
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Optimizing Ridesharing with Transfers in
Urban Areas

Adéla Kubíková

Supervisor: Ing. David Fiedler
Field of study: Open Informatics
Subfield: Artificial Intelligence and Computer Science
May 2022



ii



BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

491924Personal ID number:Kubíková  AdélaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Optimizing Ridesharing with Transfers in Urban Areas 

Bachelor’s thesis title in Czech:

Optimalizace sdílených jízd s přestupem v městských oblastech 

Guidelines:

Mobility-on-demand (MoD) system with ridesharing is a widely discussed mobility concept. However, when deploying the
MoD system in an urban area, it requires a large number of vehicles to guarantee an acceptable availability. To tackle this
issue, an MoD system with passenger transfers is proposed. In such system, travelers can switch the car, using two or
more vehicles for completing their journey.The goal of this work is to analyze the state-of-the art algorithms for ridesharing
with transfers and deliver a method that will provide either a performance, or a ridesharing efficiency improvement.
1) Study the literature about ridesharing in MoD systems. Focus on ridesharing with transfers.
2) Based on your research, implement a state-of-the-art method for ridesharing with transfers as a baseline and integrate
it into the SiMoD simulation framework (github.com/aicenter/simod).
3) With the help of the demand filtration and generation tools provided by your supervisor, create a travel demand dataset
with characteristics similar to the dataset on which the selected baseline method was evaluated.
4) Evaluate the performance and efficiency of the baseline method using the created dataset.
5) Using the insights gathered during your work, design a new/improved algorithm for ridesharing with transfers that will
overcome the baseline either in ridesharing efficiency or in computational performance.
6) Implement the designed algorithm in the SiMoD framework.
7) Evaluate the proposed algorithm in SiMoD using the created travel demand dataset and analyze the results.

Bibliography / sources:

[1] S. Mitrović-Minić and G. Laporte, “The Pickup And Delivery Problem With Time Windows And Transshipment,” INFOR:
Information Systems and Operational Research, vol. 44, no. 3, pp. 217–227, Aug. 2006, doi:
10.1080/03155986.2006.11732749.
[2] W. Herbawi and M.Weber, “Evolutionary Multiobjective Route Planning in Dynamic Multi-hop Ridesharing,” in Evolutionary
Computation in Combinatorial Optimization, Berlin, Heidelberg, 2011, pp. 84–95. doi: 10.1007/978-3-642-20364-0_8.
[3] Yunfei Hou, X. Li, and C. Qiao, “TicTac: From transfer-incapable carpooling to transfer-allowed carpooling,” in 2012
IEEE Global Communications Conference (GLOBECOM), Dec. 2012, pp. 268–273. doi: 10.1109/GLOCOM.2012.6503124.
[4] B. Coltin and M. Veloso, “Ridesharing with passenger transfers,” in 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Sep. 2014, pp. 3278–3283. doi: 10.1109/IROS.2014.6943018.
[5] S. Ben Cheikh, C. Tahon, and S. Hammadi, “An evolutionary approach to solve the dynamic multihop ridematching
problem,” SIMULATION, vol. 93, no. 1, pp. 3–19, Jan. 2017, doi: 10.1177/0037549716680025.
[6] J. Schönberger, “Scheduling constraints in dial-a-ride problems with transfers: a metaheuristic approach incorporating
a cross-route scheduling procedure with postponement opportunities,” Public Transp, vol. 9, no. 1, pp. 243–272, Jul. 2017,
doi: 10.1007/s12469-016-0139-6.
[7] S. Lotfi, K. Abdelghany, and H. Hashemi, “Modeling Framework and Decomposition Scheme for On-Demand Mobility
Services with Ridesharing and Transfer,” Computer-Aided Civil and Infrastructure Engineering, vol. 34, no. 1, pp. 21–37,
2019, doi: 10.1111/mice.12366.

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZBP-2015.1



Name and workplace of bachelor’s thesis supervisor:

Ing. David Fiedler    Artificial Intelligence Center  FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 06.01.2022

Assignment valid until: 30.09.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. David Fiedler
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZBP-2015.1



Acknowledgements
First and foremost, I would like to sin-

cerely thank Ing. David Fiedler, for his
guidance and feedback throughout the
project, his valuable and substantive ad-
vice and comments, and his helpfulness
during consultations.

I would also like to thank my family
and friends for their support throughout
the study and the Czech Technical Univer-
sity in Prague for the education provided.

Declaration
I declare that the presented work was

developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
thesis.

Prague, 20 May 2022

v



Abstract
The problem of increasing transport de-

mand in cities, rising costs of car oper-
ation, pollution, and insufficient capac-
ity of the road network can be solved by
ridesharing - a service that allows shar-
ing rides in a vehicle with other people.
The implementation of transfers, i.e., the
segmenting of a passenger’s trip between
multiple vehicles, promises to further in-
crease transport efficiency. This topic is
particularly applicable in the commercial
sector for taxi services such as Liftago,
Bolt, or Uber.

We review previous research and al-
ready proposed methods to solve rideshar-
ing with transfers. We propose and im-
plement a method for dispatching vehi-
cles to requests using Insertion Heuris-
tics, allowing at most one transfer at
predefined transfer stations. We evalu-
ate this method on real data from New
York City and compare it to conven-
tional ridesharing without transfers. Our
method achieved a 17.9% improvement
in the number of dropped demands and
reduced average delay by 13.7 %.

Keywords: ridesharing, ridesharing
with transfers, heuristics, SiMoD

Supervisor: Ing. David Fiedler
E-323,
Department of Computer Science,
Czech Technical University in Prague,
Karlovo náměstí 13,
121 35 Praha 2

Abstrakt
Problém rostoucí poptávky po dopravě

ve městech, rostoucích nákladů na provoz
automobilů, znečištění životního prostředí
a nedostatečné kapacity silniční sítě lze
řešit pomocí ridesharingu - služby, která
umožňuje sdílet jízdu ve vozidle s dalšími
lidmi. Dalšího zvýšení efektivity přepravy
lze dosáhnout zavedením přestupů, tj. roz-
dělením cesty cestujícího mezi více vozidel.
Toto téma se v komerčním sektoru týká
zejména taxislužeb, jako jsou Liftago, Bolt
nebo Uber.

Sumarizujeme přehled o předchozím
výzkumu a již navržených metodách pro
řešení sdílení jízd s přestupy. Navrhujeme
a implementujeme metodu pro dispečink
vozidel k cestujícím s využitím Insertion
heuristiky umožňující maximálně jeden
přestup na předem definovaných přestup-
ních stanicích. Tuto metodu vyhodnocu-
jeme na reálných datech z New Yorku
a porovnáváme ji s konvenčním sdílením
jízd bez přestupů. Naše metoda dosáhla
17,9 % zlepšení počtu odmítnutých po-
žadavků a snížila průměrné zpoždění o
13,7 %.

Klíčová slova: sdílené jízdy, sdílené
jízdy s přestupy, heuristiky, SiMoD

Překlad názvu: Optimalizace sdílených
jízd s přestupem v městských oblastech

vi



Contents
1 Introduction 1
1.1 Project Target . . . . . . . . . . . . . . . . . 2
2 Literature Review 3
2.1 Ridesharing . . . . . . . . . . . . . . . . . . . 3
2.2 Ridesharing with Transfers . . . . . . 4
3 Problem Description 7
3.1 Problem Formulation . . . . . . . . . . . 7
4 Problem Solution - Baseline
method 11
4.1 Greedy Heuristic Algorithm . . . . 11

4.1.1 Preprocessing . . . . . . . . . . . . . . 11
4.1.2 Finding possible itineraries . . 12
4.1.3 Selecting the final plan . . . . . 13

4.2 Feasible Rideshare Plan Finding 13
4.2.1 Finding Transfer Plans . . . . . 15

5 Problem Solution - Improved
method 17
5.1 Main ideas of the proposed

method . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Insertion Heuristic Algorithm . . 18

5.2.1 Preprocessing . . . . . . . . . . . . . . 18
5.2.2 Finding possible itineraries . . 18
5.2.3 Final Plan Selection . . . . . . . . 20

5.3 Finding a feasible route plan . . . 20
5.3.1 Itinerary without transfer . . . 20
5.3.2 Itinerary with Transfer . . . . . 21

6 Implementation 25
6.1 Implementing of solvers . . . . . . . . 25
6.2 Integration to simulation tool . . 26
6.3 Description of the simulation

environment . . . . . . . . . . . . . . . . . . . 27
7 Evaluation 31
7.1 Dataset description . . . . . . . . . . . 31

7.1.1 Road Graph . . . . . . . . . . . . . . . 31
7.1.2 Demand data . . . . . . . . . . . . . . 31
7.1.3 Vehicle Fleet . . . . . . . . . . . . . . 33

7.2 Summary . . . . . . . . . . . . . . . . . . . . 35
7.3 Other Detailed Statistics . . . . . . 35

7.3.1 Delay . . . . . . . . . . . . . . . . . . . . . 36
7.3.2 Vehicle occupancy . . . . . . . . . . 36
7.3.3 Fleet Utilization . . . . . . . . . . . 37
7.3.4 Vehicle Waiting Times at

Transfers . . . . . . . . . . . . . . . . . . . . . 37

8 Conclusion 43
Bibliography 45
A List of abbreviations 49
B Attachment content 51

vii



Figures
3.1 Example illustrating ridesharing

with transfer problem . . . . . . . . . . . . 8

6.1 Simplified diagram of solvers and
classes that solver uses. Newly
implemented classes are colored blue.
Edited classes are colored red. . . . . 28

