
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Detection of disadvantageous individual
decisions for a game with fantastic elements

Bc. Štěpán Műller

Supervisor: Mgr. Pavel Jakubec
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474557Personal ID number:Műller ŠtěpánStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Detection of disadvantageous individual decisions for a game with fantastic elements

Master’s thesis title in Czech:

Detekce nevýhodných individuálních rozhodnutí pro hru s fantastickými prvky

Guidelines:

The student will research state-of-the-art deep artificial intelligence (AI) approaches of decision making influenced by the
economical factors such as opportunity cost and its implementability for a game with non-realistic (fantastic) elements and
its combination with models for making the decision under risk and uncertainty. Afterwards, the student will implement the
AI model and regularization method for detection of disadvantageous individual decisions and their contribution to the
team effort (winning / losing the game).
Review different AI approaches for detection of individual decisions suitable for applying within the chosen game rules.
Implement / derive the chosen AI solution and combine it with a chosen classical method.
Test implementation of the solution with artificially generated data and compare them to the real world data.
Evaluate experimentally the solution and compare it to existing techniques used for the prediction in electronic sports for
a chosen game.

Bibliography / sources:

de Palma, Andre, Moshe Ben-Akiva, David Brownstone, Charles Holt, Thierry Magnac, Daniel McFadden, and Peter
Moffatt et al. 2008. "Risk, Uncertainty And Discrete Choice Models". Marketing Letters 19 (3-4): 269-285.
doi:10.1007/s11002-008-9047-0.
Jeong, Yonghyun, Hyunjin Choi, Byoungjip Kim, and Youngjune Gwon. 2020. "Defoggan: Predicting Hidden Information
In The Starcraft Fog Of War With Generative Adversarial Nets". Proceedings Of The AAAI Conference On Artificial
Intelligence 34 (04): 4296-4303. doi:10.1609/aaai.v34i04.5853.
Wang, Shenhao, Baichuan Mo, and Jinhua Zhao. 2021. "Theory-Based Residual Neural Networks: A Synergy Of Discrete
Choice Models And Deep Neural Networks". Transportation Research Part B: Methodological 146: 333-358.
doi:10.1016/j.trb.2021.03.002.
Wong, Melvin, and Bilal Farooq. 2021. "Reslogit: A Residual Neural Network Logit Model For Data-Driven Choice Modelling".
Transportation Research Part C: Emerging Technologies 126: 103050. doi:10.1016/j.trc.2021.103050.

Name and workplace of master’s thesis supervisor:

Mgr. Pavel Jakubec Fantasy AI Solutions s.r.o.

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 28.01.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureMgr. Pavel Jakubec
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank Mgr. Pavel Jakubec
for supervising my research. I am also
grateful to my partner Vendy for her sup-
port.

Declaration
I declare that the presented work was

developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 18, 2022

v

Abstract
The electronic sports industry has been
growing rapidly in the last years and is
expected to grow further in the follow-
ing years. Players are interested in get-
ting better at games, which leads play-
ers to watch professional players or even
hire coaches. We propose a method to
automatically detect mistakes made in
games based on artificial intelligence. Our
method is going to help players gain more
insight into how individual game events
affect the outcome of the game and notify
them about what they could have done
differently to improve the probability of
their team to win the game. We trained a
neural network on matches of professional
players to predict which actions players
are going to perform. This allowed us
to automatically detect situations where
the difference between the predicted and
acted behavior was high and the player
probably could have performed a better
action.

Keywords: neural networks, multi-task
learning, game ai, esports analytics

Supervisor: Mgr. Pavel Jakubec
Fantasy AI Solutions, s.r.o.,
Cihelná 718,
411 08 Štětí

Abstrakt
Odvětví elektronických sportů se v posled-
ních letech rychle rozrůstalo a podle od-
hadů bude růst nadále. Hráči mají zájem
se v hraní zdokonalovat, někteří se proto
kromě hraní dívají na profesionální hráče
nebo si najímají kouče. Navrhujeme me-
todu pro automatické detekování chyb ve
hrách na základě umělé inteligence, která
pomůže hráčům získat lepší vhledu do
toho, jak jednotlivé herní události ovliv-
nily výsledek hry a upozorní je na situace,
kdy se mohli zachovat jinak, aby zvýšili
šanci svého týmu na výhru. Natrénovali
jsme neuronovou síť na zápasech profesio-
nálních hráčů aby předvídala, které akce
hráč udělá. Díky tomu dokážeme automa-
ticky detekovat situace, kdy je rozdíl mezi
předpovězeným a vykonaným chováním
velký a hráč mohl pravděpodobně vykonat
lepší akci.

Klíčová slova: neuronové sítě,
víceúkolové učení, umělá inteligence ve
hrách, analytika v esportu

Překlad názvu: Detekce nevýhodných
individuálních rozhodnutí pro hru s
fantastickými prvky

vi

Contents
1 Introduction 1
1.1 League of Legends 1
1.2 Our work . 4
2 Related work 7
2.1 Game artificial intelligence 7

2.1.1 AI players 7
2.1.2 Representing knowledge 8
2.1.3 Planning and games 9
2.1.4 Decision making under

uncertainty and risk and
opportunity cost analysis 10

2.2 League of Legends analysis 11
2.3 Traditional sports analysis 12
3 Statistical models 13
3.1 Supervised learning 13

3.1.1 Loss functions 13
3.1.2 Logistic regression 14
3.1.3 Tree classifiers 14
3.1.4 Neural networks 16

3.2 Reinforcement learning 19
3.2.1 Fully observable Markov

decision processes 20
3.2.2 Value functions 20
3.2.3 Deep reinforcement learning . 21

4 Dataset 23
4.1 Data structure 23
4.2 Data wrangling 24
5 Solution 27
5.1 Predicting game outcome 27

5.1.1 Feature engineering 27
5.1.2 Results 30

5.2 Predicting macro decisions 33
5.2.1 State encoding 33
5.2.2 Prediction targets 34
5.2.3 Model . 37
5.2.4 Results 38

6 Conclusion 51
A Bibliography 53

vii

Figures
1.1 A schema of Summoner’s Rift, the

most popular League of Legends map. 2

4.1 2D histograms of champion
positions in the data. 26

5.1 K-modes clustering of team
champion compositions. 28

5.2 The relationship between the
number of samples per game in the
training split and the final test
accuracy. 31

5.3 Prediction accuracy of win
prediction models, depending on
game time. 32

5.4 Probabilities of the blue team
winning throughout sample games
from the test set. 42

5.5 Processing of structured
multi-modal data using a neural
network. 43

5.6 Histograms of absolute differences
between predicted and true values. 44

5.7 Histogram of probabilities of
movements performed by players on
the test dataset. 45

5.8 Champion movement and a 2D
visualization of predicted positions at
different game states. 47

5.9 Champion movements and
predicted movements for all
champions at different game states. 48

5.10 Champion movement and a 2D
visualization of predicted positions at
detected “bad decision” states. . . . 49

Tables
4.1 List of all information available at

each game state. 25

5.1 Train and test accuracies of logistic
regression. 41

5.2 Regression target means, variances
and weights. 41

5.3 Model losses, depending on
timestep length. 43

5.4 Ablation study of features. 45
5.5 Ablation study of targets. 46

viii

Chapter 1
Introduction

The electronic sports(esports) market revenue and audience size have been
growing rapidly and are expected to grow further in the following years. [1],
[2]

Many players of competitive esports games want to get better at playing.
Their motivations include a sense of achievement, the social status it brings
among gamers [3] or intentions of becoming a professional player.

Some players are willing to pay coaches to watch them play and give them
advice on how to improve. Another option to learn is to watch professional
players play in tournaments to learn from the best. There are also educational
streams where good players play and explain their decisions.

Even with all the options, getting better at the game is difficult. When
players watch replays (recordings of the games they played) and have access
to the full state of the game, part of which was hidden to them during the
game, determining the best move to make in a given situation and identifying
mistakes is still not straightforward. Even if some actions seem advantageous
at a given moment, it is difficult to reason about their long-term consequences.

We propose an artificially intelligent (AI) method that automatically pro-
cesses games played by players and gives them the tools and feedback required
to improve and gain a better understanding of the game based on statistical
machine learning.

1.1 League of Legends

League of Legends (LoL) is a multiplayer online battle arena (MOBA) game.
It is played in real-time. Its most popular game mode is played by two teams,
each consisting of 5 players, on a square, 2-dimensional map. The map is
mirrored and consists of the bases of both teams, three lanes, called top, mid
and bottom, the upper and the lower jungle, and the river. On each lane,
there are 3 turrets and 1 inhibitor on both sides. In each base, there is a
shop, a fountain where champions quickly replenish their health and mana,
and the nexus. The schema of the map can be seen in Figure 1.1.

Shortly after the game starts, minions start appearing at each base at
regular intervals, marching down each lane. Minions are simple characters
controlled by simple game logic. They will attack any opponent they en-

1

1. Introduction

Figure 1.1: A schema of Summoner’s Rift, the most popular League of Legends
map. Spawn locations of important monsters are shown. The blue team has a
base in the bottom left corner. The red team has a base in the right top corner.
[4]

counter, eventually destroying the opponent team’s nexus if not stopped. The
game ends when one of the nexuses gets destroyed. Turrets attack any nearby
enemy with powerful attacks, hindering the advancements of enemy minions
until destroyed. An inhibitor is a passive structure that respawns five minutes
after it is destroyed. While it is destroyed, the opponent team spawns an
additional minion, called super minion, on the lane on which the inhibitor is
destroyed, putting additional pressure on the lane.

Each player controls a unique character, called champion. Before the game
starts, players choose their champion in the pick phase. Currently, there are
more than 140 different champions available, each one having different looks,
abilities, and stats.

All players have the recall ability which allows them to teleport back to
their base after staying still and channeling for a few seconds. This ability is
interrupted by any damage they receive so it cannot be used in combat. The

2

.................................. 1.1. League of Legends

purpose of this ability is to quickly get home to replenish health and mana,
buy items, or defend the base.

Before the game begins, players have to select 2 summoner spells. Sum-
moner spells are special abilities with high cooldowns. They are called
summoner spells because, in the game, the player is referred to as the sum-
moner who summons the champion. Cooldown is the time for which the player
needs to wait after using an ability before it can be used again. Summoner
spells have cooldowns in the range of minutes. Summoner spells include but
are not limited to heal which heals the champion and nearby teammates,
ingite which ignites an enemy champion, causing them damage over a short
duration, smite which deals a large amount of damage to neutral monsters and
teleport which allows the player to teleport to a friendly minion or structure
anywhere on the map.

Champions get stronger as the game progresses. If a champion is within
a certain range (called “XP range”) of an opponent and the opponent dies,
the champion will gain experience from that foe’s death. After accumulating
a certain amount of experience, champions level up which increases their
stats and allows the player to choose a skill to unlock or to improve the level
of one of their already unlocked skills. If a champion dies, they respawn
after a certain time. Respawn time increases as the game progresses and as
champions level up.

Players also gain gold when they kill an enemy minion or a neutral monster,
but they have to be the ones who dealt the killing blow, called last hit. The
entire team gets a gold reward if they manage to slay some of the powerful
neutral monsters, dragon and Baron Nashor, or when they destroy an enemy
turret. Gold can be used to buy items in the game shops located on each of
the team’s bases.

In earlier stages of the game, instead of Baron Nashor, Rift Herald spawns
in his place. After killing the Rift Herald, the team that last hit him can
pick up an item from the ground that allows them to spawn the Rift Herald
somewhere on the map for their team to start marching and destroying enemy
turrets on the nearest lane.

There are different types of elemental dragons and then there is the elder
dragon. Slaying elemental dragons grants a permanent team-wide buff. Slay-
ing Baron Nashor grants a powerful team-wide buff called “Hand of Baron”
for 180 seconds. Slaying the elder dragon grants a powerful team-wide buff
called “Aspect of the Dragon” for 150 seconds.

Besides the lanes, there is the jungle, where neutral monsters can be killed
for experience and gold. Some neutral monsters also grant a temporary buff
to the champion who slew them.

