
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Graph database services extension

Bc. Filip Uhlík

Supervisor: RNDr. Marko Genyk-Berezovskyj
Field of study: Open Informatics
Subfield: Cybersecurity
May 2022

ii

Acknowledgements
I would like to thank my supervisor,
RNDr. Marko Genyk-Berezovskyj, for
all the good advice he has provided me
througout the writing process. I would
also like to thank Ing. Ondřej Votava, for
his patience and help with the integration
of the application with the CTU single
sign-on service.

Declaration
I hereby confirm on my honor that I per-
sonally prepared the present academic
work and carried out myself the activi-
ties directly involved with it. I also con-
firm that I have used no resources other
than those declared. All formulations and
concepts adopted literally or in their es-
sential content from printed, unprinted or
Internet sources have been cited accord-
ing to the rules for academic work and
identified by means of footnotes or other
precise indications of source. The support
provided during the work, including sig-
nificant assistance from my supervisor has
been indicated in full.

In Prague, 20. May 2022

iii

Abstract
The thesis documents the analysis, design
and implementation of an extension to
the Web Graph Service. The extension
revolves around providing unified access
to graph collections found on the Internet,
by importing them into the application’s
database. The code and some problematic
parts of the original application as well as
the deployment process are analyzed in
the first part of the thesis.

The extension is designed as a back-
end service written in Python. The new
service oversees the contents of the graph
database and provides a management API
only accessible to administrators. The de-
sign part focuses on choosing a suitable
web framework for the new service as well
as improving some of the problems found
during analysis. Automation of the de-
ployment process is also designed using
GitLab CI/CD pipelines.

The implementation part of the thesis
describes some of the implementation de-
tails with the help of code snippets of the
new application and the pipeline configu-
ration.

The result of this work is an extended
application that can import collections
from various Internet sources. It supports
three different file formats in which collec-
tions can occur and three different graph
formats that the collections typically use.
The application is available at
http://graphs.felk.cvut.cz.

Keywords: graphs, graph collections,
web application, python, backend,
database, docker, ci/cd, gitlab

Supervisor: RNDr. Marko
Genyk-Berezovskyj

Abstrakt
Práce dokumentuje analýzu, návrh a
implementaci rozšíření Webové Grafové
Služby. Rozšíření má za úkol poskytnout
jednotný přístup ke sbírkám grafů dostup-
ných na Internetu jejich importem do da-
tabáze aplikace. V první části práce je ana-
lyzován kód, některé problematické části
a proces nasazení původní aplikace.

Rozšíření je navrženo jako backendová
služba napsaná v Pythonu. Nová služba
dohlíží na obsah databáze grafů a posky-
tuje API pro její správu, přístupné pouze
administrátorům. Návrhová část se zamě-
řuje na výběr vhodného webového fra-
meworku pro novou službu a také na vy-
lepšení některých problémů zjištěných při
analýze. Automatizace procesu nasazení
je také navržena pomocí GitLab CI/CD
pipeline.

Implementační část práce popisuje ně-
které detaily implementace pomocí uká-
zek kódu nové aplikace a konfigurace pi-
peline.

Výsledkem práce je rozšířená aplikace,
která dokáže importovat kolekce z růz-
ných Internetových zdrojů. Podporuje tři
různé formáty souborů, ve kterých se mo-
hou kolekce vyskytovat a tři různé grafové
formáty, které kolekce typicky využívají.
Aplikace je dostupná na adrese
http://graphs.felk.cvut.cz.

Klíčová slova: grafy, grafové kolekce,
webové aplikace, python, backend,
database, docker, ci/cd, gitlab

Překlad názvu: Rozšíření služeb
grafové databáze

iv

http://graphs.felk.cvut.cz
http://graphs.felk.cvut.cz

Contents
Project Specification 1
1 Introduction 3
1.1 Feature overview 3
1.1.1 Database contents 3
1.1.2 Adding graphs 4
1.1.3 Retreiving graphs from the
database . 4

1.1.4 Graph collections 4
1.1.5 Deployment 4

2 Analysis 5
2.1 Requirements 5
2.1.1 Graph collections 5
2.1.2 Importing collections 6
2.1.3 Graph formats 6

2.2 Original application structure . . . 9
2.2.1 node-www 9
2.2.2 node-www/compute 10
2.2.3 db_update 11
2.2.4 db_counter 12

2.3 Deployment 13
2.3.1 Dockerized applications 14
2.3.2 CI/CD 15

3 Design 17
3.1 Importing collections 17
3.1.1 Administrator access 19

3.2 Extended application structure . 20
3.3 Database schema 20
3.4 Communication with the database 21
3.4.1 SQLAlchemy 22

3.5 Database migration 22
3.6 Web framework choice 23
3.6.1 Django 23
3.6.2 Flask . 24
3.6.3 Connexion 26
3.6.4 FastAPI 27
3.6.5 Result . 28

3.7 API design 29
3.7.1 POST /compute 29
3.7.2 GET /collection 29
3.7.3 POST /collection 30
3.7.4 GET
/collection/{name}/{resolution} . 30

3.7.5 DELETE /collection/{name} 31
3.8 Manage collections UI 31
3.9 Deployment 32

4 Implementation 35
4.1 Application structure 35
4.1.1 Config . 36
4.1.2 Database 36
4.1.3 Exception 37
4.1.4 Model . 38
4.1.5 Routers 39
4.1.6 Services 39
4.1.7 Utils . 45

4.2 Dockerization 47
4.3 Docker Compose 49
4.4 GitLab Pipeline 49
5 Conclusion 53
5.1 Future improvements 53
Bibliography 55
Appendix 58
A Graph formats 58
B Source code 59

v

Figures
2.1 House of Graphs collection example 7
2.2 Brandon McKay data page 8
2.3 Encyclopedia of Graphs collection
download . 8

2.4 Compute & insert page 11
2.5 Complete collections page 13

3.1 Collection lifecycle swimlane
diagram . 18

3.2 Collection table diagram 21
3.3 Model-Template-View diagram . 24
3.4 Flask route example 25
3.5 OpenAPI endpoint definition . . . 26
3.6 Python type hints example 27
3.7 Manage page wireframe 32
3.8 Deployment diagram 34

4.1 Configuration class example 36
4.2 Main Config class 37
4.3 Database query encapsulation . . 37
4.4 Exception handler example 38
4.5 Graph properties enum 39
4.6 Router function definition 40
4.7 FastAPI dependency injection . . 40
4.8 Compute properties function . . . 42
4.9 Download graphs function 44
4.10 Convert functions 45
4.11 Basic functions from the
collection service 46

4.12 Calling functions annotated with
@with_session 46
4.13 Dockerfile implementation 48
4.14 Docker compose service example 49
4.15 Service variables template 50
4.16 Production variables template . 51
4.17 Job created by a combination of
templates . 51

4.18 Build and deploy jobs templates 52

Tables
3.1 Web framework features 29

4.1 Pipeline jobs matrix 50

vi

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474489Personal ID number:Uhlík FilipStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Cyber SecuritySpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Graph database services extension

Master’s thesis title in Czech:

Rozšíření služeb grafové databáze

Guidelines:

Propose and implement an extension of application http://graphs.felk.cvut.cz/.
The extended application will offer unified access to graph data files located in Internet outside the FEE CTU domain. The
access will be structured analogously to the access to the internal data of the current application.
Propose the architecture of the extension and realize it. In particular, concentrate on the following:
-- Mechanism of integrating data collections obtained from Internet in the extended application and a unified form of data
presentation to a user.
-- Automating a process of deployment of current and future modifications of the entire application.
-- Administrator and user roles in the extended application.
Demonstrate the operation of the extended application using graph data obtained from the given repositories. Optionally,
include also other repositories according to your choice.
https://hog.grinvin.org/
http://atlas.gregas.eu/
http://users.cecs.anu.edu.au/~bdm/data/
Describe the development instruments used in the extended application and provide programmer‘s documentation of the
whole project.

