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Abstract

This thesis proposes a novel approach to com-
putational propaganda detection. While pre-
vious research in the area of computational
propaganda detection mostly focuses on either
analysis of the content, or identifying mali-
cious actors on social networks, this thesis
aims to analyze if a web article is propaganda
by studying its distribution pattern on the In-
ternet. It does so by creating what we called
an Article Distribution Graph (ADG) for ev-
ery article in question, using various search
engines, as well as social networks. The ADG
represents where and how the article was ref-
erenced or duplicated. We experiment with
three machine learning methods for the classi-
fication of the ADG: Graph Neural Networks,
Random Forest and SVM. To evaluate the
methods, we created and release a dataset
CTU-Propaganda-V1, containing 245 articles
together with their ADGs, containing data
about 24,014 articles in all the ADGs com-
bined. The 117 propaganda articles in the
dataset were collected from the EUvsDisinfo
database, and the 128 non-propaganda arti-
cles were manually found and verified. Re-
sults show that the best method can achieve
a 81.63 % accuracy on unseen data, which is
considered a very good result for the problem
of detecting propaganda without text analy-

sis.

Keywords: computational propaganda,
dataset, machine learning, graph neural
networks

Supervisor: Garcia Sebastian, Assist.
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Abstrakt

Tato prace navrhuje novy pristup k rozpo-
znavani vypocetni propagandy. Zatimco pred-
chozi vyzkum v této oblasti se zaméruje bud
na analyzu obsahu nebo na identifikaci skod-
livych agentii na socialnich sitich, tato prace
se zameéruje na analyzu toho, zda je libovolny
webovy ¢lanek propagandou na zakladé studia
jeho distribuéniho vzorce na internetu. Cini
tak vytvorenim grafu distribuce ¢lanka (Ar-
ticle Distribution Graph, ADG) pro kazdy
jednotlivy clanek, a to pomoci fady vyhleda-
vacl a socidlnich siti. ADG popisuje, kde a jak
byl ¢lanek odkazovan ¢i duplikovan. Pro kla-
sifikaci ADG jsme porovnali tfei metodamy
strojového uceni: grafové neuronové sité, kla-
sifikdtory Random Forest a SVM. Pro vyhod-
noceni metod jsme vytvorili a zverejnili data-
set CTU-Propaganda-V1, ktery obsahuje 245
¢lanku spolu s jejich ADG, obsahujici udaje
celkem o 24 014 ¢lancich ve vSech ADG do-
hromady. Propagandistické ¢lanky, kterych je
v datasetu 117, byly ziskdny z databaze EU-
vsDisinfo a 128 nepropagandistickych ¢lankt
bylo vyhledano a ovéreno ru¢né. Vysledky pro-
kazuji, ze nejlepsi metoda dokaze dosdhnout
presnosti 81,63 % na testovacich datech, coz
povazujeme za velmi dobry vysledek rozpo-
znavani propagandy bez nutnosti analyzy jeho

textu.

Kli¢ova slova: vypocetni propaganda,
dataset, strojové uceni, grafové

neuronové sité

Detekce
propagandistickych ¢lankt podle sireni

Preklad nazvu:

na internetu
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Chapter 1

Introduction

The detection of propaganda has been a priority and concern for the last 80
years [1]. Even though its importance, detecting propaganda proved to be
difficult since it is a social technique with a multitude of goals, variations, and
evolving techniques that adapt to different contexts and cultures. In the last
two decades, the use of the Internet and social networks fostered the creation,
distribution, and impact of propaganda by the help of algorithms, networks,
and computers. This newer trend is referred to as computational propaganda
and its detection has become an important priority in our societies [2].

Computational propaganda can be defined as "the use of algorithms, au-
tomation, and human curation to purposefully distribute misleading informa-
tion" [3]. The automation can be used not only in propaganda distribution [4],
but also in content creation [5]. Computational propaganda is hard given
the amount of profiles, accounts, text, discussions, images, and videos, which
makes the current manual detection of propaganda very difficult.

There have been two main approaches to detect computational propaganda
with algorithms: first, text analysis to detect propaganda techniques; second,
detection of the people and social profiles doing the propaganda. In the first
case, natural language processing (NLP) algorithms are used to detect tech-
niques such as red herring (presenting irrelevant data), black-and-white fallacy
(presenting two alternatives as the only possibilities), and others [6, 7, 8]. In
the second case, machine learning is used to automatically detect social pro-
files by analyzing their behavior based on some manual prior identification [9].

1



1. Introduction

Even though these approaches work in their own domains (text and account
profiles), news articles as web pages are still one of the most important pieces
of information that the community does not yet know how to automatically
identify as computational propaganda.

This thesis proposes a novel approach to detect Internet articles of computa-
tional propaganda by classifying the article distribution graph on the Internet.
The article distribution graph is a graph of who is publishing, referencing,
and pushing this specific article. By having one graph per article, we can
apply machine learning methods on representations of these graphs to find
which ones were distributed on the Internet as propaganda or not.

The main constraint of our work was the complete absence of a dataset of
propaganda and non-propaganda articles. Therefore, we created a new and
verified dataset of propaganda and non-propaganda articles together with their
article distribution graphs (ADG). ADG is a graph representation of articles
that are relevant to the article in question. The dataset contains 245 main
articles, articles that we are interested in classifying. As part of creating the
ADG for every main article in the dataset, we found and downloaded 24,014
related articles. Each propaganda article was verified using the EUvsDisinfo
project [10], whereas we manually verified the non-propaganda articles.

We propose and evaluate three different machine learning algorithms to
detect the distribution of propaganda in the article distribution graphs:
Random Forest, Graph Neural Network (GNN), and kernel-SVM. We create
feature vector for every article in an ADG, containing information about
its publication date, its position in the graph using various Social Network
Analysis features, article’s publication date, and its level, feature created
from the methodology of the ADG creation. Our results show that Random
Forest was the best performing classifier with 81.63% accuracy on the test set.
GNN and kernel-SVM performed worse at 75.51% and 71.43%, respectively.

The results show that classifying article distribution graphs as propaganda
is possible and performs well enough. We attribute the success of Random
Forest over GNN to the size of the dataset we used to train our models. Deep
learning methods generally require larger amounts of data. In the future, we
will explore the combination of article content analysis in the distribution
graph.

The main contributions of this thesis are:
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The creation of a new dataset of computational propaganda and non-
propaganda articles, including their complete article distribution graphs.

A method and tool to create the ADG (Article Distribution Graph) of
an article.

A comparison of machine learning algorithms to classify article distribu-
tion graphs.

A trained model that can detect if an article is propaganda or not.






Chapter 2

Theory Background

B 2.1 Fake News

Even though the term fake news has been widely used in the last decade, it
is not uniformly defined. Fake news encompasses various phenomena ranging
from information that is factually not true to half-true statements, misuse
of images, and real news taken out of context [11]. Another definition is
"fabricated information imitating news content" [12]. Note that this last
definition does not describe any author’s intent and can include even satiric
news. The Cambridge Dictionary defines fake news as "false stories that
appear to be news, spread on the Internet or using other media, usually
created to influence political views or as a joke" [13].

Fake news has been the most important focus of research and detection in
the last decade for two main reasons. First, it is mostly text. Second, there
are studies defining the philosophical traits of fake news in order to identify
them, such as appealing to emotions rather than facts. This means that there
is a difference in the text style that suits a myriad of text-based machine
learning techniques for propaganda detection.

