
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Artificial Intelligence and Computer Science

Voice-Driven Web-Based Code
Editor

BACHELOR THESIS

Author: Cyril Janeček
Supervisor: Doc. Ing. Petr Pollák, CSc.
Date: May, 2022

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

491992Personal ID number:Janeček CyrilStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Voice-Driven Web-Based Code Editor

Bachelor’s thesis title in Czech:

Hlasem ovládaný webový editor kódu

Guidelines:

1. Learn the basics of Automatic Speech Recognition (ASR) and compare available ASR engines usable for voice control
of computer applications. Focus on availability, price, accuracy, and latency of particular engines.
2. Study the possibilities of creating an interactive web applications with the focus on an analysis of available libraries and
frameworks.
3. Design and implement a prototype of WEB-based editor of source code in the language JavaScript. Take into account
a possible extension of created application to other programming languages as well.

Bibliography / sources:

[1] J. E. Hopcroft, R. Motwani, J. D. Ullman: Introduction to Automata Theory,Languages, and Computation, 3rd Edition,
Addison-Wesley, 2006.
[2] Lawrence R. Rabiner and Ronald W. Schafer: Introduction to Digital Speech Processing. now publishers inc., 2007.
[3] Google Cloud - Speech-to-Text [online]. Dostupné z: https://cloud.google.com/speech-to-text

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Petr Pollák, CSc. Department of Circuit Theory FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 20.05.2022Date of bachelor’s thesis assignment: 12.12.2021

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Ing. Petr Pollák, CSc.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Declaration

I declare that the presented work was developed independently and that I have
listed all sources of information used within it in accordance with the methodical
instructions for observing the ethical principles in the preparation of university theses.

In Prague, May 20, 2022 ..
Cyril Janeček

Acknowledgment

I would like to thank my supervisor, Doc. Ing. Petr Pollak, CSc., for all the
invaluable advice and guidance throughout the year.

Cyril Janeček

Title:
Voice-Driven Web-Based Code Editor

Author: Cyril Janeček

Study programme: Open informatics
Specialization: Artificial Intelligence and Computer Science
Publication type: Bachelor thesis

Supervisor: Doc. Ing. Petr Pollák, CSc.
Department of Circuit Theory

Key words (English): web accessibility, voice control, formal language,
code parsing

Key words (Czech): přístupnost webu, hlasové ovládání, formální jazyk,
parsování kódu

Abstract (English): This thesis describes the implementation of a voice-driven
code editor that enables injured or disabled people to write programs using their
voice. Existing working solutions are often paid or require a complicated setup,
making them less accessible. This thesis aims to implement a working prototype
of such an editor as a web application, with a main focus on accesibility and ease
of use. A free version of Google cloud’s speech-to-text service is used for speech
recognition. The transcribed words are then processed by lexical and syntactical
analysis, which transform them to valid JavaScript code. For this transformation, a
custom context-free grammar and a parsing algorithm are implemented that also
enable additional advanced features of the editor such as smart identifier resolution,
undo/redo functionality, and automatic indentation. The resulting application has
been tested by four users, which have provided mostly positive feedback. The code
editor, as well as its source code, are available publicly on Gitlab.

Abstract (Czech): Tato práce popisuje implementaci hlasově ovládaného editoru
kódu, který umožňuje lidem s pohybovým omezením programovat pomocí svého
hlasu. Existující aplikace jsou často placené, nebo vyžadují poměrně komplikovanou
instalaci, což snižuje jejich přístupnost. Tato práce si klade za cíl implementovat
fungující prototyp takového editoru jako webovou aplikaci, jejíž hlavní záměření je
přístupnost a jednoduchost použití. Bezplatná verze služby Google cloud’s speech-to-
text je použita pro rozpoznávání řeči. Přepsaná slova jsou poté zpracována lexikální a
syntaktickou analýzou, jež je transformují na kód jazyka JavaScript. Pro transformaci
je použita vlastní implementace bezkontextové gramatiky a parsovacího algoritmu,
které také umožňují další pokročilé funkce editoru jako například automatickou
indentaci, rozpoznání identifikátorů a možnost vracet změny editoru. Výsledná
aplikace byla otestována čtyřmi uživateli, kteří poskytli převážně pozitivní zpětnou
vazbu. Editor i jeho zdrojové kódy jsou veřejně dostupné ve službě Gitlab.

Contents

1 Introduction 1

2 Automatic speech recognition 2
2.1 HMM-based recognition systems . 2

2.1.1 Feature analysis . 2
2.1.2 Pattern classification . 3

2.2 End-to-end systems . 4
2.3 Available solutions . 5

2.3.1 Google cloud speech-to-text . 5
2.3.2 Web Speech API . 6
2.3.3 Comparison . 6

3 Formal languages 7
3.1 Context-free grammars . 7
3.2 Parsing . 8

4 Implementation 10
4.1 Organization . 10
4.2 Architecture . 11
4.3 Source structure . 11
4.4 Speech recognition . 12
4.5 Lexical analysis . 12
4.6 Syntactical analysis . 13

4.6.1 Grammar . 13
4.6.2 Parse table . 14
4.6.3 Parsing . 15

4.7 Semantic analysis . 17
4.8 Displaying results . 18

4.8.1 Code editor . 18
4.8.2 Guiding the user . 19
4.8.3 Handling errors . 20
4.8.4 Solving identifier problems . 21

4.9 Limitations . 22

5 Application evaluation 24
5.1 User testing . 24
5.2 Possible future work . 25

6 Conclusion 27

Bibliography 28

1 Introduction
The topic of accessibility has been gaining a lot of attention in recent years, with
associations such as the World Health Organization and the United Nations raising
awareness of the issue [2, 3]. The purpose of accessibility is to enable people with
disabilities to access information and to interact with services, products, and tools
[4].

With recent advancements of digital technology, there has been a significant increase in
the number of accessibility solutions. Specifically, improvements in speech recognition
and synthesis allowed various new tools and products to emerge, such as automatic
captioning, text readers, voice-controlled devices, and many more.

Having suffered an arm injury, I was looking for a way to increase my one-handed
programming speed using speech recognition. Personal experiments quickly showed
that general dictation applications are unviable for this purpose. Some specialized
solutions exist, such as Code-by-voice and Dictation-toolbox. However, they require
a third-party recognition system as well as a complex setup and configuration [5, 6].

There is a free application, called Serenade, that enables coding by voice by providing
plugins for popular code editors. Its code dictation works relatively well, however, it
also has a few downsides. The setup consists of several time consuming steps such as
downloading and installing the app itself, installing a code editor plugin and creating
an account. Furthermore, its codebase is closed-source and there is no description of
the implementation [7].

