
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Rendering for virtual reality in high
resolution using measured BTF data

Bc. Patrik Schiller

Supervisor: prof. Ing. Vlastimil Havran, Ph.D.
Field of study: Open Informatics
Subfield: Computer Graphics
May 2022

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474758Osobní číslo:PatrikJméno:SchillerPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačová grafikaSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Syntéza obrazu pro virtuální realitu ve vysokém rozlišení s využitím změřených dat odrazivosti

Název diplomové práce anglicky:

Rendering for virtual reality in high resolution using measured BTF data

Pokyny pro vypracování:
Seznamte se s měřenými daty BTF a zběžně prostudujte metody jejich komprimace a dekomprimace se zaměřením na
efektivní metody vhodné pro GPU implementaci.
Navrhněte vybraný algoritmus pro dekomprimaci BTF dat tak, aby výsledná implementace syntézy obrazu umožnovala
zobrazení s využitím 3D brýlí XTAL 8K firmy VRGINEERS pro sadu jednoduchých 3D objektů s UV parametrizací povrchu.
Navrhněte a vyzkoušejte implementace na grafické kartě s využitím různých programových prostředků (GLSL, CUDA
případně OpenCL) a porovnejte je mezi sebou zejména z hlediska rychlosti. Základní algoritmus pro výpočet obrazu při
osvětlení bodovým světlem doplňte tak, že pro syntézu obrazu s globálním osvětlováním využívámapu okolí aproximovanou
přiměřeným počtem směrových světel tak, aby zobrazování bylo stále v reálném čase případně bylo progresivní.
Navržené postupy implementujte a otestujte na sadě alespoň pěti testovacích BTF dat a pěti povrchů/tvarů.
Dobrá znalost angličtiny, počítačové grafiky a C++ je nezbytná. Znalost programováni v CUDA na GPU výhodou.

Seznam doporučené literatury:
1) 3D brýle XTAL 8K, https://vrgineers.com/xtal/
2) BTF, https://en.wikipedia.org/wiki/Bidirectional_texture_function
3) Havran, V. and Filip, J. and Myszkowski, K.: 'Bidirectional Texture Function Compression Based on Multi-Level Vector
Quantization',
Computer Graphics Forum, Vol 29, No 1, Blackwell Publishing Ltd, ISSN 0167-7055, 2010,
https://dcgi.fel.cvut.cz/home/havravla/btfbase/ .
4) Haindl M, Filip J.: 'Visual Texture', Springer Verlag, ISBN 978-1-4471-4901-9, 2013.

Jméno a pracoviště vedoucí(ho) diplomové práce:

prof. Ing. Vlastimil Havran, Ph.D. Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 20.05.2022Datum zadání diplomové práce: 02.02.2022

Platnost zadání diplomové práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryprof. Ing. Vlastimil Havran, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank my supervisor Prof.
Ing. Vlastimil Havran, Ph.D. for pro-
viding numerous helpful advice and com-
ments during the work.

Many thanks also go to all those who
participated in the usability testing of the
application.

Finally, I also thank my family and girl-
friend for their support in these difficult
and stressful times.

Declaration
I hereby declare that I am the sole author
of this master’s thesis and that I have
not used any sources other than those
listed in the bibliography and identified
as references.

In Prague, May 20, 2022

Signature: .

Prohlašuji, že jsem předloženou
práci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 20. května, 2022

v

Abstract
The work focuses on the implementa-

tion of a real-time renderer targeted for
high-resolution Virtual Reality headset
XTAL 8K, enabling the examination of
various 3D object surface appearances rep-
resented by compressed BTF data. The
renderer exploits real-time BTF decom-
pression based on the solution presented
by Havran et al. in 2010.

The renderer was implemented using
three distinct GPU technologies (GLSL,
CUDA, and OpenCL), enabling their run-
time comparison in terms of performance
and rendered image visual quality. An ap-
proximation method of image based light-
ing using an environment map, presented
by Pharr et al. in 2004, was implemented
to enhance the final visual quality. The
method was further extended by a pro-
gressive rendering approach enabling BTF
evaluation using hundreds of virtual direc-
tional lights, while in most cases maintain-
ing 60+ frames per second for the best
performing renderer.

A control system consisting of a Wi-
imote controller was implemented to-
gether with GUI to enable intuitive in-
teraction with the application when a VR
headset is used.

As a result, an interactive high-
resolution VR renderer is available, allow-
ing to examine various BTF materials un-
der various lighting and view conditions.

Keywords: BRDF, BTF, VR, XTAL
8K, Real-time PBR, Importance
Sampling, Computer Graphics, 3D,
DCGI

Supervisor: prof. Ing. Vlastimil
Havran, Ph.D.

Abstrakt
Práce se zaměřuje na implementaci

real-time rendereru určeného pro náh-
lavní soupravu virtuální reality XTAL
8K, umožňující zkoumání vizuálních vlast-
ností povrchů 3D objektů reprezentova-
ných komprimovanými BTF daty. Rende-
rer je založen na dekompresi BTF dat v
reálném čase vycházející z řešení, které
prezentoval Havran et al. v roce 2010.

Renderer byl implementován s využi-
tím tří různých GPU technologií (GLSL,
CUDA a OpenCL), což umožňuje jejich
porovnávání za běhu aplikace z hlediska
výkonu a kvality výstupního obrazu . Pro
zlepšení vizuálního dojmu byla aplikace
doplněna o metodu aproximace osvětlení
okolím, kterou prezentoval Pharr et al. v
roce 2004. Metoda byla dále rozšířena o
způsob progresivního vykreslování umož-
ňující výpočet osvětlení pro stovky smě-
rových světel při zachování interaktivní
snímkové frekvence. Pro možnost jedno-
duchého ovládání v rámci virtuální reality
bylo implementováno ovládání s využitím
ovladače Wiimote, doplněné o grafické roz-
hraní (GUI), které interakci dále usnad-
ňuje a zpřehledňuje.

Výsledkem je interaktivní aplikace
umožňující zkoumání 3D objektů z růz-
norodých materiálů za libovolných světel-
ných podmínek a směru pohledu. Aplikaci
je možné využívat jak s náhlavní soupra-
vou XTAL 8K vyznačující se vysokým
rozlišením obrazu, tak i s využitím klasic-
kého monitoru.

Klíčová slova: BRDF, BTF, VR,
XTAL 8K, Real-time PBR, Importance
Sampling, Počítačová Grafika, 3D, DCGI

Překlad názvu: Syntéza obrazu pro
virtuální realitu ve vysokém rozlišení s
využitím změřených dat odrazivosti

vi

Contents
List of Abbreviations 1
1 Introduction 3
2 State of the Art 7
2.1 Rasterization 8
2.2 Raytracing . 8
2.3 Usage of BTF 9
3 Computer Graphics Technologies 13
3.1 Rendering APIs 14
3.2 General Purpose Computing on

GPU - GPGPU. 16
3.2.1 GLSL and HLSL 17
3.2.2 Compute Shaders 17
3.2.3 NVidia CUDA 18
3.2.4 OpenCL 18

3.3 Rendering Frameworks 18
3.4 Virtual Reality 19

3.4.1 Headset XTAL 8K 20
4 Basics of Global Illumination
Methods 23
4.1 Radiometry 23

4.1.1 Solid Angle 23
4.1.2 Radiance 24
4.1.3 Bidirectional Reflectance

Distribution Function 24
4.1.4 Rendering Equation 25
4.1.5 Bidirectional Texture Function 26

4.2 Monte Carlo Sampling 27
4.2.1 Importance Sampling 27

4.3 Image Based Lighting 28
4.3.1 Environment Map 29
4.3.2 Environment Map Importance

Sampling . 30
5 Bidirectional Texture Function
Compression 33
5.1 BTFbase . 34

5.1.1 BTF Compression Using
MLVQ . 34

5.1.2 BTF Decompression and
Rendering . 36

6 Analysis and Design of the
Application 37
6.1 Functional Requirements 37
6.2 Main Design Ideas 38
6.3 Renderer . 38

6.3.1 Offscreen Rendering 39
6.3.2 Multiple Render Targets 40
6.3.3 Deferred Rendering 40

6.4 BTF Materials 41
6.5 Environment Map Approximation 41
6.6 Progressive Rendering 42
6.7 Rendering for Virtual Reality . . 42
6.8 User Interface 43

6.8.1 Controls 43
6.8.2 GUI . 44

7 Implementation 45
7.1 Structure of the Application . . . 45
7.2 OpenGL Renderer 46

7.2.1 GLSL . 46
7.3 Deferred Rendering 46
7.4 CUDA Renderer 48

7.4.1 Constant Memory 49
7.4.2 CUDA-OpenGL Interoperation 49
7.4.3 Textures and Surfaces 50

7.5 OpenCL Renderer 50
7.5.1 OpenCL-OpenGL

Interoperation 51
7.6 Environment Map Approximation 52
7.7 Progressive Rendering 53
7.8 XTAL VR Headset Integration . 54

7.8.1 Rendering to a Headset 54
7.9 Control System 55

7.9.1 Wiimote Controller 56
7.9.2 Generic Controls API 57
7.9.3 Graphical User Interface 57
7.9.4 Application Configuration . . . 58

7.10 Summary of Used Technologies 59
8 Results and Testing 61
8.1 User Testing 61

8.1.1 Testing Strategy 62
8.1.2 Questions and General

Answers . 63
8.1.3 User Advice 65

8.2 Performance Testing 66
8.2.1 Tests Setup 66
8.2.2 Used Hardware and Software 68
8.2.3 GLSL, CUDA, and OpenCL

Performance Comparison 69
8.2.4 Virtual Reality and Desktop

Performance Comparison 69

vii

8.2.5 Various Types of Lighting
Performance Comparison 70

8.2.6 CPU and GPU Performance
Comparison 71

8.2.7 Unresolved Problems and
Possible Solutions 72

9 Conclusion 75
9.1 Summary . 75
9.2 Future Work 76
Bibliography 77
A User Manual 80
A.1 Wiimote Controls 80
A.2 Desktop Controls 80
B Image Gallery 83
C Configuration File Example 85
D Contents of Attached CD 87

viii

Figures
1.1 BRDF illustration 4

2.1 OpenGL rendering pipeline 9
2.2 Raytracing diagram 10
2.3 BTF usage in visualizations 10

3.1 Surface parameterization 13
3.2 GPGPU programming model . . . 17
3.3 VR headset XTAL 8K 20

4.1 Planar and solid angle 24
4.2 Radiance diagram 25
4.3 Monte Carlo π estimation 28
4.4 Monte Carlo vs. Importance

sampling . 28
4.5 Image Based Lighting 29
4.6 Environtment map approximation

process . 31

5.1 BTFbase data compression
diagram . 35

6.1 Framebuffer object layout in
OpenGL 4.5 . 39

6.2 Deferred rendering architecture . 40
6.3 Available controllers 44

7.1 Contents of G-buffer 47
7.2 Environment map importance

sampling . 52
7.3 Contents of G-buffer renderbuffers 53
7.4 Progressive rendering comparison 54
7.5 Example of image rendered to the

XTAL 8K headset 56
7.6 Wii remote controller buttons

schema . 57
7.7 Menu of the application 58

8.1 Test scene setup 67
8.2 BTF Materials tested 68

A.1 Wiimote controls diagram 81

B.1 Examples of materials under
various lighting and view conditions 84

Tables
7.1 Application renderbuffers data

layout . 48

8.1 Information about tested users . 62
8.2 Information about 3D models used

for performance tests 67
8.3 GLSL, CUDA, and OpenCL

performance comparison 69
8.4 Desktop and VR performance

comparison for GLSL renderer 70
8.5 Various lighting performance

comparison for GLSL and CUDA . 70
8.6 CPU and GPU performance

comparison . 71

ix

List of Abbreviations

AABB Axis Aligned Bounding Box.

AI Artificial Intelligence.

API Application Programming Interface.

BRDF Bidirectional Reflectance Distribution Function.

BTF Bidirectional Texture Function.

CDF Cumulative Distribution Function.

CG Computer Graphics.

DLSS Deep Learning Super Sampling.

EM Environment Map.

FBO Framebuffer Object.

FPS Frames Per Second.

FS Fragment Shader .

GPGPU General Purpose Computing on GPU .

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HDR High Dynamic Range.

HMD Head Mounted Display.

IBL Image Based Lighting.

IPD Interpupillary Distance.

1

..
IS Importance Sampling.

LDR Low Dynamic Range.

MC Monte Carlo.

MLVQ Multi-Level Vector Quantization.

MRT Multiple Render Targets.

PCF Piecewise-Constant Function.

PDF Probability Density Function.

SIMD Single Instruction Multiple Data.

SIMT Single Instruction Multiple Thread.

SVBRDF Spatially Varying Bidirectional Reflectance Distribution Function.

UI User Interface.

VR Virtual Reality.

VS Vertex Shader .

2

Chapter 1
Introduction

Computer graphics today extends to a wide range of various industries, from
gaming, cinematography, and multimedia to various types of visualization.
Computer visualizations are an essential part to support professional disci-
plines such as architecture, science or medicine. Thanks to computer graphics,
it is possible to display accurate data, which without this power is hard to
imagine.

Since the beginning of this discipline, the authors have tried to render 3D
objects as accurately as possible, so that ideally it looks indistinguishable
from reality. Unfortunately, high image quality is associated with excessive
temporal and spatial complexity of the algorithms needed for image rendering.
Such algorithms include, in particular, Ray Tracing, Path Tracing, Photon
Tracing, and others, which together form methods for computing the global
illumination model. Global illumination provides a way of lighting representa-
tion that is physically based on the way how light propagates through space
and which therefore gives the results closest to reality.

The topic of realistic image synthesis is still the subject of many researches,
which try to obtain the best possible image with the least possible memory
and consumption demands. Because of the use of computer graphics mainly
in interactive applications, such as computer games, modeling or visualization
tools, and many more, the demands on time efficiency are the more important.
In order to be able to display 3D objects in a good quality while maintaining
sufficient rendering times, new approaches are constantly being developed,
mostly based on ray-tracing methods, which have proved very useful in
rendering a realistic image from the point of view of quality.

To accurately represent 3D models, including the appearance of their
surfaces, it is necessary to focus not only on the methods of synthesis, but
also on the ways of representing the material itself, which gives the final
appearance of the rendered model. Materials are usually defined by many
properties (such as roughness, metallicity, refractive index, etc.) along with
textures that define the spatial diversity of the material (for example, the
pattern of bricks, cloth, concrete and many more.)

3

1. Introduction
The basis of modeling the light properties of materials is the Bidirectional

Reflectance Distribution Function (BRDF) which describes the properties
of reflectivity at a specific point on the surface of the object. As the name
implies, this function depends on two directions - the direction of light incident
to the surface ωi (or also ωl) and the direction of its reflection ωo (ωr). BRDF
can be also interpreted as the probability that a photon incoming from the
direction ωi will bounce in the outgoing direction ωo.

Figure 1.1: BRDF illustration

One of the methods suitable for an accurate representation of object
materials is the use of Bidirectional Texture Function (BTF), which generalises
a spatially varying BRDF. The original BRDF parameterization by two
direction vectors is extended along the object surface by texturing coordinates
(in layman’s terms, each texel contains different reflectivity properties - BRDF
values). The BTF is therefore dependent not only on different angles of view
and the incident light directions, but also on the position on the surface of
the object. BTF data are often obtained using a gonioreflectometer, where a
planar sample from a given material is scanned in detail in a closed chamber
for all selected angles of view and light directions (generally all directions on
the unit hemisphere above the illuminated point on the surface). The result
of scanning is a relatively large number of textures (images) that capture
the properties of the material in different lighting conditions for several
view angles. For this reason, BTF is an image-based method of surface
representation, where we rely only on the visible properties of the surface
and, for example, neglect the surface structure [FH09]. The disadvantage
of raw BTF data is its size (several gigabytes per material) and therefore
inapplicability for scenes and objects with multiple materials. Fortunately,
several research teams have addressed this issue and have come up with a
variety of solutions that are both space and time efficient and can be used for
real-time image synthesis. One of the compression methods is based on the
so-called Multi-Level Vector Quantization of data, which was introduced by
Havran et al. in [HFM10], on which this work is based.

4

......................................1. Introduction

With the increasing performance of today’s hardware, the term Virtual
Reality (VR) has become a common standard. Nowadays, it is still considered
the best way to experience a computer-generated environment. It can be
based on a headset that contains two high-resolution displays (one for each
eye), which is also equipped with a number of different sensors to control
the movement of the head, eyes, hands, or even the entire figure within the
room. However, to be able to perceive 3D space within the generated scene,
it is necessary to render a separate image for each eye. As a result, image
synthesis for virtual reality is much more demanding than traditional desktop
rendering. Therefore, despite the performance of today’s hardware, it is
still not possible to render an image of similar quality as for classic desktop
applications (computer games, etc.) at similar frame rates.

The aim of the work is to conduct research on technologies that enable real-
time image synthesis for virtual reality (VR) and subsequent implementation
of a real-time VR renderer of 3D models with materials defined using BTF
data. Based on the research, suitable technologies and techniques will be
selected. Emphasis will also be placed on the use of more similar technologies,
which will then be compared in terms of performance - it should be primarily
a comparison of GLSL, CUDA, and OpenCL. The result of the work will be an
interactive application that can render objects with BTF materials into a
virtual reality headset XTAL 8K with the highest possible frame rate.

5

6

Chapter 2
State of the Art

Rendering methods of the modern day can be split into two main categories,
which has not changed for the last decades since modern rendering APIs
emerged.

The first category represents real-time computer graphics used for entertain-
ment (games), CAD software, and various 3D editors, where performance is
the most important. Most of these applications are based on one of the three
mainstream graphics APIs represented by OpenGL, Vulkan and DirectX. All
three mentioned APIs represent rendering based especially on Rasterization
methods. The majority of graphics cards (except those used for mass parallel
computations) are highly optimized for rasterization (primarily of triangles)
and perform very well.

The second category represents the so-called offline rendering, which stands
for image synthesis that is not generally performed in real-time. That is
given by the complex algorithms and lighting models based on methods of
Raytracing which is in general much more computationally intense than the
rasterization mentioned. However, these renderers can produce photorealistic
images, which is convenient for various types of visualization (architecture,
design, etc.), movies, or art rendering.

Since 2018 with the introduction of the NVidia GeForce 20 series, a new
rendering approach is available for high-end graphics cards marked as RTX.
These cards are capable of hardware accelerated raytracing together with
rasterization, which means that they contain additional hardware components
called RT-cores dedicated specifically for raytracing operations (traversal of
data acceleration structures, ray-triangle intersections, etc.). However, fully
raytraced scenes in high resolution are still not achievable with interactive
framerates (in terms of high-quality rendering with various types of effects,
which is used, for example in games). Instead, frames computed in low
resolution with noise (low number of samples per pixel) are denoised using
Artificial Intelligence (AI) trained on a specific set of scenes, and subsequently
upscaled using a technology called Deep Learning Super Sampling (DLSS). AI
computations are handled by another type of newly designed GPU components
called Tensor cores.