Bibliography / sources:

[1] Jonathan L. Gross, Jay Yellen: Graph Theory and Its Applications, Chapman and Hall/CRC, 2018
[2] Robert Sedgewick: Algorithms in C++ Part 5: Graph Algorithms, : Addison-Wesley Professional, 2002
[3] Martin Mareš, Tomáš Valla: Průvodce labyrintem algoritmů, CZ.NIC, z.s.p.o., 2017

Name and workplace of master’s thesis supervisor:

RNDr. Marko Genyk-Berezovskyj Department of Cybernetics FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 11.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureRNDr. Marko Genyk-Berezovskyj
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

Chapter 1
Introduction

Web Graph Service, or Graphs in short, is a web application hosted at
http://graphs.felk.cvut.cz/. It has been created and extended by other
CTU students in the past. Part of the application is a database with a
considerable amount of graphs and their computed properties (such as the
maximum and minimum degree of a vertex, whether the graph is asymmetric,
biconnected, hamiltonian, a tree etc., 41 properties in total). Only undirected,
simple, non-weighted graphs are supported. The application UI then allows
the user to retrieve the graphs according to selected properties. The goal
of this work is to add support for importing graphs from graph collections
found in various Internet sources into the database, calculate their properties
and give the user the option to filter and view the imported graphs.

1.1 Feature overview

The application has been deployed in production since 2018 and has been
providing a set of features, which are described in this section. This section
also gives a brief overview of the changes made to these features as a result
of this work. The version of the application from the year 2018 will be
throughout the thesis referred to as the original application. The version
of the application that is the result of this work will be referred to as the
extended application.

1.1.1 Database contents

The database of the original application contains all graphs up to the order
of 10 vertices. Two properties, genus and toroidal, were not computed for
almost any of the graphs larger than 3 vertices. The database of the extended
application currently contains all the graphs up to 9 vertices, while the graphs
on 10 vertices are still being recomputed. In addition to that, it also contains
around a 1000 larger graphs up to the order of 150 vertices, that were added
during the development. The extended application attempts to compute all
the properties within a time limit, including the two properties ignored by
the original application.

3

http://graphs.felk.cvut.cz/

1. Introduction
1.1.2 Adding graphs

When adding graphs to the original application, they need to be copied to the
server and a script must be executed to compute the selected properties. The
extended application can add single graphs via a part of the web UI, which
does not work in the original application, or multiple graphs by importing a
collection of graphs from the Internet. Even though the collection must be
stored on a specific URL, the users do not have to rely on external sources.
They can create their own collections and put them for example on their
personal webpage, or any other URL. Graph collections are introduced in the
Section 2.1.1.

1.1.3 Retreiving graphs from the database

The original application allows the users to view the graphs stored in the
database via a web user interface. The UI allows to filter the graphs based on
their properties. This feature is preserved in the extended application. The
filtering functionality has been extended by the option to limit the search to
a context of one or more graph collections.

1.1.4 Graph collections

The original application provides a static information about the complete
collections of graphs present in the database. This whole feature is removed
from the extended application in favor of the new interactive feature that
provides the users with the option to suggest their own collections for import
and interactively search graphs stored in these collections.

1.1.5 Deployment

The original application is deployed manually and runs directly on the server
machine with a large amount of undocumented external dependencies, that
need to be installed on the system. The extended application is dockerized
into multiple docker images with all the dependencies preinstalled. The docker
images are built and deployed on the server in an automated CI/CD pipeline.

4

Chapter 2
Analysis

The chapter discusses the application extension requirements in more detail.
It also describes the original structure of the application’s code and some of its
problems. Finally, it describes the way of deploying the original application
and presents some concepts that modernize the process applied as a part of
this work.

2.1 Requirements

The proposed extension of the application revolves around providing a unified
access to graphs from collections put up on the Internet by graph experts. The
unified access is realized by importing the collections into our database and
allowing the users to limit themselves to work only with graphs from specific
collections. The original application already provides a solid user interface
which enables the users to query, view and download graphs stored in the
application database. The existing UI can be used to serve the collections
with only slight adjustments. Therefore no extensive work on the frontend is
required, most of the changes are done on the backend.

2.1.1 Graph collections

First, let’s go into more detail on what a graph collection actually is. A graph
collection is a set of graphs in which all graphs share a specific distinctive
feature. The collection must not contain two isomorphic graphs. Isomorphic
graphs are two graphs which contain the same number of vertices connected
in the same way. Formally described in Diestel’s Graph Theory[1]: Two
graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijection
φ : V → V ′ with {x, y} ∈ E ⇔ {φ(x), φ(y)} ∈ E′ for all x, y ∈ V .

The collections are typically complete, at least up to a given order. This
means that there exists no graph which has the collection defining properties
and which is not included by the collection. The number of collections is almost
infinite, as the creator of the collection can freely combine the properties that
define it. Though it may be obvious, it should also be mentioned, that a
single graph can be part of many different collections.

5

2. Analysis
There are a number of websites hosting various graph collections. The

collection is usually a file, in which each line represents in arbitrary format
vertices and edges of one graph. We typically know nothing about the
graphs apart from the properties which define that collection. The extended
application is able to associate the graphs with the collections they belong
to. Then the users are allowed to limit themselves to certain collections
and continue working only with the graphs from these collections. The
original database holds a collection of all graphs up to the order of 10 vertices
with some of their properties computed and stored as well. It may not
look like much on the first glance, but this collection consists of 12,293,435
non-isomorphic graphs.

2.1.2 Importing collections

Now that it is more clear what collections are, it is necessary to talk about
what is meant by importing a collection. As stated in the previous section,
the graph collections are usually available on the web as text files containing
graphs represented by various formats. When importing such collection into
our application, two things can happen. First, the graphs in the collection
are already present in our database with their properties computed. In this
case, importing the collection means merely labeling the graphs in our system.
Second, some or all of the graphs in the collection are not included in our
database. In that case, they need to be added and their properties computed
first.

Adding graphs to the database in the original application is a tedious
process completely inaccessible to the application users. To add graphs and
compute their properties, an administrator must log in to the server hosting
the application. He/she must copy a file containing a list of graphs in a specific
format to the machine and run an import script. Computation of some of
the properties falls into the NP class of problems. Therefore, especially when
dealing with larger graphs, the person doing the import needs to carefully
select the properties he/she wishes to compute or he/she could get stuck on
such difficult computation, as there is no timeout mechanism implemented,
potentially leading to the need to stop the script and run it again without the
difficult property. To address these issues, the extended application provides
a proper functioning interface for adding and computing one or multiple
graphs, accessible from outside of the server’s filesystem.

2.1.3 Graph formats

Before actually importing any collections, exploration of the most common
graph formats in the collection sources from the thesis assignment is needed.
First, let’s look at the graph collections available from the House of Graphs [2].
Some lists are hosted directly on the website, while others are provided as
links to pages hosted elsewhere. Only the collections hosted directly on House
of Graphs are considered. Each collection page gives a brief description of
the collection attributes and a table with links to the individual collections

6

.................................... 2.1. Requirements

by the number of graph vertices. An example of such page can be seen in
the Figure 2.1. The table also shows the total number of graphs included in
the given collection. When following one of the collection links, the actual
collection file contents can be seen. On each line there is a string of ASCII
characters, for example:
E~z_
E^rG
E}vO
These strings represent a graph in the Graph6 format, invented by Brendan
McKay [3]. The format is also very well described in Herbert Ullrich’s bachelor
thesis [4] on pages 8 and 9. The larger collections are provided as a compressed
file and have a .gz extension.

Figure 2.1: An example of collections available from the House of Graphs website

Moving on to the next collection source, the Brendan McKay’s website [5].
Following the link to Brendan’s data page presents us with with a simple
website containing not only graph collections, but other types of combinatorial
data as well. As can be seen from the Figure 2.2, the page states that unless
otherwise specified, graphs are presented in either Graph6 or Sparse6 format.
It also states, that larger files are compressed and have a .gz extension, the
same way it is in the House of Graphs.

One of the other formats can be seen in the collections of trees available at
http://users.cecs.anu.edu.au/~bdm/data/trees.html. Graphs in these
collections are represented by an edge list. Each edge in the list is represented
by two integers, separated by a space, denoting the vertices which the edge
connects. The edges are then separated by two spaces, encoding the whole
graph into one line. An example of a graph encoded by an edge list is as
follows: 0 7 0 8 1 7 1 9 2 8 3 9 4 9 5 9 6 9.

7

http://users.cecs.anu.edu.au/~bdm/data/trees.html

2. Analysis

Figure 2.2: The data webpage of Brandon McKay’s website

The last collection source mentioned in the thesis assignment is the En-
cyclopedia of Graphs [6]. The main page of the website provides a link to
the list of collections hosted on the website. The collections are available for
download in form of a .zip file containing the Sparse6 codes of the selected
graphs, as can be seen in the Figure 2.3. The zip file is composed of multiple
text files, one for each graph present in the collection. Each of these text files
contains a string of Sparse6 representation of a graph.