Fake news can be further classified based on its intent to misinformation
and disinformation. Misinformation describes false information that is not
intended to mislead the reader. It is often spread because the author is



2. Theory Background

ill-informed or does not have a perfect memory. Disinformation, however, is
false information spread deliberately to mislead and influence the reader [14].

B 2o Propaganda

Propaganda is a very different concept compared to fake news. The Cambridge
Dictionary defines propaganda as "information, ideas, opinions, or images,
often only giving one part of an argument, that are broadcast, published, or in
some other way spread with the intention of influencing people’s opinions" [15].
This definition is important for our research, since we are aiming at detecting
the spread on the Internet.

Propaganda may use fake news [14], or it may not. There are many tech-
niques used in propaganda. The Institute for Propaganda Analysis (IPA)
in 1937 described seven techniques [16], including name calling, attaching
negative label to a person so the reader rejects his idea without examining
the content; card stacking - presenting only one opinion, omitting the other
opinions and unfavourable statistics); and bandwagon- encouraging action by
the reader by persuading him everyone else is doing it [17]. However, propa-
ganda is much more than these techniques. Propaganda needs a coordinated
effort, a multitude of media, and a constant exposure of the audience to the
message. These characteristics is what makes propaganda a good candidate
to detect such coordination and large effort in this thesis.

B 2.2.1 Computational Propaganda

Computational propaganda is a term describing the usage of automation for
propaganda purposes. The automation can be either by machines or by a
large group of people. The most common use of the automation is in the
spread of propaganda messages by coordinated human effort, often referred to
as "troll armies" [18], the use of automated bots to post on social media [19]
to flood of opinions in social networks, the automatic generation of images,
videos and text. Moreover, since machine learning models like GPT-3 [20] and
PaLM [21] can produce human-like text content, it is likely that algorithms
may produce and distribute propaganda content in the near future. We

6



2.3. Graph

®A£>@

v

Figure 2.1: Simple graph. Set of nodes V = {1,2,3,4,5} and set of all edges
E= {{17 2}7 {17 3}{17 4}{27 4}7 {3’ 4}, {37 5}: {4a 5}}

believe that any content produced by algorithms might be detectable by
algorithms.

[] 2.3 Graph

An oriented graph G is a tuple G = (V, E, €), where V is a finite set of nodes,
F is a finite set of edges. € is a mapping assigning oriented pair of nodes for
every edge.

€: E— {(u,v) |u,veV}. (2.1)

Nodes u,v € V are called adjacent if there is an edge e € E such that
e(e) = (u,v). There are many options how to represent a graph. Adjacency
matriz A of a graph G is a matrix of shape |V| x |V, where A;; = 1 if there
is an edge from node 7 to node j, else A;; = 0. Adjacency matrix of a graph
in Figure 2.1 is

01110
10010

A=1100 11 (2.2)
11101
00110

An unoriented graph can be created from an oriented graph The adjacency
matrix A is always symmetric for an unoriented graph, whereas for oriented
graphs it might not.

A path from u to v is a sequence of unique nodes and edges p = (v1, €1, v2, . .. Up41)

7



2. Theory Background

where v; = v and v,+1 = v and €(e;) = {v;, vn41}. Length of a path ¢(p) is
the number of edges used in the path. Shortest path is a path vy, e1,...,vp41
with the smallest length. The length of the shortest path is called distance,
denoted as d(u,v).

A degree deg(u) of a node u € V' is the number of edges oriented from and
to the node.

. 2.4 Random Forest

Random forest [22] is a Machine Learning (ML) ensemble method that
combines many decision trees. The method can work with any type of data
represented as a feature vector, regardless of, the range of individual features,
which makes it a powerful tool for working on data such as categorical
variables. Decision tree partitions data into discrete subsets using sequential
set of rules. Unseen data can be classified using the subset, most often as the
majority class represented in the subset.

If we represent the input vector in a traditional form, where x is a feature
vector, and Y is the label:

(x,Y) = (z1,22,...,7,Y) (2.3)

And the whole set of input vectors is called dataset D. The learned
predictor goes from the dimensional space of x to Y:

hix—Y (2.4)

Decision tree algorithms are known to suffer from overfitting. Therefore,
the Random Forest classifier was proposed to reduce the overfitting tendency
of a decision tree. It does so by sampling with replacement multiple sets and
learning a decision tree for every set. In addition, only a randomly selected
subset of all features is considered when searching for the splitting feature.
Classification is performed by using every tree to predict, and then use a
majority vote using these predictions.

8
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The training of each tree is performed in recursive splits of the dataset D
to grow a tree. Starting in the root node, the algorithm randomly picks a
feature x; and splits the dataset into two parts Dy, Do. The sets Dy, Dy are
added as children of the root node, and are considered roots of their own
subtrees. The split is performed recursively until either every leaf partition
contains at most leaf size samples or it reaches the mazimum depth. Both
these hyper-parameters have to be chosen.

In a node with dataset D, the split is performed by thresholding along a
feature x;. The feature x; as well as the threshold 6 is chosen so it minimizes
the Gini Impurity of the sets Dy, Dy. Suppose K classes, p; is fraction of
samples belonging to class ¢. Gini Impurity is defined as

K
I(D)=1-Yp (2.5)
=1

The value is minimized when all samples in set D belong to single class j,
therefore p; = 1 and I(D) = 0.

When using the learned tree for classification, it starts at the root node
and follows the split rules, until it reaches a leaf. The sample is classified
using a majority rule using that leaf set.

B 2s Graph Neural Networks

Given that the data for our research consist of distribution graphs of articles
on the Internet, we explored the use of graph based neural networks for its
classification.

Graph Neural Networks (GNN) are neural networks operating on graphs.
It does so by keeping and updating node and edge embeddings. In every layer,
an embedding is updated with the information from neighbouring nodes and
edges. There are three main types of tasks that GNNs can solve:

1. Node classification. The task is to determine the labeling of nodes by
looking at properties of nodes in their surrounding. The task might be
prediction of a paper given its words and citation network.

9
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Layer N Layer N +1
\\\“fl (o]
o
”
+ (o)
B

Figure 2.2: Message passing of GNN layer one layer. Node embeddings from
neighbouring nodes are aggregated (summed). The output embedding is trans-
formed using an activation function f on the aggregated vector. Figure from [23]

2. Graph classification. This task is to classify entire graph. One very
common problem is predicting whether chemical molecule is toxic or not.

3. Link prediction. This algorithm has to understand the relationships
between nodes in a graph and find unknown relationships or predict
future relationships. It is essential in social networks and suggesting
possible friends to the users.

Like in other neural networks, GNNs have many architectures available.
The core of every GNN layer is how message passing is performed. Given
graph G = (V, E) and node representation hY, the node representation h!t!
after layer [ is calculated as

W = fgW'Rbu (| W'RE))) (2.6)
JEN;

where, W is a trainable weights matrix, N; denotes neighbourhood of node
i, g is a permutation invariant aggregating function, usually sum, f is an
activation function and W' is a weight matrix to be learned.