7

2. State of the Art

That said, real-time hardware raytracing of complex scenes is currently
limited mainly to applications that can benefit from AI denoising. That is
currently featured only in a subset of modern AAA games because the AI
must be trained on the scenes present in the game. However, both RT-cores
and Tensor-cores can be used for other types of applications, where the
computations can be hardware accelerated using these components - both
raytracing and artificial intelligence. These applications include Blender,
Maya, OptiX framework, etc.

2.1 Rasterization

The computation of a single image within a graphics application can be
divided into several parts. In the case of using rasterization methods, it is
a so-called rendering pipeline, which is known mainly when using graphical
rasterization APIs like OpenGL, DirectX, or Vulkan. It defines the individual
logical steps of processing the geometry to be drawn, from transformations
to the final rendering on the screen.

Newer versions of the mentioned APIs offer the so-called programmable
rendering pipeline (image 2.1), which offers the ability to influence various
parts of the rendering process using shaders. Shaders are user-defined func-
tions that run in parallel for a given instance of a problem. The problem
can represent, for example, the computation of vertex transformation in the
case of the Vertex Shader (VS), the computation of the fragment color in
the case of the Fragment Shader (FS), or other computations in the case of
other types of shaders (geometry, tessellation, compute, etc.). Each instance
is represented by the same code, only with different data. It follows that the
set of instructions is the same, only the data are different - we are talking
about the architecture SIMD (Single Instruction Multiple Data) or SIMT
(Single Instruction Multiple Thread). This makes it possible to process large
amounts of data in a relatively short time - in parallel.

2.2 Raytracing

In the case of global illumination methods (such as raytracing), the process is
different, however it still has something in common with rasterization. It is
mainly a parallel processing of the resulting pixel color (it is generally claimed
that raytracing is the reverse process of rasterization). Scene processing
is performed separately for each pixel. For this reason, global illumination
methods are much more demanding than rasterization with the growing screen
resolution. That is because every ray has to traverse some subset of the scene
(when an appropriate data acceleration structure is used), and that applies
for all types of rays (primary, secondary, shadow, etc.). Behind every pixel
can be many rays traversing the scene.

8

.................................... 2.3. Usage of BTF

Figure 2.1: OpenGL rendering pipeline, rasterization method

The advantage of raytracing is mainly the ability to compute the image
based on real-world principles of light propagation through space. Using a
ray primitive, it is possible to gather more information about the scene than
in the rasterization process. Among the additional information, it is possible
to evaluate a neighborhood of a shaded point on the surface, which can be
used, for example, for indirect lighting, which is essential for photorealistic
rendering. In other words, each surface point in the scene can serve as an
origin for tracing additional rays that can gather more information needed to
calculate the final lighting, color, and shadows.

Many tricks and approximations are used in applications based on rasteriza-
tion (games, 3D editors, etc.) to simulate the properties of raytracing and to
produce high-quality images. However, raytraced images are still considered
better and visually closer to reality.

2.3 Usage of BTF

One of the methods to represent the properties of heterogeneous materials
(spatially varying), which define how light is reflected from the surface, and
therefore what color is perceived, is already mentioned Bidirectional Texture
Function (BTF). It extends previously known Spatially Varying Bidirectional
Reflectance Distribution Function (SVBRDF) presented by Nicodemus in
[Nic65] which has the same parameterization as BTF. However, SVBRDF
takes into account only the local properties of a material and is therefore not
suitable for the representation of coarse (non-flat) surfaces.

9

2. State of the Art

Figure 2.2: Raytracing diagram 1

In contrast, BTF includes nonlocal scattering effects, such as masking and
self-shadowing that depend on other parts of the surface than the current
shaded point. Because of that, some of the BRDF constraints (presented in
chap. 4.1.3) may be violated, and therefore the encoded BRDF values are
referred to as Aparent BRDFs because they may not be physically correct.

The bidirectional texture function was first introduced by Dana et al.
in 1999 [Dan+99] together with a database of 60 freely accessible BTF
samples. It is still considered one of the most advanced and accurate digital
representations of visual properties of real-world materials [FH09]. There also
exist other surface representations that can model surface appearance, such
as bump mapping, parallax mapping, SVBRDFs, etc. but none of them can
carry that much surface information as BTF.

Figure 2.3: BTF used for visualization of materials used in a car interior [FH09]

1https://gfxspeak.com/2020/09/28/the-levels-tracing/

10

https://gfxspeak.com/2020/09/28/the-levels-tracing/

.................................... 2.3. Usage of BTF

Usage of BTF is relevant in terms of photorealistic rendering, where the
visual accuracy of the rendered material is essential. Such use cases are
in design, architecture, automotive industry, or even in a cultural heritage
[KCL18], where the rendered image should match the expected reality. In
such a way, it is possible to simulate the appearance of the object without
the need to create real-world prototypes. This is convenient, for example,
when designing a car interior consisting of various types of leather (figure
2.3), or when designing the interiors or furniture of a building.

11

12

Chapter 3
Computer Graphics Technologies

Because of the possibility of using more technologies during an image synthesis,
the computation can be divided into two logical steps. The first step is to
calculate the transformations and the resulting properties of each pixel,
or the part of the surface of the object that the pixel represents. That
means texturing coordinates, normal, tangent, bitangent (see fig. 3.1) and
other properties of the rendered 3D objects needed for shading. Within a
rasterization pipeline, this step can be perceived as all operations ending
with the rasterization of a given geometric primitive - steps 1-3 in the figure
2.1. The output is a set of fragments, each with its own attributes, whether
computed or interpolated.

In the case of raytracing, the first step is represented by finding an inter-
section of a ray sent from a particular pixel into a scene (or an iteratively
traced reflected ray) with an object in the scene closest to the ray origin.

In both cases, the result of the first part of image synthesis is a buffer of
fragments, although in the case of raytracing it is a bit more complicated
because of the use of recursion.

Figure 3.1: TBN basis and texturing coordinates illustration1

1http://rapapa.net/?p=2419

13

http://rapapa.net/?p=2419

3. Computer Graphics Technologies
The second phase of image synthesis represents a computation of the final

color of the pixel based on the supplied information about the processed part
of the object surface (computed in the first phase) - steps 4 and 5 in the
figure 2.1. It is in this phase that the BTF data to which this work relates is
read and used.

Splitting the computation into two parts has its justification - it is possible
to separate the color computation, which is related to the processing of BTF
data, from the geometry computations in the scene. As a result, computing a
color can be performed using a different technology than the one used for the
first part. The implementation of color computation also does not depend on
the method used for image synthesis (rasterization or raytracing).

3.1 Rendering APIs

APIs for computer graphics programming allow great control over the be-
havior of the application (renderer), but at the cost of greater programming
complexity (it is necessary to write much more code compared to ready-made
rendering engines or frameworks). Tens to hundreds of lines of graphics API
code can be hidden behind one-line method call in the framework.

OpenGL

OpenGL is a cross-platform open-standard API for rendering computer graph-
ics on GPUs, developed by the company Khronos Group. It is a standardized
library that is implemented by most graphics chips manufacturers such as
Nvidia, AMD, or Intel. Primarily, OpenGL is used as a rasterization library
supplemented by the ability to control some blocks of the rendering pipeline
by programmers, using functions called shaders. In general, communication
with the GPU using OpenGL is based on the Client-Server architecture (or
also on the principle of finite / state automaton), where the client is the host
application on a CPU and the server represents a GPU processing individual
draw commands.

The initial version of OpenGL 1.0 contained only the so-called immediate
mode (also available in today’s versions of OpenGL), which allows only basic
control of OpenGL using commands from the host (CPU) - it is also known
as a fixed rendering pipeline, where operations directly on the GPU can
not be programmed. The data is sent to a GPU by a set of commands
specifying the type of uploaded data - mainly its dimensionality (e.g. method
glVertex3f). Those commands are enclosed by glBegin and glEnd sequence
which defines how the uploaded vertices will be interpreted (by means of
a geometric primitive type). All geometric transformations of vertices are
controlled using matrices uploaded from the host (managed by OpenGL in
matrix stacks). The matrix multiplication is handled by OpenGL in the order
given by the particular matrix stack.

Newer versions of OpenGL already contain a programmable pipeline, within
which it is possible to use shaders to influence the computation of individual

14

................................... 3.1. Rendering APIs

vertices, fragments, etc. Shaders are written in GLSL, which is very similar to
C language. Recent versions of OpenGL also introduce a new approach to
maintain geometry and its data on GPU, using specialized buffers and vertex
arrays. Instead of using immediate mode to load the data to a GPU in a
vertex-per-vertex fashion, the data is loaded into GPU buffer using a single
call. The rendering is then handled by a single draw-call which is associated
with the currently bound vertex array (each vertex array can represent some
logical set of vertices - e.g., one model). The type of rendered primitives is
given by the draw-call itself, so the same buffer can be used for rendering
multiple types of primitives (e.g., triangles in the first call, lines in the second
call etc.).

Since the release of new graphics cards supporting RayTracing (Nvidia
RTX 20xx and AMD), it is possible to use shaders in OpenGL (based on
the official DXR / DX12), which enables the usage of hardware-implemented
raytracing (for example, new types of shaders for BVH tree traversal and
computing intersections with primitives - mainly triangles). Raytracing is
available for OpenGL after including the GLSL_NV_ray_tracing extension
for GLSL [NVa].

Although OpenGL is cross-platform technology, it still performs similarly
(sometimes better) as DirectX [CP].

DirectX

DirectX is a set of APIs not only for computer graphics programming but
also for sound creation, input processing, etc. [CP]. However, DirectX is not
open-source and depends on the platform used (Windows or Playstation).
Similar to OpenGL, it implements a programmable rendering pipeline using
shaders and it is based on the same principles described in 3.1. Unlike
OpenGL, shaders are written in HLSL language (instead of GLSL), but both
languages are very similar.

DirectX is the official API supporting the new hardware-accelerated ray-
tracing (available since the release of Nvidia Turing graphics cards), which is
available on Nvidia graphics cards marked as RTX, and some recent cards
from AMD. This is specifically an extension of DirectX12 called DXR.

Vulkan

Vulkan is a cross-platform open-standard computer graphics programming
API developed by the Khronos Group, which is considered to be the successor
to OpenGL [NVb]. Similar to OpenGL and DirectX, it implements a classic
programmable rendering pipeline, shaders can be written in both GLSL and
HLSL languages. The Vulkan API allows more control over hardware and
commands, unfortunately with this comes more programmer responsibility
and API complexity - it is harder to use it. The advantage may be the greater
performance in the case of efficient implementation, compared to OpenGL or
DirectX.

15

3. Computer Graphics Technologies
3.2 General Purpose Computing on GPU - GPGPU

There are several solutions for tasks that may not be related to computer
graphics and that still require high parallelization. These include scientific
computations, artificial intelligence, image recognition, or computer graphics
methods that are not based on a standard rasterization rendering pipeline
(such as raytracing). Most of the solutions mentioned below allow us to
program GPU executable functions that are essentially similar to the already
mentioned shaders, but with any number and type of input and output
parameters that are not dependent on the inputs and outputs of other blocks
in the pipeline. In this case, the functions run in parallel are called Kernels.

Parallel computing is based on the so-called SIMD (Single Instruction
Multiple Data) and SIMT (Single Instruction Multiple Thread) architectures,
which means that all threads process the same set of instructions on different
data. This also indicates that GPU parallelism is not suitable for every kind
of problem. The main element of GPGPU processing is a Kernel, which
represents a "blueprint" of the function which is launched for every processed
element (for example, of the array). Kernels are managed in groups (in CUDA
called blocks, in OpenCL called work-groups) and these groups form a grid -
figure 3.2. Grids can have from 1 up to 3 dimensions, this also applies for all
blocks (groups of kernels). One of the main purposes of clustering the kernels
into groups is to allow the usage of local memory. Data in local memory are
accessible only inside the appropriate group, and the access speeds of a local
memory are much bigger than the speeds of a global memory.

Generally speaking, each thread is supposed to process only its subset of the
computed data, which can be accessed from a global memory using the thread
and block indices. Using these indices, it is possible to compute a unique
index that can be used to access data not only in a global memory (see 3.1),
but also in other types of GPU memory, such as texture, constant, or local
memory. When it is known that the data will be accessed more than once,
then the data should be copied to a local memory prior any computations
are carried out (it is a programmer responsibility to do so).

1 int g_tIdxX = blockDim . x ∗ blockIdx . x + threadIdx . x ;
2 int g_tIdxY = blockDim . y ∗ blockIdx . y + threadIdx . y ;
3 int g_tIdx = g_tIdxY ∗ (gridDim . x ∗ blockDim . x) + g_tIdxX ;

Listing 3.1: Computing index in global memory (CUDA)

To make it possible to perform some computations on a GPU, it is also
necessary to copy the needed data from CPU (Host) to GPU (Device) because
in most cases GPU cannot directly access the data on CPU (and it also would
not make sense, because the CPU RAM would be a bottleneck). Several types
of memory can be used (global, local, constant, texture, etc.), depending on
the type and usage of the data.

2https://slideplayer.com/slide/16173196/

16

https://slideplayer.com/slide/16173196/

......................3.2. General Purpose Computing on GPU - GPGPU

Figure 3.2: GPGPU programming model 2

3.2.1 GLSL and HLSL

For some types of computations, it is possible to use traditional graphics
shaders available in graphics APIs (OpenGL, DirectX, or Vulkan), especially
the fragment shaders. In this way, a reference GPU solution of this work
was implemented, which handles the reconstruction of compressed BTF data
using chained indexing of several textures, followed by interpolation of the
read data.

With some modifications, graphics shaders can be used in a limited mode
for general computations (the processed data are passed, for example, in
textures). The disadvantage of this approach is the need to manually start a
given number of shaders. In the case of a fragment shader, it is necessary to
create a primitive, which subsequent rasterization will activate the desired
number of fragment shaders. That is not hard to implement, but it is an extra
overhead. Not to mention the need to maintain a graphical context and to
run vertex shaders and rasterizers that are unrelated to the computation itself.
That said, using this approach is appropriate only for graphics applications,
where rasterization is needed anyway.

3.2.2 Compute Shaders

For the needs of more general computations (e.g., physics or post-processing),
graphical APIs contain compute shaders, which more closely correspond to
the CUDA or OpenCL kernels. The advantage is that it is only another type
of shaders for a particular graphical API and the eventual interconnection of
general computations with rendering is clearer and simpler (it is only needed
to maintain one context - the graphical one). The disadvantage of compute
shaders is their lower performance compared to CUDA or OpenCL. Another
disadvantage may be the dependency on the operating system (for example,
DirectX with HLSL language is bound to the Windows platform [NV10]).

17

3. Computer Graphics Technologies
3.2.3 NVidia CUDA

Nvidia CUDA is a framework for general-purpose computing (GPGPU) with
a similar programming model as OpenCL and compute shaders. CUDA is
characterized by its high efficiency, mainly because of its development closely
bound to the development of the hardware for which CUDA is intended
(Nvidia GPUs). Another advantage of CUDA is platform independence
(Windows, Linux, etc.).

However, the disadvantage of the CUDA framework is the dependency on
the device used. CUDA applications can only be run on devices that contain
GPUs from Nvidia and where the necessary drivers are installed at the same
time. In addition, it is necessary to distinguish individual GPUs according
to their Compute Capability (CC1.0 - CC8.6 [Q1 2022]), which is mostly
determined by the model and age of the GPU used, and which defines the
set of implemented functionalities.

3.2.4 OpenCL

OpenCL is a GPGPU framework similar to CUDA, but it is independent of
both the platform used and the device used. The advantage of OpenCL is
therefore the possibility of its use on a wide range of processors, not only the
graphics ones (GPU), but also the CPUs. This means that the same code
can be run on both Nvidia GPUs and AMD GPUs, and on various CPUs.

Another advantage of OpenCL is that it is supported by a wide range
of manufacturers. OpenCL is most supported by AMD with its processors
as well as graphics cards, and by Intel. Nvidia also supports OpenCL, but
mainly focuses on its own CUDA.

The disadvantage of OpenCL is its lower performance compared to CUDA.
This is mainly due to the mentioned device and platform independence,
whereas CUDA is developed "tailored" to the target device (Nvidia GPUs)
[KDH10].

3.3 Rendering Frameworks

Rendering frameworks serve as an abstraction above low-level problems,
especially implementation problems of specific graphics APIs (context man-
agement, copying data to GPU, etc.), but also as an abstraction above the
algorithms used themselves (for example, finding intersections in the case
of raytracing, implementation of acceleration structure, etc.). With such a
framework, it is possible to write an efficient renderer using less code and
knowledge than is needed when using classic graphics APIs and when the
programmers have to implement algorithms by themselves.

18

.................................... 3.4. Virtual Reality

NVidia OptiX

Among the most notable rendering frameworks is NVidia OptiX[Par+10],
which is a rendering framework based on raytracing methods, implementing
its own rendering pipeline. It is mainly used for offline photo-realistic image
synthesis (for example, in Blender or Autodesk Maya), but thanks to the
implementation based on CUDA technology, it can also be used for real-time
rendering. OptiX provides a high-level API that abstracts the algorithms
needed for raytracing, yet allows the user to control computations within
individual rays. As in the case of OpenGL where shaders are used to con-
trol the computations on GPU, in the case of OptiX, the behavior can be
controlled using functions based on the principle of CUDA kernels. These
functions are called programs, they are written in CUDA C (just like CUDA
kernels), and define what happens when a ray misses an object in a scene,
when an intersection with a bounding box or primitive occurs, or they define
how primary rays are generated by a camera. OptiX supports raytracing not
only of triangles but also parametric curves (B-Splines, NURBS) and custom
primitives defined by AABBs (Axis Aligned Bounding Box). Architecture
and principles of the OptiX framework are also similar to already mentioned
hardware raytracing APIs (DirectX 12 DXR, OpenGL, Vulkan). Functional-
ity is based on Accelerationn structures, Shader binding table,Modules and
Pipeline.

OptiX is a software renderer (even though it uses GPU), which means that
it does not require specialized hardware for the computations, compared to
hardware-accelerated raytracing with DXR API (chap. 3.1) which requires
RTX capable GPUs. This also means that it can run on any newer type of
Nvidia GPU (down to GTX 430 3).

3.4 Virtual Reality

Virtual Reality (VR) is a technology used in many industries, such as medicine,
military, building design, entertainment, and more. It enables the user to
find himself in a simulated reality represented by an artificially generated
environment which can have real-world attributes. The environment should
adapt to user actions, such as movement, together with the possibility to
interact with it. Virtual reality is often perceived using stereoscopic images,
sometimes accompanied by stereoscopic sound and other perceptions like
vibrations of a hand-held controller.

Stereoscopic image can be perceived using various devices, one of them
being 3D glasses similar to the ones used in a cinema (shutter glasses), or
using a VR headset. VR headset can be represented by a cheap version based
on the usage of a regular smartphone as a source of the rendered image, but
also by a complex headset, sometimes called Head Mounted Display (HMD)
that displays stereoscopic images rendered by a computer on two separate

3https://developer.nvidia.com/cuda-gpus#compute

19

https://developer.nvidia.com/cuda-gpus#compute

3. Computer Graphics Technologies
displays. The main difference between the two types is mainly the image
quality and performance.