6.2 Running simulation in SiMoD . . 29

7.1 Road graph used in simulation . 32
7.2 Demand heatmap and pickup and

dropoff locations . . . . . . . . . . . . . . . . 33
7.3 Number of demands in time [s] . 33
7.4 Locations of transfer stations and

depots . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.5 Delay in relation to the minimum

trip duration . . . . . . . . . . . . . . . . . . . 38
7.6 Average vehicle occupancy over

simulation time . . . . . . . . . . . . . . . . . 39
7.7 Vehicle utilization over simulation

time . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.8 Waiting Times of Greedy Heuristic

method [s] . . . . . . . . . . . . . . . . . . . . . 41

Tables
7.1 Demands description . . . . . . . . . . 32
7.2 Number of demands by hour . . . 32
7.3 Methods comparison . . . . . . . . . . 35

viii



Chapter 1
Introduction

Due to the ever-increasing demand for urban transport, the number of
vehicles is growing, and transport is facing significant problems, such as traffic
jams, inaccessibility of parking spaces, and high pollution. Commuting by
car is particularly uneconomical, given that most car seats are usually empty.
In addition, rising petrol prices and accelerating environmental problems are
making cars increasingly expensive to own and run. More and more people,
especially in big cities, are using alternative modes of transport, commuting
by bicycles, electric scooters, public transport, or taxis. But this has its
problems too - in big cities, for example, it is increasingly difficult to call a
taxi due to their busy schedule 1. Moreover, taxi fares are also quite expensive,
and it is costly to take a taxi every day. Because of the large number of cars,
traffic jams often form. Cars also pollute the environment - up to 95 % of
smog in cities is caused by traffic 2. A possible solution that fights the above
problems is sharing a route between multiple passengers in one vehicle.

The problem of sharing a route between passengers is solved by rideshar-
ing. Ridesharing is a concept that essentially allows multiple people to use one
vehicle at the same time. Therefore, multiple passengers can ride in a vehicle
and share part or even all of the journey. The vehicle can change its current
route plan if another passenger is served. While these changes may cause
detours and delays for other passengers, the added inconvenience is usually
balanced by a lower fare. For this reason, ridesharing can ultimately be
beneficial to all passengers. Ridesharing also reduces the number of vehicles
needed to service requests from passengers. Fewer vehicles also mean less
congestion, higher speeds, and less air pollution.

In this work, we aim to improve the efficiency of transport even further
by using a relatively new idea of ridesharing with transfers. In this model,
passengers are allowed to transfer between vehicles, allowing taxis to serve
a greater number of requests cooperatively. This scheduling problem is
particularly challenging as the number of possible assignments of passengers
to vehicles increases when transfers are allowed. However, available work

1Brits using Uber and other taxi apps face long waits and
fare hikes amid driver shortage https://www.cnbc.com/2021/09/27/
uber-and-bolt-struggle-to-meet-demand-in-the-uk.html

2Města se nebrání smogu z aut. Přitom jim to legislativa umožňuje https://www.
lidovky.cz/domov/mesta-se-nebrani-smogu-z-aut.A170409_150829_ln_domov_ELE

1

https://www.cnbc.com/2021/09/27/uber-and-bolt-struggle-to-meet-demand-in-the-uk.html
https://www.cnbc.com/2021/09/27/uber-and-bolt-struggle-to-meet-demand-in-the-uk.html
https://www.lidovky.cz/domov/mesta-se-nebrani-smogu-z-aut.A170409_150829_ln_domov_ELE
https://www.lidovky.cz/domov/mesta-se-nebrani-smogu-z-aut.A170409_150829_ln_domov_ELE


1. Introduction .....................................
suggests that ridesharing with transfers increases the efficiency of urban
transport, increases the transport capacity, reduces the size of the necessary
fleet, and thus reduces the impact on the environment and air pollution.

1.1 Project Target

This project aims to study various methods for solving Mobility-on-Demand
systems with ridesharing with the possibility of transferring from one vehicle
to another. Many different approaches, such as evolutionary algorithms,
linear programming, or heuristic algorithms, have been proposed to solve this
problem.

Our second goal is to choose a method that can provide a high-quality
solution for sufficiently large instances in a reasonable amount of time. We
then implement the selected method in the SiMoD simulation tool and
evaluate its performance and efficiency.

In the following part, we propose a new algorithm that will bring improve-
ments in either performance or efficiency. We again integrate the proposed
algorithm into the SiMoD simulation tool and evaluate its results.

Finally, we compare the two implemented transfer methods with a
conventional solution of ridesharing without transfers. We discuss the results
and the comparison.

2



Chapter 2
Literature Review

Ridesharing is a riveting topic that has received attention from many
researchers. However, considering transfers between vehicles is a relatively
modern idea. Thanks to ridesharing, taxi services are able to carry more pas-
sengers at lower fares. Extending this idea by introducing transfers promises
to further increase transport efficiency, allow lower fares, and potentially
reduce mileage.

2.1 Ridesharing

Ridesharing can be operated in one of two modes. In static mode, all
transport requests are known in advance, allowing all vehicle routes to be
planned in advance. In dynamic mode, the requests are revealed throughout
the day without prior knowledge, so algorithms need to match trip requests
with the available vehicles on-the-fly and routes are built in real-time. We are
considering two ridesharing services - Peer-to-peer ridesharing, where drivers
share their personal trips, and centralized, which we can think of as a taxi
service whose drivers communicate with each other.

Peer-to-peer ridesharing is a service that provides a platform for drivers
to share their personal trips with riders who have similar itineraries.

Paper [20] summarizes in detail the existing P2P ridesharing literature.
It focuses on modeling and solution methodologies for matching, routing,
and scheduling problems. In conclusion, the authors discuss directions for
future research, including autonomous vehicles. They consider ridesharing as
a suitable platform for hosting autonomous electrified vehicles.

In [22], a similar approach as in [2] is used. Authors decompose the
complicated problem of ridesharing matching into simpler parts which they
solve separately. One of the unique contributions of [22] is to integrate the
dynamic tree algorithm for solving ridesharing VRP. The dynamic tree allows
using previously calculated driver schedules instead of calculating them from
scratch.

Tafreshian and Masoud focus on the graph partitioning method in their
paper [19]. To solve dynamic ridesharing, they present here the ε-uniform
partitioning algorithm and show experimentally that the vehicle traveled

3



2. Literature Review...................................
distance savings produced by the trip-based ε-uniform algorithm follow the
optimal results very closely.

Paper [21] addresses the problem of the small number of existing plat-
forms for facilitating peer-to-peer ridesharing in a dynamic scenario that are
integrated with multi-modal trip planners. It therefore presents the Xhare-a-
Ride (XAR) system, a scalable platform for dynamic peer-to-peer ridesharing
suitable for integration with a MMTP.

Centralized ridesharing solutions match passengers and drivers through
a unified communication medium. It is particularly applicable in large cities
for transport companies such as Liftago, Bolt, or Uber.

Various ridesharing systems are thoroughly surveyed in [1]. This paper
reports that there is a growing interest from the research community to
address the optimization issues in dynamic ridesharing, but the number of
specific contributions is still small. In particular, it cites three areas for future
research: fast optimization approaches for real-life instance sizes, incentive
schemes to build critical mass, and optimization approaches that allow choice.

In paper [13], a real-time taxi sharing system based on a mobile cloud app
has been proposed and developed. The taxi search process is simplified by
dividing the road network into square networks. Experimental results have
shown that it is possible to increase the capability of taxi services in a city
to satisfy the commuting needs of more people. A decrease in the distance
traveled was also achieved.

Other works propose heuristic algorithms. Paper [7] describes a tabu
search heuristic for static DARP with multiple vehicles. Another solution is
described in [16]. This paper presents several heuristics that combine greedy
function, insertion heuristics, and local search. In [9], besides the solution
using Insertion Heuristics, an evolutionary approach using genetic algorithms
is also described.

Genetic algorithms are also provided in [8]. In this work, the feasibility of
implementing MOEAs for solving the route planning problem in Dynamic
Multihop Ridesharing Systems is investigated, and the deterministic General-
ized Label Correcting algorithm and the scalable algorithm Nondominated
Sorting Genetic Algorithm NSGA-II are presented here.

2.2 Ridesharing with Transfers

As with the standard ridesharing problem, ridesharing with transfers can
be solved by many different methods.

Peer-to-peer ridesharing with transfers is examined in [14]. This work
proposes a pre-processing procedure to reduce the size of the problem and
devise a decomposition algorithm to solve the original ride-matching problem
to optimality by solving multiple minor problems. Moreover, the sub-problems
in each iteration are independent of each other, allowing the computations to
be performed in parallel.

4



...............................2.2. Ridesharing with Transfers

Article [4] deals with the problem of ridesharing for business trips in a
closed community of companies. It first provides a general ILP formulation
for the problem of ridesharing with meeting places. The model includes the
possibility for a rider to transfer between drivers. Next, a greedy heuristic is
proposed to solve larger instances.

The dynamic system, which generates a solution with an arbitrary number
of transfers, is solved in [3]. In this paper, a novel approach, called MACGeO,
is developed to address the multihop ride-matching problem. The originality
of this approach lies in the fact that the coding of the chromosomes is dynamic
and in the absence of a repair process for the crossover and mutation operators,
which makes this approach different from other works using evolutionary
algorithms.

Paper [15] focused on exact solution methods and presents the MIP
formulation. For application to real scenarios, they consider a combination
with branch-and-cut and branch-and-bound approaches.

A distributed model-free algorithm is served by [18]. This multihop
ridesharing algorithm uses deep reinforcement learning to learn optimal
vehicle dispatch and matching decisions by interacting with the external
environment.