Message passing can be expressed in matrix form using the adjacency
matrix. For example, when aggregation function is sum, the message passing
can be formulated as

H* = f(AW'HY) (2.7)
A=A+1,

where A is adjacency matrix, [ is the identity matrix and f is activation
function. An example visualization of message passing in one layer is visualized
in Figure 2.2.

10



2.5. Graph Neural Networks

For the task of graph classification, graph is processed for For the task of
graph classification, the graph G = (V, E, H), where H is node initial node
embedding, is processed using graph convolution layers. After k layers, a
single vector 1(G) is created as mean pooling of the node embeddings:

1
Y(G) = i Yok (2.9)

JjeV

This vector is than processed using Linear layers to make a prediction.

11
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Chapter 3

Related Work

This chapter first reviews the existing datasets for fake news and propaganda
detection. Then it shows two approaches to detecting propaganda and fake
news: text analysis perspective and network analysis perspective.

. 3.1 Available Datasets

One of the first benchmark datasets in the propaganda detection area, called
trusted, satire, hoaz, propaganda 2017 (TSHP-17) was published by Rahskin
et al. [6]. It consists of a corpus of 22.5k articles collected from 11 news
outlets. Every article was assigned one of four classes: trusted, satire, hoax,
or propaganda. The dataset was created using distant supervision: the article
is assigned a class based on the label given to the publisher’s outlet by the
US News & World Report!. Barrén-Cedefio et al. [7] released a new dataset
QProp in reaction to what they believed to be a drawback of TSHP-17:
given the small number of outlets per class used, the systems trained on
TSHP-17 might be modeling news outlets rather than propaganda. QProp
consists of 53.3k articles from 104 news sources. Once again, they used distant
supervision with a news source labeled by Media Bias/Fact Check (MBFC)2.
They labeled every article as propaganda or non-propaganda, with about 10%

Thttps://www.usnews.com/
Zhttps:/ /mediabiasfactcheck.com/

13



3. Related Work

articles labeled as propaganda.

LIAR dataset published by William Yang Wang [24] stores over 12,000
short statements labeled by Politifact® to one of 6 classes based on how
truthful the statement is.

Since propaganda uses specific rhetoric and techniques, Da San Martino
et al. [25] created a dataset PTC to detect manipulative spans of text.
The corpus consists of 451 articles, each manually accessed by professional
annotators. The annotation is performed at fragment level: specific text spans
rather than full documents. Each flagged text fragment is assigned one of 18
propaganda techniques, such as loaded language (using phrases with strong
emotional implications), doubt (questioning the credibility of something),
red herring introducing irrelevant information to the issue being discussed
to drive away attention). In the similar manner PTC-SemEval20 [26] was
created for the Lexical and Computational Semantics and Semantic Evaluation
(SemEval) [27].

Baisa et al. [8] published a Czech News dataset. They collected 7,494 Czech
news articles and selected 18 propaganda techniques, among which is blaming
(when the text accuse someone of something), emotions (what emotion is
the text trying to evoke), expert (is the text supported by an expert). Every
article is labeled for existence of every propaganda technique.

Mitra & Gilbert [28], tracked over a billion tweets over the course of three
months in 2015. From that, they curated a set of over 60 million tweets
grouped into 1,049 real-world events, creating the CREDBANK dataset.
Every tweet is assigned credibility score by over 1,700 people.

FacebookHoax dataset by Tacchini et al. [29] includes networking informa-
tion. A total of 15,500 facebook posts, from July to December 2016, were
labeled as either hoax or non-hoax. Information about over 90,000 user
engagements in the form of likes is included.

Most of the publicly available datasets contain purely the textual content
and its label. Labels are either document-wise or fragment-wise. The datasets
that contain some networking information are restricted to social networks. In
this thesis, we want to classify any internet article, therefore we require dataset

3https://www.politifact.com/

14



3.2. Text Analysis Perspective

with propaganda and non-propaganda URLs. Such dataset of propaganda
articles is absent.

B 32 Text Analysis Perspective

Psycho-linguistic work has shown that speech patterns can be signs of a
speaker trying to obscure the truth [30]. The existence of different patterns
in manipulative and truthful texts allows for detecting propaganda and
non-propaganda by purely analyzing the text.

The first works attempted to detect deceitful statements. Ott et al. [31]
analyzed reviews on TripAdvisor?. They used SVM and Naive Bayes classifiers
on a set of features extracted using Linguistic Inquiry and Word Count
software [32] to detect if reviews were automatically generated. Mihalcea &
Strapparava [33] used tokenization and stemming, NLP techniques, to extract
features used for the same classifiers, SVM and Naive Bayes.

Rashkin et al. [6] classified entire texts. Da San Martino et al. created the
system Proppy [7], which works using n-grams as well as additional features
such as capturing style, vocabulary richness, and readability. Baisa et al. [8]
transformed text to vector using used TF-IDF weighted Bag-of-Words and
classified using 10 different classifiers, including SVM and Random Forest.

Da San Martino et al. [25] proposed two tasks for propaganda detection:
Sentence-level Classification (SLC), given a sentence, decide whether it uses
at least one propaganda technique, and Fragment-level classification(FLC),
identify both span and the propaganda technique in the text. They also
propose various BERT [34] based models for their tasks.

For the task of FLC, Yosuf et al. [35] and [36] used fine-tuned BERT. Gupta
et al. [37] use a LSTM-CRF model [38] for the SLC task, by proposing an
ensemble method combining logistic regression, Convolution Neural Network
and BERT.

Even tough these techniques had good results, this thesis does not use

“https://www.tripadvisor.com/
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3. Related Work

explicit text content to classify the web articles.

B 33 Network Analysis Perspective

Early works aimed at detecting and classifying individual nodes in a social
network as legitimate or adversary. Clusters of adversary nodes were consid-
ered to work in coordination to achieve their target goal [39]. It was shown
that bots can be used to influence public opinion in favour of a politician [40].
Companies use social media for communicating with the users, advertising
and marketing [41]. Automated accounts, either hijacked accounts of real
users, or adversary-owned, can mimic actions of real users to influence public
opinion and recommending algorithms [42].

Cao et al. [43] introduced SybilRank, a tool that analyzes social graph
properties to estimate the likelihood of being fake. Yang et al. [44] targeted
the same problem, however, they focused on describing features of the profiles,
such as frequency of clicks performed by these accounts.

Deep neural network approaches were used by Kudugunta & Ferrara [45],
who created an LLTSM based architecture capable of detecting a bot from
a single tweet. Wu et al. [46] proposed an improved conditional generative
adversarial network to extend imbalance sets, which allowed them to better
train neural network classifiers.

Six different teams participated in the DARPA Twitter Bot Challenge [47].
It was shown that supervised machine learning approaches alone were insuffi-
cient due to the lack of training data. All participating teams analyzed syntax
and semantics of users’ tweets and its evolution over time. They included
user profile features, such as user’s photo, and network features, such as the
deviation of the sentiment score of the user from his followers and accounts
the user followed.

All previous approaches focused on detecting a single fake user in a social
network without considering their coordination. An alternative approach is
to assume that bots are working together aiming to achieve a shared goal.
This coordination can be used to detect a group of users in an unsupervised

16



3.3. Network Analysis Perspective

way to overcome the shortcomings of supervised algorithms due to the limited
availability of training datasets [48].