The disadvantage of virtual reality is the need for a powerful computer
(specifically when HMD is used) that can compute relatively high-resolution
images (at least 4K) at a reasonable frequency. That is why there has been
no greater interest in using VR headsets for a long time, and it is mainly a
matter of recent years with the advent of more powerful hardware.

Based on the assignment of this work, the use of VR headset XTAL 8K
from the company VRengineers4(figure 3.3) is planned from the beginning
and therefore the research of other devices and solutions does not make sense.

3.4.1 Headset XTAL 8K

The headset contains two LCD screens, one with a resolution of 4K (3840 x
2160 pixels) for each eye, as the manufacturer states. In addition, the headset
contains many sensors to detect movements of the head, eyes, and hands,
and after the installation of the monitoring beacons, the human movement
around the room. Virtual reality applications can be controlled by bare hands
tracked by headset cameras without the need of using hand-held controllers.

Figure 3.3: VR headset XTAL 8K

The headset can be integrated into game engines such as Unity or Unreal
engine, but it is also possible to write your own application that communicates
with the headset using the supplied C++ API. This allows sending the
computed images within the own application (for example, based on OpenGL
library) to individual framebuffers managed by the headset context (left eye
(+ detail), right eye (+ detail)). Moreover, it is possible to receive data from
available sensors, which allows to control the application behavior.

4https://vrgineers.com/xtal/

20

https://vrgineers.com/xtal/

.................................... 3.4. Virtual Reality

The API documentation is only available to users who are registered to
one of the purchased products (it is not possible to access the documentation
without purchasing a headset).

Only the data available within the GPU can be loaded into the headset by
passing a pointer to an appropriate framebuffer. This means that to upload
image data to a headset, it is necessary to use one of the supported graphics
APIs (OpenGL, DirectX, and Vulkan). In the case of an image computed on
a CPU, or using technologies such as CUDA or OpenCL, it is also necessary
to pass the image data using one of the mentioned graphics APIs. Uploading
the image data into the context of a given graphics API is needed before it is
sent to the headset.

21

22

Chapter 4
Basics of Global Illumination Methods

To understand how the BTF data used and other implemented functionality
work and what they represent, the basics of computer graphics must be
covered beforehand.

4.1 Radiometry

Methods of computer graphics solving how we see observed objects are
based on the Radiometry discipline which deals with a radiation distribution
in space, including a visible light. There also exists a discipline called
Photometry, which is similar to radiometry but focusing on how (visible)
light is perceived by human senses. Because photometry is more subjective
(each individual perceives colors differently), the usage of radiometry is more
appropriate, mainly because it is objectively measurable. Each physical
quantity of radiometry used in computer graphics also has its representative
in photometry, only with different units. Also, it is possible to convert between
both representations.

4.1.1 Solid Angle

Because lots of radiometric calculations in computer graphics are based on
(hemi-) sphere integration, the idea of solid angle is used to simplify the
integration concept. It represents a non-zero area on a unit sphere, which is
defined by some object projection onto it (see figure 4.1b). Similarly to the
2D case with projection onto a unit circle, where length of the arc defined
by the projection (s in the figure 4.1a) is same as the angle in radians [rad]
defining the projection, in 3D the projection onto a unit sphere is defined by
a solid angle in steradians [sr] 4.1b.

Using the solid angle we can define all points on the unit sphere representing
all possible directions centered at point p (sphere center). In computer
graphics, point p represents shaded point on the surface and points on the
sphere defined by solid angles represent all possible directions of incident
or reflected light, generally marked as ω⃗. Each direction vector ω⃗ can be
expressed using angles theta (θ, zenith) and phi (ϕ, azimuth) in terms of
spherical coordinates.

23

4. Basics of Global Illumination Methods..........................

(a) : Planar angle, ⟨0, 2π⟩ radians (b) : Solid angle, ⟨0, 4π⟩ steradians

Figure 4.1: Planar and solid angle [pbrt]

4.1.2 Radiance

Despite radiometry discipline contains many quantities like radiant energy
Q[J], radiant flux Φ[W, Js−1] or irradiance E[Wm−2], only the most impor-
tant one will be covered and that is a radiance L[Wsr−1m−2].

Radiance is defined as the radiant power (flux density) accepted or emitted
by a differential surface dA perpendicular to direction of light ω⃗ with respect
to unit solid angle dω⃗ (infinitesimally thin cone of incident directions) - figure
4.2. In case of defining radiance with respect to the orthogonal projection of a
unit surface dA onto the surface in which lies the currently shaded point x, an
additional cosθ term must be added, to compensate change of the projected
area based on the angle θ defined by the surface normal and the radiance
direction (also known as Lambert’s law). In the case of an orthogonally
projected unit surface, radiance is defined by a relation 4.1[Žár+05].

L(x, ω⃗) = d2Φ
cosθ dA dω⃗

(4.1)

In computer graphics, radiance represents the color of a light ray, often
encoded in RGB. Radiance is also the most useful radiometric quantity,
because all other quantities can be derived from it.

4.1.3 Bidirectional Reflectance Distribution Function

To mathematically represent the reflectivity properties of materials, the so-
called Bidirectional Reflectance Distribution Function (BRDF) is used. It
represents the ratio between the radiance Li incident to the examined point
x on a surface and the radiance Lo reflected from it. In other words, it is
the ratio between the radiance excitance and irradiance for a given shaded
point x. BRDF can be also viewed as a Probability Density Function (PDF)
which relates the direction of incoming light(ω⃗i) with the direction of its
reflection(ω⃗o) by probability, that a photon incoming from a direction ω⃗i will
bounce in a direction ω⃗o.

24

..................................... 4.1. Radiometry

Figure 4.2: Radiance accepted/emitted by unit surface dA in direction ω⃗ at
shaded point x with respect to angle θ and unit solid angle dω⃗ [RSO]

f(x, ω⃗o, ω⃗i) = dLo(xo, ω⃗o)
dLi(xi, ω⃗i)(ω⃗i · n⃗) dω⃗i

(4.2)

In general, BRDF must respect the energy conservation law, which means
that its integral over the unit hemisphere must be less than one:∫

Ω fr(x, ω⃗o, ω⃗i) cosΘidω⃗i < 1, ∀ω⃗i [Žár+05]. It respects the fact that no energy
can vanish or emerge, it can only change its type. In other words, the surface
cannot reflect more light than it receives. Possibility of the surface being also
a light source is in BRDF omitted and handled in the Rendering Equation
instead.

BRDF is strictly non-negative,
∫

Ω fr(x, ω⃗o, ω⃗i) ≥ 0, with possibility of its
values reaching infinity in some extreme cases.

BRDF also respects Helmholtz principle of reciprocity, which claims that
the BRDF values will remain the same when the directions of incident and
reflected light are interchanged - i.e. fr(x, ω⃗o, ω⃗i) = fr(x, ω⃗i, ω⃗o).

All mentioned properties of BRDF may be violated when an empiric lighting
model such as Phong is used. These models are suited for real-time rendering
mostly in computer games, where the physical nature of light is not that
important.

In the process of rendering, BRDF is evaluated only for a subset of directions.
Specifically, it is evaluated only for a concrete reflected direction (ω⃗o) given by
either a view direction (based on the used camera properties) or by a direction
of traced secondary reflections, and all possible directions of incoming light ω⃗i.
That is because we are not interested in reflections that cannot be registered
by a camera. However, the previously stated is only a mathematical definition.
The way how the directions are actually sampled during rendering is discussed
in the section 4.2.

4.1.4 Rendering Equation

To mathematically describe how much radiance (light) is emitted in the
examined direction ω⃗o for each surface point in the scene, a special integral
equation was introduced in 1986 by James Kajiya [Kaj86] . Using this
equation it is possible to evaluate total radiance in outgoing direction ω⃗o for

25

4. Basics of Global Illumination Methods..........................
every point x in the scene, which is also refered as a Local illumination model.
Whats more, this equation is meant to be applied recursively to model the
total radiance equilibrium throughout the scene. Hemisphere integral form of
the equation is defined by 4.3.

Lo(x, ω⃗o) = Le(x, ω⃗o) +
∫

Ω
f(x, ω⃗o, ω⃗i) Li(x, ω⃗i) cosθ dω⃗i (4.3)

Outgoing radiance at a point x is given by sum of its emissive component
Le (in case the point is part of a light source) and total reflected radiance
given by hemisphere integral of all incoming radiance Li multiplied by BRDF
of the given material. Similarly as BRDF, the rendering equation is based on
the law of energy conservation.

4.1.5 Bidirectional Texture Function

In the case of modeling the reflectivity of non-homogeneous materials, the
usage of BRDF is not sufficient, because it describes reflections based only on
the directions of incident and reflected light (the same BRDF is applied for all
points on the surface). Because of that, BRDF models material appearance
only on micro-scale, which omits the geometrical diversity of the surface
(bumps, ridges, holes, patterns, etc.).

To be able to model spatially varying reflectivity of the surface, additional
parametrization must be added, for example texturing coordinates U,V. This
properties are satisfied by Bidirectional Texture Function (BTF). In general,
this function mathematically describes the reflectivity properties of a material
based not only on the incident and reflected light directions, but also on the
two-dimensional surface parameterization (position on a surface, given by
texturing coordinates). Because of that, BTF models reflectivity on mili-scale,
supplementing well-known bump-maps, normal-maps or standard textures.
Coarser details are already represented by geometry itself. BTF can be also
viewed as a texture, where every texel contains different BRDF.

As it was already stated for BRDF, we are interested only in the radiance
reflected towards the camera, therefore the reflected ray ω⃗o is also marked as a
camera view direction ω⃗v. However, material reflectivity must be available for
all possible combinations of reflected and incoming light directions, because
the camera position and direction are not static in general (camera can move
throughout the scene).

Similarly to BRDF, BTF data are tabulated, generally by six-dimensional
table where every dimension represents one parameter of BTF. In reality,
BTF data are sampled using gonioreflectometer, which produces images
(parametrized by texture coordinates) of the material for all desired view and
light directions. Because of that, BTF is an image-based method of material
representation supplementing already mentioned bump mapping, normal
mapping, or texturing, but also, for example, self-occlusion or self-shadowing.

The main downside of this method is its high memory complexity, generally
requiring a few gigabytes of images per one material. To make it possible
to use BTF in rendering (in particular for real-time rendering), it is needed

26

................................ 4.2. Monte Carlo Sampling

to use some compression algorithm, which can significantly reduce memory
requirements.

4.2 Monte Carlo Sampling

In general, image synthesis is based on the recursive solving of the rendering
equation(4.3) for every visible point in the scene, which represents the total
emitted radiance from a given point on the surface. The radiance is composed
of an emissive Le component and a reflected Lo component (as stated in
chapter 4.1.4). As we can see, the reflected component is given by an integral
over a unit hemisphere Ω which represents all possible directions of the
incoming radiance above the illuminated point. To compute an image closest
to the ground truth, the whole integral should be evaluated based on some
differential solid angle dω.

However, that is computationally impossible due the large amount of
calculations needed to solve even an integral for one illuminated point, not to
mention the whole scene and the recursive solving of indirect lighting.

Because of that, integral approximations are used, one of them being
Monte Carlo (MC) integrator. Monte Carlo numerical integration is based
on evaluating the function integral based on random samples of the given
function. The more random samples are drawn, the closer the estimation
is to the real value of the integral - this is also called convergence. One of
the well-known examples of using MC methods is approximation of π1 by
drawing random samples (with uniform distribution) from a square which
has an inscribed circle in it (fig. 4.3).

In computer graphics, Monte Carlo methods are used mainly for direct
lighting (light source sampling) and indirect lighting (BRDF sampling). The
main problem of the usage of MC in image synthesis is the high variance
of integral estimations, when drawing samples from a uniform distribution.
The fewer samples are drawn (e.g., per pixel), the more noisy is the rendered
image. Moreover, this negative effect is the more noticeable, the more diverse
is the area around the shaded point (in terms of incoming radiance).

4.2.1 Importance Sampling

Because of the mentioned slower convergence of Monte Carlo integration
when drawing random samples with a uniform distribution, the so-called
Importance Sampling method can be used instead. It is based on the fact
that when drawing samples with higher values, the faster the integration will
converge to the value of the sampled function integral.

This means that when we want to approximate the illumination of a given
point by its environment, it is a good strategy to sample areas with high
brightness instead of sampling all directions with a uniform distribution,
which also includes dark spots that will hardly contribute to the final reflected

1https://www.youtube.com/watch?v=VJTFfIqO4TU&ab_channel=VincentKnight

27

https://www.youtube.com/watch?v=VJTFfIqO4TU&ab_channel=VincentKnight

4. Basics of Global Illumination Methods..........................

Figure 4.3: Monte Carlo π estimation simulation

radiance. An example of the difference between uniform and importance
sampling of an environment map used for scene illumination can be seen in
the figure 4.4

(a) : Uniform Monte-Carlo sampling" (b) : Importance sampling

Figure 4.4: Monte Carlo sampling with uniform distribution vs. Importance
sampling of an environment map - 16 samples per pixel 2.

4.3 Image Based Lighting

One of the main keys to photorealistic rendering is the choice of the environ-
ment and lighting used. Setting up an environment (chapter 4.3.1) enclosing
the rendered objects gives the impression that the objects are not simply
floating in an empty space. With an appropriate lighting that respects the

2https://graphics.stanford.edu/wikis/cs348b-06/Assignment4

28

https://graphics.stanford.edu/wikis/cs348b-06/Assignment4

.................................4.3. Image Based Lighting

environment, the impression can even be better. However, manually setting
up light sources that correspond to the environment is not that easy, and
the illusion can be fairly easily noticed. Moreover, after every change of the
environment, the light sources must be reconfigured.

One of the methods to simulate lighting based on the environment is the
so-called Image Based Lighting (IBL), which can illuminate a given object
based on the intensities present in the used image. These images are mostly
used also as environment maps (next chapter 4.3.1) and IBL is a natural way
to support the final impression. In essence, it projects the light from the
environment map onto the object, in the general case acting as one area light
source around the whole scene (with various local intensities given by the
image).

(a) : Environment map raw013.hdr "Park" (b) : Environment map raw011.hdr "City"

Figure 4.5: Examples of Image-Based Lighting using an environment map.

Image based lighting is also useful for examination of the behavior of
materials under various lighting conditions. Lighting representing the interior
of a cathedral, the interior of a car, sky, etc. can be easily setup. The only
requirement needed is an appropriate environment map.

4.3.1 Environment Map

Environment Map (EM) can be viewed as a special type of texture, that is
mapped all around the scene, creating a background to improve the overall
impression. For example, in computer games are environment maps used for
representing the sky, visually filling the empty space where no geometry is
present. Environment maps are rendered at infinity because their parameteri-
zation is based only on the camera view direction vector, not on the camera
position. This means that they are static and they interact only with the
camera rotation. This leads to the fact that the usage of EMs can be limited
to only represent data, which are visually very far away and do not change
based on the camera position - as it was already said, forming a background.

29

4. Basics of Global Illumination Methods..........................
EMs are also used in several graphics programs where the mentioned

problem does not matter. For example, when rendering models with materials
under various light conditions, IBL using an environment map can simulate
real-world lighting conditions of the environment, instead of using some
hardcoded light sources. In this case, indoor environments maps are also
used.

Environment maps are available in three forms, each with a different
representation. All of them are parameterized by a normalized direction
vector (for example, a view vector).

The first form is called Cubemap and is represented by six separate textures.
These textures are mapped onto a virtual box that encapsulates the whole
scene at infinity. This approach is mainly used with rasterization APIs like
OpenGL, where special samplers were implemented (e.g. samplerCube). The
direction vector used for sampling is used to pick the correct cube face and
to compute the correct UV (texturing) coordinates.

Another form is represented by a single image which parameterization is
based on spherical coordinates. Every direction vector can be expressed using
two angles, θ and ϕ, which can be used as UV coordinates of the supplied
image (when normalized by π). These images must be captured in high
quality (at least in 4K), mainly because of the fact that the data are not
represented in the same detail through the whole image. For example, the
data at the equator are much less detailed compared to the data on poles
(where the pole itself is represented by a whole 1 pixel tall slice of the texture).
That is caused by non-linear deformation of the image data needed by θ, ϕ
parameterization (the deformation can be observed in the figure 7.2).

The last type of parameterization is called Angular map which in a simplified
form can be viewed as a reflection of an environment in the mirror ball. In
this case, UV coordinates are transformed to a unitary disk.

4.3.2 Environment Map Importance Sampling

The main problem of standard IBL is the fact that for the most accurate
results, the environment map should be sampled for every direction visible
from the computed point on the surface. In other words, integral of the whole
hemisphere above the illuminated point should be evaluated. As already
stated, that is computationally very expensive.

To save rendering time, methods of importance sampling are used (instead
of Monte-Carlo sampling), to mainly select environment map texels with
high importance (e.g., with high radiance values). To effectively distinguish
between texels with light colors and texels representing light sources (direct
or indirect light), high dynamic range (HDR) images are used.

One of the possible approaches to effectively sample an environment map
was introduced by Pharr et al. in 2004 [PJH17]. The main idea is to generate
random variables (u, v) representing image coordinates that favor selecting
texels with high brightness over the dark ones.

30

.................................4.3. Image Based Lighting

It is based on transforming 2D joint distribution function sampling into
two 1D sampling problems. The input environment map HDR image is
first transformed into a piecewise-constant luminance function p(u, v) (PCF)
representing the original per-pixel spectral radiance f(u, v). The PCF is then
decomposed into separate 1D distribution functions p(v|u), each of them
representing the radiance distribution over one column (or row) of the image.
For each of the 1D functions, CDF (Cumulative Distribution Function) is
computed together with its integral. These computed integrals are then used
to create a 1D marginal density function pu(u) over all image columns u, for
which the CDF is also computed. Both the image PCF and marginal density
function pu(u) are depicted in the figure 4.6.

Figure 4.6: Piecewise-constant luminance function (top) and its marginal density
function pv(u)(bottom) visualization for St. Peter’s cathedral environment map
- [PJH17]

Sampling of the environment map is based on transforming uniform ran-
dom variables ξ1, ξ2 over [0, 1]2 using the appropriate CDFs. First, ξ1 is
used to sample CDF value of pu(u) that results in a new variable u. The
variable is then used for selection of the concrete column p(v|u) which CDF
is subsequently sampled using ξ2, producing a new variable v.

That said, sampling of the two CDFs produces new random variables (u, v)
representing image coordinates that favor areas of the environment map with
high brightness. An additional probability of selecting the sample must be
computed to adequately scale the radiance sampled from the environment
map under u, v.

Given the algorithm mentioned, values (u, v) in range of [0, 1]2 are produced,
which can be directly used as texture coordinates to retrieve the appropriate
radiance values from the environment map image. Together with (u, v) values
the direction vector of environment map sample is produced, which is needed
for following shading purposes (e.g. direction to the sampled incident light
Li).

