
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY IN PRAGUE

M
A
S
T
E
R
T
H
E
S
IS

IS
S
N

12
13
-2
36
5

Discovery, tracking and
redetection of floorball players

from multiple cameras

Bc. Miroslav Purkrábek

purkrmir@fel.cvut.cz

May 20, 2022

Thesis Advisor: prof. Ing. Jǐŕı Matas, Ph.D.

Master Thesis of CMP, Czech Technical University in Prague,

Published by

Center for Machine Perception, Department of Cybernetics
Karlovo náměst́ı 13, 121 35 Prague 2, Czech Republic

Faculty of Electrical Engineering, Czech Technical University
Technická 2, 166 27 Prague 6, Czech Republic

fax +420 2 2435 7385, phone +420 2 2435 7637, www: http://cmp.felk.cvut.cz





Discovery, tracking and redetection of
floorball players from multiple cameras

Bc. Miroslav Purkrábek

May 20, 2022





MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

465809Personal ID number:Purkrábek  MiroslavStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Discovery, tracking and redection of floorball players from multiple cameras 

Master’s thesis title in Czech:

Nalezení, sledování a redetekce hráčů florbalu z více kamer 

Guidelines:

1. The supervisor has access to recordings of floorball acquired by multiple not fully synchronized cameras viewing the
pitch from different angles. The recordings have been synchronized to within one frame precision, corrected for radial
distortion and the ground plane has been registered.
2. The bounding boxes of players have been detected by the MMDet system. [1]
3. Implement a method for discovering new identities and tracking and redetection of players, possibly with the help of
available open source components.
4. Using the results of 3., and information about camera calibration, propose a method for combining results in multiple
cameras and create automatically or semi-automatically partial ground truth (reliable poses of some of the players).
5. Evaluate both the single-camera and multi-camera method on data with ground truth on a subset of the footage.

Bibliography / sources:

[1] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu,
Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu, Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu, Yue Wu,
Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. Mmdetection: Open mmlab
detection toolbox and benchmark, 2019
[2] Szeliski, R. (2022), Computer Vision - Algorithms and Applications. , Springer, 2nd edition.
[3] Ponce J., Forsyth, D. (2011), Computer Vision - a Modern Approach

Name and workplace of master’s thesis supervisor:

prof. Ing. Jiří Matas, Ph.D. Visual Recognition Group, FEE 

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 08.02.2022

Assignment valid until: 30.09.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureprof. Ing. Jiří Matas, Ph.D.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1



Author statement for graduate thesis

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions
for observing the ethical principles in the preparation of university theses.

Prague, date: . . . . . . . . . . . Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii



I would like to express my sincere gratitude to my supervisor for his patient guidance,
inspirational brainstormings, and valuable critiques of this thesis. Likewise, I greatly
appreciate the help in writing the thesis provided by my sister. I also wish to thank the
TJ Sokol Královské Vinohrady for their cooperation in data acquisition. And last but
not least, this project would not have been possible without my parents and girlfriend
and their support and encouragement throughout my study.

iii



Abstract

This thesis proposes a new system for unsupervised person tracking by detection. The
system focuses on tracking players in sports video, specifically floorball, using multiple
cameras with different viewing angles. The new hard-negative mining technique lever-
aging time constraints enables us to train the identification network without labelled
data. The proposed method generates tracklets with a low level of ID switches, and it
is appropriate for generating labelled data for supervised training. Samples from the
newly created dataset, which we used for evaluation, are attached to the thesis along
with the code.

Keywords

automated sports analysis, computer vision, hard-negative mining, multi-view person
tracking, person identification, sports videos, sports videos dataset, top-view camera,
tracklets clustering, unsupervised clustering, unsupervised identification, unsupervised
person tracking, videos synchronization

iv



Abstrakt

Tato práce představuje nový systém pro sledováńı osob bez dozoru. System se zaměřuje
na sledováńı hráč̊u ve sportovńıch vidéıch, zejména florbalu, za použit́ı v́ıce kamer z
r̊uzných úhl̊u. Nový zp̊usob výběru negativńı tř́ıdy za použit́ı časových omezeńı nám
umožnil natrénovat identifickačńı śı̌t bez anotovaných dat. Navržená metoda generuje
tracklety s malým počtem výměn identity a je vhodná pro generováńı anotaćı. K práci
přikládáme kromě kódu i vzorky datasesetu, který jsme pro tuto práci vytvořili.

Kĺıčová slova

automatická sportovńı analýza, dataset sportovńıch vidéı, kamera z vrchńıho pohledu,
shlukováńı bez dozoru, shlukováńı tracklet̊u, sledováńı osob bez dozoru, sledováńı osob
z v́ıce úhl̊u, sportovńı videa, strojové viděńı, synchronizace vidéı, výběr negativńıch
vzork̊u

v





Contents

1. Introduction 7
1.1. Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3. Thesis layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4. Current work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1. Situation in sports . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2. Computer vision approaches . . . . . . . . . . . . . . . . . . . . . 9

2. Data 11
2.1. Current situation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2. Data collection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1. Technical parameters . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2. Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3. Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4. Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1. Testing sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Method 16
3.1. Key concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Pipeline overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3. Single camera detection and tracking . . . . . . . . . . . . . . . . . . . . 17

3.3.1. ByteTrack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2. Top camera behavior . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4. Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4.1. Radial distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4.2. Homography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5. Multi camera detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1. Clustering algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6. Multi camera tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6.1. Careful approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7. Player identification, re-detection . . . . . . . . . . . . . . . . . . . . . . 29

3.7.1. Tracks creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7.2. Distance function . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7.3. Similarity metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7.4. Pretrained model . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7.5. Frame-based Triplet Loss . . . . . . . . . . . . . . . . . . . . . . 31

3.7.6. Going beyond one match . . . . . . . . . . . . . . . . . . . . . . 33

4. Experiments 36
4.1. Single-camera detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1



4.2. Multi-camera detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3. Tracklets creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2. Careful approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4. Tracks creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1. Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2. Datasets comparison . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3. Distance function performance . . . . . . . . . . . . . . . . . . . 45
4.4.4. Clustering space and short tracklets . . . . . . . . . . . . . . . . 46
4.4.5. Multiple shifts learning . . . . . . . . . . . . . . . . . . . . . . . 47
4.4.6. Transfer learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5. Experiments summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.1. Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5. Implementation 52
5.1. Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2. Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.3. Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4. Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5. Visualizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6. Conclusion 54
6.1. Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 55

A. Contents of the attached CD 59

2



Abbreviations

CTL Centroids Triplet Loss. 31

DCNN deep convolutional neural network. 19

FN False negative. 36

FP False positive. 36, 40

fps framer per second. 12

GPS global positioning system. 9

ID identity. 7, 16, 40

IFF International Floorball Federation. 13

MOT Multiple object tracking. 7, 17, 19

MOT17 Multiple object tracking benchmark 2017. 19

MOT20 Multiple object tracking benchmark 2020. 19

MOTA multiple object tracking accuracy. 40

SKV TJ Sokol Královské Vinohrady. 8, 12

TN True negative. 36

TP True positive. 36

3



List of Figures

1.1. Percentage of studies in different sports. Image taken from [25]. . . . . . 9

3.1. Visualization of the pipeline. Green rectangles are automated steps, and
the grey one is manual. Inputs are orange cameras. Visualization of
intermediate steps are explained later. . . . . . . . . . . . . . . . . . . . 18

3.2. Example of detections from the TOP camera. Notice the amount of false
negatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3. Example output of the single-camera detector. Small numbers are iden-
tities assigned by ByteTrack. . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4. Distortion of the TOP camera. Red dots are manually labelled grid points. 22

3.5. Undistortion of the TOP camera. Red points are manually labelled grid
points. Notice the curved line in the top left corner of the pitch. . . . . 23

3.6. Visualization of the local homographies approach. Each square repre-
sents one homography. Points are centres of squares. . . . . . . . . . . . 24

3.7. Visualization of the player’s location. True player’s location in green,
our estimate in red. Silhouette of the player taken from [53]. . . . . . . 24

3.8. Example output of the multi-camera detector. Numbers above detections
are tracklets IDs from the following step. . . . . . . . . . . . . . . . . . . 26

3.9. Visuzalization of the tracking with data from side cameras. Blue circles
are multi-camera detections defined previously. Blue dot represents de-
tected player in a crowded area. Blue numbers represents multi-camera
IDs, black numbers depicts identities from side cameras. The red number
signifies error in voting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.10. Example output of the tracklets creation step. The x-axis represents
time, y-axis identity. A point in the graph means that the tracklet with
identity Y (y-axis) is in frame X (x-axis). . . . . . . . . . . . . . . . . . 28

3.11. Example of the bounding box with two players confusing the learning. . 32

3.12. Example of the correct retrieval. The left image is query, red and green
rectangles are false and true according to the noisy labels. . . . . . . . . 33

3.13. Example of the retrieval of the overfitted model. The left image is query,
red and green rectangles are false and true according to the noisy labels. 33

3.14. Example output of the tracks creation step. As in the previous step,
the x-axis represents time and the y-axis identity. A point in the graph
means that the tracklet with identity Y (y-axis) is in frame X (x-axis). . 34

3.15. Diagram of the Multiple shifts learning experiment. Orange input is the
video of one match. Yellow rectangles are outputs of intermediate steps,
green ones automated steps. The result is emphasized in red. . . . . . . 35

4.1. Example of false positive single-camera detection. The error emphasized
in red circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2. Example of false negative single-camera detections. The error empha-
sized in red circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4



List of Figures

4.3. Example of a false positive multi-camera detection. The error is detection
with ID 216. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4. Example of a crowded area resulting in false-negative multi-camera de-
tections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5. Example of multi-camera detection without errors. Detecting all players
helps in the time-sensitive agglomerative clustering. . . . . . . . . . . . . 41

4.6. Visualization of the ground truth tracks for sequence 1min. . . . . . . . 44
4.7. Visualization of the clustering based on datasets Ours+Market-1501 (left)

and Market-1501 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.8. Visualization of the clustered tracks using the time metric (left) and

similarity metric (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.9. Visualization of the clustered tracks using the full distance function with

both similarity metric and time constraints. . . . . . . . . . . . . . . . . 47
4.10. Visualization of the clustered tracks when removing short tracklets (left)

and with clustering in the compact space using SONG (right) . . . . . . 47
4.11. Visualization of the clustered tracks for the 3 shifts used in the Multiple

Shifts experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.12. TBD: Visualization of the clustered tracks when model trained on the

U19 1min sequence (left) and model trained on different match (right) . 50
4.13. Visualization of the clustered tracks in the WA sequence. Even though

the sequence captures two shifts, we cannot distinguish them from the
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5



List of Tables

2.1. Technical parameters of used cameras . . . . . . . . . . . . . . . . . . . 12
2.2. Created dataset of 24 matches . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1. Results of single-camera detections in all side cameras. We evaluated the
detection statistically on 60 randomly sampled frames. . . . . . . . . . . 37

4.2. Results of multi-camera detection. We evaluated the detection statisti-
cally on 60 randomly sampled frames. . . . . . . . . . . . . . . . . . . . 39

4.3. Results of the tracklets creation. The step was evaluated statistically on
25 tracklets. Notice the number of false positives and ID switches. . . . 42

4.4. Results of the tracklets clustering in the 1min sequence with the same
model trained on different datasets. We compare Market-1501 [45],
DukeMTMC-reID [33], Ours and combination. The best results are em-
phasized in bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5. Comparison of tracking in the 1min sequence when clustering with differ-
ent distance functions. The model was trained on the Ours+Market-1501
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.6. Comparison of tracking in the 1min sequence with different modifica-
tions. The first column is clustering when ignoring tracklets of length
one, and the second column is clustering in the space reduced by the
SONG. [14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7. Results of tracking on different sequences. To compare sequences of
different lengths, we use normalized metrics. See the text for more details. 48

4.8. Results of tracking with thresholding the maximum clustering distance.
Notice that lowering the threshold only decreases the quality of the track-
ing. The NaN value stands for no threshold applied. . . . . . . . . . . . 49

4.9. Results of the transfer learning. We show original tracking (trained
on the same game as tested) and tracking with transferred knowledge
(trained on a different match than tested) for each sequence. . . . . . . 50

4.10. Speed of individual pipeline steps for sequences 1min and 1period . . . . 51

6



1. Introduction

The thesis introduces a new method for unsupervised tracking in sports videos from
multiple cameras. Our system works specifically with four cameras, but it could use
a different amount. We use the tracking-by-detection approach since the long-term
tracking in sports videos requires re-detection and re-identification as players change
regularly throughout the game. This thesis is a continuation of our previous work [30].

1.1. Problem description

Let us first clarify the main concepts of the thesis.

Object tracking is a computer vision task of assigning a unique identity (ID) to each
set of detections representing a unique object. Multiple object tracking (MOT) is the
task of tracking multiple objects in the video simultaneously. Unsupervised methods
learn the structure of the problem without labelled data.

Our method is an unsupervised multiple object tracking algorithm. The algorithm
runs in multiple cameras. Therefore, the method’s inputs are synchronized videos,
and the results are tracks of detected objects. The track is a set of detection (object
locations) with the same ID. Inputs and outputs are further clarified in chapter 3, along
with intermediate steps of the pipeline.

The proposed method tracks players in floorball videos. In the thesis, we refer to
anyone on the playing field as a player. Unless explicitly emphasized, we do not differ
between players, goalies and referees as they all behave similarly.

The main challenges of the task are re-detection and re-identification, tracking in
crowded areas and memory consumption. When the player changes, he disappears
from the video, and the algorithm has to recognize him once he returns. Crowded
areas are challenging because of many occlusion hindering detection. And the memory
consumption becomes a problem with the size of the video. The average floorball match
takes around two hours.

