
process is typical for the automotive industry [Friedman 2006]. Starting with a given
set of requirements over the set of input and output variables, a model was created
using MatLab Simulink. In this software, engineers are able to model components in
a graphical setting. It also enables simulation which plays an imperative role in rapid
prototyping and test as you go [Friedman 2006].

FRD Simulink Model C code

C library
MatLab

Modeling Export

Possible changes

Refinement

Figure 1: A model-based design process based on MatLab Simulink.

During the process depicted in Figure 1, the engineers are able to refine and change the
model based on the simulation. Finally, the model is then exported to executable C code
using the MatLab export functionality. Model-based design approaches have become

5

Figure 8.1: A model-based design process based on MatLab Simulink [53]

The whole process consists of four main parts as Figure 8.1 shows:. At the beginning, the list of requirements for the model is defined.. Then the modelling phase takes place, in the process of which, the
requirements can still be modified.

37
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. As soon as the model is ready, it is verified in the simulator and any

shortcomings are refined.. After the model is tested and verified, it is transferred into C code which
is then executed on the ECU.

8.1 Code-replacement library
Embedded Code generation software normally produces ANSI/ISO C code.
However, the Code Replacement Library can be used [41]. The Code Re-
placement Library is a table that describes mapping of Simulink blocks to
Vector DSP [43] and Linear Algebra[44] libraries. The code replacement
feature replaces function calls shown in Table 8.1 with calls to functions
highly optimized for the PPU.

Entry Name Replacement Function Name
Addition vdsp_add_f32
Subtraction vdsp_sub_f32
Element Multiplication vdsp_mult_f32
Matrix Multiplication vec_blas_sgemm
Offset vdsp_offset_f32
Scaling vdsp_scale_f32
Transposition vec_aux_strnsps2m
Complex Conjugation vdsp_cmpl_conj_f32
Absolut Value vdsp_abs_f32
Cosine Function vdsp_cos_f32
Sine Function vdsp_sin_f32
Exponential Function vdsp_exp_f32
Natural logarithm vdsp_log_f32
Logarithm with 10 base vdsp_log10_f32
Reciprocal of the Square Root vdsp_rsqrt_f32
Square Root vdsp_sqrt_f32
Tangent vdsp_tan_f32
Arctangent vdsp_atan_f32
Maximum vdsp_max_inter_f32
Minimum vdsp_min_inter_f32
Saturate vdsp_sat_f32
Modulo operation vdsp_mod_f32
Signum Function vdsp_sign_f32

Table 8.1: Code-replacement functions [41]

Model-based design development method provides an executable model
that can be used not only as a functional specification for implementation,
but also as a new basis for testing. Thanks to a higher level representation of
a model, the generated code can efficiently tailored to the vector processor,
but also easily ported to another architecture.
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Chapter 9
Neural Network SDK

Machine-learning algorithms for computer vision are evolving rapidly. They
are also getting into embedded systems. Many vision ADAS applications
are based on multiple-layer convolutional neural networks (CNNs) because
they have become superior to traditional algorithms on a variety of image
understanding tasks. In contrast to traditional algorithms, deep learning
approaches are generalized learning algorithms and have better performance
in real-world conditions. Many modern MCUs including TC4 have specialized
computing units called deep learning accelerators, that can effectively execute
NN graphs.

The MetaWare Neural Network Software Development Kit (NN
SDK) is designed to compile, validate and deploy, high performance
machine learning applications on ARC processors. The NN SDK
allows compiling and optimizing of Neural Network(NN) models
targeted for ARC processors. The NN SDK provides integration
capabilities with Machine Learning(ML) frameworks such as Ten-
sorFlow and Keras. [42]

the whole process from the creation of the model, through the optimizations
to the generation of the code for the PPU is captured in the Figure 9.1

Neural Network

Neural network is a computing system consisting of interconnected nodes
- artificial neurons. Each node has input, output and an associated weight
and threshold. When it one or more inputs are received, they are scaled,
sumed and passed through the activation function to the output of the neuron.
Artificial neural networks (ANNs) are comprised of a node layers, containing
an input layer, one or more hidden layers, and an output layer as Figure
9.2 shows. This structure reflects the behavior of the human brain, allowing
computer programs to learn to recognize patterns and solve common problems
in the fields of AI, machine learning, and deep learning. The model must be
trained before it is used. Because there is a significant workload asymmetry
between initial training and subsequent inference, the training is done on a
host device like PC.
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Model training


in Tensorflow Keras


Quantization and
calibration

Model Optimization

Import to NN SDK

Model deployment

Bit-accurate
Functional Model PPU Target Code


Figure 9.1: NNSDK Workflow

Figure 9.2: Convolutional neural network architecture [11]

Model Preparation

After the model is created, the weights of individual neurons usually have
a random value. For accurate object recognition, all the parameters must
be trained. This process requires a large dataset of input data (images) as
well as the expected output data (object on the picture). The model is fed
with the data and the output is compared with its expected value - ground
truth. This error is then used to update the weights with the criterion of its
minimization. This method is based on an automatic differentiation algorithm
and is called back propagation. The process is repeated for many iterations
until it converges to its minimum.
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Figure 9.3: Neural network training process [14]

Model Import into NN SDK

In the first stage of, the trained NN model is parsed and translated it to an
internal High Level Intermediate Representation (HLIR). However, several
conditions must be met for the import to proceed correctly. The model is
built and trained using TensorFlow or Keras compatible framework and must
consist of supported layers shown in the Table 9.1.

Group Layers/Operators

Activation

RELU
Sigmoid
Tanh
Softmax

Convolution 1D
2D

Pooling Max
Avg

Fully connected Inner Dot Product

Recurrent LSTM
Vanilla RNN

Table 9.1: Layers supported by NNSDK

Model Quantization

These resource-intensive requirements of neural networks are particularly
challenging in embedded platforms [18].

We therefore must
While neural networks are often trained on computers using 32bit floating-

point numbers, in embedded systems, integer operations are simpler than
floating-point operations. This process is called quantization and it sig-
nificantly simplifies computational complexity and increases computational
speed. Furthermore, it is also possible to reduce the number of bits used to
represent these numbers, which would reduce the memory requirements of the
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model. Approximation of single precision floating point value and backward
transformation for fx16 quantization type are performed by the following
formula:

scale = 2n (9.1)
xfx = Round(xfp32 · scale) (9.2)

xfp32 = xfx

scale
(9.3)

where n is the number of fractional bits, xfx is a fixed point value and xfp32

is a single precision floating point value.
The process of quantization, however, leads to quantization errors. LSB

determines the precision of the binary fixed-point representation:

LSB = 1
2n

= 1
scale

(9.4)

Setting a correct scale for a given NN layer is a trade-off between precision
and possible overflow. Lower value of scale as well as LSB means a finer
granularity and thus decreasing of quantization error. On the other hand,
when a number is too large to be stored, clipping occurs and the result could
be highly skewed.