This led to the idea of creating similar software as a web application. As a result, it
would require no setup, allowing users to simply visit the webpage and start dictating
code. Thus, the goal of this thesis is to implement a functional prototype of such
a voice-controlled code editor. By making its codebase open-source and providing
detailed description of the implementation within this thesis, I aim to provide a
foundation for further development in this area of accessibility.

The opening chapter gives a brief overview of two approaches for designing speech
recognition systems. Available solutions are also discussed. The following chapter
explains the basics of formal language theory necessary for understanding core parts
of the editor’s implementation, which is thorougly described in the next chapter. The
final chapter summarizes the results of user testing and discusses possible options
for future work.

1

2 Automatic speech recognition
Automatic speech recognition (ASR) is the process of converting a speech signal
into a text representation of the spoken words [8]. This chapter briefly describes two
commonly used approaches in ASR system design. Next, a few existing solutions are
discussed and compared.

2.1 HMM-based recognition systems

The traditional recognition systems are usually based on Hidden Markov Models
(HMM). These systems consist of multiple logical blocks, which are shown in a
simplified diagram in Figure 2.1. The feature analysis block first converts the input
speech signal 𝑠[𝑛] into a sequence of feature vectors 𝑋. Next, the pattern classification
block decodes 𝑋 into a maximum likelihood string �̂� . It uses a set of acoustic models
(represented as HMM), a word lexicon, and a language model to assign a match score
to each proposed string. The final block then provides a confidence score for each of
the individual words in �̂� [8].

Figure 2.1: Block diagram of an overall speech recognition system [8]

2.1.1 Feature analysis

The input signal is usually split and processed one segment at a time. The feature
analysis block first samples and quantizes the segment. Then, pre-emphasis is used
to compensate for the decreased signal power of the higher frequencies. The pre-
emphasized signal is separated into frames and converted to Mel-frequency cepstral
coefficients. Most commonly, a standard DFT-based approach with an additional
filter bank is used [8].

2

2.1. HMM-based recognition systems 3

2.1.2 Pattern classification

The task of automatic speech recognition can be represented as a Bayes maximum a
posteriori probability estimation (MAP) [8]:

�̂� = argmax
𝑊

𝑃 (𝑊 |𝑋) (2.1)

The objective is to find a string �̂� that maximizes the a posteriori probability of 𝑊

given 𝑋. Using the Bayes rule, equation (2.1) can be rewritten as:

�̂� = argmax
𝑊

𝑃 (𝑋|𝑊)𝑃 (𝑊)
𝑃 (𝑋) (2.2)

Since 𝑃 (𝑋) is independent of variable 𝑊 , which is being optimized, equation (2.2)
can be further rewritten as:

�̂� = argmax
𝑊⏟ ⏞

Part 3

𝑃 (𝑋|𝑊)⏟ ⏞
Part 1

𝑃 (𝑊)⏟ ⏞
Part 2

(2.3)

Here, part 1 is the probability of speech sounds for a given sentence 𝑊 . This is
computed by the acoustic model. Part 2 is the a priori probability of a given sentence
and is computed by the language model. Part 3 represents the search through all
valid sentences in order to find the maximum likelihood sentence �̂� [8].

Acoustic model

The Acoustic Model in ASR systems is most commonly represented by an HMM [8].
This abstraction is used to model the probabilities of sequences of speech elements.
Usually, elements known as triphones are used, representing individual phonemes in
the context of their predecessors and successors. Typically, the so-called Gaussian
mixture models (GMM) are used to model probabilities inside of the HMM. This
approach is also called GMM-HMM. Alternatively, the GMM can be replaced by a
deep neural network (DNN). A standard feedforward NN can be used as well as a
more complex type such as a convolutional or recurrent NN [9].

2.2. End-to-end systems 4

Language model

The language model assigns probabilities to sequences of words based on their
language context. There are many valid approaches for building a language model,
the most common one being a statistical n-gram word model. This approach assumes
that the probability of a given word in a sentence is dependent only on the 𝑛 − 1
previous words. The probability is then estimated by counting the relative frequencies
of n-tuples of words in the training set [8].

The simple 1-gram version is sometimes used, which specifies only a list of single
words along with their probabilities. An even simpler model, 0-gram, assumes that
all the words in the list have a uniform probability of appearing. However, bigrams
and trigrams are most commonly used for continuous speech recognition.

2.2 End-to-end systems

As is shown in the previous section, the design and implementation of HMM-based
ASR systems requires a significant amount of human effort and expertise. For this
reason, an alternative approach to automatic speech recognition, called an end-to-end
system, has been gaining a lot of popularity. Many publications such as [10] and [11]
have shown that this approach can compete and potentially overcome the traditional
HMM-based approach in terms of both speed and accuracy.

An end-to-end approach aims to replace all the logical blocks of the traditional system
with a single neural network. The network usually takes an audio signal directly as
input and outputs its corresponding text representation. Since the individual logical
blocks and comprehensive pre-processing are not needed in end-to-end systems, they
are significantly easier to implement and maintain than the traditional HMM-based
systems. However, training neural networks requires a large amount of data, which
is not always readily available [9].

Figure 2.2: A general architecture for an end-to-end speech recognition system [12]

2.3. Available solutions 5

2.3 Available solutions

There are many available toolkits that make the implementation of ASR systems
more manageable. They allow users to design, implement, and train their own speech
recognition models with relative ease. Some examples of such open-source projects
include Kaldi and CMUSphinx [13, 14].

One of these toolkits could be used to create a specialized ASR system designed
specifically to recognize spoken programming code. Such a system could potentially
improve the recognition accuracy of terms specific to programming languages. How-
ever, it would require a collection of spoken and written programs as training data,
which is not currently available. However, this kind of data could potentially be
collected in the future within the application if users consent to it.

Instead, a pre-trained model distributed as an online service is used in the current
implementation. Again, many such solutions exist. However, this thesis focuses its
research on Google cloud’s speech-to-text and the Web Speech API.

2.3.1 Google cloud speech-to-text

The speech-to-text service provided within the Google cloud platform is one of
the most widely used ASR services available. It uses advanced neural networks
trained on vast amounts of data that Google collects through its various products.
Thanks to this, the service provides high-accuracy transcription and a huge variety of
features, such as automatic noise reduction, model customization, speaker diarization,
punctuation, and many more.

