Master Thesis

Czech
Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Dental caries detection from bitewing X-ray
images

Lukas Kunt

Supervisor: prof. Dr. Ing. Jan Kybic
Field of study: Open informatics
Subfield: Artificial inteligence
May 2022

ii

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNIi A STUDIJNi UDAJE
4 ™
PFijmeni: Kunt Jméno: Lukas Osobni &islo: 478073

Fakulta/ustav: Fakulta elektrotechnicka

Zadavajici katedra/ustav: Katedra pocitactl

Studijni program: Oteviena informatika

Specializace: Uméla inteligence
\ J
Il. UDAJE K DIPLOMOVE PRACI
~
Nazev diplomové prace:
Detekce zubnich kazl z rentgenovych snimkii
Nazev diplomové prace anglicky:
Dental caries detection from bitewing X-ray images
Pokyny pro vypracovani:
1) Familiarize yourself with state-of-the-art methods in object detection and computer-assisted dental caries detection.
2) Based on the studied literature, propose a solution to dental caries detection from X-ray images based on deep learning.
3) Implement a program that automatically detects caries from bitewing X-ray images.
Seznam doporucené literatury:
[1] Srivastava et al: Detection of Tooth caries in Bitewing Radiographs using Deep .Learning. NIPS 2017 workshop on
Machine Learning for Health.
[2] Jae-Hong Lee et al: Detection and diagnosis of dental caries using a deep learning-based convolutional neural network
algorithm. Journal of Dentistry 2018
[3] Moran et al: Classification of Approximal Caries in Bitewing Radiographs Using Convolutional Neural Networks. Sensors
2021
[4] Yusuf Bayraktar, Enes Ayan: Diagnosis of interproximal caries lesions with deep convolutional neural network in digital
bitewing radiographs. Clinical Oral Investigation, 2021.
Jméno a pracovisté vedouci(ho) diplomové prace:
prof. Dr. Ing. Jan Kybic algoritmy pro biomedicinské zobrazovani FEL
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:
Datum zadani diplomové prace: 23.02.2022 Termin odevzdani diplomové prace: 20.05.2022
Platnost zadani diplomové prace: 19.02.2024
prof. Dr. Ing. Jan Kybic podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
L podpis vedouci(ho) prace podpis dékana(ky))

Ill. PREVZETIi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych prament a jmen konzultantu je tfeba uvést v diplomové praci.

Datum pfevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

Firstly, I would like to express gratitude
to prof. Jan Kybic for supervision of this
thesis and his willingness to help at any
time.

Secondly, I would like to thank MDDr.
Tichy was always eager to help, and
without his dedication to creating the
dataset, we would not have achieved
the results we did.

Last but not least, I would like to
thank my family for their support dur-
ing my studies.

I would like to further emphasize
my gratitude to my girlfriend Anna for
her undying moral and encouragement
throughout the creation of this thesis.

Declaration

I hereby declare that the presented
work was developed independently and
that I have listed all sources of informa-
tion used within it in accordance with
the Methodi- cal instructions for observ-
ing the ethical principles in the prepa-
ration of university thesis.

Prague, May 20, 2022

Abstract

Dental caries is the most prevalent dis-
ease globally, with more than 3.5 billion
people affected. The treatment of den-
tal caries imposes a burden on health
care in every country financially and
timewise. Detection of the disease in its
early stages can mitigate the impact on
the cost of treatment and improve the
patient’s prognosis.

Bitewing X-ray imaging is the second
most used method for dental caries de-
tection after the visual-tactile method.
Aproximal and an-early stage carious
lesion can be easily overlooked by the
visual-tactile exam, making the bitew-
ing X-ray imaging very beneficial for
early detection and a chance for recov-
ery without the need for further dental
treatment.

This Master’s thesis addresses the
problem of dental caries detection from
bitewing images using convolutional
neural networks. First, a dataset of
3889 bitewing images with 7257 anno-
tated dental caries was created for the
purpose of this thesis. We trained mul-
tiple architectures for object detection
and compared their performance using
it. In the end, we used an ensemble of
models to obtain the best-performing
model.

We have created a solution that can
detect dental caries with a precision of
0.751 and a recall of 0.7. Furthermore,
a second model for segmentation of den-
tal restoration was created, achieving
an IOU score of 0.676.

Keywords: dental caries detection,

convolutional neural networks, dental
restorations segmentation, ensemble,
bitewing, X-ray image

Supervisor: prof. Dr. Ing. Jan Kybic
Biomedical imaging algorithms, FEE

vi

Abstrakt

Zubni kaz je jednim z nejrozsirenéjsich
onemocnéni na svété postihujici vice
nez 3.5 miliard lidi. Lécba je naroc¢na
jak finan¢né, tak casové a zatézuje zdra-
votnicky systém ve vSech zemich svéta.
Vcasna detekce zubniho kazu umoznuje
tuto zatéz snizit a zlepsit pacientovu
prognoézu.

Po detekci pohledem spojené s pou-
zitim zubarské sondy jsou bitewingové
rentgenové snimky druhou nejvice vyu-
zivanou metodou pro diagnostiku zub-
niho kazu. Casné a aproximalni kari-
ézni 1éze nejsou prvné zminénou me-
todou vzdy spolehlivé diagnostikovany,
coz dava bitewingovym RTG snimkum
agnostiku spojenou s moznosti zhojeni
léze bez nutnosti dalsiho 1ékarského za-
sahu.

Tato diplomova prace se zabyva pro-
blémem detekce zubniho kazu z bitewin-
govych RTG snimki za pouZiti konvoluc-
nich neuronovych siti. Pro ucely této
prace byl nejprve vytvoren dataset skla-
dajici se z 3889 bitewingovych RTG
snimkd se 7257 anotovanymi zubnimi
kazy. Za jeho pouziti jsme natrénovali
nékolik architektur pro detekci objektu
a porovnali jejich vysledky. Nakonec
jsme vyuzili spojeni modelud pro ziskani
modelu s nejlepsimi vysledky.

Vytvorili jsme reSeni, které umoznuje
detekci kazd s presnosti 0.751 a citli-
vosti 0.7. Navic byl vytvoren i druhy
model pro segmentaci zubnich vyplni,
ktery dosahl IOU 0.676.

Kli¢ova slova: detekce zubnich kazd,
konvolu¢ni neuronové sité, segmentace
zubnich vyplni, ensemble, bitewing,
rentgenovy snimek

Preklad nazvu: Detekce zubnich
kazu z rentgenovych snimku

Contents

1 Introduction 1l
2 Medical background 3
2.1 Humanteeth 3l
2.1.1 Structure of teeth
Pulp-Dentin complex.............
Cementum......................
2.2 Dental caries 5l
22.1Causeciiiiiinn...
2.2.2 Epidemiology 6|
2.2.3 Diagnosis.................. 6]
2.2.4 Treatment 9
3 Theoretical background 11
3.1 Computer vision tasks
3.1.1 Classification
3.1.2 Semantic segmentation ...
3.1.3 Object detection.......... [11]
3.1.4 Instance segmentation
3.2 Data format in object detection
3.2.1 PASCALVOC
322CO0CO, 12l
323Y0LO ...
3.3Metrics ...,
3.3.1 Intersection over union
(IOU) .
3.3.2 Precision and recall.
3.3.3 Mean average recall in
MS-COCO (mAR) 16|
3.4 Optimization................
3.4.1 Optimizers...............
3.4.2 Weight decay
3.4.3 Learning rate schedulers . .
3.5 Artificial neural network (ANN)
3.5.1 Convolutional layer
3.5.2 Activation functions 19
3.5.3 Normalization layers.
3.6 Transformer architecture
3.6.1 Transformers in computer
vision ... 21!
3.7 General architecture for object
detection
3.8 Backbone models 23]
381ResNet..................
3.8.2 EfficientNet

vii

3.8.3 Swin transformer.........
3.9 Detection models
3.9.1 Faster R-CNN............
3.9.2 RetinaNet
3.9.3 EfficientDet..............
3.9.4 Models for image
segmentation
3.10 Model ensembling in object
detection
4 Related Work 31
4.1 Dental caries detection
4.1.1 Manual detection and
classification................. [31]
4.1.2 Dental caries segmentation
4.1.3 Dental caries detection ...

4.2 Dental restorations
segmentation

5 Dataset
5.1 Dental caries
5.2 Dental restorations..........

6 Project structure

6.1 Organization of the project . ..
6.1.1 Models
6.1.2Modules.................
6.1.3 Transformations..........
6.1.4 Data-Modules
6.1.5Trainer..................
6.1.6 Callbacks................
6.1.7 Logging

6.2 Additional open-source software

SEHEERGEE EEN B

7 Methods 47
7.1 Caries detection - baseline model
Comparison
7.1.1 Dataset
7.1.2 Image augmentations
7.1.3 Neural network models ... 48
7.2 Improvements
7.2.1 Training protocol changes .
7.2.2 Group normalization
7.3 Model inspection............
7.3.1 Size of backbone
7.3.2 Weight decay
7.4 Model ensembling...........

7.4.1 Data-format..............
7.4.2 Area-aware ensembling ...

7.4.3 Assessing the importance of
different models in ensembling
7.5 Dental restorations
segmentation
7.5.1 Non-deep learning approach

7.5.2 Deep-learning approach. ..
7.5.3 Model training

improvements................

8 Results

8.1 Model comparison on different

datasets
8.1.1 Stage one dataset
8.1.2 Stage two dataset
8.1.3 Stage three dataset....... 58|
8.1.4 Stage four dataset........
8.1.5 Stage five
8.2 Improvements
8.2.1 Training protocol
improvements................
8.2.2 Group normalization
8.3 Model inspection............
8.3.1 Size of backbone 61
8.3.2 Weight decay
8.4 Ensembling.................

8.4.1 Manually-picked parameters (62|
8.4.2 Grid search results
8.4.3 Assessing the importance of

different models..............
8.5 Dental restorations
segmentation

8.5.1 Non-deep learning approach

852U-Net................... 66l
8.6 Comparison of results with

related publications
8.7 Visualization of models
9 Discussion and further
suggestions

9.1 Comments on model comparison

and their improvements
9.2 Ensembling.................

viii

9.3 Dental restorations
segmentation
9.3.1 Non-deep learning approach

932U-Netcooiin..
9.4 Comparison of results with

related publications
10 Conclusion
Furtherwork
A Bibliography
B Aditional results
B.1 Detection of detnal caries and

segmentation of dental

restorations...................
C Images
C.1 Predictions of the model
C.2 Model importance during

ensembling 92|
C.3 Augmented images.......... 93|

Figures

2.1 Structure of teeth 14
2.2 Bitewing X-ray image
2.3 Periapical X-ray image, source
2.4 Panoramic X-ray image, source

3.1 From the left: semantic
segmentation, object localization,
object detection, instance
segmentation

3.2 Examples of IOUs for different
overlaps between GT and predicted
box, source.

3.3 Standard and interpolated
precision-recall curve, source [4] [16|

3.4 Learning rate schedulers: Cosine
annealing is red, Reduce learning
rate on plateau has purple color.

3.5 Graphs of ReLLU based activation
functions, source

3.6 Batch and group normalization
layers with denoted axes, across,
which the normalization statistics is
computed.....................

3.7 Architecture of transformer with
two encoders and two decoders,
source [6]]

3.8 Architecture of ViT, source

3.9 Architecture of different necks

for feature fusion, source [8]. ...
3.10 The schema of two-stage

detection process of Faster

R-CNN [24]

3.11 General architecture for object

detection, source [9]
3.12 Comparison of loss landscapes,

source [10]]
3.13 Hierachical structure of Swin

Transformer compared with ViT,

source [I1]] [26]
3.14 Shift of local window for

computation of self-attention,

source [T1]
3.15 Focal Loss, source [12] [26]

ix

3.16 Architecture of U-Net model,

source [13] ..o ...
3.17 Pseud code of NMS and
soft-NMS, source [14]..........

4.1 Annotated bitewing radiograph
and the same image post-processed,
source

4.2 Sample of data and predictions of

themodelby
4.3 Predictions of the model

proposed by Srivastava et al.,

source [16]]
4.4 Results of segmentation

algorithm proposed by Yeshua et

al.ll7Z]. ... (36|
4.5 Cropped region from

panoramatic image with multiple

restorations, source [18]

5.1 The environment of CVAT with
annotated carious lesion and dental

restorations................... 38|
5.2 Histogram of bonding boxes

dimensions in the dataset
5.3 Histogram of the number of

dental caries per image

5.4 Bitewing X-ray image on the left,
pixel mask of the X-ray on the right
(dental restorations have yellow
color)

5.5 Histogram of restoration area in
image, images without restorations

omitted.
5.6 Histogram of areas of

restorations, 10 largest omitted .
6.1 Structure of modules and their

configuration files

6.2 Folder structure of the project

7.1 Structure of the data in .json file
used to store model predictions .

7.2 Schema of the search of
hyperparameters and weights for
ensembling 52

8.1 Difference in APQ.5 amog
EfficientDet-D4 model with batch
normalization and group
normalization 61

8.2 APQ.5 of Faster-RCNN model
with varying weight decay values.
The metric is computed on the
validation part of the dataset during
training. 62

8.3 APQ.5 of YOLOV5 model with
varying weight decay values. The
metric is computed on the
validation part of the dataset during
training. 62

8.4 Importance of different models
during ensembling with different
architectures 65

8.5 From the left: X-ray image,
ground-truth pixel mask,
thresholded image, removal of
border pixels, morphological
Openingcouuu... 65

8.6 From the left: X-ray image,
ground-truth pixel mask, the output
of the model, output processed by
morphological opening, output
post-processed by morphological
opening and closing. 06

8.7 I0U throughout the training of
U-Net model for different loss
functions o7/

8.8 Value of IOU metric based on the
size of kernels K,, K. in
morphological operations that were
used for post-processing 67

8.9 Number of false positives per
image for a given value of recall |69

8.10 Percentage of nondetected
dental caries based on the precision
ofthemodel 69

8.11 Segmented dental restorations
in yellow, predicted dental caries in
pink and ground truth of dental
caries in green. We see a single
false positive detection on the top
right of the image. The author of
the dataset acknowledges it to be a
missing ground truth label 70

B.1 Four correct detection of dental
caries and one falsely-positive .. |86

B.2 Segmented dental restorations in
yellow, predicted dental caries are
pink. We see a successful
segmentation of dental restorations
and a single falsely positive
prediction of dental caries....... 87

C.1 X-ray image with ground truth
boxes and model’s predictions. Tho
model correctly predicts 11 out of
12 dental caries in the image.... [89

C.2 The model predicts correctly five
dental caries and has one falsely
negative prediction 90

C.3 Prediction of the model in image
with extensive amount of dental

restorations. 91
C.4 The model predictions on image
with dental bridge 92

C.5 Importance of different models
during ensembling with the same
architectures and backbones ... [92

C.7 No transformation applied ... (93

C.6 Importance of different models
during ensembling with the
architecture and different

backbones 93
C.8 Gaussian blur applied 94
C.9 Rotation applied 94
C.10 Gamma correction applied .. (95
C.11 Translation applied 95
C.12 The whole augmentation

pipeline applied 96

Tables

4.1 Results of models proposed in
[16] and [19], compared with three

dentists, modified 34

5.1 Statistics of bounding boxes that
denote position of carious lesions |40

7.1 Maximal batch sizes that fit into
12GB GPU for a given model.... |49
7.2 Hyperparameter search-space for
area-aware model ensembling .. |53
7.3 Hyperparameter search-space for
model ensembling 53
7.4 Comparison of the models
involved in ensembling by statics of
their AP@.5 metrics 54
7.5 Hyperparameter search space for
restorations segmentation pipeline |55

8.1 Comparison of the trained models
on the stage one dataset o8
8.2 Comparison of the trained model
on the stage two dataset 58
8.3 Comparison of trained models on
the test part of stage three dataset |59
8.4 Performance comparison of
multiple models trained on the

stage four dataset 59
8.5 Performance comparison of

multiple models based on mean

average precision metrics 60

8.6 Comparison of AP values between
different models trained by an
improved training protocol

8.7 Comparison of AP.@Q5 metric for
different backbones of YOLOv5
architecture

8.8 WBF ensembling of multiple
models, where we handpicked the
parameters of the ensembling
process. The models were trained
on the stage four dataset.

8.9 Hyperparameter values of
ensembling methods found by a
grid-search

60

62

xi

8.10 Average precision of models
ensembled with parameters from
Table 8.9

8.11 Average precision of ensemble

models 64
8.12 Average recall of models

ensembled by parameters from

Table!8.9 64

8.13 Precision, recall, and F-score
based on the confidence threshold
for different ensembling methods |64

8.14 Best hyper-parameters for

non-deep learning pipeline 65
8.15 Results of non-deep learning
approach to dental restorations
segmentation given the
hyperparameters in Table|[8.14|.. [66

8.16 Optimal parameters for model
post-processing found by a

grid-search 67
8.17 Results of U-Net models 67
8.18 Comparison of results of this

thesis with results in related

publications 68
B.1 Comparision of trained models

on the train part of stage three

dataset.............. 83

B.2 Precision, recall, and F-score
based on the confidence threshold ~
for the models trained on stage four

83

B.3 Precision, recall, and F-score
based on the confidence threshold.
Models were trained on stage-five

83

B.4 Average recall of models trained
by improved training protocol. ..

B.5 Precision, recall, and F-score
based on the confidence threshold
for different models, trained by the
imporved training protocol

84

84

B.6 Average recall of models
ensembled by parameters from
Table[8.9 84
B.7 Precision, recall, and F-score
based on the confidence threshold
for different ensembling methods (84|

xii

Chapter 1

Introduction

As of 2017, dental caries was the most prevalent disease globally[20][21], with
more than 3.5 billion affected people. Despite the advancement of technology in
the medical field, the prevalence has not decreased, hence imposing a burden on
health care in every country. In the US, more than six percent of total health care
expenditures were targeted toward dental care in 2016[22].

Machine learning and especially neural networks have improved remarkably over
the last decade, surpassing human-level performance in the ImageNet classification
task in 2015[23]. Since then, deep learning models’ error rates on the ImageNet
dataset have become four times smaller[24]]. This significant improvement in deep
learning led to its wast adoption across many fields, including medical imaging.
Deep-learning models exceeded human-level performance on specific tasks, such
as breast cancer detection[25]] or arrhythmia detection[26].

This thesis aims to develop a deep-learning-based model that will be able to
detect dental caries in bitewing X-ray images. The position of every carious lesion
is denoted by a minimal bounding box around the lesion. This model aims to
give dentists an opportunity to cross-check their decision regarding the presence
of carious lesions in the X-ray image. Furthermore, detecting caries’ position
directly from the image benefits dentists from saving information about dental
caries in a digital form without their intervention. Having the data in a digital
format could help dentists communicate the problem to a patient by overlaying
the position of dental caries over an X-ray image or provide them an option to save
that information for monitoring lesion progression over time. Last but not least,
software like this would be helpful in education, where dentistry students would
be able to train their ability to recognize dental caries without the need for a tutor.