Figure 2.3: Download of a collection from Encyclopedia of Graphs

8

............................. 2.2. Original application structure

Links to the detailed descriptions of the mentioned formats, as well as other
graph formats is available in the Appendix A. In conclusion, there are three
possible ways of obtaining data of a collection. The extended application
supports all of them:. Downloading a text file with one graph per line. Downloading a gzip compressed text file with one graph per line. Downloading multiple zipped files with one graph per file

And there are three graph formats widely used accross the explored collections.
The extended application can parse all of them as well:.Graph6. Sparse6. List of edges

2.2 Original application structure

Next, let’s explore the source code of the project. The web application is
written in JavaScript. It uses the Express framework for backend and ReactJS
for frontend. The database used to store the graphs and their properties
is Postgres. The scripts for adding graphs into the database, mentioned in
Section 2.1.2, are written in Python. There are also some other Python
scripts which will be described in the upcoming sections. The source code is
divided into four main parts, each residing in a specific directory.. node-www. node-www/compute. db_update. db_counter

The following sections will go into more detail on each of them.

2.2.1 node-www

This directory contains the web application’s JavaScript code, both frontend
and backend. The backend is based on Express. According to its documen-
tation [7], Express is a lightweight web framework, which can be used to
handle HTTP communication and thus provide an API encapsulating the
communication with the graph database. The framework is also capable
of serving static HTML, CSS, and JavaScript files to be interpreted by the
browser. Apart from providing data from the database, the API can also
serve images of the graphs, which are created using the Graphviz software.
For more information about Graphviz, refer to its documentation [8]. Going
into more detail on Graphviz is not relevant for this thesis, as the graph
visualization functionality is left untouched.

9

2. Analysis
The frontend is a Single Page Application written using the ReactJS

framework. Single Page Applications typically load all the application’s
clientside HTML and JavaScript code when the user first visits the webpage.
The JavaScript code then makes asynchronous requests to the server to fetch
additional data. Based on the received data it dynamically updates the UI
presented to the user. This allows for a very fluent user interface because the
browser does not need to make new requests every time the user navigates
the screens inside the application. However, the downside of this approach
may be a longer initial loading time of the website. The response to the first
request tends to be quite large, as it usually contains the whole application.

According to the documentation [9], React allows to create reusable com-
ponents. Each component can have its own state which might modify its
appereance. The components can be then combined to create the UI as a
whole. The framework takes care of which components to render based on the
user’s webpage navigation and inputs. The components can be written either
as classes or as functions. The return value of the functional component or
the render method of the class component describes what the UI should look
like. This is usually done by JSX, a syntax extension to JavaScript. JSX uses
HTML tags with embedded JavaScript code.

Before being served to the clients, the frontend code is bundled using
Webpack. This allows the React components to be "compiled" into vanilla
JavaScript, easily interpretable by most modern browsers. The result of this
is a single JavaScript file containing all the clientside code. The bundle does
not contain human readable code, as it is usually condensed into a single
line to save as much space as possible, resulting also in time being saved
when the file is transported over network. The version of Webpack has been
upgraded in the extended application to support newer versions of JavaScript
server-side runtime. More information about Webpack can be found in its
documentation [10].

The application UI contains a page showing the user an option to insert a
graph and compute its properties. However, due to the implementation of
adding graphs in the original application, discussed in Section 2.1.2, the page
does not work and when the user tries to insert a graph, a loading spinner
appears and never finishes. This is captured in the Figure 2.4 and it leads to
a very poor user experience. The Section 3.7 describes how is this solved in
the extended application using a proper functioning API.

2.2.2 node-www/compute

The subdirectory of the web application contains the logic for computing
graph properties using different mathematical libraries, either Sage [11], Net-
workX [12] or Wolfram [13]. One of the original backend API endpoints
(/api/graph) was to allow you to choose which properties and library to use
to calculate a given graph. However, the endpoint does not work, causing the
infinite spinner mentioned in the Section 2.2.1. This functionality was proba-
bly superseded by the manual graph adding described in the Section 2.1.2,
which partly reuses the code for Sage calculations.

10

............................. 2.2. Original application structure

Figure 2.4: A non-functioning page for inserting new graphs into the database

2.2.3 db_update

This Python module encapsulates some of the database management, already
touched upon in the Section 2.1.2. Mainly adding new graphs and computing
their properties. The scripts are supposed to be executed via a bash script,
which is used to parse and validate commandline arguments. To compute the
properties, they import some of the code from the Sage computation engine
residing in the node-www/compute directory.

The way the scripts communicate with the database is very questionable
to say the least. The Python code does not connect to the database directly
using a Postgres database adapter. Instead, for each database query, it spawns
a subprocess of psql. Cited from the documentation [14]: "psql is a terminal-
based front-end to PostgreSQL. It enables you to type in queries interactively,
issue them to PostgreSQL, and see the query results". After spawning the
subprocess, the scripts then send the SQL query as a string to the standard
input of the subprocess and parses the results from its standard output. This
approach is flawed on multiple levels. Even though SQL injection does not
concern us here because the queries are being run by the administrator, the
usage of raw strings for representing database queries is still considered bad
practice. Writing queries as strings is very prone to error and it makes the
code less readable and maintainable. Another issue with this approach is the
performance impact. Creating a new process as well as establishing a new
connection with the database for each query is very costly. This is in contrast
with the over-optimized queries the original author has created, including
dropping the index of the updated columns or creating temporary tables for
faster insertions, which further decrease the code readability. This is fixed in

11

2. Analysis
the extended application by using the SQLAlchemy library, which is described
in the Section 3.4.

One of the requirements in the original project specification was for the
database to be extensible for the calculation of new graph properties. It
can be extended, but again, it is quite a lengthy process. To extend the
database and compute new properties, the database schema must be manually
edited by connecting to the database and running an ALTER TABLE SQL
command. Then it is needed to add the property to the Sage calculation
definitions in node-www/compute. And finally a JSON file containing all
the column definitions must be edited in the db_update directory, before
running the update script to compute the new property. Although it works,
there is still room for improvement. The extended application improves this
by incorporating database migrations, described in the Section 3.5, and the
implementation of the computation engine, described in the Section 4.1.4 and
the Section 4.1.6.

2.2.4 db_counter

This is a set of Python scripts that also attempt to enter some kind of
information about graph collections into the database. The scripts run a set
of queries that check the number of selected graphs present in the database
against a verified source providing the number of graphs belonging to the
collection. Based on this it claims that the whole given collection is included
in the database and stores the information in a separate database table.
However, it provides no further interaction with the graphs or the collections,
it simply states that it is there. These scripts also need to be run manually
on the server.

The original UI contains a page showing the data created by these scripts.
The page can be seen in Figure 2.5. This feature provides users with only
limited value in the form of static information about the underlying graph
database. The fact that the description visible in the user interface ends in
the middle of a sentence also suggests that it may be an unfinished concept.
This problem is solved by the removal of this whole feature from the extended
application, described in the Section 3.2.

12

..................................... 2.3. Deployment

Figure 2.5: Complete collections page in the original application

2.3 Deployment

After examining the source code, we can take a look at the deployment process
of the original application. The application as well as the database is deployed
on a virtual machine provided by the CTU IT Centre [15]. The machine
contains a cloned copy of the project’s git repository. The deployment is
done by manually logging in to the server, pulling the latest changes from
git, repacking the frontend code and finally restarting the whole JavaScript
application. The host system environment has been set up manually by the
authors of the original application during the development.

The environment needed to run the application is quite hard to recreate,
as it requires other external software installed on the system. However, there
is no single source specifying the needed software and its configuration. One
must go through the multiple README.md files present in the repository, to
find some of the information. Reading the documentation provided in these
markdown files is not enough, because some of them are extremely outdated
and even the ones up to date do not convey all of the needed information.
Some of it can only be found by exploring the application’s configuration files,
the source code and by running the application until it fails with an error.
The complete list of external dependencies is following:. nauty.Graphviz. Sage. g++

13

2. Analysis
.make. psql

The exact database schema is also nowhere to be found in the project’s
source code or configuration. It has been created during the development and
set up directly in the production database on the server. The most efficient
way to recreate the database locally for development purposes that I found
was saving the database schema using the pg_dump [16] utility and then
executing the generated SQL script against the local development database.

The untracked database schema together with the complex list of depen-
dencies makes it difficult to deploy the application in a new location, or to
set up a working development environment. It requires carrying out many
undocumented manual tasks which, without prior thorough knowledge of the
whole system, may lead to many "trial and error" situations.