To correcly quantize each layer, the MetaWare NN quantizer needs to
determine the range of values of the blobs. This process is referred to as
calibration and is carried out by running the original graph on several input
objects. To achieve the smallest quantization error, the data subset must
sufficiently reflect the reality. Otherwise, there may be a systematic increase
in error rate when using a small scale, or random fatal errors when the value
is too high. The number n of files be used for calibration should be adapted
to the size and type of the NN graph.

Model Optimization

After quantizing the NN model, multiple transformations are invoked to
optimize it for efficient execution on resource-constrained devices like PPU.
First of all, the components that are relevant to training but not to network
feed-forwarding are removed One of them are dropout layers which suppress
over-fitting by randomly dropping out nodes during training but in the
inference, they have no practical utilization.

In the learning stage, images from dataset are processed in sub-sets called
mini-batches. This approach often reduces the risk of getting stuck at a
local minimum but it creates another dimension which increases memory
requirements. Contrary to that, in the inference phase, the images are
processed individually so the extra dimension could be removed.

Reducing the size of trained model is another option for optimization.
Figure 9.4 of the trained CNN model from Section 10.2 shows how the
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coefficients of a particular layer are activated during the inference of an image.
We may observe, that several filters have zero values and do not contribute
to the functionality. These filters as well as the scaling layers with scaling
factor of 1 could be pruned, which reduces the number of coefficients stored in
memory and therefore cutting down bandwidth. The can boost the occurrence
of such sparse matrices when we bias the training to maximize sparseness as
[55] suggests.

Figure 9.4: Activation of CNN layer

Code Generation and Model Deployment

In the final step, the source code of the NN graph is generated directly for
target hardware or as a Bit-accurate Functional Model. BFM is a bit-true
representation of the NN model, which means that it produces bit-accurate
outputs for the same input as the model running on the PPU. It could be
executed on the host machine(PC) to find out, how the accuracy changed
after model quantization. If the result is insufficient, the quantization has to
be re-executed and provided by a more versatile sub-set of data for calibration.
When using the device target, the graph is optimized for the PPU device and
runs within a simulation. In this stage, NN model might exceed hardware
capabilities of PPU. In such case, the whole architecture has to be simplified
and the code generation process is repeated.

9.0.1 Summary

The popularity and feasibility of real-world neural network deployments are
growing rapidly. The CNN mapping tool is a necessary tool to enable the
neural networks to run on the PPU. It uses different optimizing methods to
save the memory and processing resources. Another possibility to optimize
the size of the model is to maximize the sparsity of the individual layers as
[55] mentions. Nevertheless, a deep understanding of the target system is
required to fully exploit its capabilities. Because deep learning algorithms
are rapidly evolving, the limited range of possible layers, activation functions
and supported frameworks can be limiting.
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Chapter 10
ADAS Applications
According to the August 2016 Traffic Safety Facts [50], “The Nation
lost 35,092 people in crashes on U.S. roadways during 2015.” An
analysis revealed that about 94% of those accidents were caused
by human error, and the rest by the environment and mechanical
failures [49].

To mitigate the impact of human error during driving, the vehicles use
Advanced Driver Assistance Systems that actively or passively improve the
safety of passengers. Vehicles equipped with ADAS systems have a variety of
sensors (Figure 10.1) that sense the surrounding environment and process
the information from them in real-time. In case of danger, the system is able
to alert the driver and even take control to avoid an accident.

Figure 10.1: Different types of ADAS systems [35]

An ADAS system consists of three layers:. Perception layer - A suite of sensors (Figure 10.1) accompanied by a
fusion unit combining the measured data to accurately estimate the state
of a vehicle within the environment.
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. Decision layer - A powerful computing unit capable of processing sensory

data from the Perception layer and choosing the appropriate actions in
real-time, which are then passed to actuators of an Action layer.. Action layer - A series of actuators and devices that can warn the driver
or automatically take actions to resolve risks of an imminent accident.

The rest of this chapter aims at the decision layer of ADAS, which the
TC4 is part of. It further compares different hardware architectures and
describes the development of two applications using the previously described
model-based approach.

10.1 Architectures for ADAS
As previously mentioned, the decision layer of ADAS is represented by the
computing units that process the data from sensors and create outputs to
assist the driver or take direct action to avoid a possible accident. In order
to handle increasingly more complex tasks, like object recognition from high-
resolution images, the computing power and speed of ADAS platforms steadily
increase. However, there are still challenges in the development and operation
of ADAS.

Real-time Capabilities

According to [19], the average reaction time of a human driver alert is 700
ms. Considering that the ADAS platforms are hard real-time systems, they
could be beneficial only if they are multiple times faster than the driver.
Their reaction time is determined by frame rate and processing latency. The
frame rate is the frequency with which the processor gathers sensory data.
The processing latency is the execution time of the prediction algorithm.
Even complex camera-based applications require images to be gathered and
processed within this time bound, so that the car can react quickly to changes.

Safety

Platforms for ADAS computing are safety-critical systems. They must comply
with a certain level of ASIL, a risk classification system defined by the
ISO 26262 standard [28]. For example, the steering or engine management
systems require the highest ASIL D, whereas the vision ADAS require ASIL
B certification. The safety restrictions also apply to the software layer,
specifically virtual sensors. Virtual sensors provide indirect measurements
based on sensory data. Many of them are based on neural networks, which
inherently suffer from errors listed in [54]. This is considered a malfunction
similar to physical sensors. Therefore redundant support mechanisms must be
utilized to mitigate these effects. In addition, automotive standard ISO-26262
[28] defines a long list of costly and time-consuming requirements that have
to be fulfilled for the certification process.
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Cost-effectiveness

Another important prerequisite for ADAS platforms is cost-effectiveness.
Because the highest performing devices are often too expensive, different types
of parallel computers with better performance/cost ratios have recently been
used. According to [16], these platforms must fully exploit the capacity of the
instruction sets, caches, and parallelism to achieve the required performance.

10.1.1 Multi-core Design

Problems with obtaining an extra performance in single-core processors and
disproportionate expenses for the increasing raw clock rate have led to the
development of multi-cores in a single physical package.

In theory, a homogeneous multi-core processor consisting of n similar
processors should speed up the execution n-times. However, the limited
communication bandwidth causes a performance bottleneck called the memory
wall. Its practical consequence is that adding additional cores does not linearly
increase the performance. Due to this reason, almost all platforms for ADAS
have adopted a heterogeneous architecture.
Another common sign is the presence of a shared memory, which significantly
decreases the cost of inter-core data transfers but requires coherency protocols
for data consistency checks. As [31] states, a heterogeneous multi-core
processor usually comprises general-purpose core(s) and one or more of the
following specialized units:

.Graphical Processing Units. Field Programmable Gate Arrays. Digital Signal Processors with neural network accelerators

10.1.2 GPU

Graphic processing units are highly parallel instruction-based platforms
initially developed to perform graphical calculations. They provide high-
performance computational power and are suitable for a wide range of algo-
rithms. One of the disadvantages of GPUs is that the software running on
top of these platforms is difficult to analyze, which might be problematic in
safety-critical applications. When we compare it with previously mentioned
platforms, they are generally more expensive and power-consuming.