The strategy adopted by the majority of the players, usually referred to
as the current metagame, is for each team to split their half of the map,
assigning each team member a role. The top takes the top lane and is usually
played by a durable champion. The mid takes the mid lane and is usually
a mage, a character with powerful spells. The attack damage carry (ADC)
takes the bot lane, along with the support, a character whose role is to grant

3

1. Introduction
vision to the team by placing cameras on the map, called wards, to deny the
opposite team’s vision by destroying the opponent team’s wards, and to help
the ADC on the lane. Lastly, the jungler ’s role is to clear the jungle. The
jungler may also temporarily replace a teammate on a lane who died or needs
to recall back to replenish health or mana or to buy an item. The jungler
may also try to ambush the opponents on lanes. The move to go on another
lane in an attempt to surprise and kill the opponents is called a gank.

We divide the wards placed by players into 3 types, sight wards, which are
invisible but only last for a limited time, control wards, which reveal other
invisible units, including sight wards, and farsight wards, which only have a
small vision range but can be placed at a high distance. Sight wards include
stealth wards and totem wards from the in-game items.

Each champion should place wards around the map, warding cannot be
entirely delegated to a single-player. Firstly, wards have to be placed from a
relatively small distance and the support cannot be expected to be present
and ward on all parts of the map. Secondly, there are limits on the number
of active wards of a certain type a single-player can have placed at the same
time. If a champion places another ward while being at their limit, the oldest
ward of that type placed by the player disappears.

Early in each game, all champions are relatively weak. They have to
perform a lot of attacks to slay minions and they die to just a few turret
shots. Mistakes in this part of the game do not matter as much because the
respawn times are short. The main focus of the early game is to obtain gold
and experience by last hitting enemy minions or neutral monsters. Later in
the game, champions get stronger and can take on the Rift Herald, Dragon,
or Baron Nashor and kill multiple minions by casting a single spell. A single
death at this part of the game can lead to a long disadvantageous 4v5 situation
which can result in a loss of the game.

The game rules and the map are constantly evolving. Additional content
is being introduced, including new playable champions. Adjustments are also
being made that balance the game. Players have to keep adapting their play
styles to these changes.

1.2 Our work

The performance of players can be split into two parts, micromanagement
or micro and macro-management or macro. Players have to make strategic
high-level decisions about where to go on the map and what to do. These
high-level decisions are called macro. Players also need to master the controls
and combos of their characters in combat. This is called micro.

In our work, we focus on the macro part of playing games. Learning
complete MOBA AI agents, that is both micro and macro, using machine
learning is computationally very expensive [5] [6]. We simplified the task of
learning to reason about LoL to save computation time but still get useful
results.

The other reason we focus on macro is that we think it has a higher

4

...................................... 1.2. Our work

potential to bring value to players. To have good control of the champion,
players have to practice for hundreds or thousands of hours to automate
certain action sequences. On the other hand, players have time to consider
macro decisions during games and can improve their decision-making very
quickly by changing their views about the game. The goal of our work is to
deepen players’ strategic understanding of the game. For this purpose, we
developed two models.

One is an interpretable win prediction model. With it, we can show the
player how did each game event affect the chances of both teams winning
the game. We also show an example of how the visualization of the model
output could look like on two selected games. This model should improve
the players’ intuition and decision-making by showing the effect of different
game objectives and events on the expected win rate of both teams.

The second model we developed is a neural network that predicts the
position of a champion in the next state and the expected rewards they
accrue based on the current game state. By training this neural network on
a dataset of games played by professional players, we get a behavior model of
professional players. We then consider the model predictions as good decisions
and realistic acquirable rewards. This allows us to compare the decision made
by the player at each game state and the rewards they acquired with the
predicted ones. We can then give positive and negative feedback based on
whether the player was able to achieve more or less and where on the map
they decided to go. In this work, we focus only on detecting disadvantageous
decisions, even though the usage of this model for detecting advantageous
(surpassing expectations) decisions is straightforward.

Our proposed AI method can be used as a submodule of a more complex
system that would provide feedback to players after games in a form of
post-game analysis. We also provide example visualizations of the outputs of
our models as an inspiration for how they could be presented to players.

5

6

Chapter 2
Related work

2.1 Game artificial intelligence

2.1.1 AI players

Board games like Chess and Go were considered a grand challenge in AI.
Playing these games can be viewed as a complex planning problem.

In 2016, Silver et al. published AlphaGo [7]. AlphaGo combines deep
reinforcement learning (DRL) with Monte-Carlo tree search (MCTS), utilizing
the discrete action and state-space of Go. First, they pre-trained deep neural
networks using supervised learning on human expert games. Then, they
trained the networks further using DRL and self-play. AlphaGo achieved a
99.8% winning rate against other Go programs and defeated the European
Go champion Fan Hui in a five-game match 5 to 0.

In 2017, Silver et al. published AlphaGo Zero [8]. AlphaGo Zero achieved
superhuman performance without human domain knowledge, except for the
knowledge of the game rules, and also beat the previous AlphaGo 100 to
0. AlphaGo Zero was trained without any human expert games, using just
self-play.

In 2018, Silver et al. published AlphaZero [9], a general algorithm able to
master chess, shogi, and Go through self-play. AlphaZero can be used on games
that can end in a draw, which is the case for both chess and shogi but not for
Go. AlphaZero also does not use any game-specific knowledge, like exploiting
the symmetries in a Go board. They used the same convolutional neural
network architecture as AlphaGo Zero for chess, shogi, and go. AlphaZero
can be viewed as a DRL algorithm with MCTS as a policy improvement
operator.

Chess, Shogi, and Go are fully observable 2-player board games with
deterministic rules in which players take turns playing actions. Compared to
real-time computer games, they are shorter in the number of time steps each
game lasts and their state and action spaces are discrete and relatively small.

In 2013, Mnih et al. [10] presented the first successful DRL model that
learned to play ATARI games using the raw game screen as input. Their
method even surpassed human experts on three of the games.

In 2020, Schrittwieser et al. generalized the AlphaZero algorithm further

7

2. Related work.....................................
and published MuZero [11]. The need to know the game rules was removed.
During the tree search, MuZero uses a learned dynamics model instead of the
game rules. MuZero also works on single-player games on top of two-player
zero-sum games. MuZero achieved state-of-the-art performance on ATARI
games, comparable results on Chess and Shogi to AlphaZero, and surpassed
AlphaZero in Go with fewer parameters.

StarCraft II, Dota 2, LoL, HoK, and Quake III CTF are partially observable
real-time computer games. StarCraft II is a real-time strategy game played
1 vs. 1 in which both players control multiple units. Dota 2, LoL and HoK
are MOBAs. MOBAs are usually played 5 vs. 5 and each player usually only
controls a single unit with unique abilities. Quake III CTF is a multiplayer
first-person shooter game.

Recently, artificial agents that can play multiplayer computer games on a
superhuman level have been developed. StarCraft II [12], Dota 2 [5], Quake
III Capture the Flag (CTF) [13] and Honor of Kings (HoK) [14] have all been
solved using large-scale DRL and self-play.

For games with imperfect information, which all of the above-mentioned
multiplayer computer games are, the agents played against pools of previous
versions of the agents to prevent the agent from only learning to counter its
current strategy and getting stuck in a rock-paper-scissors-like cycle.

Besides reinforcement learning, an agent playing HoK at the level of top
human players was developed using only supervised learning on high-quality
ranked games. Ye et al. [6] chose games played by the top 1% of human
players, in which the overall score of the player exceeded 90% of the scores
of players using the same hero. They removed the other games from their
training set.

2.1.2 Representing knowledge

When optimizing the AI agents using DRL to win games as the main task,
the agents learned to represent important knowledge from raw game data.

In Dota 2, Berner et al. [5] evaluated the agents’ understanding by predict-
ing various game features from the agents’ Long short-term memory (LSTM)
[15] state:.Win probability. Net worth rank: Which rank among the team (1-5) in terms of total

resources collected will the hero be at the end of the game?. Team objectives/enemy buildings: Whether the hero will help the team
destroy an enemy building.

They then used the win probability predictor to develop a drafting algorithm.
During pick phase, in which heroes are drafted, they used it to decide which
hero to pick next. Because the hero pool was limited to just 17 heroes, they
could precompute the win rate of every possible lineup and then use the

8

...............................2.1. Game artificial intelligence

minimax algorithm to draft optimally with respect to the predicted win rate
at the start of the game.

Similarly, the HoK DRL agents [14] used win rate prediction for drafting.
The authors managed to teach the agent to play games with a larger hero
pool of size 40, therefore an algorithm based on Monte-Carlo tree search [16]
was used instead of minimax.

In Quake III CTF [13], the agents’ observations were the raw pixels of the
game. Using logistic regression on the internal state of the agent, the authors
were successfully able to answer more than 70% of binary questions like “Do
I have the flag?”, “Did I see my teammate recently?”, and “Will I be in the
opponent’s base soon?”. The agent even developed neurons whose activation
corresponded to the answers to some of these questions. For example, a
neuron that was active if and only if the agent’s teammate was holding the
flag.

Generative adversarial networks (GANs) [17] were used to develop Defoggan
[18], a model which was able to successfully remove the “fog of war” and
predict hidden information in StarCraft II from previously observed game
states.

2.1.3 Planning and games

Let us consider the following classical planning state model:

P = (S, A, γ, si, sg)

S is a set of states, A is a set of actions, γ is a transition function that
maps each state-action pair to a state, si ∈ S is the initial state, and sg ⊂ S
is a set of goal states.

A sequence of actions is a plan if by applying the actions in order we get
to a goal state from the initial state si.

Classical planning can be used to find plans for single-player games. How-
ever, we must extend it to play multiplayer games because it assumes a static
environment. In multiplayer games, the state also changes because of actions
performed by other players.

Let us take Chess as an example. If we had a model, that is, a probability
distribution over the moves the opponent takes in each state, we could
formulate the process of playing against this opponent as a Markov decision
process and theoretically solve it optimally, obtaining a policy that would
tell us what is the best action to take against this opponent in each state.
However, there are too many states to compute this in practice.

Today, DRL is used to approximate policy functions and is the current
state-of-the-art for both board games and video games. For board games and
ATARI games, these policies have successfully been improved by planning,
either using the known game rules or a learned model. [11] State-of-the-art
DRL agents that play multi-player computer games do not plan ahead. They
estimate the best action to take at each step using just the current state or a

9

2. Related work.....................................
small recent history of states. This can be viewed as reactive planning and is
also the approach we use for planning where to go on the map in LoL.

2.1.4 Decision making under uncertainty and risk and
opportunity cost analysis

Playing partially observable games against human opponents can be viewed
as decision-making under uncertainty. We could try to discretize the actions
a player can take in different parts of a game of LoL using domain knowledge
and use a discrete choice model for decision-making under uncertainty to
analyze the decisions taken by players. [19] [20] [21]

There are several problems with this approach. In our opinion, discretiza-
tion would simplify the problem too much. State-of-the-art DRL agents and
usually even amateur teams are able to beat rule-based hand-scripted agents
in MOBAs. [5] As the state-space of League of Legends is structured and
complex, it would be rather difficult and likely inaccurate to try to estimate
the actions available to a player in a given state and the probabilities of
their outcomes using handmade rules created by domain experts. We would
constrain our reasoning to a set of predefined discrete actions. However, our
model would not work well if the players played differently than we expected.

For example, in the early game, it is important that both teams have
champions on each lane to collect the gold and experience that minions
provide on death. We could compute the opportunity cost of the ADC leaving
the bottom lane to try to kill the enemy mid laner. Let us assume that it
would not be economically worth it to do at the start of the game. But when
exactly would it start being worth it? How likely is the ADC to succeed in
killing the enemy mid laner if they decide to do it? This depends on many
things, including the combinations of all involved champions, whether there
is an enemy ward on the path from bottom to mid, the exact position of the
enemy mid laner, and more.

If we could compute the economical aspect of gold and experience, would it
be enough to consider only these? If the enemy mid laner gets killed, maybe
the team can kill the dragon or the Rift Herald. Maybe the enemy jungler
is going to go on mid to kill minions and that will relieve the pressure on
the bottom and top lanes and allow our team’s jungler to successfully gank
one of these lanes. Or, if the ADC does not succeed, maybe the enemy ADC
is going to push the bottom turret. While the ADC is absent, the support
would be last hitting minions on the bottom lane. What is the economic cost
of the fact that the support, rather than the ADC, gets some amount of gold
from minions?