2.3.1 Dockerized applications

The problems stated in the previous Section can be solved by the concept of
dockerized application. Dockerized application is packaged into a standardized
unit called a container. Containers contain everything the application needs
in order to run properly - libraries, software, system tools, the application’s
code, and runtime. Docker [17] is then able to build and run these containers.
Thanks to this, none of the application dependencies need to be installed
directly on the machine on which is the application supposed to run, be it a
production server or a developer’s workstation. All that is needed is Docker.

The main building block of dockerized applications is the so-called Docker-
file. Dockerfile serves as a "recipe" for getting the dependencies, building and
finally running the application. The recipe is not only useful for the Docker
engine, but for the developers as well. If it is needed to actually run the
application directly on the developer’s system, for example for debugging, the
information about the dependencies is easily obtainable from the Dockerfile,
as it is composed of simple commands needed to set up the container. The
Dockerfile is versioned in the git repository together with the code, making it
easily accessible and also tied to the version of the application, should the
dependencies change over time.

Docker OS limitations

The containers can be based on various Linux distributions, not limited to the
one running on the machine. Docker then uses the Linux kernel of the host
OS to simulate other Linux distributions inside the containers. Each container
is run as a separate process on the host OS, while Docker uses features of
the Linux kernel (namely namespaces and control groups) to isolate these
containers from one and other for added security.

The fact that Docker needs Linux kernel to run does not mean that it
cannot be used on Windows or Mac. If virtualization is enabled on these
systems, the corresponding versions of Docker run in lightweight virtual

14

..................................... 2.3. Deployment

machine. On Windows 10, version 1903 or later, Docker can even use the
virtualized Linux kernel provided by Windows Subsystem for Linux (WSL).
All of this is completely transparent to the user. Moreover, the Docker for
Windows can also run containers based on Windows images, which is ironically
not possible on a machine running Linux.

2.3.2 CI/CD

Dockerizing the application helps us to firmly define the application’s de-
pendencies and make it easily run anywhere. However, it does not change
the fact that in order to deploy or update the application, the administrator
still needs to connect to the server, pull the latest changes and rebuild the
container. That’s where CI/CD comes into play. CI/CD stands for continuous
integration and continuous delivery. It is typically realized by automated
pipelines, which execute predefined steps each time there’s a new revision of
code in git or before and after a branch is merged.

Continuous integration automates the process of building, packaging, and
testing the application. The project contains a good amount of automated
tests written by Tomáš Roun as a part of his Bachelor thesis [18]. I think
it’s safe to say that there is no one who never forgets to run tests before
commiting a change or merging a branch, and so the execution of the tests
also needs to be automated.

Continuous delivery starts where continuous integration ends and it is
the key to solving the remaining problem. As described earlier, dockerized
applications are extremely easy to get running anywhere. This allows for
trouble-free automation of the deployment process. This automated deploy-
ment can become a part of the CI/CD pipeline provided the tests are executed
successfully. Dockerization and CI/CD go hand in hand and help to make
the developers’ lives easier by automating the manual work associated with
developping applications and allowing them to focus on writing code.

15

16

Chapter 3
Design

The previous chapter explored the requirements of the extension and the
structure of the original application. Based on the performed analysis, it is
necessary to design the application extension and choose the technologies that
are used for the implementation. This chapter describes the flow of importing
collections, the structural changes of the project, the changes regarding the
database and the communication with it, the selection of an appropriate web
framework, the API design and finally the automated deployment.

3.1 Importing collections

As mentioned at the end of the Section 2.1.2, the extended application
provides an API for importing collections and their graphs into our database.
However, we do not want to permit anyone adding any collections. There
still needs to be some kind of supervision over what should and what should
not be imported. Because of that, the extended application now has two
roles - users and administrators. The intended functionality of the original
application is available to the basic users. In addition to that, the users can
suggest a collection to be imported by submitting a name of the collection
and a link to the collection file. The administrator then must resolve these
suggested collections, either by approving or rejecting them.

The lifecycle of the collection is best described by the swimlane diagram in
the Figure 3.1. The collection can be in one of these five states:

. SUGGESTED. REJECTED. APPROVED. INVALID. IMPORTED

17

3. Design..

Figure 3.1: Collection lifecycle swimlane diagram

18

................................. 3.1. Importing collections

For better clarity, the colors of the nodes belonging to the system swimlane
represent the collection state during that step by their color. The legend of
the colors can be found in the top-left corner of the diagram. One of the nodes
uses the word upsert. This basically means update or insert. In the Postgres
database, this is achieved by the ON CONFLICT DO UPDATE clause of
the INSERT statement. Lastly, the diagram shows, that the collection can
get into the invalid state either by the failure of downloading and parsing
the collection or by the failure of upserting its graphs into the database.
The former is the case if the collection cannot be downloaded from the
provided link or when the collection contains graphs in a format unknown
to our application (the supported downloadable file and graph formats were
presented at the end of the Section 2.1.3). The latter reason to invalidate
the collection is tied to the limits of the database. The insertion can fail for
graphs whose Graph6 representation does not fit to the column protected
by a unique constraint in our database. In Postgres, a unique constraint is
implemented with a unique B-tree index. Every index is stored as an array
of data pages of a fixed size of 8kB. The maximum size of an index entry is a
third of a data page, which is approximately 2730 bytes.

3.1.1 Administrator access

When implementing the administrator access, the goal was to make it as
simple as possible for the administrators as well as for the system itself. That
is why it was decided to integrate with the CTU single sign-on (SSO), which
is used for example to log in to KOS. This way our application does not need
to manage a user database and the administrators do not need to remember
special credentials for our application.

After consultation with Ing. Votava from the CTU IT Centre, who is respon-
sible for the SSO authentication, it was decided to integrate our application
via the OpenID Connect protocol. According to the documentation [19], the
protocol works with three actors:. Client - in our case the Graphs application itself. Resource Owner - in our case anyone visiting the Client, reffered to as

"user" in the following paragraphs. Authorization Server - in our case the CTU SSO service

First, the Client was registered in the Authorization Server and specific people
from the CTU domain were granted the admin role within the context of the
Client. This provides us with a client_id of our application. Now, whenever
a user (Resource Owner) wishes to log in, he/she is redirected to the /auth
endpoint of the Authorization Server. The previously mentioned client_id is
a part of this request. The request also contains a redirect_uri, which points
back to the Client. After the user successfully logs in, he/she is redirected by
the Authorization Server back to the redirect_uri with an authorization code.
The Client then calls the /token endpoint of the Authorization Server to
exchange the authorization code for an authorization token. This is a JSON

19

3. Design..
Web Token (JWT), which contains some of the basic information about the
user for whom it was issued by the Authorization Server.

This token is sent with the requests to our API endpoints which require
administrator access. The token contains information about the user’s roles
within the Client application’s context. Based on this, the backend validates,
whether the user can access the endpoint or not. To ensure the users cannot
modify or forge the tokens, they are cryptographically signed by the Autho-
rization Server. The Client backend validates the signature using the public
key of the Authorization Server, which is freely available.

3.2 Extended application structure

After dissecting the original source code structure in the previous chapter, a
new, simplified structure is applied to the project. The proposed extension
adds the ability to work with graph collections in a much more dynamic
way, than currently provided by the db_counter module, described in the
Section 2.2.4. Therefore, after a consultation with the supervisor, it was
decided to remove the whole concept from the application. This includes
removing the db_counter scripts, the corresponding database tables and the
unfinished UI page.

The db_update module is refactored into a full-fledged service overseeing
the graph additions. The code for Sage calculations from node-www/compute
becomes a part of the new service. The non-functioning API endpoint as well
as the other computational engines described in 2.2.2 are discarded, because
they were not in use. The new service serves its own API providing all the
functionality needed for managing the graph database, further described in
the Section 3.7. To keep things simple on the frontend, the client application
still communicates only with the Express backend that is serving it. The
backend acts as a gateway, forwarding some of the requests to the new service
API.

The new service is written in the Python programming language. Python
is an interpreted scripting programming language. It is a hybrid language,
which means that the program does not have to be all object-oriented, but
parts of the program can be procedural. This contributes to better code
readability and overall simplification. Python is the language of choice for its
easy integration with Sage, the option to reuse some of the code from the
manual graph insertion scripts and lastly for the personal preferences of the
author.