In [5], the real-time transfer mechanism is implemented in the environ-
ment with connected and self-driving vehicles. The developed scheme further
increases the efficiency of ridesharing services and reduces the trip time of
carpooled passengers.

Article [12] presents a modeling framework for MoD systems in metropoli-
tan areas. The solution methodology uses a modified version of the GC
algorithm and implements iterative decomposition techniques. They also
consider possible parallelization by solving sub-problems independently.

Work [17] introduces genetic search-based memetic metaheuristic ap-
proach. This search algorithm is enhanced by a schedule-building procedure
that postpones waiting times at selected locations if necessary.

Article [10] deals with the new problem of ridesharing with allowed
transfers with the aim of maximizing the successful ridesharing ratio. A Driver
Experience Considered Strategy and a Passenger Experience Considered
Strategy for scheduling carpooling are proposed. This paper also concludes
that allowing more than one transfer during a trip does not bring any benefits.

Heuristic solutions are dealt with in paper [6]. It proposes three solution
methods, a greedy approach, an auction approach, and a graph search ap-
proach. It is shown that for some problems, transferring passengers reduces
the distance traveled by almost 30%.

System for electric taxis is proposed in [11]. The new ridesharing scheme
introduced herein considers both the limited battery of electric vehicles and
the user requirements. The proposed TASeT problem is solved by a greedy
heuristic algorithm. A taxi service that allows passengers to transfer at most
once is considered.

As a criterion for selecting a method to implement, we considered cen-

5



2. Literature Review...................................
tralized ridesharing with predefined transfer stations, and we also focused
on the size of the instance it solves. To implement the baseline method, we
chose the Greedy Heuristic described in [11]. This method solves centralized
ridesharing, which can be applied in the taxi sector companies. We modify
the presented model and simplify its conditions to define the problem for
general vehicles. The algorithm presented here solves instances of thousands
of vehicles, which is more than most of the work published on this topic.

6



Chapter 3
Problem Description

Ridesharing with transfers is defined as follows. We consider ridesharing
planning by a central dispatch center. The dispatch center has the information
about the current status of all the taxis (including current locations, route
itineraries, passengers on board, etc.) and requests from passengers that
need to be served. As stated previously, we consider the model in which no
transfer or only one transfer from one taxi to another is possible. The transfer
is possible on predefined transfer stations. All passengers must reach their
destination within their tolerable delay time. The dispatch center tries to
serve as many demands as possible in a given time with a limited number of
taxis. In this section, we present the modified formulation.

3.1 Problem Formulation

The optimal solution of the problem can be found with Mixed-Integer
Programming (MIP). We build a directed graph with additional data on its
nodes and edges.

Let G(N, E) be a directed graph with node set N and set of edges E.
An edge from node i to node j is denoted by (i, j) ∈ E. We use T ⊆ N to
denote the set of transfer nodes in G. Let K be the set of taxis, the status
of each taxi k ∈ K at the time of dispatch is defined as a tuple (uk, ok) in
which uk denotes the seating capacity of vehicle k, and ok ∈ O denotes the
start location (i.e., the initial location at the vehicle’s of dispatch). Variable
O is the set of starting locations of all taxis, O ⊆ N .

Let R be the set of passenger requests indexed by r = 1, 2, ..., |R|. Each
request can be defined as a tuple (pr, dr), in which the first two parameters pr

and dr ∈ N are the pickup and dropoff locations of request r ∈ R, respectively.
Let D = {dr|∀r ∈ R} be the set of dropoff nodes and P = {pr|∀r ∈ R} be the
set of pickup nodes. The corresponding node is duplicated if two requests have
a common pickup or dropoff location. In this model, each request is associated
with exactly one pickup and dropoff pair. In graph G, N = O ∪ T ∪ P ∪D,
each node in N is connected to all the other nodes, except that each node in
O is only connected to all the nodes in P . In other words, a taxi may visit
multiple pickup, transfer, or dropoff locations but not any start location of
other taxis.

7



3. Problem Description..................................

Figure 3.1: Example illustrating ridesharing with transfer problem

In this formulation, the {0, 1} variables represent the binary decision of
taxi k (or request r) that uses edge (i, j). Specifically, we use two de-
cision variables, xk

(i,j) = {0, 1} k ∈ K, (i, j) ∈ E; and ykr
(i,j) = {0, 1},

k ∈ K, r ∈ R, (i, j) ∈ E. Let xk
(i,j) = 1 if the taxi k uses edge (i, j) and

xk
(i,j) = 0 otherwise. Let ykr

(i,j) = 1 if request r is served by taxi k on the edge
(i, j), ykr

(i,j) = 0 otherwise. The MIP model is stated as follows:

Maximize ∑
k∈K

∑
r∈R

∑
(i,j)∈E,j∈dr

ykr
(i,j)qr (3.1)

Subject to ∑
j:(i,j)∈E

xk
(i,j) ≤ 1 ∀i = ok (3.2)

∑
j:(i,j)∈E

xk
(i,j) −

∑
j:(j,i)∈E

xk
(j,i) ≤ 0 ∀k ∈ K, ∀i ∈ T ∪D (3.3)

∑
j:(i,j)∈E

xk
(i,j) −

∑
j:(j,i)∈E

xk
(j,i) = 0 ∀k ∈ K, ∀i ∈ P (3.4)

∑
k∈K

∑
j:(i,j)∈E

ykr
(i,j) ≤ 1 ∀r ∈ R, ∀i = pr (3.5)

∑
k∈K

∑
j:(pr,j)∈E

ykr
(pr,j) −

∑
k∈K

∑
j:(j,dr)∈E

ykr
(j,dr) = 0 ∀r ∈ R (3.6)

8



................................. 3.1. Problem Formulation

∑
k∈K

∑
j:(i,j)∈E

ykr
(i,j) −

∑
k∈K

∑
j:(j,i)∈E

ykr
(j,i) ≤ 0 ∀r ∈ R, ∀i ∈ T ∪D (3.7)

ykr
(i,j) ≤ xk

(i,j) ∀(i, j) ∈ E ∀k ∈ K, ∀r ∈ R (3.8)

∑
r∈R

ykr
(i,j) ≤ ukxk

(i,j) ∀(i, j) ∈ E, ∀k ∈ K (3.9)

The goal is to maximize the number of passengers served by the taxi
fleet. Constraint (3.2) enforces that each taxi is scheduled at most once
from its origin. Not all the taxis have to be dispatched if there are not too
many requests. Constraints (3.3) and (3.4) maintain the flow conservation
at transfer and dropoff locations. Constraints (3.5), (3.6) and (3.7) specify
passenger routes - (3.5) enforces that each request is served at most once,
(3.6) guarantees that passengers will reach their destination if they are picked
up, (3.7) maintains the flow conservation at transfer nodes. Constraints (3.8)
and (3.9) link the taxi and request flow. Constraint (3.8) states that if a
request flow is on edge e, some taxi flows are on the same edge e. Constraint
(3.9) enforces that each taxi would not carry more passengers than its seat
capacity.

To capture the time constraints of the requests, a few additional con-
straints are defined. For an edge (i, j) ∈ E, let t(i,j) be the estimated travel
time for a taxi from node i to j. Let l(i,j) be the distance between i and j.
We use ak

i and dk
i to denote the arrival and departure times of taxi k at node

i. Then, if a taxi k chose to travel on the edge (i, j), i.e., xk
(i,j) = 1, it must

satisfy ak
j ≥ dk

i + t(i,j) and dk
j ≥ ak

j to handle the time sequence. Constraints
(3.10) and (3.11) enforce these constraints by using the M constant (M is a
large positive number).

dk
i + t(i,j) − ak

j ≤M(1− xk
(i,j)) ∀(i, j) ∈ E, ∀k ∈ K (3.10)

ak
j ≤ dk

j ∀j ∈ N, ∀k ∈ K (3.11)

Each request r has its pickup node pr and dropoff node dr. Two time
windows [spr , epr ] and [sdr , edr ] are associated with a request r. The pickup
window defines maximum waiting time for a taxi arrival tw = epr − spr . The
dropoff window enforces that the total travel time of a passenger will not
exceed maximum tolerable delay. Let ttrip be the travel time of the direct
journey of a request served by a single vehicle without a transfer. Let td be
the maximum additional trip time a passenger would accept. Start time and

9



3. Problem Description..................................
end time of the dropoff window can be expressed as sdr = spr + ttrip and
edr = sdr + td. The time constraints (3.12) and (3.13) are defined as follows:

spr ≤ ak
pr

, dk
pr
≤ epr ∀k ∈ K, ∀r ∈ R (3.12)

sdr ≤ ak
dr

, dk
dr
≤ edr ∀k ∈ K, ∀r ∈ R (3.13)

To handle transfer, we use a logical counter c. Let ckl
ir = 1 if the request

r is transferred from taxi k to taxi l, l ̸= k at some transfer node i ∈ T , and
ckl

ir = 0 otherwise (ckl
ir ∈ {0, 1} ∀r ∈ R, ∀i ∈ T, ∀k, l ∈ K, k ̸= l). Constraints

(3.14) and (3.15) together enforce that at a given point i a request r could
transfer from taxi k to l only if taxi k arrives before the departure of taxi l.
Constraint (3.16) allows passengers to transfer at most once during their trip.

ak
i − dl

i ≤M(1− ckl
jr ∀r ∈ R ∀i ∈ T ∀k, l ∈ K, k ̸= l (3.14)

∑
j:ij∈E

ykr
ji +

∑
j:ji∈E

ylr
ij ≤ ckl

ir + 1 ∀r ∈ R ∀i ∈ T ∀k, l ∈ K, k ̸= l (3.15)

∑
i∈T

∑
l∈K, l ̸=k

ckl
ir ≤ 1 ∀r ∈ R ∀k ∈ K (3.16)

This provided MIP model is able to find the optimal solution. Due to
its NP-hard complexity, it is only feasible for small instances, which makes it
unsuitable to be directly applied to real-world scenarios. Therefore, heuristic
strategies are often used in practice. Such strategies solve practical reasoning
problems and can handle a large number of requests. In the following sections,
we describe two heuristic methods that address ridesharing with transfers. In
Chapter 4, we describe an algorithm using the Greedy Heuristic. In Chapter 5,
we present a solution based on the Insertion Heuristic.