The service provides 60 minutes of free transcription per month. The price of
additional transcription depends on whether the user agrees to Google collecting
their data. The cheapest option is charged at $0.016 per minute. Additionally, every
transcription request is rounded up to 15 seconds, which makes it less suitable for
short bits of recognition, such as voice commands [15].

2.3. Available solutions 6

2.3.2 Web Speech API

The Web Speech API is a W3C 1 supported specification that allows users to
access speech recognition directly from the browser. The speech recognition in this
API is supplied by browser vendors using online services or the ASR engine built
into the operating system. However, only Google Chrome on desktop and Android
currently provides full support for this API. When used in Chrome, the API is in
fact a simplified version of the Google cloud speech-to-text. Its use is free without
limitations, however, it contains fewer features than the paid version [17].

The features provided by the API include:

• Low-latency transcription with interim results
• Recognition results with alternatives ranked by their probabilities
• Specifying custom words to be recognized with increased priority

2.3.3 Comparison

Google cloud’s full speech-to-text provides many useful features. However, since
the voice control of the editor relies primarily on transcription accuracy and low
latency, the more advanced features are in fact unnecessary. The free version of Web
Speech API is thus sufficient for the use case of this application. Its implementation
is described in section 4.4.

1World Wide Web Consortium is the leading international standards organization for the World
Wide Web [16].

3 Formal languages
The theory of formal languages provides the tools necessary to process the outputs of
the ASR. First, a few base terms and concepts have to be defined. An alphabet Σ is a
finite, non-empty set of symbols such as {𝑎, 𝑏, 𝑐}. A string or word is a finite sequence
of symbols chosen from an alphabet, such as 𝑐𝑎𝑏. An empty string is denoted 𝜖. The
set of all strings over an alphabet Σ is denoted Σ* [18].

A language 𝐿 is a set of specific strings chosen from some Σ*, it is said that it is a
language over Σ. A couple examples of languages include English, JavaScript, and
the simple language of all words ending with 𝑏. Each language has its own alphabet
Σ.

A grammar generating a language 𝐿 is a device that produces all of the strings that
are part of 𝐿 and nothing else. The Chomsky hierarchy divides grammars and the
languages they generate into four types [19]:

• Type 0: Recursively enumerable
• Type 1: Context-sensitive
• Type 2: Context-free
• Type 3: Regular

Each type is a superset of the following, higher number type. This thesis concerns
itself only with context-free grammars, which are described in more detail in the
following section.

3.1 Context-free grammars

A grammar is defined as an ordered 4-tuple 𝐺 = (𝑁, Σ, 𝑆, 𝑃). 𝑁 is a finite set
of nonterminals and Σ is an alphabet, a finite set of terminals. Terminals make
up the words the grammar can generate, while nonterminals can be expanded
using production rules into sequences of terminals and nonterminals. One of the
nonterminals is defined to be a start symbol 𝑆.

𝑃 is a finite set of production rules 𝛼 → 𝛽, where 𝛼, 𝛽 are strings over 𝑁 ∪ Σ and 𝛼

contains at least one nonterminal. The production rules of context-free grammars
(CFGs) are further restricted to be 𝐴 → 𝛽, where 𝐴 ∈ 𝑁 . That is, the left side of
the production rule is only a single nonterminal.

7

3.2. Parsing 8

Listing 3.1: An example CFG generating arithmetic expressions [20]

G = (N, Σ , S , P)
N = {S , T}
Σ = {+, −, ∗ , / , num}
P:

S → T | T + S | T − S
T → num | num ∗ T | num / T

The process of deriving strings by applying production rules is denoted by a right
arrow ⇒. Suppose 𝐺 = (𝑁, Σ, 𝑆, 𝑃) is a CFG. Let 𝛼𝐴𝛽 be a string, where 𝐴 ∈ 𝑁

and 𝛼, 𝛽 ∈ (𝑁 ∪ Σ). Let also 𝐴 → 𝛾 be a production rule of G. Then 𝛼𝐴𝛽 =⇒
G

𝛼𝛾𝛽

is a valid derivation. If the grammar being referred to is known, the 𝐺 symbol under
the arrow can be omitted. The notation 𝛼 ⇒* 𝛽 represents zero or more derivation
steps. A leftmost derivation replaces at each step the leftmost nonterminal, whereas
a rightmost derivation replaces the rightmost nonterminal.

Listing 3.2: An example leftmost derivation using the CFG from 3.1

S ⇒ T + S ⇒ num + S ⇒ num + T
⇒ num + num / T ⇒ num + num / num

The language of a grammar 𝐺 = (𝑁, Σ, 𝑆, 𝑃) is denoted as

𝐿(𝐺) = {𝑤 ∈ Σ*|𝑆 =⇒
G

* 𝑤} (3.1)

It is said that the grammar 𝐺 generates the language 𝐿. If 𝐺 is a CFG, then 𝐿 is a
context-free language (or CFL) [18].

3.2 Parsing

A so-called parse tree represents how a given string has been derived. The leaf nodes
of the tree are labeled by terminals. When read from left to right, they give the
derived string. The internal nodes are labeled by nonterminals. For each internal
node, there must be a production such that its left side is the label of the node and
the labels of its children (from left to right) form the right side of the production.
A grammar 𝐺 is said to be ambiguous if, for any given string 𝜔, there exist two
different parse trees for how 𝜔 was derived by production rules of 𝐺 [18].

3.2. Parsing 9

Figure 3.1: A parse tree corresponding to the derivation in 3.2

Parsing is the process of recovering a parse tree for a given string. There are many
parsing methods; however, this thesis focuses on LL(k) parsing. This method of
parsing reads the input from left to right and, at each step, uses the leftmost
derivation. The 𝑘 means how many tokens ahead the parser can look when deciding
which production rule to use in a derivation. This thesis uses an LL(1) parser, which
requires its grammar to be in LL(1) form. There are necessary but not sufficient
conditions for LL(1) grammars. They have to be unambiguous, and they must have
no left-recursive production rules. That is, rules of the type 𝐴 → 𝐴𝛾, where 𝐴 ∈ 𝑁

and 𝛾 ∈ (𝑁 ∪ Σ*) for a grammar 𝐺 = (𝑁, Σ, 𝑆, 𝑃) [20].

4 Implementation
This chapter describes the implementation of a usable first version of the application.
The main focus is on source code quality, architecture, and overall application design.
This should allow for further iterative expansion and improvement of the version
finished within the scope of this thesis.

4.1 Organization

A software called git [21] is used to version the source code. New features can thus
be developed in isolated branches and are only merged into the main branch when
their code is appropriately tested. Within the branches, code changes are bundled in
so-called commits that can also be reverted when necessary. Additionally, it is possible
to switch the source code to any previous version. This helps during debugging to
narrow the cause of a bug down to a single commit.