Systems for detecting entire groups of users aim to detect connectivity
patterns. Coordinated efforts are seen as almost fully connected sub-graphs.
Hooi et al. presented BIRD [49] for detecting automated reviews based on
clustering of reviewers. Chetan et al. [50] created CoReRank, an unsupervised
system focused on retweeting patterns and tweet content.
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Chapter 4

Dataset

The goal of this thesis is to analyze the distribution patterns of a web article.
To find the pattern, we require URLSs to obtain the features that we need. As
described in Section 3.1, there is no such dataset for propaganda detection.

This chapter describes how our dataset was crated. We start by discussing
the methodology for collecting articles. Next, we discuss the gathering of
the dataset. The dataset contains 245 web articles, 128 of them are non-
propaganda articles, and 117 are from propaganda articles.

This thesis introduces the concept of Article Distribution Graph (ADG).
An ADG is a way to represent the distribution of an article on the In-
ternet. By article, we understand a news article on the Internet with
a unique URL address. The ADG contains the main article, and the
Internet articles that reference back to the main article. So, for exam-
ple, if the article https://example.com/news.php?id=2345 is linked from
https://different.com/things.php 2id=5553 then the second article will be in-
cluded in the ADG of the first. ADG are more complex than this, and a
comprehensive explanation can be found in Subsection 4.2.

For each article, part of the features extracted are: URL, title, second
level domain domain, publication date, HTML content and human-readable
textual content.
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4. Dataset

B a1 Collecting Propaganda and Non-propaganda
Articles

For our task, we require URLs of both propaganda and non-propaganda
articles. We aim to find articles that we can be certain are or are not
propaganda.

There are many non-profit organizations that detect disinformation and pro-
paganda, e.g., Politifact!, Cesti elfové?. Usually, they select a statement and
fact check every claim and provide explanation with background information.
We used data provided by the EUvsDisinfo project [10].

EUvsDisinfo is a project of the European External Action Service3. It was
established to address the Russian Federation’s propaganda affecting states
of the European Union. Their core objective is to increase public awareness
of Kremlin propaganda so that European citizens can develop resistance to
manipulation. They define their work as "Using data analysis and media
monitoring services in 15 languages, EUvsDisinfo identifies, compiles, and
exposes disinformation cases originating in pro-Kremlin media that are spread
across the EU and Eastern Partnership countries.” [10].

There is a publicly available database of more than 1,200 samples of all
the propaganda articles they have examined on their website. Each entry
consists of a summary of the article, a detailed disproof, including the sources
of their claim, and the URL. We collected 500 articles from their database
dated from June to August 2021.

Articles that are non-propaganda are more challenging to find. It is
not clear what exactly is not propaganda. Any published article might be
propaganda; however, people may not have detected it. To the best of our
knowledge, no organization verifies that an article is not propaganda. Some
organizations, such as Politifact, review various statements and evaluate their
truthfulness. However, showing that the article is true does not mean that it
is not propaganda.

https://www.politifact.com/
https://cesti-elfove.cz/
3https://www.ceas.curopa.eu/
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4.2. Building Article Distribution Graphs

To avoid introducing additional biases into the data, we keep both the
topic and geographical location of chosen articles similar to the collected
propaganda articles. It is likely that the distribution patterns look different
with respect to geographical location. Any model trained on such a dataset
might learn to differentiate between the location, rather than propaganda
and non-propaganda, similarly to what Rashkin et al. [6] found, their model
differentiated between news sources rather than the content.

To maintain the geographical similarity between the propaganda or non-
propaganda articles, we searched for Russian or Eastern European news
articles. This introduced a new complication in the form of a language barrier.
We had to main rely on Google Translate? to read the content of the articles,
however the supervisor-specialist Elnaz Babayeva speaks Russian natively
and could verify the data. To maintain the topic similarity of the EUvsDisinfo
articles, we had to find politically themed articles.

The verification that an article is non-propaganda was done in two steps:

1. We checked the writing style of the article and whether it uses any
propaganda techniques. Since we used Google Translator for translation,
it may happen that the propaganda technique was lost in translation.

2. We fact-checked the main content of the article. If the article discussed
multiple events, we discarded such an article due to the difficulty of
fact-checking.

Using the above methodology, we collected 128 non-propaganda articles.

BN a2 Building Article Distribution Graphs

The creation of the dataset starts with what we called the main article. This
is the article that is verified to be propaganda or not-propaganda and that
we want to see how it was distributed. For each main article we create one
ADG (Article Distribution Graph).

“https://translate.google.com/
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4. Dataset

. i Every result found by
W EIEE URL in Level 2
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Search by Search by Search by Sea
title URL title

Level 2 Level 3

Figure 4.1: Methodology of the Article Distribution Graph creation. To create
ADG of the main article, its title and URL is used as a keyword for searching
using engines, as well as social networks. The irrelevant results are filtered out,
the relevant are stored. All relevant results that were found by URL are used to
perform the search again.

We create the Article Distribution Graphs by searching the main article on
the Internet. The diagram of how the ADG is created is shown in Figure 4.1.

The ADG represents the graph of all the articles that reference or share
content with the main article. An example of an ADG is shown in Figure 4.2.
Notice that the links by URL and Title are the opposite of HTML links.
In an HTML link (commonly referred to as link) an article a links to other
article b using HTML tags, such as the <a> tag. However, in our ADG URL
and Title relationships, we want to know that article b referenced article a.
This is much harder since there is no list of web pages that are linked from
other web page. There is no back-link in HTML.

B 4.2.1 Internet Searching

We search the Internet to find from which articles the main article is referenced
or its content is duplicated. Every search is performed simultaneously on four
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4.2. Building Article Distribution Graphs

Publication date: 23.12.2021

Publ|c§tlon date: 17'09'2022, URL: sputniknews.com/article1/..
URL: vice.com/en/random_article .
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Title: 9 Rules About KAMEL

Domain: sputniknews.com
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Publication date: 20.05.2022
URL: ticktick.com/article2/..
Title: Miss This And You Are Out
Domain: ticktick.com

Level: 2

Publication date: 17.06.2021

URL: pravda.ru/random_article/..
~ ~Title: Why KAMEL Succeeds

Domain: pravda.ru

Level: 1

-
- e = -
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Figure 4.2: Example of Article Distribution Graph. Every node corresponds to
an Article, it store publishing date, URL, Title, Domain and Level. Node 1 is
the main article, it is linked by title by articles 2 and 3, which have the same
domain. Article 4 links the main article by URL, therefore it is used for the next
level search, and article 2 and 3 are not used for the next Level search because
they are found by title. Node 5 links 4 by title.

of the most popular search engines: Google, Bing, Yandex and Yahoo, as well
as two of the most popular social networks in Eastern Europe: Twitter and

VEKontakte.

For every article, we search twice with different keywords. Firstly, we
search by title of the article, secondly, we search by URL. All articles returned
from the search engines (as well as social networks) when searching by title
keyword are referred to as found by title. Similarly, articles returned from
search engines when searching by URL are referred to as found by URL.

B 4.2.2 Filter Search Engines Result

Before adding the results to the ADG, we need to filter unwanted results. All
search engines find many unwanted articles, therefore we need to keep only
the relevant results. We download the HT'ML source for every result and

23



4. Dataset

from it extract the clean article content. We filter the results found by title
differently to the ones found by URL.