Our model predicts rewards while considering the entire game state. We can
use our model in any state in any game and consider the predicted expected
reward as an opportunity which we then compare with the opportunity
chosen by the player and the rewards he received. We can then analyze the
opportunity cost of the player’s decision.

10

.............................. 2.2. League of Legends analysis

2.2 League of Legends analysis

Data from games played by real players was mined to solve various game
sub-problems like item recommendation (picking the final 6 items to build
during the game given a lineup) [22] [23], champion drafting [24] or game
outcome prediction [25] [26].

Kim et al. [27] extracted game information from games using image
processing and used custom hand-crafted metrics, namely Split Score and
Rotation Score, and used them to cluster different playstyles. They compare
their system to the popular website op.GG [28].

We are interested in identifying important moments in which a player
influenced or could have influenced the final result of the game.

Maymin [29] extracted a large amount of data from live LoL matches
using computer vision. Based on simple features, namely game time, team
kills, turrets destroyed, dragons killed and Barons killed, they created an
interpretable in-game win probability prediction model.

The usefulness of the basic end game statistics, namely the kills, deaths and
assists of each player, are limited when it comes to analyzing an individual’s
impact on the outcome of the game. Some kills only give the killer some
amount of gold and their team is not able to get anything else out of them
while other kills can lead to capturing an objective leading to a victory, for
example later in the game. Some deaths are worthless and some can be
worth it, for example, if the player managed to destroy the opponent team’s
inhibitor before they died.

The authors propose so-called smart kills and worthless deaths. Smart kills
are kills that increase your team’s estimated win probability, worthless deaths
are deaths that do not increase your team’s estimated win probability. The
authors show that, contrary to regular kills and deaths, there is a much higher
correlation between an individual’s performance and a team’s performance
when the individual performance is measured using smart kills and worthless
deaths.

Using this in-game win probability prediction model, they developed several
advanced features which correlate highly with how does an individual’s
performance influence the overall winning probability:. Abilities.Gold. Survivability. Time management. Deaths. Favorable fights

There are also commercial tools available that provide after-game analysis.
These tools include the website OP.gg and Blitz [30]. These tools however

11

2. Related work.....................................
only provide feedback through visualization of transpired in-game events,
handmade rule-based advice, and comparison of individual metrics to those
of other players. To our knowledge, there is currently no tool available that
uses machine learning for after-game analysis.

2.3 Traditional sports analysis

The problem we are trying to solve for LoL is similar to traditional sports
analysis. Ronald et al. [31] used an LSTM model to predict how many yards
the ball-carrier is expected to gain from their current position. Quarterbacks
in the national football league were evaluated using tracking data. [32] The
advantage of esports is that millions of games are played daily, producing a
large amount of data that can be analyzed.

12

Chapter 3
Statistical models

3.1 Supervised learning

In supervised learning, we have a dataset

D = {(x1, y1), ..., (xn, yn)}

consisting of n input-output pairs. The goal is to approximate the true,
unknown function f∗ which maps each input in the input space to its correct
output in the output space with an approximating function f . To do this, we
usually formulate the problem as an optimization task where the goal is to
minimize the difference between the correct output yi and the output of the
approximating function f(xi). This difference between the two is quantified
to a single number using loss functions.

3.1.1 Loss functions

Regression

Different loss functions serve different purposes. For regression, where the
output is a quantity or a tensor of quantities, the mean-squared error (MSE)
loss function is usually used:

lMSE(f(xi), yi) = (yi − f(xi))2

Classification

For single-label classification, the output is a vector of probabilities. The
j-th element of the vector indicates the probability that the input xi belongs
to the j-th class and yi is the correct class. We then commonly use the
cross-entropy (CE) loss:

lCE(f(xi), yi) = −log(f(xi)yi)

.

13

3. Statistical models...................................
3.1.2 Logistic regression

Logistic regression (LR), in its simplest form, is a statistical model that uses
a logistic function to model the probability of a binary dependent variable.

Let vector x be the observation and β the parameters of the model, consist-
ing of the bias β0 and the feature weights β1. The probability that X belongs
to class k is then

P (k|x, β) = 1
1 + e−k(β0+xβ1) , k ∈ {−1, 1}

We learn the parameters β of the LR model by using the maximum
likelihood estimation. The optimal β∗ maximizes the log-likelihood l(β) of
the dataset D:

β∗ = argmaxβ(l(β))

l(β) =
∑

(xi,yi)∈D

ln(P (yi|xi, β))

It is not possible to compute the optimum using a closed-form expression
but we can use an iterative method like gradient descent.

Logistic regression assumes that the observed variables xi are independent.
When working with real-world data, this assumption can be difficult to
guarantee.

We use LR to predict the probability of which team in a game of LoL is
going to win, given the current state of the game. We denote the binary
result of the game as classes -1 and 1. The logit of the probability that team
2 wins is then modeled as a linear combination of the input variables.

3.1.3 Tree classifiers

Decision tree

Decision trees are a non-parametric method that uses a tree-like structure of
decisions. In machine learning, they can be used for both classification and
regression.

Decision trees are constructed from a dataset. We start by creating the
root of the tree with all samples xi, yi from D in it. The goal of the decision
tree is to group samples from the same class together. To expand a node,
we apply a binary rule which splits the samples present in the node into two
parts, one part for which the rule holds and the other for which the rule does
not hold.

There are many ways to create a decision tree for a given dataset. We
want the decision tree to be small to save memory and have fast inference. A
common greedy approach, where locally optimal decisions are made at each
node, is to choose the split which yields the largest information gain at each
node.

Let DN be the set of samples at node N and S a split which splits DN into
Dleft

N and Dright
N . Let the probability that a sample in a set D has class y be

14

.................................. 3.1. Supervised learning

P (y|D) = 1
|D|

∑
(xi,yi)∈D

I(yi = y)

The entropy of a set of samples D is then

H(D) = −
∑

y

P (y|D)log(P (y|D))

The information gain of a split S at node N with dataset D is then

G(DN , S) = |Dleft
N |

|DN |
H(Dleft

N) + |Dright
N |

|DN |
H(Dright

N)

A commonly used algorithm called Classification and regression trees
(CART) splits samples based on a single variable xi and a single threshold c:

xi ≤ c

CART uses the best split among all variables and thresholds.
Some of the advantages of decision trees are that they are interpretable

and that they do not require much data preprocessing. Numerical features
do not need to be normalized because the scale does not affect possible splits.
They can also theoretically be used directly on categorical data with rules
like xi = c. In practice, to be able to use implementations similar to CART,
categorical data is in one-hot encoded. The possible splits are then equivalent.

The interpretability of decision trees comes from the fact that we know
which set of rules holds for the current observation and why it was assigned
a given class. Decision trees can also be visualized.

Disadvantages of decision trees include that they are piecewise-constant
and not smooth. Decision tree learners can also create overly-complex trees
that classify the training dataset well but do not generalize well to unseen
data. This is called overfitting. [33]

Random forest

Random forest is an ensemble learning method that creates multiple decision
trees. For classification, the class predicted by a random forest is the class
selected by most trees.

Random forests utilize the idea of bootstrap aggregating or bagging. Each
sub-tree is trained on a different subset of the training dataset, created
by sampling randomly from the original dataset with replacement. This
technique attempts to reduce the variance of the model without increasing
its bias.

Random forests create trees that only consider a random subset of features
when considering the best split for a node during node expansion as another
bagging technique.

Random forests usually outperform raw decision trees. An advantage of
random forests is that their decision trees can be constructed in parallel.

15

3. Statistical models...................................
Gradient boosted decision tree

Gradient boosted decision trees are another ensemble learning method.
They use a different approach to ensembling than random forests. Instead

of reducing the variance of low-bias models, gradient boosted decision trees
ensemble low-variance high-bias weak decision trees of fixed-size in an attempt
to reduce their bias.

Gradient boosted trees are constructed iteratively, each following tree
attempting to compensate for the error of the current ensemble.

A disadvantage of gradient boosted decision trees is that their construction
is difficult to parallelize because the prediction targets for each decision tree
depend on the ensemble of all of the previous decision trees.

3.1.4 Neural networks

Neural networks are a parametric method. They are usually used to ap-
proximate functions. They usually consist of multiple layers of neurons with
trainable parameters. The simplest layer is the fully-connected layer.

A fully-connected layer has trainable parameters W, b takes as input a
vector X and outputs another vector Y = WX + b where W is the matrix of
the weights of the neural connections and b is the bias vector.

Training neural networks

The key to training neural networks is that their layers are differentiable. Let
us have a neural network with parameters θ that we want to optimize with
respect to a dataset D and a loss function l.

We sample repeatedly input and output tensor pairs x and y, the network
output f(x|θ) is computed, a loss l(f(x|θ), y) is computed with respect to the
supplied true output y, and a gradient of the loss is computed with respect
to the network parameters:

∂

∂θ
l(f(x|θ), y)

This gradient, multiplied by a learning rate hyperparameter, is then sub-
tracted from the network weights θ. This is one training step that lowers the
loss of the network with respect to the provided input-output pair.

If we do this repeatedly with input-output pairs randomly sampled from
D, this algorithm is called stochastic gradient descent.

Activation functions

To make it possible for neural networks to represent something other than an
affine transformation y = Wx + b, non-linear activation functions are used
on the outputs of neurons. Common activations include the rectified linear
unit (ReLU):

ReLU(x) = max(x, 0)

16

.................................. 3.1. Supervised learning

leaky rectified linear unit (LReLU):

LReLU(x) = max(x, 0.01x)

and sigmoid:

σ(x) = 1
1 + e−x

.
ReLU is a very popular activation function used in both convolutional

and fully connected deep neural networks. Its advantage is that it does not
cause vanishing gradient problems in deep neural networks, as its derivative
is either 1 or 0:

ReLU ′(x) =
{

1, if x > 0
0, otherwise

A disadvantage of ReLU is that it may lead to dying neurons. The
derivative for neurons that did not contribute to the output is 0. If a neuron
never contributed to the output, it stays inactive forever. Proper weight
initialization and data normalization are key to preventing neurons from
dying. For fully connected layers, He weight initialization is recommended.
[34]

Leaky ReLU does not cause neurons to die as the derivative is never 0 and
the neurons have a chance to “fix” themselves:

LReLU ′(x) =
{

1, if x > 0
0.01, otherwise

Sigmoid squishes the output to the interval [0, 1]. Its disadvantage is that
the derivative is always smaller than 1, causing vanishing gradients in deeper
networks:

σ′(x) = −1
(1 + e−x)2

d

dx
(e−x) = −1

(1 + e−x)
−e−x

(1 + e−x)

= 1
(1 + e−x)

e−x

(1 + e−x) = σ(x)(1 − σ(x))

Convolutional neural networks

Convolutional neural networks (CNNs) consist of convolutional layers followed
by activation functions.

Convolutional layers consist of kernels that are applied to parts of the input
tensor, regardless of the relative position of the part. Because kernels are
applied to small neighborhoods of each position, the edges of the input are
often padded with zeros so that the output has the same shape as the input.
Convolutional layers also have a stride which is the distance between applied
convolutions. Usually, a stride of 1 is used.

17

3. Statistical models...................................
For a convolutional layer with kernel size NxM with K kernels, stride 1

and bias, the output for for an input with C channels is computed as the
following:

yi,j,k(x) = bk +
N∑

n=1

M∑
m=1

C∑
c=1

xi−1+n,j−1+m,cwi,j,c,k

CNNs are used widely in computer vision. For example, a dog in a photo
should be detected, no matter where in the photo it appears. As kernels are
applied to parts of the input independently, the computations of CNNs can
be greatly parallelized.

In CNNs, pooling layers are often used to downsample the tensor. When
working with a 2-dimensional input, pooling layers split the input into rect-
angles of equal size and output a single number for each sub-region. The
purpose of pooling layers is to expand the receptive field of the following layer
and to reduce the number of parameters of the network and the number of
features needed to be processed by the following layer, saving computational
time.

