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Abstract
The aim of this work is to empirically

demonstrate that a neural network control
policy learned on a data-driven nonlin-
ear dynamical system may achieve better
simulation-to-real world transfer than a
control policy learned on a state-of-the-
art physics engine MuJoCo. Both control
policies are at first evaluated in a simula-
tion environment they were trained in and
next on a physical platform. In addition,
we attempt to learn a robust policy able
to control nonlinear dynamics system on
random curved trajectories with close to
human driver performance.

Experiments show that the perfor-
mance of the policy learned on the data-
driven model suffers significantly less from
transfer to the real world than that of
the policy learned on the MuJoCo engine.
Deployment of learned policies on a val-
idation set of trajectories demonstrates
high close to human driver performance
and a decent ability to generalize.

Code is freely available on github
https://github.com/barinalex/
thesis.

Keywords: data-driven model, control
policy, reinforcement learning

Supervisor: Ing. Teymur Azayev

Abstrakt
Cílem teto práce je empiricky demon-

strovat, že založená na neuronových si-
tích řidicí strategie naučena na datově
získaném nelineárním dynamickém sys-
tému může dosahnout lepšího přenosu ze
simulace do skutečného světa néž řidicí
strategie naučena na state-of-the-art fyzi-
kálním motoru MuJoCo. Obě strategie
nejprv ohodnocene ve simulačním pro-
středí, na kterém byli trénovani a pak na
fyzické platformě. Kromě toho se pokou-
šíme naučit robustní strategije schopnou
kontrolovat nelineární dynamický system
na náhodných zakřivených trajektoriích s
blízkým ke lidskému řidiču výkonem.

Pokusy ukazují, že výkon strategie nau-
čene na datově získanem modelu trpí vy-
znamně míň za přechodu do skutečného
světa néž strategie naučena na MuJoCo
enginu. Nasazení naučenych strategií na
validační sadu trajektorií demonstruje vy-
soký blízký ke lidskému řidiču výkon a
slušnou schopnost ke generalizace.

Kód je zdarma přistupný na githubu
https://github.com/barinalex/
thesis.

Klíčová slova: datově získaný model,
řídicí strategie, zpětnovazební učení

Překlad názvu: Učení řídicího
algoritmu na datově získaném modelu
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Chapter 1
Introduction

1.1 Motivation

Modern Deep Reinforcement Learning (RL) algorithms allow us to achieve
human-level performance in various domains. Control of dynamic systems is
one of those.

Despite recent successful applications of RL in the field of nonlinear dy-
namical systems, e.g., [1], [2], it is still a novelty. Hence, more research and
experiments in different areas where autonomous control might be a good fit
are needed.

There is a challenging problem with RL, though. In order to learn a
useful policy, RL requires a lot of agent-environment interactions. Often
these interactions could not be obtained directly from the real platform. At
the early stage of policy learning, the risk of damaging the robot or even
the environment is quite high. Therefore, we are limited to learning in a
simulation environment, which has its disadvantages. The main problem
with this approach is a simulation-to-real world transfer at the deployment
stage. Physics engines that are broadly used to simulate your specific physical
platform may subtly differ from reality and even significantly differ in some
edge cases. When deploying the learned policy in the real world, these
differences might rapidly lead to failure.

One method to solve this problem is to manually create a highly accurate
model of your physical platform. Although, this solution requires a lot of
time when dealing with complicated robotic systems.

Another solution is to train a data-driven model that would approximate
the dynamics of your platform. In the following chapters, the approach to
utilizing Neural Networks for this purpose is described in detail.

1.2 Goals

In this work, a remote control car following a trajectory in a 2-dimensional
space is considered. A trajectory is simply a set of points that are called
waypoints. The trajectory following the task is demonstrated in the figure
1.1. Red points depict what an agent sees, and green is invisible to the agent,

1



1. Introduction .....................................
where the agent is an entity that makes decisions or, in other words, acts.
As the car moves forward, the visible horizon changes, but the number of
waypoints visible to the agent always stays the same. The ultimate goal of the
agent is to close as many waypoints as possible while maintaining a minimal
deviation from the trajectory, which is to be defined later on.

Figure 1.1: Schema of a car following a trajectory that is defined as a set of
waypoints (red and green points). Red points form the visible horizon for the
agent.

Our final goal is to deploy control policies learned on the MuJoCo engine
and on the data-driven model-based engine (the data-driven model-based
engine farther in the text is referred to as a custom engine) in the real
world and analyze the performance of both policies. In order to accomplish
that, we first need to learn the data-driven model and prepare environments
for Reinforcement Learning.

Model

Engine

Δvt,Δωt st+1

Environment

at

ot+1

rt+1

doneot

Figure 1.2: The schema of an environment for a policy learning agent-
environment loop. The environment includes an engine and a model. The
model predicts velocity changes. The engine computes the next timestamp state.
The environment returns observation, reward, and a binary variable representing
the end of an episode.

The relation between a model, an engine, and an environment is shown in
the figure 1.2. The environment is used in an agent-environment interaction
loop to learn a policy. Given actions, it provides us with observations, rewards,

2



....................................... 1.3. Outline

and the state of an episode depicted as ’done’ - if done is true, an episode
has ended. The iterative process of feeding the environment or a stand-alone
engine with actions is called a simulation. The engine is a part of the
environment, and it computes the next state given actions. The model is an
internal part of our custom engine, and it is responsible for velocity change
computations. The model is a neural network trained on the data gathered
from the real platform. For clarification, considering the schema 1.2 model
would compute velocity changes given new actions that are throttle and
steering and observations that are linear and angular velocities, whereas the
engine computes new velocities based on changes provided by the model and
a new position and orientation at the timestep t + 1 given new velocities.

The main focus of this work is on the development of the data-driven model
that will outperform the MuJoCo engine for our specific physical platform.
Different neural network architectures are trained, tuned, and compared for
the task. The base model is a Multiple Layer Perceptron (MLP). A more
advanced model is a Temporal Convolutional Neural Network (TCNN).

The main contribution of this work lies in empirical confirmation of the
hypothesis that neural networks approximating nonlinear dynamics could
provide better simulation-to-real world transfer than the state-of-the-art
MuJoCo physics engine.

The secondary contribution is a demonstration of a close to the human
performance of a control policy learned using Reinforcement Learning on
general trajectories of various difficulties. We also contribute by developing
pipelines for the data-driven model training and the control policy learning
for the real physical platform. Code was made freely available.

1.3 Outline

In the following chapter, we briefly review published papers related to our prob-
lem. In the preliminaries chapter, we refresh our knowledge of Reinforcement
Learning and the mathematics behind it - Markov Decision Processes.The
hardware chapter describes the physical platform we are gathering data from
and running real-world experiments on. We continue with this work’s task
definition, description of our approach to generating random trajectories,
and definition of an environment used for learning a control policy. In the
data-driven model chapter, our approach to approximate nonlinear dynamics
with neural networks is described in detail, from data gathering to model ar-
chitecture. The next chapter contains a description of conducted experiments
and the results we have got. In the last two chapters, we discuss the results
and experiments and make the final conclusion.