31

32

Chapter 5
Bidirectional Texture Function Compression

As already mentioned, raw BTF data are not suitable for rendering (not to
mention real-time rendering) due to their enormous size, meaning several
gigabytes per material. Instead, data compression must be performed to
lower the memory requirements before the data is used for rendering.

The main requirements for compression are to maintain visual quality
along with good compression ratios. An additional requirement can represent
the time complexity needed for BTF data decompression and reconstruction
during rendering, which is crucial for real-time rendering. The importance of
the individual requirements mentioned depends on the particular use case.
Photorealistic offline rendering can, for example, favor visual accuracy over
the time needed for BTF decompression.

In terms of BTF data compression, various algorithms are available that
can be split into three categories. The first category is based on linear basis
decomposition using SVD (singular value decomposition of a matrix) or vector
quantization, enabling to separate the compression per each BTF parameter.

The second category uses analytical reflection models to represent the BTF
data, for example, by using per-pixel Lafortune reflectance lobes parameterized
by both the view and illumination directions [HFM10].

The last category of BTF compression methods is based on probabilistic
BTF modeling using Markov random fields for texture synthesis of BTF subset
images to approximate the rough structure of materials. These methods
achieve high compression ratios for arbitrary BTF resolution, however the
visual quality of some highly non-Lambertian materials is compromised (e.g.
metals).

A decent comparison of BTF data compression methods available in 2009
is part of a survey paper [FH09].

33

5. Bidirectional Texture Function Compression
5.1 BTFbase

For the purposes of this work, which result should be a real-time VR renderer,
the BTFbase solution presented by Havran et al. in 2010 [HFM10] was selected
as the one with very good compression ratios in the range of 1 : 233 − 1 :
2040 while maintaining relatively low computational requirements on BTF
reconstruction during rendering. In addition, the visual quality of materials
is negligibly affected by the compression.

The only disadvantage of the solution is the relatively high compression
time for each material, however, the compression process is handled only once
per material lifetime and is not the subject of the application implemented,
and therefore does not affect the rendering itself.

5.1.1 BTF Compression Using MLVQ

BTF data compression is based on Multi-Level Vector Quantization (MLVQ)
[HFM10]. It represents a way how several similar values (vectors) can be
expressed by one common vector and the corresponding indices and weights
in the lookup table. In the case of compression of BTF data, the insertion of a
new record (its encoding) always takes place on the basis of parameterization
by individual angles of view directions ω⃗o (θo, ϕo) and incident light directions
ω⃗i (α, β). Each record in the table is represented by its row-index and the
value of the corresponding parameter (forming "2D lookup coordinates").

Insertion is performed from the lowest level (table P1, given by figure
5.1). For the fixed position [x, y] in the texture and fixed angles θo, ϕo

and α a vector of colors is created which components are parametrized by
angle β. In other words, for each sampled angle β representing horizontal
angle of illumination direction ω⃗i, representative color is stored into currently
constructed vector on a specific position given by the angle β.

The resulting vector is normalized and compared with the records already
stored in the table P1. If a similar vector already exists in P1 (based on
similarity metrics), its index and scale are returned, which can be used to
obtain the original vector in the process of compressed data reconstruction.
Otherwise, when no similar vector is found, the created vector is inserted into
the table (P1) as a new record and its index and scale are returned.

In both cases, the returned index and scale data are meant to be stored in
the table one level above, in this case table P2, where the parameterization
according to the angle α takes place. These returned values are gradually
forming a vector to be stored in table P2 the same way as the data are stored
in P1.

The same process is also repeated for tables P3 and P4, while indices and
scales representing records in P4 are stored in the final table P6 parameterized
by texturing coordinates. The whole process of multi-level vector quantization
is depicted in figure 5.1.

34

...................................... 5.1. BTFbase

Figure 5.1: BTFbase data compression diagram [HFM10]

The individual cells (records) of tables P6, P4, P3 and P2 contain an index
and a scale represented by two-colored squares (gray-white) in the figure 5.1.
When two vectors are compared, both of them are unfolded down to the
records of table P1 by substituting the stored indices by the corresponding
vectors in a targeted (lower level) table. This idea for vectors in P4 is
illustrated by relation 5.1.

v⃗P4 = [1v⃗P3 ,2 v⃗P3 , ...,n v⃗P3]
= [1[1v⃗P2 ,2 v⃗P2 , ...,n v⃗P2],2 [1v⃗P2 ,2 v⃗P2 , ...,n v⃗P2], ...,n [1v⃗P2 ,2 v⃗P2 , ...,n v⃗P2]]

(5.1)
Based on the previously stated, it means that tables P6, P4, P3 and P2

contain only indices and scales used purely for chained indexing of the data
and the data itself are stored only in tables P1 and I1 (C).

To even more improve the space efficiency (compression ratio), the color
compression is separated into the luminance component Y represented by the
table P1 and into chrominance UV components represented by tables I1 and
C. This makes it possible to express the same color with differing lightness
using a single chrominance pair of U,V values and several luminance values.
Because of that, an additional table M is used to link components from both
tables P2 and I2 to represent the encoded color. Individual angles used for
parameterization are visualized at the bottom of the already mentioned figure
5.1.

The algorithm also distinguishes between Low Dynamic Range (LDR) and
High Dynamic Range (HDR) materials. In the case of LDR, YCbCr color
model is used, whereas LogLUV color model is used for HDR materials.

35

5. Bidirectional Texture Function Compression
5.1.2 BTF Decompression and Rendering

Reading and reconstruction of BTF data is based on chained indexing of
individual tables and subsequent interpolation of the read data. Reading
takes place from the top level table P6, representing the six-dimensional BTF
function (dependent on texturing coordinates, direction of view, and direction
of light incidence). Table P6 is parameterized by UV texturing coordinates
[x, y] and contains the indices of the records in table P4 along with the scales.
The scales allow the reconstruction of the original values from the read values
representing the normalized data produced by the vector quantization process.
In each level, two adjacent values are read, between which it is interpolated.
Reading one texture color (BRDF value) requires a reading of 63 values
within the tables (1x P6, 2x P4, 4x P3, 8x M (merging table of tables P2 and
I2), 8x P2, 16x P1, 8x I2, 16x I1) (not counting the scaling factors).

Because the reconstruction of colors is based on a linear interpolation
of adjacent values, appropriate view and light direction dependent scales
and offsets are also stored. Using this data it is possible to select suitable
candidates (by means of texture offsets) to perform linear interpolation using
the corresponding weight α in a way given by c = α · c1 + (1 − α) · c2.

36

Chapter 6
Analysis and Design of the Application

The chapter is devoted to a brief discussion of the requirements for the appli-
cation. Next, the design of particular parts of the application is introduced
together with the approaches and methods needed.

6.1 Functional Requirements

. FR1: The application provides three distinct renderers (GLSL, CUDA,
and OpenCL), it is possible to switch between them in run-time.. FR2: The best-performing renderer can compute two 4K images (one
for each eye), which are subsequently displayed using the XTAL 8K VR
headset, all in 60+ FPS.. FR3: The application can be controlled using a VR/console controller,
a generic API is ready for future addition of a new controller.. FR4: It is possible to switch between different BTF materials and
rendered 3D objects, also a texture resolution can be changed in run-
time.. FR5: Rotation of the rendered object, camera (+zoom) and environment
map is possible in run-time.. FR6: Image Based Lighting approximation by hundreds of virtual direc-
tional lights is available. The approximation is handled on application
startup, the sampled virtual directional lights are evaluated progres-
sively during the rendering. Lighting using a single point light source is
available when IBL is disabled.

37

6. Analysis and Design of the Application..........................
6.2 Main Design Ideas

Because one of the main goals of the work is to provide the rendered image
via VR headset (specifically XTAL 8K), the appropriate API of the VR
headset must be integrated into the application. In the case of integrating
the API into an already (partly) implemented renderer, it could cause a
problem representing the need to reimplement various parts of the application
to fit the needs and constraints given by the API. Therefore, a decision was
made to base the implementation on the OpenGL demo officially provided by
VRengineers company. In this way, it was guaranteed that the API will work
already from the beginning of the development.

In terms of the need to provide a comparison between different GPU
technologies (namely, GLSL, CUDA, and OpenCL), the application must
be designed in the way that it will be possible to switch between different
renderers without the need to re-launch the application (all renderers will be
accessible at the same time). In the optimal case, the output of all renderers
should be the same image. That means that the majority of parameters should
be shared between all renders (e.g., transformation of cameras, transformation
of 3D objects, currently used materials, etc.).

Optimally, most of the GPU data should be shared to avoid wasting
resources (mainly GPU memory). For example, textures should be loaded to
the GPU only once and then shared among the renderers.

Finally, an appropriate control system should be designed to provide a
decent amount of control over the application while using the headset, which
automatically implies that the usage of a keyboard and mouse is unacceptable.
Instead, the usage of some controller should be introduced together with
meaningful functionality mapping to the particular controls. Additionally, an
on-screen GUI (Graphical User Interface) could be used to extend the control
over more parameters of the application.

6.3 Renderer

As it was already mentioned, the algorithm implemented will use several
GPU technologies. The most intuitive one is GLSL, which stands for the
shading language of the OpenGL graphics API. In the case of OpenGL
renderer, all work can be performed in a single pass, including the BTF data
reconstruction.

For CUDA and OpenCL renderers, it is not that straightforward. The main
problem is that it is not possible to perform rasterization using these technolo-
gies without implementing a custom rasterizer in the given technology (which
does not make sense). Instead, the advantages of OpenGL (alternatively
DirectX or Vulkan) will be used to perform rasterization in the preferably
most efficient manner, and its results will be used for color computing using
CUDA and OpenCL. This implies that the rendering process must be split
into two passes.

38

...................................... 6.3. Renderer

The first pass handled by OpenGL processes the geometry and produces
the so-called G-buffer containing per-fragment attributes (normals, tex. co-
ordinates, tangents, etc. - see Fig. 3.1). The second pass implemented in
CUDA and OpenCL will perform shading using the data from the first pass,
including the BTF data reconstruction. This method is known as deferred
rendering, which is discussed in more detail in the chapter 6.3.3.

6.3.1 Offscreen Rendering

The rendering process can be used not only to compute the final images
directly displayed on a screen but also to compute a data used in subsequent
rendering phases. This method, known as Offscreen Rendering, is a key
feature required by already mentioned deferred rendering, but also can be
utilized for generating various types of textures, post-processing, etc.

In the case of OpenGL and standard single-pass rendering, the default
framebuffer is bound to accumulate the computed image, which is displayed
directly on the screen. Binding of the default frame buffer (in OpenGL having
index 0) is not necessary until some other frame buffer is bound and used.
The use of a framebuffer other than the default one is already considered as
off-screen rendering because the data are not directly sent to the display and
typically are further processed.

Figure 6.1: Framebuffer object layout in OpenGL 4.5 [FA18]

The rendered data can be written to a single frame buffer at a time.
However, each framebuffer can have multiple defined layers, also called at-
tachments or images [khrb]. Each of these images can be accessed in the
fragment shader and used as an output channel for a given type of data.
Every custom-defined framebuffer can have an optional count of attachments
(the upper bound is platform and device dependent) used for storing color
information (GL_COLOR_ATTACHMENT), an optional attachment for
storing depth information (GL_DEPTH_ATTACHMENT), and one optional
attachment for storing stencil information (GL_STENCIL_ATTACHMENT)
- see figure 6.1. The method of using multiple output color textures is known
as Multiple Render Targets (MRT) described in the following chapter.

Color attachments can be represented by textures, both 2D and 1D, and
by renderbuffers. Renderbuffer can be defined as a special type of texture
without any texturing features such as mip-mapping and filtering, which can
save some resources when the mentioned features are not needed.

39

6. Analysis and Design of the Application..........................
6.3.2 Multiple Render Targets

When there is a need to output more than one color buffer during a single
render call, the Multiple Render Targets (MRT) method is used. An appro-
priate off-screen framebuffer must be set up and the corresponding output
layout must be defined in the fragment shader. Client-side indices of output
textures and renderbuffers are defined by GL_COLOR_ATTACHMENT{X}
enumerators (maximum value of X is system and hardware dependent and
can be querried out), while GLSL output indices are set by layout qualifiers.
MRT method is mainly used for deferred rendering.

6.3.3 Deferred Rendering

Deferred rendering is a multi-pass rendering method that aims to reduce frag-
ment shader (FS) calls. In conventional forward rendering, many fragments
(~candidates for the final pixels) are produced, and in many cases there is a
chance of more fragments representing the same pixel. Because the fragment
shader is invoked for every fragment, it also means that there are many FS
calls that are wasted. Based on the fact that the majority of fragment shaders
deal with a lot of computations, this can be a problem.

Figure 6.2: Architecture of deferred rendering in general [Tha11]

Deferred rendering solves this problem by separating the rasterization with
depth testing from the expensive color computation into two passes. In the
first pass, the scene is rendered into auxiliary G-buffer textures based on
the off-screen rendering method (chap. 6.3.1), saving the necessary fragment
attributes needed for calculations in the second pass. This process is handled
by a standard vertex shader, but a very simple fragment shader, which in
many cases only encodes the mentioned fragment attributes into textures. At
this stage, a depth test is also performed to discard unneeded fragments. It
still means that there will be many wasted FS calls, but the complexity of
the first-pass FS compared to the second-pass FS is completely different.

In the second pass, there will be only as many FS calls as the resolution
of the display has pixels, meaning that for each pixel only one FS will be
executed. Instead of reading the necessary attributes from shader input
variables (e.g., in vec3 v_Normal) as would be done in forward rendering,
the attributes are read from the mentioned auxiliary G-buffer textures, filled

40

.................................... 6.4. BTF Materials

in the first pass, instead. The following operations are the same as in the
original forward rendering pipeline.

Deferred rendering is also a method on how to use the rasterization library
to produce the needed fragments, which can be subsequently used by different
technologies, for example, by the mentioned CUDA and OpenCL, to compute
the final image.

6.4 BTF Materials

Multiple loaded materials are also required to provide the user with the ability
to observe 3D objects under different conditions, one of them representing
different properties of the materials used. Each material is represented by
indices needed for the chained BTF reconstruction, as mentioned in the
chapter 5.1.2, supplemented by scales and colors data. These compressed
BTF data can be loaded and converted to textures using the BTFtools module
accessible in the original BTFbase implementation. It is the most effective
way to use BTF data in GLSL. These textures can also be shared with the
CUDA and OpenCL renderers without the need to load them separately (and
probably using a different type of memory than textures).

Furthermore, view direction and light direction dependent data are needed
for BTF reconstruction. These data are already encoded in textures supplied
with the BTFbase implementation, which are meant to be used as faces of a
cubemap texture. These data define how to interpolate the data during BTF
reconstruction (BTF reconstruction is based on chained linear interpolation).
Fortunately, these data are the same for all materials and must be loaded
only once.

All materials will be loaded on the application startup, and switching
between them will be handled only by re-mapping appropriate index and
scale textures. This approach is more memory intensive, however, loading the
materials one by one while the application is running could cause performance
problems and stutters.

6.5 Environment Map Approximation

Because the per-frame importance sampling of an environment map as de-
scribed in 4.3.2 is expected to be computationally intensive and insufficient
for real-time rendering, an approximation alternative is proposed.

Instead of generating many random samples every frame, a fixed count of
environment map samples will be computed in the preprocess phase during
the application initialization, approximating the environment map by a set
of virtual directional lights used in the same way for every computed frame.

41

6. Analysis and Design of the Application..........................
6.6 Progressive Rendering

In the case of lighting (IBL, chap. 4.3.2) based on the mentioned approxi-
mation of an environment map by many directional lights, as given by the
requirements, it is not possible to evaluate the fragment shader (mainly BTF
reconstruction) for all the lights in a single frame. From personal experience,
it is possible to evaluate 3 to 10 lights per frame1 while maintaining stable at
least 60 Frames Per Second (FPS).

To make it possible to compute the final color using all available directional
lights, the so-called progressive rendering approach must be exploited. It is
based on splitting the calculations into many frames. It is known mostly
from 3D software, where photorealistic renderers are implemented. While the
image is being rendered, partial results are gradually displayed, replacing the
previous ones. As a result, finer images with less noise are replacing the old
noisy ones until the end, when the final rendered image is available.

This approach can also be used in limited scenarios for real-time rendering,
in case the scene is static. Then the progressive rendering process will occur
only after some interaction is performed (camera is moved, object is moved,
etc.). The main advantage of this approach is that the application is still
interactive having stable FPS and the image is fully computed under one
second after the last interaction was made (in case of having 60 FPS, 5 lights
per frame, and under 300 directional lights in total).

Implementation of this approach in the case of the renderer using the raster-
ization pipeline should be based on composing two framebuffers, representing
the result of the previous frame and the result of the current frame. The
current frame represents the calculations performed by the fragment shader
for a given subset of lights (e.g. 5), which is then composed with the previous
frame to produce a new displayed frame. The frame displayed is also saved
for the next iteration. Adequate normalization must be performed to scale
the color in the desired color range.

6.7 Rendering for Virtual Reality

One of the limitations of the XTAL headset API is the need to pass image
data using one of the available graphics APIs (OpenGL, DirectX, or Vulkan).
This means that it is currently not possible to load data directly from the
CPU (such as an array) or from the CUDA context into the headset. However,
since OpenGL will be used anyway, at least for rasterization for each of the
renderers, it is not perceived as a problem.

Workflow of rendering into a headset will consist of acquiring camera
transformation matrices followed by rendering the scene for each eye separately.
Rendered data will be sent to the headset as a pointer to a corresponding

1The performance is heavily dependent on the radiance distribution in the environment
map used, on the average number of light sources evaluated for each pixel, and on the BTF
material used.

42

.................................... 6.8. User Interface

OpenGL texture, which is required by the XTAL API. All mentioned steps
will be wrapped by the render loop responsible for the per-frame rendering
operations.

6.8 User Interface

The application user interface must be designed so that it provides the user
with an intuitive and robust control over the application while using the
XTAL 8K VR headset.

The main problem of using a VR headset is the fact that the user cannot
see the controller used. This leads to the need for a simple and memorable
control system that can be used without the need to see the interaction
performed on the control device. That can be achieved by using some of
the available console or VR controllers with an intuitive mapping to the
application attributes and functions.

In addition, the control system should be implemented in such a way that
it will enable another type of controller to be integrated in the future without
the need to know the implementation details of the application itself. By
this, the application will not be bound to a specific controller that may be
deprecated and not available in a few years.

Due to the high number of variable parameters of the application, additional
Graphical User Interface (GUI) should be implemented to simplify the control
over the application.

6.8.1 Controls

The controller itself should provide only the minimum of buttons needed
mainly for interactions that would not make sense in terms of a GUI. These
interactions mainly represent all kinds of rotations, including the camera,
model, and environment. The rest of the interactions should be implemented
in a GUI, whereas some of the important ones could also be mapped to
controller buttons, serving as shortcuts.