The intuition behind pooling layers is that the exact location of features
might not be that important. If there are multiple pooling layers in a CNN,
it may extract local features like “is there an edge?” in the first layer and
gradually start applying convolutions over these features, outputting high-
level features which span a larger portion of the original image like, “is there
a nose?”.

Examples of pooling layers are min pool, average pool and max pool, max
pool being the most commonly used. Here is the computation of a 2D max
pool layer with a filter size of 2x2 and stride 2:

yi,j,k(x) = max1
a=0,b=0x2i+a,2j+b,k

For training deep CNNs, skip connections are often used. Even learning a
simple identity mapping can be difficult for randomly initialized regular deep
CNNs. When using skip connections, CNNs are split into blocks and the
output of each block y(x) is added to its input x, together creating an output
f(x) = y(x) + x. This way, the layers have to learn just the deviation from
the identity mapping. This also helps with the vanishing gradient problem as
there is a short path between the output of each block and the calculation of
the loss function. [35]. Deep CNNs with skip connections were used for the
deep value and policy networks of AlphaGo Zero, AlphaZero, and MuZero.

CNNs were used for the original DRL agents that played Atari games [10].
The last 4 frames of the game, stacked together, were used as the input.

CNNs were also used for the Dota 2 agent and HoK agents to encode
part of the game state. They applied multiple convolutional layers to spatial
features extracted from the global map [6], [5] and the player hero’s local
view [14] [6].

18

................................ 3.2. Reinforcement learning

Recurrent neural networks

Recurrent neural networks (RNNs) can take an ordered sequence of vectors as
an input and produce a series of outputs. The input sequence can be of any
length. After passing each input vector to an RNN, its hidden state changes,
affecting both the current and following outputs.

RNNs are usually used to process time-series data. They have also been
successfully used in natural language processing. In DRL, RNNs are used to
solve non-Markovian decision processes where the history is also important
or problems where the current state can be represented as a sequence.

Specific types of RNNs include gated recurrent unit (GRU) [36] and LSTM
[15].

LSTM was developed to solve the vanishing gradient and exploding gradient
problems of traditional RNNs. LSTM uses an input, output and a forget gate
which determine what gets stored in the hidden state, what gets forgotten,
and what gets outputted.

3.2 Reinforcement learning

Each instance of a reinforcement learning (RL) problem consists of an en-
vironment and an agent. The agent performs actions in the environment
to which the environment responds by updating its hidden state based on
the performed action and returning an observation to the agent, upon which
the agent decides the next action. This loop is repeated until the episode
terminates. The objective of the agent is to perform the actions in a way that
maximizes the cumulative rewards acquired throughout the episode.

RL is very general and can find solutions for both fully and partially
observable Markov decision processes (MDPs), thus it can easily be applied
to playing games and many real-world problems.

RL framework can be used to find the optimal policy which maximizes the
expected cumulative reward or to learn the value of states. When we want
to find the optimal policy, we call it control. An example of a control task
would be to determine how to play Blackjack optimally. Example usage of
state values is that we might be interested in knowing the expected value in
a given state of a Blackjack game, for example, once we are dealt our cards.
As we are mainly interested in learning how to play games, we are going to
focus on control.

More formally, the task of RL is to find the optimal policy which maximizes
the expected cumulative reward. A policy π is a function that maps the list
of previous observations o0, ..., on to a probability distribution over the action
space A. After each action ai, the environment returns a reward ri. updates
its state from si to si+1 and produces the next observation oi+1. There is
also usually a discount factor δ ∈ [0, 1]. The smaller δ is, the more the agent
puts emphasis on closer rather than distant rewards.

The discounted cumulative reward R for a trajectory

τ = {s0, o0, a0, r0, s1, o1, a1, r1, ...sn, on, an, rn}

19

3. Statistical models...................................
is defined as the discounted sum of all rewards: Rτ =

∑n
i=0 riδ

i. The optimal
policy π′ is the policy that maximizes the expected discounted cumulative
reward

E[R|π] =
∑

τ

Rτ p(τ |π)

where the probability of each trajectory is defined as the product of the
probability of the initial state and observation, the state transition and
observation probabilities given the current state and action, probabilities
of the rewards given the current state and action and the probabilities of
performing actions given the policy and previous observations:

p(τ |π) = p(s0, o0)
n∏

i=0
p(ai|π, o0, ..., oi)p(ri|si, ai)

n−1∏
i=0

p(si+1, oi+1|si, ai)

Note that it is not necessary for RL algorithms to work to know the initial
state probabilities p(s0, a0), reward probabilities p(ri|si, ai) or transition
probabilities p(si+1, oi+1|si, ai). Some RL algorithms attempt to first learn
these probabilities. These are called model-based algorithms.

In practice, even though the real state may be hidden, the list of all
previous observations is usually deterministically converted to a “state” to
make the process Markovian. For example, the Dota 2 agent [5] used the
last 16 observations as the current state, enhanced with some data from the
previous observations, including the respawn times of monsters which could
only be known by observing the death of those monsters in the past.

3.2.1 Fully observable Markov decision processes

In the case of fully observable MDPs, observations are equal to the states.

∀i = 0, ..., n : oi = si

Because of the Markov property which states that the state transition and
reward probabilities only depend on the latest state, the policy π can then
depend only on the latest state instead of all of the previous observations:
p(ai|π, o0, ..., oi) = p(ai|π, s0, ..., si) = p(ai|π, si).

Example of games formulated as fully observable MDPs are chess and shogi
if we assume that the probabilities of the opponent’s moves are fixed, for
example during self-play against a previous version of the agent, as is the
case in AlphaZero.

3.2.2 Value functions

Let us now assume that we have estimated the current state si from the
list of previous observations o0, ..., oi. There are 2 types of value functions
that RL algorithms may try to learn. The value function of states (s) and
the value function of state-action pairs (s, a). These functions are usually

20

................................ 3.2. Reinforcement learning

denoted as the V and Q function respectively. These functions should return
the expected discounted cumulative reward acquired.

As the expected reward sum E[R|π] depends on a policy π, so do the value
functions depend on a policy. The V π function should return the expected
value when starting in state s and following policy π. The Qπ function should
return the expected value when starting in state s, executing action a, and
then following policy π.

V π(s) = E[R|s0 = s, π]

Qπ(s, a) = E[R|s0 = s, a0 = a, π]

A common class of RL algorithms attempts to learn just the Q values
of state-action pairs. The deterministic optimal policy for an estimated Q
function can be computed using the following:

p(ai|π, si) =
{

1, if ai = argmaxa∈AQπ(si, a)
0, otherwise

Another approach is to learn the state value function V together with the
policy π, this is done for example in AlphaZero and MuZero.

3.2.3 Deep reinforcement learning

RL problems with small state and action spaces can be solved by storing
the value function and the policy in memory as tables. For larger problems,
which most real-time games are, the tables would not fit into memory. Many
real-life problems are also continuous. It is possible to discretize continuous
variables by assigning them to a discrete number of bins, but then we need to
make a trade-off between representation quality and memory consumption.

In these cases, we usually approximate the value function and the policy
instead. Let us take the V value function as an example. We choose a function
Vθ with parameters θ ∈ Θ where Θ is the parameter space. The task of the
reinforcement learning algorithm is to then find the optimal parameters θ∗

which minimize the distance between the expected value function E[V] and
Vθ.

One of the simplest parametrizable functions is the linear function. The
value function would then be Vθ(s) = θ0 +

∑n
i=1 siθi with coefficients θ0, ..., θn.

If the parametrizable function is a deep neural network, we call it deep
reinforcement learning.

DRL recently achieved many breakthroughs. It was behind most super-
human AI players. An example real-life problem that was successfully solved
using DRL is chip floorplanning. Mirhoseini et al. [37] formulated the task of
planning component placement as a sequential MDP. The process consisted
of placing circuit components on a chip canvas, one at a time. The goal was
to minimize the wire length, congestion, and density of the final placement.
Using a deep neural network as a joint parametrizable policy and value
function, the authors were successfully able to match or outperform manual

21

3. Statistical models...................................
placements created by human experts. On top of that, the manual placements
their method was compared to took human experts months to develop in an
iterative process. Their method was used to design the next generation of
Google’s AI accelerators.

22

Chapter 4
Dataset

Initially, we thought we would need to create artificial data but we were able
to get access to real data and decided it was not meaningful anymore.

The experiments we conducted were on matches from professional tourna-
ments. The dataset is not public.

To avoid variance caused by training our models on different versions of
the game, all of the matches we have chosen were from patch 11.15 as it was
the version with the most available games.

4.1 Data structure

The raw data of each game consists of a series of events. The most important
event is the “state update event” which describes the current state of all
champions including their items and global game statistics like total team
gold, team kills, deaths, dragons killed and barons killed. Other events specify
a single game event, like the purchase of an item, the death of a champion,
or the destruction of a building.

The game states consist of structured multi-modal data. We have scalar
global data, which includes statistics, states of buildings, and epic monsters.
Then we have sets of champions for both teams. Each champion owns a set
of items and has sets of active sight, control, and farsight wards placed on
the map and a set of summoner spells. From the raw data, we also created
spatial data, which we obtained by splitting the square global map into a grid
of NxN sectors. We set N = 16 and define 6 features for each team, resulting
in a tensor of size 16x16x12. The channels specify how many champions,
turrets, inhibitors, and wards of each type are present in each sector of the
map for each team.

Information about the current state of minions and neutral monsters was
missing in the data, as well as basic ability cooldowns of champions and
the atomic actions they took, including when they issue a move command,
perform an attack, or cast an ability. The fact that a champion cast its
ultimate ability or a summoner spell can be deduced from the fact that it
goes on cooldown, which is available for these abilities, but precise time and
usage details, including the target of the ability, are missing.

All available data can be seen in Table 4.1

23

4. Dataset
4.2 Data wrangling

In total, we were able to retrieve 664 games played on version 11.15. Of the
664 available games, 4 contained no events and 1 contained multiple events
that shared the same sequence index, making it unclear how to process them.
We left these games out, leaving 659 games to analyze.

First, we checked the distribution of values for each feature. For visual-
ization of graphs, we use the matplotlib python library [38]. Visualizations
of the distribution of positions of champions, positions where they die and
positions where wards are placed during different parts of the game can be
seen in Figure 4.1.

Events like “dragon kill” specified the indices of assistants participating in
the kill. They would sometimes contain certain indices multiple times. This
was likely caused by an error and we chose to ignore the duplicate values.

We aggregated events of each game into a series of game states with a
constant time difference of 2.5 seconds, 5 seconds, and 10 seconds between
subsequent states.

We have access to team statistics and know when epic monsters got killed
and buildings got destroyed. From the events and respawn times of monsters
[39], we calculated which monsters are currently alive and tracked Baron and
dragon buffs for both teams and the blue and red buffs for each champion.
For each champion, we have information about their state, statistics, items,
levels of skills, currently active wards, chosen summoner spells, and their
cooldowns.

For the baron buffs, elder dragon buffs, champion buffs, and the ward
features, we had to manually keep track of the current state because nor the
remaining time of buffs, nor the remaining time of wards was present in the
data. The fact that wards disappeared due to exceeding the limit on the
number of active wards of that type for that player was also not recorded in
the data. We had to implement the game logic in order to determine which
wards are currently active.