If a result was found by title of an article, we compare the article’s content
to the content of the result. We evaluate the similarity of the content using
the Levenshtein Ratio, a similarity metric of strings a and b with lengths
|al, |b], respectively, defined as:

lev(a,b)

lev_ratio(a,b) =1 — ————— (4.1
mar([al, ) ’
where lev(a,b) is Levenshtein distance:
|al if o] =0
|b| if [a] =0
lev(tail(a),tail(b if a[0] = b[0
le'[}(a,7 b) — e,U( ar (a)’ ar ( )) 1 a[ ] [ ] (42)
lev(tail(a),b)
1+ min < lev(a, tail(b) otherwise
lev(tail(a),tail(b))

where tail(z) is all but the first character of string x and z[0] is its first
character. The final distance is the minimal number of operations required to
perform on the strings to transform one string into the other. Operation can
be one of the following: delete a character, insert a character, or modify a
character.

For every result found we calculate the Levenshtein Ratio of the article’s
clear content cont__r and clear content of the article cont__a used for searching,

and we keep only the results if lev_ ratio(cont__a,cont_r) > w.

We learned w by searching by title for 40 different origin articles. As a result,
we extracted 1,153 articles and found the best threshold to be w = 0.3853
with 71% accuracy. This means that the content is similar enough that it can
be considered to share substantial part of the content.

If a result was found by URL, we need to check whether the HTML code
of the result contains the URL of the article. If there is the URL, it means
that there is a direct reference from the result to the article.
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4.2. Building Article Distribution Graphs

B 4.2.3 Multi-level graph creation

At the beginning of the creation of the ADG, we have only the main article
to which we want to create the ADG. We store the article in a set called
Level 1. Every result found by title or by URL and passing the respective
filtering is stored in Level 2. We repeat the search for all articles found by
URL and stored in level 2. Again, after the results passes the filtering, we
store them in Level 3.

We repeat the search for articles in Level 2 only found by URL. The reason
is that when searching for title, we compare the similarity of the textual
content. If we search again using Level 2 article found by title, the textual
similarity might be vastly different. Articles found by URL, however, contain
direct reference to the article. We assume this direct reference is stronger,
therefore, searching again using this article finds relevant articles.
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Chapter 5

Implementation of a Tool to Create our
Dataset

For this thesis, we extended the Web Reverse Graph Extractor (Werge), a
tool developed by Garcia & Babayeva [51]. Werge creates the ADG described
in Section 4.2 from the URL of an article. In this chapter, we describe Werge
and its components.

Werge generates a SQLite database as an output. The database contains
two tables: a table with information about the articles and a table with links
between the articles.

The table with information about the articles stores the following informa-
tion:

Article’s URL - where the article is hosted

Article’s domain - domain of the article’s URL

Article’s publication date - extracted the date when the article was
published

Article’s level - the shortest path from the article to the origin article

Article’s HTML source - a raw HTML source code
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5. Implementation of a Tool to Create our Dataset

® Article’s content - human readable text of the article, extracted from
HTML page

The table with information about the links between the articles stores the
following information:

® Article used for searching
® Article found

B Type of search, either URL or Title

Werge has two main functionalities: creating the Article Distribution Graph
structure, and performing the data extraction about the article.

B 51 Creating Article Distribution Graph Structure

To create the ADG, when searching by title or by link, we use four different
search engines: Google, Bing, Yahoo, Yandex. And we search for public
content on Twitter and VKontakte.

Searching in search engines is performed by Google-Search-API created by
SerpApi [52]. SerpApi is a paid service; however, they allowed us to use their
API for free for research purposes. Searching for Monkey using Google and
getting results in the form of a dictionary using SerpApi Google-search-API
is as simple as:

from serpapi import GoogleSearch

search__parameters = {
"engine" : "google",
qul . n Monkey n ,

"api_key" : SECRET API KEY
}

results = GoogleSearch(search parameters).get dict ()
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5.1. Creating Article Distribution Graph Structure

There are many optional parameters available, such as search engine, page

number, number of results to find, etc.. The parameters vary slightly for

different search engines.

Algorithm 1: Werge main algorithm

1
2
3

Result: Store all data and links into a database
create_ database()

level[l] = [query url]

for current_level in [1,2,3] do

4 urls_to_search = ||
5 for url in level[current_level] do
6 article = get__content(url);
7 urls_found by url = search(article["URL"])
8 for found_url in urls_found_ by _wurl do
9 found_ article = get__content(found_ url)
10 if contains(found__article/"HTML"], article["URL"]) then
11 urls_to_ search.append(found_ article["URL"])
12 save_data(found_ article)
13 save_link(found_ article, article, "url", current_level)
14 end
15 if article["title"] is not None then
16 urls_ found_ by_ title = search(article["title"])
17 for found_url in urls_found__by_title do
18 found_ article = get_ content(found_ url)
19 if filter _similarity(found _article["content'], article[
"content’]) then
20 save_ data(found_ article)
21 save_ link(found_ article, article, "title",
current__level)
22 end
23 end
24 end
25 end
26 level[current_level+1] = urls_to_ search
27 end
28 end
level

The next block starting from Line 15 is very similar to processing search by

URL, with two differences. Again, we perform a search, however, now we use
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5. Implementation of a Tool to Create our Dataset

title as search keyword. Next, we compare the similarity of contents of searched
URL and found URL with the function filter_similarity(found__url_data,
url_data). The similarity is measured as Levenshtein Ratio of clear contents,
contents extracted using BeautifulSoup [53].

The function filter similarity uses the library Levensthein' and filters out
all results if the Levenshtein Ratio is smaller than w = 0.3854

import Levenshtein
def filter similarity (datal, data2, omega):
contentl = datal|["content"]

content2 = data2|["content"]
return Levenshtein.ratio (contentl, content2) >= omega

. 5.2 Data Extraction

We aim to extract the following information for every article processed:

URL of the website
® HTML content of the website

Title of the article

Article text

Publication date

At the beginning of processing any article, only its URL is available. Using
the Python library Requests, all the HTML source code is downloaded. The
HTML source code is parsed by a library BeautifulSoup4 (BS4). BS4 is a
Python library for pulling and parsing data from HTML files. Using this
library, we extract both the title and the text.

There are many libraries that can extract the publication date of a website,
however none of them works particularly well. We experimented with several

"https://pypi.org/project /python-Levenshtein/
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5.2. Data Extraction

Date extraction method TP FP TN FN
First Date Present 46 3 2
Heuristic 56 41 3
Newspaper3k 56 1 2 31
Htmldate 82 43 7 13
Newspaper3k— Heuristic 92 34 1
Google-Search-Api—Newspaper3dk—Htmldate 124 17 7 1

Table 5.1: True Positive (TP) represents the approach finds a date and it is the
correct one, False Positive (FP) is when the approach extracts a date, however it
is wrong. True Negative (TN) is the case when the approach is unable to extract
date and there is no date in the HTML source code. False Negative (FN) for
being unable to extract a date, however, it is present in the source.

of them as well as developing our own method to find the best approach for
date extraction. First Date Present is simple method to find the first string
in a form of a date in the HTML source code. Heuristic approach is selecting
the date closest to the title in terms of char-distance to the title,, because in
the most of the cases the publication date is placed next to the title. We find
all strings in a form of a date and select the one which is placed closest to the
title. Newspaper3k is a library for browsing news sites as well as extracting
data, including the publication date. Htmldate [54] is a library for extracting
dates of website. Google-Search-API is a service for using search engines,
where the results also have publication date. We also included combined
approaches, use one library to extract the date and if it does not extract
anything, use different approach. For this we combined Newspaper3k with
Heuristic approach and Google-search-API with Newspaper3k and Htmldate.
We extracted the publication dates of many websites and each approach on
many websites and manually checked whether the date is correctly extracted
Results of our manual analysis is in Table 5.1.