Among the controllers available for the application implemented can be,
for example, considered the "oldschool" Wiimote2 controller from Nintendo,
and a HTC Vive3 controller corresponding to the HTC Vive VR headeset.
The main difference between the controllers lies in the targeted use-case.

In the case of Wiimote, the controller is dedicated to interact with a game
console (mainly the Nintendo one), which is connected to a television or PC
monitor, therefore the controller is meant to be still visible.

However, in the case of the HTC Vive, the controller is designed to be
primarily used in virtual reality, where in principle the controller cannot be
seen due to the use of a VR headset.

2https://commons.wikimedia.org/wiki/File:Wiimote.png
3https://www.vive.com/eu/accessory/controller2018/

43

https://commons.wikimedia.org/wiki/File:Wiimote.png
https://www.vive.com/eu/accessory/controller2018/

6. Analysis and Design of the Application..........................

(a) : Wiimote controller1 (b) : HTC Vive controller2

Figure 6.3: Discussed controllers comparison.

An additional desktop control system should also be implemented for cases
when VR is not used. This involves substituting the camera motion performed
by a head, when a headset is used, by a mouse. Other interactions can be
mapped to a keyboard, including free camera motion throughout the scene
and changing application parameters.

6.8.2 GUI

Graphical User Interface should provide two types of functionality. Firstly,
the mentioned menu can be displayed and used to change the parameters of
the application. The second, also a very important functionality, provides the
user with information about the interaction performed with the controller,
eventually providing some notifications from the application. Without the
provided information, controller interactions could be confusing for the user.

44

Chapter 7
Implementation

The implementation was based on the knowledge gained from previous work
done during the SVP subject, where various demo applications were im-
plemented to solve possible problems beforehand. For example, a software
renderer (written in pure C++) based on the original BTFbase implemen-
tation written in old OpenGL and GLSL, was implemented. In addition, a
demo application was implemented that combined the CUDA framework with
the VRG API to examine possible approaches of displaying a rendered images
using CUDA in a VR headset. The last demo application implemented a
combined software rasterizer with a kernel ("fragment shader") written in
CUDA that handled the BTF chained indexing and color reconstruction.
Three most important demo applications were also used for performance
comparisons as a part of the performance testing (chap 8.2.6).

7.1 Structure of the Application

Eventhough class names of all three renderers evoke the fact that they
implement the requisites of a standard renderer, in reality, some of the
functionality is handled from the outer scope.

Initialization, render loop, and communication with the VR headset are
handled by the core class App of the VRG framework used, defined in a
gldemo::core namespace. The majority of rendering is implemented by the
class BTFRenderer which combines the common functionality of all three
renderers and acts as a core class of the application.

CUDA and OpenCL specific implementation is part of a separate class
CUDA_Renderer, OCL_Renderer respectively. CUDA shading kernel is de-
fined in a separate file FragmentShader.cu as a function __global__ void
FragmentShader defined in a Kernels namespace. OpenCL shading kernel
is defined in a file clFragmentShader.cl as a function __kernel void main.

45

7. Implementation....................................
7.2 OpenGL Renderer

OpenGL renderer was implemented as the first one, so that it could serve as
a reference solution during the implementation of the CUDA and OpenCL
renderers. Most of the functionality was derived from the original GLSL 1.0
implementation accessible on the BTFbase webpage1. The original implemen-
tation was also using an experimental extension that allows the usage of a
programmable shader pipeline, despite the usage of OpenGL 1.0 which, in
general, does not support shaders. Because of that, most of the work was
focused on reimplementing the BTF renderer using a modern OpenGL 4.5.

Because a decent graphics framework (further denoted as a VRG frame-
work) was also bundled with the VRengineers OpenGL demo application,
the decision was made to use the demo application as a foundation of the
subsequent implementation. This way was also guaranteed that the VR API
will be functional from the beginning of the implementation.

The mentioned reimplementation consisted mainly of replacing the old
OpenGL 1.0 immediate mode rendering pipeline with a modern OpenGL
4.5 rendering pipeline, which in the end led to writing a new renderer from
scratch using some functionality from the mentioned VRG framework. New
methods had to be implemented, for example, to allow the initialization of
Vertex arrays (VAO) together with Vertex (VBO) and Index buffers (EBO),
which are required by modern OpenGL. In addition, vertex attributes and
shader uniform variables handling were revised.

7.2.1 GLSL

The least modified part of the original code is the GLSL fragment shader which
handles the BTF data reconstruction and rendering. Only a few modifications
needed for the OpenGL version conversion were made, mainly consisting of
designing a new attribute and uniform variables layout. Other changes would
involve changing the BTF reconstruction algorithm itself, which did not make
sense.

Some minor changes were also made to enable progressive rendering, which
is described in the chapter 7.7, and also to enable shading using multiple
light sources, which in this case are used to approximate the method of image
based lighting (chap: 4.3).

7.3 Deferred Rendering

To split the rendering between two distinct technologies, a deferred rendering
method was introduced in chapter 6.3.3. The first pass is handled by OpenGL
using the same vertex shader used also by the full OpenGL renderer described
in the previous chapter. This ensures that all scene transformations will be
the same among all renderers.

1https://dcgi.fel.cvut.cz/home/havravla/btfbase/

46

https://dcgi.fel.cvut.cz/home/havravla/btfbase/

.................................. 7.3. Deferred Rendering

(a) : Normal + UV.s (b) : UV.t + Tangent (c) : Bitangent + Light.x

(d) : Light.yz + Camera.xy (e) : Camera.z (f) : Result after shading

Figure 7.1: G-buffer renderbuffers rendered by OpenGL and used in CUDA and
OpenCL renderers by means of deferred shading (a-e) + the result of rendering
(f)

The following fragment shader encodes the shading attributes to the G-
buffer based on the method of MRT (Multiple Render Targets) which results
are depicted in the figure 7.1. G-buffer was designed as an off-screen frame-
buffer consisting of five color attachments, each containing different data
(table 7.1). Color attachments were implemented using renderbuffers in-
stead of standard textures, because there was no need for data filtering or
mip-mapping. G-buffer renderbuffers were also mapped into the CUDA and
OpenCL contexts to enable their usage in the following shading process, which
is similar to the GLSL shader used in the case of OpenGL renderer.

Before the data are stored in the color channels of the corresponding
renderbuffer, an appropriate values rescaling must be performed, due to
the fact that colors are defined in the range of ⟨0, 1⟩ (alternatively ⟨0, 255⟩).
Because all the stored data are normalized vectors, the easier the operation
is.

47

7. Implementation....................................
Texture Format Stored data
NUV RGBA32F N.x, N.y, N.z, UV.s
UVT RGBA32F UV.t, T.x, T.y, T.z
BL RGBA32F B.x, B.y, B.z, L.x
LC RGBA32F L.y, L.z, C.x, C.y
C R32F C.z

Table 7.1: Renderbuffer layout of G-buffer used between 1st and 2nd rendering
pass of CUDA and OpenCL renderers. Visualization in figure

7.4 CUDA Renderer

In contrast to OpenGL, where only pixels representing the shaded object are
processed by the fragment shader, in the case of CUDA (and OpenCL), kernels
are launched for all pixels of the screen according to the MRT. Knowing
that, each frame can be processed by a fixed number of launched kernels.
Grid resolution is precomputed during the initialization in such a way that
every block has 642 threads to satisfy the size of a warp in which threads are
executed by CUDA. The number of blocks in a given dimension is, therefore,
given by the upper bound of division of the screen size dimension by the
square root of the block size (listing 7.1).

Shading is handled by a single kernel named FragmentShader, and the
BTF data reconstruction process is similar to the original BTFbase decom-
pression algorithm. Firstly, the needed geometric information is read from
the supplied G-buffer textures and rescaled back to the range of ⟨−1, 1⟩. The
following process separates pixels that contain surface information from pixels
representing the background.

Background pixels are set to have a constant background color, or an
environment map texture is applied to the background pixels when it is
supplied.

The foreground pixels (representing the rendered object) are then processed
in the same way as in the GLSL implementation. For each supplied light
source, an incident angle to the surface is computed, which is then used for
filtering of unlit pixels. For lighted pixels, the color is computed in a way
that is based on the rendering equation 4.1.4.

Lastly, the computed color is saved in the output texture represented by
the CUDA surface (chap. 7.4.3).

1 f loat blockWidth = s q r t (THREADS_PER_BLOCK) ;
2 f loat gridX = c e i l (screenX / blockWidth) ;
3 f loat gridY = c e i l (screenY / blockWidth) ;

Listing 7.1: Computing index in the global memory (CUDA)

2The number of threads per block can changed using the configuration file, however, the
number should be one of 16, 64, 256, or 1024.

48

................................... 7.4. CUDA Renderer

7.4.1 Constant Memory

To represent a global data used by all threads, which serve as uniform variables
compared to GLSL implementation, constant memory was used. It is a special
type of read-only global memory, which accessed data are cached within each
multiprocessor [Slo21a]. The contents of the mentioned constant memory
are similar to GLSL uniforms memory and are also updated with the same
frequency. For clarity, data loaded into constant memory are encapsulated in
a struct named Uniforms.

7.4.2 CUDA-OpenGL Interoperation

When using CUDA in graphics-related computations, in many cases, frequent
data interchange (e.g., each frame) between the graphics API and CUDA
is needed. For example, when CUDA generated geometry is rendered by a
graphics API or in the case of using CUDA for the rendered image post-
processing.

However, because the standard process of executing kernels is based on
copying data from the host to GPU, performing the computation, and subse-
quently copying the results back to the host (CPU), for rendering purposes,
this approach cannot be used.

The main problem is represented by frequent copy operations of the data
between CPU and GPU, which acts as a major bottleneck. Although it is
possible to render an image on GPU, then copy it to CPU and afterwards
display it, for example, using the glDrawPixels method, as it was discovered
during the implementation, it is heavily inefficient. For every frame, two
data copy operations are performed between the host and device (copy the
computed image from GPU (CUDA) to CPU and then display the image
using OpenGL, which means copying the data back to the GPU).

Instead of this approach, a specially designed extension called cuda_gl_inte
rop was used, which provides a way to share memory between OpenGL and
CUDA contexts within a GPU. Before rendering the frame using CUDA, an
appropriate OpenGL buffer is mapped to the CUDA context and then written
to during the computation. After the frame is computed, the OpenGL buffer is
unmapped and can be subsequently used by OpenGL, for example, to display
it on the screen. The easiest approach is to use the method glDrawPixels.

However, during the implementation, performance problems caused by
copying computed data using the glReadPixels function were discovered. After
minor research, the method of direct rendering into an offscreen framebuffer
was selected as the best performing. This change involved usage of writeable
textures in CUDA accessible as surfaces (chap. 7.4.3).

In that case, the color attachment (e.g. GL_COLOR_ATTACHMENT0) of the
appropriate framebuffer is mapped instead of a regular OpenGL buffer. After
the frame is computed, displaying it is only about unmapping the color
attachment and copying it to the main framebuffer within the GPU using
the method glBlitFramebuffer.

49

7. Implementation....................................
7.4.3 Textures and Surfaces

Although the use of global memory would probably be more efficient instead
of using many textures (in a general case), in the case of maintaining three
different renderers is the usage of shared textures (GPU memory) probably
the most efficient approach (in terms of memory requirements).

Because the mentioned rendering into an offscreen framebuffer was imple-
mented, not only read-able textures had to be utilized, but also a texture
that can be written to. Standard read-only textures in terms of CUDA
can be represented by texture objects, however read-write textures must
be represented as surface memory objects. Its structure is more similar to
OpenGL renderbuffer, which serves only as a memory and does not provide
any texturing features (interpolation, mip-mapping etc.).

7.5 OpenCL Renderer

The OpenCL renderer represented by OCLRenderer class was implemented
in a manner similar to the CUDA renderer. One of the main differences
between these two technologies is the method of representing the device
code. CUDA-specific files with .cu extension are directly linked into the
project (the project must have also linked additional CUDA dependencies).
Each .cu file can contain multiple kernels and both host and device methods.
Additionally, the same implementation of one method can be executed by both
host and device (CPU and GPU) in the case when the method is introduced
by __host__ and __device__ directives at the same. This advantage was
exploited during the implementation of custom mathematical functions used
on both sides. In contrast, OpenCL kernels are more like GLSL shaders,
defined in separate .cl files which are loaded, parsed, compiled, and linked
into OpenCL programs in runtime.

One of the observed benefits of OpenCL is the availability of CG-related
mathematical operations, which are accessible, for example, in GLSL. This
made the implementation easier, because no custom mathematic functions
were needed as opposed to CUDA, where a small helper module was imple-
mented for the needs of the shading kernel.

OpenCL kernel launching is driven by a command queue that accommo-
dates various commands for data manipulation, device synchronization, and
launching kernels itself. The queue guarantees that the commands are exe-
cuted in a given order. Loading of host data into a device kernel is handled
separately for each input parameter of that kernel by the clSetKernelArg
method. It is not required to set the arguments for every kernel invocation,
only when the loaded data change. This also reminds of uniform variables in
GLSL.

For that reason, the struct CL_Uniforms was used in a similar way as in
CUDA implementation, to encapsulate the majority of shading parameters.
In the case of OpenCL, definition of passed structures must be handled
with additional care about struct packing (code snippet 7.2), when using

50

.................................. 7.5. OpenCL Renderer

parameters that do not satisfy the byte alignment (e.g. three component
vectors).

Unfortunately, pointers to image memory (e.g. image2d_t) cannot be
stored in a passed structure and must be passed as kernel parameters instead
[AMD11]. In the case of using many textures representing the G-buffer
together with textures containing BTF data, this leads to the kernel having
many input parameters (29).

1 typedef struct __attribute__ ((packed)) CL_Uniforms
2 {
3 // some data (possibly non -aligned)...
4 } CL_Uniforms ;

Listing 7.2: Example of OpenCL kernel struct packing

7.5.1 OpenCL-OpenGL Interoperation

Sharing device data between OpenGL and OpenCL is available in a way
similar to CUDA-GL interoperation (chap. 7.4.2). However, compared to
CUDA, in the case when OpenCL is used, OpenGL resources must be mapped
(acquired) and unmapped (released) in each frame. More specifically, OpenGL
resources used in OpenCL must be unmapped from the OpenCL context
prior to its use back in OpenGL, and vice versa [khra]. In the case of CUDA,
OpenGL resources are mapped and unmapped only on application startup
and termination respectively, together with the case when a used material is
switched for another.

Acquisition of OpenGL resources is handled by commands stored in a
command queue preceding the kernel call command. Following the kernel
invocation, OpenGL resources are released by appropriate commands stored
in the command queue - the main idea is depicted in code snippet 7.3.

1 // i) Acquire OpenGL resources
2 clEnqueueAcquireGLObjects (Queue , TexCnt , &TexRef , 0 , NULL, NULL)
3 /* Some more OpenGL resources acquisition */
4
5 // ii) Launch the kernel
6 clEnqueueNDRangeKernel (
7 Queue , KernelObj , DimsCnt , NULL, GlobalWorkSize , LocalWorkSize ,

0 , NULL, NULL
8)
9

10 // iii) Release used OpenGL resources
11 clEnqueueReleaseGLObjects (Queue , TexCnt , &TexRef , 0 , NULL, NULL)
12 /* Rest of OpenGL resources release */

Listing 7.3: OpenGL resources sharing with OpenCL - queue commands pattern

51

7. Implementation....................................
7.6 Environment Map Approximation

All environment map related functionality is part of a class EnvMap, while the
importance sampling implementation was derived from [PJH17]. The topic
was briefly discussed in the chapter 4.3.2.

An additional structure Distribution1D was implemented that represents
the radiance distribution over a 1D image slice, in 4.3.2 referenced as p(v|u)
(alternatively as pu(u) for column integrals). The mentioned struct provides
a method to sample the distribution using uniform random variable ξ1 or ξ2
to get transformed variables u, v.

These variables can then be used to construct a direction vector ωi repre-
senting the incoming light Li from the given sample. In addition, the u, v
variables are used directly as texture coordinates to get the color of the
spectral radiance of the sample.

An example of samples drawn using uniform random variables ξ1, ξ2, and
variables resulting from importance sampling u, v, is depicted in the figure
7.2. It can be seen that the red samples (importance sampling) are cumulated
around the area with the highest radiance values (expressed in HDR), probably
representing the Sun, whereas green uniform samples are spread all over the
image also covering the irrelevant dark spots.

Figure 7.2: Visualization of original pseudo-random samples (green) and samples
based on importance sampling (red)

The resulting samples are then converted into a set of directional lights
represented by a simple struct DirectionalLight. Each instance contains
the sampled radiance color from the environment map, direction of the light
Li, and its sample probability. All these data are computed during the
initialization of the application and are sent to the appropriate shader as a
set of uniform variables during rendering.

52

.................................7.7. Progressive Rendering

7.7 Progressive Rendering

This method requires an additional processing of the computed images.
Because all the computed data are stored into an off-screen framebuffer,
instead of the main framebuffer directly displayed on the screen because
of the needs of VRG API, the main idea was straightforward. Load both
framebuffer color textures into some kernel, perform the composition, and
display it on screen. The main requirement was the re-usability of the same
functionality for all three renderers. Implementation of this functionality
separately for each renderer would also be possible but ineffective (against
DRY3 principle).

Figure 7.3: Diagram of used framebuffer objects

The first approach was about using CUDA kernel and only two framebuffers
- the main offscreen FBO and the FBO carrying new computed data for
a given subset of lights. This involved using read-write CUDA surface
(7.4.3) representing the main offscreen FBO, and a standard CUDA texture
representing the second "auxiliary" FBO. Simple kernel was implemented to
handle the composition. Unfortunately, this solution suffered from heavy
stutters (not FPS drops, FPS seemed to be the same), which made it useless.

Subsequent investigation of the problem was carried out involving reim-
plementation of the kernel, switching between CUDA surfaces and textures,
adding a third texture (to prevent reading and writing to the same texture /
surface) and many more. None of the actions helped and the implementation
was scrapped. The performance issues were probably caused by multiple
re-mapping of the framebuffers between OpenGL and CUDA.

3Don’t Repeat Yourself

53

7. Implementation....................................

(a) : 1 virtual directional light (b) : 5 virtual directional lights (c) : 200 virtual directional lights

Figure 7.4: Comparison of lighting using 1 directional light, 5 directional light,
and 200 progressively rendered lights

The second approach involved using OpenGL, which was the right way.
Implementation was based on the usage of a simple fragment shader (however,
the usage of a compute shader would probably be slightly more effective)
and re-used vertex shader for environment map texturing. The idea was to
launch fragment shaders for all pixels on the screen, where each FS invocation
handled the composition of one pixel. Because the usage of read/write
texture probably would not be that stable and would require a special
NV_texture_barrier4 extension, the solution with three textures (FBOs)
was used instead. Moreover, to save some computation time, texelFetch
method for texture reading was used. Comparison of progressive rendering
using 200 virtual directional lights is depicted in the figure B.1.