24

....................................4.2. Data wrangling

state champion_state champion_stats
minion respawn per champion: per champion:
scuttle crab respawn alive minions killed
dragon respawn respawn timer neutral minions killed
Rift Herald respawn level neutral minions killed your jungle
Baron respawn xp neutral minions killed enemy jungle
per team: position x champions killed
3x inhibitor respawns position y num deaths
raptor respawn health assists
wolf respawn max health wards placed
gromp respawn health regen wards killed
krug respawn magic penetration vision score
red camp respawn magic penetration percent total damage dealt
blue camp respawn magic penetration percent bonus physical damage dealt player
baron buff remaining armor penetration magic damage dealt player
dragon buff remaining armor penetration percent true damage dealt player
air dragon buff level armor penetration percent bonus total damage dealt to champions
earth dragon buff level current gold physical damage dealt to champions
water dragon buff level total gold magic damage dealt to champions
fire dragon buff level gold per second true damage dealt to champions
skills shutdown value total damage taken
4x per champion: primary ability resource physical damage taken
skill embedding primary ability resource max magic damage taken
level primary ability resource regen true damage taken
is ultimate attack damage total damage self mitigated
evolved attack speed total damage shielded on teammates
wards ability power total damage dealt to buildings
control wards cooldown reduction total damage dealt to turrets
2x per champion: lifesteal total damage dealt to objectives
position x spell vamp total time crowd control dealt
position y armor total heal on teammates
sight wards magic resist time ccing others
4x per champion: cc reduction stats
position x ultimate cooldown per team:
position y red buff remaining tower kills
remaining time blue buff remaining assists
farsight wards team inhib kills
20x per champion: is ally total gold
position x champion_embedding champion kills
position y per champion: deaths
map (16x16 tiles) champion embedding dragon kills
per team: gameTime baron kills
champions game time items
turrets summoner_spells 7x per champion:
inhibitors 2x per champion: item embedding
sight wards summoner spell embedding cooldown remaining
control wards cooldown remaining
farsight wards

Table 4.1: List of all information available at each game state. Features with
a blue background are learned categorical embeddings of size 2. The rest are
numerical features. There is one feature that is different depending on which
champion’s behavior we are predicting and that is the “is ally” feature in
champion_state

25

4. Dataset

(a) : Early game cham-
pion positions

(b) : Mid game champion
positions

(c) : Late game champion
positions

(d) : Early game cham-
pion death positions

(e) : Mid game champion
death positions

(f) : Late game champion
death positions

(g) : Early game placed
ward positions

(h) : Mid game placed
ward positions

(i) : Late game placed
ward positions

Figure 4.1: 2D histograms of champion positions in the data. We defined
mid-game to start when either a turret gets destroyed or the dragon is killed
and late game when an inhibitor is destroyed or the baron is killed.

26

Chapter 5
Solution

5.1 Predicting game outcome

We developed an interpretable in-game win probability model based on simple
features like the total kills of each team and the objectives accomplished by
each team. After finishing a game, the graph of the win rate throughout the
game can be shown to players with important in-game events highlighted.
From this, players can gain more insight into how much each game event
contributed to the final result of the game.

To model the probability, we tried logistic regression, small multi-layer
dense neural networks, random forests and gradient boosted decision trees.

As the baseline, we chose the in-game probability model developed by
Maymin et al. [29]. They used logistic regression on the game time in
minutes, the number of kills of both teams, the number of turrets destroyed
by both teams, and the number of epic monsters slain by both teams.

5.1.1 Feature engineering

Because our dataset was so small, we had to worry about overfitting. We
started with the features used in the baseline and developed our own features
with different levels of specificity.

We tried adding important statistics, namely team gold for both teams
and champion levels. We also tried being more specific with epic monster
kills, splitting them into dragons and barons killed. To be even more specific,
we tried splitting dragon kills further into the specific types of dragons killed
as they all grant different buffs. We added a feature that states how much
time is remaining for the baron and elder dragon buffs to end for both of the
teams. We also tried different levels of aggregation for turrets. Finally, we
added information about the number of inhibitors destroyed and the number
of currently active wards.

To make the input space represent the current game state, we also suggest
specifying the current number of champions alive per team. To get more
specific, we also tried adding the remaining respawn times of champions as a
feature. We also tried adding the remaining respawn times of inhibitors.

The champion pick phase greatly influences the outcome of games. Due to

27

5. Solution

(a) : Clustering cost. (b) : UMAP projection to 2D.

Figure 5.1: K-modes clustering of team champion compositions. (a), Shows the
cost of clustering depending on the number of clusters using k-modes. (b), The
UMAP projection of n-hot encoded teams of champions to 2 dimensions, colored
by the 4 clusters as discovered by k-modes.

the specific ways the abilities of different champions interact, some champions
are good against others. We then say that a champion “counters” the
champions it is good against. Some champions and team compositions win
games more often than others. In esports, competitive teams research what
champions and team compositions other teams like to play and draft and ban
champions during the pick phase accordingly.

There are websites that collect match data and report individual win rates
for each champion. We propose a champion feature, defined as the difference
between the 5-hot encoded vectors of champions of both teams.

We try to identify team compositions and model their win rates by clus-
tering champion teams using the k-modes [40] algorithm. We used the
implementation from the k-modes python library [41]. We used the “Huang”
initialization with 5 random starts. Using the elbow method on the costs
of clusters of teams from the entire dataset, we chose k = 4 clusters. The
plot of the cost together with an unsupervised 2D projection of the n-hot
encoded teams using UMAP [42] reduction can be seen in Figure 5.1. During
the 5-fold cross-validation, the clusters were determined using the training
part of each split.

We implemented a slightly modified version of the pseudocode for automatic
categorization of champion roles proposed by Maymin et al. [29]. Because
we did not have access to minion positions and deaths, instead of assigning
the mid role to the player who killed the most minions near the map’s center,
we assigned the mid role to the champion who has spent the most time near
the center of the map throughout the first 10 minutes of the game.

The role categories were used to order per-champion features, namely level
and the remaining respawn time. They were also used to order the champions
in teams to 5-dimensional categorical vectors for the k-modes clustering.

Overall, we created the following features:. time - In minutes.

28

............................... 5.1. Predicting game outcome

. gold - Total gold per team in thousands.. kills - Total number of kills per team. level - Level of each champion.. level mean - The mean champion level per team.. respawn - Remaining time to respawn for each champion in seconds, 0
for champions that are alive.. alive - Number of team members alive for each team.. champions n-hot - A vector of dimension equal to the number of unique
champions, where each value indicates whether the champion is present
in either of the teams. The value 1 indicates that the champion is present
in the blue team, -1 indicates that the champion is present in the red
team.. champion clusters - Represented as the difference between one-hot en-
coded vectors of team cluster of both teams.. dragons - How many times did each team kill each type of dragon.. dragons total - How many dragons did each team kill.. barons - How many barons did each team kill.. epic buffs - How much time remains for the global buffs awarded for
slaying Baron Nashor and the elder dragon for both teams, in seconds..monsters - How many epic monsters (dragons or Baron Nashor) did each
team kill.. turrets - Boolean indicator for each turret for each team, indicating
whether the turret was destroyed.. turrets per lane - How many turrets were destroyed on each lane for each
team.. turrets per tier - How many turrets of each tier (outer, inner, base, nexus)
were destroyed for each team.. turrets total - How many turrets have, in total, been destroyed by each
team.. inhibitors total - How many inhibitors have, in total, been destroyed by
each team.. inhibitors per lane - How many inhibitors on each lane have been de-
stroyed by each team.. inhibitors respawn - How much time remains for the inhibitor on each
lane to respawn for both teams, in seconds.

29

5. Solution
. wards total - How many wards are active in total per team.. wards per type - How many sight wards, control wards, and farsight

wards are currently active per team.

5.1.2 Results

We tested our models with different features using 5-fold cross-validation.
First, we split the games into 5 subsets of roughly equal size. We chose one of
these subsets as a testing set, trained our model on the other 4 subsets, and
evaluated our model on the test subset which was not part of the training
set. We repeat this 5 times, each time choosing a different test subset from
the 5 subsets and average the results over these 5 runs.

K-fold cross-validation allows us to see how the model generalizes to unseen
data and is usually used when the dataset available is small. It gives a better
estimate than just splitting the dataset once because, in k-fold cross-validation,
we get an average result over k splits instead of just one.

Unlike Maymin et al. [29], we did not have the luxury of having a large
amount of data. They only used 1 random sample from each game in the
training split which resulted in independent rows for training. Because our
dataset was small, we found that increasing the number of samples used per
game increased the performance of our model. The relationship can be seen
in plot Figure 5.2. In the following experiments, we used all of our data in
the train split for training.

Both gradient-boosted trees and random forests had a very high training
accuracy but they did not generalize well to unseen data. Multi-layer dense
networks had similar results as logistic regression but took longer to train.
Logistic regression performed the best in the cross-validation so we report
only results for logistic regression with different combinations of features.
The results can be seen in Table 5.1.

For our experiments, we did not use the time feature as, in our opinion, it
does not make sense to assume that the logit of the probability that either
of the team wins would depend linearly on the number of minutes passed.
Other than that, in our base model, we used the same features as in baseline,
namely kills, turrets total, and monsters.

We started with the base features and tried all the possibilities of either
removing one of the base features, adding one additional feature, or making
one of the features more informative by replacing it with a more specific one.

By removing one feature from the base model at a time, we did an ablation
study of the base model. We can see that kills is the most influential feature,
while the monsters feature is the least influential feature.

From this initial experiment, we found that adding either gold, level mean
or epic buffs led to an improvement. Replacing the monsters feature with
barons and dragons total, barons and dragons or epic buffs, barons and
dragons total also increased the test accuracy.

Features that performed poorly include level, inhibitor per lane, inhibitor
total, more specific turret features, champion clusters, and champions n-hot.

30

............................... 5.1. Predicting game outcome

Figure 5.2: The relationship between the number of samples per game in the
training split and the final test accuracy. Measured using 5-fold cross-validation,
averaged over 10 runs. The Base + gold model was used.

Features that did not influence the result much were respawn, alive, in-
hibitors respawn, wards total, and wards per type. Adding them to the base
model changed the test accuracy by less than 0.1%.

We also tried removing the kills feature as it represents the history of the
game, rather than the current state. As we already mentioned, removing
kills from the base features hurt the performance a lot (Base - kills). We
successfully remedied this by adding both the gold and level mean features
(Base - kills + gold, level mean). It seems logical as all the advantages gained
by killing opponents, namely gold and experience advantage and being able
to destroy turrets and kill epic monsters, are already included in the other
features. The only thing missing is then the history of how successful were
members of both teams at killing champions from the other team. We also
tried adding the alive feature but that did not change the result on the test
dataset.

We then tried combining the features that succeeded in improving the base
model. Gold was the most prominent feature that we added. This is again
confirmed by the Base + level mean + epic buffs model, which combines 2
useful features but the result is still worse, both in train and test accuracy,
than the one achieved by just adding gold.

As an extreme, we tried including as much information in the inputs as
possible. We included each feature at the most specific level, without the
champion features. This gave rise to the All features model, which used the

31

5. Solution

Figure 5.3: Prediction accuracy of win prediction models, depending on game
time. The mean and standard deviation were calculated from the 5 splits. At
each time t, the mean µt and standard deviation δt across the 5 splits is calculated.
The interval [µt − δt, µt + δt] is highlighted for each time t for both models. On
the right, the standard deviation starts increasing because the number of games
that lasted that long is decreasing.

following features: kills, turrets, barons, dragons, epic buffs, gold, respawn,
level, inhibitors per lane, inhibitors respawn, wards per type. As expected, it
achieves the second-best train accuracy behind Base + champions n-hot. It
also surpassed the base model in test accuracy.

For logistic regression, the best working features were “Base + gold”, “Base
+ gold, epic buffs”, “Base - monsters + gold, epic buffs, dragons total” and
“Base - monsters + gold, barons, dragons total”. Because all of the models
achieve similar accuracy on the test set, we can use either model. If we had
access to more data, which of these features are the best could become more
clear.

We chose to use the “Base + gold” model in the rest of this Thesis because
it achieved one of the best test accuracies and the very small improvements of
the other more complex models did not seem to justify the added complexity.

The accuracy of Baseline and our proposed “Base + gold” over time can
be seen in Figure 5.3. Both models can most accurately predict the winner at
about the 26-minute to 31-minute interval. This makes sense as at this time,
one team has probably been able to gain an advantage over the other. Earlier,
the game is still undecided, and later in the game, both teams are eventually
able to buy the best items and the situation becomes more balanced, as both
teams become similarly strong and the winner of a single team fight is likely
going to be able to win the game.

32

...............................5.2. Predicting macro decisions

Examples of how our “Base + gold” model trained on one of the cross-
validation splits works on unseen games can be seen in Figure 5.4.

5.2 Predicting macro decisions

5.2.1 State encoding

Previous works have successfully used neural networks to encode the current
state of the game [5] [13].

To use neural networks, we vectorized the multi-modal game state data,
converting it into a single vector per time step. We then used a neural network,
either an LSTM network on the last N game states or a fully connected
network on the last game state to encode the game history into a single
vector.