3.3 Database schema

To implement the flow described in the Section 3.1 a new table is added to
the graph database. The table holds the collections and their state. The
table is quite simple, as can be seen in the diagram in the Figure 3.2, it has
only three columns - name, url and state.

20

........................... 3.4. Communication with the database

Figure 3.2: Collection table database schema diagram

Some changes are done to the graph table as well to support the extension.
As mentioned in the previous chapter in Section 2.1.2, the computation of the
properties in the original application implements no timeout mechanism. This
was not a real issue, as the computation was being triggered manually and
watched over by an administrator. However, because the extended application
now supports adding graphs from collections automatically, such timeout
mechanism is implemented. To distinguish the graphs with properties, whose
computation timed out, from the graphs, that were added into the database,
but their computation has not even started yet, a boolean column computed
has been added to the table.

To associate the graphs with the collections they belong in, a collections
column has been added to the table as well. The column is of type ARRAY
and contains strings of the names of collections. This approach has been chosen
for its simplicity, as the array column supports the overlap (&&) operator,
which is all that is needed to filter graphs from a specific combination of
collections.

3.4 Communication with the database

As described in the previous chapter in the Section 2.2.3, the original ap-
plication uses a very questionable way to communicate with the database.
Another problem that section describes is the absence of any database schema
tracking, possibly versioned together with the source code. The extended
application kills two birds with one stone by incorporating an ORM layer in
between the database and the application logic.

ORM stands for Object-Relational Mapping. Essentially this means map-
ping the relational schema of a database into classes of a given programming
language. A table in the database then corresponds to a class definition,
columns in the table correspond to the attributes of the class and finally the
actual rows can be represented by the class instances. As the definition of
these classes becomes a part of the application, the schema is now versioned
in git accordingly.

21

3. Design..
The ORM classes are not only used to define the database schema. The

libraries implementing the ORM layer usually provide an abstraction of some
basic SQL queries. This abstraction may include methods on the ORM class
instances like .save() or .delete(), which internally invoke an INSERT or
DELETE SQL statements, or static methods like .getById(), which runs a
SELECT statement and returns the row as an instance of the class. This
abstraction is really easy to work with. However, its uses are limited, as
some of the more complex queries involving table joins, advanced filtering or
operations on a large number of rows cannot be accomplished with ORM in
a well performing manner, or in some cases at all.

3.4.1 SQLAlchemy

As stated in the previous section, querying database using ORM is very
limited. ORM really shines when working with individual table rows, like
fetching an entry as a class instance, modifying its attributes and saving
it back to the database. However, this is not what is usually done in our
application. Typically many graphs are being inserted or updated at once.
That is why SQLAlchemy is the library of choice for the new service of the
extended application. Cited from the documentation [20]: "SQLAlchemy
consists of two distinct components, known as the Core and the ORM. The
Core is itself a fully featured SQL abstraction toolkit, providing a smooth layer
of abstraction over a wide variety of DBAPI implementations and behaviors,
as well as a SQL Expression Language which allows expression of the SQL
language via generative Python expressions". This means that the ORM
classes can be used to track the database schema, while the full feature set of
pure SQL is still accessible, but in much safer and more maintainable way
than hardcoding SQL strings, as it was in the original application.

Another great feature provided by SQLAlchemy is its event system. It
allows for Python functions to be registered as callbacks for specific database
events, like inserts, updates, session commits, etc. This is used for commu-
nication between parts of the new service. There are two use cases for this
in the extended application. First, when new graphs are inserted into the
database by the insert module, the event hook of the update module picks
up on that and schedules a computation of the properties of the new graphs.
The other is when the update module finishes the computation of graphs
properties and updates them in the database, the collection module picks up
on the event and checks, whether it can move any approved collection into
the imported state, as described in the Section 3.1.

3.5 Database migration

Even though the database schema is now versioned together with the code
via SQLAlchemy’s ORM layer, it only allows to set up the schema in a clean
database. But when the ORM specification changes, it does not affect an
existing database schema. To change an existing database schema, a database

22

................................ 3.6. Web framework choice

migration must be carried out. Database migration is typically defined as a
set of DDL commands (Data Definition Language - a category of SQL queries)
like CREATE TABLE, ALTER TABLE or DROP TABLE. SQLAlchemy
recommends using Alembic for this purpose.

Alembic is a tool that can partially automate the database migration process.
By comparing the current schema of the database and the ORM definition of
SQLAlchemy, the tool is able to generate migration scripts, which contain the
DDL commands needed to transfer between the two states. Alembic also keeps
the individual schema states as revisions, which in principal work similarly
to the git revision system. As stated in the Alembic documentation [21], the
migration script generating is not intended to be perfect. It is always necessary
to manually review and correct the scripts that autogenerate produces.

3.6 Web framework choice

Because the new service provides a web API, it is important to choose a
suitable web framework. Apart from providing the API, the service acts as a
computation engine for newly added graphs. Therefore, the chosen framework
must perform well to save resources for the computation engine. There exist
a number of web frameworks for Python. We consider only some of the
well-known ones. The popular frameworks usually have a large community
behind them, which makes it easier to work with them. If we run into a
problem, there is a high chance that someone else has already encountered
and resolved a similar issue before. We can then draw from their resolution
to help ourselves.

This section now looks in more detail on some of the selected frameworks
and clarifies the choice for this project.

3.6.1 Django

Django [22] is a fairly complex framework providing a lot of features out
of the box, like application administration or database management. It is
common for Django project to also create and serve the UI. Django follows
the Model-Template-View (MTV) pattern, which is a slight modification of
the Model-View-Controller (MVC) pattern.

MVC is a software architecture pattern which separates data storage and
access (Model), the presentation of the data and receiving the user input
(View), and the logic of handling the user interactions (Controller). The flow
is usually following:..1. The user sees the View and interacts with it..2. The View sends the input to the Controller..3. The Controller performs the application’s business logic..4. The Controller uses the Model to modify the data..5. The View gets updated based on the new data

23

3. Design..
MTV is a little different. Model in the MTV pattern is the same as in

MVC, as it encapsulates the access to the database. Template is closest
to the View in the MVC pattern. It is the presentation layer that controls
what should be displayed and how it should be displayed to the user. View
in the MTV pattern relates to the Controller and partly to the View from
MVC. It contains the business logic of manipulating the data and handles the
user interaction by receiving the input and responding with the templates
filled with the appropriate data. This can be seen in the diagram in the
Figure 3.3. Django typically groups the code that handles each of these steps
into separate files.

Figure 3.3: Model-Template-View diagram

Django comes with an administration commandline tool django-admin.
The framework enforces quite strict project structure, which is automatically
generated by the administration tool when creating a new project. Django is
great for making systems revolving around CRUD operations (Create, Read,
Update, Delete) of several resources provided to the users, as most of the
functionality comes out of the box with just setting up the project.

3.6.2 Flask

Flask [23] is a minimal web framework, in a sense similar to JavaScript’s
Express. Minimal meaning that the core of the framework is simple, but
extensible. By default, it does not provide any additional features out of the
box like Django, but they need to be supplied by other libraries or written
from scratch. It also does not force a specific project structure. In an extreme

24

................................ 3.6. Web framework choice

case, an application can fit into a single Python file. This of course is not the
recommended approach.

The Figure 3.4 shows an example of an API endpoint created with Flask.
The endpoint is created by annotating a function. The annotation specifies
the URL and the HTTP method. Flask is implicitly synchronous, meaning it
does not allow requests to be handled concurrently. Concurrency is achieved
by using Flask with a WSGI [24] server, which handles the requests in threads.
To access the data of the request, like the headers or the body, a request
object must be imported from flask. This is internally implemented as a
thread-local object, exclusive for each request that is being handled. This
object does not need to be passed between functions and can be imported
anywhere within the request.

from flask import abort, jsonify, request

app is an instance of Flask
from my_project.some_path import app
payload validation logic
from my_project.other_path import is_valid

@app.route("/compute", methods=["POST"])
def compute():

payload = request.json
if not is_valid(payload):

abort(400)
handle the request and create a response
return jsonify(response)

Figure 3.4: Example of an API route definition using Flask

Flask is not meant to be used as a black-box framework. For larger projects
it is encouraged to read and understand the implementation of the framework,
as it offers a large number of available overrides, hook points or signals.
Custom classes can be provided for various things, for example like the
request and response objects.

All in all, Flask gives much more freedom to the developer than Django,
at the cost of the out of box features. The loss of the features is not
inherently a bad thing, as many of them may not be of use for the particular
project anyways. Setting up API endpoints can be accomplished in a matter
of minutes. This makes Flask great for small applications. Building large
applications with Flask requires a certain level of expertise, as the unrestrained
project structure can more easily result in a messy source code.