The versioned source code is hosted at https://gitlab.com/crispjam/speechcode
by a service called Gitlab [22]. This open-source software provides a place to store the
code as well as other valuable features such as branch creation, merging of branches,
issue tracking, and many more. Gitlab also provides a platform for publicly hosting
static websites, which is used for the production version of the code editor, hosted
at https://crispjam.gitlab.io/speechcode/. The deployment is configured to
be triggered by every commit to the main branch, keeping the hosted application
up-to-date with the source code.

Another web service that helps with implementation organization is called Trello
[23]. It is used to track the development life cycle of new features, bugs, and code
refactorings. It provides a visual overview of the current priorities and incentivizes
one to break up large features into smaller tasks, making the development process
more organized.

Figure 4.1: Two of the task lists inside the project’s Trello board

10

https://gitlab.com/crispjam/speechcode
https://crispjam.gitlab.io/speechcode/

4.2. Architecture 11

4.2 Architecture

The code editor is designed to be a React-based front-end only application. React
[24] is a JavaScript library for building User Interfaces (UIs). It introduces a special
syntax called JSX, which blends HTML and JavaScript together, making the UI’s
visuals and logic more inter-connected. It also allows the programmer to create
reusable and self-contained components avoiding copying and pasting any of the
application’s code. The most significant advantage of React, however, is its efficiency.
It tracks the application state and re-renders only the parts of the UI that have
currently changed.

Additionally, Typescript [25] is used, which is a strict syntactical superset of
JavaScript. Before execution, it is transpiled into JavaScript, which means that
it runs anywhere JavaScript would. It provides a syntax for strong typing, helping to
reveal errors early in the development process. In my experience, it also makes the
source code more structured and understandable because the types convey helpful
information that would otherwise have to be explained in comments.

A few more open-source packages are used, most notably, Lexer, CodeMirror, and
Material UI [26, 27, 28]. These are all described in more detail later in the thesis.
All the packages are managed by the Node package manager npm [29].

During development, a tool called Create React App [30] is used to facilitate easy
testing and debugging. Whenever the source code changes, it efficiently creates a
new build, deploys it to a local server and opens a browser to the given port. Thanks
to this, new changes can be tested quickly without manually rebuilding the source
code.

4.3 Source structure

The application’s source code is divided into two main parts. The UI React compo-
nents define the content to be rendered and handle the user’s input. The so-called
library classes provide the underlying functionality necessary for the application.
These two parts are connected by the App class. This React component defines the
layout of its UI sub-components, handles events fired from them, and uses the library
classes to produce output for the user.

Figure 4.2: A block schema of the library part of the application

4.4. Speech recognition 12

4.4 Speech recognition

The Web Speech API is used for speech recognition and is handled by two classes. The
WebspeechApiWrapper class configures the API and abstracts its specific functionality.
Thanks to this, upon replacing the ASR core with a different provider, only this
wrapper class would have to be modified, and the rest of the application could
remain unchanged. That is, if the new ASR provides the necessary features used in
the application. The Recognizer class receives results from WebspeechApiWrapper
and passes them onto the App class. It also handles starting and stopping of the
recognition.

The Web Speech API is configured by providing a list of words whose importance in
the recognition should be emphasized. The list consists of the expected keywords
used within all parts of the application. The configuration of these keywords seems
to have improved their recognition accuracy. However, no rigorous tests have been
made to confirm this.

During recognition, as long as the user is speaking, the API continuously provides
interim results that are displayed in real-time by the RecognitionFeedback com-
ponent. User testing has shown that displaying these interim results makes the
application feel more responsive and easy to use.

Once the user pauses, the API outputs a final transcript of the entire utterance. Due
to the broader context available, the final result is usually much more accurate than
the shorter interim ones. Furthermore, the final result consists of up to 10 alternative
transcripts sorted by their probabilities. Testing showed that the results usually
consist of between 1 - 3 alternatives. These alternatives are returned to the App class,
which performs lexical analysis on them.

4.5 Lexical analysis

Lexical analysis (or tokenization) transforms the input text into lexical tokens.
An open-source package called Lexer [26] is used for this task. Its functionality
is abstracted by the JsLexer class, which also configures Lexer for the specifics
of spoken JavaScript. A list of regex rules is defined. The first two rules remove
whitespace, punctuation, and unwanted special characters from the input text. While
the rest of the rules each match a regex pattern to a given token. The order of the
rules matters, as it specifies their precedence.

4.6. Syntactical analysis 13

Listing 4.1: The first three regex rules configured for Lexer

addRule (/\s/, () => {});

addRule (/[’"‘,:!@#$%^&() ~;{}[\]]/ , () => {});

addRule (/[0 -9]+(\.[0 -9]+) ?/, (lexeme) => {

return (new JsToken (’tNumber ’, lexeme));

});

Each token consists of a type, an identifying string starting with lowercase t (e.g.
tWord) and its text content (e.g. counter). Upon calling the scan method, the Lexer
package tokenizes the given input according to the specified rules and returns the
resulting sequence of tokens to the App class.

Figure 4.3: An example of tokenization

4.6 Syntactical analysis
Many existing open-source solutions for syntactical analysis are available, such as
ANTLR, Jison, and PEG [31, 32, 33]. However, special behavior is needed during
the parsing process in the particular use case of converting spoken JavaScript into
regular JavaScript. For this reason, an entirely custom implementation is necessary.

A number of algorithms exist for parsing languages with different complexity and
various degrees of expressive power. An LL(1) top-down table-driven parser has been
chosen for its relative simplicity, which makes debugging of the overall application
more manageable. Its functionality is described in more detail in the following
subsections.

4.6.1 Grammar

The formal language of spoken JavaScript tokens is fully described by a context-
free grammar. A general Grammar class is implemented to provide the necessary
functionality that is shared for all possible CF grammars needed. The grammar
specific to JavaScript is implemented in the JsGrammar class, whose most important
part are its production rules. Each rule consists of a nonterminal on the left-hand
side and one or more productions on the right-hand side. Productions consist of
terminals, nonterminals, and special plaintext symbols. The terminals are identical
to the tokens produced by Lexer in the previous step. The plaintext symbols have

4.6. Syntactical analysis 14

no meaning in formal languages and were implemented specifically for this use case.
They are used during the parsing process itself to enrich its output with additional
text.