3



4



Chapter 2
Related work

As an introduction to the problem of data-driven modeling of nonlinear
systems, we could refer to the paper [3]. It provides a good intuition for an
engineer approaching a novel problem along with practical knowledge such as
experiment design.

In the second work in our list [4] authors address the problem of learning
a dynamics model and then using it as a predictive model for an agent in
a model-based Reinforcement Learning. Experiments demonstrate that the
task of navigating a race car could be solved using their approach.

The work [1] describes learning of a control policy using Reinforcement
Learning for a high-speed drifting. The setup of the problem in this work
is quite similar to ours but more restricted. Authors formulate drift control
as a trajectory following task and consider the case of high-speed 80-128
km/h drifting on predefined maps. For learning a control policy, they use
model-free Reinforcement learning, and this approach delivers promising
results. Although, tests are conducted only in a simulation, never in the real
world. Therefore, the usability of the used approach is questionable for the
real-world use case.

One more work that demonstrates the successes of a control policy Deep
Reinforcement Learning is [2]. The approach is again different from ours in
that the learning is conducted in a physics simulation without any prior data
collection from the real platform. Authors aim to learn a control policy able
to generalize well to changing conditions of the real world and robust to a
sim-to-real transfer by varying physics engine parameters during the learning
process. Their results show state-of-the-art performance for legged robots.

Both of the mentioned above works demonstrate the successful usage of
Deep Reinforcement Learning in the field of robot autonomous control. Their
methods, though, do not include an approximation of the real platform
dynamics by learning a data-driven model.

A new algorithm capable of handling nonlinear dynamics is presented in
the work [5]. In this work, a data-driven model approach to approximate
nonlinear dynamics with neural networks is researched. The control algorithm
used in this work is a model predictive path integral (MPPI) control. Despite
the demonstrated successful experiments, the scope of the training was very
narrow, with only one simple race track. Therefore, more experiments with

5



2. Related work.....................................
nonlinear dynamics approximation using neural networks are required.

Another successful case of neural networks approximating nonlinear dy-
namics is demonstrated in the work [6]. The aim of this work is to utilize
neural networks in model predictive control. The results show that the control
performance based on neural networks is similar to manually modeled robot
dynamics, which is much more time-consuming. This work demonstrates the
great potential of data-driven models for nonlinear dynamics approximation.

6



Chapter 3
Preliminaries

The aim of the chapter is to briefly refresh the reader’s knowledge, mainly of
Reinforcement Learning, and to introduce some mathematical notations that
are going to be used later on.

3.1 Markov Decision Processes (MDP)

Before we dive into Reinforcement Learning, we should understand Markov
Decision Processes. MDP allows us to mathematically formalize sequential
decision-making. This formalization is a basis for all Reinforcement Learning
problems.

Since we are dealing with decision-making, there should be some entity that
makes decisions. In MDP and RL, this entity is called an agent. The rules
by which the agent makes its decisions in each particular state are called a
policy. The goal of MDP then is to optimize the policy for the most beneficial
behavior.

In a classical MDP it is assumed that all states the agent could be in are
fully observable. Mathematically MDP is defined as a set

M = {S, A, T, r, γ}

where S, A are set of states, actions respectively. Transition operator

Ts‘,s,a = p(st+1 = s′|st = s, at = a)

defines the probability distribution of transition between states given an
action. Reward for taking an action at in a state st is defined by a reward
function

r : S ×A→ R

as r(st, at). And as a mean to distinguish immediate rewards from distant
rewards discount factor γ ∈ [0, 1] is used.

A policy in MDP is a function that maps states to actions probability
distribution in a stochastic case

π : S ×A→ [0, 1]d (3.1)

7



3. Preliminaries .....................................
where d is a dimension of the action space.

Closer formalization of the problem addressed in this work is achieved by
a Partially Observed MDP.

3.2 Partially observed MDP (POMDP)

In the Partially Observed Markov Decision Process, the underlying assumption
is that the transition between states is defined as an MDP, but for the agent,
states are not fully observable. What an agent is able to observe is defined
by a probability distribution called emission probability

E = p(ot|st)

where ot, st are observation and underlying state at the time t. Figure 3.1
depicts a schema of POMDP.

Figure 3.1: The transition schema of a Partially Observed MDP.

Formally POMDP is defined as a set

M = {S, A, O, T, E , r, γ}

where S, A, T , r, γ are the same as in MDP. O is a set of observations.
The goal for an agent then is to maximize an expected total discounted

reward
E[Gt=0]

where
Gt = Σ∞

k=0γkrt+k+1

is a total discounted reward from timestep t.
The function that maps observations to actions probability distribution is

called a policy
π : O ×A→ [0, 1]d (3.2)

and it represents a probability of an action a given an observation o

π(a|o) = p(at = a|ot = o)

3.3 Reinforcement learning (RL)

Reinforcement Learning is a framework that allows us to learn the policy
function 3.2. There are many kinds of RL. We will focus on the on-policy
actor-critic algorithm that is used in this work.

8



.............................. 3.3. Reinforcement learning (RL)

The on-policy learning simply means that during the learning process, the
agent utilizes the same policy it intends to learn. That is, it starts with
the randomly (or in a different way) initialized policy, and at each following
iteration of the learning process, it uses the updated policy from the previous
step.

The actor-critic algorithm includes an actor that decides what action to
take, which is just another name for a policy function, and a critic that
reports to an agent how good his decision was. The critic also has its function
representation, that is called a value function, and is defined as follows:

V (o) = E[Gt|ot = o]

The optimization objective in the RL is to maximize the expected sum of
discounted rewards:

L(θ) = E[Gt=0] (3.3)

One of the subfields of the Reinforcement Learning that solves the opti-
mization problem is Deep Reinforcement Learning.

3.3.1 Deep Reinforcement Learning

Agent

Environment
st->st+1


action
a


observation

o


reward
r

Figure 3.2: Agent-Environment interaction loop.

Deep Reinforcement Learning is a method to approximate both the policy
function and the value function with neural networks.

The approximated policy is defined by it’s parameters θ that are equivalent
with neural network weights:

πθ : O ×A→ [0, 1]d

Training of these neural networks is a supervised problem. Training data
are obtained in the agent-environment interaction loop shown in the figure
3.2. One of the methods to train the policy neural network is called policy
gradients.

3.3.2 Policy gradients

Policy gradient methods allow us to learn policy parameters θ, or using neural
networks terminology - weights, by utilizing gradient ascent. The learning

9



3. Preliminaries .....................................
process is iterative. At the first iteration, the weights of the neural network
are initialized randomly. Then we use our network as a policy in an agent-
environment interaction loop to gather new data. This approach is called
on-policy learning as opposed to off-policy learning when actions are not
chosen by the policy that is being trained but by another stand-alone function.
After each episode, or rather a batch of episodes, neural network weights are
updated by a backpropagation algorithm. Based on the discounted sum of
rewards per episode, we compute gradients that are going to increase the
probability of actions that led to positive rewards and decrease the probability
of actions that led to negative rewards.

