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Introduction

Mathematical logic uses two approaches to describe its theories: syntactic and semantic. The syn-
tactic approach provides us with a set of axioms and one or more inference rules to examine, using the
notion of provability, what formulas can be derived.The semantic approach assigns numerical values
(classically interpreted as truth values) to formulas and examines, what formulas can be semantically
entailed. A question that immediately arises is: are those approaches equal? Is a formula semantically
entailed iff it is provable? Equality of these approaches for a given theory is called completeness. The
fact that provability implies semantic entailment is called soundness and it is the easier implication to
prove. The other implication is called completeness (same as the whole equivalence), and it is, in fact,
the complicated one.

The classical semantic approach is to assign one of two values (interpreted as truth and falsehood)
to formulas. The first person to work with multi-valued logic instead was Jan Lukasiewicz. His three-
valued logic was published in the year 1920 in the publication [3]. Ten years later an article was published
by Jan Lukasiewicz and Alfred Tarski discussing logic with truth values covering the real unit interval.
However, the first proof of completeness of Lukasiewicz logic was published in 1958, 38 years after
its introduction. It was proven by the mathematicians Alan Rose and John Barkley Rosser using the
basics of linear algebra and linear programming, and published in [4]. In 2017, Rose-Rosser’s proof of
completeness was reviewed and translated into modern notation by Petr Fejl in his Bachelor’s Thesis
[1]. However, since the proof is rather extensive (40 pages) and full of syntactic and tedious lemmas,
it is difficult to be sure of its soundness when being proved with classical means (i.e., human proof-
checking). For that reason, we decided to verify it using a proof-checking software. We have chosen the
Lean theorem prover for this task.

The Lean theorem prover is a programming language based on type theory that is being developed at
Microsoft research. The project (launched by Leonardo de Moura in 2013) is hosted publicly on GitHub
and it is open source. At the time of writing this thesis the fourth version of this language (Lean 4)
is being developed. Mathlib is a mathematical library available for Lean that is being maintained and
continuously extended by the active Lean community. It already contains many results from various
fields of mathematics.! When learning the language, it is possible to ask for an advice on the Lean
community forum on Zulip or go through some learning materials available on YouTube > and on Lean’s
official web-page 3.

Lean is trying to bring together interactive and automated theorem proving. As in type theory, prov-
ing a proposition corresponds to providing an element (proof term) of a given type (proposition). This
can be achieved either by constructing the proof term manually or via the so-called factic mode, which
allows writing interactive proofs using automated proving tools and methods. These methods are called
tactics and serve as a guide for Lean to follow in order to produce the proof term by itself. This pos-

The guide to install Lean with mathlib can be found at
https://Leanprover-community.github.io/get_started.html

2YouTube channels Leanprover community and Xena Project.

3All links including community web-site link are available at https://Leanprover.github.io/
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sibility is highly utilised in the code of our formalisation. In fact, the most tedious and hence difficult
to verify part of the Rose-Rosser’s proof of completeness for fLukasiewicz propositional logic regards
the provability in its calculi (23 pages). In this thesis, among other things, we define custom tactical
commands to fully automate and hence simplify the verification of these statements.

This work proves the majority of the proof of completeness of Lukaseiwicz logic in Lean. Specifi-
cally, we formalise 23 lemmas dealing with the basic as well as more complex provability in the logic,
the notion of polynomial formula and finally 16 theorems discussing the provability of polynomial for-
mulas. Left to be formalised is the last section of the proof as written in [1], i.e. Farkas’ lemma with
two corollaries, two theorems connecting provability and the polynomial representation of formulas,
and the completeness theorem itself. The formalisation is done using the Lean theorem prover version
3.39.2. This text should serve as a guide to a possible formalisation of the Lukasiewicz logic and the
above-mentioned theorems, as well as a guide to our code, that can be found on the enclosed CD. The
code is split into five individual files copying the structure of this text. While original snippets of code
from the formalisation are used in the text, some details are left out (i.e. the usage of attributes such as
@[reducible] and @[simp]). For those, the reader is referred to the original code in its full version.

In the first chapter we introduce basic definitions for the formulas and proof in Lukasiewicz logic
(with inspiration from our previous work [2]), followed by two general properties of the provability rela-
tion: monotonicity and the cut rule theorem. Using the cut rule, we then define proof with cut, which helps
us utilise this theorem in formal proofs. After that, we define the semantics of Lukasiewicz logic and
prove its soundness. Finally, we define the substitution of an atom in a formula and prove another prop-
erty of the provability relation, structurality. Further the derived rules of Lukasiewicz logic, which serve
as a foundation for the rest of the completeness proof. Furthermore, it introduces the proof_verifier
tactic for verification of formal proofs. After that, the way proof_verifer can verify congruence is
discussed, and in the end, the proof by cases theorem is introduced. The second chapter starts with syn-
tactic preparation, i.e. with more complex provability results specific to the completeness proof. In the
chapter’s second section, we define the notions of polynomial and polynomial formula and discuss the
theorems concerning these terms. The theorems use results from the syntactic preparation section. In
the end of the chapter, we demonstrate another utilisation of Lean’s automated proving tools, defining a
tactic that makes the application of the theorems that concern polynomial formulas easier.



Chapter 1

F.ukasiewicz propositional logic

1.1 Elementary syntax and semantics of fL.ukasiewicz logic

The most basic objects in any propositional logic are formulas. Formulas are statements, which
are inductively generated from a countably infinite set of elementary statements - atoms - using logical
connectives. The word “elementary” denotes the fact that atoms are not allowed to contain any of the used
logical connectives. In Lukasiewicz propositional logic, our basic connectives are implication (binary
connective) and negation (unary connective).

In Lean, a formula can be defined using the so-called inductive type. The resulting definition of a
formula is then fairly intuitive, having a total of three constructors (for atoms, for implication and for
negation). We use natural numbers to generate atoms.

inductive Form : Type

| p : N > Form -- atoms constructor

| imp : Form — Form — Form -- implication constructor
| neg : Form —» Form -- negation constructor

local infixr ‘' = ' : 80 := Form.imp

local prefix ' ~ ' : 100 := Form.neg

Thanks to the infixr and prefix keywords we can set the binding strength of implication and negation
constructors, as well as a more natural way of notation. Now, given formulas P and Q, we can type P
= Qand ~P instead of Form.imp P Q and Form.neg P, respectively. In addition, we will define five
derived logical connectives, that are based on implication and negation. Namely, we will define so-called
disjunction, strong disjunction, conjunction, strong conjunction and equivalence, in the given order. The
connectives are defined using lambda construction. Using this construction we can define functions, in
this case of type Form — Form — Form, and state explicitly what is to be returned. We will use this
construction a bit more when defining polynomials in the section 2.2.