In our manual review, the best performing method was to use the combina-
tion of Google-Search-API, Newspaper3k? and HTMLDate?. First we search
the date by Google-Search-API, if it returns no date, use Newspaper3k and if
it does not extract the date, use Htmldate yielding 82%. The approach can
be summarized as follows:

publication_date = extract date using Google—Search—API
if publication_ date is None:
publication_ date = extract date using Newspaper3k

https:/ /newspaper.readthedocs.io/
3https://pypi.org/project /htmldate/
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if publication_date is None:
publication__date = extract date using HTMLDate
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Chapter 6

Methods to Detect Computational
Propaganda

We use machine learning (ML) methods to create a model that predicts
whether a URL is propaganda or not. The task is defined as a binary graph
classification. Our goal is to create a predictor m:

m : ADG — {propaganda,non-propaganda} (6.1)

We measure the performance of a model m using the accuracy metric:

1
Accuracy = — Z [m(g) =] (6.2)
1Dl (9:y)eD

where D is a dataset, (g,y) is the ADG and its label, either propaganda or
non-propaganda and m(g) is the output of the model.

. 6.1 Features Available

The ADG is an orientated graph with features for every article and edge. We
expand descriptions of nodes in the ADG by adding additional features. A
node in the graph represents article as well as other node features as:
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6. Methods to Detect Computational Propaganda

1. Level of the article

2. Time difference

3. Missing time difference
4. In-degree centrality

5. Out-degree centrality
6. Closeness centrality

7. Eigenvector centrality

8. Clustering coefficient

All four centralities as well as the clustering coefficient are measurements
from Social Network Analysis and are described in Section 6.1.1. These SNA
features are denoted as Vgn 4. We also denote Vpp the time difference as
well as the missing time difference and V, the level feature.

Time difference is a feature created from the publication dates. This
transforms publication date into a numbers and makes the feature relative to
node v, which is the node used for searching and found u.

TD(w) (date(v) — date(u)).days if publication dates of u,v are known,
u) =
0 if at least one publication date is unknown

(6.3)

In addition to the Time Difference feature, we introduce the Missing time
difference MT D to track if the second case of Equation 6.3 occurred.

0 if u is original article’s node
MTD(u) =<0 if publication dates of u,v are known, (6.4)

1 if at least one publication date is unknown

We also create seven binary features edges. Every feature connect two
nodes based on whether the condition is true:
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6.1. Features Available

8 F, Found by URL

® F; Found by title

® F; Share the same domain

8 F,., Reversed edge of found by url
8 F,; Reversed edge of found by title

8 F, Edge exists if the two pairs of node were found by URL, found by
title, share domain, F, = FE, U E; U Ey

B F,., Edge exists if the two pairs of node were found by URL, found by
title, share domain, reversed found by URL, reversed found by title, E,,
=FE,UEUE;UE.UFE.;

B 6.1.1 Node Features: Social Network Analysis

Social network analysis is a process of analyzing graphs using graph theory
methods. We selected five metrics describing positions of a node in the graph.

H Degree Centrality

In degree centrality of node u € V, denoted deg™ (u), is mathematically
defined as
_ 1
deg™ (u) = 1 Z [(x,u) € E] (6.5)

|V‘ zeV

where V' is a set of nodes in the graph and [(z,u) € E] =1 if (z,u) € E,
[(x,u) € E] =0 if (x,u) ¢ E. The in-degree centrality of a node u measures
how many edges are oriented to u. The value is normalized by |V| — 1. Note
that in a graph without parallel edges and without loops, there are at most
|V| — 1 possible edges connected to the node.
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6. Methods to Detect Computational Propaganda

B out Degree Centrality

Out degree centrality is very similar to in degree centrality. The difference is
that we calculate number of edges oriented from a node w.

deg™ (u) = yw1_1 S [(u ) € B (6.6)
zeV

B Closeness Centrality

V]
d(z,u)

clo(u) = Z

zeV

(6.7)

Closeness centranlity shows how the node is in the center to the graph, if it is
on average close to all the other nodes or not. Note that d(z,u) = oo if there
is no path from x to u. For calculating closeness centrality it is assumed that
Vi _y
= .

H Eigenvector Centrality

Eigenvector centrality calculates the importance of the node based on how
many important nodes it links to. This measurement

Ax = Mx (6.8)

where A is adjacency matrix A is its largest eigenvalue and x is corresponding
eigenvector. Following Perron—Frobenius theorem the largest eigenvalue of
a matrix is unique and positive if the matrix has only non-negative entries.
Adjacency matrix satisfies this requirement. The eigenvector centrality of
node ¢ is the i-th element of vector x.

We are calculating the centrality on the reversed graph because of the real
life meaning. As stated above, eigenvector centrality calculates the importance
of the node based on how many important nodes it links to. On the reversed
ADG, the higher the eigenvector centrality of a node, the more it is referenced
by often referrenced nodes.
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6.2. Models

| Clustering Coefficient

This measurement describes information about neighbours of node u. The
value is calculated on unoriented graphs. The idea is about measuring how
many of u’s neighbours are connected, therefore measuring how many triangles
the node is a part of with respect to the number of possible triangles including
node u

clu(u) = {O ifdeg(u) <1 (6.9)

2T (u) .
Tega)(deg(—1) 1S deg(u) > 1

where T'(u) is number of triangles u is a part of.

. 6.2 Models

We tested three different algorithms. First, we hand-crafted a feature vector
to describe each graph and use random forest for the classification. Second,
we tested kernel-SVM with graph kernel methods, a similarity measurement
methods based on the graph structure. Last, we used a Graph Neural Network
to combine both hand-crafted features with the graph structure.

B 6.2.1 Random Forest

To use random forest, a feature vector representing a graph is required. We
create following features and concatenate them into a single feature vector.

1. Fraction of nodes in level [ for every level. ﬁ Sicvllevel(i) =1]

2. Mean SNA features, create the SNA features for every node and calculate
their node-wise mean. ‘—‘14 > icy v(i) where v denote the SNA feature.

3. Mean time difference of nodes purp = ﬁ Yicv T'D(i)
4. Standard deviation of the time difference |—‘1/| Siev (TD(i) — prp)?
5. Mean missing time difference ‘—é.l >icv MTD(3)
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6. Methods to Detect Computational Propaganda

6. Number of nodes in the graph |V|
7. Number of edges in graph |Ey| + |Ey| + |E

8. Fraction of links found by URL over all links found m

9. Fraction of nodes having unique domain ‘—é' Yiev[Xjev domain(j) = 1]

These features are concatenated into a feature vector of dimension 15.