The structure of this thesis is as follows: In Chapter 2| the medical background
is introduced, describing human dentition and dental caries. Chapter 3| presents
the fundamentals of the techniques used in this work. In Chapter /4| related work in
automatic caries detection is discussed. Chapter |5 describes the dataset that was
created for this thesis. In Chapter |6, we introduce the reader and the structure
of the object detection framework that we created and used for caries detection.
In Chapter|7, we propose a solution to the detection of dental caries. The results

1. Introduction

achieved by the proposed methods are presented in Chapter|8. Chapter |9 discusses
the results and methods that we used to obtain them. In Chapter|10, we summarise
the work and suggest future improvements.

Chapter 2
Medical background

. 2.1 Human teeth

Human dentition is composed of two sets of teeth - primary and permanent. The
primary, also called deciduous, consists of 20 teeth and begins to erupt at six
months of age. This dentition is completely replaced at the approximate age of 13
years by a permanent set of teeth, including 32 teeth. These can be divided into
four classes based on function and form. Namely, those classes are:

B Incisors

A total of 8 incisors teeth are found in primary and permanent dentition. They are
located at the oral cavity entrance, and their primary purpose is to cut and shear
food. They are essential for a smile’s esthetics and play a vital role in phonetics.

B canines

A total number of four canines are located at the corners of dental arches, dividing
them into a frontal and a lateral part. They have a triangular shape with a single
cusp tip on the incisal edge. The structure is associated with their ability to seize,
pierce, tear and cut food. Along with the incisors, they are essential for esthetics.

B Premolars

Premolars are teeth found only in permanent dentition, being the successional
teeth of all primary eight molars. Premolars share functional characteristics of
canines and molars - they both seize and grind food thanks to their anatomy.

B Molars

Human dentition contains 12 permanent molars with no deciduous predecessors.
Their leading role is crushing and grinding food to dimensions appropriate for
swallowing. Broad occlusal surfaces make them capable of this task. Molars are
prone to dental caries due to deep grooves that run across the occlusal surface of

3

2. Medical background

enamel

crown < dentin

pulp

gum
(gingiva)

cementum

blood
vessels

root —

periodontal
ligament

lateral
canals

nerve

\
© 2013 Encyclopzedia Britannica, Inc.

Figure 2.1: Structure of teeth

the teeth and a vast area of contact between adjacent molars. These places are
difficult to clean, resulting in a space where bacterias tend to accumulate.

B 2.1.1 Structure of teeth

Teeth are composed of three structures: Enamel, pulp-dentin complex, and ce-
mentum. A picture of teeth structure is depicted in Figure 2.1l The superficial
layer covering the anatomic crown of a tooth consists of a highly mineralized
crystalline structure called the enamel. More than 90% of the volume is taken
up by minerals (hydroxyapatite), making enamel the hardest substance of teeth
and even the human body. Its thickness varies from one class of tooth to another,
but it ranges from 2 to 3mm on average. Enamel is produced in the process of
amelogenesis by cells occurring only in the development stage, meaning that it
cannot regenerate. The biggest threat to enamel are acidic conditions, which can
cause its demineralization. Enamel has the ability to remineralize, but if the cause
is not removed, the enamel is irreversibly damaged, and a cavity is formed.

2.2. Dental caries

B Pulp-Dentin complex

Pulp and dentin are two specialized connective tissues. However, some sources
consider them a single tissue forming a complex [27]]. The dental pulp is located in
the pulp chamber of the tooth, and it serves four functions: formative, nutritive,
sensory, and reparative. The pulp is circumscribed by dentin formed by specific
cells in the process of dentinogenesis. Their cell bodies are found in the pulp
chamber, but their cytoplasmic cell processes, located in dentinal tubules, extend
into the mineralized dentin. Thanks to those processes, dentin is considered to
be a living tissue. Its function is to provide the ability to regenerate and react
to pathological stimuli, such as blocking the advancement of carious lesions by
precipitating minerals in the affected area. Dentin forms the most significant
portion of the tooth. In the coronal part, it is covered by the enamel, and on the
root of the tooth overlayed by cementum. There are different types of dentin.

® Primary dentin forms the outer and most prominent layer of dentin closest
to the enamel. It is produced in the development stage of the tooth.

8 Secondary dentin is formed after the root development is completed.

®m Tertiary (reactive) dentin production is encouraged as a response to patho-
logical stimuli, such as injury or caries. It is produced at the pulp-dentin
interface in order to protect the pulp.

® Transparent dentin is characterized by the presence of mineral precipitates
in dentinal tubules as a result of injury or aging.

B Cementum

Cementum covers the roots of teeth. Its structure consists of approximately 50 %
of anorganic material, 50 % of organic matter, and water, making it slightly softer
than dentin and far more delicate than enamel. Together with gingiva, periodontal
ligaments, and the alveolar bone, cementum forms periodontium, ensuring that
the tooth is attached to the bone. Cementum possesses the ability to repair itself
to a limited degree.

. 2.2 Dental caries

B 2.2.1 cause

Dental caries is an infectious disease characterized by the demineralization of hard
dental tissues. The leading cause is dental plaque (also called a biofilm). Plaque
is composed of bacteria, their by-products, and saliva, and it has the ability to
adhere to the tooth structure. Some bacteria in the plaque metabolize refined
dietary carbohydrates and produce organic acid by-products. If present in the
biofilm for an extended period of time, those acids can lower the pH in the biofilm

5

2. Medical background

to below a critical threshold (5.5 for enamel, 6.2 for dentin)[27]. Low pH drives
phosphate and calcium from the tooth into the biofilm in an attempt to reach an
equilibrium. This loss of minerals in a tooth is called demineralization and, if not
stopped, can lead to a caries lesion. However, this process can be controlled and
eventually reverted if the pH returns to neutral and the relative concentration
of soluble calcium and phosphate in the biofilm is higher than in the tooth. The
cycle of demineralization and remineralization occurs multiple times a day and is
modulated by many highly individual and tooth-specific factors.

B 2.2.2 Epidemiology

Untreated dental caries in permanent teeth is the most prevalent medical condition
[20]. In 2010, around 35% of the global population was affected. The most
considerable prevalence was observed around the age of 25. The sex of a person
was not a significant factor in the statistics. No noticeable change in prevalence
occurred between 1990 and 2010 [20] [28]], which means that the technological
improvement in dentistry did not affect the prevalence. Kassebaum et al. suggest
that 42 new cases of tooth decay in primary and permanent teeth will develop
annually from observing 100 people. This imposes a burden on health care systems.
According to Huang et al., [22]] in the United States alone, the cost of dental care
in 2016 was 0.1 trillion $ out of total health care expenditure of 1.62 trillion $.

B 2.2.3 Diagnosis

Visual-tactile diagnosis is the primary way to inspect teeth and detect caries.
Dentists use a mouth mirror and sharp probe to perform the examination. It is
indispensable to dry teeth since the difference in the refractive index between
sound and carious enamel is higher when water is removed from the tissue. This
increases the chance of spotting a carious lesion before it has an opportunity to
progress and cavitate the tooth. The second most used method clinicians use to
complement the visual examination is a dental X-ray. In dentistry, two main types of
X-ray imaging are taken during the examination: intraoral (the X-ray film is located
inside the mouth) and extraoral (the X-ray film is outside the mouth). The intraoral
images are the most commonly taken ones. This category includes bitewing and
periapical X-rays, each featuring different aspects of the teeth. Extraoral imaging
is mainly used to detect dental problems in the jaw and skull area. The most
common one to be used is a panoramic radiograph [29]].

Less common diagnostic measures are:

® Laser light-induced fluorescence
® Digital imaging fiber-optic transillumination
B Electrical conductance and impedance measurement

6

2.2. Dental caries

Figure 2.2: Bitewing X-ray image Figure 2.3: Periapical X-ray image,
source [1]]

| Bitewing X-ray

The bitewing radiograph is an image that depicts the crowns of upper and lower
teeth on the left or right side, as seen in Figure [2.2] It gives a clear sight of the
interproximal surfaces allowing good caries detection in this area. Interproximal
caries are challenging to diagnose by the visual-tactile method; thus, using the
bitewing X-ray can lead to an early diagnosis and a chance for the enamel to
remineralize. Also, bitewing X-rays portray the alveolar crest, where the dentist
may notice any bone thickness changes due to periodontal disease. Unlike the
other intraoral method, it does not show the entire length of the teeth. This type
of dental X-ray is the most commonly taken for preventive purposes [29]].

B classification of dental caries from bitewing X-ray

Dental caries are classified on multiple bases. The common ones are the depth of
the lesion or lesion activity.

A frequently used classification scheme was proposed by Pitts & Fyffe in 1988
[27]], including a total of 4 categories, three for cavitated lesions and one for
non-cavitated lesions. They described this classification for oclusal surfaces. For
bitewing X-ray images, the same classes are distinguished, only applied for the
approximal surfaces of teeth.

® DO Surface sound. A healthy tooth with no evidence of either treated or
untreated caries.

® D1 Initial Caries. No detectable loss of tooth substance. Radiolucency is
present in the outer half of the enamel.

® D2 Enamel caries. Demonstrable loss of tooth substance. Radiolucency is
visible in the inner half of the enamel and goes up to the enamel-dentin border.
No evidence that cavitation has penetrated through the enamel layer into the
dentin.

2. Medical background

Figure 2.4: Panoramic X-ray image, source

8 D3 Caries of dentin. Radiolucency reaches the dentine, breaking the enamel-
dentine border. However, there is not a significant spread in the dentin.

8 D4 Pulpal involvement.Deep cavity forms with probable involvement of the
pulp.

B Periapical X-ray

Periapical X-ray portrays the tooth from the crown to where the root attaches to
the jaw; hence, the whole tooth length is visible. As illustrated in Figure [2.3} it
only shows the upper or lower teeth in one part of the jaw. Periapical X-ray detects
any abnormalities in the root and any periapical lesions.

B Panoramic X-ray

This extraoral dental image shows the entire mouth area, including the upper and
lower jaw and adjacent structures. It depicts the full dentition, including teeth that
have not erupted yet. Impacted teeth, i.e. wisdom teeth as seen in Figure [2.4], can
be identified as well. Panoramic X-ray is often used before major procedures or to
diagnose jaw tumors, cysts, fractures, or sinusitis. Nevertheless, it is not usually
taken to diagnose dental caries [30].

B Digital imaging fiber-optic transillumination (DIFOTI)

DIFOTI is different from the previously mentioned types of dental imaging. It
works with infrared fiber-optic light and not an X-ray, unlike the others. A lesion’s
optical properties differ from those in healthy dental tissue, making it appear
darker. DIFOTI enables the detection of fissure/occlusal caries, interproximal
caries, and fractures and cracks in the tooth. It is a noninvasive method since it
does not expose the patient to ionizing radiation [31]].

8

2.2. Dental caries

B 2.2.4 Treatment

Treatment is suggested based on the progression of the lesion and the patient’s
risk profile. In some cases, only instructions to increase oral hygiene together with
fluoride toothpaste are enough to stop the progression and lead to remineralization
of the enamel. The dentist can suggest an application of a sealant to prevent further
progression of the lesion. If this treatment is perceived as insufficient or if the
carious lesion is already cavitated, restoring the tooth is required. This consists of
removing all dental decay and filling the cavity with restorative material such as
dental composite or amalgam [27][29].

10

Chapter 3

Theoretical background

. 3.1 Computer vision tasks
This section provides a brief overview of standard computer vision tasks.

B 3.1.1 Classification

Let’s say we have an image x. In a classification task, our goal is to assign one of
n possible classes to the image:

Z?:fe (X)a (3.1)

where f is a mapping, sometimes called a model, and # represents model parame-
ters if it holds that ¢ = y, where y is a true class of the image x, the classification
is considered to be correct. It is possible to output p € R" instead of ¢, where
p; € p is probability of 7« = y, modeled by fy.

B 3.1.2 Semantic segmentation

For an input image = € R™*™, the goal is to output Y € R"*™, where yi; is the
predicted class of pixel 7, 7 in image x. Similarly to the classification problem, we
can output matrix P € R"*"*¢, where p; ;. is the probability of pixel; ; belonging
to class c. A sample of semantic segmentation output can be seen in Figure |3.1.

B 3.1.3 Object detection

In object detection, the goal is to locate and recognize objects of interest in image
X. A rectangle and a category represent a ground truth object. Model predicts
Y € R™*6 values for each image. Each row of Y consists of four numbers, which
describe a rectangle, the category of the object inside the rectangle, and a number
in the range from 0 to 1 called the confidence. In literature, we can see the
term score instead of confidence. Nevertheless, the meaning remains the same:
Certainty of the network regarding the particular prediction described by the
bounding box and category. Please note that the confidence of predictions does not

11

3. Theoretical background

_TREE, SKY \

2N /
Y
No objects, just pixels Single Object Multiple Object s maga's

Figure 3.1: From the left: semantic segmentation, object localization, object detection,
instance segmentation

sum to one. In other words, we are not talking about probabilities since multiple
detections per image can correspond to the ground truth.

B 3.1.4 Instance segmentation

Instance segmentation is similar to semantic segmentation, with the alteration
saying that two objects of the same category would have different ground truth
values. If we have O, Oy, where O; C x are pixels of object 7 in image x. Then

01, 7& 02, for 01, € 01,02i S OQ;Vi. (3.2)

. 3.2 Data format in object detection

As described in Section[3.1.3} the position of an object is denoted by a bounding
box. The four parameters used to describe a bounding box can be selected in
multiple ways. This ambiguity led to a disjoint notation. The most widespread are
as follows.

B 3.2.1 PASCAL vOC

The format was introduced together with the PASCAL VOC dataset, the most popu-
lar dataset for object detection algorithm benchmarking in 2010. The bounding
box is described by points p;(z,y), p2(z, y) located in the top-left and bottom right
corner. The coordinates range from 0 to image width/height in pixels. All the
annotations are stored in a single XML file 33].

B 3.2.2 coco

COCO data format is represented by a single JSON file containing all bounding
boxes of the dataset. The boxes are described by the top-left corner point p(z, y)
and the width and height of the box. The coordinates and box dimensions are

12

3.3. Metrics

again in the range 0 to image dimensions. In MS COCO, the annotation can be
accompanied by a piece of additional information to solve the task as an instance
segmentation problem.

B 3.2.3 YoLO

This format was introduced together with the first YOLO architecture [34], and
this annotation style is still persistent whenever working with the YOLO-family
neural networks. In this format, the annotations are divided into multiple TXT files
and each of them contains annotations for a single image. The bounding box is
described similarly as in the COCO dataset, but the coordinates are normalized to
be in the 0 to 1 range. The advantage of this approach is that the annotations do
not have to be modified when image dimensions are scaled [34}, [33]].

. 3.3 Maetrics

B 3.3.1 Intersection over union (I0U)

Intersection over union, also known as the Jaccard index, is defined as demon-
strated: Let By and B, be a ground truth and a predicted bounding box. The
Jaccard index J is calculated as

area(By,(Bgt)

I = J(B,, B,) = .
OU = J(By, Bgt) area(ByJ Bgt)

(3.3)
From the Equation 3.3, we can observe that the lowest value of IOU is 0. This
means there is no overlap and the maximal value is 1, indicating a perfect match.
We use a predefined threshold value of IOU to decide if the predicted bounding box
matches the ground truth. Usually, we choose this threshold to be 0.5 or above.

IOU can be defined for the semantic segmentation task with two classes (e.g.
background and target class). Let Y € R™*" be the mask of the predicted values,
where §; ; = 1 if the model predicts, that pixel 4, j belongs to target class. The IOU
is defined as:

m n ~
im12j—1Yij N\ Yi

IOU - ~ I
i1 =1 T V Yi

(3.4)

where y; ; € Y € R™ timesn js the ground truth value for pixel i, .

B 3.3.2 Precision and recall

B Precision

When speaking about object detection, we say that a prediction is a true positive
(TP) if the IOU value is greater than the predefined threshold 7. If otherwise, the

13

3. Theoretical background

lol: 0.4034 lol: 0.7330 loU: 0.9264

Poor Good Excellent

Figure 3.2: Examples of IOUs for different overlaps between GT and predicted box,
source.

prediction is treated as a false positive (FP). Let’s assume there are N predictions
of our model, from which S are correct. Precision is defined as

o TP(T,
Precision(r,7) = TP(r) 3—131)3(7 ot (3.5)

where v is the confidence threshold, meaning we discard all predictions with
confidence smaller than v. Note that for fixed value of 7 are F'P(y) and T'P(v)
decreasing functions of v [33].

B Recall

If there is a ground truth bounding box for which there are no given detection
values of v and 7, we say it is a false negative (FN). If we consider a dataset with
G ground-truths and N predictions of which S is correct, where (S < G), the recall
is expressed as:

TP(r,7)

Recall(1,v) = TP(r2) + FN(r.7) (3.6)

Since the value of FN(v) increases with the growing value of +, we see that recall
is the decreasing function of ~.

B F1score

The value of the F1 score is computed as the harmonic mean of precision and
recall.

9. - Precisi
Fl(r,) = Recall(t,7) - Precision(t,)

. 3.7
Recall(t,~) + Precision(t,7) (3.7)

14

3.3. Metrics

B Precision-recall curve (PR curve)

From Subsections|3.3.2/and |3.3.2, we were able to observe that precision mainly
grows as we increase the confidence threshold v, while at the same time recall
decreases. The precision-recall curve captures the relation between precision and
recall. An example of the curve is illustrated as the blue line in Figure|3.3| In other
words, we can say that the precision-recall curve is a mapping

~v — Precision(y) x Recall(7y), (3.8)

where v ranges from 1 to 0.

B Mean average precision (mAP)

To calculate mAP we first need to get the PR-curve and then interpolate the
precision values. Suppose that we have K different confidence values v among
model predictions, which are ordered as

v(k), k=1,2,..., K, such that y(i) > v(j) fori > j. (3.9)
The interpolated precision-recall curve is then defined as

max {Precision(y(k))}, (3.10)

Precisioninterp(R) =
in 87"}7() k|Recall(v(k))>R

where R is a real value contained in interval [0,1] [33]]. The interpolated precision-
recall curve is pictured in Figure |3.3|in red color. Now, we can compute the
average precision (AP) as the area under the interpolated PR curve. In practice,
there are two different ways to approach the Reimann integral. They differ in
the number of samples used to compute the integral and are called N-point and
all-point interpolation. The N-point, specifically 101 point interpolation, is used
in the MS COCO competition. On the other hand, the all-point interpolation is
nowadays used in PASCAL VOC challenges [4), [4]].

Since the AP is calculated per class, the mean average precision is defined as
the average in all categories.

In Subsections (3.3.2]| and |3.3.2, we stated that precision and recall depend
on a predefined IOU threshold 7 to consider prediction as true positive. This
dependency makes the value of MAP vary over different values of 7. The threshold
value used for computation of the mAP is usually denoted in the metrics name, such
as APQ.5 in the case of MS COCO. ! The standalone AP without any numerical
values attached to it usually refers to the official COCO metric. The official COCO
metric is in its explicit form written as APQ[.5 : 0.05 : 0.95] and is computed as the
average of MAP values for ten different 7 values, ranging from 0.5 to 0.95.