1.2. Motivation

With the growing use of data in sports, clubs are looking for methods for automatic
data collection while minimizing financial expenses. All sports matches are recorded
on video, and using the computer vision approach for automated analysis brings only
negligible costs.

Various sides use data in sports, and each is interested in different data. Players
are interested in their statistics of shooting efficiency, rebounds or blocks. We can
also collect statistics about the player’s current health and fitness status, which is
beneficial not only for the player but also for coaches and doctors. Then we have
team statistics, technical analysis and tactical analysis of both the home team and the
opponent. Detailed statistics about the game and players are also helpful in evaluating
fouls by video referees. And last but not least, computer vision methods for automated
video analysis are popular with fans for the visualizations and extended reality.

An ideal system would meet the following criteria:

7



1. Introduction

• Easy to deploy. Sports clubs do not employ technicians, and coaches are sports-
oriented experts. Therefore, the system should run automatically end-to-end for
effortless deployment.

• An ideal system would run in real-time to provide results during the match. One
step behind are methods evaluating a larger part of the match and providing results
after each period.

• Able to track in the long-term. The system should be able to re-detect and re-identify
a player after s long period (more than one hour) of absence.

We designed the method using floorball videos as we have access to the sports hall
of the TJ Sokol Královské Vinohrady (SKV), playing the highest floorball league.

1.3. Thesis layout

The remaining paragraphs of this chapter are dedicated to the analysis of current solu-
tions. The chapter 2 treats the problem of data. We first explain the shortcomings of
public datasets and then proceed with the data we collected. The chapter 3 introduces
the new method and the relevant theory. The chapter 4 depicts experiments and re-
sults we executed on our dataset. The chapter 5 briefly lists interesting implementation
challenges and cites used libraries. We sum up the thesis in chapter 6 by repeating the
most significant results and proposing directions for further research.

1.4. Current work

Here we analyze current solutions and state-of-the-art. We split the analysis into the
more general one concerning sports and the specific one focusing on the computer vision
approaches.

1.4.1. Situation in sports

Nowadays, sports teams collect a vast amount of various data about athletes. Individual
sports focus more on statistics about physical and technical performance. Team sports
like floorball also add tactical analysis. The data ranges from ball (or puck) speed to
the study of the tactic of the whole team. Other big interests are fans and advertising.
We can offer attractive visualizations or advertise products with extended reality with
automatic game processing. All influential sports like basketball, hockey, soccer and
others collect basic statistics like ice-time (or equivalent), shooting efficiency, number
of rebounds and more. Players tracking is the underlying technology that would enable
automatic evaluation. Many sports videos (floorball included) are also available for
analysis, so research in this area promises considerable popularity.

The most prominent source of data is still human annotators. The biggest sports
clubs have their teams of data analysts who collect data either with sensors or by man-
ually processing videos. There are also automated solutions from private corporations
like SecondSpectrum [52], Opta [50] and iSportAnalysis [47]. The highest leagues like
NBA or Premier League employ these solutions to provide extensive data for fans and
bookmakers.

Contrarily, there is no such solution available for minor sports like floorball. Each
match in the Czech highest league needs at least four people to record statistics about

8



1.4. Current work

shots and changes. In the latest season, the Czech Floorball required recordings in
digital format for the first time.

The most common approach to tracking is the usage of localization sensors. Outdoor
sports take advantage of the global positioning system (GPS), with players wearing
GPS receivers during the match. Lower leagues and minor outdoor sports employ
sports trackers included in the smartwatches. They can provide approximate location
and health data, for example, pulse. However, the precision of the GPS is limited to
several meters [26], which is unsuitable for professional sports.

Furthermore, GPS trackers do not work indoors. The indoor trackers work similarly
to the GPS but require local signal beacons. Teams can use off-the-shelf solutions like
Kinexon [48] or open-source variants (for example, Navigine [49]).

The main disadvantage of tracking with sensors is the price. We need one sensor
for each player, and the player is exposed to increased discomfort by wearing sensors
on the body. Hardware tracking systems would be ideal for annotations generation for
supervised training of the computer vision algorithm.

1.4.2. Computer vision approaches

Data

Let us first review datasets available for the training of computer vision algorithms.
Even though our method is unsupervised, we want to illustrate the shortage of relevant
data, which forced us to retort to the unsupervised method.

Most sports-related datasets for tracking focus on soccer [9], [7]. We believe that
there are two reasons: money and the simplicity of tracking in soccer videos. Soccer is
one of the biggest sports globally and is also a great business indirectly offering enough
money for the research. The second reason is that tracking in soccer videos is easier
than in other team sports. Players virtually do not change, so no re-detection is needed
with the proper angle. The playing field is big, players are far apart, and the game is
relatively slow. Lastly, we can use GPS trackers to generate at least noisy annotations.
These features make soccer an ideal sport to start with tracking.

The image 1.1 shows the asymmetry between sports. It depicts the percentage of
studies of the well-known sports. The image is taken from [25].

Figure 1.1. Percentage of studies in different sports. Image taken from [25].

9



1. Introduction

Apart from sports videos, many datasets feature short sequences, such as MOT [21]
or OTB50 [41]. Short sequences do not simulate real-life scenarios when tracking is
needed for more than an hour. Datasets with long sequences focusing on long-term
tracking like [24] are a relatively new area of research.
Lastly, there are datasets focusing on the person re-identification like Market-1501

[45] and DukeMTMC-reID [33]. We mention both throughout the thesis.

Sports analysis

Automated sports analysis is an open research area. The paper [25] reviews all current
approaches in more detail. The direction of research corresponds to available datasets.
There are articles concerning tracking in soccer [2], but also in basketball [11] and
hockey [6]. Hockey is the most similar of these sports to floorball because of the game
structure and shifts changes. But the hockey players look differently in principle. In
hockey, players wear a lot of standardized equipment, including helmets, so there are no
other means of identification than jersey numbers. In floorball, we believe the players
are visually different, and we can identify them by their appearance.
There are also articles regarding the recognition of game situations in all these sports

- basketball [23], hockey [34] and soccer [18]. Some papers like [43] employs multi-
camera view as we do. The common problems in sports analysis are a shortage of data,
jersey numbers and different game structures. We mentioned data shortage previously.
Jersey numbers are the perfect feature for identification, but the number is often de-
formed and hard to read. In basketball and soccer, players wear jerseys with big clear
numbers, while in hockey and floorball, numbers are smaller and hidden in a tangle of
advertisements. Lastly, game structure differs significantly between sports. In soccer
and basketball, player changes are limited and happen only when the game is inter-
rupted. In hockey and floorball, players can change without limitations throughout the
game.

State-of-the-art

In the last part, we mention the most used algorithms and state-of-the-art.
For detection, the algorithm with the best result is the DINO [42]. The previously

mentioned papers often use the Faster R-CNN [32] or YOLO [31]. This thesis uses
the newest variant of YOLO, YOLOX [12]. We are also aware of articles performing
multi-view detection [40], [16] and tracking [36].
ByteTrack [44] is the state-of-the-art tracker on the MOT dataset. It tracks by

detection, and we used it in the first stage of our pipeline. Another successful tracker
is OC-SORT [5], state-of-the-art on the KITTI [13] dataset.
The identification networks usually employ ResNet [15] as a backbone. It also applies

to the state-of-the-art Centroids [39] used in this thesis.

Automatic calibration

The last related research area is automatic camera calibration. It includes not only ge-
ometric calibration but also homography estimation. Several articles propose detecting
the playing field (for example, [27]) to automate the tedious calibration process. We
can estimate the radial distortion from straight lines with the detected pitch as in the
[1] or directly compute the homography with radial distortion as in [20]. The website
[46] gathers selected articles in this area.

10



2. Data

This chapter presents data used for training, validation, testing and other experiments
described in chapter 4. First, we lay out the current situation regarding sports analysis
and sports videos. We briefly touch on available datasets and the dataset used in our
previous work. Then we continue by introducing a new data collection system designed
for this thesis. The chapter closes with a section presenting collected videos.

2.1. Current situation

Automated sports analysis suffers from a shortage of data. Teams broadcast matches
online in most sports out of obligation. Although some videos are available for free,
these videos are suitable for fans and television. Broadcast videos feature a lot of zooms,
cuts, camera movement and occlusions. Sports clubs capture more technical videos for
tactical analysis or analysis of goalies. The technical videos are not available to people
outside the club, and the viewing angle is not suitable for automatic analysis. As
mentioned in chapter 1.4.2, private companies gather a vast amount of data in similar
team sports, but they do not publicly share the data for further research.

Publicly available datasets for detection or tracking like PASCAL [8], COCO [22],
Market-1501 or DukeMTMC-reID contain a small amount of sport-specific situations.
We do not know about any publicly available dataset, let alone annotated.

The main distinctions between publicly available datasets and sports videos are jer-
seys, unified equipment, and characteristic constraints on players’ movement. Players
in unified jerseys pose a challenge for successful tracking as all players of the same
team are very similar. Players use the same equipment like sticks and shoes given by a
sponsor, which increases the similarity in the same team. On the other hand, opponent
teams and referees wear distinct jerseys, so it is easy to distinguish players from two
teams. Moreover, jersey numbers simplify identification. The last characterization of
sports videos is players’ movement. Players do not move randomly, and rules constrain
the area of action. There is a limited number of players on the pitch, which again
simplifies tracking.

Our previous work focused on the same topic using data provided by a private com-
pany. The data came from the World Floorball Championship in 2018, and we created
and labelled a modest WFC-18 dataset. However, the dataset had several shortcomings.

First and foremost, videos were from only two different angles - top-view and side-
view. The side-view video was too far, the players were small, and there were many
occlusions. Second, the top-view video was split into two independent videos, capturing
half of the pitch. Mapping players between halves and detecting players around the
half-line proved difficult, and tracklets were disconnected when the player crossed the
half-line. Third, there was no straightforward way to synchronize videos. The World
Floorball Championship applies strict rules for used technologies, and videos were not
captured for tracking. Lastly, the WFC-18 dataset had only small variability in teams
and jerseys colours. It showed that most of the countries wear similar jersey colours.

We decided to take advantage of our access to the team playing in the Czech highest
league (Livesport Superliga) and created a data collection system focused on tracking.

11



2. Data

The next chapter introduces the system, following section describes created dataset.

2.2. Data collection system

With access to the sports hall of SKV in Prague, we designed a system of 5 cameras
capturing the pitch from 5 different angles. Four cameras are along the edges of the
pitch in heights between 4 to 10 meters. The fifth camera is on the ceiling directly
above the throw-in area in the centre of the pitch. Throughout the thesis, we refer
to all cameras by their respective cardinal directions (for example, W or WEST) in
capitals. The ceiling-mounted camera is T or TOP.

2.2.1. Technical parameters

As is evident from the image, all cameras see the whole playing field, which was one
of the crucial requirements for the system. The goal was to maximize the playing field
area captured by all cameras while keeping the cost reasonably low. Using five different
angles offers variability in views minimizing the number of false negatives caused by
occlusions. The TOP camera in the height of 14 meters is exceptionally rare (most
sports halls do not have such high ceilings) and could help track in crowded areas.
However, as we explain in the chapter 3.5, we did not use the TOP camera in the
final pipeline. The dataset presented in chapter 2.3 also contains videos from the TOP
camera so that we could use them after the advancement of top-view detectors.
We will see in chapter 3.4 that using fisheye cameras complicates projection between

cameras, but we prefered the full playing field coverage to non-fisheye cameras. Three
cameras could see the whole pitch because of the fisheye lenses.
The table 2.1 sums up the technical parameters of all cameras and camera models

for the system’s reproducibility. We chose security cameras for their low cost and high
durability. In the table, fps stands for frames per second.

Camera name Resolution Framerate Fisheye lens Hikvision model

EAST 3840 x 2160 20 fps No DS-2CD2685FWD-IZS
NORTH 2688 x 1520 25 fps Yes DS-2CD2T45G0P-I
SOUTH 2688 x 1520 25 fps Yes DS-2CD2T45G0P-I
TOP 2688 x 1520 25 fps Yes DS-2CD2T45G0P-I
WEST 3840 x 2160 20 fps No DS-2CD2685FWD-IZS

Table 2.1. Technical parameters of used cameras

As you can notice, cameras do not capture videos with the same framerate. Al-
though the producer offers variable framerate settings, we prefer editing videos with
the FFMPEG library [10] for its speed and precision.

2.2.2. Synchronization

To connect videos from different cameras in the pipeline, we need to synchronize videos
with frame-level precision. In an ideal environment, all cameras capture the frame in-
stantly and at the exact moment. Time synchronization means aligning videos such
that frames from the exact moment are processed simultaneously. Unfortunately, cam-
eras are not precise due to their price and technical limitations. The cameras do not
capture video with a constant framerate, and when there is a quick action in the video,
the cameras drop frames to preserve real-time capturing. The frame dropping results

12



2.3. Videos

in each camera having a different number of frames for the same time interval, posing
a challenge in synchronization. Using the FFMPEG library solves problems with dif-
ferent framerates and the frame dropping. Frames are extracted based on the required
constant framerate, and when a frame is missing, the nearest one is duplicated.

The resulting frames are not necessary from the exact moment, but the time difference
between the two frames is small enough for the pipeline to work correctly. The size of
the difference depends on the amount of dropped frames, and we observed that it is
not greater than 0.2 seconds when using 20 fps. The difference could grow with the
length of the video. Our most extensive experiment in chapter 4.4.5 worked with 30-
minutes long video, and the difference was just 0.2 seconds. To achieve a more precise
synchronization, we would have to synchronize videos regularly and not only at the
beginning of the sequence.