In order to estimate the gradient of the RL objective 3.3 we need to do
some derivation. First, let us denote the sequence of decisions made by the
agent given observations and gained rewards called:

τ ∼ o1, a1, r1, o2, a2, r2, ...

then the objective is derived as follows:

L(θ) = Eπ[r(τ)]

=
∫
▽π(τ)r(τ)dτ

=
∫

π(τ)▽ log π(τ)r(τdτ)

= Eπ[▽ log π(τ)r(τ)]

If we make the transition back from the τ notation for the sequence and
define an advantage function, which just tells us the difference between the
sum of rewards we got and expected as follows:

At = Gt − V (o)

then we get a so-called ’vanilla’ policy gradient objective that is defined as
follows

L(θ) = Et[logπθ(atot)At]

The algorithm for policy parameters update is then:
for i in n_episodes:

sample o1, a1, r1, ...oT , aT , rT from πθ(at|ot)
compute ▽θL(θ) =

∑T
t=1[▽θlogπθ(at|ot)At]

update θ ← θ + α▽θ L(θ)
According to [7], using basic policy gradient loss leads to enormous policy

updates. In the same paper, an algorithm that deals with this problem was
introduced.

10



.............................. 3.3. Reinforcement learning (RL)

3.3.3 Proximal Policy Optimization (PPO)

Proximal Policy Optimization [7] is one of the Reinforcement Learning algo-
rithms that uses policy gradients.

In order to overcome large policy updates the PPO algorithm improves on
Trust Region Methods [8] and proposes a novel surrogate objective:

LCLIP
t (θ) = Et[min( πθ(at|ot)

πθold
(at|ot)

At, clip( πθ(at|ot)
πθold

(at|ot)
, 1− ϵ, 1 + ϵ, )At)]

where ϵ is a hyperparameter, for example, 0.2, the motivation for this loss
function is well described in [7].

The final objective in PPO:

LP P O
t (θ) = Et[LCLIP

t (θ)− c1LV F
t (θ) + c2S[πθ](st)]

where c1, c2 are coefficients, the LV F
t is a squared-error for the value function,

S is an entropy bonus [7].
According to [7], PPO outperforms state-of-the-art policy gradient methods

while preserving a decent sample efficiency and simplicity of the algorithm.
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Chapter 4
Hardware

4.1 Remote control buggy platform

The base for our physical platform is a remote control car shown in the figure
4.1. The scheme of the onboard hardware is depicted in the figure 4.2.

Figure 4.1: Picture of the remote control buggy platform.

The full specification of this platform can be found here [9]. The most
important parameters are length - 273mm, weight - 1625g, maximal speed -
16.6 m/s (actually achieved max speed during data gathering is about 8-10
m/s), battery - Li-Po 7.4V 2200mAh, also originally the platform was 4WD,
but we downgraded it to rear 2WD.

4.2 Single Board Computer

Our purpose for the hardware is to run an AI workload with low power
consumption and reasonable cost. NVIDIA Jetson Nano [10] satisfies our
requirements. The computer module size is 70 mm x 45mm module, CPU -
Quad-core ARM A57, RAM - 4GB LPDDR4 64-bit, 4x USB 3 ports, onboard
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3S LIPO switch ESC


PCA9685


Receiver

Jetson
Nano


RS265

~12V

PWM
12V power cable


USB cable

I2C


5V power cable


Hardware scheme

DC-DC converter


~5V

Figure 4.2: Hardware scheme of the remote control buggy platform.

GPU - 128 cores. Offers high-performance computing at 5-10 watts.

4.3 Localization

For our goals, we needed a sensor that provided us with linear and angular
velocities along with position and orientation that are going to be used as a
definition of a ground truth trajectory. High precision is not required since we
attempt to provide a good enough control policy for a rather cheap platform.
Low cost, low power consumption, and off-the-shelf usage are three other
desirable features. Intel Realsense tracking camera T 265 [11] fitted our
requirements quite well. It provided us with reasonable performance ready-to-
use V-SLAM (Visual Simultaneous Localization and Mapping) algorithm for
a low cost. Based on our own early-stage experiments, we can state that T 265
suffers from vibrations, and its performance outdoors is not acceptable, but
since all our included in this work experiments are conducted indoors, and on
a flat surface, its usage is well justified. Overtime drift of a position derived
from velocities does not bother us since we are working with short-term
trajectories mostly, and it is not a goal of this work to provide a control policy
that will be capable of autonomous driving for a long period of time.

4.4 Teleoperation

In order to manually drive the platform, Xbox 360 joystick was used with a
Microsoft Xbox 360 Wireless Receiver for Windows [12]. Receiving a range
up to 10 meters was more than enough for indoor driving. Regarding con-
trollers, the requirement was to have a button to switch between autonomous
and manual driving along with controllers for throttle and steering. All
requirements were satisfied by a chosen joystick.

14



Chapter 5
Control Policy

5.1 Task definition

In this work, we attempt to learn a control policy for a car following a
trajectory. A control policy maps observations to actions and is defined as
follows:

π : O ×A→ [0, 1]

Learning a control policy means to optimize it’s parameters θ for a maximal
expected reward gain E[Gt=0].

Observation and action spaces are defined in the following sections, but let
us define the input and an output of the control policy.

Input is a 23-dimensional vector

⃗input = [vx, vy, ωz, w{1}
x , w{1}

y , ..., w{10}
x , w{10}

y ,

where w
{i}
x , w

{i}
y are x, y components of a waypoint i in a car frame.

Output is a 2-dimensional vector

⃗output = [ax, ay]

where ax is a throttle and ay is a steering action.
We are to optimize the expected sum of discounted rewards

E[Σ∞
t=0γtrt]

where the basic reward function is defined as follows:

rt =
{

1 if a waypoint was closed at the beginning of the timestep t
0 otherwise

For the purposes of learning a control policy, we need to define and imple-
ment a trajectory generator and an environment that includes an engine, a
rewards function, and a way to update the trajectory based on the agent’s
position. Once all parts are ready, the learning process could be conducted
by a Reinforcement Learning algorithm utilizing an agent-environment inter-
action loop 3.2. The algorithm of choice in this work is the Proximal Policy
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5. Control Policy ....................................
Optimization [7] briefly described in the preliminaries chapter. We use the
ready-to-use implementation of PPO by the Stable Baselines 3 [13].

But before we dive into details of trajectories generation and environment,
let us state one important assumption we make when using Reinforcement
Learning.

In this work, we assume that the decision process we are trying to learn a
control policy for is a Markov Decision Process.

A decision process is Markov if the Markov Property holds. The Markov
Property is a simple claim that the next state depends only on the current
state. Mathematically speaking:

P (st+1|st, st−1, ..., s0) = P (st+1|st)

In fact, the underlying decision process in our case is a Partially Observed
Markov Decision Process defined in the section 3.2. Particular unobserved
states are described in the following section.

5.2 Trajectories

Since the problem we consider is formulated as a car following a trajectory, we
need to generate these trajectories somehow as well as have a way to feed the
trajectory to the agent during the episode. These two purposes are satisfied
by utilizing a trajectory generator and a waypoint closing logic.

5.2.1 Trajectory generator

Figure 5.1: Randomly generated trajectories. On the left side, the example of
5 training trajectories is depicted. On the right, the whole training dataset is
shown.