local infix ‘' : 90 := AP Q: Form, (P = Q) = Q

local infix ‘'@ ' : 90 := A P Q: Form, ~P = Q

local infix ‘' : 91 := A P Q: Form, ~(~P U ~Q)

local infix ‘& ‘' : 91 := A P Q: Form, ~(P = ~Q)

local infix ‘' ' : 70 := AP Q: Form, (P = Q n (Q = P)

We use capital letters P, O, ... to denote formulas. Using the command variables we can introduce
these formulas and, whenever they are used in a statement, they will be automatically universally quan-
tified over. Similarly, we introduce variables for sets of formulas which, in type theory, are defined as
functions of type Form — Prop.
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variables {P Q R : Form}
variables {I' A ® : set Form}

Formal proof

The notion of proof in Lukasiewicz propositional logic is given by five axioms and one rule of
inference, modus ponens, which gives us means to prove new formulas from the five axioms. Modus
ponens can be symbolically written as (P, P = Q) -> Q,i.e.if Pand P = Q are provable, then Q is
provable. The five axioms go as follows.

def A1l (P Q:Form) :=P = (Q = P)

def A2 (P Q R:Form) := (P > Q) = ((Q > R) = (P = R))
def A3 (P Q:Form) (PLUQ = QuUP

def A4 (P Q:Form) (~P = ~Q) = (Q = P)

def A5 (P Q:Form) P=0Qu@="pP

Having our five axioms and the modus ponens rule we can now define the notion proof (also called
formal proof). Suppose we have a set of formulas I (called set of assumptions) and a formula P. A proof
of P from I is a sequence of formulas ending with P, where each formula is either 1) an instance of an
axiom, 2) belongs to I', or 3) is derived using modus ponens from two formulas preceding it somewhere
in the sequence. We also say that a rule (I', P) is provable in Lukasiewicz logic (or simply in L) if there is
a proof of P from I'. Formulas provable from an empty set of assumptions are sometimes called theorems
of L.

Naturally, the proof sequence can be represented as a binary tree, where leaves are designated with
axiom instances/assumptions from I while nodes with two children are designated with consequence of

modus ponens rule.
P=Q P=0 =
W ((Q:'R)é(P:R))
axiom 2
Q=R (Q=R) = (P = R)
assumption from MP

P =R
from MP

Figure 1.1: Proof of P = R from assumptionsP = Qand Q = R.

Note that first this enforces that any node in the tree is derived directly from the roots of its children
(helping with simplicity of verification), and second in this definition, no nodes with one child are used.
That is, of course, because modus ponens - the only rule of inference - is binary. However, we will make
use of nodes with one child in the following paragraph, when extending the definition of proof to enable
the use of already proven theorems and rules of L.

Before formalising the proof in Lean, we define a binary tree. Again, we use the inductive type for
the definition and introduce bindings and symbols for the tree’s constructors.
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inductive tree_of_form : Type
| leaf : Form — tree_of_form -- leaf constructor

| un : tree_of_form — Form — tree_of_form -- node, one child

-- node, two children

| bin : (tree_of_form X tree_of_form) — Form — tree_of_form

local postfix ‘' . ‘' : 40 := tree_of_form.leaf
local infixr ‘' » ' : 30 := tree_of_form.un
local infixr ‘' »p» ' : 20 := tree_of_form.bin

/- prod.mk given two trees tl and t2 outputs a pair
(tl, t2) of type (tree X tree), which is used above
in the tree_of_form.bin constructor. -/

local infixr ‘' && ' : 25 := prod.mk

As an example of our notation, this is the tree from figure 1.1 written in Lean.

Q=>R. & (P =>Q. & A2PQR. »» (Q R) > (P =R) »» P =R

It is also useful to define a function TR of type tree_of_form — Form that returns the root of a tree.
Here we use a special definition, which takes advantage of the inductive definition of tree_of_form.

We further use defined symbols for tree_of_form constructors.

@[simp] def TR: tree_of_form — Form
| (P.) =P

| (pr » P) =P

| (prl && pr2 »» P) := P

10

Now we can formalise the definition of proof. First we define is_axiom, which is a set (i.e. type
Form — Prop) that for a given formula states, whether it is an instance of one of our five axioms. Then
we define what it means for some tree to be a formal proof from a set of assumptions and, finally, we
define provability, which is a statement saying that there exists a proof of some given formula from a

given set of assumptions.

def is_axiom : set Form :=

AP, AQR, P=A1QR) V
(AQRD, P=A2QRD) vV
(QR, P=A3QR) V
(QR, P=A4QR) V
(3 QR, P=A5QR)

/- We again take advantage of the inductive definition of tree_of_form.

last constructor is describing the usage of modus ponens.
def is_proof : set Form — tree_of_form — Prop
| T" (P.) := is_axiom P V P € I
| T' (t » P) := false -- unused tree_of_form.un constructor
| T (t1 & t2 »» P) := (TR t2 = TR t1l = P) A
is_proof I' t1 A
is_proof I' t2

def is_provable (I' : set Form)(P : Form) : Prop :=
d pr, is_proof I' pr A TR pr = P

infixr ‘' + ' : 40 := is_provable
prefix ‘' + ' : 40 := is_provable {}

-/

The
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Looking closely into the third constructor of is_proof, it becomes apparent that it enforces a certain
order of its children. When deriving Q from P and P = Q, we need to have P as root of the left child
and P = Qas root of the right one. That is quite inconvenient, but keeps the definition simple, which is
very useful when arguing about the provability relation. On the other hand, we do not want to be bound
to such limitations, so in the section 1.2 this issue will be addressed.

Finally, let us mention one basic property of the provability relation, which is monotonicity. It is a
simple, yet important, statement that follows directly from the definition of formal proof.

lemma monotonicity : ' + P - I' C A - A+ P := sorry

The cut rule and proof with cut

As mentioned earlier, when writing out proofs, we would like to have the ability to use rules and
theorems of Lalready proven. This ability is granted by the cut rule. The rough idea of the cut rule is
simple: assume we have a proof prf. Wherever in prf we would use some already proven formula P
(therefore breaking the formal definition of proof), we can instead insert the whole proof of P into prf.
The prf extended with the formal proof of P will then follow the formal proof definition.