10.1.3 FPGA

A Field Programmable Gate Array is an integrated circuit that can change
its hardware layout according to program requirements at run-time. This
is a completely different approach to CPUs or GPUs, where the programs
are compiled to fit the hardware layout. On the one hand, FPGAs provide
massive throughput due to their intrinsic parallelism and are energy efficient.
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On the other hand, they are not suitable for the serial processing and require
more time and knowledge to design and program.

10.1.4 Vector DSP with NN Engine

This setup is also used by the TC4 microcontroller. If the modules are effi-
ciently interconnected, the programming tasks can be assigned to processing
units according to their use-case:

.Most of the scalar code, including the data collection and safety-critical
code, is done by TriCores.. The vector DSP unit computes algorithms with a high level of parallelism,
such as matrix operation or Kalman filtering. Some DSPs (including
PPU) offer programmable safety features, making them suitable even
for applications with higher safety requirements.. Neural-network accelerators can efficiently and frequently compute mul-
tiply–accumulated operations, which is a baseline for the inference of
CNNs. This architecture has safety features and sufficiently high perfor-
mance for many driver assistance applications while having lower price
and power consumption than GPUs.

There are also some issues when distinct cores have different architectures.
During the development, these appeared:

. Several different development tools are required for development..Differences in EABIs might cause mistakes in data interpretation in
inter-processor communication leading to nondeterministic bugs that are
difficult to find.. Incompatibility between toolchains causes that projects could not be
linked together, and subsequently, any change in the project would have
to be applied to both platforms..When multiple cores use the vector processor, the task completes, on
average, in a longer time and with a more significant dispersion of the
task’s execution time.

Considering all the positive and negative aspects of heterogeneous archi-
tectures, the best lower-cost energy-efficient setup is the combination of
multi-purpose core(s), DSP(s) and NN accelerator(s). On the other hand,
each platform provides a different power/performance tradeoff and hence, the
best platform may change across different applications.
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10.2 Driver Monitoring
Recently, driver monitoring has become crucial since it was shown that
automation aids could lead to driver distraction and thus high reaction times
in case of emergency. Previous research on autonomous driving showed that
the driver’s transition to dependence on automation comes after approximately
15 minutes.

The task is to distinguish whether the driver is paying full attention to the
driving. Several approaches were implemented to detect the symptoms of
driver drowsiness.

According to [5], one of the most reliable ways of estimating fatigue is by
using electroencephalograms. Unfortunately, the majority of drivers reject it
because it requires using attached electrodes on their heads.

The most currently used fatigue detection systems are based on the pro-
cessing of driver images by a camera placed in the car.

There are algorithms like Percentage of Eye Closure (PERCLOS)
or Histogram of Oriented Gradients (HOG) [32]. Still, recently, CNN-
based solutions achieved better accuracy according to [29]. Because of this
reason and the presence of a CNN engine on PPU, a convolutional neural
network was used to detect driver yawning.

Figure 10.2: Camera-based driver monitoring [17]

This example doesn’t aim at reaching the highest possible accuracy in
drowsiness detection but rather testing the development process from CNN
model learning to generating the source code [42] and deploying it on the
PPU.

10.2.1 Neural Network Architecture

A convolutional neural network (CNN) is a neural network architecture
designed to find patterns in spatial structures. CNNs are used particularly
for image classification and object recognition tasks, which is also this use
case.

Considering the supported frameworks listed in [42], eventually, the deep
neural network was implemented in Python 3 with the help of Keras, an
interface for the TensorFlow library.
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The model structure was inspired by the approach in [1]. The input of

the neural network is a grey-scale image with 100x100 resolution and values
in the range (0, 1). The final output has the same length as the number of
detected classes (yawn/no yawn). Because the network structure was too
complex for an embedded device, it was gradually simplified until the number
of trainable parameters decreased below 10000.

The final structure (Appendix A) consists of several convolutional layers
followed by max pooling layers. Subsequently, the output is flattened, and
two dense layers are applied. Additionally, the dropout layers were exploited
to reduce overfitting and improve generalization by randomly inhibiting nodes
during training. Finally, a Softmax activation layer outputs values represent-
ing the probability that the detected object belongs to the corresponding
class.

10.2.2 Dataset

At first, the Driver drowsiness dataset from [30] was used, which contains
two categories: yawn and no yawn. Figure 10.3 displays a few samples of
each category.

Because the dataset contains only 1235 train images and 215 test images,
it was necessary to enlarge it manually. The same setup as in [10] was used,
which enables creating a dataset using a web camera. The user configures
how many images of a specific category should be gathered. Subsequently,
the camera window opens, and data gathering begins. Throughout the
process, the script provides information on how many remaining images will
be collected.

Data augmentation is an important technique to reduce the overfitting on
small datasets. Keras function ImageDataGenerator allows rotating, shifting,
flipping or zooming the existing data samples. In this particular application,
applying image distortion does not change its class, contrary to e.g. gesture
detection, where the flip of a left gesture would result in a right gesture.

Eventually, rotation of images in a range of ±12 degrees, width and height
shift by 20% of the corresponding dimension, zoom in the range of 1 ± 0.15
and horizontal flip were utilized. Using these techniques, the final size of the
dataset was approximately doubled.

Figure 10.3: Samples from driver drowsiness dataset
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10.2.3 Training and Testing

Our proposed neural network was trained using Adam Optimizer with default
parameters for 20 epochs with a batch size of 128.

Models often benefit from reducing the learning rate by a factor of 2-10
once learning stagnates. The loss function is checked at the end of every
epoch, and if it didn’t improve in the last X number of epochs, the learning
rate is decreased.

Early Stopping monitors the model’s performance at the end of every
epoch during training on a held-out validation set and terminates the training
according to the validation performance.

Figure 10.4: NN training process

After several iterations, the test accuracy of 86% was obtained (Figure
10.4)

The confusion matrix in Figure 10.5 gives us detailed information about
the classifier’s performance. The worst-case scenario, where the image yawn
was mis-classified as no-yawn, occurred only in 5% of cases.

Figure 10.5: Confusion matrix
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10.2.4 Running on TC4xx

The source code was created according to 9.1.

At first, the model was checked to verify that it contains only the supported
layers shown in Figure 9.1.

Followingly, the floating-point model was converted into the fixed-point
model. This stage was very sensitive in the data selection. The image samples
must closely correspond to the images used in reality. Otherwise, the layers
could have low granularity, and low resolution or overflow might occur.