We split the games in our dataset into train, test, and valid splits in a
ratio of 80 to 10 to 10. We used a similar approach to encoding the game
state as the one used by Berner et al. [5] for Dota 2. All numerical values,
including booleans and floats, are normalized so that they have a mean of 0
and a standard deviation of 1. To do this, we obtain the mean and standard
deviations of each feature from the training dataset and then modify each
feature i in our datasets according to the following equation:

featurei = featurei − µtrain
i

stdtrain
i

The way we process each type of data to obtain game state vectors can be
seen in Figure 5.5.

In case a feature takes only a single value, which is the case for some
features in the champion state, namely magic penetration percent bonus,
armor penetration, armor penetration percent bonus, and cooldown reduction,
we set the standard deviation for that feature to 1 to prevent division by zero,
therefore setting the feature in all samples in the dataset to 0.

For categorical data, namely the different types of champions, items, sum-
moner spells, and champion skills, we learn embedding vectors of fixed size
during training.

To encode the spatial map features, we use a standard 2-layer convolutional
neural network.

Game states contain data of varying sizes. Each champion can have a
different number of currently placed wards and a different number of items
in its inventory. To enable batch processing, we zero pad these sets to the
maximum theoretical value allowed by the game rules. The limits were 4 for
sight wards, 2 for control wards, 20 for farsight wards, and 7 for items. There
is no hard boundary on the number of farsight wards a player could place
but we chose 20 as that is a value that should hardly ever be reached in real
games. The other limits for wards are only reachable by owning a specific
game item, otherwise, a player can only have 3 sight wards and 1 control
ward placed at a time.

33

5. Solution
We treat items, wards of all types, summoner spells, skills, and champions

as sets. For each set, we apply a set processing procedure. We apply a two-
layer fully connected neural network with ReLU non-linearity to transform
each item in the set independently, including the zero-padded items. Both
layers have the same number of neurons. Then, we perform 1-dimensional
max-pooling over the set, converting the set of items into a single vector.
This processing is independent of the order of the items in each set.

By projecting champions through the two fully connected layers, we obtain
another, more complex champion embedding, which includes information
from items, summoner spells, skills, wards, champion state, champion stats,
and champion type embeddings, if all of these are provided.

For each champion c in a game x at time t, the state xt,c is a little bit
different. We append the processed champion embedding to the game state
before it is encoded so that the network knows for which champion to predict
macro decisions. The champion state feature is also slightly different, as the
is ally feature also depends on the current champion c.

5.2.2 Prediction targets

We attached additional heads to the encoder. Their purpose is to predict
various information about the game from the game state. That way, we
forced the encoder to encode multiple useful pieces of information from the
raw game state data into a single vector.

Movement intention

To capture the decision of where the player wants to go on the map, we split
the square map into course-grained NxN regions, similar to the supervised
learning auxiliary macro target used by Ye et al. [6]. We decided for N = 12,
resulting in N2 = 144 sectors.

For each champion c and each time step t (except for the last time step) in
a game x, we define the prediciton target as Y pos

t,c (x) = i where i is the index
of the sector where the champion c is present in the next game state xt+1.

One head is going to predict the probability of each sector being the sector
where the champion c is present in the next time step f(xt,c)pos from the
encoded game state xt,c.

Minion and monster farming

One of the most important things to do in the early game is to slay enemy
minions. Being able to last-hit enemy minions or prevent your opponents
from last-hitting yours is a great way to get an advantage. On the other hand,
respawn times are short in the early game which means killing champions at
this stage has a lower impact on the game than killing them later. Leaving
your lane in an attempt to kill an opponent in another part of the map might
not be worth it even if you do manage to secure the kill because of the minions
you miss on your lane. This is the reason why it is mostly only the jungler

34

...............................5.2. Predicting macro decisions

who ganks other lanes in the early game, once they kill all of the neutral
monsters in their jungle.

However, later in the game, it could be more important to participate in a
team fight or in capturing an objective than to last-hit minions on your lane.

Minions and neutral monsters are together called creeps. The total number
of minions and monsters slain is together called creeps slain (cs). This is
an important statistic that most tools track to report performance, as it is
important to slay as many creeps as possible throughout the game.

We had two of the heads predict the discounted number of minions and
monsters slain. For each champion c and each time step t (except for the
last time step) in a game x with N timesteps, we define the prediction target
with time horizon T and discount factor δ ∈ [0, 1] as

Y minions
t,c (x) =

min(t+T,N)∑
i=t+1

δi−(t+1)minionsi,c(x)

Y monsters
t,c (x) =

min(t+T,N)∑
i=t+1

δi−(t+1)monstersi,c(x)

where minionsi,c(x) and monstersi,c(x) are the numbers of minions and
monsters slain by champion c between time steps i − 1 and i in game x,
respectively.

Fights and map objectives

Another important part of macro is to decide whether to participate in a
fight and whether to try to capture a map objective. We are going to model
this by predicting the discounted number of champion kills, destroyed turrets,
destroyed inhibitors, slain Rift Heralds, dragons, and Baron Nashors to which
the champion contributed.

For each event type e of the above-mentioned events, we define the pre-
diction target for each champion c and each time step t (except for the last
time step) with timespan T and discount factor δ ∈ [0, 1] in a game x with N
timesteps as the discounted number of times that the event e happened for
champion c between time steps t and t + T :

Y e
t,c(x) =

min(t+T,N)∑
i=t+1

δi−(t+1)ei,c(x)

where ei,c is the number of times the event e happened for champion c
between time steps i − 1 and i.

We say that an event e happened for a champion if they participated in
it. That is, we do not distinguish between kills and assists for any of the
events. For example, if both teams tried to slay Baron Nashor, we are going
to record this event for all champions that assisted in killing him, no matter
which team ended up last hitting him. We do this because we try to model
the intentions of players rather than the final outcomes of their decisions,

35

5. Solution
which have a higher variance and depend more on the micromanagement of
players rather than their macro decisions.

Multitask loss

Prediction heads can be trained in parallel and jointly with the encoder.
Our model is going to optimize the network parameters θ to minimize the
following weighted sum of losses on our training dataset X:

L(θ) = E[wposlCE(f(xt,c|θ)pos, Y pos
t,c (x)) +

∑
evente

welMSE(f(xt,c|θ)e, Y e
t,c(x))]

where f(xt,c|θ) is the network output for game state xt,c given parameters
θ. wpos and we are the loss weights and the possible events e are minions,
monsters, kills, turrets, inhibitors, Rift Heralds, dragons and Barons.

Game timesteps xt have a uniform distribution over the training dataset
X. Champions c have a uniform distribution over the set of possible indices
of champions in each game {1, ..., 10}.

The need to weigh the losses comes from the fact that each of the prediction
targets has a different variance. While a champion can slay 10 minions during
a single timestep, they can only participate in killing the baron a few times
throughout the game. Most commonly, the amount of barons a champion
slays during a timestep is 0.

Before weighing the targets, we found that the position, minion, and
monster events were the largest contributors to the total loss, while rare
events like Baron, Rift Herald, dragon, and inhibitor barely contributed.

We set the weight of the position loss wpos to 1 empirically and the weight
of each event e as the inverse variance of the prediction target.

we = 1
V ar(Y e

t,c)

This way, we convert the losses to the same scale on which a very simple
predictor that would predict the target to be the estimated mean from the
training dataset

Êe = Ext,c[Y e
t,c] = 1

10|X|
∑

xt∈X

10∑
c=1

Y e
t,c(x)

would obtain an average weighted loss of 1 on the training dataset:

E[welMSE(Êe, Y e
t,c)] = 1

V ar(Y e
t,c)

1
10|X|

∑
xt∈X

10∑
c=1

(Êe − Y e
t,c(x))2

= 1
V ar(Y e

t,c)
1

10|X|
∑

xt∈X

10∑
c=1

(Ext,c[Y e
t,c] − Y e

t,c(x))2 = 1
V ar(Y e

t,c)
V ar(Y e

t,c) = 1

36

...............................5.2. Predicting macro decisions

Summary

To summarize, there will be a head for predicting the answer to each of the
following questions:.Where in the map is the player going to be in the next timestep?. How many enemy minions is the player going to slay?. How many neutral monsters is the player going to slay?. How many times is the player going to participate in killing an enemy

champion?. How many times is the player going to participate in destroying an enemy
turret?. How many times is the player going to participate in destroying an enemy
inhibitor?. How many times is the player going to participate in slaying the Rift
Herald?. How many times is the player going to participate in slaying the dragon?. How many times is the player going to participate in slaying Baron
Nashor?

By training the model to answer all of these questions on games played
by good players, we should get an interpretable probability model of player
behavior. By applying this model to games of lower-ranked players, we hope
to automatically detect game situations in which the difference between the
predicted and actual behavior is high, meaning that the player did not pick
an action that a good player would.

Note that this framework is very general and can easily be extended with
additional heads and tasks.

5.2.3 Model

We implemented our model using PyTorch [43]. For many intermediate
calculations, we used NumPy [44].

Hyperparameters

We set the discount factor δ = 0.7 and time horizon T = 6 which covers
60 seconds considering our timestep length of 10 seconds. We trained our
network with batch size of 64. Weights of each regression target, together
with their statistics can be seen in Table 5.2.

We trained our models using the Adam optimization method [45] with a
learning rate of 1e − 3.

37

5. Solution
Throughout our experiments, we were mostly dealing with overfitting. We

started with a larger neural network. First, we made sure that the network was
able to learn perfectly a small subset of the training data. Then, we iteratively
reduced the number of weights in parts of the network. We did ablation
studies of parts of the network and reduced the number of parameters in parts
without which the model generalized better to unseen data. By doing this,
we went from an initial number of more than 1 million trainable parameters
to 40 340 trainable network parameters. When comparing our model to the
model of the Dota 2 agent with approximately 159 million parameters, their
model had more than 3 900 times more parameters. Complete training of
our network took less than an hour on a single NVIDIA Geforce GTX 1060
with Max-Q Design GPU.

We found that increasing the number of recent states available to the model
did not improve it but rather caused overfitting, so we used a history size of
1 for our predictions. This may have been caused by the low amount of data
we have and the fact that our timesteps are rather large.

We proposed multi-task learning because we were interested in multiple
predictions for each champion in each time step but also as a regularization
technique. This however caused a problem during training as we had to
compromise on the number of training epochs. The ideal number of training
epochs differed for each objective. In our experiments, the position prediction
loss on the validation dataset kept decreasing for at least the first 6 epochs,
while the loss for the turrets target on the validation dataset started increasing
after the first 2 epochs. We chose the best model for evaluation by looking at
the weighted loss sum L(θ).

We ended up not using the stats and champion stats features in our model
because they were causing overfitting in earlier experiments. While reducing
the sizes of embeddings to stop overfitting, we stopped at 2 for all embeddings.

The first convolutional layer that we use for spatial data processing has 8
kernels and the second one has only 1 to reduce the number of features. We
used kernels of size 3 with zero padding for both convolutional layers and
each one is followed by a 2-dimensional max pool layer and LReLU activation
function.

We used just 2 neurons in the fully connected layers of item, ward, sum-
moner spell, and skill processors, 32 neurons in fully connected layers of
champion processor, and 128 neurons to encode the game state.

We tried adding weight decay of 1e − 4 to the model as a regularization
technique but that decreased the performance of the model on the validation
dataset.

Our prediction heads are each just a single linear layer. As such, we
combined them into a single linear layer so that their computation can be
parallelized.

5.2.4 Results

We trained all models for 5 epochs. After each epoch, we calculated the total
loss on the validation dataset. We then used the weights of the model that

38

...............................5.2. Predicting macro decisions

achieved the lowest total loss on the validation dataset and evaluated it on
the test dataset.

We show the influence of timestep length by comparing the results of models
trained with timestep lengths of 10 seconds, 5 seconds, and 2.5 seconds in
Table 5.3. For these models, the same discount factor of 0.7 and a time
horizon of 6 time steps were chosen. This means that for the regression tasks,
the models with interval lengths of 10 seconds, 5 seconds, and 2.5 seconds
predicted the discounted sums of events happening in the next 60 seconds,
30 seconds, and 15 seconds respectively.