10



Chapter 4
Problem Solution - Baseline method

In this chapter, we describe the solution using the greedy heuristics, which
is inspired from [11].

4.1 Greedy Heuristic Algorithm

The proposed heuristic finds all valid travel plans for a given passenger. It
searches for both plans with a transfer and direct trips without a transfer.
For each plan, it calculates its delay and transfer time and then uses these
two values to select the final plan. In the following sections, we first describe
the preparatory steps before the actual plan search, then describe the process
of searching for valid plans, and then present the criteria used to select the
final plan.

4.1.1 Preprocessing

Before the algorithm starts searching for possible schedules, it first calculates
the arrival times of the vehicles at the transfer stations. The algorithm also
looks for how many cars can potentially serve the requests and assigns priority
to the requests accordingly.

In line 2 of Algorithm 1, the lookup table LT is maintained to keep
track of potential taxis that can be arranged to transfer at the given transfer
station. Entry LT [t][k] stores the closest arrival time of taxi k from its current
location to transfer station t. If there are already any passengers driving in
taxi k, we must also check that setting t as the new transfer point does not
exceed the tolerable delay for any passenger on board. If the drive to the
transfer point t violates the maximum delay constraints, we set LT [t][k] =∞.
The values from LT are later used to find potential transfer stations and
vehicles in lines 9 and 10.

In line 4, we rank requests in ascending order according to the number
of vehicles that can pick up the given request in time. The request that has
the least such vehicles is handled first. Requests with fewer available vehicles
are less likely to be serviced, therefore we give them a higher priority.

11



4. Problem Solution - Baseline method...........................
4.1.2 Finding possible itineraries

Finding a trip itinerary is a two-step process. First, a direct route without
a transfer is found in line 8. Lines 11-13 then search for an itinerary with
a transfer. It is only possible to transfer at the predefined stations. When
creating an itinerary with a transfer, we calculate the time for the transfer
(i.e., the time from the arrival of the vehicle that arrives at station t first
until the departure of the vehicle to which the passenger has transferred). If
necessary, we will add an action for waiting at the station to the itineraries.
We will check whether the new changes in the trip plan (i.e., the drive to the
station t and potential waiting) do not conflict with the maximum passenger
delays.

For one request, the algorithm may find multiple ridesharing itineraries.
To build the final plan for the passenger, we will select one of the possible
itineraries according to the rules described in the next section.

Algorithm 1 Greedy Heuristic
1: function GreedyHeuristic(K, R)
2: initialize LT
3: plans = ∅
4: R′ ← sort R by the number of possible pickup taxis
5: for each r ∈ R do
6: templist = ∅
7: for each k can pickup r do
8: templist += FindPlan(r.src, r.dst, k)
9: for each t ∈ potential transfer locations for k do

10: for each k
′ that k can transfer to at t do

11: itnryp1← FindPlan(r.src, t, k)
12: itnryp2← FindPlan(t, r.dst, k

′)
13: templist += CreateTransferPlan(itnryp1, itnryp2)
14: end for
15: end for
16: end for
17: sort templist by delay and transfer time
18: selected← itinerary with longest transfer time
19: in the top β% shortest delay
20: update k, k

′ and LT
21: plans += selected
22: end for
23: return plans
24: end function

12



............................ 4.2. Feasible Rideshare Plan Finding

4.1.3 Selecting the final plan

Two criteria apply to the selection of the plan.. To select an itinerary with fewer detours, we only keep the top β %
of plans with the shortest delay for the request. The variable β is a
configurable parameter with default value β = 20.. Among the remaining candidate itineraries, we choose the plan with
the longest transfer time. This we want to ensure that passengers
can comfortably connect to the next taxi. According to the original
definition in [11], where the use of electrotaxis is considered, this time is
also intended for vehicle charging.

The selected itinerary still has to meet all the constraints for passengers,
i.e., the total delay still needs to be within the maximum tolerable delay for
all participating passengers.

4.2 Feasible Rideshare Plan Finding

For a given request r (specified by its source and destination as in Algo-
rithm 1 and a possible pickup taxi k, we calculate the feasible ridesharing
plan as shown in Algorithm 2.

Algorithm 2 Find Feasible Rideshare Plan Without Transfer
1: function FindPlan(k, r)
2: n← number of existing passengers in k
3: lst = ∅
4: pickuporder ← plan to pickup r after picking up n passengers
5: dropofforders ← permutations of r’s and n dropoff actions
6: for each dropofforder do
7: lst += CreateItinerary(pickuporder + dropofforder, k)
8: end for
9: return FindPlanMinDelay(lst)

10: end function

We use two heuristics based on practical and real-world considerations.
First, we assume that the new passenger request r is the last one to board
on taxi, meaning the pickup time will not change for n previously scheduled
passengers. Thanks to this heuristic, we will have only one given pickup order.
We get dropoff orders as permutations of all dropoff actions from passengers.
If a taxi already has n passengers on board, there will be (n+1)! possible
dropoff orders.

This algorithm may not be correct if the existing plan contains transfer
actions. If we were to further modify the vehicle plan, the passenger’s arrival
at the transfer station could be delayed. Then the continuity of the transfer
might not be ensured. If the vehicle serving the first segment of the passenger’s

13



4. Problem Solution - Baseline method...........................
route is delayed and the vehicle serving the second segment arrives to pick up
the passenger earlier, an error will occur. Alternatively, if the second vehicle
has a wait action scheduled and the first vehicle is delayed, the waiting time
will no longer be long enough, and the transfer will also not be continuous.

To avoid this possible error, we will freeze the part of the plan that
contains the transfer actions. We split the existing plan into two parts - the
first part will be the part of the plan from the beginning up to and including
the last transfer action, and the second part will be the rest of the plan that
follows. The FindPlan function will then operate only with the pickup and
dropoff actions contained in the second part of the plan. The first part is used
to calculate the plan duration, which is then added to the expected service
time (te) of all actions in the second part of the plan in FindPlanMinDelay
function.

Second, among all pickup and dropoff orders that satisfy time constraints
for passenger delays, we select the one with the lowest increase in delay for
passengers. Such a plan is selected according to Algorithm 3 below.

Algorithm 3 Find Optimal Order of Actions
1: function FindPlanMinDelay(lst)
2: delays← ∅
3: for each itinerary ∈ lst do
4: initialize delay = 0
5: for each action ∈ itinerary do
6: dest← destination point of action
7: te ← expected time of arrival to dest
8: tmax ← time of arrival to dest with maximum tolerable delay
9: if te > tmax then

10: delay = 0
11: break;
12: end if
13: delay += tmax - te

14: end for
15: delays += delay
16: end for
17: bestP lan← plan with maximum delay
18: return bestP lan
19: end function

In Algorithm 3, we calculate the expected time of arrival for each action
in the itinerary. We check whether the time respects the time constraints,
i.e., it is smaller than the maximum tolerated delay. If the time does not
meet these constraints, this plan is not feasible. For each itinerary, we add
changes in passenger delays in every iteration. We set the delay change as
the difference between the maximum arrival time and the expected arrival
time. Then the plan with optimal order of actions is the one that is both

14



............................ 4.2. Feasible Rideshare Plan Finding

feasible and has the biggest delay.

4.2.1 Finding Transfer Plans

When creating a transfer plan, the action of boarding the second car
must follow the action of getting off the first car. For this reason, we call
the CreateTranferPlan function, which ensures the sequence of these two
actions.

The CreateTranferPlan function described in Algorithm 4 calculates
the expected arrival times of both vehicles at the station. The difference
between these two times determines the potential waiting time. If the first
vehicle arrives later than the second vehicle, we add a wait action to the
second vehicle’s plan with the appropriate duration. We then check that the
delay caused by the waiting does not violate the maximum tolerated time for
the following actions in the plan. If the plan is valid, we return both of its
segments. Otherwise, we return error value indicating that the transfer at
the station is not possible for the vehicles due to time constraints.

Algorithm 4 Find Plan with Transfer
1: function CreateTransferPlan(itnryp1, itnryp2)
2: valid← True
3: t1 ← time of arrival of the first car to transfer station
4: t2 ← time of arrival of the second car to transfer station
5: waitT ime = t1 − t2
6: if waitT ime > 0 then
7: add Wait action to itnryp2
8: valid← check constraints for itnryp2
9: end if

10: if valid then
11: return itnryp1, itnryp2
12: end if
13: return null
14: end function

15



16



Chapter 5
Problem Solution - Improved method

In the second part of this paper, we try to improve the efficiency of
ridesharing and propose a new method that overcomes the results of the
baseline method.

5.1 Main ideas of the proposed method

We identify the biggest weaknesses of the Greedy Heuristic algorithm. The
biggest limitation is undoubtedly the restriction to a fixed order of pickup
actions. The Greedy Heuristic algorithm assumes that all passengers first
board in a fixed order (a new passenger for whom we are looking for a schedule
always boards last), and only then searches for the best order of dropoff
actions.