7.8 XTAL VR Headset Integration

As it was already stated (chapter 6), the core of the application is based on
the VRG framework (OpenGL demo application from VRengineers based on
their custom rendering framework) which was modified to serve the needed
purposes. This ensured from the beginning that the integration with the VR
headset will work and there will not be any problems with integrating it later.

7.8.1 Rendering to a Headset

To render a stereoscopic image (respectively, a pair of images), an eye-specific
transformation must be applied to the scene for each eye, to ensure that the
stereoscopic frame displayed in the headset will form a 3D illusion. These
transformations represent both projection and view matrices which reflect
the current settings (pupillary distance, FOV, etc.) of the headset together

4https://stackoverflow.com/questions/11410292/opengl-read-and-write-to-the-same-
texture

54

................................... 7.9. Control System

with the headset position in the virtual scene. The matrices are accessible
via the VRG API. The acquisition of the appropriate transform matrices is
illustrated in the code snippet 7.4.

1 // Get headset (head mounted display) world position
2 const auto hmdPose = m_vrgHmd−>GetPose (VRG_POSE_HMD) ;
3 // VRG framework method to get transl. & rot. matrix from pose
4 const auto hmdTransform = math : : PoseToMatrix (hmdPose) ;
5 // Get eye -specific pose
6 const auto cameraPoseLeft = m_vrgHmd−>GetPose (

VRG_POSE_CAMERA_LEFT) ;
7 // Compose view matrix based on the hmd pose and eye pose
8 glm : : mat4 ViewL = glm : : i n v e r s e (hmdTransform ∗ math : : PoseToMatrix (

cameraPoseLeft)) ;
9 // VRG framework method to get projection matrix from FOV

10 glm : : mat4 ProjL = math : : FovToMatrix (fovLe f t , NEAR, FAR) ;

Listing 7.4: Retrieving left eye camera transform matrices

Standard desktop applications render frames to the default framebuffer
to display the data on the screen. In the case of XTAL VR headset, data
are passed as a pointer to a texture (attachment) of off-screen framebuffer
(more on this in the chapter 6.3.1) using the supplied VRG API. Loading
frame data into the headset is controlled by a specific sequence of VRG API
commands defining which data belong to the currently processed frame. The
sequence is depicted in the code snippet 7.5.

1 auto frame = m_vrgHmd−>BeginFrame () ; // New frame init
2 m_BTFrenderer−>renderScene (RIGHT_EYE) ;
3 GLuint colorR = m_BTFrenderer−>getOFBO(RIGHT_EYE)−>

GetColorTexture () ;
4 frame . SubmitCoordinates (VRG_LAYER_RIGHT, 0 , 1 , 1 , 0) ;
5 frame . SubmitLayer (VRG_LAYER_RIGHT, &colorR) ;
6
7 /* Render and send data for the left eye */
8
9 frame . End () ; // Send the new frame to the headset

Listing 7.5: Sequence of rendering new frame and sending it to the headset

7.9 Control System

Initial version of the application control system was based on the use of key-
board and mouse inputs. This enabled the mapping of the newly implemented
functionality to one of the many available keys without the need to figure
out how to map the feature to a combination of buttons on the controller to
be used. However, this method is not applicable when the user is wearing a
headset, which makes the usage of a keyboard nearly impossible.

5The image represents contents of a debug framebuffer displayed on a monitor when
a VR version of the application is used. It represents only a side-by-side visualization of
framebuffers for both eyes, causing the images in the visualization to be deformed and not
match the originals. Indeed, the data for each eye are sent to the headset separately.

55

7. Implementation....................................

Figure 7.5: Example of a stereoscopic image including the rendered menu, which
is displayed using the XTAL 8K headset 5.

That said, VR or console specific controller had to be used to make the control
over the application easier and more intuitive without the need to see what
button is pressed (as opposed to the mentioned keyboard).

Integration of a console controller was performed after all the rendering
functionality was implemented to eliminate possible problems with needed
functionality re-mapping. Due to the vast amount of editable parameters, us-
age of the controller alone was considered as insufficient, and an accompanying
graphical user interface was added.

All implementation related to the control system and functionality for
changing the application state is defined in the files ControlsApi.h and
ControlsApi.cpp. Application state is represented by the structure Globals
which is accessible within the BTFRenderer class and which is also passed to
the controls API methods (chap. 7.9.2).

7.9.1 Wiimote Controller

The Wiimote controller, depicted in the figure 7.6, was implemented as
the first interaction device used to interact with the VR application (and
in the end the only controller implemented). Among its advantages can be
considered a relatively low price while having a decent amount of functionality
proven by many years of its presence on the gaming consoles scene.

Communication with the controller was implemented using the Wiiuse
library, which simplifies handling of the controller events and setting its state
(e.g., turning on LEDs or rumbling). The controller was integrated into the
application using the API discussed in the following chapter.

6https://www.walmart.ca/en/ip/Wii-Remote-Controller-Nunchuk-Plus-Motion-N
unchuck-Control-Joystick-Game-silicone-cover-wrist-strap-u/4RT6ZRZT1QXH

56

https://www.walmart.ca/en/ip/Wii-Remote-Controller-Nunchuk-Plus-Motion-Nunchuck-Control-Joystick-Game-silicone-cover-wrist-strap-u/4RT6ZRZT1QXH
https://www.walmart.ca/en/ip/Wii-Remote-Controller-Nunchuk-Plus-Motion-Nunchuck-Control-Joystick-Game-silicone-cover-wrist-strap-u/4RT6ZRZT1QXH

................................... 7.9. Control System

Figure 7.6: Wii remote controller6

Final version of the button binding to the application functionality is depicted
in the diagram A.1.

7.9.2 Generic Controls API

Due to the possibility of using different input devices in the future, a generic
control API was implemented to enable the integration of various types of
controllers, each of them possibly having a different behavior, without the
need to know the implementation details of the renderer itself. Instead, state
of the renderer can be controlled using a set of static functions which names
and parameters indicate their functionality.

7.9.3 Graphical User Interface

Graphical user interface was implemented using the ImGui library which
provides a simple approach to creating and rendering custom GUI elements.
Content of the GUI is handled by the library, including the management
of geometry and its rendering. In the case of displaying the GUI over an
image resulting from progressive rendering, an additional framebuffer GUIFBO
was used, as depicted in the diagram 7.3, because the original framebuffer
containing the rendered data is subsequently used in the next progressive
rendering iteration. An example of a rendered menu can be seen in the figure
7.7.

Rendering the GUI in VR is a bit more challenging. The main problem is
the need to render the GUI stereoscopically correct, which means perspectively
transformed for each eye by its projection matrix.

57

7. Implementation....................................
However, that was not achievable using only the ImGui library, because the
library is designed for 2D rendering only. The final solution is thus based
on an additional offscreen rendering. The GUI is rendered into an auxiliary
FBO texture (UIFBO), which is subsequently mapped onto a perspectively
transformed quad defined in view-space coordinates to cover the desired view
area. The result can be seen in the figure 7.5.

Figure 7.7: Application menu implemented using ImGui, displayed on top of
the rendered image

7.9.4 Application Configuration

To enable the application to be configured without the need to recompile the
project, support for a configuration file was added. The name of the file is
fully customizable (together with its extension) as long as the corresponding
file name is supplied as a program launch parameter. The current name of
the configuration file is config.env.

The configuration file can contain two types of records (lines). Commented
lines starting with # are not parsed and can serve as a source of information.
Each non-commented line can represent one of the application attributes
and is defined by key = value pair. Supported data types are String, Float,
Integer, Boolean and V ector. Vectors are treated as having three float
components, however, integer values can be used in the configuration file too.
The vector values are separated by a dash (−). The boolean attributes can
have values {y, true, 1} that are evaluated as True, other values are evaluated
as False. An example of supported syntax is depicted in a snippet 7.6.

58

............................ 7.10. Summary of Used Technologies

The implementation of the environment (application configuration) is
represented by the Environment class, which instance is subsequently used
to populate global variables on the application startup or restart. The class
provides methods (based on the read data type) to retrieve the desired
attribute using the same key as is used in the configuration file. When an
error occurs during parsing the configuration file, default values are used
instead. The same applies when the configuration file was not found.

1 # Line commented out
2 key_vector =100.0 −200.0 −155.0
3 key_str ing=s t r i n g
4 key_f loat =245.12
5 key_bool=true

Listing 7.6: Configuration file syntax.

7.10 Summary of Used Technologies

STBimage 2.22

Library used for image loading in the texture creation process and saving of
the rendered images in a file.
https://github.com/nothings/stb

Dear ImGui 1.76

Library used to create a graphical interface rendered on top of the rendered
image.
https://github.com/ocornut/imgui

Wiiuse 0.15.5

Simple library implementing API for communication with Nintendo Wii
controllers, used for the integration of the Wiimote controller.
https://github.com/wiiuse/wiiuse

GLM 4.2

OpenGL math library used mainly for transformation matrices and their
multiplication.
https://github.com/g-truc/glm

VRG (hmd lib) 4.3

API used for communication with the VR headset. The API is accessible
only to headset owners.

59

https://github.com/nothings/stb
https://github.com/ocornut/imgui
https://github.com/wiiuse/wiiuse
https://github.com/g-truc/glm

7. Implementation....................................
VRG rendering framework

Set of classes forming an OpenGL rendering engine/framework provided by
VRengineers as a part of the OpenGL VR demo. Subset of the classes was
used as a base for the application implemented. All classes are part of the
vrg directory and are accessible via the main gldemo:: namespace.

CUDA 11.4.136

GPGPU framework for mass-parallel computing on GPUs, used for the
implementation of one of the shading kernels.

OpenCL 3.0

GPGPU framework for mass-parallel computing on GPUs and CPUs, used
for implementation of one of the shading kernels.

OpenGL 4.6.0

Graphics API used for rasterization, rendering and displaying the rendered
content.

GLFW 3.3

Windowing API used for creating OpenGL rendering context and handling
input events
https://github.com/glfw/glfw

Dolphin 4.0.8325

Software used for emulation of various controllers on PC including the Wii
controller used.
https://github.com/dolphin-emu/dolphin

60

https://github.com/glfw/glfw
https://github.com/dolphin-emu/dolphin

Chapter 8
Results and Testing

Chapter deals with the implemented application verification, consisting of two
parts, the User Testing and the Performance Testing. First, the principles
of user testing are briefly described, followed by the description of the test
strategy that includes the choice of users tested and the test scenario. Lastly,
the results of the user testing are shown together with some advice given by
the tested users.

In the second part, the performance testing strategy is discussed together
with the hardware used. Subsequently, the results of the performance tests
are discussed along with possible improvements that could be implemented
to enhance the overall performance.

8.1 User Testing

User testing (also usability testing) is an essential part of software development,
which is crucial for any kind of applications having an User Interface (UI).
Every application should be subject to multiple user testing iterations to
guarantee that the application will be used as intended and no confusion is
present.

One of the examples of user testing practices is described in a book Don’t
make me think [Kru06] written by Steve Krug, which is devoted to human-
computer interaction principles. The whole user interface testing topic is
described in a chapter 9: Usability testing on 10 cents a day accompanied by
a fictional test scenario serving as an illustration of how to efficiently test the
user interface of an application.

One of the main principles of proper usability verification of the UI is
the iterative testing performed already during the application development.
In such a way, eventual problems are discovered relatively early, and it is
easy to fix them. Ideally, the first tests should be carried out even before
the development starts and in its early phases. This type of tests is also
known as Group testing and consists mainly of brainstorming about the UI
in a group of various people, such as developers, testers, future users, etc,
each of them having a different point of view based on their experiences. By
this approach, many ideas are presented and the best ones are chosen for
subsequent development.

61

8. Results and Testing
Tester Sex Age Experience Occupancy

with VR
Tester A Male 52 No IT businessman
Tester B Female 21 No Student of Architecture
Tester C Male 24 Yes Student of Medicine
Tester D Male 24 No IT freelancer
Tester E Male 25 Yes Student of CTU FEE (HCI)

Table 8.1: Information about tested users.

When the application is near completion, Usability tests are performed.
These tests are based on the behavior examination of given individuals,
therefore each test is performed with only one user at a time. Users tested
are told to solve a given set of tasks within the application, and the test
conductors record possible problems with the usability of the application.
These results form a valid scale of the usability of the application and are
used for subsequent improvements of the application.

8.1.1 Testing Strategy

Because the UI was implemented in the last weeks of the application develop-
ment while under time pressure, group tests were omitted. Therefore, the
user tests were focused only on the final Usability part performed with a
group of users described in the table 8.1. A set of interview questions was
prepared that served as a baseline for the testing. Each user was asked an
initial subset of questions (1.X in 8.1.2) investigating their experience with
VR together with their expectations of the application tested based on a brief
introduction to the topic of BTF rendering.

The Wiimote controller and the XTAL VR headset were then introduced,
and some time was dedicated to free exploration of the VR application by
the user. Based on the user experience, a few more questions (2.X in 8.1.2)
were asked to capture the first impressions about the control system, GUI,
and the application usability.

The desktop version of the application was subsequently launched, and
the user was given an additional time for another free exploration. Lastly,
questions about the desktop version were asked and the user was given the
opportunity to give constructive feedback, such as suggestions for possible
improvements, by the last subset of questions 3.X and 4.X in 8.1.2.

62

.....................................8.1. User Testing

8.1.2 Questions and General Answers

This chapter is devoted to the questions asked during the usability testing
together with the answers that capture the general opinion of the users tested.

1.1) Do you have any previous experience with Virtual Reality? If so,
which types of controllers have you tried?

Three of the tested users had no prior experience with virtual reality. Tester
C had experienced virtual reality as a form of educational tool in medicine
dedicated to a virtual human body examination. Tester E had an experience
with a VR headset Oculus Quest I in terms of exhibition in Institute of
Intermedia (IIM)1, and also in terms of entertainment represented by a VR
game BeatSaber2. Additionally, tester E had previous experience with the
Wiimote controller (chap: 7.9.1).

1.2) What do you expect from a VR application in general? What
functionality and behavior should it implement?

Most testers mentioned an artificially generated environment within which
the user can move and interact with. The application should provide a decent
degree of immersion in the virtual environment.

1.3) Based on the information given about the work and application
implemented, what are your expectations in terms of functionality
and features?

Testers mentioned that the application should allow the user to freely change
parameters of the scene, including the camera, object, and lights motion, the
material used and its resolution, alternatively to change the light intensity.
Based on the interactions performed, an arbitrary 3D model with arbitrary
material can be observed under various lighting and view conditions.

2.1) What impressed you and what confused you about the
application?

Impressions of individual testers differed. Some of them were impressed
by the rendered environment, whereas some of them liked the most the
visual appearance of the rendered objects and materials used. Additionally, a
progressive rendering seemed interesting to the testers.

Most of the confusion shared between the testers was about the control
system based on many possible interactions, which was difficult to recall for
the first time.

1https://www.iim.cz/en/about-us/
2https://beatsaber.com/

63

https://www.iim.cz/en/about-us/
https://beatsaber.com/

8. Results and Testing
Some testers also noted that the Wiimote controller does not have a

good button layout, mainly the bottom buttons seemed to be too far. One
tester also mentioned a blurred GUI. However, the overall impression of the
application was positive.

2.2) Do you prefer an interaction using a GUI over an interaction
using the controller alone?

The general opinion was that both variants of the interaction should be used.
GUI menu can support new users who do not have sufficient experience with
the designed control system, mainly with the various shortcuts or button
combinations (combos). On the contrary, more experienced users may see
shortcuts as a better and faster type of interaction than using the menu.

2.3) Do you find interaction using the Wiimote controller intuitive
enough? (Both in terms of mapping to application functionality and
in terms of physical attributes of the controller)

Functionality binding to the controller seemed intuitive for all the users tested,
except for the mentioned button combos, which were harder to remember.
However, the opinion about the Wiimote controller itself differed.

Tester A was for a reduction of the buttons used in one controller. In
particular, the individual buttons 1 and 2 at the bottom of the controller were
considered the most problematic. Additional functionality should instead be
delegated to an eventual second controller designed to be held in the second
hand (alternatively, a gamepad-style controller held in both hands could be
used). The main point was that only one hand is currently being occupied,
while the second one is not used at all. The tester A also lacked a usage of
accelerometers that could extend the list of mapped functionality without
the need to use more buttons.

Testers B, C, and E were quite satisfied with the controller except for the
confusion with button combinations already mentioned. However, this could
be resolved with an additional help window and brief information in a Readme
file. Tester E also suggested some ideas on redesigning the combo button
layout (more on this in the chapter 8.1.3.).

Tester D considered the behavior of the Wiimote controller arrow buttons
(cross) strange and disruptive, mainly when interacting with the menu. The
problem was in the need of pressing the buttons exactly in the desired direction,
otherwise the controller also performed interaction in the perpendicular
direction. In this way, unwanted interactions were sometimes performed,
which in the case of menu was unpleasant.

3.1) Which type of application did you find more attractive? Why?

All tested users stated that the VR version of the application was more
exciting, mainly because it is much more immersive than just looking at a
monitor. The observed object also seems more plastic, and the details of the

64

.....................................8.1. User Testing

material are more noticeable when VR is used. Additionally, tester D noted
that when using a VR headset, the user can fully focus on the scene without
being disrupted by the environment, as can be the case when looking at a
monitor on a desk.

3.2) Which type of application was easier to interact with?

Users A, B, and C found the desktop controls to be more intuitive, mainly
because of their daily experience with a keyboard and a mouse. In contrast,
testers D and E found the interaction using a controller to be better, despite
the downsides mentioned.

4.1) Did the application meet your pre-launch expectations?

All tested users were satisfied with the application, the behavior was similar or
better than expected. Some testers would welcome the possibility to change
the environment map used in a run-time. Testers A, B, C, and E would also
like to be able to choose from a wider range of different types of 3D objects.

4.2) Which part of the application / control system do you consider
as the worst?

Tester A considered the worst hardly reachable buttons 1 and 2 on the
Wiimote controller. The mentioned buttons should be used only in rare
situations. Tester B was not satisfied with the "overcomplicated" control
system. Tester C considered the blurry GUI mentioned as the worst. Tester
D was not satisfied with the menu interaction using the Wiimote controller
due to the mentioned problem with arrow keys (mentioned in the answer
2.3). Tester E found the rotation of the environment map confusing and
non-intuitive.

4.3) What would you improve in the application?

The answers are discussed in the following chapter.

8.1.3 User Advice

The main problem of the application, reported by the testers, seemed to
be the control system, particularly the mapping of advanced functionality
to the Wiimote controller. However, the ideas, how to redesign the button
combinations used for the advanced functionality mentioned, differed from
user to user, meaning that the opinion is relatively subjective and may not
be welcomed by others.

The most significant and interesting changes proposed testers A and E. The
main idea of the tester A was to distribute the control over the application
evenly among both hands (similarly as a keyboard and mouse are also used by
both hands). That could be achieved either by introducing a second controller
of preferably the same type, or by using a game pad dedicated for both

65

8. Results and Testing
hands. On the contrary, tester E stated that one controller is enough and
proposed the usage of buttons 1 and 2 instead. These buttons were supposed
to be pressed (held) by the second hand, while the main hand performs the
secondary (advanced) interactions.