Below is shown how the cut rule looks in our formalisation. We are mainly interested in two special
cases: binary_cut and unary_cut.

def symmetric_provability (I’ : set Form) (A : set Form)
: Prop :=VPeA, T+P

local infixr ‘IF ' : 40 :
local prefix ‘' IF ' : 40 :

symmetric_provability
symmetric_provability {}

theorem cut_rule: THFO® - AUO®FQ > AUT + Q := sorry
lemma binary_cut : T+ P - T+ Q - {P, Q} + R > T + R := sorry

lemma unary_cut : {P} + Q > I'+ P - T + Q := sorry

The cut_rule theorem can be proven using the following lemma, whose proof copies the exact steps
described above.

lemma cut_rule_help (hp : T IF ®)
: VYV (pt : tree_of_form), is_proof (A U ®) pt > A UT + TR pt :=
A t, match t with
| (Q.) := /- If Q is an axiom- follows from monotonicity. If Q is assumption
then
1) Qe A - trivial or 2) Q € ® - follows from hp. -/
| (pt » Q) := /- Such proof can not exist. -/
| (t1 && t2 »» Q) := /- From inductive hypothesis and modus ponens. -/
end

On paper, this theorem would be enough and no other constructions would be needed, because there
we can just use the cut rule silently without any explicit justification. In Lean, however, we have to either
explicitly state it, whenever we are using the cut rule (which is often), or as we did, create an extension
of the formal proof that will include the use of the cut rule in its very definition and therefore justify its
usage only once.

But how to extend the proof definition? As the proof is represented by a binary tree, the extension will
be, too. We can split the provability rules into four categories based on the number of assumptions: + P,
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{P} + Q, {P, Q} + R, and more than two assumptions. It is already apparent how to fit those into the
tree representation. All we need to do, is to allow theorems into the tree_of_form.leaf constructor,
one assumption rules into the previously unused tree_of_form.un constructor and two assumption
rules into the tree_of_form.bin constructor. The apparent downside of this representation is that we
will not be able to use rules with three and more assumptions. However, since this is not of relevance to
our application, therefore we do not mind that.

Thanks to MP and axiom_is_provable we can define the extension using provability such that the
definition is very similar to the original one. Note, that first the definition still requires each formula to
be derived directly from its children and second the definition has a similar issue as is_proof regarding
the order of children. More about that in the next section.

lemma axiom_is_provable : is_axiom P —» I' + P := sorry
lemma MP : {P, P = Q} + Q := sorry

def is_proof_cut: set Form — tree_of_form — Prop

| T (P.):=Pel VP

| T (pr » P):= {TR pr} + P A is_proof_cut I' pr

| T (t1 & t2 »» P) := {TR t1, TR t2} v+ P A
is_proof_cut I' t1 A
is_proof_cut I' t2

def is_provable_cut (I': set Form)(P: Form) : Prop :=
d pr, is_proof_cut I' pr A TR pr = P

‘'Fcut ' : 40 := is_provable_cut
Fcut ' : 40 := is_provable_cut {}

infixr

prefix

To justify our extension, we show, that both definitions are equal, i.e. for any Pand I'is I rcut P
& I' + P. In this case, we do not actually need the whole equivalence to work with proofs with cut, but
theorem provable_no_cut suffices. In order to prove I' P (which is always our goal), we can prove
I' rcut P instead and the goal will follow from provable_no_cut. Thanks to the binary_cut and
unary_cut lemmas the proof of the theorem is easy.
theorem provable_no_cut : I' tcut P > I' + P :=
have lem: V t, is_proof_cut ' t - I' + TR t,
from A t, match t with
| Q. := /- Proof consisting of only Q did not use cut. -/
| t » Q := /- From ind. hypothesis. and unary_cut. -/
| t1 & t2 »» Q := /- From ind. hyp. and binary_cut. -/
by{intro a, cases a with t h, convert lem t h.1, simp[h.2]}

Semantics and proof of soundness

Opposing the syntax side of the logic, stands the semantics. In semantics we discuss the truthfulness
of formulas and we do so using truth evaluation. Truth evaluation is a function that gives truth values
to individual atoms. Using predefined interaction rules between truth values and logical connectives, we
can then derive the truth value of any formula. While in classical propositional logic the truth values can
only be from {0, 1} (i.e. false or true), in Lukasiewicz propositional logic we allow any rational number
between 0 and 1. That gives us an infinite amount of possible truth values. Of course, the interaction
rules for logical connectives need to be defined accordingly, so that the truth value of any formula stays
between 0 and 1.
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Special role among all formulas play those, whose truth value is equal to 1 under any truth evaluation.
These formulas are called tautologies. If a formula has truth value 1 every time all formulas from I" have
truth value 1, then it is a semantic consequence of T

We start with a definition of the truth evaluation on atoms (eval definition), and then extend it by
stating the rules of interaction with logical connectives (val definition). Note lemma v_0_1, that shows
that the extension is valid, i.e. the truth value of any formula really stays between 0 and 1. In the end, we
define tautology and semantic consequence.

/- Rational closed interval <0, 1>. Would not be needed, but looks nicer. -/
def UnitQ := (@Icc Q _ 0 1)

/- Evaluation on atoms. -/

def eval := N — UnitQ

/- Extended evaluation. -/

def val (v : eval): Form — Q

| (Pn) :=vn

| (A = B) :=min (1:Q) (1 - (val A) + (val B))

| ~A := (1:Q) - (val A)

postfix '« ' : 100 := val
lemma v_0_1 : V v: eval, V P: Form, v P € UnitQ := sorry
def is_taut (A:Form) : Prop :=V {v:eval}, v+ A = (1:QQ)

def is_sem_conseq (I': set Form)(Q: Form) : Prop :=
Yv:ieval, WP eTl, vx P=1) - (vx Q = (1:Q)

prefix ‘' F ' : 40 := is_taut
infix ' F ' : 40 := is_sem_conseq

So far, the connection between syntax and semantics has not yet been established. It would be nice
to know though, that there are some restrictions as to what is provable with regards to the semantics. It
would not be a good syntactic system if we could prove formulas that are semantically false. Thus we
will now prove the soundness of our logic.

lemma soundness_empty: + Q —» F Q := sorry

The proof of soundness_empty is based on the fact that our five axioms are tautologies and that
modus ponens, as the only rule of inference, preserves this property. Therefore, building proofs with
only axioms then can not lead to anything else but a tautology. This is generalised in the soundness
lemma using a similar logic with the notions of provability from assumptions and semantic consequence.

lemma soundness: I''+ Q - I' F Q := sorry

Thus, the first step in proving the soundness is to verify that all of the five axioms are tautologies.
We will show how that is done, as it is a nice example of the usage of Lean’s automated proving tools.
These proofs are technical, based on going through all the options of evaluations of involved formulas.
For example, proving that A1 is a tautology, we first unfold the definition of evaluation val

vi(Al PQ =v«(P => (Q=>P)) =min 1 (1 - v¢P + min 1 (1 - vxQ + v*P))

and then discuss the options v¢ P > vx Qand vx P < vx Q while from v_0_1 we know, these values

are between 0 and 1. This gets more complicated, when three formulas are involved (as and only as in
the case of the second axiom).
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The process can be generalised using Lean’s automated proving tools (above-mentioned tactics). Our
tactic ax_taut is able to verify that all our axioms are tautologies. The general strategy of the tactic is the
following: the tactic unfolds the definition val and uses the lemma v_0_1 to get restrictions on the truth
values. The goal is the split using the definitions of min and max as if... then... else... statements.
Remaining inequalities can be solved by Lean’s tactic 1inarith (short from linear arithmetic).