The second major limitation is the transfer planning itself. If the Greedy
Heuristic algorithm schedules a transfer, it is no longer able to effectively
modify the schedules of the vehicles participating in the transfer. The
permutation of dropoff actions and the fixed order of pickups could disrupt
the temporal sequence of actions of dropping off the first vehicle and picking
up the second. Therefore, if the vehicle schedule contains a transfer action,
we freeze the segment up to the transfer action and perform permutations
only with the remaining part.

In designing the new algorithm, we therefore focused on removing the
constraint of a fixed order of pickup actions. Creating permutations from all
actions in the plan (i.e., not only dropoff actions but also pickup actions) is
not possible due to its computational complexity. Therefore, we decided to
use an insertion heuristic approach, i.e., insert new actions into the vehicle
plan one by one in such a way that the total travel time of the plan is extended
as little as possible.

For the new method, we have also introduced a way to safely handle
transfer pickup and dropoff actions. When planning a transfer, we calculate
the arrival at the station of both vehicles participating in the transfer. If
the vehicle serving the first segment arrives later than the vehicle serving
the second segment, we need to add a waiting action with a corresponding
waiting time to the second vehicle’s plan. In this case, we cannot delay the
arrival of the first vehicle at the station any longer because then the waiting

17



5. Problem Solution - Improved method ..........................
time would be insufficient, and the second vehicle would leave the station too
early. However, if the second vehicle arrives later than the first vehicle, the
first vehicle may still adjust the schedule and delay the passenger’s arrival at
the station. However, the new arrival time shall not exceed the arrival time
of the second vehicle in order to maintain the transfer sequence. Therefore,
we introduce a parameter tmax for vehicle pickup and dropoff actions that
will store the maximum arrival time at the station for the first vehicle. We
do not modify the waiting actions or their duration (waiting time) during
further calculations.

5.2 Insertion Heuristic Algorithm

The newly designed algorithm does not operate with a fixed pickup order
but uses Insertion Heuristics to create a vehicle plan. As in the Greedy
Heuristic case, the algorithm searches plans in two phases, first looking for
plans without a transfer and then looking for possible stations and plans for
the transfer. The algorithm is dynamic, so the travel route for the passenger
may change over time. The algorithm is described in Algorithm 5.

5.2.1 Preprocessing

As in the case of the previous algorithm, Insertion Heuristics also looks for
the vehicles that can handle the requests before computing plans. According
to the number of vehicles, the heuristics assigns priority of computation to
the requests and then sorts requests by their priorities.

In line 2, we first initialize P , which is a map that stores vehicles and
their plans. In line 3 we initialize the set S, which contains all transfer points.

In line 4, we initialize a map with possible pickup taxis for each request.
As a vehicle that can serve the request, we consider a vehicle that is able to
reach the pickup location of the request from the vehicle’s current position in
time, i.e., the arrival time is less than or equal to the maximum time of the
pickup event. If the vehicle is not able to arrive from its current position in
time, it cannot serve the plan with certainty.

Depending on the number of vehicles that can serve the request, we
assign the request priority for the computation of the plans. We assume
that requests that can be served by more vehicles are more likely to be
successfully served. Therefore, we are first looking for plans for those requests
for which there are the least possible pickup vehicles. We assign priority
for the calculation of plans to individual requests by sorting the requests in
ascending order according to the number of vehicles that can serve them.

5.2.2 Finding possible itineraries

Route itineraries are searched in two phases. First, we are looking for a
route plan without a transfer in line 9. In the second phase, in lines 16-21 we
are looking for plans with a transfer at predefined stations. For each plan

18



..............................5.2. Insertion Heuristic Algorithm

Algorithm 5 Insertion Heuristic Algorithm with Transfer
1: function InsertionHeuristic(R, K)
2: P = ∅
3: S ← transfer stations
4: K ′ ← taxis that can pickup requests in time
5: sort R by the number of possible pickup taxis
6: for each r ∈ R do
7: p, delays, waits = ∅
8: for each k1 ∈ K ′ can pickup r do
9: positnry ← FindItinerary(r.src, r.dst, k1)

10: td ← GetDropoffTimeOfRequest(positnry, k1, r)
11: delays += delay d induced by positnry
12: p += (positnry, k1)
13: for each station s ∈ S suitable for transfer do
14: for each k2 ∈ K do
15: if k2 can reach s in time then
16: itnryp1← FindItinerary(r.src, s, k1)
17: ts ← GetDropoffTimeOfRequest(itnryp1, K1, r)
18: itnryp2← FindTransferItinerary(s, r.dst, k2, ts)
19: ttransfer ←
20: CountMaxTimeTransfer(itnryp1, k1, itnryp2, k2, r)
21: set tmax of dropoff action at s in itnryp1 to ttransfer

22: delays += delay d induced by itnryp1, itnryp2
23: waits += difference of the arrival of k1 and k2 at s
24: p += (itnryp1, k1),(itnryp2, k2)
25: end if
26: end for
27: end for
28: end for
29: sort p by waits
30: tmp← take β% of sorted p
31: P += itinerary with smallest delay in tmp
32: end for
33: return P
34: end function

19



5. Problem Solution - Improved method ..........................
found, we calculate the delay for the request that is created by the plan, and
we also store information about the waiting time of vehicles at the station.
All possible route plans are stored in p, which is a map with vehicles and
their itineraries for a single request r. The method of finding a route plan
will be described in detail later.

The algorithm finds multiple solutions (itineraries), how the request r
may be served. To select one plan for each request in R, we use the criteria
described in the following section.

5.2.3 Final Plan Selection

We apply several criteria to select the final plan.. The vehicle cannot operate other requests and causes a delay for other
passengers on board while waiting in the station. Passengers who are
waiting for the second car at the transfer station do not cause any delay
for others by waiting. Let ak1 be the time of arrival of the first vehicle
k1 ∈ K ′ at the station s ∈ S and let ak2 be the time of arrival of the
second vehicle k2 ∈ K at the station s ∈ S. We therefore prefer such
plans, where waiting time twait, twait = ak1 − ak2 , is as small as possible.
To do so, we only keep the top β% plans with the shortest twait for the
request. The variable β is a configurable parameter with default value
β = 20. Note that the plans without a transfer have a twait of zero.. Among the remaining candidate itineraries, we choose the plan with
the shortest delay. Thanks to this, we choose a plan that has fewer
detours and thus allows the passenger to travel to its destination without
unnecessarily much delay.

5.3 Finding a feasible route plan

In this section, we will describe in more detail how the route plans are
obtained. First, we will focus on transfer-free plans. Then we will explain
how to assemble plans with transfers.

5.3.1 Itinerary without transfer

Insertion Heuristic algorithm in the first phase searches the plan without
transfer. In line 9 of the InsertionHeuristic algorithm, the best positions
in the current plan of vehicle k1 where the pickup and dropoff actions of r
should be inserted are found. This is solved in the FindItinerary function
described in Algorithm 6 below. Then we calculate the time of the dropoff of
r by the found plan in line 10. This time is used to calculate the delay for
request r. Let tmin be the minimal travel time for request r, i.e, the duration
of a direct route from its pickup location to the dropoff. Let tc be the current
time. Then delay d = td - tc - tmin. Since the plan does not include a transfer,
we consider the waiting time to be zero.

20



.............................. 5.3. Finding a feasible route plan

FindItinerary function

The function takes the current plan of vehicle k and initializes a list P ,
which is a list with all possible route plans of k to serve new demand given
by its pickup and dropoff action.

We are placing new pickup and dropoff actions in lines 7 and 8. We will
try all possibilities of placing new actions. To do this, we will use a nested for
loop and iterate over indices i and j. Index i represents the index for placing
the pickup action, and index j represents the index for placing the dropoff
action. The pickup action can be placed into the plan anywhere. Denoted
the length of the original plan as l, index i ∈ <0, l+1>. The dropoff action
must occur after the pickup action, so index j ∈ <i+1, l+2>.

After placing new actions into the plan, we will check whether the plan
is valid. This means that for all actions in the plan, their maximum time will
not be exceeded, i.e., all will be served in time. We must also not exceed the
maximum capacity of the vehicle at any time.

We will then select one of all valid possible plans. The selection criterion
is the increase of the travel time of the vehicle k to execute its plan, i.e., the
difference between the time required to fulfill the modified plan tmp and the
time required to fulfill the original plan. We will choose the plan that has
the smallest such difference, i.e., where adding new actions cause the shortest
detour.

Algorithm 6 Find Itinerary without Transfer
1: function FindItinerary(pickup, dropoff, k)
2: tmp← current plan of k
3: pos = ∅
4: l← the length of tmp
5: for each index i ∈ <0, l+1> do
6: for each index j ∈ <i+1, l+2> do
7: tmp += add pickup action at index i
8: tmp += add dropoff action at index j
9: if tmpP lan is valid then

10: poss += tmp
11: end if
12: end for
13: end for
14: selected← plan with lowest increase in travel time in pos
15: return selected
16: end function

5.3.2 Itinerary with Transfer

The transfer itinerary is searched for in the second phase of the Insertion
Heuristic algorithm in lines 13 - 24. We will first select suitable stations
for the transfer according to the travel time distance. If the route from the

21



5. Problem Solution - Improved method ..........................
station s to the request’s r dropoff location takes longer than the maximum
dropoff time for r, there is no point in calculating transfers at the station
s. From all vehicles, we only calculate with those that are able to reach the
station on time, i.e., the arrival time at the station from their current position
is less or equal to the difference between the maximum dropoff time of r and
the minimum travel time from station s to dropoff location of r.