So far, we have discussed the problem with variable framerate. Now we will focus on
the synchronization itself. The frames are equipped with timestamps written directly
to the image. We failed to synchronize videos using the timestamps as it is unclear how
often the cameras update their internal clocks, and each camera can have a slightly
different time.

We resorted to manual synchronization using light flashes visible in all cameras. We
have to find the first frame where the light burst appears and align videos by them.
Manual synchronization is by far the most laborious manual work in the pipeline and
should be automated in the future work.

2.3. Videos

With the presented system, we collected videos from three different leagues. Unless
stated otherwise, all matches are played three times 20 minutes according to the In-
ternational Floorball Federation (IFF) rules for the highest leagues. The dataset offers
variance in age, gender and lighting conditions. We collected 24 matches, resulting in
more than 280 hours of videos.

In the table 2.2, you can see all recorded matches. Data comes from the men’s
highest league (Livesport Superliga, marked as MA in the table), women’s second-
highest league (marked as WA) and the highest league for boys under 19 (marked as
U19). All matches consist of 5 videos from cameras described in table 2.1. Some
Livesport Superliga matches also contain the sixth video - broadcast video for fans.

The videos are representative of one season in one hall. We can notice that the home
team (SKV) is always yellow or black as those are their jersey colours. Correspondingly,
the guest team usually wears blue or white, and the referees are red. The low colour
variability is characteristic of each hall, and we would need to collect videos from
multiple clubs to avoid it. The sports hall is multi-purpose, and there are many lines
for different sports on the surface. The lines could help in geometric synchronization
in chapter 3.4 but are not standard for the official surface.

This thesis used sequences from two matches - the U19 match in line 22 and the WA
match in line 14.

2.4. Annotations

This short chapter focuses on the problem of annotations.

The complete annotation means labelling all players and their identities correctly.
We could evaluate the detector, tracklets and tracks creation independently with the

13



2. Data

# Category Home colour Guest color Referee colour Notes

1 MA Yellow Red Blue TV Stream
2 Yellow White Red TV Stream
3 Yellow White Red TV Stream
4 Yellow Blue Red TV Stream
5 Yellow White Red TV Stream
6 Black Green Red
7 Yellow White Blue
8 Yellow Red Black
9 White Orange Yellow unofficial

10 WA Black White-green Blue
11 Black Red Yellow
12 Yellow Red Blue
13 Black White Red
14 Black Yellow Blue

15 U19 Yellow White Red
16 Yellow Black Red Sunshine
17 Yellow Blue Red
18 Yellow White Blue
19 Yellow Blue Red
20 Yellow White-green Red
21 Yellow White Blue
22 Yellow Blue Red
23 Yellow Blue Red
24 Yellow White Blue

Table 2.2. Created dataset of 24 matches

full annotation. Manual annotation for tracking is extremely expensive because the
annotation should be independent of all tracking steps and sports videos are very long.
Independence for tracking steps, we understand as the ability to process all steps inde-
pendently. For example, we could train and evaluate the tracker even with the wrong
detector.

Visual tracking is an easy task (for humans) in short sequences when the player does
not leave the video. It showed that re-identification in one camera is challenging even
for a human. We were able to identify players only with the personal knowledge of
players and a deep understanding of the game. The labelling process would require
identification from all cameras so that the annotator can choose the best viewing angle.
But such a process is complicated and needs dedicated tools. We decided to generate
annotations automatically.

As indicated in the chapter 1.2, we started the project as supervised tracking. The
expected workflow was to obtain annotations semi-automatically and train the tracker
(detector and identification network) on the data. But because of the mentioned rea-
sons, we generated annotations fully automatically. The chapter 3 describes the process
in detail. The automatic labels generation proved so successful that we dedicated our-
selves to it in this work and left the supervised tracking for future research. We do
not exclude the possibility of using the human-in-the-loop approach for correcting au-
tomatically created labels.

14



2.4. Annotations

2.4.1. Testing sequences

But even for unsupervised tracking, we needed to annotate some data for evaluation.
We describe annotated sequences here.

U19-SKV-MIL-08-01-2022-1st-period

We created a sequence of one period of the match to test the pipeline extensively. The
video is 30 minutes long with a framerate of 15 fps. We decreased the framerate to
lower the computational overhead. The sequence consists of 27 000 frames, approxi-
mately 1 300 000 single-camera detections and more than 10 000 tracklets. Even with
a lower framerate than the original videos, we had to deal with memory problems when
processing the sequence. Implementation details are mentioned in chapter 5. There are
34 players throughout the sequence - 15 for each team, two goalies and two referees.
Throughout the thesis, the sequence is referred to as 1period.
Completely annotating the sequence of such length would be expensive, so we opted

for statistical evaluation. We fixed multi-camera detections and tracklets and used the
sequence only for evaluating tracks creation which is the only step influenced by the
length of the video. All other parts were evaluated using the 1 min sequence.
But even manual tracklets connection is too lengthy. We sampled the longest tracklets

for each player. They make approximately 1% of all tracklets but on average cover 8%
of the sequence. Therefore, when the long tracklets are correctly identified, the video
looks good, and the resulting statistics would be mostly correct. However, as we will see
in the chapter 4.4, the small tracklets are where the most errors occur, and the errors
could propagate further in the video. Annotating long tracklets is, therefore biased
evaluation, and we chose it for its cheapness.
One of the teams in the sequence has identical twins, which even the coach has

problems distinguishing.

U19-SKV-MIL-08-01-2022-1st-period-1min

This sequence is the main testing sequence during development. It is the first minute
of the previous sequence with the original framerate of 20 fps resulting in 1200 frames.
There are approximately 65000 single-camera detections and almost 300 tracklets. The
sequence captures one shift and one change, and we can see 24 players (10 players
from each team, two goalies, and two referees). Throughout the thesis, the sequence is
referred to as 1min. The first part of the sequence capturing the first shift is referred
as 1shift.
The sequence serves for the evaluation of all steps of the pipeline. Single-camera and

multi-camera detectors are evaluated statistically, and tracklets clustering is completely
labelled. We randomly sampled frames and evaluated detectors on the sample. Results
and details are in chapters 4.1 and 4.2. Similarly, we analysed randomly sampled
tracklets for evaluation in chapter 4.3.
We identified all tracklets in the sequence to test the last step of the pipeline. An-

notating the short sequence with less than 300 tracklets took around 2 hours. Again,
details of the evaluation are in the chapter 4.4.

15



3. Method

3.1. Key concepts

Let us introduce and define key concepts used in this work now. Some of the definitions
are taken from our previous work [30]. Here we define only terms used throughout this
work crucial for tracking. Concepts introduced in this chapter but not used anywhere
else are defined in relevant chapters.

The player’s location is the projection player’s centre of the mass onto the playing
field plane. The definition account for various players’ poses during the match.

Detection is the object’s location in the image. Various output types range from
bounding boxes (the smallest rectangle encompassing the object) to masks (pixel-wise
object segmentation). We also use single-camera detections and multi-camera detec-
tions in this work.

Single-camera detections are both a bounding box and a player’s estimated loca-
tion. The bounding box is the standard output of the detection algorithm, whereas the
estimated location is suitable for further manipulation.

Multi-camera detection is the player’s location estimated from multiple single-
camera detections.

A Player’s identity (ID) is a unique tag, a number in this work, assigned to each
detection. The only defining property of the ID is that all detections of one player have
the same ID, and no two detections of two players have the same one. The ID is a
virtual concept and is not mapped to real-world identities (names). The mapping is
beyond the scope of this work. Later in the text, we use abbreviations for single-camera
ID (SC ID) and multi-camera ID (MC ID). For SC ID, the defining properties apply
only in the space of one camera, while for MC ID, it applies in the space of all cameras.

Tracklet is a set of detections. A tracklet should contain only one player (detections
with the same ID). We distinguish between single-camera tracklets and multi-camera
tracklets composed of single-camera and multi-camera detections.

A set of tracklets form a track. Although we could again distinguish single-camera
and multi-camera tracks, we use only multi-camera ones in this work. Therefore, we
always mean a multi-camera track when referring to a track without specification.

Identification is the process of assigning an ID to each detection. We can also assign
an ID to the whole track (tracklet), meaning all detections from the track (tracklet)
have the given ID.

Re-identification is assigning an already used ID to new detections. This process
is crucial in long-term tracking, especially in sports, as players reappear regularly.

Radial distortion is an image deformation caused by lens curvature. Barrel distor-
tion means that points are displaced from their original position toward the centre of
the picture. Points that are farther from the centre move more than those close. Barrel
radial distortion results in the square looking like a barrel (hence the barrel distortion).

With all key concepts defined, we can continue by introducing our method.

16



3.2. Pipeline overview

3.2. Pipeline overview

This chapter introduces a new method for unsupervised player detection, identification
and tracking in a multiple-camera setup described in chapter 2.2. We depict not only
the final algorithm but also the issues we faced and unsuccessful approaches.

The proposed algorithm takes multiple videos of a floorball match from different
angles. The algorithm also needs videos to be synchronized in time, calibration matrices
and homographies between cameras.

The program’s main output is tracking data in the MOT Challenge format. Byprod-
ucts are datasets for identity training and projection of player positions onto the play-
ing field. Furthermore, as one of the algorithms used in the pipeline is a single-camera
tracking-by-detection neural network, the proposed pipeline could provide feedback for
fine-tuning this network.

In the picture 3.1, the whole pipeline is visualized; the data flow from top to bottom
in the direction of arrows. The only inputs are four cameras in orange colour on the
top edge of the image. Blue labels describe intermediate outputs. We need synchro-
nized videos for tracking, so the first step is Synchronization And Calibration. The
rectangle is grey as the process is not fully automated. For a detailed explanation, see
chapter 3.4. Next, we process each synchronized video by the Multiple object track-
ing (MOT) algorithm and receive single-camera detections. The MOT algorithm runs
independently on all four cameras, and only two images are visualized for clarity. De-
tails of this step are described in chapter 3.3. Single-camera detections and geometric
calibration are necessary for geometric verification, which is the following pipeline step
depicted in chapter 3.5. We can construct tracklets as described in chapter 3.6 with
geometrically verified multi-camera detections. The last chapter explains the last two
steps - ID learning and tracks creation. These steps are in the same section for their
possible connection to the iterative approach described in chapter 3.7. Images used in
the visualization 3.1 are further explained in their corresponding chapters.

Since tracking in sports videos with regular players changes (as is the case of floor-
ball) requires a considerable amount of re-detection and re-identification, we chose the
tracking-by-detection approach. This approach also leverages the re-identification of
the player after a cluster during the game. While we introduce new methods, most of
the pipeline uses existing algorithms.

3.3. Single camera detection and tracking

The detection task has some common problems. First and the major is detecting objects
hidden behind another called occlusion. The occlusions occur regularly in a public
dataset for detection as COCO or PASCAL. Other frequent problems are variability in
detected objects, view angle, and image transformation.

Sports videos are characterized by a significant amount of occlusions and shape
changes. During the match, players appear in uncommon poses. On the other hand,
a game clearly defines where a player can be and limits the number of players on the
pitch.

Our cameras also suffer from extensive radial distortion as their viewing angle is
180°. The distortion is visible in the picture but does not deform players locally. The
players are more rotated than deformed, and the detection algorithms did not have any
problems with the distortion. Therefore, we do not straighten images before running
the detection. Radial distortion compensation is used only in projecting detections to

17



3. Method

Synchronization & Calibration 

MOT MOT

Geometric verification

Tracklets creation

ID learning

Tracks creation

EE N S W

MOTMOT

Tracklets

Tracks

Multi-camera
detections

Embeddings

Calibration matrices,
homography

Single-camera detections

Possible
iteration

Figure 3.1. Visualization of the pipeline. Green rectangles are automated steps, and the grey
one is manual. Inputs are orange cameras. Visualization of intermediate steps are explained
later.

18



3.4. Geometry

the common space as described in chapter 3.5.

Currently, deep convolutional neural network (DCNN) is the most successful algo-
rithm for visual object detection. Networks take images and predefined classes and
return detected objects’ positions. In this thesis, the used detection algorithm has only
one class (human), so the detection is the same as classification.

For the detection part of the system, we chose the ByteTrack [44] algorithm. The
ByteTrack is a single-camera MOT) algorithm using YOLOX [12] detector. The fol-
lowing section shortly explains ByteTrack and its features. The rest of the chapter
addresses the problems we faced.

3.3.1. ByteTrack

At the time of writing this thesis, the ByteTrack is the best-performing algorithm for
benchmarks MOT17 and MOT20 [21] with publicly accessible code [51]. It is easy to
use and fast to employ. That is why we use it for the detection part of the pipeline.

ByteTrack is a tracking-by-detection method. It relies on precise detections provided
by YOLOX. ByteTrack is modular, so a better-performing alternative can easily replace
the detection network in the future. Furthermore, as our final pipeline does not lever-
age tracking information from single-camera tracking, we can directly use YOLOX for
detection and reduce running time. We believe the information from the single-camera
tracker could prove helpful in future work, and we opted to keep it. Even with obsolete
single-camera tracking, ByteTrack runs at 20 fps, sufficient for real-time video analysis.

ByteTrack is available under MIT license on the official GitHub repository.

3.3.2. Top camera behavior

Most detectors are trained on side-view data as those are common. This fact becomes
a problem for the TOP camera. The camera sees players directly from above, which
is a never encountered viewing angle during YOLOX training. Therefore, pretrained
YOLOX performs poorly in the TOP view camera. Moreover, the viewing angle is
different for players in the centre of the pitch and those at the sides. As we can see in
image 3.2, the most challenging part is the central circle where the camera sees only
the head and shoulders. Also, players in the lower parts of the image are turned upside
down, further complicating the detection.