As expected, the models tasked to predict information about a closer
future achieved smaller losses on many of the prediction tasks. The largest
improvement was observed in predicting champion positions. This is likely
also caused by the fact that there are fewer options as champions are not likely
to travel far from their current positions in shorter time intervals. Minions
and monsters were an exception, the model with an interval length of 10
seconds achieved the lowest losses on these tasks. Our theory is that because
we are missing minion and monster states in our data, the shorter interval
models struggled to pinpoint the exact moments when champions would be
able to kill them and the longer prediction time horizon of the model helped
it.

The models with interval lengths of 10 seconds, 5 seconds, and 2.5 sec-
onds achieved position prediction accuracies of 27.81%, 39.72%, and 54.61%,
respectively.

In the rest of this work, we worked with an interval length of 10 seconds.
All visualizations are done with the model from this first experiment.

During training, our model learned embeddings for different types of entities
in LoL. The visualizations of the learned champion, item, skill, and summoner
spell embeddings were too large to show in this Thesis, they can be found in
the attached folder.

From regression targets, our model was able to achieve the smallest loss on
minions and monsters. The more rare events, namely kills, turrets, inhibitors,
Rift Heralds, dragons, and Barons were harder for the model to predict. Kills
were the hardest for our model to predict.

Distributions of the deviations of our predicted target from the real targets
on the test dataset can be seen in Figure 5.6.

A histogram of predicted probabilities of actual movements of champions
from the test dataset can be seen in Figure 5.7.

To understand the influence of each feature and prediction target, we did
ablation studies of features and targets. The results of our model and the
results when adding or removing a feature or a target can be seen in Table 5.4
and Table 5.5.

The feature ablation study demonstrates that it holds for many of our
features that removing them increases the performance of the model on unseen
data. On the other hand, removing “champ_state” greatly increases position
loss because the current position of the champion is present in this feature.
On this run, adding “champ_stats” or “stats” features slightly improved

39

5. Solution
the model, even though they caused overfitting in earlier experiments when
the network was slightly larger. Removing the wards feature improved the
performance the most.

The fact that simplifying the model by removing important features like
wards and items reduces the loss of the model on unseen data suggests that
we are having problems with overfitting and the model would likely greatly
benefit from training on a larger dataset.

In the ablation study of targets, we show that even though the base model
is not the best in any of the individual losses, it is able to achieve a lower
total loss on 3 out of 9 loss subsets than models trained only to predict the
targets present in each subset.

Note that the base models in both ablation studies have different losses
even though they have the same hyperparameters and were trained and tested
on the same datasets. This is because these were results from 2 different runs.

We have chosen a single game from the test set randomly. In this game,
we show visualizations of position predictions for a specific champion and the
predicted movements for all champions in different game states in Figure 5.8
and Figure 5.9.

In this game, we also show deviations from the expected behavior. We
found these moments automatically by finding the largest deviation from the
predicted targets among all champions and game time steps in the game. We
would call these moments “bad decisions” if they were found in a game of
regular players and not performed by professional players. They can be seen
in Figure 5.10.

By visualizing the model predictions and disadvantageous decisions, we
have empirically evaluated that it was able to understand some of the key
concepts of LoL strategy. The model was able to successfully predict the
positions of champions at the start of the game. It also has a general idea of
when it might be possible to capture objectives like epic monsters, inhibitors,
and turrets.

40

...............................5.2. Predicting macro decisions

Features Train accuracy Test accuracy
Baseline 71.31% 71.27%
Base 71.31% 71.27%
Base - kills 66.66% 66.42%
Base - turrets total 70.26% 70.10%
Base - monsters 71.01% 70.88%
Base + gold 72.59% 72.31%
Base + level 71.95% 71.14%
Base + level mean 71.76% 71.45%
Base + respawn 71.49% 71.34%
Base + alive 71.46% 71.28%
Base + champions n-hot 81.80% 66.10%
Base + champion clusters 71.43% 70.70%
Base + epic buffs 71.61% 71.44%
Base + inhibitors per lane 71.42% 71.16%
Base + inhibitors total 71.35% 71.12%
Base + inhibitors respawn 71.30% 71.34%
Base + wards total 71.32% 71.19%
Base + wards per type 71.38% 71.28%
Base - monsters + barons, dragons total 71.63% 71.59%
Base - monsters + barons, dragons 71.95% 71.50%
Base - monsters + epic buffs, barons, dragons total 71.72% 71.59%
Base - turrets total + turrets 71.51% 70.65%
Base - turrets total + turrets per lane 71.42% 71.21%
Base - turrets total + turrets per tier 71.33% 71.01%
Base - kills + gold, level mean 72.44% 72.00%
Base - kills + gold, level mean, alive 72.46% 72.00%
Base - kills + gold, level mean, epic buffs 72.47% 71.98%
Base + gold, level mean 72.52% 72.07%
Base + gold, epic buffs 72.63% 72.33%
Base + level mean, epic buffs 71.89% 71.61%
Base - monsters + gold, epic buffs, dragons total 72.64% 72.29%
Base - monsters + gold, barons, dragons total 72.62% 72.32%
All features 72.89% 71.51%

Table 5.1: Train and test accuracies of logistic regression obtained from 5-fold
cross-validation averaged over 10 runs.

Minion Monster Kill Turret Inhib Herald Dragon Baron

Mean 2.4697 0.6278 0.1439 0.0358 0.0082 0.0073 0.0189 0.0092
Var 7.2554 2.2297 0.1686 0.0325 0.0059 0.0047 0.0121 0.006
Weight 0.1378 0.4485 5.9312 30.769 169.49 212.77 82.645 166.67

Table 5.2: Regression target means, variances and weights.

41

5. Solution

(a) : The game starts evenly with both teams being able to secure some kills, turrets,
and dragons. At around 22 minutes, the blue team is able to kill all members of the
red team and their third dragon, granting them a large advantage. At 27 minutes, the
blue team is able to slay the baron and destroy a lot of turrets. Then, though they
are at a disadvantage, the red team is able to kill all members of the blue team at 33
minutes and 39 minutes and win the game.

(b) : This is a game in which the blue team gradually gains advantages and ends up
winning the game. The first two dragons end up being taken by the red team but the
blue team is able to get more kills and destroy more turrets. Then, the blue team is
also able to kill a dragon and the baron. The blue team ends up winning this game
without losing a single turret.

Figure 5.4: Probabilities of the blue team winning throughout sample games
from the test set. At the bottom, important events and the number of times
they happened at each state, if non-zero, are shown.

42

...............................5.2. Predicting macro decisions

Game State

Global state,
team stats

Global map
features

(16x16x12)

10
Champions

7 items Wards

Control Sight Farsight

2 summoner
spells

4 skills

Continuous data, normalization only

Spatial data, 2 layer conv net

Categorical data, emedding

Unordered set, process with a 2 layer
fully connected net, then maxpool

Concatenation

Current
champion

embedding

Figure 5.5: Processing of structured multi-modal data using a neural network.

Pos Minion Monster Kill Turret Inhib Herald Dragon Baron Sum

10s 2.542 0.5305 0.5435 1.082 0.9349 0.898 0.8379 0.8745 0.8936 9.1369
5s 1.869 0.6403 0.6382 1.045 0.8285 0.7997 0.7498 0.8317 0.7459 8.1481
2.5s 1.291 0.739 0.699 1.027 0.8087 0.7775 0.7697 0.7404 0.687 7.5393

Table 5.3: Model losses, depending on timestep length.

43

5. Solution

Figure 5.6: Histograms of absolute differences between predicted and true values.

44

...............................5.2. Predicting macro decisions

Figure 5.7: Histogram of probabilities of movements performed by players on
the test dataset.

Pos Minion Monster Kill Turret Inhib Herald Dragon Baron Sum

Base 2.541 0.5354 0.5391 1.043 0.9565 0.9185 0.87 0.8576 0.8575 9.1186
+ champ_stats 2.567 0.5307 0.5418 1.059 0.975 0.8487 0.8388 0.8729 0.8805 9.1144
+ stats 2.536 0.5289 0.532 1.059 0.9466 0.8778 0.8521 0.8751 0.8805 9.088
- champ_emb 2.518 0.5292 0.5306 1.057 0.9611 0.9115 0.8531 0.8702 0.8984 9.1291
- champ_state 3.416 0.5589 0.5591 1.087 1.004 0.9046 0.8881 0.9003 0.8826 10.2006
- gameTime 2.55 0.5317 0.542 1.05 0.9562 0.8605 0.8429 0.8572 0.8649 9.0554
- items 2.533 0.5272 0.5309 1.05 0.944 0.8739 0.8441 0.8631 0.9036 9.0698
- map 2.567 0.53 0.5462 1.04 0.9265 0.8792 0.8581 0.8786 0.8695 9.0951
- skills 2.555 0.5294 0.5382 1.047 0.9317 0.8374 0.8603 0.8686 0.8677 9.0353
- state 2.541 0.5372 0.5701 1.055 0.9566 0.8945 0.9195 0.9433 0.8642 9.2814
- summoner 2.549 0.5318 0.5452 1.044 0.9405 0.882 0.87 0.8645 0.8686 9.0956
- wards 2.513 0.5357 0.5321 1.065 0.9635 0.8526 0.8479 0.8642 0.8554 9.0294

Table 5.4: Ablation study of features.

45

5. Solution

Pos Minion Monster Kill Turret Inhib Herald Dragon Baron Sum Base Sum

Base 2.551 0.531 0.5395 1.065 0.9449 0.8749 0.8516 0.871 0.8956 - 9.1245
- pos - 0.5373 0.545 1.043 0.9161 0.813 0.8552 0.8718 0.8561 6.4375 6.5735
- minion 2.553 - 0.5378 1.058 0.9675 0.9587 0.8524 0.8663 0.8563 8.65 8.5935
- monster 2.537 0.5282 - 1.063 0.925 0.8616 0.8414 0.8687 0.9105 8.5354 8.585
- kill 2.543 0.5343 0.5379 - 0.9433 0.9217 0.8597 0.8763 0.8641 8.0803 8.0595
- turret 2.545 0.5372 0.546 1.058 - 0.878 0.8577 0.8757 0.8771 8.1747 8.1796
- inhib 2.516 0.5271 0.5278 1.055 0.9628 - 0.8594 0.8734 0.8796 8.2011 8.2496
- Herald 2.534 0.5339 0.5345 1.052 0.9216 0.8603 - 0.8931 0.8838 8.2132 8.2729
- dragon 2.565 0.5323 0.5404 1.045 0.9025 0.8719 0.849 - 0.9057 8.2118 8.2535
- Baron 2.526 0.5433 0.5583 1.05 0.9599 0.8989 0.851 0.8619 - 8.2493 8.2289

Table 5.5: Ablation study of targets. On the right, the sum of the losses,
compared with the sum of the same subset of losses from the base model is
shown. The result with the lower loss is in bold text.

46

...............................5.2. Predicting macro decisions

(a) : 0:20 (b) : 1:40

(c) : 7:30 (d) : 31:00

Figure 5.8: Champion movement (orange arrow) and a 2D visualization of
predicted positions in different game states. Lighter means higher probability.
(a), The player goes into a strategic position at the start of the game. (b), The
player is helping the jungler with the red camp but they need to go to the bottom
lane to start last hitting minions. (c), The player chooses to go kill the dragon.
Staying on the lane and recalling back to base were also options considered by
the model. (d), After killing the blue team, the red team goes to destroy the
enemy nexus and win the game.

47

5. Solution

(a) : 0:20 (b) : 0:30

(c) : 15:50 (d) : 17:00

Figure 5.9: Actual movement (orange arrows) and predicted movements (lavender
arrows) at different game states. (a), All players go into strategic positions at
the start of the game. (b), All players stay near their positions to guard the
entrances to their teams’ jungles. (c), Two members of the red team go to kill the
Rift Herald and the others go in the direction of the mid lane. It was predicted
that one of the players going mid would join the others in killing the Rift Herald
instead. (d), Members of the blue team tactically retreat to their base during a
team fight.