Nevertheless, all tested users agreed that some type of information about
the control system should be available, at least in the form of a Readme file.

The tester A also lacked the usage of an accelerometer which is a part of
the Wiimote controller and which could be used for rotation interactions.
However, tester E, who already had experience with the Wiimote controller,
stated that the accelerometer of the particular controller is not precise and
therefore is useless.

One of the minor ideas proposed by the tester E was about the possibility
to add a variable option to invert the Camera zoom interaction mapped to
the buttons A and B (which is also considered as subjective).

Majority of the tested users would also welcome the possibility to change
an environment map in a run-time.

8.2 Performance Testing

Various performance tests were carried out to verify the overall performance
of the application. The tests were devoted to the comparison of individ-
ual technologies used for the rendering (GLSL, CUDA, and OpenCL), the
comparison of desktop and VR versions of the application, the comparison
of various types of lighting used, and also the comparison of the new GPU
implementations with the initial CPU implementation.

8.2.1 Tests Setup

A specific test environment was prepared beforehand, consisting of manually
set scene parameters to ensure that each test was performed under the same
conditions, and to represent a form of the worst-case scenario. The tests were
performed in such a way that the geometry covered a large part of the screen
(to increase the number of pixels where BTF must be evaluated) together
with all lights directed to the visible part of the objects surface so that all
computed fragments were enlightened. This approach can be considered as
the worst-case scenario3, when all available light sources contribute to the
final color, and therefore BTF decompression must be evaluated for each
fragment as many times as is the count of available lights (except for few
edge cases).

Because of that, an environment map env020.hdr ("Desert"), that has the
majority of radiance present in one small area, was used to concentrate all
approximation directional lights into one spot (see fig. 8.1b).

3Worst case scenario for the average observation of the object in a reasonable scale.
Complete worst-case scenario would be represented by a close-up detail covering the whole
screen, however, that is not expected to be performed by users that frequently.

66

................................. 8.2. Performance Testing

(a) : Rendered view during the performance
tests

(b) : Virtual directional lights sampled behind
the camera (purple dots) from the approxi-
mated environment map.

Figure 8.1: Tested scene setup, consisting of a manually selected view direction,
camera zoom, and environment map together with its rotation.

Name Alias #Vertices #Faces
koule.obj Sphere 3122 6240
bunny.obj Bunny 5063 10122
hippo.obj Hippo 1810 3616

Table 8.2: Information about 3D models used for performance tests.

All test results were acquired as an average of three measurements over a
5-second period. Performance was mainly measured in Frames Per Second
(FPS), representing the overall application performance, recognized by the
majority of computer users and which is easily understandable.

Additionally, the render time for all 200 virtual directional lights was
measured in case of progressive rendering. That represents the total time
needed to approximate the environment map IBL by 200 directional lights
while maintaining the application interactive, having preferably 60 FPS or
more.

In terms of GPGPU computations (CUDA and OpenCL), the block size
was set to 16x16 threads in a 2D grid configuration, making 256 threads per
block.

Rendering to the XTAL 8K VR headset was exploited, whenever it made
sense, to demonstrate the performance that can be expected from the appli-
cation when using a high-resolution VR headset.

Tests were performed for 5 various BTF materials in terms of their size and
type (HDR, LDR). In this way, all possible kinds of problems could be found.
Used materials together with their description are depicted in the figure 8.2.
Information about the used 3D models is available in the table 8.2.

67

8. Results and Testing

(a) : walkwayHDR
42.4MB

(b) : pulli
30.95MB

(c) : corduroy
17.6MB

(d) : ceilingHDR
11.75MB

(e) : pinktileHDR
5.6MB

Figure 8.2: BTF materials used during the performance testing. All materials
were used in a resolution of 2048x2048 pixels.

8.2.2 Used Hardware and Software

All measurements were acquired using the following hardware provided by
CTU FEE in VR laboratory.. CPU: Intel i9-10900X, 10 cores / 20 threads, @3.7GHz.GPU: RTX 2080Ti, 11GB VRAM. RAM: 128 GB DDR4. Disk: Seagate Capacity 6TB, 7200 rpm. VR Engineers XTAL 8K headset.OS: Windows 10 Education Edition

68

................................. 8.2. Performance Testing

8.2.3 GLSL, CUDA, and OpenCL Performance Comparison

First group of tests was dedicated to the comparison of the used GPU
technologies, by means of overall performance in FPS, while rendering to
the XTAL headset. It can be seen that both CUDA and OpenCL struggle
with the HDR materials, however, in the case of corduroy material, the
performance of CUDA compared to GLSL is similar or even better.

The lower performance of rendering using GPGPU technologies (table 8.3)
can be caused by many factors. One of the problems can be the fact that
the GLSL rendering is handled as a single-pass process, whereas CUDA and
OpenCL need two passes for the implemented deferred shading. Additional
work is also needed for OpenGL textures and renderbuffers sharing and for
the needed FBO content copy operations (atleast two copy operations, when
progressive rendering and GUI are disabled - see fig. 7.3).

OpenCL specific problem is also the need to explicitly acquire and release
OpenGL resources in every rendered frame (chap. 7.5.1), which was found as
a major bottleneck.

BTF Material
2048x2048 px

Render time [Frames Per Second (FPS)]
Sphere Bunny Hippo

GLSL CUDA OpenCL GLSL CUDA OpenCL GLSL CUDA OpenCL
walkwayHDR 79.3 34.3 18.7 81.9 38.9 20.9 77.7 36.9 19.2
pulli 119.1 55.0 23.9 116.6 60.0 24.5 115.4 57.9 23.5
corduroy 55.1 51.5 23.1 52.3 55.0 23.3 47.2 54.1 22.6
ceilingHDR 91.5 31.1 19.4 92.4 37.9 20.8 87.3 36.5 19.0
pinktileHDR 147.1 34.8 19.7 135.3 38.2 21.5 136.2 36.7 19.1

Table 8.3: GLSL, CUDA and OpenCL performance comparison in Frames Per
Second (FPS), in 2x 4K resolution used in XTAL headset and 5 directional lights
environment map approximation.

8.2.4 Virtual Reality and Desktop Performance Comparison

The following set of performance tests focused on a comparison of rendering
to a VR headset with rendering to a standard 4K display. Measurements
were performed only with the best performing technology, which is considered
GLSL (given by the results in the table 8.3). Even though the VR headset
has exactly double the resolution of the 4K display (having one 4K display
per each eye), the results in the table 8.4 do not match that.

That is caused by the way the VR headset uses the rendered framebuffer and
how the per-eye transformation matrices are defined, making the peripheral
area of the stereoscopic image bigger. Based on that, the objects are rendered
from a greater distance than in the case of rendering to a monitor, leading to
the object covering a smaller area on the screen and the need of less fragment
shaders to be evaluated.

69

8. Results and Testing
BTF Material
2048x2048 px

Render time [Frames Per Second (FPS)]
VR XTAL 2x 4K Desktop 4K

Sphere Bunny Hippo Sphere Bunny Hippo
walkwayHDR 79.6 82.0 77.7 131.7 147.3 135.9
pulli 119.1 116.6 115.4 208.2 223.6 217.1
corduroy 55.1 52.3 47.2 91.0 96.2 86.0
ceilingHDR 91.5 92.4 87.3 156.3 173.4 160.9
pinktileHDR 147.1 135.3 136.2 253.2 250.8 246.3

Table 8.4: VR and desktop renderers performance comparison in 2x 4K resolution
used in XTAL headset and 4K resolution of the monitor used, and 5 directional
lights environment map approximation.

8.2.5 Various Types of Lighting Performance Comparison

Third group of tests was devoted to performance behavior when various
types of lighting are used. The tests were performed only for GLSL and
CUDA renderers using a Bunny 3D model. Namely, the performance of
illumination using one point light was compared to the illumination using 5
virtual directional lights approximating the environment map IBL, together
with the progressive scene illumination using 200 of the mentioned directional
light sources.

Despite the fact that the progressive rendering using 200 directional light
sources is a version of a 5 Directional lights rendering extended into more
frames, it performed worse in terms of FPS (table 8.5). The main cause of the
lower performance is probably an additional overhead represented by image
data transfers between auxiliary FBOs, and by the additional shader used
for composing the temporary frames (based on the FBO diagram depicted in
the figure 7.3).

However, the frame drops under 60 FPS can be compensated by lowering
the number of light sources processed in a single frame, adequately increasing
the total time needed for computing IBL using all 200 lights.

BTF Material
2048x2048 px

Render time [Frames Per Second (FPS)]
1 Point light 5 Dir. lights 200 Dir. lights (PR)
GLSL CUDA GLSL CUDA GLSL CUDA

walkwayHDR 341.6 113.8 82.0 38.9 61.9 34.4
pulli 450.7 150.2 116.7 60.0 92.3 54.9
corduroy 239.5 141.1 52.3 55.0 45.0 50.3
ceilingHDR 373.2 114.5 92.4 37.9 73.2 35.1
pinktileHDR 482.6 116.1 135.3 38.2 93.9 35.5

Table 8.5: Performance comparison for a single point light, together with 5
directional lights and 200 directional lights approximating the environment map
used. 200 directional lights are rendered progressively, 5 lights in each frame, to
remain the application interactive. Tested in VR (2x 4K ressolution) for bunny
3D model.

70

................................. 8.2. Performance Testing

8.2.6 CPU and GPU Performance Comparison

The last subset of tests was dedicated to the comparison of newly implemented
GPU solutions with CPU based solutions implemented initially. The initial
implementation consists of a full CPU offline rendererA (both rasterization
and shading are handled by a single-thread CPU program), a CPU & CUDA
combined offline rendererB (CPU rasterization, CUDA shading and BTF eval-
uation), and an experimental real time CPU & CUDA & OpenGL rendererC,
having the same functionality as the previously mentioned one, except the
content rendered is displayed on screen using OpenGL, making the renderer
real-time and interactive.

Newly implemented renderers are GLSLD, CUDAE, and OpenCLF, which
are subject to this work.

In contrast to the majority of previous performance measurements, these
measurements were performed at a desktop resolution of only 800x600 pixels
as is the original resolution of the CPU renderers. Performance tests were
also carried out only for the Sphere 3D object.

In addition, the timings for renderers A and B were measured in milliseconds,
subsequently recomputed to FPS.

Based on the results in the table 8.6 it can be seen that the renderer B
performs significantly worse that the renderer C, even though both renderers
are nearly identical. The reason why renderer B (and also renderer A)
performs worse than the similar renderer C is the fact that the measured
time also takes into account the time needed for saving the rendered image
into a file. However, in the case of the renderer C, the image data remain on
the GPU (OpenGL) instead, to be subsequently displayed on a screen.

BTF Material
2048x2048 px

Render time [Frames Per Second (FPS)]
CPU A CPU CPU&CUDA GLSLD CUDAE OpenCLF

&CUDAB &OpenGLC

walkwayHDR 1.8 9.8 16.4 2177.8 1047.7 267.0
pulli 2.2 10.5 16.5 2840.0 1307.7 291.3
corduroy 2.0 9.1 17.6 1622.0 1197.3 272.7
ceilingHDR 1.8 9.3 17.4 2411.0 1064.3 281.0
pinktileHDR 1.9 9.5 17.4 3961.3 1109.3 297.5

Table 8.6: CPU and GPU performance comparison. Tested on a desktop with a
resolution of 800x600 pixels. CPU - rasterization and shading handled by CPU;
CPU&CUDA - rasterization handled by CPU, shading handled by CUDA kernel;
CPU&CUDA&OpenGL - same as CPU&CUDA only the rendered content is displayed
on a screen using OpenGL (no saving to a file); GLSL, CUDA, and OpenCL - newly
implemented renderers.

71

8. Results and Testing
8.2.7 Unresolved Problems and Possible Solutions

This chapter is dedicated to the discussion on previously known and newly
discovered performance problems and their possible solutions.

OpenCL-OpenGL Resources Sharing

One of the major previously known performance problems is related only to
the OpenCL renderer. It is caused by the need to acquire and release all
OpenGL resources in each render-loop iteration (already mentioned in the
chapter 7.5.1), while the (un-)mapping process acts as a costly operation.
The problem was encountered already during the development and after some
research it was considered as a GPU driver-related problem, as stated on the
StackOverflow forum 4.

The problem is more noticable, due to a large number of OpenGL textures
being mapped one by one into the OpenCL context (cubemap faces, BTF data
textures, deferred rendering G-buffer textures, output framebuffer texture,
and environment map texture).

Possible solution minimizing the performance issues with the (un-)mapping
of OpenGL resources is the use of GL_TEXTURE_2D_ARRAY5 or GL_TEXTURE_3D6

texture formats, where only one reference per the whole stack needs to be
passed. Both mentioned texture types are supported by OpenCL7 and also
by CUDA8.

GPU Explicit Synchronization

The overall performance can be also limited by the currently used explicit GPU
synchronization (e.g. glFinish), needed mainly when uploading the rendered
image into the XTAL VR headset. Without the explicit synchronization,
various artifacts and image flickering were observed in the headset.

Types of GPGPU Memory Used

As already stated, the performance of GPGPU calculations can be affected
by the OpenGL resources sharing. However, another type of performance
issues can be caused by an inappropriate type of memory used. For example,
when using a lot of texture memory, the performance can be lower9 due to a
cache utilization, than when using global or local memory instead.

4https://stackoverflow.com/questions/17899514/opencl-opengl-interop-perfo
rmance

5https://www.khronos.org/opengl/wiki/Array_Texture
6https://www.khronos.org/opengl/wiki/3D_Texture
7https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clCreateFr

omGLTexture.html
8https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OPENGL.html

#group__CUDART__OPENGL_1g80d12187ae7590807c7676697d9fe03d
9The lower performance can relate to only some subset of graphics cards, mainly the

newer ones.

72

https://stackoverflow.com/questions/17899514/opencl-opengl-interop-performance
https://stackoverflow.com/questions/17899514/opencl-opengl-interop-performance
https://www.khronos.org/opengl/wiki/Array_Texture
https://www.khronos.org/opengl/wiki/3D_Texture
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clCreateFromGLTexture.html
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clCreateFromGLTexture.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART__OPENGL_1g80d12187ae7590807c7676697d9fe03d
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__OPENGL.html#group__CUDART__OPENGL_1g80d12187ae7590807c7676697d9fe03d

................................. 8.2. Performance Testing

Low FPS in VR

In some cases the VR application can suffer from low FPS, in rare cases
reaching bottoms of 30 FPS. However, as observed in the XTAL 8K VR
headset, the image appears smooth even when facing performance issues. This
is probably feature of the headset, when some image warping and interpolation
is very likely performed.

Multiple Threads

The whole application is currently implemented as single-threaded. The
overall performance should not be affected, because no extra per-frame
operations are computed, except for a few transformation matrices and
occasional uniform variables binding. However, two problems were experienced
during the develpoment and testing.

The first problem is bound to the variable time needed for initialization of
the Wiimote controller, which can reach up to 10 seconds. When compared
to the rest of the application initialization time, the total initialization time
can be more than doubled, which may be annoying.

The second problem is bound to polling the events from the Wiimote
controller, which is limited to approximately 60-65Hz, limiting the FPS to
the mentioned frequency.

Both problems mentioned could be resolved by moving the Wiimote-specific
implementation into another thread.

73

74

Chapter 9
Conclusion

Chapter is devoted to a summary of contributions to the work and to a
subsequent proposal for future work.

9.1 Summary

After a brief research of available GPU technologies and the study of the global
illumination principles together with BTF data compression algorithm pre-
sented in [HFM10], a robust solution was proposed to enable high-resolution
image synthesis of 3D objects with compressed BTF materials delivering
sufficient frame rates even when a Virtual Reality headset XTAL 8K is used,
all together implemented using three distinct GPU technologies. Various
types of lighting were also incorporated to enhance the final visual quality.
Additionally, a decent user interface was introduced to enable a high degree
of control over the application, especially when VR headset is used. Lastly,
an adequate usability and performance testing was carried out to evaluate
the overall quality of the application implemented, which delivered relatively
satisfactory results.

Based on the work assignment requiring to exploit the usage of various
GPU technologies, three distinct renderers handling the compressed BTF
rendering were implemented. The first one represents a standard single-
pass renderer implemented using only a modern graphics API OpenGL 4.6.
The second renderer represents a two-pass deferred shading approach split
between OpenGL used for rasterization, and CUDA GPGPU technology used
for shading and the BTF evaluation. In a similar manner, OpenCL renderer
was implemented, delivering a slower but multi-platform alternative to the
CUDA mentioned.

Subsequently, an approximation method of Image Based Lighting (IBL)
using an environment map was implemented based on [PJH17] solution.
The method was extended by a progressive rendering approach enabling to
evaluate many more light sources than it is possible in a single frame while
maintaining attractive FPS.

75

9. Conclusion......................................
A special care was devoted to the design ofUser Interface (UI), which is

crucial for the usability of the application implemented, mainly in terms of
VR.

Following, user testing and performance testing were carried out to evaluate
the overall quality of the application implemented. The results of user testing
have shown that the UI is designed well, only a few changes were proposed
by the testers in terms of mapping of advanced functionality to the Wiimote
controller currently used.

The performance testing results shown that the best performing GPU
technology is GLSL. However, these results may be distorted by the specific
requirement where all three renderers must be available at the same time
to enable real-time comparison, leading to the need of sharing the majority
of GPU resources used among the renderers, which can cause performance
bottlenecks

9.2 Future Work

Although the current implementation required a lot of time and effort, there
are still topics that are not part of the final version of the application. One of
them is the OptiX renderer which research and implementation was held for
nearly two weeks. Unfortunately, because of time pressure, this part of the
implementation was abandoned and left as a possibility for future extensions
of the application.

Current version of the application officially supports rendering of only
one 3D model at a time, however, more complex scenes could be rendered
consisting of more objects together with various materials. Also, a modern-
day geometry loader like Assimp could be integrated and used instead of
the old Wavefront .obj parser used currently. Related to that, also a decent
scene-graph should be incorporated to support more complex scenes. It is
already part of the VRG framework, but minor implementation changes are
needed to make the scene graph usable.

The implementation provides a generic controls API enabling relatively easy
integration of new control devices into the application. Currently, keyboard &
mouse controls, together with Wiimote controller are implemented, however
additional control devices could be added, such as HTC Vive proposed by
some testers during the usability testing.

Last but not least, the CUDA and OpenCL implementation should be
revised to find possible bottlenecks and errors caused by the insufficient
experience with the technology used during the implementation.

76

Bibliography

[Nic65] Fred E. Nicodemus. “Directional Reflectance and Emissivity of
an Opaque Surface”. In: Appl. Opt. 4.7 (July 1965), pp. 767–775.
doi: 10.1364/AO.4.000767. url: http://opg.optica.org/ao/
abstract.cfm?URI=ao-4-7-767.