25

3. Design..
3.6.3 Connexion

Connexion [25] is a framework built on top of Flask. However, it removes
the need to write any code associated with defining the URL routes, the
HTTP methods of the endpoints, etc. This is achieved by the framework
by loading an OpenAPI specification [26] and automatically mapping the
endpoints declared in it to Python functions.

OpenAPI is a documentation format used for defining API endpoints, their
parameters, different response types and payloads. The specification can
be written either in YAML or JSON format. An example of such endpoint
definition in YAML can be seen in the Figure 3.5. The specification can
be divided into multiple files which reference one and other using the $ref
keyword. Thanks to this, even very large API specifications can be managed
comfortably.

post:
tags:

- collection
summary: submit a new collection for approval
operationId: submit
requestBody:

required: true
content:

application/json:
schema:

$ref: "../schemas/collection.yml#/Collection"
responses:

"204":
description: success, no content

"400":
description: invalid collection entity
content:

application/json:
schema:

$ref: "../schemas/message.yml#/Message"
"409":

description: collection name or url already exists
content:

application/json:
schema:

$ref: "../schemas/message.yml#/Message"

Figure 3.5: Example of an API endpoint defined in OpenAPI

Apart from mapping the endpoints to Python functions, the framework
also validates the data sent by users and automatically responds with an

26

................................ 3.6. Web framework choice

appropriate HTTP code and message when something is not correct. OpenAPI
also allows to generate Python model classes for the payload types present in
the specification. This makes for more convenient data manipulation inside
the application. Connexion also automatically serializes instances of these
classes when they’re returned by the endpoint functions.

Although the YAML or JSON specifications are very human readable,
OpenAPI can even be used to generate a web UI displaying the endpoints
in an extremely user friendly way. This UI even allows to call the endpoints
with arbitrary parameters and see the responses. Connexion can deploy such
UI automatically, if configured so.

In summary, Connexion forces the developer to write the specification first,
which ensures that the API documentation is always up-to-date. It handles
route creation, data validation and response serialization. It can provide an
interactive web UI to view and call the endpoints. All that while keeping the
freedom of the rest of the project structure like Flask does.

3.6.4 FastAPI

Working with FastAPI [27] is in a way similar to Flask, by using function
annotations to define API routes. However, it also provides automatic data
validation and responses just like Connexion, without the need to first write
the specification. This is done by the framework by parsing Python type
hints.

Python is a dynamically typed language. This means that the type of
objects stored in variables is checked during runtime. While this allows
for more flexibility, it is more error prone. The developers need to make
sure they are using the correct types when passing arguments to functions,
performing arithmetics etc. Type hinting helps with that by annotating
variables, arguments and return values with their expected type. An example
of the usage of type hints can be seen in the Figure 3.6. This function is
supposed to take in a string argument, an integer argument and return a
boolean. However, type hinting in no way changes the execution of the code.
The function could still be called with different types and throw an exception.
But thanks to the type hints, this can be more easily caught by static code
analysers.

def order_beer(name: str, age: int) -> bool:
if age < 18:

print("I'm sorry, but you can't order a beer")
return False

print("Here's a beer for " + name + "!")
return True

Figure 3.6: Example of a Python function using type hints

FastAPI also uses the type hints to generate an OpenAPI documentation

27

3. Design..
of the endpoints and can deploy the interactive web UI same as Connexion.
The result is very similar, but instead of writing specification and generating
code from it, this works the other way around. The code is written first and
the specification is generated from it.

Concurrency in FastAPI is not achieved by threads, like in the previous
frameworks. Instead, the framework is based on the asyncio Python library.
The core of each asyncio application is the event loop. Event loops schedule
and run so-called coroutines. A coroutine is basically a function, that can
await various calls, mostly associated with I/O. This includes filesystem or
network I/O operations, database queries or waiting for a subprocess to finish.
When a coroutine awaits, the control of the code execution is given back to
the event loop and it can run other scheduled coroutines until they await,
and so on. This sounds a lot less performant than using threads, but it is not,
because threads in Python do not actually run in parallel. Python threads are
limited by something called the Global Interpreter Lock (GIL). Any thread
that wants to run needs to first acquire the GIL in order to execute code
using the Python interpreter. Because of this, the interpreter is just "passed
around" the threads in between the execution of single instructions, resulting
in concurrency, but not true parallelism.

To summarize it, the framework offers features regarding documentation
and automation of tasks similar to the Connexion framework. The big
difference between them is that FastAPI is based on asyncio coroutines instead
of threading. Asynchronous coroutine programming sometimes requires
a different approach than standard synchronous programming which uses
threads and is sometimes easier to do incorrectly, as blocking calls inside a
coroutine may result in the whole program being blocked.

3.6.5 Result

The previous subsections introduced the web frameworks considered for
building the new service of the extended application. As stated in the first
paragraph of this section, performance of the framework plays an important
factor. To compare the performance of the frameworks we can use a benchmark
performed by TechEmpower [28], which includes FastAPI, Flask and Django.
Connexion is not included, but since it is built on top of Flask, we can assume
that their performances are very similar. According to the benchmark,
FastAPI outperforms Django and Flask in all tested categories, and is the
clear winner.

To better visualize the choice of the framework, the Table 3.1 summarizes
the features, discussed in the prevous subsections, sorted by importance -
more important on the left (importance subjective to the author). Based on
this overview, Connexion and FastAPI provide the most features. Therefore,
taking into account the performance benchmark, FastAPI has been chosen
for the implementation of the new service.

28

..................................... 3.7. API design

Web framework features
Automatic re-
quest valida-
tion

Automatic
API docu-
mentation

OOB
database
management
and admin
access

Free project
structure

Django NO NO YES NO
Flask NO NO NO YES
Connexion YES YES NO YES
FastAPI YES YES NO YES

Table 3.1: Web framework features sorted by importance (more important on
the left)

3.7 API design

When an appropriate framework has been selected, the API of the new
service can be designed. The API provides access to inserting a single
graph to enable a fix of the non-functioning page described at the end
of Section 2.2.1. In addition to that, it provides two collection endpoints
available to unauthorized users and two endpoints for managing collections
only available to administrators.

3.7.1 POST /compute

This is a working implementation of the /api/graphs endpoint of the original
application. It is used when a user attempts to add a graph into our database
via the Compute & insert page in the UI. The endpoint requires the request
body to be a JSON object containing two attributes:. g6 - Graph6 representation of the graph to compute. properties - List of names of the properties to return back

The response is one of the following:. 200 OK - Graph was already present in the database or was added and
computed in time. 202 Accepted - Graph was added into the database, but has not been
computed within a time limit. 422 Unprocessable Entity - The requested Graph6 is invalid

3.7.2 GET /collection

This is the first collection endpoint accessible to unauthorized users. It returns
the collections as specified in the Section 3.3. It is used in various places by
the frontend, for example when fetching the collection options for filtering

29

3. Design..
graphs, in the About page to display the imported and approved collections,
and in the collection management view. The endpoint has one optional query
parameter:. state - a list of collection states to filter for, available values:. suggested. approved. imported. invalid. rejected

The response is one of the following:. 200 OK - The collections are returned. 422 Unprocessable Entity - Incorrect state value

3.7.3 POST /collection

The other collection endpoint accessible to unauthorized users. This is used
to suggest collections for import. The endpoint requires the request body to
be a JSON object containing two attributes:. name - Name of the collection, must be between 3 and 100 characters

long. url - URL leading to the collection file

The response is one of the following:. 204 No Content - The collection has been successfully suggested. 409 Conflict - The collection with such name or URL already exists. 422 Unprocessable Entity - The name is not between 3 and 100 characters
long or the URL is not in a valid URL format

3.7.4 GET /collection/{name}/{resolution}

This is the first endpoint accessible only by administrators. The variables are
provided in the query path.. name - Name of the collection. resolution - Available values:. approve. reject

The response is one of the following:

30

.................................3.8. Manage collections UI

. 202 Accepted - The resolution has been acknowledged and collection
moved to the approved state, the system will determine, whether the
collection gets into the invalid or imported state later. 401 Unauthorized - The authorization via JWT failed. 404 Not Found - The collection with such name does not exist. 422 Unprocessable Entity - Invalid resolution type

3.7.5 DELETE /collection/{name}

The other collection endpoint accessible only by administrators, used to delete
a collection. It also deletes graphs from the database, which are not yet
computed and belong only to the specified collection. The other graphs from
the collection are kept in the database, but the collection tag is removed from
them. The variables are provided in the query path.. name - Name of the collection

The response is one of the following:. 204 No Content - The collection has been deleted. 401 Unauthorized - The authorization via JWT failed. 412 Precondition Failed - The collection has been approved, but the
system has not finished downloading, parsing and adding its graphs,
therefore the delete is not possible yet

3.8 Manage collections UI

To provide the management functionality via the web UI, a simple page is
added to the frontend application. The page is accessible only to logged in
administrators and provides the necessary controls which call the management
API endpoints described in the Section 3.7. A wireframe of the page can be
seen in the Figure 3.7. The UI is very straightforward, providing a list of
collections of each collection state with the control buttons available to it.