In the last step, the model was optimized for the PPU, dropout layers
(used only in training) were removed, and the source code was generated.

During these steps, the neural network model was adjusted several times
until it met all the NN SDK tool requirements and resource constraints of
PPU.

To test the performance of the CNN accelerator, a setup was prepared [10]
where the web camera regularly takes an image of the person, processes it
into a grayscale image with a resolution of 100x100 pixels and sends it to the
microcontroller via ethernet.

Unfortunately, the current version of PPU tools enables running the model
only within the simulation environment. Furthermore, it wasn’t possible to
measure the classification time because the simulation environment is not
cycle-accurate.

Figure 10.6: NN simulation output

10.3 Adaptive Cruise Control
Adaptive cruise control (ACC) is an advanced driver-assistance system for
road vehicles that automatically adjusts the vehicle’s speed to maintain a safe
distance from other vehicles ahead (Figure 10.7). It uses data from sensors
like radar or laser sensors, or a camera to predict the actions of other objects
in the immediate area.

The aim is to implement the velocity estimation of the lead vehicle based on
the Kalman filter algorithm. The sensory data will be artificially generated by
Matlab simulation. The main objective is to use and evaluate a model-based
approach in Matlab Simulink described in Section 8.
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Figure 10.7: A car with active ACC [2]

10.3.1 Kalman Filter
The Kalman filter is one of the most common and significant estimation
algorithms. It produces estimates of hidden variables based on inaccurate
and uncertain measurements and provides a prediction of the future system
state based on past estimations [6]. The inaccuracies are caused by stochas-
tic processes called process and observation noise. When these stochastic
processes meet certain requirements mentioned in the following sections, the
Kalman filter is the optimal linear filter.

Our derivation is based on [34] and uses the same notation.
A linear discrete-time system can be described as follows:

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1 (10.1)
yk = Hkxk + vk (10.2)

where F , G and H are matrices describing its dynamics. The system and
measurements are affected by a process and observation noise as shown in the
Figure 10.8. Assuming that wk and vk are uncorrelated and have a normal
distribution with zero mean and covariance matrices Qk and Rk:

wk ∼ N (0, Qk) (10.3)
vk ∼ N (0, Rk) (10.4)

System

Kalman

filter

+

Figure 10.8: Dynamic system with noise

The task is to estimate the hidden system states xk based on the knowledge
of its dynamics and noisy measurements yk.
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From the Equation 10.1, it is evident that xk is a linear combination of

x0, {wi}, and {ui}, which are Gaussian random variables. Therefore, xk

itself is a Gaussian random variable and is completely characterized by its
mean (expected value) denoted by a hat operator and covariance expressed
by matrix P :

xk ∼ N (x̂k, Pk) (10.5)
(10.6)

Based on the number of available measurements, it can be distinguished:. A priori estimate/covariance matrix with − superscript, which is formed
from the measurements before the measurement at time k:

x̂−
k = E[xk|y1, . . . , yk−1] (10.7)

P −
k = E[(xk − x̂−

k )(xk − x̂−
k )T ] (10.8). A posteriori estimate/covariance matrix with + superscript that could

be computed after the measurement at time k is available:

x̂+
k = E[xk|y1, . . . , yk] (10.9)

P +
k = E[(xk − x̂+

k )(xk − x̂+
k )T ] (10.10)

The relation between priori and posteriori estimates and covariances is
shown in the Figure 10.9.

Time update

Measurement update

Figure 10.9: Timeline showing state estimates

Kalman filter is based on two steps:. Time update - computes priori estimate of state xk. Data update - improves priori estimate of xk after the measurement yk

is acquired

The time update step is done every sampling period, whilst the data update
is realized only when the measurement data is available.
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These steps are used according to the application requirements. For
example, if the sampling time is 3-times faster than measurements, 3 time
updates will be done before one data update step.

Prior to any measurements, it is necessary to form an initial estimate x+
0

and its uncertainty P +
0 . In the extreme case, if no information about x0 is

available, then the initial covariance is P +
0 = ∞. On the other hand, if the

initial state is known perfectly, then the initial covariance is P +
0 = 0.

10.3.2 Time Update
The time update step is based on the propagation of the state estimate x
with time:

x̂−
k = E[xk] = Fk−1x̂+

k−1 + Gk−1uk−1 (10.11)
P −

k = E[(xk − x̂−
k )(xk − x̂−

k )T ] (10.12)

Substituting 10.1 and 10.11 into 10.12, the time-update equation for P can
be obtained:

P −
k = E[(Fk−1(xk−1 − x̂k−1) + wk−1)(Fk−1(xk−1 − x̂k−1) + wk−1)T ]

= Fk−1P +
k−1F T

k−1 + Qk−1 (10.13)

10.3.3 Measurement Update
The derivation of measurement update of x and P is based on the solution
of the recursive least squares estimation from the Section 3 of [34], where
the new estimate/covariance x̂k/Pk is computed on the basis of the previous
estimate/covariance x̂k−1/Pk−1 and a new noisy measurement yk:

yk = Hkx + vk (10.14)
x̂k = x̂k−1 + Kk(yk − Hkx̂k−1) (10.15)
Pk = (I − KkHk)Pk−1, (10.16)

where x̂k−1 and Pk−1 are previous estimates and covariance, and Kk is a
matrix called Kalman filter gain.

Because the measurement noise has zero mean and the initial estimate was
set to its expected value, the estimator is unbiased for any value of Kk. In
order to compute the optimal value of Kk, some other criterion must be taken
into account. In this case, the selected optimality criterion is to minimize the
sum of the variances of estimation errors

Jk = E[(x1 − x̂1)2)] + · · · + (xn − x̂n)2] (10.17)
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by setting its derivative with respect to K to zero

∂J

∂K
= 0 (10.18)

Substituting 10.15 and 10.16 into 10.17 yields:

∂Jk

∂Kk
= 2(I − KkHk)Pk−1(−HT

k ) + 2KkRk = 0 (10.19)

Kk = Pk−1HT
k (HkPk−1HT

k + Rk + Rk)−1 (10.20)

The subscript k − 1 in the least square estimation is equivalent to the
priori estimate and k corresponds to the posteriori estimate.

After applying these changes to the previous equations, the measurement
update for x̂k and Pk can be expressed.

Kk = P −
k HT

k (HkP −
k HT

k + Rk)−1 = P +
k HT

k R−1
k (10.21)

x̂+
k = x̂−

k + Kk(yk − Hkx̂−
k ) (10.22)

P +
k = (I − KkHk)P −

k (10.23)

The whole algorithm is visualised in Figure 10.10.

Unit delay


Measurement update


 

Yes

No

Measurement
available?

Unit delay


Init. estimates

 


Time update




 

Figure 10.10: Estimation algorithm

10.3.4 Application
A going vehicle has information only about the position of the ahead
of it going lead vehicle. The adaptive cruise control needs LV’s
velocity for proper functionality. The model of LV si based on [52]
and assumes that the unknown LV velocity is constant.