For random trajectories generation, we use simplex noise [14]. An example
of 1000 generated trajectories with 100 waypoints each is presented in the
figure 5.1. As we can see, generated trajectories are quite diverse. On the
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.....................................5.3. Environment

left side, we present five random trajectories with 100 waypoints each. What
could not be seen in these pictures is that the distance between waypoints is
longer on the straight sections of trajectories than that on the corners. In
other words, waypoints are not uniformly distributed along a trajectory.

5.2.2 Waypoint closing logic

Negative determinant Positive determinant

Figure 5.2: The logic to detect closed waypoint using a sign of a determinant.
The red vector is a ’left’ normal to the trajectory. The blue vector is a subtraction
between the next waypoint and the position of the car. The determinant which
sign is depicted in the figure takes as a first argument the red vector and as a
second the blue vector.

The waypoint is considered closed when the sign of a determinant that takes
as a first argument a subtraction between the next waypoint and the position
of the car, and as a second argument, the ’left’ normal to the trajectory is
negative. That is, the condition for the waypoints to be closed:

det(n⃗x,y, (p⃗x,y − w⃗{1}
x,y )) > 0

where n⃗x,y is the ’left’ normal to the trajectory.
If the next waypoint w⃗{1} was passed by the agent, it is discarded, and

one more waypoint is added to the end of a waypoints vector. This way, the
waypoint vector preserves dimensionality. You can think of it as a fixed size
window that moves only forward along the trajectory line. For programmers,
a better example would be a queue with a limited size.

5.3 Environment

As was previously mentioned, training data for Reinforcement learning are
obtained in an agent-environment interaction loop (figure 3.2). We implement
a custom environment based on the OpenAI Gym interface [15].

The environment is defined by its action space, state space, transition
function between states, and reward function.

Action space has 2 dimensions - throttle ∈ [−1, 1] and steering ∈ [−1, 1].

17



5. Control Policy ....................................
State-space has 23 dimensions, and these are linear velocity along x and

y axes in a car frame, angular velocity, ten waypoints in a car frame, and
each waypoint is a 2-dimensional vector [x, y]. Velocities are fetched from an
engine, and waypoints are updated by a waypoint closing logic.

The transition function is represented by two components: an engine and
the waypoint closing logic. There are two types of engines we use, data-driven
model-based custom engine 6.1 and MuJoCo engine 5.3.2. How the engine is
incorporated into the environment was shown on the schema 1.2.

The rewards function implementation is trivial. The design, though, is a
hard part. The design of a reward function in Reinforcement Learning is
called reward shaping, and it deserves its own paragraph.

5.3.1 Rewards

The goal of reward shaping is to help an agent learn the desired behavior by
providing it with meaningful rewards. There is a danger of intervening in
the learning process with custom rewards too much and causing the agent to
learn sub-optimal behavior. It is a good practice to start with simple rewards,
and in case they do not do their job, increase complexity. Our definition of a
reward is as simple as it gets. It is binary:

rt =
{

1 if a waypoint was closed at the beginning of the timestep t
0 otherwise

(5.1)
Since we want our agent to not only run past the waypoints but also to

closely follow the trajectory, the penalty for a deviation from the trajectory
was introduced. At each step, we penalized our agent by subtracting from the
reward the value of 0.01 ∗ d where d is the distance from the current position
of the agent to the trajectory. This penalty, though, did not improve the
agent’s performance and was eliminated during the experiments.

5.3.2 Physics engine MuJoCo

As a state-of-the-art physics engine MuJoCo [16] was chosen to facilitate the
research thanks to its fast, accurate, freely available simulation. MuJoCo, in
fact, was developed to facilitate model-based control - exactly what we are
looking for. According to [17] MuJoCo performs best compared to Bullet and
other engines on robotics-related tasks.

MuSHR model [18] resembling our RC buggy was tuned and used to
simulate the real platform behavior.

In order to achieve close to the real platform behavior in a simulation
environment, parameters in a .xml MuSHR model configuration file such
as friction, kv, forcerange for actuator were manually tuned. To evaluate
parameters, a few 1-second trajectories from real-world episodes were sampled,
and the ground truth trajectory was compared to the resulting trajectory in
a simulation after taking the same actions as in the real world. In the figure
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.....................................5.3. Environment

Figure 5.3: Comparison of 1-second ground truth trajectories from the real world
episode (blue color) to trajectory from the MuJoCo-based simulation episode.
During the simulation episode, the MuJoCo engine was fed with the sequential
of actions from the real world episode.

5.3 you can see the result of our attempt to tune parameters, so they fit the
reality as close as possible. The blue line is the ground truth trajectory, and
the red line is the trajectory of the MuJoCo engine. The mean squared error
for these five samples is 0.0370. The mean squared error between trajectories
is defined as follows:

mse(p⃗, q⃗) = 1/N
N∑

i=1
(p⃗i − q⃗i)2 (5.2)

where p⃗, q⃗ are vectors defining corresponding trajectories.

5.3.3 Custom Engine

In accordance to the schema 1.2 engine provided with the model output δv⃗
and δω⃗ updates velocities, position and orientation of the simulated platform.
Linear and angular velocities for the next timestep computed using simple
equations:

⃗vt+1 = v⃗t + δv⃗t

⃗ωt+1 = ω⃗t + δω⃗t

Position and orientation updates for the simulated buggy platform depend
on a time interval between timesteps that we define as τ = 1/100s. Then
computations for the position vector

p⃗ = [px, py, pz]

and orientation vector in Euler angles

u⃗ = [ux, uy, uz]

at a time step t + 1 are
⃗pt+1 = p⃗t + v⃗t ∗ τ
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5. Control Policy ....................................

Figure 5.4: The schema represents one step of a simulation loop of a data-driven
model-based engine. The observations buffer ensures the history of observations
for corresponding models.

⃗ut+1 = u⃗t + ω⃗t ∗ τ

And since we are in a 2-dimensional space, pz, ux, uy = 0.
The repeated process of feeding the engine with actions at every time step

of an episode and state updates is called a simulation. Components of a
simulation loop are presented in the figure 5.4. Observations buffer is utilized
when the history of observations as an input for the model is used.
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Chapter 6
Data driven Model

6.1 Mathematical formulation

As we have shown on the environment schema 1.2 model is an internal part
of an engine that computes state changes. In our case the output of a model
is a 3-dimensional vector

o⃗ut = [δvx, δvy, δωz]

where
δv⃗ = ⃗vt+1 − v⃗t

is a delta linear velocity
δω⃗ = ⃗ωt+1 − ω⃗t

is a delta angular velocity
v⃗ = [vx, vy, vz]
ω⃗ = [ωx, ωy, ωz]

are linear and angular velocities respectively. Since we consider 2-dimensional
space vz, ωx, ωy = 0.