B 6.2.2 Graph Neural Network Architecture

For Graph Neural Network application we use Relation Graph Convolution
layer (RelGraphConv) proposed in [55]. This layer allows multiple types
of edges and learns different transformation for every edge type. Message
passing in RelGraphConv layer is performed as

R = fWERE+ 3 —W’hl (6.10)
r€ERJENT Cij

where R is a set of all edge types and N; is a neighbourhood of node i
considering edge type 7, nodes j such that (j,7) € E,. ¢;, is a normalisation
term set as ¢;; = \/deg(i)deg(j). The advantage of this GNN is that we
could utilize our different edge types in the graph.

We created a architecture consisting of two Relation Graph Convolution
layers and one Linear layer seen in Figure 6.1

Only two layers are enough to pass information between any nodes that
are related, because every node in our ADG has distance at most 2 from the
original node.

B 6.2.3 Support Vector Machine

Support vector machine (SVM) [56] is a linear classifier associated with
learning algorithm used for binary classification. SVM finds the optimal
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Prediction

Sigmoid

Dropout
ReLU
Linear Layer

>
RelGraphConv
Dropout
RelLU
RelGraphConv
Global Mean Pool

Figure 6.1: The graph neural network uses adjacency matrix A and initial
node feature vectors for every node H. Our architecture is two Relation graph
convolution layers with ReLU activation function and dropout. Next, we perform
global mean pooling over node embeddings, resulting in single vector for entire
graph. This vector is than processed using Linear layer and Sigmoid activation
function.

separating hyperplane for linearly separable data. This hyperplane maximises
the distance, called the margin, from a data sample to the hyperplane. In the
case that the data are not linearly separable, soft-margin SVM introduces a
trade-off between the size of the margin and penalty of missclassified data
samples.

The algorithm also extends to non-linear data using the so-called kernel
trick. The core idea of the kernel trick is to create a mapping:

Y : RT — R® (6.11)

usually e > d. Although the data z € R may not be linearly separable, they
can be linearly separable as 1(x) € R®. The kernel trick can be extended for
non-euclidean data, such as graphs.

There are many graph kernels propsed in the literature [57]. We experiment
with three different kernels: Weisfeiler-Lehman kernel [58], Weisfeiler-Lehman
Optimal Assignment kernel [59] and Hardman Code kernel [60].

All the kernels use iterative relabeling of nodes. Every node u starts with
a label [°(u) and in every iteration the label is updated as

@) = £ J *)uih) (6.12)

vEN (u)

where N (u) is the neighbourhood of u and f is a relabeling function, different
for each kernel. After fixed amount of iterations, a vector ¢(G) € R? is
created by counting the number of occurrences of every label during all the
iterations and using L; to normalize the vector.
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Chapter 7

Experiments

To evaluate our methods, we split the dataset into train and test sets. This
split is performed with stratification, depicted in Firure 7.1, a technique for
random sampling data with the same proportion of classes to the original set.
Stratification is often used when sampling small datasets to avoid unbalanced
sampled sets. The dataset is split into train and test sets so that test set
is 20% of the entire dataset. Using stratification, the resulting training and
validation sets have 196 and 49 entries respectively.

Original set

Sampled set

Figure 7.1: Stratified sampling of four samples from the original set. The
sampled set is randomly selected from the original set, however, the proportion
of classes will always be the same.
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7. Experiments

Every method requires its own set of hyperparameters. We perform grid
search for all hyperparameters with stratified k-fold cross validation of the
train set. The k-fold cross-validation divides a set into k groups. A model is
trained k times, using k — 1 groups as a training set and one as a validation
set. k-fold cross validation allows us to measure how the model, with its
hyperparameters, performs on different data. This method helps us select the
hyperparameters, which are then used to train a model on the entire train
set. We select £ = 5 so that the groups are representative.

. 7.1 Random Forest

Hyperparameters to be chosen are the maximum depth and the number of
decision trees in the random forest. The range of parameter search is given
in Table 7.1

Parameter Parameter range

Max decision tree depth 1, 2,3,4,5,6, 7,8
Number of decision trees 1, 5, 10, 20, 50, 100

Table 7.1: Hyperparameters range for random forest classifier.

Decision tree trained on k samples cannot have depth more than [logs(k)],
so the maximum depth is upper bounded to 8 when the dataset used has
almost 200 samples. The number of decision trees was chosen to increase with
larger intervals between the parameters because the expected improvement
increases logarithmically, with every additional decision tree adding relatively
less.

72 Support Vector Machine

We experimented with three different graph kernels to create an embedding
of a graph. Weisfeiler-Lehman kernel, Weisfeiler-Lehman optimal assignment
(OA) kernel, and Hardman code kernel. These kernels require only the number
of iterations as a hyperparameter. The number of iterations defines how many
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7.3. Graph Neural Network

times the relabeling process is performed. SVM uses only C, the regularization
term, as a hyperparameter. The range of parameters is shown in Table 7.2

Parameter Parameter range

Number of iterations 1,2,3,4,5,6,7,8,9,10
C 0.125,0.25,0.5, 1, 2, 4, 8

Table 7.2: Hyperparameters range for graph kernel SVM.

N 73 Graph Neural Network

B 7.3.1 Hyperparameter Selection

We approach training GNN differently from the other methods. This is
because neural networks are trained iteratively. To avoid overfitting, we use
early stopping. This technique requires measuring the performance of the
model on unseen data to evaluate the generalization capability of the model.
One option of early stopping is to save models after every learning epoch.
When the training finishes, the model that performed best on the unseen
data is selected as the final one.

To enable early stopping, we subdivided validation set from the train
set. This leaves us with three sets for every cross-validation. For parameter
selection, we have two sets: train set, that is used for cross validation) and
validation set used to evaluate the generalization capability.

The model is trained using binary cross-entropy loss

N
L= _% > _wilog(a(yi)) — (1 = yi)log(a(l — y:)) (7.1)
i=1

where y denotes class label (either 1 for propaganda or 0 for non-proapaganda)
and ¢ is the model’s score of y; being propaganda. The model is trained using
Adam optimizer.

Parameters of this model to be estimated are: hidden layer size, dropout,
and learning rate for optimizer. The range of parameters is in Table 7.3.
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Parameter Parameter range

Hidden size 4, 8, 12, 16, 24, 32
Dropout 0, 0.1, 0.3, 0.5, 0.7
Learning rate 0.1, 0.05, 0.01, 0.005, 0.001

Table 7.3: Hyperparameter range for GNN models.

We train the GNN for 100 epochs. After every epoch, we save the model.
We selected the best model, out of the 100, based on the accuracy on the
validation split of the cross validation. We evaluate the model on the validation
set. This is chosen to test the generalization capability of the model. We
select the best parameters as the ones that yield the best mean validation
accuracy.

B 7.3.2 Proposed Models

We created 12 models, each using various subsets of features introduced
in Section 6.1. Every edge feature denotes its own edge type, therefore,
increasing the number of edge features increases the complexity of the model.
All 12 models with the features they are using are in Table 7.4.