48

...............................5.2. Predicting macro decisions

(a) : 8:10 Heralds pre-
dicted=0.3212 true=0

(b) : 13:40 monsters pre-
dicted=3.8836 true=0

(c) : 18:20 dragons pre-
dicted=0.2930 true=0

(d) : 20:00 minions
predicted=5.4874
true=0.49

(e) : 24:40 turrets pre-
dicted=0.2718 true=0

(f) : 24:40 inhibitors pre-
dicted=0.0994 true=0

(g) : 29:30 kills pre-
dicted=1.1917 true=0

(h) : 31:00 barons pre-
dicted=0.1927 true=0

Figure 5.10: Champion movement (orange arrow) and a 2D visualization of
predicted positions at detected “bad decision” states. Lighter means higher
probability. (a), It was expected that the player would go kill the Rift Herald.
Instead, they continued slaying monsters in their jungle. (b), Instead of slaying
monsters in their jungle, the player decided to invade the enemy jungle, not
being able to slay any monsters. (c), Instead of killing the dragon, the player
goes to join a skirmish near the mid lane, killing the dragon about 1 minute
after this state. (d), We are missing minion data so it is possible there were no
minions for this player to farm. (e), (f), The model expected that there was a
chance that the red team would win the team fight and go destroy enemy turrets
and inhibitors. (g), It took more than a minute before the teams engaged in
a team fight and the player was able to get kills. (h), After killing the enemy
team, the red team can slay Baron Nashor. Instead, they went to destroy the
blue team’s nexus and win the game, which was definitely a better decision.

49

50

Chapter 6
Conclusion

In this Thesis, we developed statistical models for League of Legends that
predict information about the game and demonstrated how these models can
be used to detect disadvantageous individual decisions. The results indicate
that our models were able to predict the outcome of games and model some
of the strategic decisions performed by players. While our code is limited
to LoL, our proposed methods could easily be generalized to other MOBA
games.

This research clearly illustrates how to detect disadvantageous individual
decisions, but it also raises the question of how best to give feedback to
players so that they get the most out of it and also stay motivated to keep
playing.

We introduced basic information about League of Legends and the various
entities the game state consists of. Related work in the fields of game AI,
MOBA game analysis, and traditional sports analysis was also discussed.
While there have recently been many breakthroughs in playing games using
AI, analysis of LoL is usually still done using rule-based methods or simple
logistic regression models. A thorough search of the relevant literature yielded
no other publication in which neural networks were utilized to process full
game states in order to analyze individual players’ performance and evaluate
the decisions they made during games.

We formulated supervised learning tasks and created required datasets for
win prediction and macro decision prediction from the raw data. The created
datasets have been used to train and evaluate our models.

We developed a logistic regression model that predicts the probability of
winning the game. We have shown how this model can be used to visualize
the impact of individual game events on the outcome of games.

We proposed a general framework for detecting disadvantageous decisions in
MOBA games inspired by recent advancements in game AI. We also showed
how our proposed methods, paired with a user interface or visualization
software, could aid players to deepen their game knowledge by providing
advanced insight into transpired game events.

As further work, we are going to test our trained models on games played
by lower-ranked players once we gain access to that data.

Our results could likely be improved upon by either training the models on

51

6. Conclusion......................................
a larger dataset or supplying the parts of the game state which were missing
in our data. Testing a different neural network architecture, for example
using transformers [46] instead of the set processors we used could also lead
to further improvements.

We hope that our work inspires further research in using neural networks
to infer useful information about games from game states. A model that
predicts behavior, like the one we developed, could for example also be used
to find game highlights.

52

Appendix A
Bibliography

[1] statista, eSports market revenue worldwide from 2019 to 2024, viewed
18 December 2021, <https://www.statista.com/statistics/490522/global-
esports-market-revenue/>

[2] statista, eSports audience size worldwide from 2019 to 2024, viewed 18
December 2021, <https://www.statista.com/statistics/1109956/global-
esports-audience/>

[3] Hrabec, O., 2017. Categorizing play styles in competitive gaming. Interna-
tional Journal of Gaming and Computer-Mediated Simulations (IJGCMS),
9(4), pp.62-88.

[4] Data dragon, a set of static data files that provides images and info about
champions, runes, and items. viewed 11 May 2022, <https://riot-api-
libraries.readthedocs.io/en/latest/ddragon.html>

[5] Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison,
C., Farhi, D., Fischer, Q., Hashme, S., Hesse, C. and Józefowicz, R.,
2019. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680.

[6] Ye, D., Chen, G., Zhao, P., Qiu, F., Yuan, B., Zhang, W., Chen, S.,
Sun, M., Li, X., Li, S. and Liang, J., 2020. Supervised Learning Achieves
Human-Level Performance in MOBA Games: A Case Study of Honor of
Kings. IEEE Transactions on Neural Networks and Learning Systems.

[7] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M. and Dieleman, S., 2016. Mastering the game of Go with deep
neural networks and tree search. nature, 529(7587), pp.484-489.

[8] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A. and Chen, Y., 2017.
Mastering the game of go without human knowledge. nature, 550(7676),
pp.354-359.

[9] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T. and Lillicrap, T., 2018.

53

A. Bibliography.....................................
A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play. Science, 362(6419), pp.1140-1144.

[10] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-
stra, D. and Riedmiller, M., 2013. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

[11] Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L.,
Schmitt, S., Guez, A., Lockhart, E., Hassabis, D., Graepel, T. and
Lillicrap, T., 2020. Mastering atari, go, chess and shogi by planning with
a learned model. Nature, 588(7839), pp.604-609.

[12] Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P. and Oh, J.,
2019. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782), pp.350-354.

[13] Jaderberg, M., Czarnecki, W.M., Dunning, I., Marris, L., Lever, G.,
Castaneda, A.G., Beattie, C., Rabinowitz, N.C., Morcos, A.S., Ruderman,
A. and Sonnerat, N., 2019. Human-level performance in 3D multiplayer
games with population-based reinforcement learning. Science, 364(6443),
pp.859-865.

[14] Ye, D., Chen, G., Zhang, W., Chen, S., Yuan, B., Liu, B., Chen, J., Liu,
Z., Qiu, F., Yu, H. and Yin, Y., 2020. Towards playing full moba games
with deep reinforcement learning. arXiv preprint arXiv:2011.12692.

[15] Hochreiter, S. and Schmidhuber, J., 1997. Long short-term memory.
Neural computation, 9(8), pp.1735-1780.

[16] Coulom, R., 2006, May. Efficient selectivity and backup operators in
Monte-Carlo tree search. In International conference on computers and
games (pp. 72-83). Springer, Berlin, Heidelberg.

[17] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A. and Bengio, Y., 2020. Generative adversarial
networks. Communications of the ACM, 63(11), pp.139-144.

[18] Jeong, Y., Choi, H., Kim, B. and Gwon, Y., 2020, April. Defoggan:
Predicting hidden information in the starcraft fog of war with generative
adversarial nets. In Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 34, No. 04, pp. 4296-4303).

[19] De Palma, A., Ben-Akiva, M., Brownstone, D., Holt, C., Magnac, T.,
McFadden, D., Moffatt, P., Picard, N., Train, K., Wakker, P. and Walker,
J., 2008. Risk, uncertainty and discrete choice models. Marketing Letters,
19(3), pp.269-285.

[20] Wang, S., Mo, B. and Zhao, J., 2021. Theory-based residual neural
networks: A synergy of discrete choice models and deep neural networks.
Transportation research part B: methodological, 146, pp.333-358.

54

..................................... A. Bibliography

[21] Wong, M. and Farooq, B., 2019. ResLogit: A residual neural network
logit model. arXiv preprint arXiv:1912.10058.

[22] Araujo, V., Rios, F. and Parra, D., 2019, September. Data mining for
item recommendation in MOBA games. In Proceedings of the 13th ACM
Conference on Recommender Systems (pp. 393-397).

[23] Villa, A., Araujo, V., Cattan, F. and Parra, D., 2020, September. Inter-
pretable Contextual Team-aware Item Recommendation: Application in
Multiplayer Online Battle Arena Games. In Fourteenth ACM Conference
on Recommender Systems (pp. 503-508).

[24] Chen, S., Zhu, M., Ye, D., Zhang, W., Fu, Q. and Yang, W., 2021. Which
heroes to pick learning to draft in moba games with neural networks and
tree search. IEEE Transactions on Games.

[25] Lee, S.K., Hong, S.J. and Yang, S.I., 2020, October. Predicting Game
Outcome in Multiplayer Online Battle Arena Games. In 2020 International
Conference on Information and Communication Technology Convergence
(ICTC) (pp. 1261-1263). IEEE.

[26] Birant, K.U., Multi-view rank-based random forest: A new algorithm
for prediction in eSports. Expert Systems, p.e12857.

[27] Kim, S., Kim, D., Ahn, H. and Ahn, B., 2020. Implementation of user
playstyle coaching using video processing and statistical methods in league
of legends. Multimedia Tools and Applications, pp.1-13.

[28] OP.GG: LoL Stats, Record Replay, Database, Guide, viewed 26 March
2022, <https://www.op.gg/>

[29] Maymin, P.Z., 2021. Smart kills and worthless deaths: eSports analytics
for League of Legends. Journal of Quantitative Analysis in Sports, 17(1),
pp.11-27.7

[30] Blitz App - Your personal gaming coach, viewed 26 March 2022,
<https://blitz.gg/>

[31] Yurko, R., Matano, F., Richardson, L.F., Granered, N., Pospisil, T.,
Pelechrinis, K. and Ventura, S.L., 2020. Going deep: models for continuous-
time within-play valuation of game outcomes in American football with
tracking data. Journal of Quantitative Analysis in Sports, 16(2), pp.163-
182.

[32] Reyers, M. and Swartz, T.B., 2021. Quarterback evaluation in the
national football league using tracking data. AStA Advances in Statistical
Analysis, pp.1-16.

[33] 1.10. Decision Trees, viewed 9 May 2022, <https://scikit-
learn.org/stable/modules/tree.html>

55

A. Bibliography.....................................
[34] Weight Initialization for Deep Learning Neural Networks, viewed 18

May 2022, <https://machinelearningmastery.com/weight-initialization-
for-deep-learning-neural-networks/>

[35] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 770-778).

[36] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H. and Bengio, Y., 2014. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv
preprint arXiv:1406.1078.

[37] Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J.W., Songhori, E., Wang,
S., Lee, Y.J., Johnson, E., Pathak, O., Nazi, A. and Pak, J., 2021. A
graph placement methodology for fast chip design. Nature, 594(7862),
pp.207-212.

[38] Hunter, J.D., 2007. Matplotlib: A 2D graphics environment. Computing
in science & engineering, 9(03), pp.90-95.

[39] League of Legends Wiki, viewed 18 May 2022,
<https://leagueoflegends.fandom.com/wiki/League_of_Legends_Wiki/>

[40] Huang, Z., 1998. Extensions to the k-means algorithm for clustering large
data sets with categorical values. Data mining and knowledge discovery,
2(3), pp.283-304.

[41] Nelis J. de Vos, kmodes categorical clustering library,
<https://github.com/nicodv/kmodes/>, 2015-20214

[42] McInnes, L., Healy, J. and Melville, J., 2018. Umap: Uniform manifold
approximation and projection for dimension reduction. arXiv preprint
arXiv:1802.03426.

[43] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A., 2019.
Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32.

[44] Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J. and
Kern, R., 2020. Array programming with NumPy. Nature, 585(7825),
pp.357-362.

[45] Kingma, D.P. and Ba, J., 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980.

[46] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A.N., Kaiser, Ł. and Polosukhin, I., 2017. Attention is all you need.
Advances in neural information processing systems, 30.

56

	Introduction
	League of Legends
	Our work

	Related work
	Game artificial intelligence
	AI players
	Representing knowledge
	Planning and games
	Decision making under uncertainty and risk and opportunity cost analysis

	League of Legends analysis
	Traditional sports analysis

	Statistical models
	Supervised learning
	Loss functions
	Logistic regression
	Tree classifiers
	Neural networks

	Reinforcement learning
	Fully observable Markov decision processes
	Value functions
	Deep reinforcement learning

	Dataset
	Data structure
	Data wrangling

	Solution
	Predicting game outcome
	Feature engineering
	Results

	Predicting macro decisions
	State encoding
	Prediction targets
	Model
	Results

	Conclusion
	Bibliography