The naive solution to the upside-down problem is rotating the image and running
the detection multiple times on rotated images. This solution can further be improved,
but it does not solve the central circle challenge. We would need to retrain the detector
on annotated bird-view images to detect players from above. Since we do not have
annotations for our data and obtaining them is expensive, we decided not to use the
TOP camera in the pipeline. No information from the TOP camera is used in this
work, and images serve only for visualization.

The image 3.3 shows the input of the stage. Each bounding box represents a single-
camera detection. The small number on the top of the bounding box is the single-camera
track number generated by the ByteTrack.

3.4. Geometry

To ensure the multi-camera tracking, we need to project detections (or tracklets) into a
shared space. This space can be virtual as described in 3.5. We opted for the space of the
TOP camera for more comprehensible visualization. Having a ceiling-mounted camera

19



3. Method

Figure 3.2. Example of detections from the TOP camera. Notice the amount of false negatives.

Figure 3.3. Example output of the single-camera detector. Small numbers are identities as-
signed by ByteTrack.

20



3.4. Geometry

is unique to our project, so this option is usually not available. Another alternative
would be a virtual drawing board commonly used by coaches. We used this approach
in our previous work [30].
Regardless of the chosen shared space, we need to project detections to it. It is

not necessary to project tracklets back to the original image for tracking. However,
re-projection could help fix single-camera detections and tracking.
The simplest projection between two images (side-view and TOP cameras in our

case) is homography. Homography is the transformation between two planes. The
playing field and its image in each camera represent planes for projection. Homography
estimation means finding a 3×3 matrix representing the transformation. We can project
any point on the pitch from one image to another with homography only when images
are without radial distortion.
One of the more refined approaches for detection projection would be point trian-

gulation in the 3D space. Triangulation would permit us to reconstruct the player’s
pose in 3D, leading to a better understanding of the scene. The reconstruction would
be computationally expensive and would require point-to-point matching. We rejected
this approach, acknowledging that it is a possible direction for further research.

3.4.1. Radial distortion

Before computing homography, we had to straighten images by correcting the radial
distortion. Although radial distortion is present in all cameras, the fisheye cameras on
longer pitch sides proved problematic. As we can see from the image 3.4, the camera
is not distorted symmetrically. While horizontal lines are almost straight, vertical lines
are subject to strong barrel distortion. We opted for the TOP camera as the example
image because straight lines are clearly visible there.
We believe the sensor in the fisheye cameras is symmetrical, but the camera manu-

facturer straightens the image along the horizontal axis by software in the camera. We
contacted the company but could not confirm the suspicion.

Chessboard calibration

First, we tried to calibrate cameras using the standard approach with a perpendicular
chessboard. This approach is implemented in the OpenCV [3] and computes distortion
and calibration parameters based on the detection of the known pattern. It requires
several images of the same pattern from different angles or distances. Since all cameras
are relatively far from the playing field (at least 10 meters from the centre), the pattern
should also be far enough from the camera. The first challenge comes as the TOP
camera is mounted 14 meters above the pitch, and the chessboard would have to be
large for precise detection. Since all fisheye cameras are the same model, we tried to
calibrate the more accessible ones (NORTH and SOUTH) and use the parameters for
the TOP camera. The results were unsatisfactory.
The OpenCV library provides a new model specifically for the fisheye camera. The

model can work with higher polynomials but relies on symmetrical distortion. Inter-
estingly, the fisheye model proved more suitable for non-fisheye cameras with symmet-
rically distorted images.

Manual grid calibration

To solve the issue with chessboard detection, we manually a square grid on the pitch
and manually marked corners of the grid in all images. We then treated points as

21



3. Method

Figure 3.4. Distortion of the TOP camera. Red dots are manually labelled grid points.

detected chessboard patterns and proceeded with the OpenCV calibration module.

As shown in the image 3.5, lines are straight inside the grid but still distorted outside.
We judged this straightening sufficient for the projection.

All cameras are calibrated using a manually created grid. Non-fisheye cameras use
the fisheye module of the OpenCV, while fisheye cameras do not.

Further research

Camera calibration proved a complex problem not easily done using off-the-shelf solu-
tions. In the subsequent research, we propose automating the playing field detection
process as mentioned in [27]. With precisely detected pitch, we can estimate both cam-
era calibration and homographies. Further, automatic pitch detection in every frame
would connect moving broadcast cameras with static ones used in this work.

3.4.2. Homography

With radial distortion fixed, we can continue with homography estimation. Again, the
OpenCV library provides an off-the-shelf function to estimate homography between
two sets of points. Our first step was to use the solution. The pitch is designed to be
as clear as possible, so it is no surprise that points on the playing field plane are not
discriminate enough to create clear correspondences. Since we already had the manual
grid from the calibration, we used the same points for homography estimation.

As points for the calibration are manually selected, and the radial distortion model
is approximate, point-to-point correspondences suffer from significant errors. Estimat-
ing the homography by standard methods was not precise enough. To achieve better
precision and even fix part of the distortion problem, we came up with an approach of
local homographies. From a grid of manually created points, we created a grid of local
homographies defined by the nearest square from the grid. Each square in the grid
represents a local homography. When projecting a point, we find the nearest square of
the grid and use appropriate homography.

22



3.5. Multi camera detection

Figure 3.5. Undistortion of the TOP camera. Red points are manually labelled grid points.
Notice the curved line in the top left corner of the pitch.

The approach accounts for nonlinearities in the radial distortion, partially fixing the
error made by the wrong distortion estimation. For points inside the grid, the projection
is almost perfect. Points outside of the grid have more significant errors as the local
homography works only in the neighbourhood of the square. The solution would be to
enlarge the grid to cover the whole pitch.

The picture 3.6 visualizes the local homographies approach.

3.5. Multi camera detection

Once we have single-camera detections from individual cameras and geometric models
for projecting between each camera and the shared space, we can proceed with multi-
camera detection.

Multi-camera detection means locating the player in the shared space, in this work,
the space of the TOP camera. Since homography can only project points on the play-
ing field plane, multi-camera detection is a single point corresponding to the detected
player’s location.

Similarly, we need a single point describing the single-camera detection, which we
can project to the shared space. This point should be as close as possible to the true
player’s location. In the early draft of our project, we used the centre of the bottom
edge of the bounding box as an approximation, and it worked surprisingly well. It is
far from the player’s location and would be insufficient as an approximation when using
only one camera. The approximation is biased toward the camera, so the approximated
point is always closer to the camera than the location. These biases cancel out when
using a set of perpendicular cameras and averaging the individual location estimations.
Visualization of the location are in the image 3.7.

When transferring single-camera detections to multi-camera ones, we also solve the
problem of false positive detections. We assume that false positives are independent
between cameras, and we could eliminate them by voting. We need to decide the

23



3. Method

Figure 3.6. Visualization of the local homographies approach. Each square represents one
homography. Points are centres of squares.

Figure 3.7. Visualization of the player’s location. True player’s location in green, our estimate
in red. Silhouette of the player taken from [53].

24



3.5. Multi camera detection

number of votes (or percentage of all cameras) sufficient for a multi-camera detection.
If we set this threshold too low, we would not eliminate false positives. If we set the
threshold too high, we would lose detections and have too many false negatives. With
the assumption of independent false positives, we chose the threshold to 2 cameras as
we judge the probability of two false positives co-occurring and at the same place small.

We also employ hysteresis thresholding on geometric verification to decrease the
number of false negatives. Suppose only one camera detects a player where one was
verified (detected by more than one camera) in the previous frame. In that case, we
keep the detection, even though the information is only from one camera. Hysteresis
thresholding is only in the forward direction, as situations where backward hysteresis
would be beneficial, are rare. With this approach, we can process frames sequentially
in real-time. The hysteresis thresholding is the only source of false positives in the
multi-camera detection, as we will see in chapter 3.5.

The last issue to solve is players clustering. Players tend to cluster in a small area
during the game, especially in front of the net. Detecting players in such crowds is
extremely hard because of many occlusions. Having more than one player from the
same team in such clusters is common, so team classification helps only a little. We
decided to ignore these clusters and not detect players in them. Strictly speaking, it
brings a lot of false negatives to the process as players spend approximately 50% of
the time in clusters (number taken empirically from our data). However, we still have
information about the occurrence of the cluster from single-camera detections. The
information is available for further processing, but we do not use it in this work.

To avoid detecting clusters, we had to define a distance when the player is safely far
from all other players. As will be evident in the section 3.7, choosing a long distance
in the first iteration of the pipeline is advantageous for obtaining a clean dataset for
training the identification network.

Lastly, single-camera detections are filtered by manually created masks to avoid false
detections outside of the pitch.

3.5.1. Clustering algorithm

The algorithm 1 defines the process of geometric verification.

In the algorithm 1, we use AgglomerativeClustering() function from library SciPy
[35]. The clustering is thresholded by the fixed distance, as described above.

Results of the clustering are visualized in the picture 3.8. Each single-camera detec-
tion is shown as a coloured transparent circle of size threshold

2 , where threshold is the
discussed minimum distance between detections. Both single-camera and multi-camera
detections are represented by a circle instead of a more common bounding box to em-
phasize that detection in the shared space is only one point. We do not know anything
about the size or shape of the detected player in the shared space. Multi-camera de-
tection circles have a radius of size threshold and an ID of the corresponding tracklet
from the next step.

In the multi-camera detection phase, we did not fully leverage the YOLOX detections
and ByteTrack identities. As mentioned previously, ignoring crowded areas creates
false negatives hindering the tracking. The side-cameras have data about players in
the crowd, and we can compute the number of players in each group. Further, the
ByteTrack in each side camera assigns an identity to each detection so we can connect
two tracklets through the crowd by voting from side cameras. The approach is not
independent as there are cases of the same ID switches in two or more cameras, and with
only four side cameras, it corrupts the voting. The approach would combine well with

25



3. Method

Algorithm 1: Geometric verification of single-camera detections

Data: Single-camera detections, geometric relations between cameras
Result: Multi-camera detections
for each frame do

clusters← AgglomerativeClustering(detections in frame);
multicamera detections← ∅;
for each cluster in clusters do

if no two detections from the same camera then
if at least 2 detections then

multicamera detections += cluster centre;
else

if detection nearby in previous frame then
multicamera detections += cluster centre;

else
Cluster, ignore;

Figure 3.8. Example output of the multi-camera detector. Numbers above detections are
tracklets IDs from the following step.

26



3.6. Multi camera tracking

Figure 3.9. Visuzalization of the tracking with data from side cameras. Blue circles are multi-
camera detections defined previously. Blue dot represents detected player in a crowded area.
Blue numbers represents multi-camera IDs, black numbers depicts identities from side cameras.
The red number signifies error in voting.

the similarity metric defined later in chapter 3.7.2. We conducted some experiments
in this direction, but we do not have publishable results when writing this thesis. The
image 3.9 shows an example of correct detections in a crowded area using the data from
side cameras. A circle around the player signifies the standard multi-camera detection
described previously, and a blue dot represents a detection in the crowd. Black numbers
above players are identities from side cameras.

3.6. Multi camera tracking

Tracklets are obtained by clustering detections according to the constraints. Common
constraints are:

• Time constraint: any two detections from the same tracklet cannot occur simulta-
neously.

• Position constraint: distance between positions of two consecutive detections is
limited by the maximal speed of the player in the real world.

The following paragraph discusses our approach to tracklets creation.

3.6.1. Careful approach

We decided that the re-identification algorithm has to be a crucial part of our method
and designed tracklets creation in such a way to ensure tracklets clarity. The algorithm
2 leverages only time and positional constraints in the most straightforward way. It
process frames sequentially, so the time constraint cannot be violated. It does not
attempt to re-identify players as that would be the task of the latter part of the pipeline.
Once the tracklet is lost in a crowd, it creates a new one, resulting in many short

27



3. Method

Figure 3.10. Example output of the tracklets creation step. The x-axis represents time, y-axis
identity. A point in the graph means that the tracklet with identity Y (y-axis) is in frame X
(x-axis).

tracklets. There are no ID switches inside tracklets, and the only issue for identity
learning arises from false positive multi-camera detections.

Algorithm 2: Careful approach to tracklets creation

Data: Multi-camera detections
Result: Multi-camera tracklets
prev detections← ∅;
for each frame do

frame detections← alldetectionsinframe;
HungarianAlgorithm(prev detections, frame detections);
for each unassigned detection do

assign new id ;

prev detections← frame detections;

As mentioned in the algorithm 2, the core of the clustering is assigning identities
between frames. We used the Hungarian algorithm [19] with thresholding implemented
in the SciPy library [35]. The cost of the algorithm is the euclidean distance between
detections.

The image 3.10 from the visualization of the whole pipeline 3.1 shows individual
tracklets in the sequence. The graph represents occurrences of tracklets in the time.
Each dot in the graph represents a tracklet (y-axis) occurring in the corresponding
frame (x-axis). Since tracklets are not connected, once the tracklet ends, there are no
new dots on the line. New tracklets appear in time, resulting in the diagonal shape of
the graph.

28



3.7. Player identification, re-detection

3.7. Player identification, re-detection

This chapter describes the last step of the pipeline - tracks creation. The previous step
ensures that all tracklets are pure, so there are no ID switches inside any tracklets.
Therefore if we connect tracklets correctly, tracks will also be pure. The only question
remain is how to connect tracklets correctly.

In this thesis, we use both terms tracks creation and identitfication for the same
process. We create tracks by clustering tracklets which are without ID switches. Iden-
tification in computer vision means connecting two images of the same person while
distinguishing two images of different persons. By correctly connecting tracklets, we
effectively identify the player.

The following paragraphs describe the tracks creation algorithm. The rest of the
chapter is dedicated to details of the algorithm and our experiments.