Models 2,6,10 with five edge features require 6 weight matrices per layer (five
for every edge type and one for the self-loop weight matrix, see Equation 6.10).
Models with only one edge feature, such as 3 and 4, require only two weight
matrices, therefore, decreasing the number of parameters to the more complex
ones.
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7.3. Graph Neural Network

Model Node features Edge features

1 Vsna Ey, Et, Eq

2 VSNA EU7Et7Ed7E7"u;Ert
3 Vsna E,

4 VSNA Era

5 Vrp, Vi Ey, Et, Eq

6 VTD?W E’LmEtaEdaETuaE’r‘t
7 Vrp, Vi E,

8 VTD, ‘/l Era

9 Vsna, Vrp, Vi Ey, E, Eq

10 VSNAvaD;W E’LUEtaEdaE’r'uaE’r‘t
11 Vsna, Vrp, Vi E,

12 Vsna, Vrp, Vi Era

Table 7.4: 12 Proposed GNN Models
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Chapter 8

Results and Discussion

. 8.1 Results

In the previous chapter we found the best hyperparameters for our models.
Training of the random forest and graph kernel SVM differs to training of
a GNN. For random forest and graph kernel SVM, we use entire train set
as described in Chapter 7. GNNs requires monitoring during the training,
therefore we keep the data split as described in Section 7.3.1.

Random forest with 50 decision trees and maximum depth 5 achieved
81.63 % test accuracy. Result of graph kernel SVM is in Table 8.1. The best
kernel for SVM is Weisfeiler-Lehman OA which gives 71.43 % accuracy on
test set.

Kernel Number of iterations C Test accuracy
Weisfeiler-Lehman OA | 1 8 71.43 %
Weisfeiler-Lehman 2 2 61.22 %
Hadamard code 4 0.125 57.14 %

Table 8.1: Result of graph kernel SVM

GNN models were trained using the process described in Section 7.3.1. The
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Figure 8.1: Training curves of a GNN model 1, the one using node features
Vsna and edge features E,,, Ey, E5. We select the best model out of the 100
based on the maximum accuracy on the validation set, which is after 69 epochs.
This model achieved 75 % accuracy on the test set.

train set was split into training and validation set. We train the model on the
training set for 100 epochs and evaluate after every epoch on the validation
set. We select the best model from the training process based on the score on
the validation set. Learning curves for one parameter selection for the cross
validation are seen in Figure 8.2. This best results we could achieved with
GNN is 75 % accuracy on the test set. Training of this model as well as the
model selection is seen in Figure 8.1.

. 8.2 Discussion

The random forest was best performing model with over 80 % test accuracy.
However, all the models performed well, considering that the data nature is
difficult. The best graph neural network model scored 75 % test accuracy.
The best models were the ones using social network analysis features. We
believe that adding the SNA features to describe the position of nodes in a
graph was helpful to our models.

Graph kernel-SVM under-performed compared to the other methods be-
cause the method primarily uses the graph structure without additional
information, like the article’s publication dates and edge types. Moreover,
most research focus shifted from graph kernels to GNNs [57]. We included
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8.2. Discussion

Model Hi(.iden Dropout Learning | Mean CV Test

size rate accuracy | accuracy

1 32 0.5 0.01 84.63 % | 75.51 %
2 32 0 0.01 82.69 % 65.31 %
3 32 0.5 0.01 73.00 % 59.18 %
4 32 0.5 0.001 77.60 % 69.39 %
5 32 0.3 0.001 73.00 % 59.18 %
6 10 0.5 0.01 78.83 % 69.39 %
7 16 0.3 0.001 69.23 % 51.02 %
8 16 0 0.005 73.65 % 65.31 %
9 16 0.3 0.01 75.06 % 63.26 %
10 16 0 0.001 80.74 % 61.22 %
11 16 0.3 0.05 71.77 % | 75.51 %
12 16 0.3 0.001 74.39 % 73.46 %

Table 8.2: Results of the 12 GNN models propsed in Table 7.4. We found the
best parameters using cross validation for every model, and evaluated each model
on the test set.

graph kernels in our research because of the limited dataset size.

Deep learning methods are known to require a lot of data. We think the
size of our dataset is the reason why random forest outperformed GNNs. For
future work, we believe the best approach for classifying articles using the
distribution pattern is using graph neural networks.
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Loss

Figure 8.2: Learning curves for cross validation. We train 5 models for every
set of parameters using the 5-fold cross validation. We measure the train and
validation loss, shown as mean with the range of minimum and maximum losses
for every fold.
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Chapter 9

Conclusion and Future work

. 9.1 Conclusion

In this thesis, we developed a novel approach to computational propaganda
detection. We evaluated whether it is possible to identify propaganda web
articles using the knowledge of how the news is distributed on the Internet.
One of the obstacles we faced during the research was the absence of a dataset
of propaganda and non-propaganda web articles, which we needed for our
work.

As part of this thesis, we developed the CTU-Propaganda-V1 dataset,
consisting of propaganda and non-propaganda web articles, their URLs,
and other features, such as date of publication, text content, HTML, etc.
For propaganda articles, the primary source was the EUvsDisinfo project.
Each article in the database was manually examined for the availability and
occurrence of automatic re-directions. To collect non-propaganda articles,
we manually searched and fact-proved articles with similar topics as the
propaganda articles from EUvsDisinfo. Because EUvsDisinfo mostly has
articles regarding politics in Russia, so, for non-propaganda news, we stayed
in the same social context to decrease the bias of how the distribution on the
Internet would look like, and we looked for truthful news in Russian media
sources. Because of the language barrier, we have to rely on Google Translate
and a native Russian speaker to translate each article and then check if it
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9. Conclusion and Future work

corresponds to the topics pre-chosen in propaganda articles. The process was
carried out manually and was time-consuming.

As a second contribution to the thesis, we developed the Werge tool, which
searches the Internet using either the title of the article or its URL, in various
search engines and social networks, and then builds a Article Distribution
Graph based on the results found. An Article Distribution Graph is the
graph of all the web articles linking back to the main article. We designed
and trained an approach to extract the article’s date of publication from the
HTML and to perform text similarity between two articles.

Moreover, we designed three models for graph classification tasks, exploring
a different approach. The Random Forest uses features extracted from a
distribution graph; however, it does not use the graph structure. Graph
kernels use very little information about the features (only the level) and
focus purely on the graph structure. Graph neural network uses both as
graph structure, so feature extraction. We believe that machine learning
approach is a promising way to detect propaganda articles based on their
ADG. The best result with 81.63 % accuracy was found with Random Forest
classifier.

The main contributions of this work include:

B We created CTU-Propaganda-V1 dataset containing 245 articles as well
as their ADGs.

® We developed a method to create an Article Distribution Graph of an
Internet article using Werge.

® We compared different machine learning algorithms for detecting compu-
tational propaganda.

® We trained a Random Forest classifier with 81.63 % accuracy on unseen
data.

® We show the Internet distribution pattern of an article is sufficient to
achieve up to 80% accuracy on unseen articles.
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9.2. Future Work

. 9.2 Future Work

One of the most challenging but promising tasks is creating a benchmark
dataset that can compare different approaches in propaganda classification
using distribution graphs. There are two possible approaches to how the
benchmark could look like: a dataset with propaganda/ non-propaganda
URLs and a dataset with propaganda/non-propaganda ADGs. On the one
hand, a dataset of URLs can quickly become outdated since the Internet is
ever-changing, and the search engines prefer newer results to older ones. On
the other hand, creating a dataset of distribution graphs limits the researchers
to use of their method for building ADG. A larger dataset also allows using

more complex methods.

Another promising research venue could be in the area of data extraction
and article comparison. We wanted to avoid more complex NLP methods for
comparing articles because, for our research, it was more important to find
articles that share parts of the texts. Using NLP methods to compare the
meaning of articles rather than exact words might also be an additional area

of improvement.
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