31

3. Design..

Figure 3.7: Wireframe of the Manage page in the frontend application

3.9 Deployment

GitLab Pipelines are used to automate the deployment process as described in
the previous chapter in the Section 2.3.2. Each pipeline is comprised of jobs,
which describe what to do - for example to build or to deploy the application.
The jobs are divided into stages, which define when the jobs are run - for
example jobs from the deploy stage are executed only after the build stage is
finished successfully. The jobs are executed by runners, which pick up the
jobs from scheduled pipelines automatically. Typically, the jobs are executed
inside a Docker container, not directly on the runner. This allows execution
of multiple jobs on one runner without them affecting one another. The CTU
instance of GitLab provides four runners, which can be shared across projects.
These are used by this project as well. The jobs inside one stage can run in
parallel if there are enough free runners to execute them concurrently. The
implementation of the pipeline is discussed in the Section 4.4.

GitLab is also able to securely store secrets and other variables of each
project and inject them to the job’s environment before its execution starts.
This increases the application’s security, as the production secrets, like for
example database usernames and passwords, do not need to be managed
manually or worse, stored in the repository together with the code.

From the point of view of deployment, the extended application is divided
into three parts that are built and deployed separately - the database, the
JavaScript backend that also serves the UI (referred to as web_app), and

32

..................................... 3.9. Deployment

the new db_update backend service. Each of the parts is built into a self-
contained Docker image (the concept is described in the previous chapter in
the Section 2.3.1, the implementation details are described in the next chapter
in Section 4.2). Running a multi-container application like this requires setting
up virtual networks between the containers, passing environmental variables
to them and mapping multiple ports inside the containers to ports on the
host machine. This can be done by a set of Docker commands with relatively
complex commandline arguments. However, this project uses Docker Compose
to accomplish this in a much simpler way. Docker Compose allows to save
the configuration in a YAML file and run it with one simple command.
More information about the tool can be found in its documentation [29], the
implementation details are discussed in the Section 4.3.

GitLab can store Docker images in a container registry, which is exclusive
for each GitLab project. Each build job then builds the appropriate Dockerfile
locally and pushes the image into the project’s container registry. Because
the deployment jobs are also executed on the shared GitLab runners, they
cannot simply start the application. Luckily Docker and Docker Compose
allow the commands to be executed on a remote host, which also has Docker
and Docker Compose installed, using SSH. By leveraging this feature, the
source code of the application, nor the GitLab variables never make it to
the actual server hosting the application. They are loaded only into the
runner environment and are discarded when the deployment job finishes. The
diagram in the Figure 3.8 shows this in more detail.

The deployment can be done in two environments - production and stage.
The application can be deployed to both environments at once. The envi-
ronments do not share the graph database contents and they run on the
same server, but on different ports. The stage environment can be used to
test out unreleased changes. Deployment to the production environment is
done automatically from the git master branch. Deployment to the stage
environment can be triggered manually on any git branch other than master.

33

3. Design..

Figure 3.8: Diagram of the GitLab deployment design

34

Chapter 4
Implementation

After designing the application in the previous chapter, it is time to describe
some of the implementation in more detail. As described in the Section 2.2.3,
the original application contains the db_update module which provides some
static information about the collections present in the database. This chapter
describes the Python packages in the new db_update backend application,
described in the Section 3.2, the implementation of the Dockerfiles used to
dockerize each part of the application and finally the implementation of the
GitLab CI/CD pipeline. Unless specified otherwise, the following sections
will refer to the db_update backend service simply as application. The section
contains a bunch of Python code snippets to demonstrate the implementation
details. To ensure brevity, the snippets often leave out some parts of the code,
like for example the imports, that are not directly related to the purpose of
the snippet.

4.1 Application structure

The whole application is a runnable Python module. This means, that the
root package of the application contains a file named __main__.py. This
file acts as an entrypoint for the module. The module can be run from the
commandline with python -m db_update. This entrypoint is intended only
for running the application in a development environment for debugging
purposes. The way to run the application in production is via an ASGI [30]
server, like Uvicorn [31]. This is reflected in the application’s Dockerfile.

The application is comprised of seven top-level packages. Some of them
contain one or more modules and some of them contain other nested packages
as well. The following subsections will go into more details on each of them.
The main packages are the following:. config. database. exception.model. routers

35

4. Implementation....................................
. services. utils

4.1.1 Config

The config package contains two modules. The first module, constants.py,
holds some constant values used throughout the application. The other
module, config.py, holds all the configurable variables for the rest of the
application. The variables are divided into logical groups. Each of these
groups is implemented as a dataclass from the pydantic [32] library, which
uses type hints to validate the attribute types and raises user friendly errors
when the validation fails. An example of such dataclass can be seen in the
code snippet in Figure 4.1.

@dataclass(frozen=True)
class DbConnection:

host: str
port: int
username: str
password: str
database: str

Figure 4.1: Example of a class holding a group of configuration variables

These groups are instantiated as class attributes of a main Config class
with values loaded from the system environment. This class can be seen
in the code snippet in the Figure 4.2. The Config.load_env() function is
called during application initialization. The rest of the application can then
import the Config class and access its attributes to get the configuration
values in the following way: Config.db_connection.password.

4.1.2 Database

The database package is made of two modules - database_connection.py and
db_api.py. The database_connection module establishes connection with
the Graph database using the SQLAlchemy engine and the configuration
values. It also provides a SQLAlchemy session maker object to the rest of the
application. A session object is needed to execute queries against the database.
The db_api module encapsulates the creation and execution of SQL queries
and provides them as Python functions to the rest of the application. As
can be seen in the code snippet in the Figure 4.3, the function uses the SQL
building abstraction mentioned in the previous chapter in the Section 3.4.1.

36

................................. 4.1. Application structure

class Config:
@classmethod
def load_env(cls) -> None:

try:
cls.db_connection = DbConnection(

os.getenv("DB_HOST"),
os.getenv("DB_PORT"),
os.getenv("DB_USR"),
os.getenv("DB_PSW"),
os.getenv("DATABASE"),

)
cls.path = ...
rest of the groups omitted for brevity

except ValueError as err:
raise ConfigLoadError(

f"Error while loading configuration\n{err}"
)

Figure 4.2: The main Config class holding all the configuration groups

async def select_uncomputed_graphs(
session: Sess, ignored_g6: list[str], limit: int

) -> Iterable[Graph]:
"""Select a number of graphs
where the `computed` column is `False`.

:param session: Database session
:param ignored_g6: Graphs to exclude
:param limit: The number of graphs to return
:return: Iterable of the found graphs
"""
stmt = select(Graph).where(Graph.computed == False)
stmt = stmt.where(Graph.g6.not_in(ignored_g6))
stmt = stmt.limit(limit)
return (await session.execute(stmt)).scalars()

Figure 4.3: An example of a Python function encapsulating a database query

4.1.3 Exception

This package contains two modules - exceptions.py and handlers.py. The ex-
ceptions module defines some custom exceptions that can be raised throughout
the application. The handlers module contains functions that are registered
in FastAPI to handle specific exceptions raised during request processing. An

37

4. Implementation....................................
example of such handler can be seen in the code snippet in the Figure 4.4.
This handler is called whenever a database IntegrityError is raised. That
happens when a unique constraint would be violated by an SQL query. In
case the exception is raised, the handler responds with the appropriate HTTP
code and message automatically. Thanks to this, the exception does not need
to be caught in the code that’s attempting to run the potentially dangerous
query. It prevents code duplication of needing to set up a try catch block and
responding accordingly. It allows for an overall cleaner code in the rest of the
application.

async def db_conflict(
_, exc: IntegrityError

) -> tuple[Message, int]:
match = re.match(

r".*DETAIL:\s+[\w()\s]+=\((.*)\)",
exc.orig.args[0],
re.DOTALL

)
column_val = match.group(1).strip()
return JSONResponse(

status_code=status.HTTP_409_CONFLICT,
content=Message(

detail=f"{column_val!r} already exists"
).dict(),

)

Figure 4.4: An example of a Python function used as an exception handler

4.1.4 Model

The model package contains an api package with classes defining the API
request and response payloads. Similarly to the configuration classes, they use
the pydantic library and type hints to validate attribute types. FastAPI also
uses them to generate the documentation. Apart from that, the model package
contains a dbschema.py module, which implements the ORM definitions of
the database tables. The property columns of the graph table are added
dynamically based on an enum implemented in the other module in this
package - graph_properties.py. As can be seen in the Figure 4.5, the enum
in graph_properties includes the property name as the enum key and the
database column type and and its compute function as the enum value.
The compute functions are taken from the original Sage compute engine
implementation. In the original application, adding a new graph property
required a change in three separate places, as described in the Section 2.2.3.
Now, in the extended application, all of that is done by a single modification
of this enum class.