We will divide the transfer plan into two individual parts. The first
vehicle k1 will serve the part of the route from the pickup location of r to the
station s. The second vehicle k2 will serve the second route segment from the
station s to the dropoff location of r. The plan for the first segment served
by k1 vehicle is found by the FindItinerary method described above. To
find the second part of the plan, we need to calculate the arrival time of the
vehicle k1 to the station s, stored in ts variable, in line 17. In line 18, plan
for a second vehicle k2 is found. The algorithm of FindTransferItinerary
method will be described in the following section later. When plans for both
vehicles and both segments are set, we can calculate the maximum time
for transfer ttransfer for the dropoff action of r at the station s in the first
segment. In line 21, we set the tmax property of the dropoff action of r at
station s equaled to the maximum time of transfer ttransfer.

The tmax property of the dropoff at station action is useful for further
modifications of the vehicle plan of k1. We will use a simple rule to determine
the ttransfer variable. If the second vehicle k2 has waiting for r scheduled,
we can no longer delay the arrival of the first vehicle k1 at the station s in
order to maintain the continuity of the transfer. Thus, ttransfer is equal to
the dropoff time of r from k1 in station s. However, if the second vehicle k2
does not have a waiting scheduled (i.e., it arrives at the station s later than
the first vehicle k1), we can possibly delay the arrival of the first vehicle. To
keep the transfer valid, we set ttransfer equal to the arrival time of the second
vehicle k2 at the station s.

We will save the computed itineraries in the list. Also we store the
calculated delay and waiting time. Let tc be the current time, tmin be the
minimal travel time for the direct route from the start location of r to the
destination of r. And let te be the actual dropoff time of r from k2 vehicle.
Then delay d = te - tc - tmin. We then store the difference between the arrival
times of the two vehicles k1, k2 at the station s as the waiting time.

FindTransferItinerary function

The FindTransferItinerary function is described in Algorithm 7. The
function is identical to the FindItinerary function, except for lines 9 - 13.
We will therefore describe only this part of the method in more detail.

In line 9 of FindTransferItinerary function, we store the time of
arrival of vehicle k2 to the pickup location at the transfer station. In other
words, we calculate the arrival time of the vehicle that serves the second
segment of the transfer plan of r to the transfer station, where the passenger is
being picked up. Subsequently, we calculate the difference between the arrival
times of the two vehicles involved in the transfer so that we can determine

22



.............................. 5.3. Finding a feasible route plan

the waiting time in line 10. If the waiting time is less than zero, it means
that the first vehicle will arrive before the second vehicle, and the passenger
will wait at the station. If the waiting time is greater than zero, we will have
to schedule waiting for a second car to assure the continuity of the transfer.

Also, for this plan we have to check whether it does not violate the time
constraint for any of the passengers so that all actions in the plan will be
served on time and also the maximum capacity of the vehicle will not be
exceeded at any time.

Algorithm 7 Find Itinerary with Transfer
1: function FindTransferItinerary(pickup, dropoff, k2, ak1)
2: tmp← current plan of vehicle
3: pos = ∅
4: l← the length of tmp
5: for each index i ∈ <0, l+1> do
6: for each index j ∈ <i+1, l+2> do
7: tmp += add pickup action to index i
8: tmp += add dropoff action to index j
9: t2 ← arrival time of k2 to pickup location

10: waitT ime = ak1 - t2
11: if waitT ime > 0 then
12: add waiting to tmp before pickup action
13: end if
14: if tmp is valid then
15: pos += tmp
16: end if
17: end for
18: end for
19: selected← plan with lowest increase in travel time of k2
20: return selected
21: end function

23



24



Chapter 6
Implementation

Both of the above methods of ridesharing with transfers described above
have been implemented in the SiMoD tool. SiMoD1 is a simulation tool for
Mobility-on-Demand developed by the Smart Mobility group of AI Center,
CTU, Prague. It is based on the AgentPolis2 traffic simulation framework,
which was also developed by the Smart Mobility group. It allows to create
MoD systems in a location of the user’s choice. It is lightweight, highly
customizable, and can easily run simulations with tens of thousands of
vehicles and passengers.

Both SiMoD and AgentPolis are written in Java 11. To solve dependencies
and build the application, Apache Maven3 technology is used. The project
also requires Gurobi optimization tool 4 and Maven support for Gurobi.

As part of the implementation, we first implemented the solvers (Greedy
Heuristic and Transfer Insertion Heuristic solver) themselves. We then verified
them using unit tests. The second task was to integrate the new solvers into
the simulation environment.

6.1 Implementing of solvers

The DARP solvers in SiMoD operate with vehicle plans. The plans contain
pickup and dropoff actions that have a specific location, information about
the passenger to whom the action belongs, and the maximum time in which
the action must be completed. As SiMoD did not yet operate with transfers
and only allowed conventional ridesharing, several changes had to be made.

First, we had to find a way to distinguish a passenger pickup from a
pickup at the transfer station (and the same for the dropoff). We there-
fore introduced new transfer actions (PlanActionPickupTransfer.java,
PlanActionDropoffTransfer.java), which have the same hierarchy as the
original pickup and dropoff actions. Next, we have also added a wait action
(PlanActionWait.java) that includes extra information about the length of

1SiMoD simulation tool https://github.com/aicenter/simod; this thesis is available
on the branch greedyTASeT https://github.com/aicenter/simod/tree/greedyTASeT

2Agentpolis framework https://github.com/aicenter/agentpolis
3Apache Maven https://maven.apache.org
4Gurobi Optimizer https://www.gurobi.com/products/gurobi-optimizer/

25

https://github.com/aicenter/simod
https://github.com/aicenter/simod/tree/greedyTASeT
https://github.com/aicenter/agentpolis
https://maven.apache.org
https://www.gurobi.com/products/gurobi-optimizer/


6. Implementation....................................
the waiting. The implementation of these three new classes was enough to
implement both solvers and unit tests.

After implementing the solvers, we debugged their functionality using
unit tests. Subsequently, we started to integrate them into the SiMoD tool.

6.2 Integration to simulation tool

The next task was to integrate the solvers into the simulation environment.
To move vehicles in the SiMoD environment, various event activities are used.
Different actions in the vehicle plans, when processed, will trigger different
event activities for the vehicle agent. Here again, changes had to be made to
allow transfers because the existing agent action handling system was not able
to handle the newly introduced transfer actions and waiting at the stations.

The existing agent action handling system works as follows. When a
vehicle plan is executed, the vehicle will start moving to the location of
the current action in the plan. In order for the vehicle to start moving, a
route must first be established. For this, the createTrip method in the
TripsUtil.java class is used. This method finds the shortest route between
the two defined locations. The trip is then defined by a list of all nodes
in the graph that the vehicle passes through. The moment it reaches the
designated location, it immediately performs the appropriate action (picking
up or dropping off a passenger), creates a new route, and smoothly starts
driving to the next action. If it completes the plan and has no further action
in it, it will head to the nearest station (depot) where it will wait until its
plan changes.

To enable transfers for passengers, we modified existing classes and intro-
duced new methods for exiting and boarding vehicles at the transfer stations in
DemandAgent.java. For the vehicle (RidesharingOnDemandVehicle.java),
we had to introduce the handling of new transfer actions. For driving to
a station (in order to board or exit a passenger), it was sufficient to use
existing modified methods. But for waiting, we had to invent a completely
new method and create new event activities.

For a vehicle to wait in a station, it is necessary to first initiate a
driving to the station and then initiate the waiting. The new waiting activity
therefore consists of two event activities - driving to the station and a
subsequent waiting with the required duration. We implemented the waiting
in classes WaitWithStopActivityFactory.java and WaitWithStop.java.
The waiting can be interrupted when the plan is changed, in which case the
elapsed time is stored in the WaitWithStop activity, and the elapsed time is
subtracted when the activity is resumed.

In order to consider transfer points, it was also necessary to implement an
initializer for the transfer stations (class TransferPointsInitializer.java).
With the new initializer, the stations are defined in a text file from which the
stations are then loaded into SiMoD. A similar method is used to load depots
and vehicles.

In addition to the changes forced by the implementation of the new

26



........................ 6.3. Description of the simulation environment

solvers, we also made several modifications related to statistics. We have
introduced new statistics for counting the number of transfers and storing
waiting times. We also added statistics on vehicle activity and inactivity over
time. All the changes described above and a simplified project class diagram
are described in Figure 6.1.

6.3 Description of the simulation environment

The running simulation is shown in Figure 6.2. Requests are marked with a
red dot, and vehicles are marked with a blue or green triangle. If the vehicle
carries more than one passenger, the number of carried passengers is indicated
by a number above the vehicle. When clicked on a vehicle, its route plan
will be displayed. In the picture, we can see the plan of the vehicle serving
request 191 and its pickup and dropoff actions. At station 19 it is possible
to notice requests awaiting the arrival of a vehicle serving the second part of
the transfer plan. The green color of vehicles indicates empty vehicles that
are performing rebalancing, i.e., driving to another station to balance the
number of vehicles in the stations.

27



6. Implementation....................................

Figure 6.1: Simplified diagram of solvers and classes that solver uses. Newly
implemented classes are colored blue. Edited classes are colored red.

28



........................ 6.3. Description of the simulation environment

Figure 6.2: Running simulation in SiMoD

29



30



Chapter 7
Evaluation

In this section, we first describe the data used for the evaluation of the
compared methods. We then compare the performance of the methods
described in Chapter 4 and Chapter 5 and compare them to the conventional
ridesharing solution without transfers (solved using the Insertion Heuristic).
We first describe the summary results and then look at selected statistics in
more detail.

7.1 Dataset description

In this section, we describe the different components of the dataset. It
consists of a graph, a fleet of vehicles, transfer stations, and passenger demands
for transport.

7.1.1 Road Graph

The graph that represents the map in the simulation was created from
OpenStreetMap data and is shown in Figure 7.1. It encloses an area with
latitude from N40.6923° to N40.8305° and longitude from W74.0652° to
W73.8603° and is made up of 13,510 nodes (located at road intersections)
and 31,357 edges.