The LV model can be described as follows:

xk+1 = F · xk + wk (10.24)
yk = H · xk + vk (10.25)
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where x =
[
v
s

]
, v

[
m
s

]
is lead vehicle’s velocity, s[m] is its distance, Ts[s] is

the sampling time, vk is the measurement noise with covariance R and vk is
the process white noise with covariance Q. The matrices are:

F =
[

1 0
Ts 1

]
H =

[
0 1

]
Q =

[
1 · 10−3 0

0 1

]
R = 4

P +
0 =

[
100 0
0 100

]
x+

0 =
[
0
0

]
Ts = 0.1s Tmeas = 5 · Ts

In the first stage, the update function was modelled in Matlab Simulink
according to the Figure 10.10. Similarly to [13], the basic blocks included
within the Code replacement library were utilized (see Table 8.1), so that the
generated code could be optimized for the PPU.

Figure 10.11: Simulink model of Kalman filter

Later, the functionality was tested in the simulation with a setup shown in
Figure 10.12.

Figure 10.12: Model verification

The last part of the model-based design is source code generation optimized
for a particular uC architecture. To achieve this, the Embedded coder toolbox
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accompanied by Metaware Toolbox [41] was exploited. The example of a
generated function is shown in Appendix.

Subsequently, the function was integrated into the example described in
Section 6.2 as an independent kernel with two expected input parameters: the
measurement availability and, eventually, the measurement. The output of the
function is an estimate of the velocity. The function ran 1200 times, and the
measurement was provided with a frequency of 5 ticks. The following Figure
shows the estimated velocity together with the Matlab model’s simulation.
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14

True velocity
Estimated velocity

Figure 10.13: Kalman filter response

10.3.5 Results

The Matlab Simulink was used to implement an estimation part of the
Adaptive cruise control application. Thanks to the model-based approach, it
was possible to test the functionality before the source code generation and run
it on the real hardware to correct possible bugs. The block implementation
of the Kalman filter was verified experimentally on the PPU. Due to the
high-level representation, porting the application to a scalar uC was possible
too.

The speed-up compared to a scalar execution was negligible because of
a very simple model with only two internal states. Matrix operations with
such small dimensions bring additional overhead, as was shown in Section
7. On the other hand, the use of a model-based approach enables to quickly
increase the complexity of the model according to real-world requirements,
where the difference in run-time would be more significant.
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Chapter 11
Results

11.1 Basic Software Support for TriCores
In the first part of the thesis, the requirements for basic software support
(BSP) for TriCore processors were defined. Then a set of functions was
created, logically grouped into these sub-modules:. uC (Appendix C.1). board (Appendix C.3). isr (Appendix C.2)

Furthermore, a linker script was created. It correctly assigns code and
symbols to the uC memory, defines stack size and creates the final executable
binary. Using the functions and linker defined above, a multi-core application
was created where each core flashes its corresponding LED at a different
frequency based on the interrupts generated by a timer.

To extend the functionality of BSP, multi-core printing to UART using the
following modules was developed:

.mutex - for handling exclusive access to the shared resources (Appendix
C.4).. asclin - for transmission and reception of data via the UART interface
(Appendix C.6).. printf - an implementation of C’s formatted printing family of functions
(Appendix C.5).

11.2 IPC and PPU Integration
As a follow-up to the previous project, support for booting PPU and generating
inter-core interrupts has been added (Appendix C.7). In the course of
implementation, the incompatibility of compilers for different platforms was
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11. Results.......................................
discovered. Consequently, it was impossible to merge TriCore and PPU into
one shared project, so the changes had to be applied to both projects.

To enable data exchange and potential task offloading on the PPU, inter-
processor communication between computing units based on shared memory
and software mailboxes has been defined and implemented (Appendix C.8).
At this stage, differences in EABI leading to a different interpretation of
certain data types were found. This caused the communication to be restricted
only to specific data types. Subsequently, experiments on task offloading
in different scenarios were performed with the following conclusion: It is
advantageous to offload only highly parallel algorithms that are large enough
to benefit from the PPU vector architecture. For better determinism and
faster response, PPU services using less TriCores should be used. Otherwise,
more sophisticated Iner-processor communication using task prioritization
could be utilized [47].

11.3 Model-based Approach
The model-based approach was used to implement velocity estimation based
on the Kalman filter in Matlab Simulink.

The data-update and time-update functions were modelled and tested within
the simulation. Afterwards, the code was generated by the Embedded Coder
and Synopsys toolbox

Code-replacement library from Synopsys toolbox allowed efficiently de-
ploying the model on the Parallel unit by exploiting its enhanced matrix
calculation capabilities. Thanks to the high-level approach, deploying a scalar
version of the model was also possible. The use of parallel processing, in this
case, did not significantly speed up the execution of the program. Because
the application was too small, the overhead of moving data suppressed the
benefits of parallelizing matrix operations.

11.4 Neural Network
A neural network detecting driver drowsiness was modelled and trained using
the Keras library. Its design was adapted to the limitations of embedded
devices, and the test accuracy reached 86%. Further, a CNN mapper called
NN SDK was used. After applying quantization and other optimization
methods, the code was generated, and the model was deployed in a simulation
environment on the top of Synopsys runtime environment [45]. However,
the computation time could not be determined because the simulator is not
cycle-accurate.

Based on the preceding, it is possible to conclude that using this tool requires
a deep understanding of the used hardware to fully exploit its capabilities
in order to deploy the model with satisfactory accuracy and sufficient speed.
Another possibility to optimize the size of the model and thus its performance
is to use a specific training approach [55] maximizing the sparseness of layers.
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Chapter 12
Conclusion

This thesis aimed to contribute to the early development phase of the AU-
RIX TC4xx heterogeneous architecture and to gradually build support for
the execution of parallel applications on a computational unit with vector
calculation capabilities.

After analyzing the TC4xx architecture, a set of functions and a linker
script were created that allow the initialization and basic functionality of the
TriCore units. On their basis, a multi-core application was created, which
verified the correctness of the implementation. The software support was
extended to include printing into UART with multi-core synchronization to
share the cores’ communication channels.

Further, the functionality of the parallel unit was investigated, and functions
to boot it and generate inter-core interrupts were created. Consequently, the
inter-processor communication for data exchange between TriCore processors
and PPU necessary for offloading tasks to the vector processor was defined
and implemented.

To demonstrate the advantages and disadvantages of task offloading from
scalar to the vector processor on the heterogeneous TC4xx architecture, a set
of experiments was performed. As a result, due to the shared communication
channel and overhead, while preparing data for parallel processing, it is
suitable only for more extensive well parallelizable algorithms.

Last but not least, driver assistance systems were addressed. Requirements
necessary for their operation were specified, and commonly used architectures
were compared.