meta def ax_taut: tactic unit :=

‘[intros, unfoldl val, simp,
have a: vxP > 0 A v«P < 1, exact (v_0_1 v P),
have b: v¢xQ > 0 A vxQ < 1, exact (v_0_1 v Q),
tryf{have c: v¢R > ® A v«R < 1, exact (v_0_1 v R)},
simp[*, max_def, min_def],

split_ifs, all_goals{linarith}]

variable {v: eval}

lemma Al_taut : V P Q, vx(A1l P Q) = 1 := by ax_taut
lemma A2_taut : V P QR, vx(A2 P QR) =1 := by ax_taut
lemma A3_taut : V P Q, vx(A3 P Q) = 1 := by ax_taut
lemma A4_taut : V P Q, vx(A4 P Q) = 1 := by ax_taut
lemma A5_taut : V P Q, vx(A5 P Q) = 1 := by ax_taut

These lemmas can be put together into the lemma axiom_taut. We can now prove the helping lemma
sound_help and the soundness itself.

lemma axiom_taut: V P, is_axiom P —» (v« P = 1) := sorry

/- Help lemma proven by induction over tree_of_form. -/
lemma sound_help (hI': V (P: Form), P eI — (vx P = 1))
: V (prf: tree_of_form), is_proof I' prf — (vx (TR prf) = 1)
| (Q.) :=
begin
/- Q is an axiom. Follows from axiom_taut. -/
end
| (pt » Q :=
begin
/- Unused constructor that returns false. Anything follows from false. -/
end
| (t1 && t2 »» Q) :=
begin
have tl_taut: v+ (TR tl) = 1, -- from induction hypothesis
have t2_taut: v+ (TR t1 = Q) =1, -- from ind. hyp.
/-
From t2_taut we have
v¥# (TR t1 = Q) = min 1 (1 - vx (TR tl1) + vx Q) =
=min 1 (1 -1+ v+« Q) =minl1 (v¥x Q) =1
and since vx Q < 1 we have v« Q = 1.
Finally Q = TR (tl1 && t2 »» Q).
-/

end

lemma soundness: I' -+ Q - I' F Q :=
begin
intros prov v hl',
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rcases prov with (prf, <hl, h2)),
rw <h2,
/- Current state (without variables)
hI': ¥ (P : Form), PeIl — v« P =1
hl: is_proof I' prf
h2: TR prf = Q
t v« (IR prf) =1 -/
exact correct_help hI' prf hil,
end

Substitution and structurality

The last thing left to define is the substitution. Substitution is a function that takes formula P, some
atom x, and formula Q, and substitutes all occurrences of x in P with Q. For this, we make use of the
inductive definition of Form and the if...then...else... construction to introduce a simple definition
of substitution (p is the atom constructor of Form).

def subst (n: N)(Q: Form): Form — Form
| (pm :=if (m = n) then Q else pm

| (A = B) := subst A = subst B

| (~A) := ~ subst A

notation R ‘['n “,' Q ']' := subst n Q R

Here is an example of how such substitution looks, in this case swapping all occurrences of atom p 1 for
formula P.

example : ((p 1 =2 p 2) & ~(p 1D)[1, P] = (P = p 2) & ~P := by simp

Useful lemma connected to substitution is structurality, which states that provability is in some sense
invariant under substitution. Before stating the lemma, we define substitution on a set of assumptions.

def subst_set (n : N) (Q : Form): set Form — set Form :=
AT, {P | A ReTI, P=R[n, QI}

notation ' ‘['' n '," Q ']' := subst_set n QT

lemma structurality: ' + P —» I'[n, Q] + P[n, Q] := sorry

The idea of the proof of structurality is the following: we take the formal proof of I' + P and show,
that if we do a substitution of Q for p n in the whole proof sequence and the assumptions, the property of
being a formal proof will be preserved. In order to do this we introduce one helping definition and three
lemmas. First lemma states that if we do a substitution in an axiom, the resulting formula will still be an
axiom.

lemma axiom_structurality {n : N}
: is_axiom P — is_axiom (P [n, Q]) :=
begin
/- Thanks to the subst definition we have the following:
if P=AIRS=(R=S=R)
then P[n, Q] = (R = S = R)[n, Q] =
(R[n, Q] = S[n, Q] = R[n, Q]) =
Al (R[n, Q]) (S[n, QD).
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Similarly for the other axioms. -/
end

For the remaining two lemmas, we need to define a substitution on a proof, which is a substitution on all
formulas in the proof sequence.

def subst_prf (n : N) (Q : Form) : tree_of_form — tree_of_form

| (P.) :=P[n, Q].

| (t » P) := (subst_prf t) » P[n, Q]

| (t1 && t2 »» P) := (subst_prf tl) && (subst_prf t2) »» P[n, Q]

Now that we can perform substitution on a set of assumptions (subst_set) and on a formal proof,
we can prove the other two helping lemmas. Lemma subst_TR is self-explanatory and easy to prove.
Finally, lemma subst_preserve_proof shows that the formal proof is preserved under substitution.
Proof of this lemma is also not complicated.

lemma subst_TR
: V¥Vt : tree_of_form, TR (t[n,Q]) = (TR t)[n,Q] := sorry

lemma subst_preserve_proof

:V t: tree_of_form, is_proof I' t — is_proof (I'[n, Q]) (t[n, QI)

| (P.) := /- From axiom_structurality and subst_set definition. -/

| (t » P) := /- Such proof can not exist. -/

| (t1 && t2 »» P) := /- From induction hypothesis and subst_TR. -/

Having these results we can then easily prove the structurality lemma.

1.2 Derived rules of Lukasiewicz logic and proof by cases

Having introduced the logic as a whole and having shown some useful general theorems, as well as
the soundness, we can finally proceed to the preparation of the completeness theorem. In this section
we will be discussing derived rules and theorems of Lukasiewicz logic, i.e. some basic results about the
provability relation. In the formalisation, these are lemmas 14 to 33 and they serve as a foundation for
more complex results about the provability relation in the section 2.1.

First, we will show an example of a derived rule and introduce our tactic for formal proof verifica-
tion. Second, we will teach Lean’s tactic simp that equivalence is a congruence relation in Lukasiewicz
logic. In other words, we make our tactic capable of recognising that an inference was used, that can be
symbolically written as {P & Q} + R(P) ¢ R(Q). Lastly, we will mention proof by cases theorem,
that requires some derived rules to be proven.