3.7.1. Tracks creation

The algorithm 3 defines the time-sensitive centroids-linked agglomerative clustering
used for track creation. We used the centroids-linkage to speed up the computation and
save memory. It allows us to represent each cluster by only one vector, significantly
reducing the distance matrix. The algorithm clusters (merge) tracklets based on the
similarity metrics and occurrence in time. Two tracklets cannot be merged if they occur
in the same frame. It is similar to the time constraint from the tracklets creation part
(chapter 3.6).

Algorithm 3: Tracks creation by time-sensitive agglomerative clustering

Data: Multi-camera tracklets, visual similarity metric, max distance threshold
Result: Multi-camera tracks
distance matrix← SimilarityMetric(tracklets);
diag(distance matrix)←∞ ; Distance to self is ∞
for each tracklet do

for each frame where the tracklet is do
for each other tracklet in frame do

distance matrix[tracklet, other tracklet]←∞ ; Time-sensitive

distance matrix[other tracklet, tracklet]←∞;

for number of tracklets do
min dist← min(distance matrix);
min tracklet1,min tracklet2← argmin(distance matrix);
if min dist = ∞ then

return ; No tracklets merge possible

if min dist > max distance threshold then
return ; Distance is to big, finish

MergeTracklets(min tracklet1,min tracklet2);
UpdateDistanceMatrix(distance matrix);

The pseudocode describes the algorithm in more detail. Once we construct the dis-
tance matrix, we keep it updated after every merge. The algorithm stops once there are
no tracklets to be merged or if we reduced the number of tracklets sufficiently (given
by threshold). The thresholding becomes useful during the player’s change. We know

29



3. Method

that there is always the same number of people for the sequence of one shift, and we
can merge tracks aggressively (set the threshold to infinity). With shifts exchange, we
have to threshold the clustering, or we would connect tracklets of two different players
to the same track. We could also threshold the clustering by maximal distance as we
did in the experiment 4.4.5, but it did not improve the clustering.
The presented clustering algorithm does not ensure the position constraint from the

chapter 3.6.
We did not define the distance function in the algorithm. Next, we describe the

distance function and justify its construction.

3.7.2. Distance function

We are looking for a distance function which will return a single number for any two
given tracklets (or tracks). For the clustering algorithm to work correctly, the distance
of any two tracklets with the same player must be shorter than the distance of any two
different players. In other words, we want tracklets with the same player as close as
possible while tracklets of different players as far as possible.
The distance function would compose of two parts - the similarity metric and the time

metric. Therefore, we define the tracklet representation as a tuple (e, t), where e stands
for the tracklet’s embedding and t for time (set of frames) when the tracklet is present.
The tracklet’s embedding is the centroid of embeddings of respective detections hence
the centroids-linkage in the clustering algorithm.
Equation 3.1 defines the distance function d and its respective similarity and time

metrics S and T .

d
(
(e1, t1), (e2, t2)

)
= S(e1, e2) + T (t1, t2) (3.1)

S(e1, e2) = ∥e1 − e2|2 (3.2)

T (t1, t2) =

{
∞, if t1 and t2 overlaps

0, otherwise
(3.3)

The time metric is zero unless the tracklets overlap. Two overlapping tracklets cannot
be merged, and their distance is infinity. The similarity metric is the euclidean distance
between two embeddings.
The following paragraphs explain the construction of the embedding space.

3.7.3. Similarity metric

The single-camera detection embedding is a vector of numbers characterizing the de-
tected bounding box. Triplet Loss [37] is popular to learn such an embedding space.
The backbone neural network encodes the image into the embedding vector such that
the required distances are appropriate in the embeddings space.
The problem is that training such a network would require a vast amount of la-

belled data. The proposed method is unsupervised, so no manual labelling is necessary.
With a perfectly working similarity metric, we could skip tracklets creation and cluster
multi-camera detections directly into tracks based only on the two constraints and the
similarity metric. Therefore, our goal is to train such a network to run in real-time.
The standard identification networks create embedding for each detection, but we

only need one representative for the whole tracklet (or track). In theory, we only need
one characteristic detection of the player for the tracklet to identify it correctly. Finding

30



3.7. Player identification, re-detection

a distinctive image (characteristic detection) is an open question, and we recommend
it for further research. In this work, we used the mean embedding of all detections in
the tracklet as a tracklet representation previously referred to as e.

3.7.4. Pretrained model

The most straightforward way is to use a model pretrained on another dataset. We chose
the CTL-Model presented in [39]. The model uses ResNet50 [15] as a backbone for the
encoding and proposes a new Centroid Triplet Loss. We selected this algorithm as the
best-performing one on the Market-1501 [45] dataset with the open-source code. The
first experiment used the pretrained model without any edits to compute embeddings.

Detailed results of the experiment are in the chapter 4.4.2. Not surprisingly, the
model performs worse without fine-tuning described later on. But even without any
training on floorball-specific data, the model can distinguish two players to some degree.

3.7.5. Frame-based Triplet Loss

We designed a new hard-negative mining technique for triplet selection to compensate
for the lack of annotated data for identity training. To explain it in detail, let us first
revisit the CTL-Model and its Centroids Triplet Loss (CTL).

The CTL-Model uses ResNet50 as an encoding backbone but employs a new Centroid
Triplet Loss. The standard Triplet Loss works with the triplet (a, p, n), where a stands
for anchor, p for positive example and n for negative example. The positive example
is pulled closer to the anchor during the training, while the negative one is pushed
further. We require n to be the closest negative example while p is the furthest positive.
Selecting n and p is one of the biggest challenges, and it’s called hard-negative mining.

The Centroid Triplet Loss simplifies the process and speeds it up by working with
the triplet (a, cp, cn). Here a is still the anchor, but cp and cn are centroids of the
positive and negative class. Therefore we do not look for the hardest positive and
negative samples but for the hardest classes. It speeds the process as there usually are
significantly fewer classes than instances. The loss is also more robust to outliers as
we work with centroids instead of extreme cases. According to the paper, this elegant
simplification of Triplet Loss brings significant improvement.

In the published code, the images are processed in batches. Each batch is a subset
of identities (classes) randomly selected for training. The identity can appear in more
than one batch. A fixed number of representatives are again randomly sampled in
the training process for each identity. The network then finds a triplet (a, cp, cn) for
each instance in the batch. For clarity, the process is described in the pseudocode in
algorithm 4.

Algorithm 4: Batch creation in the original CTL-Model paper [39]

Data: Labeled single-camera detections
Result: Batch
batch images← [];
batch identities← SampleWithoutRepetition(identities);
for each identity in batch identities do

identity instances← SelectInstancesOfIdentity(identity);
batch images += SampleWithoutRepetition(identity instances);

31



3. Method

We can generate an unlimited amount of short tracklets from our dataset. The
tracklets are labelled, but we know the label is incorrect. We assume that all tracklets
are pure (containing only one player) from experiments. Selecting a positive instance
is an easy task as we know that instances in the same tracklet are of the same identity
(class). We could lose a variety when selecting instances from short tracklets and overfit
the learning quickly. Nevertheless, most tracklets are composed of detections from all
four cameras, and we assume that perpendicular viewing angles will ensure the variety.

The only remaining problem is finding a negative instance (or, in the case of Centroid
Triplet Loss, negative class). Disconnected tracklets often represent the same player
but at different times, so we cannot rely on tracklets’ IDs for negative class selection.
We leverage the fact that detection comes from synchronized cameras of the sports
video. Two co-occurring tracklets are each other’s negative class as the player cannot
be detected twice in the same frame. It is one of the two reasons we used a longer
distance threshold in chapter 3.6. The second one is to ensure that all training images
contain precisely one player. The image 3.11 shows one of the rare examples when the
bounding box captures more than one player due to the occlusion. Such images are
noise for the training process and should be avoided.

Figure 3.11. Example of the bounding box with two players confusing the learning.

In the code, we edited batch creation. We create batches such that all identities in the
batch are from the same frame. It guarantees that selecting any of the different labels
is truly a negative example. Again, edited batch creation is described in algorithm 5.

Algorithm 5: Frame-based batch creation

Data: Labeled single-camera detections, frame number for each detection
Result: Batch
batch images← [];
batch frames← SampleWithoutRepetition(frames);
for each frame in batch frames do

frame identities← SelectIdentitiesInFrame(frame);
sampled identities← SampleWithoutRepetition(frame identities);
for each identity in sampled identities do

identity instances← SelectInstancesOfIdentity(identity);
batch images += SampleWithoutRepetition(identity instances);

32



3.7. Player identification, re-detection

The training dataset consists of tracklets longer than 19 frames, and we use 15% of
tracklets for testing and 85% for training.
The original training process selects the best model by the retrieval precision in

the test set. We cannot use the metric as the data is noisy. Tracklets of the same
player have different IDs, and when the network correctly pushes them together, the
evaluation worsens. It leads to overfitting in the training process when the network
finds one positive example for each query image but then finds random images as the
next nearest. Such an embedding is not suitable for our system, and we manually select
the latest model before overfitting occurs. To decide empirically, we manually review
random images from the retrieval and check for signs of overfitting. Examples of the
correct retrieval and overfitting are in the images 3.12 and 3.13.

Figure 3.12. Example of the correct retrieval. The left image is query, red and green rectangles
are false and true according to the noisy labels.

Figure 3.13. Example of the retrieval of the overfitted model. The left image is query, red and
green rectangles are false and true according to the noisy labels.

Detailed results are provided in chapter 4.4.2. The network correctly learns repre-
sentations of players on the testing sequence. Visualization of the output of this step is
in the image 3.14. The graph shows tracks in the same way as tracklets in the previous
chapter, but now we can see fewer tracks with re-detections.

3.7.6. Going beyond one match

So far, we have done the unsupervised tracking on one short sequence. But the pur-
pose of the system is to track players during the whole match lasting 2 hours. Our
last algorithms focus on expanding knowledge from short videos to the entire game or
sequences from a different one.

Multiple shifts learning

We noticed that unsupervised tracking works well for sequences without player changes.
Time constraints are crucial for tracking in short sequences, and the similarity metric
does not need to work well as most conflicts are between players of different teams.
Our idea is to manually collect short sequences capturing all players appearing in the
match. The structure of sport helps us as it is common for teams to change players
at the same time, and teams do not use more than 15 players in one game. It is then
enough to collect three sequences with different shifts. The processing of one match is
summarized in the following steps:

1. Manually create sequences of (at most) three shifts

2. Create tracks for players in their respective sequences by the proposed system

33



3. Method

Figure 3.14. Example output of the tracks creation step. As in the previous step, the x-axis
represents time and the y-axis identity. A point in the graph means that the tracklet with
identity Y (y-axis) is in frame X (x-axis).

3. Combine sequences to create one dataset with all 34 players from all sequences

4. Learn the identification network using the Centroids Triplet Loss

5. Run the system on the whole match but using the CTL-Model as the identification
network

The method requires perfect tracks for each sequence at the beginning of the process.
When there are no ID switches in tracks, the dataset for CTL-Model training will not
be noisy, and we can use the standard training. The CTL should be robust to the noise,
but it is not clear to which degree.
In the future, we suggest using the human-in-the-loop approach for fixing incorrect

tracks in the sequences. A human would correct the noisy data created by unsupervised
tracking. Correcting noisy data is less expensive than creating annotations manually,
and correct tracklets could be used for standard identity learning.
The proposed process is visualized in the image 3.15 for clarity. Experiment with the

approach is in chapter 4.4.5.

Transfer learning

The perfectly working identity network would recognize players without seeing them
previously. Such a network could process all matches without any (or little) training and
would run in real-time. We need to create a floorball-specific dataset general enough
for the network to learn to identify players without dictionary-like knowledge. The
dataset is out of the scope of this thesis, and we recommend creating it in the following
research.
We tested the ability of the network to generalize between matches in the experiment

4.4.6. We chose the most challenging transfer from women’s (WA) to men’s (U19)

34



3.7. Player identification, re-detection

Match

Shift 1 Shift 2 Shift 3

Manual extraction

Tracklets creation Tracklets creation Tracklets creation

Frame-based Triplet
Loss

Frame-based Triplet
Loss

Frame-based Triplet
Loss

Dataset of unique
players

Dataset of unique
players

Dataset of unique
players

Datasets merge

Centroids Triplet Loss

Identification network

1st period 

ResultsPeriod-wide tracking

2nd period 

Figure 3.15. Diagram of the Multiple shifts learning experiment. Orange input is the video
of one match. Yellow rectangles are outputs of intermediate steps, green ones automated steps.
The result is emphasized in red.

match with jerseys’ colours change. We conclude that the network did not transfer any
knowledge between games, and a more extensive dataset would be required.

35



4. Experiments

This section describes experiments and tests mentioned in the chapter 3. It depicts the
qualitative and quantitative results and briefly touches on the data.

The section is divided by the stages of the proposed pipeline. For each stage, we
define and explain metrics used for evaluation, report results, and analyze extreme
cases, both positive and negative.

4.1. Single-camera detector

The first evaluated part of the pipeline is the single-camera detector. As explained in
the chapter 3.3, we did not alter the existing solution (ByteTrack) but merely used it
on our data.

4.1.1. Metrics

We used standard detection metrics and took definitions of our previous work [30].
Since the detector uses only one class, definitions were adjusted appropriately.

True positive (TP) is the number of detections labeled by correct class. It means how
many selected detections were selected correctly.

True negative (TN) is a number of detections marked as negative correctly. This
metric is impossible to compute in computer vision as there is an infinite number of
possible bounding boxes.

False positive (FP) is a number of detections marked as positive when it should be
negative. Since we have only one class, the metric computes the number of bounding
boxes where is no player.

False negative (FN) stands for all objects that were not detected.