The possibilities of accelerating the development of TC4xx was explored.
In particular, high-level tools, such as Matlab and CNN mapper, enable the
generation of highly optimized code and replace the hand-written code.

Using a model-based approach, a Kalman filter for lead-vehicle estimation
was created in Matlab Simulink. Its functionality was tested in simulation,
and then, Embedded Coder, in conjunction with the Synopsys toolbox, was
exploited for generating PPU-optimized code. Due to the higher level of repre-
sentation, the model can be ported to different architectures. Using specialized
code-replacement tools, the algorithm can be tailored to a heterogeneous HW
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architecture.

Finally, a convolutional neural network was implemented to detect the
drowsy driver. The model was built and trained using the Keras library. The
neural network SDK was then used to optimize it for resource-constrained
devices. Generated code was partly running in a simulation environment. The
parallel processing unit seems to be usable for advanced driving algorithms
with a certain level of complexity. However, it was difficult to evaluate because
it was impossible to deploy the created NN to the evaluation board due to
the problems with HW.
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Appendix A
Keras Model of Driver Drowsiness
Classification
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Appendix B
Matlab-generated Kalman Filter

/*
* Academic License - for use in teaching, academic research,

and meeting↪→

* course requirements at degree granting institutions only.
Not for↪→

* government, commercial, or other organizational use.
*
* File: kalman.c
*
* Code generated for Simulink model 'kalman'.
*
* Model version : 4.26
* Simulink Coder version : 9.7 (R2022a) 13-Nov-2021
* C/C++ source code generated on : Wed Apr 27 11:04:31 2022
*
* Target selection: snps.tlc
* Embedded hardware selection: Synopsys->ARC
* Code generation objectives:
* 1. Execution efficiency
* 2. RAM efficiency
* Validation result: Not run
*/

#include "vec_blas_sgemm.h"
#include "vdsplib.h"
#include "rtwtypes.h"
#include "kalman.h"

/* Storage class 'VCCM' */
__vccm real32_T rtA[4]; /* '<Root>/A' */
__vccm real32_T rtC[2]; /* '<Root>/C' */
__vccm real32_T rtQ[4]; /* '<Root>/Q' */
__vccm real32_T rtx_k_pred[2]; /* '<Root>/x_k_pred' */
__vccm real32_T rtP_k_pred[4]; /* '<Root>/P_k_pred' */
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__vccm real32_T rtP_k1_pred[4]; /* '<Root>/P_k1_pred' */
__vccm real32_T rtx_k1_pred[2]; /* '<Root>/x_k1_pred' */
__vccm real32_T rtAdd1[4]; /* '<S1>/Add1' */
__vccm real32_T rtAdd8[2]; /* '<S1>/Add8' */
__vccm real32_T rtR; /* '<Root>/R' */
__vccm real32_T rty_k; /* '<Root>/y_k' */
__vccm real32_T rtDivide1_DWORK4; /* '<S3>/Divide1' */
__vccm uint8_T rtdata_update; /* '<Root>/data_update'

*/↪→

/* Model step function */
void kalman_step(void)
{

__vccm real32_T *tmp = (__vccm real32_T
*)__vccm_alloca(sizeof(real32_T) * 4);↪→

__vccm real32_T *tmp_0 = (__vccm real32_T
*)__vccm_alloca(sizeof(real32_T) * 4);↪→

__vccm real32_T *rtb_K_k = (__vccm real32_T
*)__vccm_alloca(sizeof(real32_T) *↪→

2);
__vccm real32_T *tmp_1 = (__vccm real32_T

*)__vccm_alloca(sizeof(real32_T) * 2);↪→

/* SwitchCase: '<Root>/Switch Case' incorporates:
* Inport: '<Root>/data_update'
* Product: '<S3>/Divide1'
* Product: '<S3>/Matrix Multiply11'
*/

if (rtdata_update == 1) {
real32_T rtb_Add5;

/* Outputs for IfAction SubSystem: '<Root>/Switch Case
Action Subsystem' incorporates:↪→

* ActionPort: '<S1>/Action Port'
*/

/* Product: '<S3>/Matrix Multiply3' incorporates:
* Inport: '<Root>/C'
* Inport: '<Root>/P_k_pred'
*/

vec_blas_sgemm(101, 111, 111, 1, 2, 2, 1.0F, &rtC[0], 2,
&rtP_k_pred[0], 2,↪→

0.0F, &tmp_1[0], 2);

/* Sum: '<S3>/Add5' incorporates:
* Inport: '<Root>/C'
* Inport: '<Root>/R'
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* Math: '<S3>/Transpose2'
* Product: '<S3>/Matrix Multiply10'
* Product: '<S3>/Matrix Multiply3'
*/

rtb_Add5 = (rtC[0] * tmp_1[0] + rtC[1] * tmp_1[1]) + rtR;

/* Product: '<S3>/Matrix Multiply11' incorporates:
* Inport: '<Root>/C'
* Inport: '<Root>/P_k_pred'
* Math: '<S3>/Transpose2'
*/

vec_blas_sgemm(101, 111, 112, 2, 1, 2, 1.0F,
&rtP_k_pred[0], 2, &rtC[0], 2,↪→

0.0F, &rtb_K_k[0], 1);
rtb_K_k[0] /= rtb_Add5;
rtb_K_k[1] /= rtb_Add5;

/* Product: '<S1>/Matrix Multiply15' incorporates:
* Inport: '<Root>/C'
* Product: '<S3>/Divide1'
* Product: '<S3>/Matrix Multiply11'
*/

vec_blas_sgemm(101, 112, 111, 2, 2, 1, 1.0F, &rtb_K_k[0],
2, &rtC[0], 2,↪→

0.0F, &tmp[0], 2);

/* Product: '<S1>/Matrix Multiply1' incorporates:
* Inport: '<Root>/P_k_pred'
* Product: '<S1>/Matrix Multiply15'
*/

vec_blas_sgemm(101, 111, 111, 2, 2, 2, 1.0F, &tmp[0], 2,
&rtP_k_pred[0], 2,↪→

0.0F, &tmp_0[0], 2);

/* Sum: '<S1>/Add1' incorporates:
* Inport: '<Root>/P_k_pred'
* Product: '<S1>/Matrix Multiply1'
*/

vdsp_sub_f32(&rtP_k_pred[0], &tmp_0[0], &rtAdd1[0], 4U);

/* Product: '<S1>/Matrix Multiply14' incorporates:
* Inport: '<Root>/C'
* Inport: '<Root>/x_k_pred'
* Inport: '<Root>/y_k'
* Product: '<S1>/Matrix Multiply3'
* Product: '<S3>/Divide1'
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* Sum: '<S1>/Add5'
*/

vdsp_scale_f32(&rtb_K_k[0], rty_k - (rtx_k_pred[0] * rtC[0]
+ rtx_k_pred[1] * rtC[1]), &tmp_1[0], 2U);↪→