Derived rules and proof_verifier tactic

A simple example of a derived rule can be the very first one, i.e. lemmal4_1. In general, each rule
consists of its statement, in this case {P = Q, Q = R} + P = R, its formal proof always introduced
as prf, and a Lean proof verifying that prf is indeed a formal proof of a given rule. This verification
is provided by our proof_verifier tactic. While the formal proof of lemmal4_1 is short and simple,
that is not true for all rules.

@[simp] lemma lemmald4_1 : {P = Q, Q > R} + P = R :=
let prf := Q = R. &&
(P=0Q. & A2 PQR. »» (Q = R) = (P = R))
»» P = R
in by proof_verifier
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Let us discuss the proof_verifier. In general, there are two main principles we are using when
writing out formal proofs: there are the cut rules discussed in the section 1.1 and congruence, i.e.
if two formulas are equivalent (i.e. v P & Q), then they are interchangeable in any formula. The
proof_verifier is able to deal with both. In fact, the latter one is a special case of the first. We will
start with building the tactic for verification of proofs with cut, using parts of lemmal4_1 as an example.
Note, that this lemma does not technically include any usage of cut. Thanks to the lemma MP and theorem
provable_no_cut from the section 1.1, we can perceive any proof as a proof with cut. Once again, the
definition of is_proof_cut:

@[simp] def is_proof_cut: set Form — tree_of_form — Prop
| T ®P):=Pel VP
| T (pr » P):= {TR pr} + P A is_proof_cut I' pr
| T (t1 & t2 »» P) := {TR t1, TR t2} + P A
is_proof_cut I' t1 A
is_proof_cut I' t2

def is_provable_cut (I': set Form)(P: Form) : Prop :=
d pr, is_proof_cut I' pr A TR pr = P

Each formula in a proof with cut can either be an assumption, a theorem of Lor an application of an
already proven derived rule of L.with one or two assumptions (as mentioned, this includes application of
modus ponens). The job of proof_verifier is to separately verify all these steps in given proof, i.e.
verify the origin of all the individual formulas.

Two things playing a major role in the verification are the tree representation of a proof and Lean’s
inbuilt tactic simp (or simplifier). Firstly, thanks to the tree representation, each formula in a proof is
derived directly from its children (except of the leaf formulas, naturally). In addition, the position of a
formula in a proof tree immediately reveals its supposed origin in the proof. For example, having a proof
of shape (t1 && t2 »» P), we know P is a result of an application of some rule with two assumptions
of the shape {TR t1, TR t2} + P. So in order to verify P, we need to check whether such a rule is
provable (i.e. whether we already proved it). Since we know the formulas TR t1, TR t2 and P, this is
easy, because it can be done by the already mentioned simp tactic. In the same way, having a proof of
shape (P.), we know that P is either an assumption or an application of a rule of shape - P. Again, both
options (in fact this disjunction as a whole) can be checked by simp.

We here use lemmal4_1 as an example. The formal proof of this lemma consists of five steps, each
step corresponding to one example below. All of these examples, i.e. all individual steps in the proof,
can be verified by simp (in this case making use of MP and A2_provable).

/- Modus ponens as a derived rule. -/
@[simp] lemma MP : {P, P = Q} + Q := sorry

= Q = ((Q=>R) = (P> R) -/

/- Axiom 2 is provable. A2 P Q R = (P
P Q R := sorry

@[simp] lemma A2_provable: + A2

/- The formula Q = R is a leaf in the proof. It is an assumption. -/
example: Q > R e ({P = Q, Q = R} : set Form) V+ Q = R := by simp

/- The formula Q = R too. -/
example: P = Q€ ({P > Q, Q = R}: set Form) V + P = Q := by simp

/- The formula Al P Q R is a leaf. It is a direct application of
A2_provable. -/
example : A2 PQR e ({P = Q, Q = R}: set Form) V + A2 P Q R := by simp
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/- The formula (Q = R) = (P = R) comes from an application of MP. -/
example : {P > Q, A2 PQR} + (Q > R) = (P = R) := by simp

/- The formula P = R too. -/
example: {Q > R, (Q > R) > (P = R)} + P = R := by simp

The simplifier is a powerful tactic. It tries to simplify (or even close if possible) the current goal using
a list of various definitions, lemmas and theorems. By using the tag @[simp] we can broaden this list
(other option is to give simp things in square brackets, like this simp[A2_provable]). All derived rules
in our code are tagged for simp. Overall, simp can verify all individual steps in a proof on its own. We
can, however, make simp even stronger by tagging the definitions of tree root TR and is_proof_cut,
too. Having these definitions, the tactic is able to deconstruct the proof and verify all individual steps.
As aresult, we can prove lemmal4_1 with three commands.

@[simp] lemma lemmald4_1 : {P = Q, Q > R} + P = R :=
let prf := Q = R. &
(P=>Q. & A2 PQR. »» (Q > R) = (P > R))
»» P = R
in by {
/- We will verify provability with cut. -/
apply provable_no_cut,
/- prf is the formal proof. -/
existsi prf,
/- Current goal:
(is_proof_cut {P = Q, Q = R} prf) A (TR prf = P = R).
Can be solved by simp. -/
simp}

The last thing we have to pay attention to, is the ordering of children in a proof tree. As we mentioned
when introducing the proof with cut in the section 1.1, the definition is_proof_cut requires certain
ordering of children in its tree representation. To be specific, if a formula P is derived from a lemma
{Q, R} r P,itisrequired that Q is the left child and R is the right child of the node with P. This can be
overcome by introducing a simple lemma equal_assumptions.

lemma equal_assumptions: {P, Q} + R —» {Q, P} + R := sorry

Now, if simp does not manage to verify some formula in a proof because of the ordering, we can use this
lemma (effectively swapping the assumptions) and let simp try again.

So far simp can only apply rules and lemmas tagged with @[simp]. Sometimes however, while
proving a rule we need to introduce some additional mid-proof statements and we want simp to use
them. For those situations we add a star symbol simp *, that allows simp to use all hypotheses available
while proving a given goal. The proof_verifier then looks like this:

meta def proof_verifier : tactic unit :=
‘[/- We will verify the goal as provable with cut. -/
apply provable_no_cut,
/- Tell Lean prf is the proof. -/
existsi prf, split,
/- Let simp solve all the goals it can. -/
all_goals{simp *},
/- Swap assumptions of all remaining goals and let simp try again. -/
repeat{solvel{apply equal_assumptions, by simp *} <|> split}]
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proof_verifier meets congruence

As we have shown that the proof_verifier is able to verify proofs with cut, let us discuss the con-
gruence (or substitution). We do not actually have to change anything about the proof_verifier tactic
to make it able to verify congruence. In this section, we will teach simp how to deal with congruence by
supplying it with some more lemmas.

An example of congruence could be the following statement {~~P L ~~Q} + P U Q, where using
lemma lemma23_poml, the exchange of ~~P and ~~Q for P and Q is performed. How does simp verify
this example will be discussed below.