7.1.2 Demand data

The New York City Taxi and Limousine Commission provides open access
to trip data from New York City taxi providers on NYC OpenData website 1.
We took the 2014 dataset for evaluation. The dataset contains 165,114,361
records, which corresponds to an average of 452,000 taxi rides per day. For the
evaluation, we took one typical weekday. By filtering, we selected only trips
from Manhattan to reduce the area for evaluation. The demand locations are
shown in Section 7.1.2. Further, we focused only on the 8:00 a.m. to 1:00 p.m.
time window and randomly selected the number of requests determined by

1Datasets from New York City Taxi and Limousine Commission https:
//data.cityofnewyork.us/browse/select_dataset?Dataset-Information_Agency=
Taxi+and+Limousine+Commission+%28TLC%29

31

https://data.cityofnewyork.us/browse/select_dataset?Dataset-Information_Agency=Taxi+and+Limousine+Commission+%28TLC%29
https://data.cityofnewyork.us/browse/select_dataset?Dataset-Information_Agency=Taxi+and+Limousine+Commission+%28TLC%29
https://data.cityofnewyork.us/browse/select_dataset?Dataset-Information_Agency=Taxi+and+Limousine+Commission+%28TLC%29


7. Evaluation ......................................

Figure 7.1: Road graph used in simulation

Table 7.2 in each hour window. A histogram of selected demands over time
is shown in Figure 7.3.

In total, we selected 3970 demands. Of these, 43 were discarded for
further calculation because they appeared to have zero length after they
were processed for SiMoD. The statistics on the distance of the origin and
destination of the demands are described in Table 7.1.

Demands total 3970
Average trip length [km] 6.200
Longest trip [km] 45.266
Shortest trip [m] 82.27
Fleet size 300

Table 7.1: Demands description

8-9 am 9-10 am 10-11 am 11-12 pm 12-1 pm
640 840 920 820 750

Table 7.2: Number of demands by hour

32



.................................. 7.1. Dataset description

Figure 7.2: Demand heatmap and pickup and dropoff locations

Figure 7.3: Number of demands in time [s]

7.1.3 Vehicle Fleet

We have chosen a fleet of 300 vehicles to serve the demand. The vehicles
have a maximum capacity of 5 passengers. We have approximately evenly

33



7. Evaluation ......................................
spaced 20 stations around the Manhattan area that serve as both vehicle
depots and transfer points. At the start of the simulation, there is an equal
number of 15 vehicles at each station. The locations of the stations can be
seen in Figure 7.4.

Figure 7.4: Locations of transfer stations and depots

34



...................................... 7.2. Summary

7.2 Summary

We used the demand described above to evaluate and compare three meth-
ods - the Greedy Heuristic and the Transfer Insertion Heuristic algorithm,
described in more detail above, and the Insertion Heuristic solving conven-
tional ridesharing without transfers.

A basic comparison is shown in Table 7.3. The table shows that our pro-
posed Transfer Insertion Heuristic indeed outperforms the Greedy Heuristic,
even in all the statistics listed. Thus, the goal of improving the method in
terms of performance has been achieved.

However, if we look at the comparison of the transfer-allowing methods
with the conventional Insertion Heuristic method, the performance comparison
is not so clear. The Greedy Heuristic achieved a slightly better result in terms
of delay, but in all other statistics it performed worse. Transfer Insertion
Heuristic achieved a significantly better result in terms of average delay and
increased the number of requests served. On the other hand, it increased the
total distance traveled and also needed more vehicles. This may be due to the
fact that we do not aim to select plans with respect to distance traveled but
select plans with the shortest waiting for a vehicle. Therefore, a vehicle that
is far from the station and has a later arrival (that we prefer) may participate
in the transfer.

Thus, the expectation that enabling transfers would reduce the total
distance traveled was not confirmed. But the number of served demands is
indeed slightly higher, and the average delay has decreased in the case of the
Transfer Insertion Heuristic.

TRANSFER
INSERTION INSERTION GREEDY
HEURISTIC HEURISTIC HEURISTIC

Dropped demands 95 78 128
Served demands 3832 3849 3799
Total transfers 0 1556 664
Total veh. distance
[km]

28608 34519 37448

Tot. veh. dist. per
demand served [km]

7.466 8.968 9.857

Used vehicles count 236 283 300
Average delay [s] 161 139 156

Table 7.3: Methods comparison

7.3 Other Detailed Statistics

In the following section, we focus on other selected statistics and compare
all methods in more detail. We will analyze passenger delays, fleet utilization

35



7. Evaluation ......................................
and finally focus on waiting at stations for transfers.

7.3.1 Delay

In this statistic, we focused on the percentage increase in a passenger’s
journey time compared to the fastest possible (i.e., direct) journey. The
graphs (Figure 7.5) show only those demands that reached their destination
with a non-zero delay. For the Insertion Heuristic this is 3824 out of 3832, for
the Transfer Insertion Heuristic this is 3846 out of 3849, and for the Greedy
Heuristic this is 3641 delayed out of 3799 total demands served.

The Insertion Heuristic and Greedy Heuristic have very similar, if not
nearly identical, delay distributions. This is consistent with the average delays
shown in Table 7.3, which differ by only 5 seconds.

For the Transfer Insertion Heuristic, we notice a lower distribution of the
longest delays (an increase in travel time of 81 % or more). The distribution
of delays shorter than 30 % of the minimum travel time has also increased.
The Greedy Heuristic accounted for 20.3 % of the delayed demands, the
Insertion Heuristic 23.5 %, and the Transfer Insertion Heuristic 29.9 %. If we
add to these data the demands that arrived with zero delay, we get results of
24.5 %, 23.7 %, and 30.0 %, respectively. This reflects the improvement in
average delay for the Transfer Insertion Heuristic method.

7.3.2 Vehicle occupancy

To evaluate the effectiveness of ridesharing, we use vehicle occupancy
statistics. Figure 7.6 shows the percentage distribution of the number of
passengers in the vehicle during the simulation time.

We note two highlights from the charts. First, the Greedy Heuristic
has almost zero distribution of vehicle occupancy by two or more passengers.
Thus, ridesharing is practically almost never occurring. For the Insertion
Heuristic, on the other hand, we notice a (albeit very small) distribution of
occupancy with three passengers. Ridesharing is applied the most in this
method.

By far the most frequent is the occupancy of a single passenger in the
vehicle, in all three cases. This situation occurs 60 % of the time. A large
portion of the time, the vehicles are unoccupied. Moreover, from the Table 7.3
we can notice that in the case of Transfer Insertion Heuristic and Insertion
Heuristic, some vehicles do not even start driving at all and remain unused
for the whole 5 hours of the simulation scenario. If we choose not to consider
in the graph vehicles that did not participate at all during the simulation (64
vehicles for the Insertion Heuristic, 17 for the Transfer Insertion Heuristic),
the distribution of zero occupancy drops by 21 % and 5 % respectively. For
the Insertion Heuristic, a drop in zero occupancy would result in a significant
change in the distribution of the graph. From this distribution, we believe
that the Insertion Heuristic uses the fleet most efficiently of all methods.

36



............................... 7.3. Other Detailed Statistics

7.3.3 Fleet Utilization

In this statistic, we take a closer look at active vehicles. We consider an
active vehicle to be one that has a non-empty plan. Vehicles that did not
participate in the simulation at all are not included. From Figure 7.7, we can
see how many vehicles were active for a given simulation time, and we can
also calculate the total number of minutes of driving.

The Insertion Heuristic and Transfer Insertion Heuristic methods have
very similar distributions, only the first bin of the histogram differs signifi-
cantly by approximately 40 vehicles. The histogram is very different for the
Greedy Heuristic method. By far, the largest number of vehicles are active
for 10-20 % of the time, and this is approximately 100 vehicles more than the
Insertion Heuristic and Transfer Insertion Heuristic methods.

If we calculate the total number of minutes of driving from the histograms,
we get the lowest result for the Insertion Heuristic and the highest for the
Greedy Heuristic. This corresponds to the efficiency of using ridesharing,
which we also discussed in the previous section.

7.3.4 Vehicle Waiting Times at Transfers

The last statistic we will discuss is waiting at stations for transfers. This
statistic is strongly dependent on the way we choose the final trip plan for
the request. For the Greedy Heuristic, the plan with the longest possible
wait is selected since the wait time was originally considered for electrotaxis
recharging. In contrast, for the Transfer Insertion Heuristic, the plan that
preferably does not contain the wait action or has a shorter wait time is
selected.

There were two points that caught our interest with this statistic. First,
the Transfer Insertion Heuristic does not select a single plan containing a
waiting action. That means, for all requests, the algorithm found some pair
of vehicles to serve it such that the second vehicle arrived at the station
later than the first or served them without transferring to avoid waiting.
Therefore, we present only the Greedy Heuristic in Figure 7.8. Second, from
the histogram of wait times, we notice a maximum of around 250 seconds.
Such a time would not be sufficient for charging electric vehicles (as proposed
in [11]) in today’s conditions. In order to consider recharging vehicles in this
way, we would have to extend the maximum tolerable delay for passengers
several times to allow cars to wait long enough at stations, or passengers
would have to demand significantly longer trips.