/* Sum: '<S1>/Add8' incorporates:
* Inport: '<Root>/x_k_pred'
* Product: '<S1>/Matrix Multiply14'
*/

vdsp_add_f32(&rtx_k_pred[0], &tmp_1[0], &rtAdd8[0], 2U);

/* End of Outputs for SubSystem: '<Root>/Switch Case Action
Subsystem' */↪→

}

/* End of SwitchCase: '<Root>/Switch Case' */

/* Switch: '<Root>/Switch1' incorporates:
* Inport: '<Root>/data_update'
*/

if (rtdata_update > 0) {
/* Product: '<S2>/Matrix Multiply2' incorporates:
* Sum: '<S1>/Add1'
*/

tmp[0] = rtAdd1[0];
tmp[1] = rtAdd1[1];
tmp[2] = rtAdd1[2];
tmp[3] = rtAdd1[3];

} else {
/* Product: '<S2>/Matrix Multiply2' incorporates:
* Inport: '<Root>/P_k_pred'
* Sum: '<S1>/Add1'
*/

tmp[0] = rtP_k_pred[0];
tmp[1] = rtP_k_pred[1];
tmp[2] = rtP_k_pred[2];
tmp[3] = rtP_k_pred[3];

}

/* Product: '<S2>/Matrix Multiply2' incorporates:
* Inport: '<Root>/A'
* Switch: '<Root>/Switch1'
*/

vec_blas_sgemm(101, 111, 111, 2, 2, 2, 1.0F, &rtA[0], 2,
&tmp[0], 2, 0.0F, &tmp_0[0], 2);↪→
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/* Math: '<S2>/Transpose' incorporates:
* Inport: '<Root>/A'
* Product: '<S2>/Matrix Multiply2'
* Product: '<S2>/Matrix Multiply3'
*/

vec_blas_sgemm(101, 111, 112, 2, 2, 2, 1.0F, &tmp_0[0], 2,
&rtA[0], 2, 0.0F, &tmp[0], 2);↪→

/* Outport: '<Root>/P_k1_pred' incorporates:
* Inport: '<Root>/Q'
* Math: '<S2>/Transpose'
* Product: '<S2>/Matrix Multiply3'
* Sum: '<S2>/Add1'
*/

vdsp_add_f32(&tmp[0], &rtQ[0], &rtP_k1_pred[0], 4U);

/* Switch: '<Root>/Switch' incorporates:
* Inport: '<Root>/data_update'
*/

if (rtdata_update > 0) {
/* Product: '<S2>/Matrix Multiply1' incorporates:
* Sum: '<S1>/Add8'
*/

tmp_1[0] = rtAdd8[0];
tmp_1[1] = rtAdd8[1];

} else {
/* Product: '<S2>/Matrix Multiply1' incorporates:
* Inport: '<Root>/x_k_pred'
* Sum: '<S1>/Add8'
*/

tmp_1[0] = rtx_k_pred[0];
tmp_1[1] = rtx_k_pred[1];

}

/* Outport: '<Root>/x_k1_pred' incorporates:
* Inport: '<Root>/A'
* Product: '<S2>/Matrix Multiply1'
* Switch: '<Root>/Switch'
*/

vec_blas_sgemm(101, 111, 111, 2, 1, 2, 1.0F, &rtA[0], 2,
&tmp_1[0], 1, 0.0F, &rtx_k1_pred[0], 1);↪→

}
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Appendix C
Implemented Functions

C.1 BSP-uC sub-module API

Function Description
wtu_wdt_DisableSysWatchdog Disable System watchdog module

(one in TC4x uC).
wtu_wdt_DisableCpuWatchdog Disable Core watchdog module.
wtu_wdt_DisableSecWatchdog Disable Cyber Security watchdog

module.
InitClock Configure the uC clock system to the

optimum setting for the max clock
and peripherals

clock_EnableXOSC Enable an external oscillator.
clock_SwitchSystemClock Select requested clock input for sys-

tem clock.
clock_SwitchPeripheralClock Selects requested clock input for pe-

ripheral clock.
clock_EnableSystemPLL Enable system PLL with required

parameters.
clock_EnablePeripheralPLL Enable peripheral PLL with required

parameters.
clock_SetCon Set a clock control register using a

posting mechanism.
clock_SetClockFreq Configure the clock distribution (di-

viders) of the system and peripheral
clocks.

core_EnableICache Enable Instruction cache on the cur-
rent core.

core_EnableDCache Enable Data cache on the current
core.

core_StartCore Start requested core from given
reset_vector.
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core_StartAllCores Start all inactive cores on multi-core
uC derivative.

core_DisableCallDepthCounter Disable call depth counter for HRA,
HRB and HRHV resources.

core_DisableVirtualization Disable virtualization feature.
core_GetVirtualMachine Return currently executing virtual

machine number.
core_GetCurrentCore Read value of the current execution

Core.
core_GetCurrentInterruptPriority Read value of the current core inter-

rupt priority.
core_stm_ReloadChannel Initialize requested channel with

reload value.
core_stm_EnableChannelIsr Enable STM Compare interrupt.
core_stm_ClearChannelIsrFlag Clear active interrupt flag on re-

quested channel.
core_stm_Wait Wait for <time> in micro seconds

using core local STM channel.
core_stm_IsChannelIsrFlag Read the interrupt flag status.
core_stm_GetChannelCurrentValue Read current value of the timer from

requested channel.
port_SetGPIO Set output value to the GPIO pin.
port_GetGPIO Reads input value from the GPIO

pin.
port_EnableInput Configure requested pin to Input

mode.
port_EnableOutput Configure requested pin to output

mode with requested characteristics.
pflash_SetWs Wait States Configuration of PLASH

controller Port0.
dflash_SetWs Wait States Configuration of DLASH

controller Port0.
intc_InitBIV Initialize BSP provided ISR Vector

Table to the current Core’s BIV reg-
ister.

intc_SetBIV Register Interrupt vector table in the
current Core.

intc_stm_SetSRC Configure STM Interrupt in SRC In-
terrupt module.

intc_EnableExternalInterrupts Enable external interrupt source in
the current Core’s ICR register.

intc_InitBTV Initialize BSP provided Trap Vector
Table to the current Core’s BTV reg-
ister.
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intc_SetBTV Register Trap vector table in the cur-

rent Core.

Table C.1: uC derivative specific API

C.2 BSP ISR Sub-module API

Function Description
bsp_isr_Init Initialize RAM ISR Table with all priority vec-

tors pointing to an Undefined Handler routine.
bsp_isr_RegisterHandler Store the ISR Handler coordinates in ISR RAM

table.