The letters S, M, and L in the subscript, such as APg denote that the metrics
are calculated for a subset of ground truth predictions only. Taking into the
consideration only bounding boxes with area < 322 pixels, 322 < area < 962 pixels
and area > 962 pixels

!Note that even though the mean average precision is computed, the AP shortcut, which stands
for average precision, is used.

15

3. Theoretical background

1.0 =====7 —— Precision

—-—- Interpolated precision
0.9 | f T
0.8 -

0.7

0.6

precision

0.5 1

0.4 1

0.3

0.2 1

0.0 0.1 0.2 0.3 0.4
recall

Figure 3.3: Standard and interpolated precision-recall curve, source [4]]

B 3.3.3 Mean average recall in MS-COCO (mAR)

PyCOCOtools, the official metrics for MS-COCO benchmark [35], compute the
average recall (AR) by the following approach: Predictions are sorted according to
their confidence in a decreasing order. We take n boxes with the highest confidence
values and evaluate their recall by Equation for a predefined IOU threshold
0. We use a similar notation as in the case of AP, where ARQ.X,,, denotes the
average recall computed for IOU threhsold X, where we consider n most confident
predictions. By a € {S, M, L, all} we denote size of the rectangles, for which AR
is computed. If we omit some of those, the following default values are used
a =all,n =100, X = [.5:0.05:0.95].

B cCross-Entropy loss

Lety € R",y; € {0,1} be a vector of ground truth classes and y € R" be a vector
of model preditions, where ¢; € [0, 1] is the predicted probability, that i;, element
belongs to class 1. The cross-entropy loss is computed as follows [36]:

LN
Lee(y,y) = N > wilog(p(9:) + (1 — yi) log(1 — 4i) (3.11)
i=1

16

3.4. Optimization

B Ssoft Dice Loss

Let’s consider y and y as in section|3.3.3, Soft Dice Loss is then computed as:
Zij\il 2y Ji

N N -

Dim1 Yi T 2im1 Ui

Dice Loss is computed in the same way, we only threshold values of ¥y prior to
computation of the loss [37, [36].

SDL(y,9)=1— (3.12)

. 3.4 Optimization

In deep learning, a defined loss function that should be minimized usually does not
have an analytical solution, or the solution cannot be evaluated for computational
reasons. Therefore, the iterative numerical optimization approach is used, where
we compute the gradient of the loss function with respect to the parameters of
the optimized model. Those are updated by changing their values in the negative
direction of the computed gradient.

B 3.4.1 Optimizers

The most simple optimizer is Stochastic Gradient Descent (SGD), which in each
step updates the weights by stepping in the opposite direction of the gradient The
learning rate affects the length of the step.

Many advanced optimizers that increase the speed of convergence are available.
Commonly used are SGD with moentum, Adam and AdamW.

B 3.4.2 Weight decay

We can add the L, of the model weights to the loss function. This term is called
weight decay and should decrease the discrepancy between performance on train-
ing and testing part of the dataset.

B 3.4.3 Learning rate schedulers

Learning rate is considered to be one of the most, if not the most important param-
eter, in deep learning. It is usually beneficial to change the learning rate during
the course of training. This can be done manually or automated by an algorithm
that increases or decreases the learning rate based on the set of predefined rules.
This algorithm is called the learning rate scheduler.

B ReduceLROnPlateau

We couple the scheduler with a model metric, and when the improvement of the
metric stalls for a predefined period, the learning rate decreases. The scheduler is
not heavily reliant on the setting of its hyperparameters, making it a go-to starting
choice for most developers.

17

3. Theoretical background

Figure 3.4: Learning rate schedulers: Cosine annealing is red, Reduce learning rate
on plateau has purple color

B Cosine annealing

Cosine annealing changes the value of learning rate according to the equation
3.13, where T is half-period of the cosine.

1 t
Ir(t) = lrmin + 3 (Irmaz — Urmin) (1 + cos <T7r>> (3.13)

It is commonly used with two different settings. Either we set 7" to estimated
length of the training. The learning rate than decreases throghout the training,
as can be seen in Figure 3.4}, or we select small value of T' and the learning rate
oscilates in predefined boundaries multiple times throughout the training. This
should help the optimizer to overcome saddle points.

. 3.5 Artificial neural network (ANN)

The mechanisms of the human brain inspire artificial neural networks. Human
neuron cells are in ANN replaced by artificial neurons, which are defined as:

y=f(w'z+b). (3.14)

Where x is a vector of inputs, w stands for weights and b is bias. Symbol f
denotes an activation function f : R — R. The artificial neuron proposed by Frank
Rosenblatt in the perceptron algorithm worked with a step function [38], but
nowadays, different functions such as ReLu, sigmoid or tanh are used. The output
of the neuron y is called activation of the neuron.

Neurons are usually structured into layers. The connection between layers
depends upon the architectural choice. First ANNs used fully connected layers,
meaning that the input into a neuron in layer n was composed of all activations
from layer n — 1. Fully connected neural networks are nowadays sparsely used in
computer vision. Convolutional neural networks (CNNSs) or vision transformers
are used instead. In the case of CNNs we limit neurons’ receptive field to the
local neighborhood only; this decreases the computation complexity and includes
our prior knowledge of pixel neighborhood in the input image. Having the same
weights for the whole input makes the network invariant to shifts in the input.

18

3.5. Artificial neural network (ANN)

—*a"/:i/
/
Source pixel —] —| 0
G ETl T
1
3 ﬁ.—;‘ 4 4 (-1x3)+(0x0)+({1x1)+
= Tel=—7%] | 2 (2x2)+(0x6)+(2x2) +
gh =ga00n
,3—’/_1 _,?-' Yl //
34944 <‘l:r.-ic —T |+
gB4r oLt gBsgly
16 | 217 ~ T A
o - S gt gs
2 =
onvolution filter // |1 L]
(Sobel Gx) 1 L+ >
Destination pixel | —1 // //
/// // |~
L] // /f
|_—
////
//

Bl 3.5.1 Convolutional layer

A convolutional layer consists of C,,; neurons, each having C;,, H, W receptive
field. Those neurons are called kernels with width W height H and several input
channels C,. In each layer, we convolveE| the input X with the kernel W, the
output Y is defined by:

Yosij = Z Z Z T itAiyj+AWo,c,Ai,Aj (3.15)
Cin A1 Aj
Nowadays, modifications of convolutional layers are proposed, such as dilated
convolution, grouped convolution, or depth-wise separable convolutions are used.
However, the fundamentals remain the same: Filter sliding over the input produces
an output.

B 3.5.2 Activation functions

A non-linear activation function usually follows the output of the convolutional
layer. Many activation functions are at our disposal, but the most commonly used
is ReLU and its derivatives, such as SERLU, SELU, ELU, Swish, and Leaky ReL.U.
Values of those functions are depicted in Figure 3.5

B 3.5.3 Normalization layers

Normalization layers make the training of ANNs faster and more stable. It has been
shown, that normalization-layers decrease the generalization gap ,while increasing

2Even though we usually refer to convolution, in practice, cross-correlation is used instead. Terms
cross-correlation and convolution are used interchangeably.

19

3. Theoretical background

25| — SERLU
51 SELU
—EWU
157 —— Swish
1} Leaky ReLU

— RelU

(a): Different activation functions Batch Normalization Group Normalization
Figure 3.5: Graphs of ReLU based Figure 3.6: Batch and group normalization
activation functions, source [5] layers with denoted axes, across, which the

normalization statistics is computed

the convergence speed [39, [40]. The normalization layers differ in spatial axis,
across which, the normalization statistics is computed, this is illustrated in Figure

B Batch-normalization

The most normalization layer is batch normalization, which computes the output
of the layer y; as:

Ty — UB

Voge + €

where « and [are learnable parameters, B denotes, that this value is computed
over a mini-batch.

£ yi — & + B (3.16)

[| Group-normalization

Wu et al. [40] proposed a normalization method, where the statistics are computed
over groups of channels. We et al. showed that group normalization outperforms
batch normalization when both layers are used with batch sizes smaller than eight.

The disadvantage of group normalization is the introduction of a new group size
G hyper-parameter, which needs to be tuned to obtain the results claimed by the
authors [40].

. 3.6 Transformer architecture

Transformer architecture debuted in computer vision in 2021 and has achieved
outstanding results, beating state-of-the-art models in multiple benchmarks across
all computer vision tasks. As of May 2022, the best-performing models in the main
computer vision benchmarks are based on transformer architecture. We think of

20

3.7. General architecture for object detection

the following benchmarks to be the main ones in computer vision: ImageNet
benchmark (classification task), COCO (object detection), ADE20K (semantic
segmentation).

The transformer architecture was proposed already in 2017 for the task of natu-
ral language processing (NLP). We will briefly introduce transformer architecture
for the NLP task since it is crucial for understanding transformers for computer
vision.

B Transformers in NLP

Transformer architecture was introduced in the paper Attention is all you need [41]]
for NLP. NLP is a task where input is a sequence of words of length n and output
is a sequence of m words, where n and m usually differ. The sequence of words is
converted into a sequence of vectors. There are multiple options for how to embed
words into the vector. Commonly used is TD-IDF or Word2Vec[42]. Positional
encoding is added to those vectors are then the encoder block processes it. The
novel key component is the self-attention module, where for the input sequence of
vector values V, keys K and queries () are computed. We output values and keys
from the encoder, and from the decoder’s self-attention module, we output queries.
We then take keys and values from the encoder and queries from the decoder and
input them into another attention block:

Attention (Q, K, V') = softmax QK7 V. (3.17)
ention (Q,K,V) = — 1V, .
Vi

where dj. is dimension of keys. More details can be seen in Figure 3.7 or in [41].

B 3.6.1 Transformers in computer vision

The first transformer-based model was the Vision Transformer (ViT) which is
capable of image classification only. It is composed of multiple encoder blocks
stacked on top of each other; those blocks are the same as those used by the
transformer for the NLP task. On the top encoder block is attached a multi-
layer perceptron (MLP) head, which outputs values for each class. Those can be
converted into corresponding probabilities by a softmax layer. The input into ViT
are 16 x 16 image patches linearly projected into vectors; the whole architecture is
shown in Figure

. 3.7 General architecture for object detection

Even though there is a wide variety of architectures for object detection, the core
principles remain the same. The model is composed of three main parts: backbone,
neck, and head, as depicted in Figure |3.11. Each of those blocks can usually
be swapped for a different one, fulfilling the same purpose. This gives us great
flexibility and allows us to try different combinations of those blocks.

21

3. Theoretical background

Output
ommmmmmmemese. 1 Probabilities
[o---»Add & Norm T
Feed Ly
YRR Forward : [Linear]
* i ')
g | oo :
© bl |
8 | .--->Add & Norm
LJCJ ' 1 ' » -
: Multi-Head Y ™
: Attention v Add &I Norm [« - - -+
: t 1 % | Feed
] y H Forward
---» Add & Norm ! Add & Norm «- - - -
H ' S E—
Feed L Multi-Head
- Forward Attention
3
E ,,,,,,,,,
R I e N Y T
& | ,---»Add & Norm Add & Norm |- - - -
G| et e
' Multi-Head Multi-Head !
H Attention Attention '
\'-_ -------- S ittt
Positional Positional
Encoding E,:/ Encoding
Input Qutput
Embedding Embedding

Previous Outputs

Inputs (shifted right)

Figure 3.7: Architecture of transformer with two encoders and two decoders, source

(el

B Backbone

The purpose of backbones is to transform the input image into feature maps. For
this purpose, we use classification models with the classification head removed.
Most parameters of object detection models are usually part of the backbone. The
extraction of useful feature maps is vital for other blocks to perform well. The
most common backbones are models from the ResNet family.

B Neck

The neck is responsible for the merging of features from the backbone. This is
not a straightforward task since we usually use features from different backbone
layers. This allows us to get semantically strong features from deeper layers and
more detailed information from earlier ones. Common neck architectures are
feature pyramid network or PANet [43].

B Head

The head is responsible for predicting the position of boxes and their classification.
It uses the features extracted by the backbone and merged by the neck. Based on
the approach to box prediction, we differ them into Dense prediction heads (YOLO,
RetinaNet) or Sparse prediction heads(Faster R-CNN) [44]].

22

3.8. Backbone models

Vision Transformer (ViT) Transformer Encoder

MLP
Head

A
L x e
5

Norm

Transformer Encoder

B - SDIOODY QDL

* Extra learnable
[Lll‘lf:dr Pm_]f:ctmn of Flattened Patches

[elass] embedding
SEE T 11 |
mam%IIMﬁWWE

Multi-Head
Attention

A s A Embedded
Patches
Figure 3.8: Architecture of ViT, source [7]
repeated blocks repeated blocks
Py ()—» P 07b
Ps ()—m Po Gb

Pe O—b—?—b Ps O"‘?’
P, &,*_, Py O

Ps C}»‘—» Ps O

(a) FPN (b) PANet (c) NAS-FPN (d) BiFPN

Figure 3.9: Architecture of different necks for feature fusion, source

. 3.8 Backbone models

This section will introduce multiple architectures of neural networks, which were
used as a backbone throughout our work.

B 3.8.1 ResNet

ResNet architecture was introduced by He et al. and proposed a novel element
of deep-learning architectures - an identity shortcut connection sometimes called a
skip-connection. Let x be the input into a block composed of multiple convolutional
layers with activation functions in betweenE|; we will call this block a mapping F.

3Addition of batch-normalization, or other layers is possible

23

3. Theoretical background

classifier

Rol pooling

proposals j ;

Region Proposal Network,
feature maps Backbone Neck DenseHead
{VGG, ResNet, {SSDHead, RetinaHead,
— ResNeXt, ..} (FPN,BFP. .-} FCOSHead, FSAFHead, ...}
=
DenseHead
{RPNHead,
cony layers GARPNHead, ..}
A / Backbone | | Neck R{;'Sifdd
W (Reshet, ResNeXt, .} (PN, BFP,..} Nastond, 3
Figure 3.10: The schema of two-stage Figure 3.11: General architecture for
detection process of Faster R-CNN object detection, source [9]

The output of the residual block #, derived from F is defined as:
H(x) =F(x)+x. (3.18)

The reasoning behind the residual block is to make it easier to learn the identity
mapping if desired. This has other benefits, especially the improvement of the
gradient flow during back-propagation, making it easier to optimize such blocks.
This ease of optimization can be seen by inspecting the loss function landscape of a
model with and without skip-connections in Figure |3.12 Final ResNet architecture
is composed of multiple residual blocks stacked one after another; the models vary
in the number of layers used; this is denoted in the name with a number such as
ResNet50 or ResNet101.

B 3.8.2 EfficientNet

When scaling the model’s size, we can increase: Number of layers (depth), the
number of filters in each layer (width), or the width and height of feature maps
(resolution). It has been a common practice to change only one of them. Tan and
Le [46] did a multi-objective neural network search, where they tried to maximize
objective function O defined as:

O = ACC (m) x [FLOPS (m) /T]" (3.19)

where ACC(m) and FLOPS(m) are accuracy and floating-point operations (FLOPS)
of model m, T is the target number of FLOPS, and w is a hyper-parameter con-
trolling the trade-off between accuracy and number of FLOPS of the final model.
This search resulted in the EfficientNet-BO baseline model, which can be scaled to
obtain a more extensive network called B1-B7.

24

3.9. Detection models

(a) without skip connections (b) with skip connections

Figure 3.12: Comparison of loss landscapes, source [10]

B 3.8.3 Swin transformer

Swin transformer architecture overcomes the limitations of ViT, which is working
with 16 x 16 image patches only. This is insufficient for segmentation and object
detection tasks, where dense predictions are needed. Swin transformers are in the
first layer working with 4 x 4 patches. Since the computation complexity of the self-
attention layer grows quadratically with the number of input tokens, the authors
overcome this by using neighbor patches only. Attention is thus computed with
respect to tokens in the non-overlapping local window. As depicted in Figure3.14,
this local window for computing self-attention is shifted after every encoder layer.
This shift introduces cross-window connections, which increase the modeling
capacity of the model. After a particular number of encoder layers, neighbor
patches are merged, which reduces the number of patches while increasing their
size by a predefined factor. This mimics the behavior of CNNs, where we start
with big, semantically weak feature maps and gradually decrease their dimensions
while increasing their number. Having this kind of feature map allows using swin
transformer as a general backbone for any task. [11]]

. 3.9 Detection models

B 3.9.1 Faster R-CNN

Faster RCNN (Region-Based Neural Network) architecture is a two-stage detector.
In the first stage, Region Proposal Network (RPN) finds regions of interest (ROI)and
proposes bounding boxes corresponding to those regions. This is done by sliding
a small neural network over the output of the backbone. In the second stage,
features corresponding to positions of ROIs are extracted from the backbone and
processed by a classification network, which decides if the region corresponds to a

25

3. Theoretical background

segmentation o
classification detection ... Clasmgicatmn

1
7
i Layer 1 Layer 1+1

LB T
L L e e A%
i i St

[]

A local window to
perform self-attention

il EEEER

E

P/ = A patch
(a) Swin Transformer (ours) (b) ViT [:‘
Figure 3.13: Hierachical structure of Figure 3.14: Shift of local window
Swin Transformer compared with ViT, for computation of self-attention, source
source [11]] [11]]
5
CE(p,) = —log(p) o
—=0.
4 FL(p) = —(1 — p)” log(p1) =1
—_—y=2
3 —L
0
0
o

well-classified
examples

0 0.2 0.4 0.6 0.8 1
probability of ground truth class

Figure 3.15: Focal Loss, source [12]

background or is one of the target classes. The schema of the architecture is in

Figure [3.10|

B 3.9.2 RetinaNet

The biggest contribution of RetinaNet is the introduction of focal loss [12], see
Figure It helps to mitigate to the problem if class imbalance by changing the
formula Cross-Entropy loss. The penalization of well-classified samples decreases,
increasing the importance of correct classification of hard-to-classify examples.

B 3.9.3 EfficientDet

EfficientDet tries to achieve a similar goal as EfficientNet: Propose a computa-
tionally effective architecture for object detection that would be scalable. Since
an efficient backbone architecture was already proposed [46]], they focus mainly
on feature fusion from multiple layers. Based on the study of FPN, PANet, and
NAS-FPN, a Bidirectional feature pyramid network (BiFPN) was proposed as the

26

3.9. Detection models

64 64
128 64 64 2
input

image
tile

output
segmentation
map

¥
¥

392 % 392
390x390 ¥
88 x 388 '
aeax3ss ¥

572 x 572
570 x 570
568 x 568

' 128 128

256 128

2002
1982

2842

512 256 t

(=]

g 1 K =»conv 3x3, RelLU
2 = copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

1024 512

Figure 3.16: Architecture of U-Net model, source [[13]]

most computationally effective neck architecture [8]; it consists of multiple BiFPN
blocks stacked on top of each other, see (3.9l The count of those blocks is dependent
on the size of the used backbone.