@[simp] lemma lemma23_poml: + (~~P & P) := sorry

example: {~~P L ~~Q} + P LU Q := by simp

The verification of congruence is based on so-called congruence lemmas. These lemmas show that
such exchange is at all possible under our logical connectives.

@[simp] lemma congr_imp_left: T'+F P & Q >T+ (P =9S) & (Q = S) := sorry
@[simp] lemma congr_imp_right: '+ P © Q > T+ (S = P) & (S = Q) := sorry

@[simp] lemma congr_imp_prem:
IrPosQ—->T+SR->TFE=P) o (R=>0Q :=sorry

@[simp] lemma congr_neg: '+ (P © Q) —» I' + ~P & ~Q := sorry

Note, that using these lemmas we could prove more general statement: having formulas P, Q and R we can
swap all occurrences of P in R with Q, which could be written as {P < Q} + R(P) < R(Q). Although
this is useful to justify congruence on paper, it is a bit too general for our automated verification. The
problem is, that the general statement does not give Lean many hints as to where exactly the substitution
happened and how to verify it, which leads to a lot of inefficiency. Using these four lemmas directly
means that simp can deconstruct involved formulas (effectively performing the proof of the general
statement, if applied on given formulas) and verify the congruence.

In the code, we have a few helping lemmas, that are aiding with the verification of congruence and
its efficiency. One of those lemmas is MP_ekv1, which is directly used in the verification of the above
example {~~P LI ~~Q} + P U Q.

@[simp] lemma MP_ekvl: + (P & Q) — {P} + Q := sorry

Given a goal of form {P} + Q, where Q is derived from P using substitution, simp applies MP_ekv1
and attempts to solve a goal of form + (P & Q) instead. In our example, it amounts to + (~~P L
~~Q) & (P U Q). This goal can be then further simplified using congruence lemmas as demonstrated
below.

We will now deconstruct the individual steps simp does in order to verify our example. It is only mak-
ing use of the congr_imp_prem lemma, but it is easy to imagine that the usage of the remaining congru-
ence lemmas would be similar. We can use the command set_option trace.simplify.rewrite
true, which makes Lean print all successful applications of lemmas, theorems and definitions simp
executed in a given occasion. This is a summary of what is printed for our example. (Note, that P LI Q
= (P > Q) = QforanyPandQ.)



CHAPTER 1. LUKASIEWICZ PROPOSITIONAL LOGIC 20

GOAL: {(~~P = ~~Q) = ~~Q} + (P = Q = Q

-> simp applies MP_ekvl

GOAL: QO F ((~~P = ~Q) = ~Q © (P =0 = Q©
-> simp applies congr_imp_prem

GOAL 1: O F (~~P = ~0Q) © (P =2 Q
-> simp applies congr_imp_prem

GOAL la: O+ ~~P © P

-> simp applies lemma23_poml

GOAL 1b: 0+ ~~Q & Q

-> simp applies lemma23_poml

GOAL 2: O r ~~Q & Q
-> simp applies lemma23_poml

An example of one more helping lemma can be congr_bin.
@[simp] lemma congr_bin: {P > Q, Q = P} +r S & R - {P © Q, S} + R := sorry

Here, the substitution is happening between formulas S and R. Specifically, we are either exchanging P
for Q, or Q for P, in either S or R. None of this has to be specified, thanks to the equivalency P < Q
being split into two implications and the equal_assumptions lemma. congr_bin is very similar to
the MP_ekv1, but unlike MP_ekv1, it allows us to use also equivalence formulas, that were proven within
the same formal proof.

Note that the form of the rules introduced in this section is not arbitrary, but was carefully selected to
optimise the time required for the proof to be found. E.g., there are different simp lemmas to be used for
theorems, unary and binary rules. Finally, we note that the order of lemmas is important as well, since
simp first tries to use the lemmas written later in the code (so lemmas without assumptions are used
first).

Proof by cases

After proving some beginning results, namely lemmal4_3_pom3, lemmal4_5_pom3_rule and
lemmal5rule, we can prove the proof by cases theorem. This theorem becomes quite important in
the course of completeness proof. The proof of proof by cases is quite technical and arguably not too
interesting, therefore it is not described here. The interested reader is referred to the full code.

lemma lemmal4_3_pom3 : {P} + (P U Q) := sorry
lemma lemmal4_5_pom3_rule : {P U P} v P := sorry
lemma lemmal5rule : {P U Q, (P > R) UQ} R U Q := sorry

theorem proof_by_cases (hp : ' U {R} + T) (hgq: A U {S} + T)
: AUT U{RUS}H+HT := sorry



Chapter 2

Proof of completeness

2.1 Syntactic preparation

The syntactic preparation consists of theorems 34 to 40. Those are complex statements about the
provability relation not too different from the derived rules of Lukasiewicz logic in the previous section.
However, compared to those rules, these theorems are longer, more complex and most have additional
hypotheses. An example of such a theorem can be theorem36.

theorem theorem36

(hl: - ~V U W)

(h2: +rRe (W Z2) &)

(h3: -+ ((We Z2) &X) ©89)

hd: + Te (W Y) &)

(5: - ((WeY) &X)) ©U)

FRDY) &S ©« (T Z2) &0U) :=

have a: + R YY) & W Z) ©« (T Z) & W Y), from lemma35 h2 h4 hil,

letprf ;= ((Re VN & W2 ©c(ToZ) & WaY). »
(ReoN&@We2D&X) © (T2 & WY &X)) »
((ReVN&(Woe2&X) (T &(WaY) &) »
(R Y) &S ©« (Te 2) &)

in by proof_verifier

With these theorems we are getting a step closer to the proof of completeness, with most of them used to
prove statements about polynomial formulas in the next section.

2.2 Polynomial formulas

Having the syntactic preparation theorems, we can prove more results about the provability relation,
this time focusing on a special type of formulas. Those are theorems 44 - 60 and they play a direct role
in the proof of completeness. We will refer to them as the PF theorems. These formulas are called poly-
nomial formulas and they are recursively generated by linear functions with multiple variables, which
we call polynomials. The recursion is executed using degree of a polynomial, which is a sum of its coef-
ficients in absolute value. We will first define polynomials, then define a set of polynomial formulas and
discuss well founded recursion, which allows us to perform recursion over degree of polynomial. After
that, we will show some example theorems and in the end talk about a tactic that makes applying these
theorems easier.