Table C.2: Interrupt sub-module API

C.3 BSP BOARD Sub-module API

Function Description
wdg_Disable Disable external WATCHDOG present on evaluation board.
led_InitAll Initialize all LED pins to output mode with a required value.
led_Init Initialize a particular LED pin to output mode with a

required value.
led_Set Set output value of a particular LED

Table C.3: Board sub-module API

C.4 Mutex Module API

Function Description
lock Try to lock the mutex object. If the mutex is already locked,

the function immediately returns failure.
trylock Lock the mutex object. If the mutex is already locked, the

function waits until the mutex is freed.
unlock Try to unlock the mutex object. If the function is called by a

non-owner, mutex is not unlocked.

Table C.4: Mutex module API
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C.5 Printf Module API

Function Description
printf_ Upon successful return, all functions return the number of
vprintf_ characters written, excluding the string-terminating charac-
sprintf_ ter. If any error is encountered, negative number is returned.
vsprintf_ Functions snprintf and vsnprintf have a limited maximum
snprintf_ amount of written characters. A value equal or larger than
vsnprintf_ the limit indicates a truncation. In the case of truncation, the

return value is the number of characters that could have been
written. Only when the returned value is non-negative and
less than the limit, the string has been completely written
with a terminating character. It is recommended to use
snprintf /vsnprintf with the limited buffer size instead of
sprintf /vsprintf, unaware of the amount of allocated memory.

Table C.5: Printf module API

C.6 Asclin Module API

Function Description
initProt Enable the read and write access to the peripheral regis-

ters to all TriCores
init Initialize the Asclin0 in asynchronous mode according to

the defined parameters.
putchar Send a character to the Communication Port.
puts Sends string to the Communication Port. The function

returns the number of characters written, excluding the
terminating NUL character. In case of any error, -1 is
returned.

getchar Read a character from the Communication Port. This
function returns the character read as an unsigned char
cast to an integer. The function waits in the infinite loop
until a character is received.

getcharNoWait Read a character from the Communication Port. This
function returns the character read as an unsigned char
cast to an int. If any error is encountered, -1 is returned.
The function checks the receive FIFO queue whether
there is a character to read. If there is not any character,
the function returns -1.
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gets Reads one line (until CR/LF character occurs) from the

COM port and saves it into the buffer. Upon successful
return, it returns the number of characters read, exclud-
ing the line-terminating CR/LF character. If any error
is encountered, -1 is returned.

flushFIFO Clear transmit and receive FIFO queues.

Table C.6: Asclin0 module API

C.7 PPU Boot API

Function Description
initProt Enable the read and write access to LMU memory blocks
Start Release the PPU from reset
waitForInit Wait until the PPU has booted.
clearTable Clear target memory for uninitialised data.
copyTable Copy initialised data from LMU to VMU

Table C.7: PPU boot API

C.8 PPU IPC API

Function Description
Rpc Request execution of a kernel on PPU. Return 0 for success, 1

and above otherwise.
setSRC Configure IPC Interrupt in SRC Interrupt module.
clearSRC Clear active IPC interrupt flag.

Table C.8: PPU IPC API
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Printf Module Configuration

A format specifier follows this prototype:

%[flags][width][.precision][length]type

The following format specifiers are supported:

Type Output
d or i Signed decimal integer
u Unsigned decimal integer
b Unsigned binary
o Unsigned octal
x Unsigned hexadecimal integer (lowercase)
X Unsigned hexadecimal integer (uppercase)
f or F Decimal floating point
e or E Scientific-notation (exponential) floating point
g or G Scientific or decimal floating point
c Single character
s String of characters
p Pointer address

Table D.1: Supported Format Specifiers [33]

Flag Description
- Left-justify within the given field width; Right justification is the

default.
+ Forces to precede the result with a plus or minus sign (+ or -)

even for positive numbers. By default, only negative numbers
are preceded with a - sign.

(space) If no sign is going to be written, a blank space is inserted before
the value.

75



D. Printf Module Configuration ..............................
# Used with o, b, x or X specifiers the value is preceded with 0, 0b,

0x or 0X respectively for values different than zero. Used with f,
F it forces the written output to contain a decimal point even if
no more digits follow. By default, if no digits follow, no decimal
point is written.

0 Left-pads the number with zeros (0) instead of spaces when
padding is specified (see width sub-specifier).

Table D.2: Supported flags [33]

Width Description
(number) Minimum number of characters to be printed. If the value to

be printed is shorter than this number, the result is padded
with blank spaces. The value is not truncated even if the result
is larger.

* The width is not specified in the format string, but as an
additional integer value argument preceding the argument that
has to be formatted.

Table D.3: Supported width specifiers

Precision Description
.number For integer specifiers (d, i, o, u, x, X): precision specifies the

minimum number of digits to be written. If the value to be
written is shorter than this number, the result is padded with
leading zeros. The value is not truncated even if the result is
longer. A precision of 0 means that no character is written
for the value 0. For f and F specifiers: this is the number of
digits to be printed after the decimal point. By default, this
is 6, and a maximum is defined when building the library. For
s: this is the maximum number of characters to be printed.
By default all characters are printed until the ending null
character is encountered. If the period is specified without
an explicit value for precision, 0 is assumed.

.* The precision is not specified in the format string, but as an
additional integer value argument preceding the argument
that has to be formatted.

Table D.4: Supported precision specifiers
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Appendix E
List of Abbreviations

Abbreviation Meaning

ADAS Advanced Driver Assistance Systems
API Application program interface
ASCLIN Asynchronous/Synchronous Interface controller with

LIN support
ASIL Automotive Safety Integrity Level
AUTOSAR CP AUTOmotive Open System Architecture Classic

Platform
BFM Bit-accurate Functional Model
BLAS Basic Linear Algebra Subprograms
BSP Board Startup Package
CNN Convolutional Neural Network
CPU Central processing unit
crt0 C’ run-time environment initialization code
CSM Cluster shared memory
CSRM Cyber Security Real-time Module
CTOR Constructor
DMA Direct Memory Access
DMI Direct Memory Interface
DSP Digital Signal Processor
EABI Embedded-application binary interface
EVB Evaluation Board
FPGA Field Programmable Gate Array
FPS Frames Per Second
GPU Graphics Processing Unit
HW Hardware
HLIR High-Level Intermediate Representation
IR Interrupt Router
ISO International Organization for Standardization
LAPACK Linear Algebra Package
LMU Local memory unit
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MCU Microcontroller unit
NN Neural network
NNAC Neural network ARC compiler
PHY Physical layer
PLL Phase-locked loop
PPU Parallel processing unit
RAM Random Access Memory
SDK Software development kit
SFR Special Function Register
SoC System on a chip
STM System Timer
STU Streamin Transfer Unit
T32 Lauterbach Trace32 debugger
TC TriCore
TCF Tool Configuration File
UART Universal asynchronous receiver-transmitter
VCCM Vector Closely Coupled Memory
VDK Virtualizer Development Kit
VLIW Very long instruction word
VM Virtual Machine
VP Virtual Prototype
uC Microcontroller
XTAL OSC Crystal oscillator
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