That is, our model computes how velocities change at the time step t + 1
given the state

⃗state = [vx, vy, ωz]
and actions taken at the time step t

a⃗ = [ax, ay]

where ax is a throttle and ay is a steering action. Hence our basic model
input is defined as a 5-dimensional vector

i⃗n = [vx, vy, ωz, ax, ay]

Depending on a model architecture, it might take as an input k > 0 previous
observations stacked together. In this case input is a 5 ∗ (k + 1)-dimensional
vector

i⃗n = [vt−k
x , vt−k

y , ωt−k
z , at−k

x , at−k
y , ..., vt

x, vt
y, ωt

z, at
x, at

y]
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6. Data driven Model ..................................
6.2 Data gathering

Model training is a Supervised Learning problem. Hence we start with
collecting labeled data. This is not an easy task, though. The outcome of the
training process is highly dependent on the quality of data. But a manual
data gathering process is subjected to human biases and limitations. These
flaws, though, could be addressed to some degree. But let’s not get ahead of
ourselves and start with the gathering process.

Data are collected on the RC buggy platform (chapter 4) from a sensor
(section 4.3) with a rate of 100 samples per second. The process of gathering
data is divided into episodes with a length of mi ∈ R timesteps. Each episode
can be described as follows: from an idle state, the platform is manually driven
by a human for some time; the driver is not following a predefined trajectory;
the driver is restricted by the environment, that is, a room resembling a
square with a side size of approximately 8 meters.

The result is a dataset with n entries, where n is a number of episodes.
Each entry contain mi samples of v⃗, ω⃗, p⃗, q⃗ vectors. Gathered raw data are
consequently divided into train and validation datasets.

Figure 6.1: Histograms of linear velocity and actions were taken during one
real-world episode to demonstrate the distribution of manually gathered data.

Once the data are collected comes the time to assess its quality. A simple
way to do so is to plot histograms and manually review the result. Take
a look at the figure 6.1. The distribution of steering actions seems quite
fair during the depicted episode, but what one could point out is that high
throttle actions are missing. Nearly all actions taken were low throttle, less
than 0, and in case we would train our model only on this data, it would
never be able to approximate the dynamics of the platform with the high
throttle. Therefore, for the next iteration of data gathering, we should adjust
drivers’ behavior so that incompleteness of the dataset is decreased. The
reader could easily imagine how this process is done several times in order to
increase the quality of a dataset used for the final model training.
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6.3 Incompleteness of state observability

We can highlight several states of our platform as directly unobservable. One
is a rear-wheel velocity since we have a rear-wheel-drive car, and wheels could
slip when the high throttle is applied. This problem could be addressed by
adding a wheel velocity sensor, for example. Since we do not have this sensor,
we address this problem using a history of actions. Experiments show that
the performance of data-driven models with and without a history of actions
does not differ significantly. Therefore, we assume the rear wheel velocity to
be negligible.

Another unobserved variable is the exact angle at which front wheels are
turned. Despite turning angle being correlated with a steering action, the
correlation might not be as precise as needed for it to be considered an observed
variable. We could address this problem, though, even without additional
sensors, by adding a mean of m past steering actions to observations, where
m is to be empirically chosen. But the experiments show that the response
of steering is almost instantaneous. Therefore, we neglect the turning angle
of the front wheels.

The last one is imperfections in the platform itself. When you turn the
wheels and then drop the steering controller, the wheels do not return fully
to angle 0. There is some bias to the side you turned them previously. This
flaw is observable in the history of data, though, since once you start moving
forward, there will be a slight turning bias despite the steering action might
be zero. But again, experiments show that this unobservable variable is not
of high importance, and one could neglect this platform flaw if the steering
bias is not too high.

6.4 Data preprocessing

6.4.1 Noise

Raw data are noisy, as we can see in the figure 6.2, where a part of an episode
linear velocity data is shown. Noise affects training performance as well as
the resulting model. Therefore, we need a way to reduce noise in the training
dataset.

Since data from the sensor, when the control policy is deployed in the real
world, have to be filtered the same way training data were filtered, only filters
that use past observations could be used. In other words, data at the time
step t could not be changed based on the future data t + k, only on the past
data t− k.

6.4.2 k-past mean filter

The basic way to filter the input data is to simply take the average of k
previous entries. This approach suffers from reducing extremes, though, which
is undesirable when dealing with high and low speeds. The results of filtering
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6. Data driven Model ..................................

Figure 6.2: Raw linear velocity data on the left and filtered with a k-past mean
filter with k = 10 on the right.

linear velocity with k = 10 are shown in the figure 6.2 on the right side. Since
we take an average of previous timesteps, extremes on original raw data are
reduced. But if we apply the same filter when deploying policy learned on
the engine utilizing a model trained on these filtered data, we should be fine.

Figure 6.3: The example of unfiltered and filtered labels. Delta linear velocity
data on the left and delta filtered linear velocity with the k-past mean filter with
k = 10 on the right.

Examples of computed labels based on raw and filtered data are in the
figure 6.3.
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6.4.3 Normalization

For numerical reasons before training we need to normalize our labels. Nor-
malization is done by dividing label values by the standard deviation

σ =

√√√√1/N
N∑

j=1
(xj − µ)2

where µ is a mean value

µ = 1/N
N∑

j=1
xj

The normalization factor is stored, and the output of our model is multiplied
by this factor during deployment.

6.4.4 Data augmentation

Due to the manual process of data gathering, the resulting dataset might
be arbitrarily biased. For example, due to the environment constraints or
driver’s preference, more left turns than right turns might be present in the
data. Another example is a throttle distribution. The latter was addressed to
some extent in the section 6.2. The mentioned approach was to gather more
data in order to obtain a decent distribution of throttle actions. It would be
much more difficult to do so by augmenting the dataset. It is not so with
steering actions, though.

Figure 6.4: Histograms demonstrate the distribution of training data related to
turning before augmentation.

If we assume that our platform is symmetrical, it is easy to balance turns
in the dataset by mirroring actions and corresponding observations: ay, vy, ωz.
That is, we obtain the mirrored data

i⃗n = [vx,−vy,−ωz, ax,−ay]
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Figure 6.5: Histogram demonstrating the distribution of augmented training
data related to turning.

and add it to the original dataset doubling it’s size.
An example of histograms computed on training data before augmenting

and after is shown in the figures 6.4, 6.5.
The effect this approach has on the model’s performance is described in

the chapter 7.

6.5 Model’s architecture

6.5.1 Multi Layered Perceptron (MLP)

The base model for the task is a feed-forward neural network with fully
connected layers called Multi-Layered Perceptron. A simple schema of an
MLP architecture where the input vector does not contain a history of
observations is shown in the figure 6.6. All layers of the model are fully
connected without dropout. The parameters such as the number of hidden
layers and the number of neurons per layer are to be optimized. In the figure,
we specify these only as an example.

6.5.2 MLP with history of observations

MLP with history is basically the same model as an MLP. The only change
is that the input contains observations from k previous timesteps. Hence the
input layer will have more neurons. The idea behind this model is to continue
with a simple model at the start but provide it with more data in order to
get better results. The comparison of the base MLP model and model with
the history of observations is made in the chapter 7.
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................................. 6.5. Model’s architecture

Figure 6.6: The feed-forward neural network model with fully connected layers
is also called the Multi-Layered Perceptron.

6.5.3 Temporal convolutional neural network (TCNN)

Thanks to successful usages of TCNN on time series data, for example, [19],
[20] etc., and it’s relative to LSTM simplicity, the decision to use it in our
case was made.