Listing 4.2: A sample of JavaScript grammar rules

nStatements → nStatement nStatements
| tEps i l on

nStatement → t I f nExpr nBlock

The rules in the Grammar class are described by an object of key, value pairs. Each
key is a nonterminal symbol. Each value is a list of productions, where a production
is a list of symbols. A symbol is a string starting with an identifying lowercase letter:
’n’ for nonterminals, ’t’ for terminals, and ’p’ for plaintext.

Listing 4.3: JsGrammar rules corresponding to those defined in listing 4.2

nStatements: [[’nStatement ’, ’p\n’, ’nStatements ’],

[’tEpsilon ’],

],

nStatement: [[’tIf ’, ’p (’, ’nExpr ’, ’p)’, ’nBlock ’]]

4.6.2 Parse table

Before parsing can occur, it is necessary to construct a parse table. The left header
of the table is made up of terminals and the upper header of nonterminals. Each cell
is a right side of a production corresponding to the given nonterminal, terminal pair.
The table shows which production to predict when expanding a given nonterminal
and a given terminal is the first symbol of input. To efficiently construct a parse
table, the first and follow sets of nonterminals need to be computed.

For a given nonterminal 𝐴, its first and follow sets are given by

𝐹𝑖𝑟𝑠𝑡(𝐴) = {𝑡|𝐴 ⇒* 𝑡𝜔} (4.1)

𝐹𝑜𝑙𝑙𝑜𝑤(𝐴) = {𝑡|𝑆 ⇒* 𝛼𝐴𝑡𝜔} (4.2)

Here, 𝑡 is a terminal, 𝑆 is the start symbol of the grammar, and 𝛼, 𝜔 are arbitrary
strings. Informally, 𝐹𝑖𝑟𝑠𝑡(𝐴) is the set of terminals that can appear at the beginning
of string 𝜔 produced by nonterminal 𝐴. 𝐹𝑜𝑙𝑙𝑜𝑤(𝐴) is the set of terminals that can
appear after 𝐴 in any derivation [20].

4.6. Syntactical analysis 15

Figure 4.4: A simplified example of a parse table

To construct a parse table T, one first goes through all nonterminals 𝑁 and all
terminals 𝑡 of the gramamar and sets 𝑇 [𝑁][𝑡] to be empty. Then, for each production
rule 𝑁 → 𝜔:

1. For each terminal 𝑎 ∈ 𝐹𝑖𝑟𝑠𝑡(𝜔), add 𝜔 to 𝑇 [𝑁][𝑡]

2. If 𝜖 ∈ 𝐹𝑖𝑟𝑠𝑡(𝜔) then for each terminal 𝑏 ∈ 𝐹𝑜𝑙𝑙𝑜𝑤(𝑁), add 𝜔 to 𝑇 [𝑁, 𝑏]

The parse table is implemented as an object of key, value pairs in the source code.
The key is a given nonterminal 𝑁 . The value is another object, whose key is a
terminal 𝑡 and its value is a list of symbols of production 𝜔.

4.6.3 Parsing

The two main components of the parser are a stack and the parse table. The stack is
initialized in the constructor of the Parser class to contain only the start symbol of
the given grammar. The parse table is built according to the steps explained above.
Note that during parsing, the parse tree for the given input is recovered implicitly
but is not saved as it is not necessary for the purposes of the application.

After the App class receives a list of tokens from JsLexer, it calls the parseInput
method of Parser. This method first initializes textOuput to be an empty string
and then passes through the input tokens (terminals). At each step, the parser looks
at the first terminal of input t and the top of the stack X. It then consults the parse
table T in the following way:

4.6. Syntactical analysis 16

Figure 4.5: A diagram depicting two concrete steps of parsing the phrase ’If counter less
than five’

4.7. Semantic analysis 17

1. If X is a nonterminal, then prediction = T[X][t], if prediction is empty,
the input is syntactically invalid, and a parse error is raised. Otherwise, add
prediction to the top of the stack.

2. If X is a terminal and t == X, then match, adding the text of X to the
textOutput and pop the top of the stack and input.

3. If X is a plaintext symbol, then add its text to the textOutput, the stack stays
unchanged.

If the method goes through all of the input without an error, the current version of
the stack is saved, and textOutput is returned back to the App class.

Thanks to the plaintext symbols, the grammar rules can have text in the productions
that only appears in the output and is not expected in the input. Thanks to this,
the user does not have to dictate redundant symbols such as curly braces around
code blocks.

4.7 Semantic analysis

In compilers, the next step after syntactical analysis is usually semantic analysis.
Its primary purpose is to ensure that all types in the program are valid and that
identifiers are properly declared before reference [20]. For this application, a simplified
version of semantic checking is used to enhance the user experience.

The Parser class stores an instance of SemanticContext. This class keeps track
of the currently declared identifiers and their scope (or block-level). Identifiers are
stored in a list of key, value objects, where the key is the name of the identifier, and
the value is a number identifying its block level. Whenever the Parser encounters a
nonterminal called nNewId on its stack, it enters a new state called newId. While in
this state, the parser collects tokens corresponding to the identifier in its parseInput
method. Upon encountering a token that no longer corresponds to the identifier, it
exits the special state, adding the complete identifier to textOutput and saving it
to SemanticContext along with the current block level.

A similar process takes place for identifier reference. When the Parser encounters a
nonterminal called nExistingId on its stack, it enters a new state called existingId.
The parser again collects tokens corresponding to this identifier until encountering a
token that no longer belongs there, at which point it exits the special state. Then,
SemanticContext returns its existing identifiers in a list sorted by similarity to the

4.8. Displaying results 18

text of the referencing identifier. The Parser class then chooses the most similar one
as the actually referenced identifier.

When Parser encounters a terminal called tBlock, SemanticContext increases the
block level and indentation of the resulting text. Similarly, encountering tFinishBlock
decreases block level and indentation. SemanticContext then goes through all the
existing identifiers and removes those whose block level is larger than the new value,
keeping only the identifiers for the particular scope.

This ensures that the user does not reference undeclared identifiers. It also helps to
reference the closest identifier available when the speech recognition makes a slight
error.

4.8 Displaying results

The App class goes through the speech recognition variants it receives from Recognizer.
It performs lexical, syntactical, and semantic analysis, and if it encounters a parse
error, it moves on to the following variant. If the parse finishes without errors for
any of the variants, the resulting text is inserted into a code editor, and the given
variant is marked as accepted, throwing the remaining ones away. The text of the
accepted variant is then shown in green by the RecognitionFeedback component.
On the other hand, if none of the variants is parsed without an error, nothing is
inserted into the code editor, and the text of the first variant is displayed in red by
RecognitionFeedback. The interim results given by Recognizer are shown in the
same place in gray.