Precision is the ratio of the number of true positives to the number of all detections.
Precision 100% means that all detections were true positives.

Recall is the ratio of the number of true positives to the number of all positive samples.
Recall 100% means that the detector found all positive samples

precision =
TP

TP + FP
(4.1)

recall =
TP

TP + FN
(4.2)

We do not have annotations for single-camera detections, so we cannot compute
intersection-over-union for the bounding box to evaluate its correctness. Fortunately,
the pretrained YOLOX detector does not make errors on the verge of TP and FP. The

36



4.2. Multi-camera detector

bounding box always clearly captures a person or not, as illustrated in the images 4.2
and 4.1.

We used the statistical approach mentioned in chapter 2.4 to evaluate the single-
camera detectors. We randomly sampled 60 frames from a sequence and manually
evaluated detections in the sample. For a fair comparison, we used the same frames
from all cameras. Every situation is easier for different cameras, so using the same frame
for all cameras would favour some cameras over others. The effect should diminish with
enough random frames, and we could compare cameras.

4.1.2. Evaluation

The table 4.1 shows evaluation on all side videos (cameras EAST, NORTH, SOUTH
and WEST) of the 1min sequence.

Camera TP FP FN Precision Recall

EAST 298 0 9 1.00 0.97
NORTH 306 2 25 0.99 0.92
SOUTH 326 0 7 1.00 0.98
WEST 309 5 8 0.98 0.97

Overall 1239 7 49 0.99 0.96

Table 4.1. Results of single-camera detections in all side cameras. We evaluated the detection
statistically on 60 randomly sampled frames.

The detection results are impressive from all four cameras. The camera NORTH has
the most false negatives because it often does not detect goalies. We speculate that the
goalies are far, and the fisheye lens rotates them significantly. The YOLOX detector is
not suitable for detecting rotated persons, as we saw in the case of the TOP camera.
Except for goalies, the only source of false negatives is heavy occlusion. There are only
a few false positives in all cameras, and most of them are from camera WEST. The
images 4.2 and 4.1 shows examples of false negatives from the NORTH camera and
false positive from the WEST camera.

4.2. Multi-camera detector

The multi-camera detector builds upon the results of the single-camera detector. Chap-
ter 3.5 explains that creating multi-camera detections is the same as geometrically veri-
fying detections from side cameras by voting. Merging information from 4 independent
detectors fixes some errors while making new ones.

4.2.1. Metrics

We used the same metric and evaluation technique as for the single-camera detectors.
We took advantage of the TOP camera and evaluated the sequence visually from the
TOP camera’s frames.

4.2.2. Evaluation

The table 4.2 sums up the results of the multi-camera detection. We used the sequence
1min from chapter 2.4 for evaluation. We used the same 60 frames as in the previous
chapter.

37



4. Experiments

Figure 4.1. Example of false positive single-camera detection. The error emphasized in red
circle.

Figure 4.2. Example of false negative single-camera detections. The error emphasized in red
circle.

38



4.2. Multi-camera detector

Metric Value

Sequence name 1min
Number of frames 1200
Number of evaluated frames 60
TP 551
FN 307
FP 0
Measured precision 1.00
Estimated precision 0.9804
Measured recall 0.6421

Table 4.2. Results of multi-camera detection. We evaluated the detection statistically on 60
randomly sampled frames.

Figure 4.3. Example of a false positive multi-camera detection. The error is detection with ID
216.

The first thing we notice is perfect precision. It is no surprise, as we designed the
system in such a way to trade precision for recall. With precision nearing 100%, we can
guarantee that subsequent tracklets always contain at least one player, and training of
the identification network is possible. False-positive detections would cause noise in the
training data, which could be impossible to overcome.

However, precision 1 is misleading as false positives are in the sequence. With statis-
tical evaluation, we did not sample any frame with false positives. When single-camera
detections of previously detected player move away from each other to the point of sep-
aration (defined by the distance threshold used in geometric verification), false-positive
detection appear. The phenomenon occurs primarily along the edges of the pitch, where
at least one camera is too far to estimate the player’s location. An example of such a
situation is in the image 4.3. The problem happened eleven times during the 1-minute
long sequence. Therefore, we can estimate precision to be 98.04%.

The second notable issue is the vast amount of false negatives. Again, this is caused
by the design of the verification algorithm. When players are too close, we cannot

39



4. Experiments

Figure 4.4. Example of a crowded area resulting in false-negative multi-camera detections.

reliably decide how many players are there or identify them from pictures. To retain
clarity of the dataset for embedding training, we opted for ignoring clusters of players
hence the number of false negatives. But it is not true that we would not have any
information about the false negatives. Instead, we have the data from at least one of
the cameras and choose to ignore it. The last column of the table recounts players not
detected in any of the cameras. It is promising that we did not find any such player
during the minute of the sequence. With an appropriate algorithm for dealing with
clusters, combining cameras with different viewing angles could reach almost perfect
precision and recall. We highly recommend it as the direction of further research.

On the other hand, multi-camera detection works well on easily separable players.
When the game stretches and the players fill the playing field evenly, all players are
detected, which is a substantial advantage for tracklets clustering.

4.3. Tracklets creation

The third stage connects multi-camera detections to the multi-camera tracklets. Let us
first define used metrics.

4.3.1. Metrics

Since our method is unsupervised and we do not have annotations, we cannot use stan-
dard tracking metrics like IDF1 or MOTA. We defined the following metrics measuring
the progress of tracklets creation.

False positive (FP) tracklets denotes tracklets with no player. FP tracklet is composed
of FP detections.

identity (ID) switches are situations when players change in one tracklet. The tracklet
should contain only detections of one player.

40



4.3. Tracklets creation

Figure 4.5. Example of multi-camera detection without errors. Detecting all players helps in
the time-sensitive agglomerative clustering.

The tracklet length is the number of detections forming the tracklet. We give both
median and average tracklet length as both react differently to the distribution
change.

As explained in chapter 3.6, our primary focus is to minimize the number of ID
switches for a clear dataset for identity training. ID switches would make impossible
training described in chapter 3.7 because we would not be able to find a reliable positive
sample. Even one ID switch could contaminate the tracklet such that the training is
impossible. The worst-case would be tracklet uniformly divided between at least two
players. Contrarily, one false detection does not have to break the training procedure
as we use the Centroids Triplet Loss, which is more robust to outliers. Therefore,
minimizing ID switches is not the only way to the clean dataset but the most reliable
one.

Similarly to detections, we evaluate the false positives and ID switches statistically.
We randomly sample tracklets from a sequence and check for false positives or ID
switches. Naturally, a false-positive tracklet may arise only from false-positive detec-
tions. We mentioned in the previous chapter that false-positive detections are rare and
never two consecutive. We could filter false-positives tracklets by erasing all tracklets
of length two, but we would also lose some true-positive ones.

4.3.2. Careful approach

The table 4.3 reports results from the 1min sequence. We evaluated the sequence on
25 (10%) randomly sampled tracklets.

The approach is successful in minimizing ID switches. The method is cautious when
not sure and splits a tracklet instead of trying to connect two tracklets. The tradeoff
between tracklets lengths is visible, but we still have a sufficient amount of long tracklets
for the training. The difference between the median and the average length tells us that
there are many short tracklets. The longest tracklet spans the whole sequence, and it

41



4. Experiments

Metric Value

Sequence name 1min
Number of tracklets 254
Number of evaluated tracklets 25
FP 0
ID switches 0
Median tracklet length 6.00
Average tracklet length 48.39
Maximal tracklet length 1200.00

Table 4.3. Results of the tracklets creation. The step was evaluated statistically on 25 tracklets.
Notice the number of false positives and ID switches.

is one of the goalies.
Similarly, as with multi-camera detections, the statistical evaluation did not find any

false positive tracklets because of the random sampling. We can expect that eleven
false-positive detections would create eleven false-positive tracklets of length one.

4.4. Tracks creation

The final step in the pipeline is clustering tracklets into tracks. The clustering algo-
rithm is the centroids-linked agglomerative clustering described in chapter 3.7.1 in all
experiments in this chapter. The only difference is the encoding upon which is the
similarity metric computed.

4.4.1. Metrics

We use metrics similar to the previous step.

False-positive tracks are tracks containing an already tracked player. Each player
should have precisely one track, and every additional track is deemed as a false
positive.

Track length is the number of tracklets composing the track. For tracks, we are not
interested in the number of detections making the track as the step cluster tracklets
regardless of their length.

The number of ID switches is the same as for tracklets - ID switches are situations
when players change in one track. The track should contain only detections of one
player.

Coverage tells us how many detections are in the track. We differ between absolute
coverage (divided by the number of frames in the sequence) and relative coverage
(divided by the number of frames in the ground truth track). The absolute coverage
cannot be 1 when the player disappears from the sequence. Contrarily, the relative
coverage should always be 1 if the ground truth is available. The relative coverage
is not defined when no annotation is present.

The track length is valuable for evaluating the clustering algorithm but does not
tell us if the tracking ”looks good”. Track length increases with every two clustered
tracklets, but the coverage increases with the length of clustered tracklets. The coverage

42



4.4. Tracks creation

puts more weight on underlying tracklets lengths than the track length as it is more
suitable for visual evaluation.

We annotated all tracklets in the 1min sequence as explained in chapter 2.4. The 1min
sequence is the main testing sequence, and we compute all metrics exactly. The other
sequence (1period) is too long for manual annotation, and we evaluate it statistically
as in the previous steps.

4.4.2. Datasets comparison

The first experiment depicts the usage of pretrained off-the-shelf models. The [39] pro-
vides two pretrained models, one for the Market-1501 dataset and the second for the
DukeMTMC-reID dataset. In addition, we trained one model from random initializa-
tion (”ours” in the table), and the last model is the Market-1501 model fine-tuned on
our data (Ours+Market-1501) using the Frame-based Triplet Loss as described in 3.7.5.
Detailed results from the 1min sequence are in the table 4.4. In all tables, med, avg
and max stands for median, average and maximum.

Dataset Market-1501 DukeMTMC Ours Ours+Market-1501

Number of tracks 24 24 24 24
FP 12 11 8 7
ID switches 43 48 26 25
Length med 10.50 11.00 9.00 8.00

avg 10.58 10.58 10.58 10.58
max 27.00 27.00 33.00 33.00

Relative coverage med 1.22 1.00 1.00 1.23
avg 1.46 1.22 1.10 1.20
max 2.39 2.10 2.13 2.13

Absolute coverage med 0.43 0.47 0.32 0.32
avg 0.43 0.43 0.43 0.43
max 1.00 1.00 1.00 1.00

Table 4.4. Results of the tracklets clustering in the 1min sequence with the same model
trained on different datasets. We compare Market-1501 [45], DukeMTMC-reID [33], Ours and
combination. The best results are emphasized in bold.

Not surprisingly, the models trained on our specific dataset perform better than off-
the-shelf models. The combination of the Market-1501 and Ours datasets performs
the best (values highlighted in bold). We also assume that the combined model would
generalize better, using it in all further experiments.

Let us also comment on the results of different metrics and explain abnormal numbers.
We know that the sequence captures the movement of 24 players, and we stop the
agglomerative clustering when reaching 24 clusters. By design of the algorithm, we
cannot have fewer tracks than players in the sequence. The number of players is always
known in the match, and we can use the information in every sequence. We provide the
number of tracks in each experiment since it is possible to have more than the lower
limit when no more clustering is possible because of the time constraints. We will see
this happening later on.

But even with the number of players known, we can get false positive tracks. By
definition above, a false-positive track is one containing a player already included in a
different track. The seven false positives can mean that seven players have two tracks
each, one player has eight tracks or anything in between. Each false positive must

43



4. Experiments

create at least one ID switch when the tracking algorithm returns the correct number
of tracks.
We use the track length primarily to measure progress during development. The

longer track is not necessarily a better one, but the length of the tracks should be
approximately uniformly distributed except for referees and goalies.
The relative coverage should be one. Numbers below one signify that not all track-

lets of the track were correctly clustered. Contrarily, numbers above one mean more
tracklets in the track than should be according to the annotation. Similarly, the ab-
solute coverage tells us how long part of the sequence the track covers. The absolute
coverage cannot exceed one, as that would mean more frames than available in the se-
quence. True absolute coverage depends on the characteristics of the sequence (number
of shifts, duration of shifts, occurrences of clusters of players). Goalies and referees can
have absolute coverage nearing one, while other players can have between 0.5 and 0.2.
From the analysis above, we can deduce that the clustering works as expected. Start-

ing from more than 250 tracklets, the amount of false positives and ID switches is rela-
tively low. The median and average lengths indicate that track lengths are approaching
uniform distribution. The high relative coverage signifies that the algorithm clustered
too aggressively and merged tracklets of different players.
We also provide visualization of the tracks in image 4.7. The graph represents oc-

currences of tracklets in the time. Each dot in the graph represents a tracklet (y-axis)
occurring in the corresponding frame (x-axis). For reference, we also show the visual-
ization of the annotated sequence in the image 4.6.

Figure 4.6. Visualization of the ground truth tracks for sequence 1min.

We can distinguish between two players’ shifts in the ground truth image. Eight
players are detected in the first frame and then six more before the frame 200. These
14 players (5 players for each team, two goalies and two referees) form the first shift
of the sequence. Around frame 850, we see ten more players appearing - a new shift
coming to the game. Between frames 800 and 1000 is the trickiest part of the sequence
when both shifts are present on the pitch. The last thing to mention is four tracks

44



4.4. Tracks creation

Figure 4.7. Visualization of the clustering based on datasets Ours+Market-1501 (left) and
Market-1501 (right).

spanning the whole sequence at the bottom of the graph. The lowest track in dark blue
is a goalie detected throughout the sequence. This track consists of only one tracklet
and cannot be merged with anything else while enforcing time constraints. Therefore,
all experiments will have this one player correctly tracked. The other goalie is the dark
green track, third from bottom. As the game flows around him, he is not detected in
large part of the sequence. The last two long tracklets are two referees - the second
and sixth from the bottom in red and light blue, respectively. In all experiments on the
1min sequence, we would like to see a similar structure.