B 3.9.4 Models for image segmentation
B U-Net

U-Net is an architecture for semantic segmentation, with an encoder-decoder
structure as shown in Figure [3.16. The decoder extracts feature maps from the
input image with an increasing semantical strength throughout the layers. In the
middle of the network is a so-called bottle-neck layer with the strongest semantical
information about the image but lacks information about high-resolution details of
the input image. Hence when the decoder decodes the information from the bottle
neck, it is combined with information from the shallower layer, which contains
information about image details required to obtain a precise dense prediction.
The decoder proposed by Rennenberger et al. can be replaced by a general-
purpose backbone, as demonstrated by Baheti et al. [47], who used EfficientNet
as the backbone.

27

3. Theoretical background

Input :B={by,...by}. S ={s1,...,sn}. N}
B is the list of initial detection boxes
& contains corresponding detection scores
N is the NMS threshold

begin

D« {}

while B # empty do

m < argmax &

M by,

D«DJM;B+B-M

for b; in Bdo

. end NMS
S
SOft-NMS

end
return D, &

end

Figure 3.17: Pseud code of NMS and soft-NMS, source [14]]

. 3.10 Model ensembling in object detection

Let say we have M different models, each of them predicting B; = {b1,...,bn}
bounding boxes and S; = {s1, ..., sy} confidence values for a given image corre-
sponding to a single class. We merge predictions of all models together. It is
possible to use weights W = {wy, ..., ws} to express our prior belief in the given
model. Set of all boxes B and confidence scores § is thus obtained by:

s=UUB .s=U "% (3.20)
i=1 i=1

where F is an optional normalization constant. It’s only purpose is to ensure that
confidence score will be less than 1 after the ensembling. Commonly used value
for Fis ﬁ Zf\il w;. After obtaining sets B and S we post-process them by one of
the following algorithms: Non-maximal suppression, soft non-maximal suppression,
non-maximum weighted suppression or weighted boxes fusion.

B Non-maximal supression (NMS)

In non-maximal suppression, we first sort all boxes B by their confidence S in
descending order. We go thru the sorted set B and check if any other box b in B
has an overlap greater than the predefined threshold ;. In that case, we remove
box b from B. More details regarding the NMS algorithm are in the pseudocode,
which is in Figure 3.17

28

3.10. Model ensembling in object detection

B Ssoft non-maximal suppression S-NMS

Soft non-maximal supression extends the NMS algorithm by a possibility to keep
overlapping the predictions if their confidences are high. Instead of removing
boxes with an overlap, we decrease their confidence value by the follwing Gaussian
penalty function:

~iou(M,b;)?

S; = S§;€ o ,Vbi ¢ D (3.21)

where M is the currently processed bounding box, and D is the set of already
processed boxes. After processing all boxes, those with s; < T are removed, where
T stands for a confidence cut-off threshold [14].

B Non-maximum weighted suppression (NMW)

Non-maximum weighted suppression does not remove boxes in case of an overlap,
but merges them togehter by following formula:

M = i@ X bi (3.22)
i1 Wi
wi = 8; X iou (bza bargma:cisi) (3.23)

where M is the merged bounding box, for which no confidence value is computed
(48] [49].

| Weighted boxes fusion (WBF)

Weighted boxes fusion combines boxes similarly to NMW. The main difference is
the iterative approach to the fusion, outputting confidence for the merged box,
and awareness of several models, which contributed to the prediction. The steps
of WBF are as follows [49]:

1. Sort B by S asin NMS.

2. Declare empty lists L. and F that would be used to store boxes clusters and
merged boxes, respectively

3. Iterate through B. If there is a box in F for which JOU > Threshold, add the
box from B to list L. on the position corresponding to position of the matched
box in F. If there is no match found, add it to the end of L.

4. Recalculate the box coordinates M and confidence ¢ in the list F on the
position where we added the box to L by formulas3.24.

5. After processing all boxes from B adjust confidence scores by a formula3.25|
where T is the number of contributing boxes and M is the number of models
used for ensembling.

29

3. Theoretical background

n T
=1 Ci X b; D im1Ci
=== = === 3.24
M > Ci ¢ T (:
T
= —_ 3.25
A RY: ()

30

Chapter 4
Related Work

This chapter will introduce relevant publications regarding dental caries detection,
focusing mainly on detection from bitewing radiographs. Following that, we will
briefly introduce methods for the segmentation of dental restorations.

. 4.1 Dental caries detection

Since 2017, more than ten publications have been released regarding automatic
caries detection from images [50]. They differ in how they approach caries local-
ization and the types of images they use. The following images have been used:
Near-Infrared Transillumination images [51) |52]], camera photographs [53]], and
X-ray images, which may be further classified into bitewing [54, 55| 156, 57, [16],
panoramic [58]], and periapical X-ray images [59].

All the related publications can be divided into three groups based on their
approach to caries localization: Manual detection and classification, dental caries
segmentation, and dental caries detection.

B 4.1.1 Manual detection and classification

This section introduces publications that approached caries detection in the follow-
ing manner: First, they crop individual teeth from the X-ray image, using manual
cropping or non-machine learning computer vision techniques. After the tooth is
extracted from the image, it is labeled by a professional. A classifier is trained on
those image patches to decide if it contains a carious lesion.

® First attempts to use a neural network for caries detection date back to 2008,
when Kuang et al. [60] proposed an approach based on passing a patch from
an image to a classifier, which then decided if the patch contains caries or
healthy enamel. Even though the performance of the proposed neural network
was surpassed by 6.72% by kernel SVM, it was still able to outperform an
ordinary dentist by more than 5%. It was only 6% worse than an experienced
individual.

® Moran et al.[54]] used histogram equalization, Otsu’s thresholding, and mor-
phological operations to extract individual teeth from bitewing images. After

31

4. Related Work

the teeth had been cropped from the image, the dataset was labeled by assign-
ing one of three categories to each tooth. The categories were: Normal teeth,
incipient lesions, and advanced lesions. Moran et al. processed a total of 112
radiographs this way, resulting in 480 teeth with corresponding annotations.
They trained the ResNet and Inception model to perform the classification
task, and the best-achieved accuracy was 73.3% [54]].

® Mao at al. [57]] made a similar preprocessing approach as Moran, only this
time extracting unilateral tooth images instead of the whole tooth. A total
of 3716 images of unilateral teeth were obtained. AlexNetsed was used for
classification and reached a 90.3% accuracy.

® Lee et al. [59] published a similar approach, however, with periapical images.
A dataset with 3000 images was created manually by cropping out teeth from
the X-ray image, keeping only those without extensive dental restorations.
Two teeth at once were also extracted from the radiograph in the same
process. After obtaining this dataset, they trained GoogLeNet and Inception
v3 architecture classifiers, reaching an accuracy of 89% for molars and 82%
for images with both premolars and molars.

B 4.1.2 Dental caries segmentation

There are publications where the authors approached the task of caries localization
as semantic segmentation. The advantage of this approach is the pixel precision
of the lesion detection. On the other hand, creating a similar dataset is very
time-consuming. An example of a dataset annotated in a pixel-wise manner is
depicted in Figure 4.2 as well as predictions of a model proposed by Cantu [55].

® Cantu et al. [55] created a dataset of 3686 bitewing images. Three dentists
drew a polygonal-shaped box over caries independently in each image. In
the case of a unanimous decision, the annotation was kept in the dataset.
Otherwise, the fourth dentist reviewed the annotation and decided if it should
be kept or deleted. Cantu et al. used the U-Net model with EfficientNet B5
as a backbone. They then evaluated the model per pixel, and its performance
was compared against seven dentists, outperforming their mean performance
in every metric.

® Lian et al. [58]] chose the same approach as Cantu but used panoramic images.
In comparison with Cantu, following the segmentation, they cropped the
region of interest around the segmented lesion and classified caries into one
of four categories as described in Section|2.2.3| They achieved an IOU score
of 0.785 on the segmentation task. In comparison, the best performing dentist
achieved an IOU of 0.717. In the classification task, the model outperformed
the average dentist’s performance.

B Lee et al. [15] approached the problem uniquely. Their dataset, consisting of
304 bitewing radiographs, was densely annotated by polygons, denoting the

32

4.1. Dental caries detection

Dentist's tagging Deep learning model
v

Caries (red), enamel (blue), dentin (green), pulp (). metal restoration

(), restoration (), gutta percha (brown), background (black)

Figure 4.1: Annotated bitewing radiograph and the same image post-processed,

source [[15]]

position of dental caries, enamel, dentine, pulp, and gutta-percha restorations.
The result of this annotation can be seen in Figure [4.1. They used two
independent U-net models to predict the position of caries and remaining
structures in the image. The output of both models was post-processed and
merged. Even though the model achieved an F1 score of 0.641, which is
low compared to other publications, predictions of the model helped dentists
improve their sensitivity ratio by 7 - 10%.

B 4.1.3 Dental caries detection

® Srivastava et al. trained a fully convolutional neural network with over
100 layers on a dataset containing more than 3000 bitewing radiographs. They
denoted the position of tooth decay in a pixel-wise manner. Even though the
model predicts output masks in a semantic segmentation fashion, the output is
post-processed by fitting a minimal bounding rectangle around the prediction,
as can be seen in Figure After that, the model is evaluated by computing
the IOU of the rectangle with the ground truth polygon. If the IOU is greater
than 0.8, the detection is considered positive. Srivastava et al. claim that their
model considerably outperforms each of the three dentists included in the
study. Detailed results are in Table [4.1|

® The same author and Kumar [19] published another paper, where they changed
the model to U-Net, which was trained on an extended dataset of 6000 bitewing
X-ray images. The authors tested the hard example mining approach, but it
led to a decrease in performance. Even though U-Net architecture usually

33

4. Related Work

Bitewing Reference set Model Dentists

Figure 4.2: Sample of data and predictions of the model by

Metric Model Model Dr.1 | Dr.2 | Dr. 3
Recall 0.805 0.70 0.477 | 0.433 | 0.344
Precision 0.615 0.53 0.63 | 0.815 | 0.891
F1-Score 0.70 0.614 0.54 | 0.56 0.50

Table 4.1: Results of models proposed in and [19], compared with three dentists,
modified

achieves better results on publicly accessible benchmarks [24] [61]], and the
size of the dataset increased twofold, the model’s performance dropped by
15%, see Table [4.1. There is no information available about the evaluation
protocol used by Kumar [19], nor about the IOU threshold needed to consider
a prediction to be correct. This makes it hard to estimate the cause of the
performance drop.

® Barakdar et al. did both semantic segmentation and object detection with
a dataset of 621 bitewing images available for both of those tasks. They claim
to use U-net for segmentation and VGGNet for object detection. However, the
paper does not mention how they modified the VGGNet architecture for object
classification to perform an object detection task. The object detection results
were evaluated against five professionals in dentistry with different years of
experience. The model outperformed two dentists with two and three years
of experience while being outperformed significantly by all three dentists
with ten years of experience. The reported precision of the model is 0.78,
recall=0.77 and F1 score of 0.78. No information about the overlap used to
consider predictions to be correct is included in the paper. We assume it was
set to be 0.5.

® Bayraktar et al. [62] solved only the object detection task on a dataset of
1000 bitewing images labeled by two experts with more than ten years of
experience. With YOLOv3 architecture model, they achieved AP@.5 = 0.872 .

34

4.2. Dental restorations segmentation

Figure 4.3: Predictions of the model proposed by Srivastava et al., source

B 4.2 Dental restorations segmentation

To the author’s knowledge, there are no available publications regarding the
segmentation of dental restorations in bitewing radiographs. Therefore, we will
introduce two methods that segment dental caries from panoramic X-ray images.
Figures ?? contain samples of images used for restoration segmentation. In
addition, we will mention two publications where restoration detection was a minor
part of the work.

® Mao et al. classified dental segmentations in previously extracted image
patches with unilateral teeth.

m Lee et al. [15] did not focus directly on the segmentation of restorations, yet
it was one of the classes segmented out by their U-net architecture. There
are no metrics available regarding the algorithm’s performance on dental
restorations.

® Abdalla-Aslan et al. used methods of classical computer vision to segment
out restorations in panoramic images. Their pipeline consisted of: Adaptive
gaussian thresholding, morphological operations, and deleting regions in
peripheral areas of the image. The final algorithm had the precision and
sensitivity of 0.33 and 0.946, respectively. After successful detection, the
restoration was classified as: dental implant, crown, amalgam filing, etc.

35

4. Related Work

Figure 4.4: Results of segmentation algorithm pro- Figure 4.5: Cropped region

posed by Yeshua et al.[17] from panoramatic image with
multiple restorations, source
(18]

® Yeshua et al. solved the same problem as Abdalla-Aslan. Even the
approach was more-less the same, except theirs achieved a precision of
0.568. They classified detected areas similarly to Abdalla-Aslan, having an

extra category for false detections. After the removal of false detections, the
precision was boosted to 0.98.

36

Chapter 5

Dataset

In total, MDDr. Tichy and his team created two datasets. One dataset was used to
detect dental caries and the other for semantic segmentation of dental restorations.
The majority of work was done on the first-mentioned set of data.

. 5.1 Dental caries

MDDr. Tichy and his team began working on the datasets in September of 2021,
along with the beginning of work on this thesis. This led to an opportunity to
discuss the format of the data. We decided to annotate every dental caries lesion
with a minimal bounding box. The annotation process was conducted in the
Computer Vision Annotation Tool (CVAT), running on the Faculty of biomedical
informatics server. The web address is www.gdiag.fbmi.cvut.cz.

While denoting the position of the carious lesion, the annotator tried to be
consistent with the following guidelines:

® Carious lesion is marked by a rectangle. The rectangle should contain the
entire lesion while remaining as small as possible.

® When the lesion is on the proximal surface, and if both teeth are infected,
draw a separate box for each.

Due to constant work on the dataset, we decided to use the same data as long as
there was no major update that would lead to a release of an improved dataset. In
total, we did six major releases. Let’s call these releases the stages of the dataset.
This ensured that we were able to compare the performance of our models to each
other in different stages of the dataset.

B First stage

In the very first stage MDDr. Tichy instructed a group of dentistry students
on how to approach the annotation to get as homogenous dataset as possible.
They then annotated a couple of images under his supervision before continuing
independently. Dental X-ray images were uploaded into CVAT and divided into

37

5. Dataset

Objects Labels

RECTANGLESHAPE Carles

RECTANGLESHAPE Carles

Black borders || Show bitmap
Show projections

Figure 5.1: The environment of CVAT with annotated carious lesion and dental
restorations

multiple projects, where each project contained between 400-800 images. This
was essential due to technical limitations regarding exporting and uploading X-ray
images from a dental database. We further split each project into jobs consisting
of 100 images each and assigned them to a particular student. We had 1695 X-ray
images at our disposal with 2416 dental caries annotated after the first stage
was done. CVAT does not allow exporting and merging multiple tasks. Hence we
exported each task separately in a COCO format. We uploaded all images and files
with annotations to the CMP server. The server contains annotations combined
in one annotation.json file, carrying the information about the dataset in COCO
format and one folder with all the images. We checked the task for duplicates and
non-reviewed radiographs and removed those, which resulted in 1626 images with
2399 decay annotations. Out of those, 946 images contained at least one cavity.

B second stage

After an inspection of the dataset created in the first stage, we observed in-
homogeneity across the annotations. Some of the guidelines were violated, es-
pecially the one regarding caries on proximal surfaces. In addition, we observed
multiple overlooked lesions. This led us to a reconsideration of our approach to
labeling and MDDr. Tichy himself did all the annotation work from this moment
further on. After the second stage, the dataset was extended to 2599 non-duplicate
images containing 4328 annotations of tooth decay. During this stage, we did no
corrections of previous errors.

38

5.1. Dental caries

BN width
height

» 400 -
%

3

s

)

2 300

&S

s

=

3

2

bl 200

+—

=

=

g

= 100

0 P — A —
0 25 50 75 100 125 150 175 200

size [pixels]

Figure 5.2: Histogram of bonding boxes dimensions in the dataset

B Third stage

MDDr. Tichy reviewed all images annotated in the first stage, removing as well as
adding an unspecified amount of annotations. In the end, the dataset consisted of
2599 images with 4575 annotations of dental caries.

B Fourth stage

We uploaded another 1400 images onto the CVAT server. All the images were
downloaded and uploaded to the CMP server. We used a YOLOvV5 mode trained
on the third stage dataset to generate predictions for each image. Confidence
threshold maximizing F1 score on the validation dataset was used to filter out low
confidence predictions of the model. We used Voxel Fiftyone tool to upload all
1400 images and their respective predictions to CVAT, where those images were
split into two separate tasks. MDDr. Tichy reviewed all predictions and conducted
adjustments to bounding boxes and their removal and addition. According to his
personal statistics, there were roughly 200 predictions per 100 images. Around 20
predictions had to be added and removed to get the same quality annotations as
in stage three. The speed was the upside of using model prediction as a starting
point for the annotation process. The annotation was done in approximately half
the time required to do the annotation without model predictions. In total, 3500
images were available subsequent to this stage. After removing corrupted images,
we got 3489 X-rays with 6087 annotations.

!For further information about the performance of the model, see Table

39

5. Dataset

1200

1000

800

600

400

200

amount of images in the dataset

0 2 4 6 8 10
number of dental caries

Figure 5.3: Histogram of the number of dental caries per image

Width [px] | Height [px]
Image size 1068 795-847
Minimal box size 8 9
Maximal box size 384 315
Mean of box size 47.55 53.15
Standard deviation of box size 37.99 35.33

Table 5.1: Statistics of bounding boxes that denote position of carious lesions

B 1mage augmentations

B Fifth stage

In this stage, we finished the annotations of all 1400 images uploaded in stage
four, resulting in 3989 X-rays with 7257 annotations. We plotted a histogram
representing the distribution of the number of carries among images; it can be
noticed in Figure

B sixth stage

We evaluated the model’s performance on the test, validation, and training part
of the dataset. Although the model used for prediction achieved APQ.5 = 0.72,
there were 1598 images with at least one false positive or false negative detection.
We decided that doing a second round of dataset review would be more beneficial
than further expansion of the size of the dataset. We focused only on erroneous
images and uploaded those 1598 images with no less than a single error to the
CVAT annotation tool for revision. During the time of writing this thesis, there is

40

5.2. Dental restorations

Figure 5.4: Bitewing X-ray image on the left, pixel mask of the X-ray on the right
(dental restorations have yellow color)

still undergoing work on the uploaded images. Therefore, we were not able to use
the sixth stage.

. 5.2 Dental restorations

This dataset consists of a subset of images used in the dental caries dataset. MDDr.
Tichy’s team annotated them in the CVAT tool by drawing a polygon around each
dental restoration. The work was done by the same group of dentistry students
as stage one of the caries dataset, and reviewed by a single fifth-year dentistry
student. Evaluation of the whole dataset performed by a single person should
ensure consistency among images. A total of 521 images were used to create
this dataset, and an inspection revealed that 387 radiographs contained at least a
single annotated restoration, and 134 had none. The dataset was exported from
CVAT in COCO format and saved on the CMP server. When working with the
data, we used a pixel mask instead of polygons to denote the position of dental
restorations. A sample of the dataset with a pixel mask is featured in Figure |5.4.