4.8.1 Code editor

For the first prototypes of the application, only a simple HTML text area was used
to display the resulting code. However, it soon proved to be insufficient due to the
lack of functionality. There are many open-source libraries that implement online
code editors. This thesis focuses on three of the most popular ones: Ace, Monaco,
and CodeMirror [34, 35, 27].

Ace was one of the first popular libraries of its kind to be created. Currently, it has
a wide variety of features and supports mobile devices. However, its BSD 3 license is
not the most permissive. Furthermore, its development has since been deprioritized,
and therefore bug fixes and new features are released infrequently.

4.8. Displaying results 19

Monaco is an editor that powers the widely popular desktop application Visual
Studio Code [36]. As such, it provides even more features than Ace and has a
large community of followers and contributors. It is also licensed under the very
permissive MIT license. However, the number of features causes the package size to
be exceedingly large. Therefore, using it in the application would increase its total
size and reduce its performance. Monaco also does not support mobile devices at
all. And while mobile is not the target platform for the application, it is always
advantageous not to exclude any users if possible.

CodeMirror is a relatively new project that has been gaining a lot of popularity.
It fully supports mobile devices, is licensed under MIT, and provides the features
necessary for this application. Its design philosophy is to be as modular as possible,
which means that the programmer can choose which features to use, limiting the
package size to the bare minimum.

Figure 4.6: A screenshot of the editor

For the given use case, CodeMirror is the best solution. In the application, it is
configured to highlight code syntax, show line numbers, and keep track of the editor
history, providing the options to undo and redo changes. Handling manual changes
to the editor would require the Parser class to be able to parse written JavaScript
and transform the resulting stack to the format of spoken JavaScript. This is not
implemented in the current version, and thus manual editing of the editor is disabled.

4.8.2 Guiding the user

As is described above, code is inserted into the code editor only if the dictated
input is syntactically valid. Because of this, the user must follow the specific syntax
described by JsGrammar. Since this syntax differs from that of actual JavaScript,
even experienced programmers need guidance on what they should dictate.

At any point during the verbal programming, what the user can say is defined by all
the possible lexical tokens (or terminals) that are expected and syntactically valid in
the given context. The Parser class, therefore, implements a method that retrieves
all of these possible terminals.

4.8. Displaying results 20

The method goes through the parsing stack from top to bottom. If the current stack
symbol is not a nonterminal, it advances to the next one. If the current stack symbol
is a nonterminal, the method inspects the parse table at the row of this nonterminal
and does the following:

1. For each column (terminal) in the row: if the cell contains a production and is
therefore not empty, add the corresponding terminal to the list.

2. If any of the cells in the row contain 𝜖, the nonterminal is nullable and the
stack advances to the next symbol. Otherwise, end cycle.

The list of terminals is returned to App, which retrieves the regular expression
for each terminal from JsLexer and displays each terminal, regex pair with the
PossibleTokensUI component.

Figure 4.7: An example of possible token regexes

4.8.3 Handling errors

For the purpose of this section, an error is defined as the user saying something
and the application doing something else. One type of error is the Parser raising a
syntactical error. In this case, the user either said something that is syntactically
invalid or was misunderstood by the ASR. Either way, nothing is inserted into the
code editor, and the user has to try again.

A different kind of error occurs when the ASR misunderstands the user, but the
recognized text is syntactically correct by chance. In this case, the wrong text is
inserted into the code editor, and thus the user requires a way to undo it. The
CodeMirror editor provides undo/redo functionality out of the box. However, the
changes must also be made in Parser.

4.8. Displaying results 21

For this purpose, a class called StateHistory is implemented. It operates on a
generic type called StateType. The class keeps track of an undo stack and a redo
stack, setting both to be initially empty. In its constructor, it receives the initial
state and sets it to be the current state.

The add method sets the current state to the newly received state, adds it to the
undo stack, and resets the redo stack to be empty. The undo method first checks
the undo stack. If it is empty, the current state is returned without any change.
Otherwise, the current state is pushed to the redo stack, and a new state is popped
from the undo stack and is saved as the current state. The redo method flips the
names of the stack but otherwise works identically.

Whenever the Parser class successfully finishes a parse that results in a non-
empty textOutput, it adds its stack and other state variables to its instance of
StateHistory. The user then has the option to say either ’undo’ or ’redo’ or click
the corresponding button, and the appropriate action is triggered for the Parser
StateHistory as well as the editor.

4.8.4 Solving identifier problems

When the user wants to create an if statement, there is only one way of doing
that, by saying ’if’. The ASR might misunderstand the user and instead output ’is’.
In that case, the user has to try again. However, chances are that at least one of
the speech recognition alternatives is correct, and since there is only a single valid
option, it is accepted and all the other ones are dismissed.

However, when the user wants to create a new identifier, there is an intractable
number of valid options as an identifier can consist of any combination of English
lowercase characters. Because of this, it is likely that the first speech recognition
alternative is immediately accepted, even though it might not be correct. Additionally,
the user might want to name a variable with a word that the ASR does not know,
making it impossible to do so by using speech. To provide a partial solution to this,
a component called IdentifierUI is implemented. Whenever Parser enters newId
state, a text field appears, allowing the user to manually modify the recognized
identifier. When Parser exits the state, the value of the text field is saved as the
identifier in SemanticContext.

Referencing identifiers is partially solved by choosing the most similar one automati-
cally by SemanticContext. However, to further improve this, a selecting tool opens
up when Parser enters existingId state. The user can then manually select any of
the available identifiers.

4.9. Limitations 22

Figure 4.8: A select for choosing from existing identifiers

4.9 Limitations

As the time for implementation is not unlimited, priorities have had to be established
to finish the application. The main focus has thus been on finishing a usable first
version of the application, whose features work well together, rather than spending
substantial time with each feature to reach its perfection. For this reason, there are
a few known limitations and intentional simplifications in the current version of the
application.

First and foremost, the grammar defined in JsGrammar does not cover the whole
JavaScript language, which would be exceedingly difficult to describe by an LL(1)
grammar. The implementation, therefore, intentionally omits some of JavaScript’s
more complex features, such as classes, regular expressions, objects, asynchronous
functions, and a few more. This allows the grammar to be relatively well structured
and easy to follow, making debugging much more manageable.

There are also features that have been planned out but not implemented, one of the
largest ones being the connection between verbal and manual programming. That is,
allowing users to switch between dictating their code and writing and modifying it
manually inside the editor. This would require an additional grammar to be defined
and a way for the Parser to be able to parse both spoken and written JavaScript
and transform symbols from one grammar to the other one.