Figure 6.7: The feed forward process of a time series data through convolutional
layers of a Temporal CNN.

The key feature of a TCNN is that the output of a convolution is only
dependent on the previous observations on each convolutional layer. An
example of TCNN convolutional layers scheme with inputs sequence of size 100
is presented in the figure 6.7 in order to better understand time dependencies.
With specified kernel and stride values for each layer the computations
correspond to the following time dependencies schema for the output: layer 1
xt−99 : xt−95, .., xt−4 : xt; layer 2 xt−99 : xt−75, .., xt−24 : xt; and finally layer
3 xt−99 : xt.

The final TCNN architecture that was used in the experiments is presented
in the figure 6.8. We start with five channels for the input features that are
defined in the 6.1 and represent forward velocity, lateral velocity, angular
velocity, throttle, and turn actions. At the last convolutional layer, we have
16 channels that are mapped to a fully connected linear layer with 16 neurons
that are connected to the output layer with three neurons corresponding to
delta velocities that we aim to predict.
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Figure 6.8: Temporal convolutional neural network architecture.
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Chapter 7
Results and experiments

7.1 Data Driven Model

7.1.1 Experimental setup

Figure 7.1: Schema of an experimental setup for the data-driven model learning.

The first type of experiment conducted in this work pursues the goal of
learning the data-driven model approximating nonlinear dynamics. The
iterative process of achieving the stated goal is depicted in the figure 7.1. It
starts with the data gathering step, then through data preprocessing and
models training, we come to the models’ evaluation final step. If we are
satisfied with the observed performance, we proceed to the control policy
learning. During the experiment, we might return to the previous step if
needed. This case is depicted by a bi-directional arrow.

Since our model approximates the nonlinear dynamics of the real platform,
it is necessary to compare its predictions to the ground truth data gathered
from the mentioned platform. The way we accomplish this is by iteratively
feeding the same actions we took in the real-world episode and updating the
simulated platform state by the model’s predictions. The resulting trajectory
of a simulated platform is then compared to the ground truth trajectory from
the real-world episode. We compare only short episodes 1-seconds long since,
due to the differences between the reality and our model, the trajectories
will inevitably diverge. Ground truth 1-second trajectories are sampled from
the longer real-world episodes randomly. The initial state of the platform in
these trajectories is set in a simulation before we start feeding it with actions
taken in the real world. For comparison purposes, we use the mean squared
error metric 5.2.

The second kind of evaluation is not so well reproducible and conducted in
order to reveal some edge case flaws of the learned model. Instead of feeding
the model with actions from the real-world episode, we manually drive the
platform in the simulation and try to assess its ability to approximate the
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7. Results and experiments ................................
real platform dynamics.

7.1.2 Data preprocessing

To understand the effect of the data preprocessing on our model, we com-
pare the training performance of the MLP with and without a particular
preprocessing technique. In the figure 7.2 an example of such a comparison
is presented. The MLP model trained on data preprocessed with the k-past
mean filter achieves noticeably lower test loss. The variable k = 5 of the
k-past mean filter was optimized separately. The augmentation that is done in
addition to the data filtering does not seem to help. If we measure the mean
squared error between real-world trajectories and simulated trajectories by all
three models, we come to the conclusion that filtering without augmentation
is the best way to preprocess data. Measured mean squared errors could be
found in the table 7.1.

Figure 7.2: Comparison of different data preprocessing methods based on the
train/test loss for the MLP. From left to right: no data preprocessing, filtering
training data by the k-past mean filter with k = 5, filtering training data by the
k-past mean filter with k = 5, and augmenting the dataset by mirroring left and
right turns.

7.1.3 Training

Training of all chosen neural network architectures is conducted on the same
training data preprocessed in the exact same way.

Train and test losses per epoch for training on data filtered with k = 5 past
mean filter are shown in the figure 7.3. MLP with a history of observations
achieves the lowest test loss as well as train loss. These losses, though, are not
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Figure 7.3: Learning curves for an MLP, MLP with history of observations,
TCNN data-driven models.

representative enough to make the final decision. Therefore, an evaluation of
each trained model’s performance must be conducted.

7.1.4 Evaluation

In order to properly compare all three models, we run ten 1-second episodes
in a simulation as was previously described. The results for 5 episodes are
shown in the figure 7.4, mean squared error (MSE) scores 5.2 for each model
are in the table 7.1.

According to the figure 7.3 the MLP with a history of observations has
the lowest test loss, but the lowest MSE score is obtained by the TCNN.
Therefore, further tests are needed to distinguish between those models.

Predictions of all models diverge in time because they are deployed on
a different distribution of data they were trained on. This distribution is
generated by the model itself, since at each step of the simulation, we feed
the model with observations that are affected by all its previous predictions,
whereas the training distribution corresponds to the real-world environment

Engine MSE

MLP 0.0596
History MLP 0.0592

TCNN 0.0376
MuJoCo 0.0371

MLP, augmented 0.095
MLP, unfiltered 0.105

Table 7.1: Results of a comparison of data-driven models using the mean square
error metric.
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Figure 7.4: The comparison of the real-world 1-second trajectories to the
trajectories simulated by different data-driven models fed with the same sequence
of actions as was taken in the real-world episode. The blue line depicts the
ground truth trajectory from the real-world episode. The red line depicts the
resulting trajectory from a simulation.

and the real platform. This effect is demonstrated in the figure 7.5 where
2-second ground truth and simulated trajectories are compared.

Despite the fact that on 1-second trajectories, the TCNN performs best,
its predictions diverge worse than other models when deployed for longer
episodes. The TCNN seems to be more sensitive to the change of data
distribution according to conducted manual tests.

During manual driving of the platform simulated by the TCNN, significant
instabilities in the behavior were discovered. For example, when applying
high throttle from the idle state with a high steering action, the platform
would start unnaturally drifting in circles.

When TCNN’s parameters were optimized in order to avoid this undesirable
behavior, another problem occurred. When we increase the input sequence
length for TCNN it becomes less responsive to the current action, probably
due to the insignificance of one action to the whole observations sequence.

MLP with a history of observations, on the other hand, suffers less from
TCNN problems. During manual tests, there was no unnatural behavior, and
its responsiveness to a new action resembles the real platform quite well.

Hence, the final choice of the data-driven model was MLP with a history
of observations.
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Figure 7.5: The demonstration of divergence due to the different data distribution
during the model deployment. Real-world 2-second trajectories compared to
trajectories simulated by different data-driven models fed with the same sequence
of actions as was taken in the real-world episode. The blue line depicts the
ground truth trajectory from the real-world episode. The red line depicts the
resulting trajectory from a simulation.

7.2 Control Policy

7.2.1 Experimental setup

Figure 7.6: The schema of a control policy learning experiment.

Experiments with a control policy could be divided into training, evaluation
in a simulation, and evaluation in the real world parts. In case we are not
satisfied with the policy performance in a simulation, there is no sense in
proceeding to the experiments on the real platform. Therefore, we return
to training (bi-directional arrow in the figure). During the experiments, we
consulted the paper addressing the issues of using the Deep Reinforcement
Learning [21].