In Figure |5.5, we notice how many percent of the X-ray image consists of
restorations., which gives us an idea of how common dental restorations in our
data are. In Figure [5.6, we see how the size of each restoration is distributed. We
observe that most restorations are smaller than 2% of the image by inspecting this
Figure.

41

5. Dataset

number of images
v oW s a @ o=
g & &5 8 8 3

i
5]

[. -—
0 10 20 30 40 50
total area of restorations % of image area]

=3

Figure 5.5: Histogram of restoration
area in image, images without restora-
tions omitted

42

number of restorations

0 2 4 6 8 10 12 14
area of restoration [% of image areal

Figure 5.6: Histogram of areas of
restorations, 10 largest omitted

Chapter 6

Project structure

N 61 Organization of the project

The object detection framework developed for this project was programmed in
Python 3.8.12 [I63]. We structured it into multiple independent modules, which
can be swapped for their corresponding alternatives. This ensures maximal reuse
of the written code and allows further extension of this framework. This modular
approach was inspired by MetaAl research [64] and IceVision library [65]. The
framework’s modularity will enable us to use it for semantic segmentation or
classification problems. The core of the project is the deep-learning framework
PyTorch 1.11.0 [66]], which is used to create and train neural networks. Although
there are many open-source libraries with object detection frameworks, relying
only on those libraries is far from optimal because the options to change the
program’s behavior are limited. We, therefore, decided to write our framework. It
handles all tasks required for training a model: Loading the data, model definition,
optimization of the model, tracking the progress of training, etc. Implementing
all models from scratch would be ineffective; therefore, we support third-party
models’ usage. However, only the bare model is used. Thus, we can change
everything except for the architecture of the model and its forward pass.

The project is divided into three folders: configurations, tests, and source (src).
The first-mentioned contains YAML files that are further dispersed into dedicated
folders based on the module they configure. At the root of the configuration folder
are train.yaml and test.yaml files, which define how to compose individual modules
to perform the target tasks. Hydra [67] handles the composition of configuration
files. The user can override the default configuration from the command line or
experiment.yaml file. The whole configuration pipeline can be seen in Figure 6.1
and the project’s folder structure is in Figure |6.2.

B 6.1.1 Models

Models are implementations of one of the architectures described in section |3.9.
We can either fully implement them, or we can rely on open-source libraries. In
that case, we need to implement a function that transforms the data into the format

43

6. Project structure

trainer Trainer

*MM
Module

module

Model training

callbacks Callbacks

Transforms
composer

Datamodule

Figure 6.1: Structure of modules and their configuration files

required by the third-party model.

B 6.1.2 Modules

Modules are a wrapper around the model and they are based on Pytroch-Lightning
modules [68]. In modules, we take care of the following:

® Training and validation loop

Initialization of optimizer

Initialization of learning rate schedulers
® Computing metrics
8 Logging metrics to a predefined logger

® Transformations of outputs of models into the unified format

B 6.1.3 Transformations

Transformations are defined by their YAML configuration file. This file is passed to
the transformation composer class, which creates training and validation transfor-
mations, which are then passed to a data module. We relied on the Albumentations
library for individual image augmentations.

B 6.1.4 Data-Modules
Data modules are based on PyTorch-Lightning data modules. They consist of:

8 Dataset, where we load the data from the hard drive into the memory and
parse the file with saved annotations. After loading the data, predefined
transformations are applied.

44

6.1. Organization of the project

MT
Hlconfigs - root folder with all configuration files
{1l callbacks

] datamodule
1] experiment
] logger

I module

il trainer

Htransforms

U] train.yaml

Hilsrc - folder with all source files

' lcore - structures for data manipulation
i ldata - utility functions for dataloaders and datasets

Hldatamodules
H Imodels
HImodules

HInotebooks - jupyter notebooks for auxilary tasks

Hltransforms - classes to compose transformations given by configuration file

U Jutils - functions for logging, losses, data conversion

U]tests - contains multiple subfolders with unit tests for the program

Figure 6.2: Folder structure of the project

® Functions that transform the loaded data into the format required by the
model we are about to train.

® Definitions of data loaders, which are responsible for merging the data into
chunks, so-called batches.

B 6.1.5 Trainer

Trainer defines properties of the training, such as the number of GPUS used for
the training or a maximal number of epochs that training is allowed to undergo
before terminating.

45

6. Project structure

B 6.1.6 Callbacks

Callbacks add capabilities to the training pipeline without changing any code.
Typical ones that we used were: Definition of stopping criteria, adjusting policy for
saving weights of the model, or saving images with their predictions during the
training.

B 6.1.7 Logging

A logger is software capable of storing and visualizing logged values. In the
beginning, we used Tensorboard TODO, but soon we switched to Weights and
Biases [69]], and used them throughout the rest of the thesis.

B 6.2 Additional open-source software

Throughout the project, we used the libraries mentioned above as well as the
following:

® We used OpenCV [70] computer vision library during the segmentation of den-
tal restorations for operations such as: Adaptive thresholding, morphological
operations, etc.

8 Computer vision library Kornia [[71] was used to perform morphological opera-
tions on PyTorch tensors quickly.

® MMDetection [[72] provides an implementation of multiple object detection
models. We used their implementation of swin transformers, RetinaNet and
Faster-RCNN

8 During the computation of metrics, we used PyCOCOtools, an official [35]
implementation of MS COCO metrics. It had to be significantly modified to
provide us with the required capabilities.

® To visualize predictions, we used Voxel Fiftyone [73]. The program can be on
a self-hosted server. We used this to share predictions of the model with MDDr.
Tichy, who was thus able to assess those and decide if the dataset contains
any erroneous annotations.

® For model ensembling, we used the methods implemented by the author of
Weighted box fusion [49], and we further enhanced the capabilities of their
methods.

® We used YOLOvV5 models from the Ultralytics repository. [74]].

46

Chapter 7
Methods

This chapter describes our proposed solution. It is divided into the following
blocks.

Section |7.1| describes the baseline solution. We mainly describe the training
protocol used in the remaining sections of the chapter.

Section |7.2| introduces a few changes to the training protocol previously de-
scribed in Section |7.1.

Section |7.3| inspects how the behavior of trained models changes when we
choose a differently sized backbone or use different weight decay.

Section |7.4]improves detection results by ensembling multiple models. Further-
more, we assess the importance of models used in the ensembling.

Section |7.5| proposes a deep learning and a non-deep learning approach to
segmentation of dental restorations.

. 7.1 Caries detection - baseline model comparison

Firstly, we implemented and tested multiple object-detection architectures and
compared them against each other on the currently available stage of the dataset.
The training protocol used throughout the training of all models is described by
the following:

B 7.1.1 Dataset

We used the first five stages of the dataset mentioned in Chapter|5. The dataset
was split into training, validation, and test parts, consisting of 70%, 15%, and 15%
of the dataset.

B 7.1.2 Image augmentations

The image was augmented by a single pipeline that applied the following transfor-
mations with corresponding probabilities p.

47

7. Methods

® Normalize the image by subtracting the dataset’s mean and dividing by the
standard deviation of the dataset (mean= 0.37, std= 0.28), p = 1.

® Resize and pad to 1024 x 1024/896, p = 1.

® Horizontal flip, p = 0.5.

8 Vertical flip, p = 0.5.

8 Rotation, p = 0.3, rotation limit= 10°.

® Translation, p = 0.5, translation limit= 10% of the image size.
® Gaussian blur flip, p = 0.3, kernel size from 7 to 31.

® Gamma correction, p = 0.3, v in range from 0.6 to 1.4.

The results of those augmentations can be observed in Appendix |C.3.

We selected the dimensions to which the image will be resized based on some
architectures’ limitations, which require the input to be divisible by 128. In the
beginning, we used square images in order to ease the implementation. Following
that, we switched to rectangular images; however, no improvement in measured
metrics was observed. Based on the architecture, we noticed a decrease in the
GPU memory usage from 5% to 10%.

[| Computing power

All the computations were realized on the CMP cluster, consisting of multiple GPU
nodes, and the experiments were conducted on Boruvka and Zorn machines. They
both have 32 CPU cores, 256GB of RAM memory, and 8 NVIDIA GeForce GTX
1080-Ti graphics cards with 12GB of dedicated memory.

B 7.1.3 Neural network models

Multiple architectures of neural networks were used. As the work on the thesis
progressed, the amount grew larger. Thus, a wider variety of models can be seen
in the advanced stages of the dataset. We stopped using the YOLOv3 model after
Stage two since the YOLOvV5 model performed superiorly in stages one and two,
see Tables 8.1/ and [8.2.

All the models we used and their respective backbones are listed below.

® YOLOv3 with Darknet-53 backbone.

® YOLOv5 with the sixth generation of backbones. We used the small, medium,
large and extra-large versions of those backbones. In further text, we will
denote them as s6, m6, 16, and x6.

® Faster-RCNN with Resnet50 and Resnet101 backbone; R50 and R101 abbrevi-
ations will be used.

48

7.1. Caries detection - baseline model comparison

model-backbone | batch size | model-backbone | batch size
YOLOv5-s6 16 EfficientDet-DO 5

YOLOvV5-m6 8 EfficientDet-D1 4
YOLOvV5-16 4 EfficientDet-D2 3
YOLOvV5-x6 2 EfficientDet-D3 2
FRCNN-R50 2 EfficientDet-D4 1
FRCNN-R101 5 EfficientDet-D5 1
RetinaNet-swint 3 YOLOvV3 - Darknet 4
RetinaNet-R50 4 - -

Table 7.1: Maximal batch sizes that fit into 12GB GPU for a given model

#® RetinaNet (RetN) with Resnet50 and a tiny swin transformer (swint) back-
bones.

m EfficientDet with D0,D1,D2,D3,D4 and D5 backbones.

B Batch-size

The batch size differed based on the model’s architecture and the selected back-
bone. We always used the biggest batch size able to fit into the graphic card’s
memory. An overview of batch sizes for different combinations of architectures and
backbones is in Table|7.1. Note that those batch sizes allow for the accumulation
of four forward passes into the GPU memory.

B optimizers

We used the Adam optimizer during all experiments. The parameters 3, 2 were
set to 0.9 and 0.999 and weight decay was chosen to be 1076, Since we could not
fit reasonably big batch sizes into the GPU, the optimization step was performed
every four forward passes. This should emulate a bigger batch size and increase
the chance of finding a global optimization minimum.

[| Learning rate (LR)

First, we experimented with different learning rates and used the LR Range
Test to find the initial LR. There was no difference in the final performance of
the model, and the number of epochs required to train the model did not differ
significantly. The test’s LR did not lead to model convergence in rare cases. We,
therefore, selected a constant initial LR of 10~* and used a ReducedLROnPlateau
scheduler. The value monitored by the scheduler was the validation loss, and the
LR decreased by a factor of 5 when the improvement of the loss stalled for five
consecutive epochs.

49

7. Methods

B Termination condition

The training was halted when the APQ.5 did not increase throughout ten epochs,
but not earlier than after 50 epochs from the beginning of the training.

. 7.2 Improvements

In this section, we propose improvements to the training protocol as well as a
change to models trained with small batch sizes.

B 7.2.1 Training protocol changes

We replaced the Adam optimizer by AdamW with the same 1 and 5. Furthermore,
a CosineAnnealingLR rate scheduler was used. The half-period of cosine was set
to 70 epochs and the minimal LR to 10~ 7.

We trained multiple models from Section [7.1.3|on the stage five dataset with
this setting.

B 7.2.2 Group normalization

As mentioned in Section |3.5.3, batch normalization is superior to group nor-
malization when used with batch sizes greater than eight. Since the size of
EfficientDet-D4 and D5 models allowed us to use batch-size of one, we replaced
all batch-normalization layers with group normalization. The channels per group
parameter, for a given layer of group normalization, was set to 16, when the
number of channels in the layer was divisible by 16. Otherwise, we selected one of
the following values 2,4,8—prioritizing the higher of those.
The training was conducted according to the protocol described previously.

. 7.3 Model inspection

We conducted several experiments to assess the model’s behavior. All experiments
were done on the dataset created in the fifth stage with models, whose results are
in Tables|8.6, [B.4/and B.5l

B 7.3.1 Size of backbone

We explored the influence of the backbone choice on the model’s performance.
For this purpose, we used the YOLOv5 model and trained it multiple times with
different backbones, including small, medium, and large backbones. The training
protocol that was used was approached as described in Section|7.1, including the
improvements mentioned in Subsection|7.2.1l

'Wu and He [40]] showed this to be the best performing value when evaluated on ImageNet
dataset.

50

7.4. Model ensembling

B 7.3.2 Weight decay

We experimented with different values of weight decay. Eventually, we used the
Faster-RCNN architecture with ResNet50 backbone and YOLOv5 with medium size
backbone, and tested the following values of weight decay: 1072,10~*,1076,108
on both models.

. 7.4 Model ensembling

In this section, we present our approach to model ensembling. First, we describe
the process of unifying the predictions into the same format. We then propose an
approach to finding optimal hyperparameters of the ensembling process. After
that, we suggest improving the ensembling methods by including area awareness.
In the end, we assess the importance of the diversity of architectures during the
ensembling.

B 7.4.1 Data-format

For every model included in the ensembling, we load its trained weights and
generate predictions on the dataset’s training, test, and validation parts. When
predicting, each image is rescaled to the size required by the corresponding model
and normalized. This leads to predictions being in the space of the transformed
image. Therefore we use inverse transformation to the rescaling to obtain coordi-
nates in the original image. This allows us to combine predictions regardless of
the model’s architecture. We found the confidence threshold that maximized the
F1 score and discarded all predictions with a confidence lower than that value.
The confidence value was stored alongside the predictions.

Predictions were saved into JSON files to be reused without the need to generate
new predictions. The format of the data is in Figure [7.1l

Confidence values maximizing F1 score differ (see Table |B.2) across the models
m, we therefore normalize them by the following formula:

Sjimax; Sy :
sji=————, j€e{l,...,m},i€1, .. ,n; (7.1)
Sj

Note that Formula|7.1]is depended on the models included in the ensemble process,
and thus weights cannot be normalized before saving them to the JSON file.

B Manual tuning

We performed the ensembling by the approach described in Section|3.10/with the
models mentioned in Table 8.4, The ensembling method was WBF. We estimated
the weights for ensembling from the results of the individual models, and for
the threshold value T, we selected values proposed by the authors of the WBF
ensembling method [49].

51

7. Methods

{ "confidence threshold" : T
"filename" : {
"bboxes" : [[x1, yl, x2, y2],...1,
"labels": [11, 12,...1,
"scores": [sl, s2,...1,
"stage" : "test" / "val" / "train"
| ¥

"filename2" : {...},

Figure 7.1: Structure of the data in .json file used to store model predictions

Validation dataset

Evaluation & best
Box fusion parameters
selection

Parameter search-space

Model weights

Fusion parameters

Predictions for validation Predictions
dataset reweighting

Fusion parameters

Evaluation & best
Predictions for test Box fusion parameters Final results
dataset selection

Test dataset

Figure 7.2: Schema of the search of hyperparameters and weights for ensembling

B Grid-search

Grid search over hyperparameters was performed in the following manner: Param-
eter search space was defined as can be seen in Table We evaluated APQ.5
on every image of the validation dataset and averaged those values. The best
hyperparameters were selected and used for evaluation on the test dataset. The
whole workflow is shown in Figure 7.2

B 7.4.2 Area-aware ensembling

We proposed a change to the weighting function in ensembling; see e Equation
13.20. The new weighting function described in Equation |7.2|is aware of the area
of the ensembled boxes. We hypothesized that this would increase the modeling
capacity of the ensemble methods.

52

7.4. Model ensembling

Parameter minimal value | maximal value | step

Model weight 0.12 1 0.22

IouT 0.3 0.9 0.05
Sigma 0.3 1 0.1

Table 7.2: Hyperparameter search-space for area-aware model ensembling

Parameter minimal value | maximal value
Model weight (small, medium, large) 0.01 1
IoUT 0.05 1

Table 7.3: Hyperparameter search-space for model ensembling

The Equation |3.20, was modified to:

Moo g w1, area(B;) < 322
S = U lf(FZ’Wl), f(Bi,wi) =S wq, 322 < area(B;) < 962 (7.2)
=1 ws, 962 < area(B;)

We tried to perform a grid search with the Equation |7.2|used for the weighting of
boxes, but the number of parameters grew exponentially, making the grid search
computationally untractable. Therefore, we used the Optuna optimization library
to perform this task. The search space is in Table |7.3; please note that the search
space became continuous contrary to the previous.

B 7.4.3 Assessing the importance of different models in
ensembling

To get an insight into what affects the performance of model ensembling, we
compare the following: an ensemble of multiple models with the same architecture
and backbone, an ensemble of models with the same architecture and different
backbones, and an ensemble of different architectures. All models selected for
ensembling were trained on the stage five dataset, including the changes proposed
in Section|7.2.1. The results of a subset of those models are in Table |8.6.

After selecting the models, we ensembled them using the WBF method. Model
weights and IOU threshold T value were optimized on the validation dataset
as described in Section [7.4.1. The Optuna optimization software was used to
find those, where we set the search space to be in the range from 0 to 1 for all
model weights as well as for the IOU threshold T'. The optimization process was
terminated after 3000 trials.

After obtaining the ensembles, we assess the importance of each model included
in the ensemble by a method based on functional analysis of variance (FANOVA)
[75]]. We used an already implemented solution that is a part of the Optuna library
[76l.

53

7. Methods

B The same architecture and backbone

We used the YOLOV5 architecture with a medium sized backbone, since multiple
models were trained for experiments mentioned in Section|7.3. The summary of
used models is available in Table 7.4l

B The same architecture different backbones

We used the YOLOvV5 architecture again but included two models with a small
backbone, three with a medium-sized backbone, and three with the large backbone.
When choosing those, we tried to match the performance of the selected models
with those chosen previously. This was done to ensure the maximal comparability
of those two ensembles.

B Different architecture

Here, we used the best model we had at our disposal. The ensemble consisted of
the following models: Two YOLOv5-large, two YOLOv5-medium, YOLOv5-small,
EfficientDet-D1, EfficientDet-D3, RetinaNet-swint, and Faster-RCNN-Resnet50.
Even though we picked the best available models, the difference in AP@Q.5 against
YOLOv5-all was 2$, as can be seen in Table 7.4, where we denoted a group of
models with different architectures as Mixture.