37



7. Evaluation ......................................

(a) : Insertion Heuristic

(b) : Transfer Insertion Heuristic

(c) : Greedy Heuristic

Figure 7.5: Delay in relation to the minimum trip duration

38



............................... 7.3. Other Detailed Statistics

(a) : Insertion Heuristic

(b) : Transfer Insertion Heuristic

(c) : Greedy Heuristic

Figure 7.6: Average vehicle occupancy over simulation time

39



7. Evaluation ......................................

(a) : Insertion Heuristic

(b) : Transfer Insertion Heuristic

(c) : Greedy Heuristic

Figure 7.7: Vehicle utilization over simulation time

40



............................... 7.3. Other Detailed Statistics

Figure 7.8: Waiting Times of Greedy Heuristic method [s]

41



42



Chapter 8
Conclusion

In this work, our motivation was to improve the efficiency of ridesharing
by allowing transfers. We considered transfers at predefined stations and
defined the problem as a MIP problem in Chapter 3. However, the optimal
solution can only be found only for very small instances. That is why various
heuristics are often used in practice. In Chapter 4, we described a solution
method using the Greedy Heuristic, which is inspired from [11]. We tried
to outperform this baseline method in terms of efficiency in the following
Chapter 5, where we proposed a new method using the Insertion Heuristic.

The newly proposed method works in two phases. First, it searches for
ride plans to serve the request without transferring. In the second phase,
it then searches for stations where transfers are possible and finds pairs of
vehicles that could serve the request with one transfer per station. For the
final plan selection, the algorithm prefers those that do not have scheduled
waiting time for vehicles at the stations, but at the same time, it also takes
into account passenger delays.

We tested our solution and the baseline Greedy Heuristic method on real
demand data of smaller instances first and evaluated it on a larger dataset
of approximately 4000 demands. We compared the results of both methods
and confirmed the better performance of our proposed algorithm compared
to the baseline method from [11]. For comparison, we further evaluated
the dataset using a conventional Insertion Heuristic method that does not
consider transitions.

The experiment showed that the new solution with transfers could
increase the total number of requests served and reduce the average delay for
passengers. However, this solution did not meet expectations with a decrease
in total distance. Neither of the methods considering transfer achieved better
results in terms of kilometers traveled.

Along with the implementation of solvers that consider transfers, we
integrated the actions and activities required for transfers into the SiMoD tool.
The simulation environment is therefore ready for the further implementation
of new methods for solving ridesharing with transfers.

For our proposed solution, there remains room for optimizing the final
plan selection rules. It is worth considering defining the criteria for selecting
the final plan so that it effectively decides when to use the transfer or serve the

43



8. Conclusion......................................
request by the direct route. For example, if demand is lower in a given time
window and many vehicles are available, it does not make sense to extend the
distance traveled for each request by driving to transfer stations. In other
cases, it may be preferable to keep the vehicle waiting at the station for a
while, thus reducing the distance that would otherwise have to be traveled
by a vehicle that is further away from the station and therefore has a longer
journey time.

44



Bibliography

[1] Niels Agatz, Alan Erera, Martin Savelsbergh, and Xing Wang. Op-
timization for dynamic ride-sharing: A review. European Journal of
Operational Research, 223(2):295–303, 2012.

[2] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Fraz-
zoli, and Daniela Rus. On-demand high-capacity ride-sharing via dynamic
trip-vehicle assignment. Proceedings of the National Academy of Sciences,
114(3):462–467, 2017.

[3] Yosser Ben Cheikh, Christian Tahon, and Slim Hammadi. An evolu-
tionary approach to solve the dynamic multi-hop ridematching problem.
SIMULATION, 93, 12 2016.

[4] Wenyi Chen, Martijn Mes, Marco Schutten, and Job Quint. A Ride-
Sharing Problem with Meeting Points and Return Restrictions. Trans-
portation Science, 53(2):401–426, March 2019.

[5] Yen-Long Chen, Kuo-Feng Ssu, and Yu-Jung Chang. Real-time transfers
for improving efficiency of ridesharing services in the environment with
connected and self-driving vehicles. In 2020 International Computer
Symposium (ICS), pages 165–170, 2020.

[6] Brian Coltin and Manuela Veloso. Ridesharing with passenger transfers.
volume 2, pages 1299–1300, 05 2013.

[7] Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic
for the static multi-vehicle dial-a-ride problem. Transportation Research
Part B: Methodological, 37(6):579–594, 2003.

[8] Wesam Herbawi and Michael Weber. Evolutionary multiobjective route
planning in dynamic multi-hop ridesharing. In Peter Merz and Jin-Kao
Hao, editors, Evolutionary Computation in Combinatorial Optimization,
pages 84–95, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[9] Wesam Herbawi and Michael Weber. A genetic and insertion heuristic
algorithm for solving the dynamic ridematching problem with time
windows. GECCO’12 - Proceedings of the 14th International Conference
on Genetic and Evolutionary Computation, 07 2012.

45



8. Conclusion......................................
[10] Yunfei Hou, Xu Li, and Chunming Qiao. Tictac: From transfer-incapable

carpooling to transfer-allowed carpooling. pages 268–273, 12 2012.

[11] Yunfei Hou, Weida Zhong, Lu Su, Kevin Hulme, Adel Sadek, and
Chunming Qiao. Taset: Improving the efficiency of electric taxis with
transfer-allowed rideshare. IEEE Transactions on Vehicular Technology,
65:1–1, 12 2016.

[12] Sepide Lotfi, Khaled Abdelghany, and Hossein Hashemi. Modeling
framework and decomposition scheme for on-demand mobility services
with ridesharing and transfer. Computer-Aided Civil and Infrastructure
Engineering, 34, 03 2018.

[13] Shuo Ma, Yu Zheng, and Ouri Wolfson. Real-time city-scale taxi rideshar-
ing. IEEE Transactions on Knowledge and Data Engineering, 27(7):1782–
1795, 2015.

[14] Neda Masoud and R. Jayakrishnan. A decomposition algorithm to
solve the multi-hop peer-to-peer ride-matching problem. Transportation
Research Part B: Methodological, 99:1–29, 05 2017.

[15] A. Rais, F. Alvelos, and M.S. Carvalho. New mixed integer-programming
model for the pickup-and-delivery problem with transshipment. European
Journal of Operational Research, 235(3):530–539, 2014.

[16] Douglas O. Santos and Eduardo C. Xavier. Dynamic taxi and ridesharing:
A framework and heuristics for the optimization problem. AAAI Press,
2013.

[17] Jörn Schönberger. Scheduling constraints in dial-a-ride problems with
transfers: a metaheuristic approach incorporating a cross-route schedul-
ing procedure with postponement opportunities. Public Transport, 9, 07
2017.

[18] Ashutosh Singh, Abubakr Alabbasi, and Vaneet Aggarwal. A distributed
model-free algorithm for multi-hop ride-sharing using deep reinforcement
learning, 2019.

[19] Amirmahdi Tafreshian and Neda Masoud. Trip-based graph partitioning
in dynamic ridesharing. Transportation Research Part C: Emerging
Technologies, 114:532–553, 2020.

[20] Amirmahdi Tafreshian, Neda Masoud, and Yafeng Yin. Frontiers in
service science: Ride matching for peer-to-peer ride sharing: A review
and future directions. Service Science, 12(2-3):44–60, 2020.

[21] Raja Subramaniam Thangaraj, Koyel Mukherjee, Gurulingesh Raravi,
Asmita Metrewar, Narendra Annamaneni, and Koushik Chattopadhyay.
Xhare-a-ride: A search optimized dynamic ride sharing system with
approximation guarantee. In 2017 IEEE 33rd International Conference
on Data Engineering (ICDE), pages 1117–1128, 2017.

46



...................................... 8. Conclusion

[22] Rui Yao and Shlomo Bekhor. A dynamic tree algorithm for peer-to-peer
ridesharing matching. Networks and Spatial Economics, 21, 12 2021.

47



48



Appendix A
List of abbreviations

VRP Vehicle Routing Problem

P2P Peer-to-Peer

ILP Integer Linear Programming

MMTP Multi-modal Trip Planner

MOEA Multiobjective Evolutionary Algorithm

MoD Mobility on Demand

MACGeO Metaheuristics Approach Based on Controlled Genetic Operators

TASeT Transfer-Allowed Shared eTaxis

MIP Mixed-Integer Programming

DARP Dial-a-Ride Problem

49



50



Appendix B
Attachment content

dataset/ directory with dataset files used for the evaluation of this project
dataset/test.cfg main config file for setting simulation parameters

thesis/ directory with source file for this thesis
thesis/zadani.pdf Specification of the bachelor project assignment

simod/ project source code
simod/python/ scripts to plot statistics, histograms and tables
simod/src/ source code in Java
simod/.../ridesharing/ folder with implemented solvers

attachement

dataset/

test.cfg

simod/

python/

src/main/

...aic/simod/ridesharing/

transferinsertion/

greedyTASeT/

insertionheuristic/

thesis/

zadani.pdf

51


	Introduction
	Project Target

	Literature Review
	Ridesharing
	Ridesharing with Transfers

	Problem Description
	Problem Formulation

	Problem Solution - Baseline method
	Greedy Heuristic Algorithm
	Preprocessing
	Finding possible itineraries
	Selecting the final plan

	Feasible Rideshare Plan Finding
	Finding Transfer Plans


	Problem Solution - Improved method
	Main ideas of the proposed method
	Insertion Heuristic Algorithm
	Preprocessing
	Finding possible itineraries
	Final Plan Selection

	Finding a feasible route plan
	Itinerary without transfer
	Itinerary with Transfer


	Implementation
	Implementing of solvers
	Integration to simulation tool
	Description of the simulation environment

	Evaluation
	Dataset description
	Road Graph
	Demand data
	Vehicle Fleet

	Summary
	Other Detailed Statistics
	Delay
	Vehicle occupancy
	Fleet Utilization
	Vehicle Waiting Times at Transfers


	Conclusion
	Bibliography
	List of abbreviations
	Attachment content