Now with the picture of the experiment setup in mind, we can proceed and
describe the results we got at each step.
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7. Results and experiments ................................
7.2.2 Training

Control policies are trained on two engines: MuJoCo and our custom engine
based on the MLP with a history of observations model that was chosen
as the best in the previous section. For policies based on both engines, we
always have the same training setup for the sake of fair comparison. That is,
all hyperparameters for the PPO algorithm are the same, as well as a set of
trajectories and the reward function.

Figure 7.7: The comparison of learning curves of the MuJoCo engine-based
policy and the data-driven model-based (or custom-based) policy. Each policy
was trained for a total of 3 million timesteps. Read line depicts the mean of 3
training runs. The blue area depicts the standard deviation of 3 runs.

In addition to the main goal of this work, we are also trying to learn a
robust policy that is going to generalize well for a wide variety of trajectories.
The training set of trajectories was shown in the figure 5.1. As can be seen
in the figure, there is a good distribution of difficulty between trajectories
and decent coverage of possible directions for a trajectory to take.

In the figure 7.7 an example of policies performance during training is
demonstrated. We mostly care about the development of the learning process
and the overall trend of improvement of the policy, which both policies show
with a local downtrend in the middle of learning.

7.2.3 Validation

In order to test the performance of learned policies and the ability to generalize,
we must have a validation dataset.

For tests in a simulation environment, our validation dataset consists of 10
randomly generated trajectories that an agent has not seen during training.
Generator parameters for validation trajectories were set the same as for the
training dataset. Validation set is shown on the figure 7.8 where trajectories
are cut to 100 waypoints.
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Figure 7.8: Ten (five on the left and five on the right) randomly generated
validation trajectories of 100 waypoints each.

The validation process itself is quite simple. We take two learned policies,
one on the MuJoCo engine and one on the custom engine, and run 20 episodes
1000 timesteps long (ten seconds) for each policy, one episode per trajectory.
Ten episodes are run on the subset of 10 training trajectories, and another
ten episodes are run on the validation set. Results for the training dataset
could be found in the table 7.2 and for the validation dataset in 7.3. We
also switch the engines for both policies to assess how well both policies can
adapt to new conditions. In the tables, rows represent engines on which the
simulation is running, and columns represent policies that are being deployed.
Results are presented as a mean sum of rewards ± standard deviation.

From the results of the experiments, we could deduce that the custom
engine-based policy is significantly more robust to the environment changes

Engine|Policy Custom-based MuJoCo-based

Custom 88.2± 21.23 34.9± 21.93
MuJoCo 67.2± 29.04 81.5± 29.91

Table 7.2: Results of policies comparison in a simulation on a subset of 10
training trajectories for 1000 timesteps per trajectory. Results are presented in
the following format: mean sum of rewards ± standard deviation.

Engine|Policy Custom-based MuJoCo-based

Custom 59.67± 26.98 18.91± 22.03
MuJoCo 52.02± 16.61 78.73± 25.30

Table 7.3: Results of policies comparison in a simulation on a set of 10 validation
trajectories for 1000 timesteps per trajectory. Results are presented in the
following format: mean sum of rewards ± standard deviation.
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7. Results and experiments ................................
since when deployed on the MuJoCo engine, its performance is only slightly
worse compared to that of the MuJoCo based policy when deployed on the
custom engine. The custom-based policy on the validation set lost 7.65
rewards on average when deployed on the MuJoCo engine, whereas the
MuJoCo-based policy lost 60.54 rewards on average when deployed on the
custom engine.

We could also point out that both policies generalize quite well. On the
validation set compared to the training set, the custom engine-based policy
lost 28.53 rewards on average, which is 32% of performance on the training
data, and the MuJoCo-based policy lost only 2.77 rewards on average, which
is only 3.3% of performance on the training data.

Our main goal, though, is to test the hypothesis that the transfer to the real
world from the simulation environment is done better with the data-driven
model-based engine. Therefore, we need to conduct additional tests for both
policies on the suitable for the real world environment trajectories.

7.2.4 Evaluation in a simulation

Figure 7.9: The set of validation trajectories for real-world tests. The lap is
shown on the left, the infinity in the middle, and the random trajectory on the
right.

Evaluation of the transfer to the real world is a bit trickier because we
are limited by the size of the room we conduct our experiments in. Random
trajectories used for validation would not fit in this room. Therefore, two
manually created trajectories and one created by the same method as the
training dataset but manually chosen are used for the purpose of policy
evaluation. Trajectories are shown in the figure 7.9. The purpose of this
manually chosen random trajectory is to assess the ability of the policy to
cope with a situation when highly nonlinear behavior (drift) is required.

The results are summed up in the table 7.5. As a reference point, we provide
the results of human driver’s performance on the same set of trajectories
in the simulation in the table 7.4. Here human driver is the author of this
work who is definitely not a professional driver, but also not an amateur,
since he spent at least several hours controlling the real platform during the
data gathering as well as the simulated platform on both engines during the
debugging process, reward shaping etc.
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7.2.5 Evaluation in the real world

Once we are satisfied with the performance of learned policies in the simulation,
we proceed to the tests on the real hardware.

For the tests on the real hardware, we had to scale throttle and steering
actions for the policy learned on the MuJoCo engine due to the difference in
response of the motors in the simulation and on the real platform. It is not a
big problem since the scaling is linear. We applied a 0.95 coefficient to the
throttle action and 0.9 to the steering. That is, actions of the policy learned
on the MuJoCo engine were

0.95ax, 0.9ay

where ax, ay are predictions of the policy.
As was stated in the previous section, we conduct tests on the three chosen

trajectories. On each trajectory, we run each policy five times. Test results
are in the table 7.6. The format for results is as follows: mean sum of rewards
± standard deviation.

Trajectory|Policy Human on Custom Human on MuJuCo

lap 58.33± 4.18 68.66± 5.31
infinity 64.66± 10.53 70.33± 9.03
random 32.66± 2.86 31.0± 4.96

Table 7.4: Human driver performance on the real-world validation dataset in a
simulation environment. On trajectories ’lap’ and ’infinity,’ the episode lasted
1000 timesteps, and on the ’random’ trajectory - 500. On each trajectory, three
episodes are conducted. Results are presented in the following format: mean
sum of rewards ± standard deviation.

Trajectory|Policy Custom-based MuJoCo-based

lap 87 106
infinity 75 72
random 36 22

Table 7.5: Comparison of policies in a simulation on both engines. On trajectories
’lap’ and ’infinity,’ the episode lasted 1000 timesteps. On the ’random’ trajectory
- 500. The result is a sum of rewards since in a simulation environment, policy is
deterministic.

Trajectory|Policy Custom-based MuJoCo-based

lap 60.0± 16.39 47.25± 14.25
infinity 64.4± 10.8 42.2± 8.68
random 31.6± 4.62 11.5± 1.5

Table 7.6: Results of tests in the real world. On trajectories ’lap’ and ’infinity,’
the episode lasted 1000 timesteps on the ’random’ trajectory - 500. Results are
presented in the following format: mean sum of rewards ± standard deviation.
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The difference between the simulation and the real-world rewards are

summed up in the table 7.7. For the custom engine-based policy, the difference
in the mean rewards is -13.66. For the MuJoCo-based policy, the difference
in the mean rewards is -33.02.