Experiment | num.models | mean std min max
YOLOvV5-m 8 0.696 | 0.014 | 0.668 | 0.719
YOLOv5-all 8 0.693 | 0.017 | 0.659 | 0.719

Mixture 10 0.707 | 0.014 | 0.676 | 0.725

Table 7.4: Comparison of the models involved in ensembling by statics of their APQ.5
metrics

. 7.5 Dental restorations segmentation

In this section, we propose a non-deep learning method for the segmentation of
dental caries. We tune the hyperparameters of this approach to achieve the best
possible performance. Following that, we switched our approach and trained a
deep learning model called U-Net.

Bl 7.5.1 Non-deep learning approach

We decided to test the approach proposed by Abdalla-Aslan, and Yeshua [18| [17]
as described in Section [4.2] This means that we defined a pipeline of image
processing operations, where we:

® Thresholded the image: We tried Otsu’s thresholding method and Gaussian
blur with kernel size K, applied prior to that. Furthermore, Gaussian and mean

54

7.5. Dental restorations segmentation

Hyperparameter | minimal value | maximal value | step
K, 33 83 10
K 1 26 5
T 1 15 2
Ky 41 81 20
K, 1 36 5

Table 7.5: Hyperparameter search space for restorations segmentation pipeline

adaptive thresholding methods were evaluated, where we tested different
kernel sizes K; and threshold values T'.

® Removed predicted pixels at the border of the X-ray image: Bitewing X-ray
images usually do not have a rectangular shape, as illustrated in|2.2. Bitewing
radiographs are therefore padded with black color to obtain the rectangular
shape. This leads to a high contrast at the border of the radiograph, which gets
detected by adaptive thresholding methods. Therefore, we detect this padding
and morphologically dilate it by the square kernel of size K; x K;. Border
pixels obtained by the dilation are removed from the thresholded image.

8 Applied morphological opening: We apply morphological opening to filter out
falsely detected regions; we use a square-shaped kernel with size K,.

The pipeline defined above has four hyperparameters that can be tuned and
three thresholding methods. Consequently, we define a grid-shaped search space
as can be observed in Table |7.5. Note that when we searched for the value of K3,
we did not search for K3 and vice versa. The dataset was split into two equally-
sized parts, called tune and test. We evaluated the IOU metric on each image of
the tune part of the dataset and averaged it for each set of hyperparameters. We
selected the best hyperparameters based on the average IOU value and used those
to evaluate on the test part of the dataset.

Bl 7.5.2 Deep-learning approach

Bl Model training

The dataset was split into training, validation, and test parts with a 70:15:15 ratio.
For the dataset’s training part, we used augmentations described in Section|7.1.2.
Resizing of images was removed from the augmentation pipeline, and for that
reason we worked with full-sized radiographs. Images in the validation and test
part of the dataset were only normalized. We used the U-Net architecture model
as proposed by author [13], only changing the depth to five downscaling layers. As
a loss function, we used Soft-dice loss. The LR value of 10~2 was used together
with ReduceLROnPlateau scheduler. The model was trained for 50 epochs by the
Adam optimizer. At the end of the training, we selected the best model according
to IOU on the validation dataset and evaluated its performance on the test dataset.

55

7. Methods

| Post-processing

We used post-processing methods inspired by the non-deep learning approach
on the best-performing model. The image was first morphologically opened by a
square kernel with a size of K and then closed by a kernel size of K.

Since there were two hyperparameters involved, we performed a grid-search,
searching for the kernel of size from 1 to 41 with the step size of 4. Firstly, we
saved predictions for all images in the validation dataset. This ensured that we
did not have to pass the image through the U-Net model for each parameter.
Post-processing with all defined kernel values was applied. The best-performing
hyperparameters were selected, and post-processed predictions were evaluated
on the test dataset.

B 7.5.3 Model training improvements
We tried the following changes to the model training pipeline:
® AdamW optimizer was applied instead of Adam.

8 CosineAnnealingLR scheduler was used. The half-period of cosine was set to
40 epochs and the minimal LR was set to 1077

® Binary cross-entropy loss was tested instead of Soft dice loss as well as a
combination of Soft dice loss with BCE.

® We removed the maximal amount of epochs and instead used the IOU value
on the validation set as a stopping criterion. Whenever we observed no
improvement of IOU for ten epochs, the training was stopped.

Following the training, we performed the same post-processing. We found the
best hyperparameters by the Optuna optimization library. The search space ranged
from 1 to 41 for both kernels.

56

Chapter 8

Results

This chapter states the results of the proposed methods.

In Section 8.1, we show the results of the trained models on different stages of
the dataset.

Section |8.2|contains results of improvements of the training pipeline proposed
in Section|7.2.1.

In Section 8.3, we depict how different backbones’ sizes and weight decay
affected the model’s performance.

Section 8.4 reports the influence of ensembling of neural networks. Note that in
this section, we obtain the best-performing model.

Section [8.5| contains results of algorithms for segmentation of dental restora-
tions.

In Section 8.6, we compare the results of our best-performing model with the
literature.

In the final Section 8.7|of this chapter, we show figures to showcase the perfor-
mance of our models.

B 8.1 Model comparison on different datasets

This section compares the performance of different model architectures and their
backbones. It is divided into five subsections corresponding to five stages of the
dataset. For more details about the dataset, see Section [5.1l For each of the five
stages of the dataset, we report the average precision metric on the test part of
the dataset. The training of all models was conducted according to the training
protocol described in Section|7.1, Tables in this section use abbreviation described
in Section|7.1.3l

B 8.1.1 Stage one dataset

In Table |8.1| the reader can see results obtained on the first stage of the dataset.
None of the trained models performed well, especially the Faster R-CNN model

57

8. Results

achieved low average precision values. We attribute that to the inhomogeneity of
the dataset (as described in Section |5.1) and to the low amount of data.

Model AP | APQS5 | APQ.75 | APQ.5g | APQ.5) | APQ.5)
FRCNN-R50 0.045 | 0.168 | 0.0064 0.109 0.187 0.141
YOLOv3 0.078 | 0.238 - - - -
YOLOV5-16 0.082 | 0.258 0.02 0.211 0.309 0.327
YOLOv5-x6 0.087 | 0.268 0.04 0.204 0.324 0.302
EfficientDet-D4 | 0.081 | 0.242 0.007 0.198 0.234 0.287

Table 8.1: Comparison of the trained models on the stage one dataset

B 8.1.2 Stage two dataset

Even though the dataset grew in size by more than 50% since stage one, from
Tables|8.1/and [8.2, we see that the YOLOv3 model improved by less than 10% . On
the contrary, the performance of YOLOv5 model improved by circa 25%. Due to the
low performance of YOLOv3 and its similarity with superior YOLOvV5 architecture,
we will not experiment with YOLOv3 in the following sections. In the last two rows
of Table 8.2 we can see the discrepancy in the average precision when evaluated
on the test and train part of the dataset. This ensures us that the model can fit the
data well, and we only need to alleviate the generalization gap.

Model AP | APQ.5 | APQ.75 | APQ.5g | APQ.5); | APQ.5
YOLOvV3 0.093 | 0.258 - - - -
YOLOV5-16 0.097 | 0.318 0.03 0.281 0.310 0.378
YOLOv5-x6 0.105 | 0.337 0.05 0.278 0.323 0.392
EffDet-D4 0.089 | 0.296 0.01 0.272 0.291 0.342
EffDet-D4, train | 0.421 | 0.839 0.362 0.758 0.852 0.801

Table 8.2: Comparison of the trained model on the stage two dataset

B 8.1.3 Stage three dataset

As mentioned in Section [5.1| there were no additional data added in this stage,
but MDDr. Tichy did a review of the dataset as well as corrected any erroneous
annotations. The dataset review increased the AP@Q.5 of the EfficiendDet-D4 model
by 76%, as can be seen in Tables|8.3|and 8.2l This significant performance gain
suggests that the low performance of models in Tables (8.1 and [8.2| was caused by
errors in the dataset.

Performance of EfficentDet and YOLOv5 models evaluated on training part of
dataset can be found in Table B.1.

58

8.1. Model comparison on different datasets

Model AP | APQ3 | APQS5 | APQ.75 | APQ.5g | APQ.5) | APQ.5),
YOLOv5-1 | 0.249 | 0.734 | 0.631 0.132 0.598 0.671 0.607
EffDet-D4 | 0.168 | 0.666 | 0.525 0.041 0.435 0.606 0.527

Table 8.3: Comparison of trained models on the test part of stage three dataset

B 8.1.4 Stage four dataset

The average precision of models trained on this dataset stage is in Table (8.4
Furthermore, precision-recall values for confidence threshold maximizing F1 score
are in Table B.2| which is located in Appendix. Even though we introduced multiple
new architectures and revisited Faster R-CNN with two different backbones, the
performance gain obtained in this stage was not as prominent as the one observed
when moving from stage three to stage four.

In Table 8.4, we can observe how different architectures differ in their per-
formance on small, medium-sized, and large boxes. Comparing YOLOv5-m6 and
RetinaNet-ResNet50 models shows that their overall performance (measured by
AP@.5) almost matches, but when comparing their APQ.5; metrics, we see a 15%
difference. We try to exploit this behavior by the approach described in Section
7.4.2.

Model AP | APQS5 | APQ.75 | APQ.5g | APQ.5) | APQ.5),
FRCNN-R101 | 0.285 | 0.675 0.198 0.568 0.717 0.772
FRCNN-R50 | 0.284 | 0.658 0.204 0.557 0.695 0.77
YOLOv5-m6 | 0.288 | 0.644 0.209 0.593 0.667 0.766

YOLOV5-16 0.284 | 0.644 0.203 0.551 0.701 0.612
EffDet-D4 0.251 | 0.605 0.15 0.49 0.677 0.545
RetN-swint | 0.266 | 0.66 0.175 0.497 0.721 0.786
RetN-R50 0.263 | 0.643 0.174 0.547 0.696 0.663

Table 8.4: Performance comparison of multiple models trained on the stage four
dataset

B 8.1.5 Stage five

The results in Table 8.5/ show a steady improvement compared to those in Table
8.4l We see that YOLOv5-16 achieved worse results than in stage four. This result
is not emphasized since we believe that if trained multiple times, the results of
this architecture would eventually improve. On the contrary, we observe that
the EfficientDet-D4 model lagged behind YOLOvVS in all stages of the dataset.
Therefore, in Section [7.2.2| we experiment with usage of group normalization.

59

8. Results

Model AP | APQS5 | APQ.75 | APQ.5g | APQ.5) | APQ.5],
FRCNN-R101 | 0.328 | 0.71 0.263 0.613 0.742 0.816
FRCNN-R50 | 0.334 | 0.715 0.273 0.595 0.757 0.809
YOLOv5-m6 | 0.346 | 0.708 0.284 0.622 0.744 0.754

YOLOV5-16 0.295 | 0.625 0.232 0.533 0.691 0.489
EffDet-D4 0.288 | 0.648 0.219 0.548 0.699 0.655
RetN-swint | 0.328 | 0.72 0.241 0.565 0.776 0.775

Table 8.5: Performance comparison of multiple models based on mean average
precision metrics

. 8.2 Improvements

Bl 8.2.1 Training protocol improvements

The average precision of models trained with incorporated improvements proposed
in Section |7.2.1} can be seen in Table 8.6l Furthermore, average recall values can
be observed in Table [B.4], which is located in the Appendix, together with a table
of precision-recall values for a given confidence thresholdB.5|

Even though the best performing model in Table [8.6|improved negligibly over
the best performing one in Table 8.5, We notice that models achieved better results
on average along with more stable training. In this stage, we newly used YOLOvV5-s
and EfficienDet-D1. Despite both being low-parameter networks, they performed
almost on par with others.

Model AP | APQ3 | APQ.5 | APQ.T5 | APQ.5g | APQ.5) | APQ.5)

YOLOV5-16 0.347 | 0.796 | 0.725 0.291 0.597 0.772 0.753

YOLOv5-m6 | 0.343 | 0.795 | 0.719 0.287 0.636 0.752 0.785

YOLOv5-s6 | 0.327 | 0.79 0.697 0.281 0.559 0.739 0.826

Effdet-D1 0.319 | 0.787 | 0.701 0.251 0.584 0.752 0.808

FRCNN-R50 | 0.311 | 0.788 | 0.705 0.231 0.629 0.737 0.788

FRCNN-R101 | 0.316 | 0.792 | 0.688 0.239 0.563 0.732 0.793

RetN-swint | 0.325 | 0.803 | 0.723 0.249 0.579 0.78 0.758

Table 8.6: Comparison of AP values between different models trained by an improved
training protocol

B 8.2.2 Group normalization

Chart of APQ.5 for EfficientDet-D4 models with batch-normalization layers and
group normalization layers can be found in Figure [8.1. Model using batch nor-
malization achieved AP@.5 of 0.634 on the test dataset, outperforming the model
using group normalization with AP@Q.5 = 0.694. Despite the performance increase
induced by group normalization, the EfficientDet-D4 model performed comparably
with the models in Table [8.6. Therefore, we stopped using this model further on,

60

8.3. Model inspection

because the training of this model was also more computationally demanding than
the rest of the models.

= Group normalization = Batch normalization

epoch

0 10 20 30 40 50

Figure 8.1: Difference in AP@.5 amog EfficientDet-D4 model with batch normalization
and group normalization

. 8.3 Model inspection

B 8.3.1 Size of backbone

The table |8.7was computed from the statistics of 29 models, where each type
of backbone was represented by 8 to 12 models. The columns mean, std, max
and min denote statistics of APQ.5 obtained by trained models on the test set.
Furthermore, we can inspect the size of a given backbone, which is induced by its
number of parameters (Par) and floating-point operations FLOPs. The last column
of Table |8.7| shows the average time required to train the given backbone for 60
epochs.

Backbone | Mean Std. Max Min | Par[M] | FLOPs[G] | Time[h]
Small 0.68 | 0.0197 | 0.651 | 0.697 12 21 2.1

Medium | 0.696 | 0.0126 | 0.669 | 0.719 35 63 3.5
Large 0.703 | 0.0136 | 0.681 | 0.725 76 141 5.2

Table 8.7: Comparison of AP.Q5 metric for different backbones of YOLOvV5 architecture

B 8.3.2 Weight decay

In Figures|8.2|and |8.3| we see the comparison of Faster-RCNN and YOLOv5 models
using different weight decay. The results obtained by evaluating trained models on
the test part of the dataset did not differ across the values of weight decay.

61

8. Results

weight decay weight decay
= le-d e2 —led =le2 =

e ee—— =

Figure 8.2: APQ.5 of Faster-RCNN
model with varying weight decay values.
The metric is computed on the validation
part of the dataset during training.

Figure 8.3: APQ.5 of YOLOvV5 model with
varying weight decay values. The metric
is computed on the validation part of the
dataset during training.

. 8.4 Ensembling

In this section, we show the performance of model ensemblings with handpicked
parameters |8.4.1as well as ensemblings obtained by parameters found by a grid-
search. Furthermore, we report how the diversity of models involved in the
ensembling affects its results.

B 8.4.1 Manually-picked parameters

In Table [8.8, the reader can see the results obtained by handpicking circa ten
sets of hyperparameters based on our qualified guess. We then evaluated the
hyperparameters on the validation part of the dataset, and the best-performing
ones were selected and evaluated on the test part of the dataset. The first group
(G1) contained the following models trained on the stage four dataset: RetinaNet-
swint, YOLOv5-m, and RetinaNet-ResNet50. The second group (G2) was composed
of Faster R-CNN-Resnet101, YOLOv5-m, and RetinaNet-swint. All of those models
were trained on stage four of the dataset. From the Tables 8.8/ and 8.4, we can
infer that ensembling of models improved APQ.5 by 3% over the best performing
model included in the ensembling.

Models | AP | APQ3 | APQ.)5 | APQ.75 | APQ.5g | APQ.5), | APQ.5p,
G1 0.303 | 0.776 | 0.694 0.216 0.605 0.729 0.803
G2 0.305 | 0.783 | 0.695 0.218 0.598 0.733 0.807

Table 8.8: WBF ensembling of multiple models, where we handpicked the parameters
of the ensembling process. The models were trained on the stage four dataset.

B 8.4.2 Grid search results

All models included in the ensembling were trained on the stage-five dataset.
Therefore, their results are in Table 8.5.

The best hyperparameters for a given ensembling method found by a grid search
are in Table [8.9. We omitted parameter ¢ used only in S-NMS from the table. Its

62

8.4. Ensembling

optimal value, according to the grid search, was 0.8. The average precision of
models ensembled with parameters from Table [8.9|is available in Table [8.10/and
average recall values are in Table |B.6l Precision and recall values based on the
confidence threshold that maximizes F-score can be seen in Table B.7. In Tables
8.9/and [8.10, we used notations introduced in Section|3.10. By WBF-A, we refer
to the method proposed in Section |7.4.2 where S,M,L mean weights for small,
medium-sized, and large boxes.

Method | FRCNN | YOLOv5 | RetN | FRCNN T
R50 mo6 swint R101

NMS 1 0.4 0.4 0.85 0.6
SNMS 1 0.12 0.12 0.12 0.7
NMW 0.85 0.25 0.70 0.85 0.45
WBF 1 0.4 0.85 0.85 0.65
WBF-A S 0.94 0.31 0.98 0.72 0.64
WBF-A M 0.77 0.47 0.85 0.69 0.64
WBF-A L 0.84 0.31 0.88 0.91 0.64

Table 8.9: Hyperparameter values of ensembling methods found by a grid-search

Method | AP | APQ3 | APQ.5 | APQ.7T5 | APQ.5g | APQ.5); | APQ.5,
NMS | 0.346 | 0.818 | 0.735 0.28 0.618 0.775 0.829
SNMS | 0.348 | 0.807 | 0.722 0.295 0.609 0.758 0.819
NWM | 0.364 | 0.829 | 0.759 0.302 0.641 0.802 0.854
WBF 0.378 | 0.832 0.77 0.323 0.663 0.807 0.875
WBF-A | 0.376 | 0.832 | 0.768 0.318 0.651 0.806 0.875

Table 8.10: Average precision of models ensembled with parameters from Table |8.9

B 8.4.3 Assessing the importance of different models

In this section, we present ensembling results based on the approach from Section
7.4.3. In Tables|8.11] |8.12| and |8.13, we see results of ensembles composed of
different models. Note that the ensembling of varying architectures (Mixture)
achieved the best results out of all models evaluated in this thesis. We will use this
model to compare our results with related publications.

From Table|8.11, we can see that the usage of varying backbones increases the
gain in average precision by circa 1.5%, when compared to the ensembling with
the identical backbones. Furthermore, using different architectures increased
the performance by an additional 3.2%. Please note that models included in
ensembling with different architectures had an average AP@Q.5 by 2% higher than
models included in the former two ensembling approaches, see Table 7.4l If we
adjust the results for that, we expect a 1.2% gain solely from using models with
varying architecture.

63

8. Results

The importance of individual models in the ensembling is in Figure |8.4] for
Mixture architectures and in Figures|C.5} |C.6/located in Appendix for the remaining
two groups of models.