21
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As mentioned, the polynomials are linear functions with multiple variables of shape a + Z?:_Ol bix;,

where given n natural, a, by, by, ..., b, are integer coefficients, and xgp, xi, ..., X, are rational
variables. Since these functions are characterised only by their coefficients, our Lean definition uses only
those. We divide the coefficients into the absolute coeflicient a and the rest, i.e. bg, by, ..., b,_1. The

first coefficient a is one integer, type Z. The rest of the coefficients can be represented as a finite series
of length n. In Lean, this kind of series would be defined using fin n. The type fin n is a subtype of
natural numbers that consists of numbers strictly smaller than n. Thus, the series can be represented as
type fin n — Z. We put this together into a product type. (Of course, the n natural needs to be present
in the definition, too.)

def poly_fun (n: N) :(=Z X ({inn — Z)

Next, we define two special polynomials: a constant polynomial and a polynomial xj. The constant
polynomial is a polynomial with all coefficients except the absolute one equal to zero. The polynomial
xj is aninjection of fin ninto poly_fun n,i.e. itis a polynomial, that has all coeflicients equal to zero
except for coefficient b; = 1 for some i. We also need a function that returns the value of a polynomial
and, of course, a function that returns its degree. Since the poly_fun is a product, we can use the notation
(..., ...)to define individual components Z and (fin n — 7Z) and .1 and .2 to access them. Note
that the val function takes in as variables the truth values of atoms under evaluation v. This is the only
application we need.

/- Constant polynomial f(x) = a. -/
def cons (a: Z): poly_fun n := {(a, (A i, 0))

/- Polynomial f(x) = xj. -/
def xj (j: fin n): poly_fun n :=
0, (Ai, if i = j then 1 else 0))

/- Value of a polynomial. -/
def poly_fun.val (v: eval): poly_fun n —» Q :=
A, £.1 +2Xdi, £.21 % (v i)

/- Degree of a polynomial. nat_abs is an absolute value on integers. -/
def poly_fun.degree (f: poly_fun n): N :=
X i, (£.2 i).nat_abs

/- Symbols and notation. -/
prefix ‘o : 100 := poly_fun.degree
prefix ‘C' : 100 := poly_fun.cons

notation v ‘' := poly_fun.val v

Note, that the degree, being a sum of absolute values of integers, is always a natural number. Also, if it
is equal to zero for some polynomial £, then f is a constant polynomial.

In order to work with poly_fun, it would be nice to know that the type has some algebraic proper-
ties. Using the fact that the type is based on Z, Lean automatically defines an addition, subtraction and
multiplication on poly_fun using these operations on Z. These new operations are defined point-wise.
On top of that, with these operations, poly_fun inherits the ring properties of Z. Therefore, with no
additional work, we can, using the ring tactic, prove for example (C 1 is a constant polynomial with
absolute coefficient equal to 1).

variables (n: N)(f g h: poly_fun n)

example : £+ g - (C1+h)=-Cl+g-h+ £ :=Dbyring
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Let us move on to the definition of a set of polynomial formulas. Assume a polynomial (f:
poly_fun n). Set PF f of polynomial formulas generated by f is defined recursively on o f, i.e.
the degree of £. The definition of PF is quite complicated, but will hopefully be understandable with a
few comments: we assume that o £ = 0 and get two possible shapes of PF based on the sign of the
absolute coeflicient of f. In the induction step, we do a union over all positive and negative coefficients
of £, each of them generating a special set (note that since & £ # 0 at least one such coefficient must
exist). These sets are where the recursion is hidden. Remember, that .1 (type Z) is the absolute coeffi-
cient of f,that £.2 (type fin n — Z) is the sequence of remaining coefficients, and that p is the atom
constructor of Form. Note the overall notation and using_well_founded sequence at the end of the
definition.

def PF: V £f: poly_fun n, set Form
| £ :=
/- Case o £f=0. -/
if h: ¢ £ = 0 then begin
by_cases (f.1: Q) > 0,
-- in case that f.1 >
exact {K | 31i <n, K
-- in case that f.1 <
exact {K | 3i <n, K=~(pi=pi)} end
/- Induction step, o £f# 0 (i.e. o £>0). -/
else begin
-- union over all i: fin n
exact | i,
begin
-- for each (f.2 i) coefficient we get a set
by_cases 0 < (f.2 i),
-- for every (f.2 i) > 0

pi=pi},

=1 <

exact {K | 3 Q € PF (f - xj 1) ,
dRePF (£f+C1-xj i),
K=(@Q®&pi) &R},

by_cases h_1: £.2 i = 0,

-- for every £.2 1 =0

exact {},

-- for every £.2 1 < 0

exact {K | 4 Qe PF (£ -C1+ xj i),
dR € PF (£ + xj 1),

K Q& ~p i) & R}
end
end
using_well_founded {rel_tac :=
A _ _, ‘[exact ( _, measure_wf (@poly_fun.degree n))],
dec_tac := ‘[simp [*, measure, inv_image]]}

The using_well_founded tactic allows us to do recursive definitions and inductive proofs using a
custom well-founded relation. In our case the relation is the measure of poly_fun.degree,ie. A f

g, o f < o g. The relation used is specified in the rel_tac := ... part of using_well_founded.
In fact, the relation is implicit in term measure_wf (@polyfun.degree n), which is a proof of the
fact that measure o is, indeed, well-founded. The dec_tac := ... part specifies a tactic that should be

used to determine whether the inductive applications inside the definition are decreasing, hence reaching
the initial step o £ = 0 in a finite amount of steps. To be specific, the tactic simp [*, measure,
inv_image] should be able to find proof of & (f - xj j) < o f given £.2 j > 0, so that the
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recursive usage of PF (£ - xj j) is justified (similarly for the other three recursive calls of PF in the
definition). To prove these inductive statements, we introduce several "degree simp lemmas". Two of
these lemmas are stated below. There are different variants of these lemmas in the code to fit all instances
we encountered. Note that one can, similarly as before, list all simp lemmas used to prove these induction
assumptions by using set_option trace.simplify.rewrite true.

variables{n: N}{j: fin n}

@[simp] lemma sum_abs_lt_degree (hb : £.2 j < ®Cf : c £ =m + 1)
0o (f+xj j) =m := sorry
@[simp] lemma sum_abs_gt_degree (hb : £.2 j > ®O)Cf : c £ =m + 1)

0o (f -%xj j) =m := sorry

While proving theorems with polynomial formulas it is often required to take an arbitrary element
from some PF £f. To be able to do this, we need to know that such an element exists, i.e. that the set
PF f is not empty. On paper, it is "apparent” for any f, in Lean, we have to prove it. The instance
nonempty_pf can be proven by induction on the degree. (The dec_tac is slightly changed compared to
the PF definition for internal reasons of the proof.)

instance nonempty_pf: V f: poly_fun n, nonempty (PF f)

| £ := sorry

using_well_founded {rel_tac :=
A _ _, ‘[exact ( _, measure_wf (poly_fun.degree))],
dec_tac :='[simp at hi, simp [*,measure,inv_image]]}

We can easily rephrase this into a lemma of more useful shape.

lemma exists_form_in_pf (f: poly_fun n): 3 P: Form, P € (PF f) := sorry

Example theorem

A simple example of a theorem from this part of the completeness proof could be lemma 45, whose
statement is the following:

Y (f: poly_fun n.succ), YV (P Q€ PF £), v+ (P © Q)

Generally, the theorems discuss provability results about polynomial formulas, in this case two formulas
which both belong to the PF set generated by the same function f£. Overall, the theorems follow the
pattern

V/-some poly_funs-/, V/-formulas from some PF sets-/, /-provability result-/.