Now we can qualitatively compare models from the experiment. The image 4.7
visualizes the Market-1501 and Ours+Market-1501 models. Although both models
force tracklets to continue even after the shifts change, the expected structure is more
evident in the left image (Ours+Market-1501). The right image shows most long tracks
with several short ones as we described from the quantitative results.

We show only two visualizations as the DukeMTMC-reID and Ours models are similar
to the Market-1501 and Ours+Market-1501 ones, respectively.

4.4.3. Distance function performance

The previous experiment’s result poses the question of whether the similarity metric
improves the tracking and how significantly. We propose the results of two experiments
to vindicate its usage in the final pipeline.

Table 4.5 shows the comparison of tracking with different parts of the distance func-
tion defined in chapter 3.7.2. The first column is tracking with time constraints but
without the similarity metric. Conversely, the second column shows results of tracking
without time constraints while using only the similarity metric. And finally, the last
column is the usage of both parts of the distance function.

The first and most important result is that a combination of both metrics brings the
best results. Using only time constraints results in the worst numbers in all metrics.
Interestingly, using only the similarity metrics results in fewer ID switches. Ignoring
time constraints produces much longer tracks. It is because the algorithm can clus-
ter two most similar players even when appearing simultaneously. This bug produces
several long tracks with few ID switches but more false positives.

Visualization comparison in images 4.8 and 4.9 confirms our conclusions. The right
image depictingmarket-1501 clustering without time constraints shows a few long tracks
and many small ones. The issue is not obvious from false positive and ID switches
metrics only, but we can see it from the distribution of track lengths.

45



4. Experiments

Distance function Time Similarity Both

Number of tracks 24 24 24
FP 11 16 7
ID switches 90 22 25
Length med 10.00 1.00 8.00

avg 10.58 10.58 10.58
max 34.00 171.00 33.00

Relative coverage med 1.07 0.54 1.23
avg 1.05 0.46 1.20
max 1.51 1.00 2.13

Absolute coverage med 0.36 0.05 0.32
avg 0.43 0.15 0.43
max 1.00 1.00 1.00

Table 4.5. Comparison of tracking in the 1min sequence when clustering with different distance
functions. The model was trained on the Ours+Market-1501 dataset.

Figure 4.8. Visualization of the clustered tracks using the time metric (left) and similarity
metric (right)

4.4.4. Clustering space and short tracklets

When developing the algorithm, we visualized similarity embeddings in the 2D using the
Self Organizing Nebulous Growths (SONG) [14]. We noticed visible structures for two
teams and four players (goalies, referees). This experiment shows clustering after the
embedding vector is reduced to 2D using the SONG. It brings computational overhead
for computing the SONG kernel, but we can transform new detections quickly once the
kernel is available. The 2D vectors are smaller in memory, and all other operations are
quicker than the entire 2048 vectors.

Table 4.6 provides the results of the experiment in column SONG. The performance
is worse than clustering in the original space, and we do not recommend using dimen-
sionality reduction techniques unless speed is the primary concern.

When analyzing errors of the multi-camera detector and tracklets creation, we de-
duced that all false-positive tracklets consist only of one false-positive detection. We
can eliminate them by ignoring all tracklets of length one. The experiment is also in
the table 4.6.

Again, we can observe the deterioration of the results. It can be caused by the
evaluation method, which does not ignore eliminated tracklets and evaluates them as
ID switches explaining the significant increase in the metric. When looking at the
visualization in image 4.10 (left), we notice that the results are similar to the Full

46



4.4. Tracks creation

Figure 4.9. Visualization of the clustered tracks using the full distance function with both
similarity metric and time constraints.

version.

We did not use the short tracklets elimination in the final pipeline, but it remains
possible when the long and most visible tracklets are the primary focus.

The right part of the image 4.10 visualizes the clustering in the compact space using
SONG.

Figure 4.10. Visualization of the clustered tracks when removing short tracklets (left) and with
clustering in the compact space using SONG (right)

4.4.5. Multiple shifts learning

The penultimate experiment investigates the problem of tracking on a larger scale. As
described in chapter 3.7.6, our idea is to train the identification network on three distinct
shifts and then use the network for period-wide clustering. We manually selected three
shifts from the second period of the match, ran the clustering algorithm with Frame-
based Triplet Loss separately and created a dataset with known identities. We trained
the identification network on the dataset with Centroids Triplet Loss and used it for

47



4. Experiments

Clustering space Remove short tracklets SONG Full

Number of tracks 24 24 24
FP 9 8 7
ID switches 35 32 25
Length med 8.00 8.00 8.00

avg 8.58 10.58 10.58
max 23.0 33.0 33.0

Relative coverage med 1.00 1.00 1.23
avg 1.09 1.08 1.20
max 2.12 2.13 2.13

Absolute coverage med 0.28 0.39 0.32
avg 0.41 0.41 0.43
max 1.00 1.00 1.00

Table 4.6. Comparison of tracking in the 1min sequence with different modifications. The first
column is clustering when ignoring tracklets of length one, and the second column is clustering
in the space reduced by the SONG. [14]

tracking in the first period of the match. For clarity, the diagram 3.15 in the chapter
3.7.6 visualizes the process.
We evaluated the final CTL-learned network on the three sequences from the first

period - 1shift, 1minute and 1period. The 1period sequence contains the 1minute
sequence, which in turn contains the 1shift sequence. The results in table 4.7, therefore,
compare the algorithm’s effectiveness with the growing length of the sequence.

Sequence 1shift 1min 1period

Number of players 14 24 34
Number of tracks 14 24 54
FP percentage 0.00 0.28 0.37
ID switches percentage 0.11 0.13 0.04
Absolute coverage med 0.69 0.28 0.15

avg 0.65 0.41 0.17
max 1.00 1.00 0.97

Table 4.7. Results of tracking on different sequences. To compare sequences of different lengths,
we use normalized metrics. See the text for more details.

To compare different sequences, we use relative metrics and ratios. Instead of the
number of false positives, we provide the percentage of FP (ratio of FP tracks to all
resulting tracks). Similarly, we changed the number of ID switches by the percentage
of possible ID switches. The ID switch is possible for each tracklet, so the number is
the ratio of ID switches to all tracklets.
The annotation is available for the two short sequences which were evaluated em-

pirically. The 1period sequence is too long to annotate and was evaluated statistically
similarly to detectors and tracklets creation. Details of the annotation are described in
chapter 2.4.
The first uncommon number is the number of tracks in the 1period sequence. Al-

though we set the threshold to the number of players (34), the algorithm could not
merge more than 54 tracks due to time constraints. It means that some merges had
to be incorrect, causing conflicts in the later clustering phases. When inspecting the
issue, we noticed that the original three shifts were also incorrectly clustered as there

48



4.4. Tracks creation

are more tracks than players. Unfortunately, we do not have ground truth for the in-
dividual shifts, and we can analyze only visualizations in the image 4.11. Apart from
the higher number of tracks, we did not find anything suspicious.

Figure 4.11. Visualization of the clustered tracks for the 3 shifts used in the Multiple Shifts
experiment

We tried to set up a distance threshold for the clustering in addition to the number
of players. The idea is to increase the number of tracks to lower the percentage of ID
switches. The approach will work if the time conflicts causing merges occur at the end
of the clustering. Results are in table 4.8, where no distance threshold is marked as
NaN.

Distance threshold 15 30 NaN

Number of tracks 571 54 54
FP percentage 0.94 0.37 0.37
ID switches percentage 0.04 0.04 0.04
Absolute coverage med 0.00 0.15 0.15

avg 0.02 0.17 0.17
max 0.97 0.97 0.97

Table 4.8. Results of tracking with thresholding the maximum clustering distance. Notice that
lowering the threshold only decreases the quality of the tracking. The NaN value stands for no
threshold applied.

We infer from the results that the complicated merges do not occur at the end of
the clustering. The method must merge two similar players playing in different shifts.
Interestingly, the sequence contains identical twins, but a brief visual analysis shows
that their tracks are not merged. Perhaps it is because they play in the same shift, but
we cannot back up the claim with data.

4.4.6. Transfer learning

The last experiment verifies the generalization of the identification network. We trained
the network on the sequence from one match (women’s match, different jersey colours)
and evaluated it on the 1min sequence from the U19 game. Table 4.9 provides results
for the 1min sequence and the shorter 1shift sequence.
The first column depicts the original approach (evaluation on the same sequence as

training) for each sequence, and the second one represents transfer learning. We see
that the network generalizes poorly on a different game. The results in the last column
are comparable to results from the first experiment in this chapter (table 4.4). The
transferred knowledge brings the same results as the model trained on the Market-1501
dataset. Since our method fine-tunes the Market-1501 model, we assume that training
on the WA sequence did not improve the original model. This can be connected to the
fact that the training sequence from the WA match is also incorrectly clustered, as we

49



4. Experiments

Sequence 1shift 1min
U19 → U19 WA → U19 U19 → U19 WA → U19

Number of players 14 14 24 24
Number of tracks 14 15 24 24
FP 0 4 7 12
ID switches 4 14 25 43
Length med 12.50 12.00 8.00 9.00

avg 11.29 10.53 10.58 10.58
max 23.00 19.00 33.00 27.00

Relative coverage med 0.99 1.00 1.23 1.12
avg 0.99 0.98 1.20 1.17
max 1.00 1.22 2.13 2.13

Absolute coverage med 0.69 0.61 0.32 0.28
avg 0.65 0.61 0.43 0.41
max 1.00 1.00 1.00 1.00

Table 4.9. Results of the transfer learning. We show original tracking (trained on the same
game as tested) and tracking with transferred knowledge (trained on a different match than
tested) for each sequence.

can see in the images 4.12 and 4.13. The WA sequence captures two shifts with one
change which is not evident from tracks. Again, we can not verify the clustering quality
since we do not have the ground truth for the WA sequence.

Figure 4.12. TBD: Visualization of the clustered tracks when model trained on the U19 1min
sequence (left) and model trained on different match (right)

4.5. Experiments summary

The experiments proved that the method works in limited situations. Two main chal-
lenges are detecting players through heavy occlusion and identifying the re-detected
player. Although we tested these parts of the pipeline separately, both issues are linked
as a reliable identification network would help resolve clusters of players in multi-camera
detection.

We ignored clusters of players in the multi-camera detection tasks resulting in many
short tracklets in the next step. The biggest problem of the multi-camera detector is
the vast amount of false negatives, which remain open for further research.

The tracklets clustering steps work reliably on the same sequence. We could not
generalize the network, and the off-the-shelf models perform equally to our generalized

50



4.5. Experiments summary

Figure 4.13. Visualization of the clustered tracks in the WA sequence. Even though the
sequence captures two shifts, we cannot distinguish them from the graph.

model. Interestingly, the model trained on a public dataset improved the tracking
compared to the clustering with time constraints only.

4.5.1. Speed

We did not mention the speed of the algorithm yet. As mentioned in the chapter 1.2,
the ideal system would run in real-time to give results during the match. The proposed
method can not run this fast as the last step (tracklets clustering) requires all tracklets
before starting the algorithm and is therefore unsuitable for direct deployment in a
match.
One modification allowing near real-time execution would be training the general

network on manually selected shifts from the beginning of the match, as we did in the
experiment in chapter 4.4.5. After initial training, the system would not cluster tracklets
as we did but assigned an identity to the tracklet based on the nearest neighbours in
the encoding space. We can still apply time constraints during the assignment. The
initial training should be only short for the system to work during the match. Our
experiments showed that the network learns basic team-level recognition in a couple of
epochs, so this approach looks promising. However, we did not test this approach.

Step 1min 1period

Single-camera detection (per camera) 10 fps 10 fps
Geometric verifiction and tracklets creation
when using 4 cameras

19 fps 17 fps

Tracks creation 33 fps 3 fps

Table 4.10. Speed of individual pipeline steps for sequences 1min and 1period

The table 4.10 shows the speed of individual steps in the pipeline for the 1min and
1period sequences. Provided values are not precise as the performance depends on the
used hardware, primarily the amount of memory. The table is only evidence that all but
the last step can, in theory, run in real-time. The slow decline in speed for geometric
verification is caused by the implementation and processing of big tables. We must
highlight that the agglomerative clustering does not scale well and is not recommended
for longer sequences.

51



5. Implementation

This chapter quickly mentions libraries and functions used in the implementation. We
justify the selection of some approaches and clarify them. For details, see the enclosed
code.

5.1. Geometry

All geometric computations stand upon the OpenCV library. We use it for homogra-
phy estimation, camera calibration and visualizations. The most peculiar part is the
estimation of the barrel distortion. The OpenCV, since version 3.0, offers a model de-
signed for fisheye cameras. Ironically, we achieved better results with the fisheye model
used for our non-fisheye cameras while using the standard camera model for the fisheye
cameras. The selection of the model is hard-coded in the algorithm.

5.2. Annotations

All data outputs are stored in the CSV format in our custom format. We use the CSV
as it is memory efficient and machine-readable. In the app, the data are represented as
Pandas [38] Dataframe for its easy manipulation. The Pandas are suitable for relatively
small tables, and experiments on the 30-minutes long sequence caused noticeable slow-
downs. For 2-hour videos of one game, we recommend considering using more efficient
libraries like Vaex [4].