Models AP | APQ3 | APQ.)5 | APQ.75 | APQ.5g | APQ.5, | APQ.5],
Mixture | 0.389 | 0.838 0.774 0.338 0.665 0.811 0.876
Y5-mix | 0.379 | 0.819 0.75 0.34 0.636 0.79 0.84
Y5-m 0.368 | 0.812 0.741 0.329 0.648 0.775 0.844
Table 8.11: Average precision of ensemble models
Models AR | ARQ.5;9 | ARQ.5 | ARQ.75 | ARQ.5g | ARQ.5); | ARQ.5],
Mixture | 0.586 0.917 0.978 0.582 0.946 0.991 0.991
Y5-mix | 0.579 0.911 0.959 0.599 0.929 0.972 0.972
Y5-m 0.562 0.906 0.949 0.572 0.909 0.964 0.964

Table 8.12: Average recall of models ensembled by parameters from Table 8.9

Models Precision | Recall | F-score | Confidence threshold

Mixture 0.751 0.7 0.725 0.294
YOLOvV5-mix 0.728 0.69 0.708 0.241
YOLOvV5-m 0.726 0.67 0.697 0.272

Table 8.13: Precision, recall, and F-score based on the confidence threshold for
different ensembling methods

. 8.5 Dental restorations segmentation

In the following section, we report results obtained by a non-deep learning pipeline
for dental restorations segmentation proposed in Section|7.5.1], as well as deep
learning model U-Net trained according to the description in Section|7.5.2.

B 8.5.1 Non-deep learning approach

Hyperparameters ensuring the best performance on the validation part of the
dataset are in Table 8.14]. The performance of the pipeline given the parameters in
Table |8.14|on the test dataset can be seen in Table [8.15. The segmentation of the

image together with output after each auxiliary stage is in Figure [8.5|

64

8.5. Dental restorations segmentation

Hyperparameter Importances

YOLOv5-s 0..697 | I — 0.25
YOLOv5-1 0.725 | —— 022
FRCNN-RS50 0.705 I 0.12
YOLOvS-m 0.707 |, 0.11
RetN-swin 0.723 I 0.09
yoLovs-1 0.717 I 0.0
EffDet-D3 0.676 NN .05
YOLOv5-m 0.702 [0.03
EffDet-D0 0.701 [N o.03
YOLOv5-m 0.719 I 0.03
0 0.05 0.1 0.15 0.2 0.25

Hyperparameter

Importance for Objective Value

Figure 8.4: Importance of different models during ensembling with different architec-
tures

(b) : Mean adaptive thresholding

Figure 8.5: From the left: X-ray image, ground-truth pixel mask, thresholded image,
removal of border pixels, morphological opening

Hyper-parameter | Adaptive mean | Adaptive Gaussian | Otsu’s
K, 71 83 -
T 3 3 -
Ky 41 41 61
K, 31 36 36
K - - 21

Table 8.14: Best hyper-parameters for non-deep learning pipeline

65

8. Results

Model Dice 10U
Adaptive mean 0.364 | 0.314
Adaptive Gaussian | 0.328 | 0.274
Otus’s thresholding | 0.102 | 0.088

Table 8.15: Results of non-deep learning approach to dental restorations segmentation
given the hyperparameters in Table 8.14

B 8.5.2 U-Net

Two U-Net models were trained with the settings proposed in Section|7.5.2 We
will call them U-Net-baseline (U-Net-B) and U-Net-improved (U-Net-I). With the
letters PP, we denote that the model’s output was post-processed by the approach
described in Section|[7.5.2| In Figure 8.7, we see IOU evaluated on the validation
dataset throughout the model training, where each line corresponds to a different
loss function. We notice that a combination of BCE and soft-Dice loss achieved the
highest IOU results, while soft-Dice loss diverged after a promising performance
at the beginning of the training.

The best hyperparameters for post-processing of both models are in Table |8.16.
In Figure |8.8, we observe how the choice of different hyperparameters for the
post-processing pipeline affected the performance of U-Net-B model.

Figure 8.6/ shows the segmentation results and compares those with the ground

truth mask.
: “

: Baseline U-Net model

(b) : Improved U-Net model

Figure 8.6: From the left: X-ray image, ground-truth pixel mask, the output of
the model, output processed by morphological opening, output post-processed by
morphological opening and closing.

66

8.5. Dental restorations segmentation

soft-Dice == BCE+soft-Dice == BCE

10U

0.6

0.5 . | —/v\
"\ \!‘]Q,\\(/\ \
/Y

0.3
0.2

0.1

step
Sk 10k 15k 20k 25k

Figure 8.7: IOU throughout the training of U-Net model for different loss functions

8, —

v <

N 0

‘@ 0.62
=

O o

E o

i 0.61
50 <

gy

o

o 0.60
o [N

— D.

< 0

2 [N

B 2 0.59
<5

S o

QCO

5o 0.58
=5

1.0 50 9.0 13.0 17.0 21.0 25.0 29.0 33.0 37.0
Morphological closing kernel size [px]

Figure 8.8: Value of IOU metric based on the size of kernels K,, K. in morphological
operations that were used for post-processing

Model Dice 10U

Parameter | K, | K, U-Net-B 0.663 | 0.575
U-Net 37 | 25 U-Net-B-PP | 0.714 | 0.623
U-Net-I 33| 5 U-Net-I 0.747 | 0.662

U-Net-I-PP | 0.760 | 0.676

Table 8.16: Optimal parameters for

model post-processing found by a grid- Table 8.17: Results of U-Net models
search

67

8. Results

Author Precision | Recall | F1-Score | Accuracy | APQ.5

This thesis 0.751 0.7 0.725 0.726 0.774
Srivastava et al. [16] 0.615 0.805 0.7 - -
Kumar & Srivastava [[19] 0.7 0.53 0.614 - -
Bayrakdar et al. [56] 0.78 0.77 0.78 - -

Bayraktar et al. [62] - 0.72 - 0.946 0.872
Cantu et al. [55] - 0.75 0.73 0.8 -

Table 8.18: Comparison of results of this thesis with results in related publications

. 8.6 Comparison of results with related publications

In Table |8.18, we see a comparison of caries detection results of this thesis
contrasted to results achieved by related works. We compared with only those who
selected a similar approach to ensure at least a minimal amount of comparability.

Note that Cantu et al. [55] solved the problem of dental caries localization as
a semantic segmentation task. The recall and F1-score are calculated per pixel,
while others worked with bounding boxes. However, the reader can still estimate
how their work compares to others in table.

. 8.7 Visualization of models

All figures in this section were generated by the best performing ensemble model
for caries detection, introduced in Section|8.11, and the U-Net-I model (without
post-processing).

Figure [8.9] shows the relationship between the number of false positives per
image and the recall of the model. The graph was truncated and did not include
points for recall > 0.91 since it would decrease the chart’s readability.

Figure|8.11|overlays the bitewing image with predictions of both caries detection
and restorations segmentation models. For more similar figures, see Appendix B.1
and |C

68

1.0

FP detections per image

0.0

0.0 0.2 0.4 0.6 0.8 L.

Recall

Figure 8.9: Number of false positives per
image for a given value of recall

69

8.7. Visualization of models

100
80
60
10

20

Non-detected dental caries [%]

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Precision

Figure 8.10: Percentage of nondetected
dental caries based on the precision of the
model

8. Results

(a) : Original image

The o

(b) : Output of our models

Figure 8.11: Segmented dental restorations in yellow, predicted dental caries in pink
and ground truth of dental caries in green. We see a single false positive detection on
the top right of the image. The author of the dataset acknowledges it to be a missing

ground truth label

70

Chapter 9

Discussion and further suggestions

B 9.1 comments on model comparison and their
improvements

We observed that updating the dataset by either increasing the number of data or
correcting annotations mistakes showed a significant improvement in the moni-
tored metrics.

The results differ only in units of percent if we use models with smaller back-
bones, as shown in Table [8.7. Furthermore, parameter-heavy models such as
EfficientDet-D4 performed worse than others, see Table [8.4. This was surprising
since EfficentDet-D4 was out-performing all other tested models on the MS COCO
benchmark [24] [8].

The weight decay did not affect the behavior of YOLOv5 and Faster R-CNN.
This was unexpected since we would anticipate an increase in performance on the
validation and test dataset.

The use of group normalization significantly decreased the performance gap
between EfficiendDet and other models (Section |8.2.2), but the results were still
inferior to most of the models.

. 9.2 Ensembling

Model ensembling improved the results more than we anticipated. We assess that
this was caused by the array of object detection models used for the ensemble.
The results in Section strengthen this introduction8.4.3| We were surprised that
our proposed aware ensembling solution (see Section|7.4.2) did not improve the
results.

71

9. Discussion and further suggestions

. 9.3 Dental restorations segmentation

Bl 9.3.1 Non-deep learning approach

The grid search did not find a hyper-parameter, ensuring that adaptive threshold-
ing methods would detect only dental restoration. From Figure [8.5/ we see that
adaptive thresholding methods include many false-positive predictions. A signifi-
cant amount of those is removed by morphological operations, but the IOU 0.314
is still relatively low compared to U-Net models. This corresponds to the results
of Abdalla-Aslan et al. [18], who achieved a precision of 0.33 when segmenting
dental restorations from panoramic images.

B 9.3.2 U-Net

The baseline U-Net model already showed significant performance gain over the
non-deep learning segmentation pipeline. It was improved by more than 10% using
morphological operations post-processing.

Improvements in the training process increased the performance of U-Net
significantly; on the contrary, post-processing the improved U-Net model improved
all tracked metrics negligibly.

In the figure 8.6, we compare the predicted pixel mask with the ground truth. In
the border areas of dental restorations, the model seems to estimate its position
better than the ground truth labels. This happens due to the unease of labeling
data for segmentation tasks. The annotator needs to include many points in the
bounding rectangle to correspond to the absolute position of the restoration. We
believe that this hurts the reported performance of the model.

B 9.4 Comparison of results with related publications

Results obtained by this work have beaten those achieved by Srivastava at al. [[16]
and Kumar and Srivastava [?]. Please note that even though Kumar continued
on the work published by Srivastava et al., even extending the dataset used by
Srivastava twofold, all metrics reported by them dropped significantly. We cannot
explain what caused this decrease in performance. Kumar does not address this
problem in the published paper.

Bayrakdar2021 et al. [56[] and Bayraktar2021 et al [[62]] reported better results
than we achieved throughout our work. We find that surprising since both works
had a significantly smaller amount of data (621 and 1000 images). We exper-
imented with the YOLOv3 architecture used by Bayraktar202 [62]], but in our
experiments, it achieved worse results than other architectures. We, therefore,
found their results to be irreproducible.

Cantu et al. achieved a similar F1-Score as we did in our work. The comparability
of those results is limited since they solved semantic segmentation tasks contrary
to object detection. F

72

Chapter 10

Conclusion

This thesis has developed a solution based on convolutional neural networks for
dental caries detection and dental restorations segmentation. The best-performing
model for dental caries detection achieved AP@.5 = 0.725, and an ensemble of
ten models improved the results to APQ.5 = 0.774. The best model for dental
restorations segmentation achieved an IOU of 0.676 and a Dice score of 0.76.

We contributed to creating a dataset containing 3989 bitewing images with
7257 annotated dental caries. Furthermore, for 521 images, a pixel mask with
highlighted dental restorations is available. To our knowledge, this is one of the
most extensive datasets created for caries detection.

During the dataset’s creation, the model already proved to detect dental caries
overlooked by a dentist, and since then, the model has improved significantly.
Therefore, we believe that the model in its current state would be helpful during
the diagnosis of dental caries. It could serve as a second opinion for the dentists
that they could compare his beliefs against.

. Further work

The primary focus should be on finishing the sixth stage of the dataset in the
future. We believe that there are still overlooked dental caries, despite the de-
creasing number of caries in stage three. We believe that including additional

models with different architectures could further increase the performance. For
example, parameter-heavy models such as EfficientDet with D4+ backbones could
be trained and added to the ensemble. However, this would require a GPU with
more dedicated memory. According to our experience, a 40GB GPU would be
required to fit EfficientDet-D4 with batch size four into the GPU.

It may be worth exploring the option of backbone sharing across multiple
tasks. The model for segmentation of dental restorations could benefit from the
backbone shared with the model for object detection, which we trained on a
significantly larger amount of data. Therefore, we believe that the backbone would
be able to extract better features from the image and thus improve segmentation
performance.

73

10.ConclusioNm s s s s s e e e e e E E E E E E E E EEEESEEESEESEEESEEEEEEESR

L3

74

[1]

(2]

[3]

(4]

(5]

(6]
[7]

(8]

(9]

[10]

Appendix A
Bibliography

A. Creanga, H. Geha, V. Sankar, F. Teixeira, C. McMahan, and M. Noujeim,
“Accuracy of digital periapical radiography and cone-beam computed tomog-
raphy in detecting external root resorption,” Imaging science in dentistry,
vol. 45, pp. 153-8, Sep. 2015.

“What is a Panoramic X-Ray,” Sep. 2017. [Online]. Available: |https:
/[www.minthilldentistry.com/panoramic-x-ray

J. Cowton, I. Kyriazakis, and J. Bacardit, “Automated individual pig localisation,
tracking and behaviour metric extraction using deep learning,” IEEE Access,
vol. 7, pp. 108 049-108 060, 2019.

R. Padilla, S. L. Netto, and E. A. B. da Silva, “A survey on performance
metrics for object-detection algorithms,” in 2020 International Conference
on Systems, Signals and Image Processing (IWSSIP). IEEE, jul 2020.

G. Zhang and H. Li, Effectiveness of Scaled Exponentially-Regularized Linear
Units (SERLUSs), Jul. 2018.

K. Yin, Sign Language Translation with Transformers, Apr. 2020.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby,
“An image is worth 16x16 words: Transformers for image recognition at scale,”
2020.

M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” CoRR, vol. abs/1911.09070, 2019. [Online]. Available:
http://arxiv.org/abs/1911.09070

K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu,
Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Lj, X. Lu, R. Zhu, Y. Wu,
J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “Mmdetection: Open
mmlab detection toolbox and benchmark,” 2019.

H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein, “Visualizing the loss
landscape of neural nets,” 2017.

75

https://www.minthilldentistry.com/panoramic-x-ray
https://www.minthilldentistry.com/panoramic-x-ray
http://arxiv.org/abs/1911.09070

A. Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin
transformer: Hierarchical vision transformer using shifted windows,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), October 2021, pp. 10012-10022.

T.Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object
detection,” 2017.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” 2015.

N. Bodla, B. Singh, R. Chellappa, and L. S. Davis, “Soft-nms — improving
object detection with one line of code,” 2017.

S. Lee, S. il Oh, J. Jo, S. Kang, Y. Shin, and]J. won Park, “Deep learning for
early dental caries detection in bitewing radiographs,” Scientific Reports,
vol. 11, no. 1, aug 2021.

M. M. Srivastava, P. Kumar, L. Pradhan, and S. Varadarajan, “Detection
of tooth caries in bitewing radiographs using deep learning,” CoRR, vol.
abs/1711.07312, 2017. [Online]. Available: |http://arxiv.org/abs/1711.07312

T. Yeshua, Y. Mandelbaum, R. Abdalla-Aslan, C. Nadler, L.. Cohen, L. Zemour,
D. Kabla, O. Gleisner, and I. Leichter, “Automatic detection and classification
of dental restorations in panoramic radiographs,” Issues in Informing Science
and Information Technology, vol. 16, pp. 221-234, 2019.

R. Abdalla-Aslan, T. Yeshua, D. Kabla, I. Leichter, and C. Nadler, “An artificial
intelligence system using machine-learning for automatic detection and clas-
sification of dental restorations in panoramic radiography,” Oral Surgery, Oral
Medicine, Oral Pathology and Oral Radiology, vol. 130, no. 5, pp. 593-602,
nov 2020.

P. Kumar and M. M. Srivastava, “Example mining for incremental learning in
medical imaging,” 2018.

N. J. Kassebaum, E. Bernabé, M. Dahiya, B. Bhandari, C. J. L. Murray, and
W. Marcenes, “Global burden of untreated caries: A systematic review and
metaregression,” J Dent Res, vol. 94, no. 5, pp. 650-658, Mar. 2015. [Online].
Available: https://doi.org/10.1177/0022034515573272

D. e. a. James, Spencer L. Abate, “Global, regional, and national incidence,
prevalence, and years lived with disability for 354 diseases and injuries
for 195 countries and territories, 1990-2017: a systematic analysis for the
global burden of disease study 2017,” The Lancet, vol. 392, no. 10159, pp.
1789-1858, nov 2018.

M. Hung, M. S. Lipsky, R. Moffat, E. Lauren, E. S. Hon, J. Park, G. Gill, J. Xu,
L. Peralta, J. Cheever, D. Prince, T. Barton, N. Bayliss, W. Boyack, and F. W.

76

http://arxiv.org/abs/1711.07312
https://doi.org/10.1177/0022034515573272

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

A. Bibliography

Licari, “Health and dental care expenditures in the united states from 1996
to 2016,” PLOS ONE, vol. 15, no. 6, p. €0234459, jun 2020.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the
IEEE International Conference on Computer Vision (ICCV), December 2015.

“Papers with Code - Browse the State-of-the-Art in Machine Learning.”
[Online]. Available: https://paperswithcode.com/sota

A. Rodriguez-Ruiz, K. Lang, A. Gubern-Merida, M. Broeders, G. Gennaro,
P. Clauser, T. H. Helbich, M. Chevalier, T. Tan, T. Mertelmeier, M. G. Wallis,
I. Andersson, S. Zackrisson, R. M. Mann, and I. Sechopoulos, “Stand-alone
artificial intelligence for breast cancer detection in mammography: Compari-
son with 101 radiologists,” JNCI: Journal of the National Cancer Institute, vol.
111, no. 9, pp. 916-922, mar 2019.

A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn, M. P.
Turakhia, and A. Y. Ng, “Cardiologist-level arrhythmia detection and clas-
sification in ambulatory electrocardiograms using a deep neural network,”
Nature Medicine, vol. 25, no. 1, pp. 65-69, jan 2019.

Sturdevant's Art and Science of Operative Dentistry. Elsevier, 2019.

J. E. Frencken, P. Sharma, L. Stenhouse, D. Green, D. Laverty, and T. Dietrich,
“Global epidemiology of dental caries and severe periodontitis - a comprehen-
sive review,” Journal of Clinical Periodontology, vol. 44, pp. S94-S105, mar
2017.

Dental Caries: The Disease and Its Clinical Management. BLACKWELL
PUBL, May 2015. [Online]. Available: |https://www.ebook.de/de/product/
23695989/dental caries the disease and its clinical management.html

“Dental X-rays.” [Online]. Available: |https://my.clevelandclinic.org/health/
articles/11199-dental-x-rays

H. Strassler and M. Pitel, “Using fiber-optic transillumination as a diagnostic
aid in dental practice,” Compendium of continuing education in dentistry
(Jamesburg, N.J. : 1995), vol. 35, pp. 80-8, Feb. 2014.

M. Everingham, L. V. Gool, C. K. I. Williams,]J. Winn, and A. Zisserman,
“The pascal visual object classes (VOC) challenge,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 303-338, sep 2009.