[Kaj86] James T. Kajiya. “The Rendering Equation”. In: SIGGRAPH
Comput. Graph. 20.4 (Aug. 1986), pp. 143–150. issn: 0097-8930.
doi: 10.1145/15886.15902. url: https://doi.org/10.1145/
15886.15902.

[Dee+88] Michael Deering et al. “The Triangle Processor and Normal Vector
Shader: A VLSI System for High Performance Graphics”. In:
Proceedings of the 15th Annual Conference on Computer Graphics
and Interactive Techniques. SIGGRAPH ’88. New York, NY,
USA: Association for Computing Machinery, 1988, pp. 21–30.
isbn: 0897912756. doi: 10.1145/54852.378468. url: https:
//doi.org/10.1145/54852.378468.

[Guo98] Baining Guo. “Progressive Radiance Evaluation Using Directional
Coherence Maps”. In: Proceedings of the 25th Annual Conference
on Computer Graphics and Interactive Techniques. SIGGRAPH
’98. New York, NY, USA: Association for Computing Machinery,
1998, pp. 255–266. isbn: 0897919998. doi: 10.1145/280814.
280888. url: https://doi.org/10.1145/280814.280888.

[Dan+99] Kristin J. Dana et al. “Reflectance and Texture of Real-World
Surfaces”. In: ACM Trans. Graph. 18.1 (Jan. 1999), pp. 1–34.
issn: 0730-0301. doi: 10.1145/300776.300778. url: https:
//doi.org/10.1145/300776.300778.

[Žár+05] Jiří Žára et al. Moderní počítačová grafika. cze. 2. Praha: Computer
Press, 2005. isbn: 80-251-0454-0.

[Kru06] Steve Krug. “Don’t Make Me Think”. Czech. In: trans. by Jan
Škvařil. 2nd. Computer Press, Brno CZ, 2006, pp. 113–135. isbn:
80-251-1291-8.

77

https://doi.org/10.1364/AO.4.000767
http://opg.optica.org/ao/abstract.cfm?URI=ao-4-7-767
http://opg.optica.org/ao/abstract.cfm?URI=ao-4-7-767
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/54852.378468
https://doi.org/10.1145/54852.378468
https://doi.org/10.1145/54852.378468
https://doi.org/10.1145/280814.280888
https://doi.org/10.1145/280814.280888
https://doi.org/10.1145/280814.280888
https://doi.org/10.1145/300776.300778
https://doi.org/10.1145/300776.300778
https://doi.org/10.1145/300776.300778

9. Conclusion......................................
[FH09] Jiři Filip and Michal Haindl. “Bidirectional Texture Function

Modeling: A State of the Art Survey”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 31.11 (2009), pp. 1921–
1940. doi: 10.1109/TPAMI.2008.246. url: http://library.
utia . cas . cz / separaty / 2009 / RO / filip - bidirectional %
20texture%20function%20modeling%20state%20of%20the%
20art%20survey.pdf.

[NV10] DirectX11 Compute Shaders Vs CUDA. [Accessed 27-December-
2021]. 2010. url: https://forums.developer.nvidia.com/t/
directx11-%20compute-shaders-vs-cuda/16127.

[HFM10] V. Havran, J. Filip, and K. Myszkowski. “Bidirectional Tex-
ture Function Compression Based on Multi-Level Vector Quan-
tization”. In: Computer Graphics Forum 29.1 (2010), pp. 175–
190. doi: https://doi.org/10.1111/j.1467- 8659.2009.
01585.x. eprint: https://onlinelibrary.wiley.com/doi/
pdf / 10 . 1111 / j . 1467 - 8659 . 2009 . 01585 . x. url: https :
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-
8659.2009.01585.x.

[KDH10] Kamran Karimi, Neil G. Dickson, and Firas Hamze. A Per-
formance Comparison of CUDA and OpenCL. [Accessed 27-
December-2021]. 2010. doi: 10.48550/ARXIV.1005.2581. url:
https://arxiv.org/vc/arxiv/papers/1005/1005.2581v1.
pdf.

[Par+10] Steven G. Parker et al. “OptiX: A General Purpose Ray Tracing
Engine”. In: ACM Transactions on Graphics (Aug. 2010).

[Oos11] Jeremiah van Oosten. OpenGL Interoperability with CUDA. https:
//www.3dgep.com/opengl- interoperability- with- cuda/.
[Accessed 8-January-2022]. Dec. 2011.

[Tha11] Jonathan Thaler. “Deferred Rendering”. In: (Feb. 2011). url:
https : / / www . researchgate . net / profile / Jonathan % 5C _
Thaler2/publication/323357208_Deferred_Rendering/links/
5a8fce31aca272140560aaad/Deferred-Rendering.pdf.

[AMD11] Using a pointer/image in a struct, array of images. [Accessed
9-March-2022]. Jan. 2011. url: https://community.amd.com/
t5/archives-discussions/using-a-pointer-image-in-a-
struct-array-of-images/td-p/50897.

[PJH17] Matt Pharr, Wenzel Jakob, and Greg Humphreys. “Infinite Area
Lights”. In: Physically Based Rendering: From Theory to Im-
plementation. 3rd. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2017. Chap. 14.2.4, pp. 845–850. isbn: 978-0-12-
800645-0.

[FA18] Petr Felkel and David Ambrož. Rendering Into Texture. [Accessed
28-April-2022]. Oct. 2018. url: https://cent.felk.cvut.cz/
courses/PGR2/seminars.html.

78

https://doi.org/10.1109/TPAMI.2008.246
http://library.utia.cas.cz/separaty/2009/RO/filip-bidirectional%20texture%20function%20modeling%20state%20of%20the%20art%20survey.pdf
http://library.utia.cas.cz/separaty/2009/RO/filip-bidirectional%20texture%20function%20modeling%20state%20of%20the%20art%20survey.pdf
http://library.utia.cas.cz/separaty/2009/RO/filip-bidirectional%20texture%20function%20modeling%20state%20of%20the%20art%20survey.pdf
http://library.utia.cas.cz/separaty/2009/RO/filip-bidirectional%20texture%20function%20modeling%20state%20of%20the%20art%20survey.pdf
https://forums.developer.nvidia.com/t/directx11-%20compute-shaders-vs-cuda/16127
https://forums.developer.nvidia.com/t/directx11-%20compute-shaders-vs-cuda/16127
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01585.x
https://doi.org/https://doi.org/10.1111/j.1467-8659.2009.01585.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01585.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2009.01585.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01585.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01585.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01585.x
https://doi.org/10.48550/ARXIV.1005.2581
https://arxiv.org/vc/arxiv/papers/1005/1005.2581v1.pdf
https://arxiv.org/vc/arxiv/papers/1005/1005.2581v1.pdf
https://www.3dgep.com/opengl-interoperability-with-cuda/
https://www.3dgep.com/opengl-interoperability-with-cuda/
https://www.researchgate.net/profile/Jonathan%5C_Thaler2/publication/323357208_Deferred_Rendering/links/5a8fce31aca272140560aaad/Deferred-Rendering.pdf
https://www.researchgate.net/profile/Jonathan%5C_Thaler2/publication/323357208_Deferred_Rendering/links/5a8fce31aca272140560aaad/Deferred-Rendering.pdf
https://www.researchgate.net/profile/Jonathan%5C_Thaler2/publication/323357208_Deferred_Rendering/links/5a8fce31aca272140560aaad/Deferred-Rendering.pdf
https://community.amd.com/t5/archives-discussions/using-a-pointer-image-in-a-struct-array-of-images/td-p/50897
https://community.amd.com/t5/archives-discussions/using-a-pointer-image-in-a-struct-array-of-images/td-p/50897
https://community.amd.com/t5/archives-discussions/using-a-pointer-image-in-a-struct-array-of-images/td-p/50897
https://cent.felk.cvut.cz/courses/PGR2/seminars.html
https://cent.felk.cvut.cz/courses/PGR2/seminars.html

.....................................9.2. Future Work

[KCL18] Yong Hwi Kim, Junho Choi, and Kwan H. Lee. “An efficient
method for specular-enhanced BTF compression”. In: Comput-
ers Graphics 75 (2018), pp. 1–10. issn: 0097-8493. doi: https:
//doi.org/10.1016/j.cag.2018.06.001. url: https://www.
sciencedirect.com/science/article/pii/S0097849318300918.

[Slo21a] Jaroslav Sloup. CUDA - types of memory and their usage. https:
//cent.felk.cvut.cz/courses/GPU/2021/lectures/03/
lecture_3.pdf. [Accessed 5-January-2022]. Oct. 2021.

[Slo21b] Jaroslav Sloup. OPENGL COMPUTE SHADERS, CUDA OpenGL
interoperation. https://cent.felk.cvut.cz/courses/GPU/
2021/lectures/08/lecture_8.pdf. [Accessed 5-January-2022].
Nov. 2021.

[Kal+22] Simon Kallweit et al. The Falcor Rendering Framework. Mar.
2022. url: https://github.com/NVIDIAGameWorks/Falcor.

[khra] clEnqueueReleaseGLObjects(3) Manual Page. [Accessed 12-May-
2022]. url: https://www.khronos.org/registry/OpenCL/sdk/
2.2/docs/man/html/clEnqueueReleaseGLObjects.html.

[khrb] Framebuffer object. [Accessed 28-April-2022]. url: https://www.
khronos.org/opengl/wiki/Framebuffer_Object.

[Intela] Intel® Embree - High Performance Ray Tracing. [Accessed 4-
January-2022]. url: https://www.youtube.com/watch?v=5C-
IYDMn9p4&ab_channel=IntelSoftware.

[Intelb] Intel® oneAPI Base Toolkit System Requirements. [Accessed 4-
January-2022]. url: https://www.intel.com/content/www/
us/en/developer/articles/system- requirements/intel-
oneapi-base-toolkit-system-requirements.html.

[CP] OpenGL vs DirectX. [Accessed 4-January-2022]. url: https :
//www.cprogramming.com/tutorial/openglvsdirectx.html.

[NVa] Turing Extensions for Vulkan and OpenGL. [Accessed 3-January-
2022]. url: https://developer.nvidia.com/vulkan-turing.

[NVb] What Is Vulkan? [Accessed 4-January-2022]. url: https : / /
developer.nvidia.com/vulkan.

79

https://doi.org/https://doi.org/10.1016/j.cag.2018.06.001
https://doi.org/https://doi.org/10.1016/j.cag.2018.06.001
https://www.sciencedirect.com/science/article/pii/S0097849318300918
https://www.sciencedirect.com/science/article/pii/S0097849318300918
https://cent.felk.cvut.cz/courses/GPU/2021/lectures/03/lecture_3.pdf
https://cent.felk.cvut.cz/courses/GPU/2021/lectures/03/lecture_3.pdf
https://cent.felk.cvut.cz/courses/GPU/2021/lectures/03/lecture_3.pdf
https://cent.felk.cvut.cz/courses/GPU/2021/lectures/08/lecture_8.pdf
https://cent.felk.cvut.cz/courses/GPU/2021/lectures/08/lecture_8.pdf
https://github.com/NVIDIAGameWorks/Falcor
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clEnqueueReleaseGLObjects.html
https://www.khronos.org/registry/OpenCL/sdk/2.2/docs/man/html/clEnqueueReleaseGLObjects.html
https://www.khronos.org/opengl/wiki/Framebuffer_Object
https://www.khronos.org/opengl/wiki/Framebuffer_Object
https://www.youtube.com/watch?v=5C-IYDMn9p4&ab_channel=IntelSoftware
https://www.youtube.com/watch?v=5C-IYDMn9p4&ab_channel=IntelSoftware
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html
https://www.intel.com/content/www/us/en/developer/articles/system-requirements/intel-oneapi-base-toolkit-system-requirements.html
https://www.cprogramming.com/tutorial/openglvsdirectx.html
https://www.cprogramming.com/tutorial/openglvsdirectx.html
https://developer.nvidia.com/vulkan-turing
https://developer.nvidia.com/vulkan
https://developer.nvidia.com/vulkan

Appendix A
User Manual

A.1 Wiimote Controls

Wiimote controls are mainly dedicated for the VR version of the application.
Functionality binding is depicted in the diagram A.1.

A.2 Desktop Controls

The desktop version of the application enables the interaction using a keyboard
with a mouse, together with the Wimmote controller already discussed in the
previous section. To enable interaction using a mouse, the Mouse Mode must
be actived by a single right-click into the scene. This way the mouse cursor
gets locked and it is possible to use the mouse within the application. To
disable mouse mode, Esc key must be pressed or a menu must be displayed
using a M key.

In terms of camera motion, it can be split into two categories. The first cat-
egory represents Orbit Controls, which is similar to how the Wiimote controls
work, and it utilizes mouse buttons. The second category is implemented in
a way how movement, mainly in computer games, is implemented, which is
based on the well-known W,A,S,D combination.

However, it is required to use only one type of interaction through the
whole application run-time, otherwise the camera stops working properly and
the application must be reset (run-time reset using key R, or hard reset).

In both cases, looking around with the camera is available by moving the
mouse, when the mentioned Mouse Mode is active.

a) Orbit Controls

Orbit movement controls require to move with the mouse while one of the
mouse buttons is pressed. The motion is mapped to spherical coordinates
defining the rotation/position.. Left Mouse Button - camera orbits around the object..Middle Mouse Button - object rotates around its center.

80

.................................. A.2. Desktop Controls

Figure A.1: Wiimote controls functionality mapping diagram.

.Right Mouse Button - environment or point light rotates around the
object..Mouse Wheel Rotation - zoom in / zoom out.

81

.................................. A.2. Desktop Controls

b) First-person Controls

First person controls enable free motion throughout the scene..W, A, S, D - move forward, left, backward, right.. Space - move up.. Left shift - move down.

Control Over Parameters of the Application

Key bindings of the application parameters..M - display/hide menu.. Left & Right arrows - change BTF material.. 8, 5 - next / previous 3D object..Up & Down arrows - change the number of lights evaluated in a single
frame.. I - initialize Interpupillary Distance (IPD) measurement and calibration
of the XTAL 8K VR headset.. 1, 2, 3 - use GLSL/CUDA/OpenCL renderer.. 4, 6 - lower / increase rendering resolution..+,- - increase / lower resolution of the currently used material..P - enable / disable progressive rendering..N - enable / disable Image Based Lighting (IBL)..U - save standard screenshot..O - save VR screenshot (when VR headset used).. Esc - terminates the application.

82

Appendix B
Image Gallery

83

..................................... B. Image Gallery

(a) : Corduroy, 1 Point light (b) : CeilingHDR, 1 Point light (c) : Corduroy, 200 Dir. lights

(d) : Impalla, 200 Dir. lights (e) : Proposte, 200 Dir. lights (f) : Corduroy, 200 Dir. lights

(g) : Pulli, 1 Point light (h) : Pulli, 200 Dir. lights (i) : CeilingHDR, 200 Dir. lights

Figure B.1: Examples of materials under various lighting and view conditions.

84

Appendix C
Configuration File Example

85

............................... C. Configuration File Example

static data - should not be modified
btf-cubemap-folder=data/btf/cubemaps

customizable data
use-vr=true
use-vr-native-res=false
vr-fb-width=3840
vr-fb-height=2160

fb-width=1920
fb-height=1080

fb-min-scale-factor=-5.0
fb-max-scale-factor=3.0

Models loading paths and params
model=data/obj/koule.obj
model=data/obj/bunny.obj
model=data/obj/hippo.obj

base-model-scale=1.0
base-model-offset=0.0-0.0-0.0

BTF materials loading
btf-material=data/btf/materials/impalla
btf-material=data/btf/materials/ceilingHDR
btf-material=data/btf/materials/proposte

Environment map loading
Cathedral
envmap-path=data/envMaps/raw023.hdr
envmap-exposure=125

CUDA Settings
cu-threads-per-block=256

OpenCL Settings
ocl-threads-per-block=256
ocl-kernels-path=data/kernels/opencl

Other parameters
bg-color=25-25-30
desktop-cam-init-pos=0.0,0.0,3.5
screenshots-folder=screenshots

Listing 1: Configuration File Example

86

Appendix D
Contents of Attached CD

Visual Studio project is available in the folder project. Windows x64 ex-
ecutable is available in the folder windows. PDF file of the thesis together
with LATEX source code is available in the folder doc. Some demo images are
available in the folder img. Instructions (README.txt), how to launch the
application are supplied with the executable in the windows folder.

Both executable in windows folder and the project in project folder require
the same data sub-folder, which is due to the size constraints split into many
zip files.

DP/
project/

data/
btf/

cubemaps/
materials/

envMaps/
kernels/
obj/
shaders/
textures/

windows/
data/

btf/
cubemaps/
materials/

envMaps/
kernels/
obj/
shaders/
textures/

doc/
pdf/
latex/

img/

87

	List of Abbreviations
	Introduction
	State of the Art
	Rasterization
	Raytracing
	Usage of BTF

	Computer Graphics Technologies
	Rendering APIs
	General Purpose Computing on GPU - GPGPU
	GLSL and HLSL
	Compute Shaders
	NVidia CUDA
	OpenCL

	Rendering Frameworks
	Virtual Reality
	Headset XTAL 8K

	Basics of Global Illumination Methods
	Radiometry
	Solid Angle
	Radiance
	Bidirectional Reflectance Distribution Function
	Rendering Equation
	Bidirectional Texture Function

	Monte Carlo Sampling
	Importance Sampling

	Image Based Lighting
	Environment Map
	Environment Map Importance Sampling

	Bidirectional Texture Function Compression
	BTFbase
	BTF Compression Using MLVQ
	BTF Decompression and Rendering

	Analysis and Design of the Application
	Functional Requirements
	Main Design Ideas
	Renderer
	Offscreen Rendering
	Multiple Render Targets
	Deferred Rendering

	BTF Materials
	Environment Map Approximation
	Progressive Rendering
	Rendering for Virtual Reality
	User Interface
	Controls
	GUI

	Implementation
	Structure of the Application
	OpenGL Renderer
	GLSL

	Deferred Rendering
	CUDA Renderer
	Constant Memory
	CUDA-OpenGL Interoperation
	Textures and Surfaces

	OpenCL Renderer
	OpenCL-OpenGL Interoperation

	Environment Map Approximation
	Progressive Rendering
	XTAL VR Headset Integration
	Rendering to a Headset

	Control System
	Wiimote Controller
	Generic Controls API
	Graphical User Interface
	Application Configuration

	Summary of Used Technologies

	Results and Testing
	User Testing
	Testing Strategy
	Questions and General Answers
	User Advice

	Performance Testing
	Tests Setup
	Used Hardware and Software
	GLSL, CUDA, and OpenCL Performance Comparison
	Virtual Reality and Desktop Performance Comparison
	Various Types of Lighting Performance Comparison
	CPU and GPU Performance Comparison
	Unresolved Problems and Possible Solutions

	Conclusion
	Summary
	Future Work

	Bibliography
	User Manual
	Wiimote Controls
	Desktop Controls

	Image Gallery
	Configuration File Example
	Contents of Attached CD