Most theorems from this part are proven by induction on degree. Such proofs then usually go the
following way: the starting case o _ = 0 is proven using derived rules and previous PF theorems,
utilising the knowledge of how PF _ looks given that o _ = 0. The induction step then creates some
mid-proof provability statements using previous PF theorems and induction hypothesis. The proof is
often closed by applying some theorem from the syntactic preparation section 2.1. As an example we
can use the aforementioned lemma 45. The proofs of lemmas 45 and 46 are intertwined, therefore the
lemmas have to be put into a single statement lemma45_46. Here, we will focus on lemma 45. We will
start with sketching the proof of the starting case oo £ = 0, which for lemma 45 involves two simple
formal proofs:
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lemma lemma45_zero:
VY f: poly_fun n.succ, c £ = 0 —
YVPQePFIf, r (PoQ :=
begin
/- Thanks to o f = ® we know what P € PF f and Q € PF f look like. -/
--if f.1 >0, then P= (p i = p i) and Q = (p j = p j) for some i and j
let prf :=pi=>pi. & pj=pj. »»
pi=pd)e Pji=pij) --1i.e PeQ
by proof_verifier,
-- if f.1 <0, then P=~(p i =>pi)and Q=~(p j = p j)
let prf = (pi=>pi. » ~(pi=pi)) &
@®ji=pj-»~@ji=pi»N
P> ~(pi=>pi)e~pPj=>pij) --1i.e.P&Q
by proof_verifier
end

Next, we can sketch the rest of the proof of lemma 45. We focus on one sub-part of the proof, the
case £.2 j > 0, £.2 k > 0, i # k as you can see below. Unfolding PF definition, we can derive
the shapes of P € PF fand Q € PF (£ + C 1). Then, using the exists_form_in_pf lemma, we
introduce new polynomial formulas into the proof. After that, we prove helping statements hl, h2,
h3, h4, h5, in this case using only the inductive hypotheses, and finally close the goal by applying
theorem36.

lemma lemmad5_46 : V (f: poly_fun n.succ),

(W PQePFDH, r e QYQ)A -- lemma 45

(W PePFEHQePF (£f+CL), r~PUQ -- lemma 46
| £ :=

begin

/- Case o f = 0 comes from lemma45_zero. -/

/- Case o f # 0. From unfolding P € PF f and Q € PF (f + C 1) we get the
following formulas:

hR: R € PF (f - xj j)

hS: S € PF (f + C1 - xj j)

hT: T € PF (f - xj k)

hU: Ue€ PF (f + C1 - xj k)

hhP: P= (R®& p j) &S
hhQ: Q = (T® p k) & U -/
--1if j =k

sorry,

--if j # k

-- case f.2 j >0, £f.2 k >0

cases exists_form_in pf (f + C1 + C 1 - xj j- xj k) with Z hZ,
cases exists_form_in_pf (f - xj j- xj k) with V hv,

cases exists_form_in_pf (£f + C 1 - xj j- xj k) with W hW,

/- Formulas Z, V and W were introduced.

hZ: Z € PF (f + Cl +Cl - xj j - xj k)

hV: Ve PF (f - xj j - xj k)

hiWi: We PF (£f + C1 - xj j - xj k) -/

have hl: + ~V U W, -- from the induction hypothesis of lemma 46
have h2: + R & ((V & p k)&W)), -- from the ind. hyp. of lemma 45
have h3: + (T & ((V & p jD&W)), -- likewise

have h4: + (((We&® p kK)&Z) & S), - ...

have h5: + (((We® p jD&Z) & U), - ...
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rw [hhQ, hhP],

exact theorem36 hl h2 h4 h3 hS5,

-- remaining cases and the proof of lemma 46
all_goals{sorry}

end

using_well_founded {rel_tac :=
A _ _, ‘[exact ( _, measure_wf (@poly_fun.degree n.succ))],
dec_tac :='[simp [*, measure, inv_image]]}

As can be seen, the proofs are often split into several cases, based on the definition PF. These
cases, however, are often proven in a very similar manner, exchanging maybe two formulas or some
polynomials. We can take advantage of this using the let := ..., all_goals{} and work_on_goal
n {}tactics. The all_goals { t } applies the tactic t to all goals and succeeds only if all applications
succeed. The work_on_goal n {t} tactic applies t to the nth goal (numbered from 0). The following
example demonstrates how we can use those to solve multiple similar goals at once.

example (nm : N): n<n+1Am<m+1 :=

begin
split,
/- GOAL 0: n < n+ 1, GOAL 1: m<m+ 1 -/
work_on_goal 0 {let m':= n},
work_on_goal 1 {let m':= m},
/- Solve both goals using the "placeholder" m' . -/
all_goals{exact nat.le_succ m’}

end

This technique is utilised in several PF theorems.

One more theorem worth mentioning is the theorem54. In one step of the proof of theorem54 we
have a £ : poly_fun n and are asked to take a coefficient of £ that is equal to zero. Since we know
nothing about the coefficients of f, we have to assume that all coefficients are non-zero. In that case, we
would like to perceive f as a poly_fun (n + 1) with the last coefficient equal to zero. This extension
is defined in the pfcon definition, which projects a poly_fun n into poly_fun (n + 1) by adding
the nth coefficient (equal to zero) while keeping all other coefficients untouched.

def pfcon : poly_fun n — poly_fun n.succ :=
begin

intro f,

split, exact f.1,

intro i,

by_cases hh: i.val < n,

exact f£.2 (i.val, hh),

exact 0
end

This definition and its practical use of course require some basic statements such as e.g. V f, o
(pfcon £f) = o fand V £ P, P € PF £f - P € PF (pfcon £f)), which can be found in the
code.

Having this extension, we can use pfcon f instead of £ and take the last coefficient, which is equal
to zero. This extension is then used in the induction hypothesis, which forces a change in the measure
we use in using_well_founded. The problem with the original measure is that it is a measure on
poly_fun n for previously fixed n, therefore the induction hypothesis only works for poly_fun n.
Because f is poly_fun n, our extension pfcon f£ is of type poly_fun (n + 1). We can, however,
alter the measure to take the n as well, since the relation is well founded over all poly_funs across all
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ns. This makes the induction hypothesis depend on n, enabling us to use it for a poly_fun (n + 1).
The theorem with this altered measure looks like this (the dec_tac is again