Figure 4.9: A screenshot of the application in an incompatible browser

4.9. Limitations 23

Some existing features could also be improved. For example, the identifier selector
and modifier text field work only when the user pauses their dictation at the point
of naming the identifier. If they continue with the rest of the code, the identifier
is composed automatically of the appropriate words, but the user does not get a
chance to modify it manually. This would be partially solved by allowing users to
alter the contents of the editor manually, as described above. In such a case, there
would be no need for the identifier modifier text field. The select for choosing from
existing identifiers could theoretically be embedded in the editor. However, that
would require writing an extension package for CodeMirror.

Additionally, due to the limited support for the Webspeech API, the application runs
only in Google Chrome on desktop and Android. A different ASR system would have
to be used in order to support other browsers.

5 Application evaluation
The application has been brought to a point where it is usable and somewhat self-
explanatory. It is hosted publicly, which makes it possible to share it with anyone
with internet access. As such, it is suitable for user testing.

Figure 5.1: A screenshot of the whole application

5.1 User testing
Four fellow programmers have been asked to test the application. Their feedback
proved to be indispensable as a large number of bugs were revealed that would
otherwise most likely remain undetected. There have also been a couple of main
takeaways about the app’s overall usability.

One of the main issues for some testers was that some of the features were somewhat
hidden. The undo and redo buttons were clearly visible, but it was not apparent to
a user that they could also dictate the words ’undo’ and ’redo’. This has since been
fixed by displaying these special commands in the list of possible terminals described
in section 4.8.2.

24

5.2. Possible future work 25

The other feature that some users had trouble noticing is the identifier select and
modifier text field. These only appear when the user pauses during describing the
identifier, which some users do not do, in turn never revealing that the feature exists
and that it could potentially help them. This is discussed in more detail in section
4.9.

There have also been issues with the ASR. Sometimes, a user would not know the
exact pronunciation of a particular keyword, causing the ASR to misunderstand them
repeatedly, making the user frustrated and eventually giving up. It has also been
found that the Web speech API recognition is very sensitive to the given acoustic
environment, especially surrounding noise. In a noisy environment, the ASR usually
does not recognize anything at all and if it does, the accuracy is significantly reduced.
Additionally, when exposed to an extended sequence of noise, the ASR gets into a
broken state, no longer recognizing anything until it is restarted. This has been quite
common when talking in Czech between dictating in English. The Czech confuses
the ASR’s context to a point that it can no longer recover from. The main issue with
this is that the API does not signal about such a broken state, making it impossible
to automatically restart it.

However, despite these shortcomings, all of the testers have been able to dictate
simple programs with relative ease. Most have commented positively on the overall
UI design, especially on the user guidance described in section 4.8.2.

5.2 Possible future work

Although the application has received quite positive user feedback, it is still far from
completely replacing manual programming. However, it seems to be a good starting
point to improve upon with more advanced features. As such, there are many options
for potential future work.

One of the most useful additions would be allowing users to edit the editor contents
manually, as it would solve several issues described in section 4.9. The user feedback
regarding this feature might be skewed by the fact that none of the testers were
disabled or injured. However, the application is not targeted exclusively to people
requiring full voice control. This partial manual control over the editor’s contents
would greatly benefit people with limited motor capabilities stemming from temporary
injuries or chronic conditions such as the Carpal tunnel syndrome [37].

5.2. Possible future work 26

The ASR could also be improved. It would be beneficial to do more research on
the solutions available and to test and compare them extensively. Or, given enough
time, a custom ASR system could be developed using one of the toolkits discussed
in section 2.3. A more accurate and reliable recognition system could greatly benefit
the overall usability of the application.

To accommodate the needs of more programmers, it would be necessary to expand
the grammar defined in JsGrammar to cover all of JavaScript and to add grammars
for more programming languages. The source code of the application is designed so
that implementing support for a new language should be relatively straightforward. A
new class deriving the general Grammar class would be created. Its rules would follow
the same structure as in JsGrammar but would describe the given language instead
of JavaScript. A few special cases regarding indentation and identifier reference
would have to be covered, but otherwise the new programming language should work
without problems.

Adding a back-end side to the web application would open up the possibility of
implementing a number of valuable features. Most importantly, a database could be
used to save the user’s work so that it is not lost upon leaving or refreshing the site.
This would also allow the implementation of project creation consisting of multiple
files. However, an authentication mechanism would be required so that users could
access only their own work.

Last but not least, there is a lot of room for improvement in the options for voice
control. Users could benefit from the ability to modify existing code by exclusively
using voice commands. This would mean adding support for line navigation, selection,
deletion, and more advanced features such as smart refactoring of identifiers.

Implementing all of these features and improvements would require substantial
work. It would, however, make the application a real alternative to conventional
programming.

6 Conclusion
A working prototype of a voice-driven code editor has been implemented as a web
application. It is hosted publicly at https://crispjam.gitlab.io/speechcode/
and is functional in Google Chrome on desktop and Android. Its code base is
available at https://gitlab.com/crispjam/speechcode. The thesis provides a
detailed description of the editor’s implementation.

ASR systems are discussed in terms of possible design approaches and available
solutions. Web speech API [17] has been chosen for recognition due to its unlimited
free use and a sufficient number of features. The recognized text is processed by
lexical and syntactical analysis, which match the spoken words to valid JavaScript
code. A custom implementation of a syntactic parser has been made to enable
advanced features. These include smart identifier resolution, undo/redo functionality,
and automatic indentation.

An open-source library called CodeMirror [27] is used to display the output. It
provides a code editor with line numbers, code highlighting, and more. The rest of
the features are wrapped by a User Interface framework called React [24].

The application has been tested by four users, who have provided mostly positive
feedback. All of them were able to dictate simple programs with relative ease and
most commented positively on the editor’s UI and overall usability.

By thoroughly describing the editor’s implementation and making its codebase open-
source, the thesis should serve as a foundation for further development in this area
of accesibility. Thus, it should help make programming more inclusive for a wide
variety of users.

27

https://crispjam.gitlab.io/speechcode/
https://gitlab.com/crispjam/speechcode

Bibliography
1. Flaticon [online] [visited on 2022-05-10]. Available from: https://www.flaticon.

com/.
2. World report on disability 2011 [online] [visited on 2022-05-10]. Available from:

https://apps.who.int/iris/handle/10665/44575.
3. UN Convention on the Rights of Persons with Disabilities [online] [visited

on 2022-05-10]. Available from: https://www.un.org/development/desa/
disabilities/.