5.3. Embeddings

The most challenging part regarding memory efficiency is storing and working with
detections embeddings. We compute the embedding of length 2048 for each detection
in the sequence. The 30-minutes long video contained more than 700 000 detections,
and the Numpy [28] file was almost 8GB. After decreasing the substantial false-negative
rate in multi-camera detection, a better detector could easily reach numbers above 1
000 000. The standard computer cannot operate with such big files, and we used the
mmap feature of the Numpy library to save the embeddings on the disk instead of the
memory. The approach solved the problem so we could conduct our experiments, but
it would not scale well for longer videos. The only solution we see is to compute more
compact tracklets embeddings or select only several detections as representatives of the
tracklet.

5.4. Algorithms

Here we cite libraries used for various algorithms. Details of each algorithm are available
in the documentation of the corresponding library. The Hungarian algorithm [19] is
from the SciPy [35] library. The SciPy also provides a function for hierarchical clustering
used in the multi-camera detector to cluster single-camera detections. We did not use

52



5.5. Visualizations

any off-the-shelf function for tracklets clustering to control the process and preserve
original IDs for evaluation.

5.5. Visualizations

To visualize our results in interactive plots, we used the Plotly [17] library. All videos
are processed or created by the FFMPEG [10]. Dimensionality reduction techniques
T-SNE and SONG are from respective libraries Scikit-Learn [29] and SONG [14].

53



6. Conclusion

We proposed a new method for unsupervised tracking from multi-view sports videos.
The approach ignores crowds and has a high false-negative rate in the detection phase.
The modularity of the system ensures easy modifications of individual parts.
The most significant contribution is the unsupervised tracklets clustering using the

similarity metric and time constraints. To train the similarity metric with unlabelled
data, we propose a new method for hard-negative mining.
The player re-detection and re-identification rely heavily on the quality of the detec-

tor. With a sufficient amount of frames with a low false-negative rate, we can track
players in one change with few ID changes. Connecting tracklets between shifts is chal-
lenging, and our system can perform it under ideal conditions. Most issues arise from
two similar players playing the same position in two consecutive shifts.
We show that the system generalizes well in the same match but does not transfer

learned knowledge between games.
There are still steps missing for the deployment of the system. The time synchro-

nization and geometric calibration are only semi-automatic processes and are laborious.
Further, they require staff with knowledge of computer vision techniques. Missing de-
tections from crowded areas are causing fragmented tracks and low coverage.
We also collected a new dataset of multi-view floorball videos with light flashes for

synchronization. The tracking app, visualizations, and short sequences from the dataset
are enclosed in the attached CD. The full dataset will be available offline in the Center
for Machine Perception.

6.1. Future research

Throughout the thesis, we referenced many possible directions of the subsequent re-
search. The area of automated sports analysis is rich and relatively new in computer
vision, and it offers many unexplored areas.
With automatic pitch detection, we could automatically estimate the barrel distortion

and homographies. The most challenging task here is time synchronization, which could
be one possible direction of future research.
Using the top-view camera detections and information of single-camera trackers could

resolve the problem of crowded areas. With a lower false-negative rate of the detector,
tracklets would be less fragmented. Tracking data from individual cameras would bring
more information to the identification process.
Also, representing the tracklet by the centroid of all its detections seems suboptimal.

Each tracklet contains several significant detections characterizing the player uniquely,
like the visible jersey number. Automatically selecting the representation of the tracklet
is another possible research direction.
The last suggestion is employing the proposed method for labelled data generation.

The system can generate many tracks from multiple matches. A human annotator
can filter identity-incoherent ones, and the resulting dataset would be suitable for the
standard Triplet Loss training. We believe it is possible to train the general players’
identification network from tracks from multiple matches.

54



Bibliography

[1] Luis Alvarez, Luis Gomez, and J. Rafael Sendra. Algebraic Lens Distortion Model
Estimation. Image Processing On Line, 1:1–10, 2010. https://doi.org/10.5201/
ipol.2010.ags-alde. 10

[2] Thulasya Banoth, Mohammad Farukh Hashmi, Zong Woo Geem, and Neeraj
Bokde. Deepplayer-track: Player and referee tracking with jersey color recognition
in soccer. IEEE Access, 10:1–1, 01 2022. 10

[3] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. 21

[4] Maarten A. Breddels and Jovan Veljanoski. Vaex: big data exploration in the era
of gaia. Astronomy & Astrophysics, 618:A13, oct 2018. 52

[5] Jinkun Cao, Xinshuo Weng, Rawal Khirodkar, Jiangmiao Pang, and Kris Kitani.
Observation-centric sort: Rethinking sort for robust multi-object tracking, 2022.
10

[6] Alvin Chan, Martin D. Levine, and Mehrsan Javan. Player identification in hockey
broadcast videos. Expert Systems with Applications, 165:113891, mar 2021. 10

[7] Anthony Cioppa, Silvio Giancola, Adrien Deliege, Le Kang, Xin Zhou, Zhiyu
Cheng, Bernard Ghanem, and Marc Van Droogenbroeck. Soccernet-tracking: Mul-
tiple object tracking dataset and benchmark in soccer videos, 2022. 9

[8] Mark Everingham, Luc Gool, Christopher K. Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. Int. J. Comput. Vision,
88(2):303–338, jun 2010. 11

[9] Na Feng, Zikai Song, Junqing Yu, Yi-Ping Phoebe Chen, Yizhu Zhao, Yunfeng
He, and Tao Guan. Sset: a dataset for shot segmentation, event detection, player
tracking in soccer videos. Multimedia Tools and Applications, pages 1 – 22, 2020.
9

[10] FFmpeg Developers. ffmpeg tool (Version be1d324) [Software]. https://ffmpeg.
org. Online; Accessed: October 2019. 12, 53

[11] Xubo Fu, Kun Zhang, Changgang Wang, and Chao Fan. Multiple player tracking
in basketball court videos. J. Real-Time Image Process., 17(6):1811–1828, dec
2020. 10

[12] Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding
yolo series in 2021, 2021. 10, 19

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2012. 10

[14] Saman Halgamuge. Self organizing nebulous growths (song), 12 2019. 6, 46, 48, 53

55

https://doi.org/10.5201/ipol.2010.ags-alde
https://doi.org/10.5201/ipol.2010.ags-alde
https://ffmpeg.org
https://ffmpeg.org


Bibliography

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015. 10, 31

[16] Yueh-Cheng Huang, Chin-Wei Liu, and Jen-Hui Chuang. Using fisheye camera for
cost-effective multi-view people localization. In 2021 IEEE International Confer-
ence on Image Processing (ICIP), pages 3248–3252, 2021. 10

[17] Plotly Technologies Inc. Collaborative data science, 2015. 53

[18] Ali Karimi, Ramin Toosi, and Mohammad Ali Akhaee. Soccer event detection
using deep learning, 2021. 10

[19] Harold W. Kuhn. The Hungarian Method for the Assignment Problem. Naval
Research Logistics Quarterly, 2(1–2):83–97, March 1955. 28, 52

[20] Zuzana Kukelova, Jan Heller, Martin Bujnak, and Tomas Pajdla. Radial distortion
homography. pages 639–647, 06 2015. 10

[21] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler. MOTChallenge 2015:
Towards a benchmark for multi-target tracking. arXiv:1504.01942 [cs], April 2015.
arXiv: 1504.01942. 10, 19

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick,
James Hays, Pietro Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár.
Microsoft coco: Common objects in context, 2015. 11

[23] Long Liu. Objects detection toward complicated high remote basketball sports by
leveraging deep cnn architecture. Future Generation Computer Systems, 119:31–
36, 2021. 10

[24] Abhinav Moudgil and Vineet Gandhi. Long-term visual object tracking bench-
mark, 2017. 10

[25] Banoth Thulasya Naik, Mohammad Farukh Hashmi, and Neeraj Dhanraj Bokde.
A comprehensive review of computer vision in sports: Open issues, future trends
and research directions. Applied Sciences, 12(9):4429, apr 2022. 4, 9, 10

[26] National Coordination Office for Space-Based Positioning, Navigation, and Timing.
GPS Accuracy. https://www.gps.gov/systems/gps/performance/accuracy/.
Online; Accessed: March 2020. 9

[27] Xiaohan Nie, Shixing Chen, and Raffay Hamid. A robust and efficient framework
for sports-field registration. In 2021 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1935–1943, 2021. 10, 22

[28] Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006–.
Online; Accessed April 2020. 52

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.
53

[30] Miroslav Purkrábek. Floorball player tracking from a top-view camera, 2020. 7,
16, 21, 36

56

https://www.gps.gov/systems/gps/performance/accuracy/


Bibliography

[31] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 779–788, 2016. 10

[32] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks, 2015. 10

[33] Ergys Ristani, Francesco Solera, Roger S. Zou, R. Cucchiara, and Carlo Tomasi.
Performance measures and a data set for multi-target, multi-camera tracking. In
ECCV Workshops, 2016. 6, 10, 43

[34] Kanav Vats, Mehrnaz Fani, David A. Clausi, and John Zelek. Puck localization
and multi-task event recognition in broadcast hockey videos, 2021. 10

[35] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, WarrenWeckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,
CJ Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1. 0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020. 25, 28, 52

[36] Tsaipei Wang, Chih-Hao Liao, Li-Hsuan Hsieh, Arvin Wen Tsui, and Hsin-Chien
Huang. People detection and tracking using a fisheye camera network. In 2021 In-
ternational Conference on Visual Communications and Image Processing (VCIP),
pages 1–5, 2021. 10

[37] Kilian Q. Weinberger and Lawrence K. Saul. Distance metric learning for large
margin nearest neighbor classification. J. Mach. Learn. Res., 10:207–244, June
2009. 30

[38] Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan
van der Walt and Jarrod Millman, editors, Proceedings of the 9th Python in Science
Conference, pages 56 – 61, 2010. 52

[39] Mikolaj Wieczorek, Barbara Rychalska, and Jacek Dabrowski. On the unreason-
able effectiveness of centroids in image retrieval, 2021. 10, 31, 43

[40] Hao Wu, Xinxiang Zhang, Brett Story, and Dinesh Rajan. Accurate vehicle de-
tection using multi-camera data fusion and machine learning. In ICASSP 2019 -
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 3767–3771, 2019. 10

[41] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A bench-
mark. pages 2411–2418, 06 2013. 10

[42] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni,
and Heung-Yeung Shum. Dino: Detr with improved denoising anchor boxes for
end-to-end object detection, 2022. 10

[43] Kailai Zhang, Ji Wu, Xiaofeng Tong, and Yumeng Wang. An automatic multi-
camera-based event extraction system for real soccer videos. 23(2):953–965, may
2020. 10

57



Bibliography

[44] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan,
Ping Luo, Wenyu Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by
associating every detection box, 2021. 10, 19

[45] Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian.
Scalable person re-identification: A benchmark. In Computer Vision, IEEE Inter-
national Conference on, 2015. 6, 10, 31, 43

[46] Awesome Sports Camera Calibration. https://github.com/cemunds/

awesome-sports-camera-calibration#real-time-camera-pose-tracking.
Online; Accessed: May 2022. 10

[47] iSportAnalsis website. https://www.isportsanalysis.com/. Online; Accessed:
May 2022. 8

[48] Kinexon, player tracking. https://kinexon.com/technology/

player-tracking/. Online; Accessed: May 2022. 9

[49] Navigine website. https://navigine.com/open-source/. Online; Accessed: May
2022. 9

[50] Opta website. https://www.statsperform.com/opta/. Online; Accessed: May
2022. 8

[51] Papers with code. https://paperswithcode.com/. Online; Accessed: May 2022.
19

[52] SecondSpectrum website. https://www.secondspectrum.com/index.html. On-
line; Accessed: May 2022. 8

[53] Unihockey PNG 4 (silhouette of the player). https://pngimage.net/

unihockey-png-4/. Online; Accessed: May 2022. 4, 24

58

https://github.com/cemunds/awesome-sports-camera-calibration#real-time-camera-pose-tracking
https://github.com/cemunds/awesome-sports-camera-calibration#real-time-camera-pose-tracking
https://www.isportsanalysis.com/
https://kinexon.com/technology/player-tracking/
https://kinexon.com/technology/player-tracking/
https://navigine.com/open-source/
https://www.statsperform.com/opta/
https://paperswithcode.com/
https://www.secondspectrum.com/index.html
https://pngimage.net/unihockey-png-4/
https://pngimage.net/unihockey-png-4/


A. Contents of the attached CD

purkrmir-Master Thesis.pdf the text of this thesis
tracking app/ folder with the code
tracking app data/ folder with example sequences and results

59


	Introduction
	Problem description
	Motivation
	Thesis layout
	Current work
	Situation in sports
	Computer vision approaches


	Data
	Current situation
	Data collection system
	Technical parameters
	Synchronization

	Videos
	Annotations
	Testing sequences


	Method
	Key concepts
	Pipeline overview
	Single camera detection and tracking
	ByteTrack
	Top camera behavior

	Geometry
	Radial distortion
	Homography

	Multi camera detection
	Clustering algorithm

	Multi camera tracking
	Careful approach

	Player identification, re-detection
	Tracks creation
	Distance function
	Similarity metric
	Pretrained model
	Frame-based Triplet Loss
	Going beyond one match


	Experiments
	Single-camera detector
	Metrics
	Evaluation

	Multi-camera detector
	Metrics
	Evaluation

	Tracklets creation
	Metrics
	Careful approach

	Tracks creation
	Metrics
	Datasets comparison
	Distance function performance
	Clustering space and short tracklets
	Multiple shifts learning
	Transfer learning

	Experiments summary
	Speed


	Implementation
	Geometry
	Annotations
	Embeddings
	Algorithms
	Visualizations

	Conclusion
	Future research

	Bibliography
	Contents of the attached CD