R. Padilla, W. L. Passos, T. L. B. Dias, S. L. Netto, and E. A. B. da Silva, “A
comparative analysis of object detection metrics with a companion open-
source toolkit,” Electronics, vol. 10, no. 3, p. 279, jan 2021.

77

https://paperswithcode.com/sota
https://www.ebook.de/de/product/23695989/dental_caries_the_disease_and_its_clinical_management.html
https://www.ebook.de/de/product/23695989/dental_caries_the_disease_and_its_clinical_management.html
https://my.clevelandclinic.org/health/articles/11199-dental-x-rays
https://my.clevelandclinic.org/health/articles/11199-dental-x-rays

A. Bibliography

[34] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640, 2015.
[Online]. Available: http://arxiv.org/abs/1506.02640

“cocodataset/cocoapi,” May 2022, original-date: 2015-01-25T20:26:39Z.
[Online]. Available: https://github.com/cocodataset/cocoapi

S. Jadon, “A survey of loss functions for semantic segmentation,” in 2020
IEEE Conference on Computational Intelligence in Bioinformatics and Com-
putational Biology (CIBCB), 2020, pp. 1-7.

“An overview of semantic image segmentation.” May 2018. [Online].
Available: |https://www.jeremyjordan.me/semantic-segmentation/

F. Rosenblatt, “The perceptron: A probabilistic model for information storage
and organization in the brain.” Psychological Review, vol. 65, no. 6, pp.
386-408, 1958.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” pp. 448-456, Jun. 2015.
[Online]. Available: https://proceedings.mlr.press/v37/ioffel5.html

Y. Wu and K. He, “Group normalization,” 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

Y. Li and T. Yang, “Word embedding for understanding natural language:
A survey,” in Guide to Big Data Applications, S. Srinivasan, Ed. Cham:
Springer International Publishing, 2018, pp. 83-104. [Online]. Available:
https://do1.org/10.1007/978-3-319-53817-4 4

T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Fea-
ture pyramid networks for object detection,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and
accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020. [Online].
Available: |https://arxiv.org/abs/2004.10934

K. He, X. Zhang, S. Ren, and]J. Sun, “Deep residual learning for image
recognition,” 2015.

M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional
neural networks,” CoRR, vol. abs/1905.11946, 2019. [Online]. Available:
http://arxiv.org/abs/1905.11946

B. Baheti, S. Innani, S. Gajre, and S. Talbar, “Eff-UNet: A novel architecture
for semantic segmentation in unstructured environment,” in 2020 IEEE/CVF

78

http://arxiv.org/abs/1506.02640
https://github.com/cocodataset/cocoapi
https://www.jeremyjordan.me/semantic-segmentation/
https://proceedings.mlr.press/v37/ioffe15.html
https://doi.org/10.1007/978-3-319-53817-4_4
https://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1905.11946

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. Bibliography

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
IEEE, jun 2020.

H. Zhou, Z. Li, C. Ning, and J. Tang, “CAD: Scale invariant framework for real-
time object detection,” in 2017 IEEE International Conference on Computer
Vision Workshops (ICCVW). IEEE, oct 2017.

R. Solovyev, W. Wang, and T. Gabruseva, “Weighted boxes fusion: Ensembling
boxes from different object detection models,” 2019.

M. Prados-Privado, J. G. Villalén, C. H. Martinez-Martinez, C. Ivorra, and J. C.
Prados-Frutos, “Dental caries diagnosis and detection using neural networks:
A systematic review,” Journal of Clinical Medicine, vol. 9, no. 11, p. 3579, nov
2020.

F. Casalegno, T. Newton, R. Daher, M. Abdelaziz, A. Lodi-Rizzini, F. Schur-
mann, I. Krejci, and H. Markram, “Caries detection with near-infrared transil-
lumination using deep learning,” Journal of Dental Research, vol. 98, no. 11,
pp. 1227-1233, aug 2019.

F. Schwendicke, K. Elhennawy, S. Paris, P. Friebertshauser, and J. Krois, “Deep
learning for caries lesion detection in near-infrared light transillumination
images: A pilot study,” Journal of Dentistry, vol. 92, p. 103260, jan 2020.

K. Moutselos, E. Berdouses, C. Oulis, and I. Maglogiannis, “Recognizing
occlusal caries in dental intraoral images using deep learning,” in 2019 41st
Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC). IEEE, jul 2019.

M. Moran, M. Faria, G. Giraldi, L. Bastos, L. Oliveira, and A. Conci, “Clas-
sification of approximal caries in bitewing radiographs using convolutional
neural networks,” Sensors, vol. 21, no. 15, p. 5192, jul 2021.

A. G. Cantu, S. Gehrung, J. Krois, A. Chaurasia, J. G. Rossi, R. Gaudin, K. Elhen-
nawy, and F. Schwendicke, “Detecting caries lesions of different radiographic
extension on bitewings using deep learning,” Journal of Dentistry, vol. 100, p.
103425, sep 2020.

I. S. Bayrakdar, K. Orhan, S. Akarsu, Ozer Celik, S. Atasoy, A. Pekince, Y. Yasa,
E. Bilgir, H. Saglam, A. F. Aslan, and A. Odabas, “Deep-learning approach
for caries detection and segmentation on dental bitewing radiographs,” Oral
Radiology, nov 2021.

Y.-C. Mao, T.-Y. Chen, H.-S. Chou, S.-Y. Lin, S.-Y. Liu, Y.-A. Chen, Y.-L. Liu, C.-A.
Chen, Y.-C. Huang, S.-L. Chen, C.-W. Li, P. A. R. Abu, and W. Y. Chiang, “Caries
and restoration detection using bitewing film based on transfer learning with
cnns,” Sensors (Basel, Switzerland), vol. 21, 2021.

79

A. Bibliography

[58]

L. Lian, T. Zhu, F. Zhu, and H. Zhu, “Deep learning for caries detection and
classification,” Diagnostics, vol. 11, no. 9, p. 1672, sep 2021.

[59]]J.-H. Lee, D.-H. Kim, S.-N. Jeong, and S.-H. Choi, “Detection and diagnosis

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

of dental caries using a deep learning-based convolutional neural network
algorithm,” Journal of Dentistry, vol. 77, pp. 106-111, oct 2018.

W. Kuang and W. Ye, “A kernel-modified SVM based computer-aided diag-
nosis system in initial caries,” in 2008 Second International Symposium on
Intelligent Information Technology Application. IEEE, dec 2008.

X. Zhang, X. Han, C. Li, X. Tang, H. Zhou, and L. Jiao, “Aerial image road
extraction based on an improved generative adversarial network,” Remote
Sensing, vol. 11, p. 930, Apr. 2019.

Y. Bayraktar and E. Ayan, “Diagnosis of interproximal caries lesions with deep
convolutional neural network in digital bitewing radiographs,” Clinical Oral
Investigations, jun 2021.

“Welcome to Python.org.” [Online]. Available: https://www.python.org/

“Reengineering Facebook Al's deep learning platforms for in-
teroperability.” [Online]. Available: https://ai.facebook.com/blog/
reengineering-facebook-ais-deep-learning-platforms-for-interoperability/

“airctic/icevision,” May 2022, original-date: 2020-05-04T01:57:02Z. [Online].
Available: |https://github.com/airctic/icevision

A. Paszke, S. Gross, F. Massa, A. Lerer,]J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang,]J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Information
Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc.,
2019, pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

O. Yadan, “Hydra - a framework for elegantly configuring complex
applications,” Github, 2019. [Online]. Available: |https://github.com/
facebookresearch/hydra

W. Falcon et al., “Pytorch lightning,” GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning, vol. 3, 2019.

L. Biewald, “Experiment tracking with weights and biases,” 2020, software
available from wandb.com. [Online]. Available: https://www.wandb.com/

80

https://www.python.org/
https://ai.facebook.com/blog/reengineering-facebook-ais-deep-learning-platforms-for-interoperability/
https://ai.facebook.com/blog/reengineering-facebook-ais-deep-learning-platforms-for-interoperability/
https://github.com/airctic/icevision
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://github.com/facebookresearch/hydra
https://github.com/facebookresearch/hydra
https://www.wandb.com/

[70]

[71]

[72]

[73]

[74]

[75]

[76]

A. Bibliography

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools,
2000.

D. P. E. Riba, D. Mishkin, “Kornia: an open source differentiable computer
vision library for pytorch,” in Winter Conference on Applications of Computer
Vision, 2020. [Online]. Available: https://arxiv.org/pdf/1910.02190.pdf

K. Chen, J. Wang, J. Pang, Y. Cao, Y. Xiong, X. Li, S. Sun, W. Feng, Z. Liu, J. Xu,
Z. Zhang, D. Cheng, C. Zhu, T. Cheng, Q. Zhao, B. Li, X. Lu, R. Zhu, Y. W,
J. Dai, J. Wang, J. Shi, W. Ouyang, C. C. Loy, and D. Lin, “MMDetection: Open
mmlab detection toolbox and benchmark,” arXiv preprint arXiv:1906.07155,
2019.

B. E. Moore and J.]J. Corso, “Fiftyone,” GitHub. Note:
https://github.com/voxel51/fiftyone, 2020.

G. J. et al.,, “ultralytics/yolovb: v3.1 - Bug Fixes and Performance
Improvements,” Oct. 2020. [Online]. Available: |https://doi.org/10.5281/
zenodo.4154370

F. Hutter, H. Hoos, and K. Leyton-Brown, “An efficient approach for assessing
hyperparameter importance,” pp. 754-762, Jan. 2014. [Online]. Available:
https://proceedings.mlr.press/v32/hutter14.html

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” 2019.

81

https://arxiv.org/pdf/1910.02190.pdf
https://doi.org/10.5281/zenodo.4154370
https://doi.org/10.5281/zenodo.4154370
https://proceedings.mlr.press/v32/hutter14.html

82

Appendix B

Aditional results

Model AP | APQ.3 | APQ.5 | APQ.75 | APQ.5g | APQ.5) | APQ.5},
YOLOvV5-16 | 0.463 | 0.869 | 0.841 0.442 0.697 0.887 0.974
EffDet-D4 | 0.297 | 0.82 0.735 0.164 0.552 0.838 0.815

Table B.1: Comparision of trained models on the train part of stage three dataset

Model Precision | Recall | F-score ¥

FRCNN-R101 0.69 0.64 0.664 | 0.662
FRCNN-R50 0.623 0.68 0.65 0.489
YOLOvV5-m6 0.671 0.6 0.634 | 0.273
YOLOvV5-16 0.621 0.64 0.63 0.219
EfficientDet-D4 0.621 0.59 0.605 | 0.216
RetinaNet-swint 0.661 0.63 0.645 0.24
RetinaNet-R50 0.674 0.6 0.635 0.41

Table B.2: Precision, recall, and F-score based on the confidence threshold for the
models trained on stage four datset

Model Precision | Recall | F-score 0%
FRCNN-R101 0.701 0.67 0.685 | 0.664
FRCNN-R50 0.679 0.7 0.689 | 0.663
YOLOV5-m6 0.672 0.69 0.681 | 0.238
YOLOV5-16 0.609 0.62 0.615 | 0.114
EfficientDet-d4 0.648 0.62 0.634 | 0.183
RetinaNet-swint 0.714 0.67 0.691 | 0.401

Table B.3: Precision, recall, and F-score based on the confidence threshold. Models
were trained on stage-five dataset

83

B. Aditional results

Model AR | ARQ.59 | ARQ.5 | ARQ.75 | ARQ.5g | ARQ.5); | ARQ.5,
YOLOv5-16 0.559 0.895 0.956 0.559 0.916 0.971 0.971
YOLOv5-m6 | 0.547 0.899 0.957 0.541 0.933 0.971 0.971
YOLOv5-s6 | 0.545 0.877 0.951 0.549 0.916 0.968 0.968

Effdet-D1 0.531 0.87 0.958 0.488 0.909 0.978 0.978
FRCNN-R50 | 0.475 0.867 0.883 0.445 0.832 0.899 0.899
FRCNN-R101 | 0.478 0.864 0.89 0.458 0.815 0.917 0.917

RetN-swint | 0.508 0.89 0.946 0.468 0.902 0.967 0.967

Table B.4: Average recall of models trained by improved training protocol

Model Precision | Recall | F-score | Confidence threshold
YOLOvV5-16 0.689 0.69 0.689 0.271
YOLOvV5-m6 0.74 0.64 0.686 0.326
YOLOV5-s6 0.692 0.64 0.665 0.295

Effdet-D1 0.739 0.64 0.686 0.339
FRCNN-R50 0.719 0.66 0.688 0.759
FRCNN-R101 0.704 0.63 0.665 0.684
RetN-swint 0.681 0.69 0.685 0.367

Table B.5: Precision, recall, and F-score based on the confidence threshold for different
models, trained by the imporved training protocol

Method | AR | ARQ.59 | ARQ.5 | ARQ.75 | ARQ.5g | ARQ.5); | ARQ.5],
NMS | 0.546 0.91 0.971 0.522 0.949 0.98 0.98
S-NMS | 0.584 | 0.888 0.951 0.603 0.912 0.965 0.965
NWM | 0.526 0.913 0.941 0.513 0.892 0.959 0.959
WBF | 0.573 0.918 0.975 0.569 0.956 0.981 0.981
WBF-A | 0.572 0.92 0.974 0.566 0.956 0.98 0.98

Table B.6: Average recall of models ensembled by parameters from Table 8.9

Method | Precision | Recall | F-score | Confidence threshold
NMS 0.708 0.68 0.694 0.284
S-NMS 0.679 0.7 0.689 0.489

NWM 0.713 0.71 0.712 0.792

WBF 0.732 0.7 0.715 0.594

WBEF-A 0.745 0.69 0.716 0.201

Table B.7: Precision, recall, and F-score based on the confidence threshold for different

ensembling methods

84

B.1. Detection of detnal caries and segmentation of dental restorations

. B.1 Detection of detnal caries and segmentation of
dental restorations

85

B. Aditional results

(a) : Input image

(b) : Predictions of the model

Figure B.1: Four correct detection of dental caries and one falsely-positive

86

B.1. Detection of detnal caries and segmentation of dental restorations

(a) : Input image

(b) : Predictions of our model

Figure B.2: Segmented dental restorations in yellow, predicted dental caries are pink.
We see a successful segmentation of dental restorations and a single falsely positive
prediction of dental caries 87

88

Appendix C

Images

. C.1 Predictions of the model

The following figures are X-ray images from the test part of the stage four dataset.
Ground truth labels are marked by pink color and the model predictions are in
green, please note the difference in used colors from Section B.1. Each bounding
box prediction has corresponding confidence attached to it.

(07s) (075 (©73) (0.61)

(0.65) 11}

Figure C.1: X-ray image with ground truth boxes and model’s predictions. Tho model
correctly predicts 11 out of 12 dental caries in the image.

89

C. Images

(055 (054)

Figure C.2: The model predicts correctly five dental caries and has one falsely negative
prediction

90

C.1. Predictions of the model

Figure C.3: Prediction of the model in image with extensive amount of dental restora-
tions

91

C. Images

Figure C.4: The model predictions on image with dental bridge

H c.2 Model importance during ensembling

Hyperparameter Importances

5 voLovsm o710 .19
@ voLovs-m 0.699 I 0.13
5 voLovs.m o.co I 0. >
S voLovs-m 0.6z I . 1
‘é yoLovs-m 0.691 [N 0 .08
T voLovs-m 0.697 [.05
yoLovs-m 0.707 | 0.04
0 0.05 0.1 0.15 02 025

Importance for Objective Value

Figure C.5: Importance of different models during ensembling with the same architec-
tures and backbones

92

C.3. Augmented images

Figure C.7: No transformation applied

Hyperparameter Importances

YOLOV5-s 0.659)
YOLOVS-m 0.688
vorovs- 0. 1 | m— .24
vorovs-1 o703 I .10
yoLovs-1 0.693 [o.05
yoLovs-m 0.719 | 0.04
yoLovs-s 0.697 | 0.03

yoLovs-m 0.699 [N 0.02
0 0.05 0.1 0.15 0.2 0.25

0.26
0.26

Hyperparameter

Importance for Objective Value

Figure C.6: Importance of different models during ensembling with the architecture
and different backbones

N cs3 Augmented images

93

C. Images

Figure C.9: Rotation applied

94

C.3. Augmented images

N8
o/ “I o ow

Figure C.11: Translation applied

95

C. Images

Figure C.12: The whole augmentation pipeline applied

96

	Introduction
	Medical background
	Human teeth
	Structure of teeth
	Pulp-Dentin complex
	Cementum

	Dental caries
	Cause
	Epidemiology
	Diagnosis
	Treatment

	Theoretical background
	Computer vision tasks
	Classification
	Semantic segmentation
	Object detection
	Instance segmentation

	Data format in object detection
	PASCAL VOC
	COCO
	YOLO

	Metrics
	Intersection over union (IOU)
	Precision and recall
	Mean average recall in MS-COCO (mAR)

	Optimization
	Optimizers
	Weight decay
	Learning rate schedulers

	Artificial neural network (ANN)
	Convolutional layer
	Activation functions
	Normalization layers

	Transformer architecture
	Transformers in computer vision

	General architecture for object detection
	Backbone models
	ResNet
	EfficientNet
	Swin transformer

	Detection models
	Faster R-CNN
	RetinaNet
	EfficientDet
	Models for image segmentation

	Model ensembling in object detection

	Related Work
	Dental caries detection
	Manual detection and classification
	Dental caries segmentation
	Dental caries detection

	Dental restorations segmentation

	Dataset
	Dental caries
	Dental restorations

	Project structure
	Organization of the project
	Models
	Modules
	Transformations
	Data-Modules
	Trainer
	Callbacks
	Logging

	Additional open-source software

	Methods
	Caries detection - baseline model comparison
	Dataset
	Image augmentations
	Neural network models

	Improvements
	Training protocol changes
	Group normalization

	Model inspection
	Size of backbone
	Weight decay

	Model ensembling
	Data-format
	Area-aware ensembling
	Assessing the importance of different models in ensembling

	Dental restorations segmentation
	Non-deep learning approach
	Deep-learning approach
	Model training improvements

	Results
	Model comparison on different datasets
	Stage one dataset
	Stage two dataset
	Stage three dataset
	Stage four dataset
	Stage five

	Improvements
	Training protocol improvements
	Group normalization

	Model inspection
	Size of backbone
	Weight decay

	Ensembling
	Manually-picked parameters
	Grid search results
	Assessing the importance of different models

	Dental restorations segmentation
	Non-deep learning approach
	U-Net

	Comparison of results with related publications
	Visualization of models

	Discussion and further suggestions
	Comments on model comparison and their improvements
	Ensembling
	Dental restorations segmentation
	Non-deep learning approach
	U-Net

	Comparison of results with related publications

	Conclusion
	Further work

	Bibliography
	Aditional results
	Detection of detnal caries and segmentation of dental restorations

	Images
	Predictions of the model
	Model importance during ensembling
	Augmented images