Video examples of both policies deployed in the simulation and in the real
world on the trajectory ’lap’ are provided on YouTube.com via the link https:
//www.youtube.com/channel/UCb7esjH7TSxUHZ_tABx2E-w/videos. The sim-
ulation time might not correspond to the real-time due to the slow rendering
on the personal hardware.

Trajectory|Policy Custom-based MuJoCo-based

lap −27± 16.39 −58.75± 14.25
infinity −10.6± 10.8 −29.8± 8.68
random −3.4± 4.62 −10.5± 1.5

Table 7.7: The difference between the real-world and the simulation rewards
for the set of real-world validation trajectories. Results are presented in the
following format: subtraction between the mean sum of rewards in the real world
and the sum of rewards in the simulation ± standard deviation of the sum of
rewards in the real world.
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Chapter 8
Discussion

8.1 Data-driven model

Despite a decent performance of the MLP with a history of observations
model was achieved, there were several flaws with all data-driven models and
with the TCNN in particular that we either did not address at all or did not
have time to solve due to the time constraints.

The problem we did not address occurs when forward velocity is close to
zero. In this state, the predictions of the model cause the simulated platform
to drift when the throttle is not applied. Also, if you apply steering action,
the platform will drift in this direction from the state with zero forward
velocity and with no throttle applied. This problem was not addressed since,
in our task, we are not interested in states with close to zero forward velocity
and no throttle applied.

The major problem well described in [22] is a violation of i.i.d. assumption.
This happens because the observations in a simulation environment depend
on previous predictions of a model. Hence, the distribution of observations
in a simulation differs from that of training data that were collected in the
real world. This leads to divergence between the behavior of the real and the
simulated platforms even though the model fits training data quite well. We
partially address this problem by clipping observations to the training data
extremes in order to avoid unlimited divergence of the model predictions. But
it does not solve the underlying problem completely since some observations
are out-of-distribution of training data but by absolute value do not exceed
extremes at any dimension of the observation space.

We also did not succeed at optimizing the TCNN hyperparameters. The
TCNN is a promising model for the task, and it partially outperformed the
MLP model, but we failed at tuning it to approximate the general dynamics
of the real platform.

8.2 Control policy

The learned control policies have their flaws as well. If we take a look
at the videos accessible via the link https://www.youtube.com/channel/

39

https://www.youtube.com/channel/UCb7esjH7TSxUHZ_tABx2E-w/videos
https://www.youtube.com/channel/UCb7esjH7TSxUHZ_tABx2E-w/videos
https://www.youtube.com/channel/UCb7esjH7TSxUHZ_tABx2E-w/videos


8. Discussion ......................................
UCb7esjH7TSxUHZ_tABx2E-w/videos, we could notice that even in a simula-
tion environment, the agent deviates a lot from the given trajectory. It is due
to the rewards definition. We do not penalize the deviation from the trajectory
because we failed to optimize the penalty that would not harm the training
performance. Also, the agent overuses steering when following a straight line.
This problem could be addressed by steering actions penalization, but in this
work, such a penalty was not introduced.

Another problem is poor simulation-to-real world transfer. Despite the fact
that the data-driven model-based policy performs better according to the
7.7, both policies closed a lot fewer waypoints on average compared to the
simulation. For the MuJoCo-based policy, it is not that surprising since it is
hard to optimize the physics engine parameters to closely match your real
platform. But from the data-driven model-based policy, we expected better
performance in the real world. Our explanation for this poor performance is
the distribution shift problem described in the previous section that happens
due to the violation of the i.i.d. assumption.

8.3 Future work

In order to thoroughly research the possible advantages of the data-driven
model-based engine, some future work has to be done.

The primary concern is the optimization of MuJoCo parameters to resemble
the behavior of the physical platform. It is challenging to fit the physics
engine parameters to the physical platform and the environment. Hence,
the performance of the MuJoCo engine could be arguably better, although,
as was shown in the table 7.1 the MSE between real-world trajectories and
simulated on MuJoCo trajectories was the smallest compared to any of the
data-driven models.

However, on the other hand, the models we used for nonlinear dynamics
approximation could be improved as well. A possible direction of improvement
for the data-driven model is data collection and data preprocessing since
Neural Networks heavily rely on data quality.

Another direction that could be pointed out is the architecture and training
of Neural Networks. Because of the inexperience of the author choices made
in this work were probably flawed. Therefore, it makes sense to rethink the
used approach in order to get better model performance.

The performance of learned control policies could also be further enhanced.
An unsolved task is the optimization of hyperparameters of the Reinforcement
Learning algorithm. Due to the hardware limitations, it was unfeasible to
run the automatic optimization. Hence, in the optimization lies the potential
improvement. Another potential lies in the reward shaping process. Control
policies demonstrated in this work were trained with a simple reward 5.1.
There were also attempts to use a penalty for a deviation from the trajectory,
but they were unsuccessful.
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Chapter 9
Conclusion

This work experimentally demonstrated that a control policy trained on a
data-driven model using Deep Reinforcement Learning performs better on
the corresponding physical platform than a control policy trained on the close
matching platform simulated by the physics engine MuJoCo.

According to the results, the control policy learned on the MuJoCo engine
performed significantly worse in the real world compared to the simulation.
On average, MuJoCo-based policy closed 33.02 fewer waypoints in the real
world than in the simulation for the validation trajectories. At the same time,
the policy learned on the custom engine based on the MLP with a history of
observations lost only 13.66 waypoints on average.

Also, the total reward in the real world for the policy learned on the
data-driven model is higher than that of the MuJuCo policy even when, in a
simulation, the MuJoCo-based policy performed better. The MuJoCo-based
policy got 106 rewards in the simulation versus 47,25 on the trajectory ’lap’
in the real world. At the same time, data-driven model-based policy got only
87 rewards in the simulation and 60 in the real world.

The results are consistent with the initial hypothesis that the data-driven
model provides more accurate simulation-to-real-world transfer as a learning
environment for the control policy than the MuJoCo engine.

We also demonstrate that a control policy for nonlinear systems learned
with Deep Reinforcement Learning algorithms can achieve high performance
on general trajectories. The performance is comparable with the performance
of a human driver with driving experience of several hours in total that was
gained during this work. See tables 7.4, 7.5.

Specific goals that were fulfilled during the course of this work are:

. Dataset for the data-driven model learning gathered from the RC buggy
platform. Data were analyzed and preprocessed, and issues of noise and
incomplete state observability were addressed..Data-driven models of different architecture approximating nonlinear
dynamics of the platform were learned, compared, and evaluated. The
training pipeline was developed along with the visual wrapper for the
learned model using Pybullet package [23] and MuJoCo engine [16].
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9. Conclusion......................................
. The pipeline for a control policy learning using the state-of-the-art

Reinforcement Learning algorithm Proximal Policy Optimization was
developed. Policies based on the MuJoCo engine and on the data-driven
model-based engine were learned. The performance of both policies was
evaluated in the simulation environment, and then they were deployed
on the real platform.. Results of experiments were described and analyzed.
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