4. HENRY, Shawn Lawton; ABOU-ZAHRA, Shadi; BREWER, Judy. The Role
of Accessibility in a Universal Web. In: Proceedings of the 11th Web for All
Conference. Seoul, Korea: Association for Computing Machinery, 2014. W4A
’14.

5. Code-by-voice [online] [visited on 2022-05-10]. Available from: https://github.
com/simianhacker/code-by-voice.

6. Dictation-toolbox [online] [visited on 2022-05-10]. Available from: https://
github.com/dictation-toolbox.

7. Serenade [online] [visited on 2022-05-10]. Available from: https://serenade.
ai/.

8. RABINER, Lawrence; SCHAFER, Ronald. Introduction to Digital Speech Pro-
cessing. Lightning Source Incorporated, 2007. Foundations and Trends in Tech-
nology.

9. JIRKOVSKÝ, Adam. Rozpoznávání řeči s dostupnými internetovými moduly.
2021. MA thesis. České vysoké učení technické v Praze, Fakulta elektrotechnická.

10. HANNUN, Awni; CASE, Carl et al. Deep Speech: Scaling up end-to-end speech
recognition. 2014.

11. GRAVES, Alex; JAITLY, Navdeep. Towards End-To-End Speech Recognition
with Recurrent Neural Networks. In: Proceedings of the 31st International
Conference on Machine Learning. PMLR, 2014.

12. VAZHENINA, Daria; MARKOV, Konstantin. End-to-End Noisy Speech Reco-
gnition Using Fourier and Hilbert Spectrum Features. Electronics. 2020, roč. 9,
p. 1157.

13. Kaldi [online] [visited on 2022-05-10]. Available from: https://kaldi-asr.
org/doc/about.html.

14. CMUSphinx [online] [visited on 2022-05-10]. Available from: https://cmusphinx.
github.io/wiki/about/.

15. Google Cloud - Speech-to-Text [online] [visited on 2022-05-10]. Available from:
https://cloud.google.com/speech-to-text.

16. W3c [online] [visited on 2022-05-10]. Available from: https://www.w3.org/.
17. Using the Web Speech API [online] [visited on 2022-05-10]. Available from:

https://mzl.la/3KKFluk.
18. HOPCROFT, John; MOTWANI, Rajeev; ULLMAN, Jeffrey. Introduction to

Automata Theory, Languages, and Computation. Pearson/Addison Wesley, 2007.

28

https://www.flaticon.com/
https://www.flaticon.com/
https://apps.who.int/iris/handle/10665/44575
https://www.un.org/development/desa/disabilities/
https://www.un.org/development/desa/disabilities/
https://github.com/simianhacker/code-by-voice
https://github.com/simianhacker/code-by-voice
https://github.com/dictation-toolbox
https://github.com/dictation-toolbox
https://serenade.ai/
https://serenade.ai/
https://kaldi-asr.org/doc/about.html
https://kaldi-asr.org/doc/about.html
https://cmusphinx.github.io/wiki/about/
https://cmusphinx.github.io/wiki/about/
https://cloud.google.com/speech-to-text
https://www.w3.org/
https://mzl.la/3KKFluk

Bibliography 29

19. CHOMSKY, Noam. On certain formal properties of grammars. Information
and Control. 1959, roč. 2, č. 2, pp. 137–167.

20. SCHWARZ, Keith. Compilers [online] [visited on 2022-05-10]. Available from:
https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/.

21. Git [online] [visited on 2022-05-10]. Available from: https://git-scm.com/.
22. Gitlab [online] [visited on 2022-05-10]. Available from: https://gitlab.com/.
23. Trello [online] [visited on 2022-05-10]. Available from: https://trello.com/en.
24. React [online] [visited on 2022-05-10]. Available from: https://reactjs.org/.
25. TypeScript [online] [visited on 2022-05-10]. Available from: https://typescriptlang.

org/.
26. Lexer [online] [visited on 2022-05-10]. Available from: https://github.com/

aaditmshah/lexer.
27. CodeMirror [online] [visited on 2022-05-10]. Available from: https://codemirror.

net/6/.
28. Material UI [online] [visited on 2022-05-10]. Available from: https://mui.com/.
29. Npm [online] [visited on 2022-05-10]. Available from: https://www.npmjs.com/.
30. Create React App [online] [visited on 2022-05-10]. Available from: https://

create-react-app.dev/.
31. ANTLR [online] [visited on 2022-05-10]. Available from: https://antlr.org/.
32. Jison [online] [visited on 2022-05-10]. Available from: https://github.com/

zaach/jison.
33. PEG [online] [visited on 2022-05-10]. Available from: https://pegjs.org/.
34. Ace [online] [visited on 2022-05-10]. Available from: https://ace.c9.io/.
35. Monaco [online] [visited on 2022-05-10]. Available from: https://microsoft.

github.io/monaco-editor/.
36. Visual studio code [online] [visited on 2022-05-10]. Available from: https :

//code.visualstudio.com/.
37. Carpal tunnel syndrome [online] [visited on 2022-05-10]. Available from: https:

//bit.ly/39tsWhc.

https://web.stanford.edu/class/archive/cs/cs143/cs143.1128/
https://git-scm.com/
https://gitlab.com/
https://trello.com/en
https://reactjs.org/
https://typescriptlang.org/
https://typescriptlang.org/
https://github.com/aaditmshah/lexer
https://github.com/aaditmshah/lexer
https://codemirror.net/6/
https://codemirror.net/6/
https://mui.com/
https://www.npmjs.com/
https://create-react-app.dev/
https://create-react-app.dev/
https://antlr.org/
https://github.com/zaach/jison
https://github.com/zaach/jison
https://pegjs.org/
https://ace.c9.io/
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://bit.ly/39tsWhc
https://bit.ly/39tsWhc

	Introduction
	Automatic speech recognition
	HMM-based recognition systems
	Feature analysis
	Pattern classification

	End-to-end systems
	Available solutions
	Google cloud speech-to-text
	Web Speech API
	Comparison

	Formal languages
	Context-free grammars
	Parsing

	Implementation
	Organization
	Architecture
	Source structure
	Speech recognition
	Lexical analysis
	Syntactical analysis
	Grammar
	Parse table
	Parsing

	Semantic analysis
	Displaying results
	Code editor
	Guiding the user
	Handling errors
	Solving identifier problems

	Limitations

	Application evaluation
	User testing
	Possible future work

	Conclusion
	Bibliography