38

................................. 4.1. Application structure

@dataclass
class PropMeta:

db_type: TypeEngine
compute_fn: Callable

class Prop(Enum):
nodes = PropMeta(Integer, lambda g: g.order())
edges = PropMeta(Integer, lambda g: g.size())
components = ...
rest of the properties omitted for brevity

Figure 4.5: An enum class defining the computable properties of graphs

4.1.5 Routers

The package contains the definitions of the API endpoints. The functions
which handle the endpoints are registered using a FastAPI decorator, as can be
seen in the code snippet in the Figure 4.6. The decorator takes some keyword
arguments which further define its properties. These are used to validate and
convert data, and for generating the OpenAPI documentation. The routing
functions define the endpoints, but do not implement the application logic.
They call functions from the services package. That is where the logic is
implemented.

The routers package also contains an auth package with an admin.py module
in it. This module implements the administrator rights validation. The
parsing and signature validation of the JWT, as described in the Section 3.1.1,
is done by the FastAPI framework and the fastapi_oidc library [33]. The
admin module extends the basic validation by checking the user’s roles within
the application. Dependency injection provided by the FastAPI framework is
then used to secure the administrator endpoints using this check. This can
be seen in the code snippet in the Figure 4.7.

4.1.6 Services

The services package contains six service modules, each implementing a
specific set of features of the application. The services communicate either
directly, by one service calling a function from a different service, or indirectly,
by one service attaching information to a database session, which is picked
up by the other service by its database event hook.

Insert service

The insert service contains three functions. The first function is used for
adding graphs into the database. It takes a list of canonical Graph6 strings
and an optional string collection as arguments. If the argument is specified,
the graphs are inserted with the collection tag right away. The graphs already

39

4. Implementation....................................
router = APIRouter(prefix="/collection")

@router.get(
"",
status_code=status.HTTP_200_OK,
response_model=list[Collection],
responses={

status.HTTP_422_UNPROCESSABLE_ENTITY: {
"model": Message,
"description": "Incorrect state query",

},
},

)
async def get(state: list[CollectionState] = Query(None)):

"""Get collections with an optional `state` filter"""
collections = await collection_svc. \

get_collections(state)
return [

Collection(name=c.name, url=c.url, state=c.state)
for c in collections

]

Figure 4.6: An example of a function serving as an API endpoint handler

from db_update.routers.auth.admin import is_admin

@router.delete(
"/{name}",
decorator keyword arguments omitted for brevity

)
async def delete(name: str, _: IDToken = Depends(is_admin)):

await collection_svc.remove_collection(name)
return Response(status_code=status.HTTP_204_NO_CONTENT)

Figure 4.7: An example of a router function using FastAPI dependency injection
for authentication

present in the database have the collection tag added by using the upsert
method described in the Section 3.1. The Postgres database driver used to
perform database queries has a limit of 32767 arguments that can be passed
into each query. Because of this, the service splits the list of graphs into
multiple database queries and commits the transactions when they are all
finished. It also marks the database session with the information that new
graphs have been added.

40

................................. 4.1. Application structure

The other two functions are related to the graph adding function and
should precede it. The first one is for validating a Graph6 string. It takes
in a string and checks whether it is a valid Graph6 format. If it is not, the
function raises an exception. The other one is for canonically labeling a list
of graphs represented in Graph6 or Sparse6 format using Nauty. Nauty is a
program for computing automorphism groups of graphs, created by Brendan
McKay and and Adolfo Piperno [34]. It can also produce canonical labels of
graphs and has been chosen for this functionality in the original application.
The reasoning can be found in the Chapter 3 of Ullrich Herbert’s bachelor
thesis [4].

Update service

The update service acts mainly as a long running task, which ensures the
property computation of newly inserted graphs. It maintains a process pool
for computing multiple graphs in parallel. The computation itself is done
using the compute service, which is described in the following Section 4.1.6.
The computed results are saved in memory. The service does periodic checks
for the number of computed graphs. When there is enough (a configurable
variable) of them, it makes a batch update in the database. The batch size
should be configured based on the system the application runs on. From the
database performance point of view, it is better to make one larger query,
than multiple small ones, because each query has the overhead of parsing
and planning the query. Larger batch size also permits the periodic checks
to be done less frequently. However, storing many computed results while
waiting for large batch size consumes more memory. The same limitation
for the number of query parameters, as described in the previous section,
applies here, making the maximum batch size Sb with the number of updated
properties |P | equal to Sb = 32767 ÷ |P |. This constraint is forced when
loading the configuration variables. Apart from consuming the computed
results, the periodic check also queries the database for uncomputed graphs
and schedules their computation.

Compute service

The service provides a function to compute the properties of a given graph
using the functions from the enum described in the Section 4.1.4. As can be
seen in the code snippet in the Figure 4.8, a new process is spawned for each
computation. This is necessary to implement the timeout mechanism, because
some of the Sage functions do not respond to alarm nor interrupt signals
and must be killed. The function takes a dictionary as an argument. The
dictionary represents the graph and optionally its properties. If the property
in the dictionary is not None, it is not recomputed again. This allows for easy
addition of computable properties in comparison to the original application,
described in the Section 2.2.3. When adding a new computable property, the
existing graphs only need to be marked as uncomputed during a database

41

4. Implementation....................................
migration (migrations are described in the Section 3.5). The update and
compute services then take care of the rest automatically.

def compute_properties(graph: dict) -> dict:
g6 = graph["g6"]
g = Graph(

g6, loops=False, multiedges=False, immutable=False
)
result = {"g6": g6}
parent_end, child_end = multiprocessing.Pipe(False)

for prop in Prop:
if graph.get(prop.name, None) is not None:

continue
p = multiprocessing.Process(

target=_wrapper,
args=(prop.name, g, child_end)

)
p.start()
p.join(Config.timeout.compute_prop)
if p.is_alive():

p.kill()
if parent_end.poll():

res = parent_end.recv()
result[prop.name] = _pythonify(res)

else:
result[prop.name] = None
logger.info("%s of %s timed out", prop.name, g)

return result

def _wrapper(
prop_name: str,
graph: Graph,
pipe: mc.Connection

) -> None:
result = Prop[prop_name].value.compute_fn(graph)
pipe.send(result)

Figure 4.8: The implementation of property computation with timeout

Download service

The download service implements downloading of the three typical collec-
tion file formats explored in the Section 2.1.3. Even though this is a very

42

................................. 4.1. Application structure

straightforward task, there are some things, that can break the whole ap-
plication, if done incorrectly. Downloading and decompressing large files
can take a lot of time. If not scheduled correctly using the await keyword,
as described in the Section 3.6.4, it could block the whole application from
processing other incoming requests. Downloading content over network is
a perfect example of how asyncio and its await should be used. Therefore,
as can be seen in the code snippet in the Figure 4.9, an asyncio compliant
library for HTTP requests called httpx is used to download the content of the
collection URL. The decompression is delegated to a different thread using
the asyncio.to_thread method and awaited as well. The method returns a list
of bytes, each representing a graph in a yet uknown format. Bytes are used
even though all the formats currently supported by the extended application
are text formats. This makes the system easily extensible by binary graph
formats, that might be desired in the future.

Convert service

The convert service is used to follow up on the graphs downloaded by the
download service. Currently the service can convert the three formats men-
tioned in the Section 2.1.3. Internally, there is a convert function for each
supported graph format, that takes in a bytes object, attempts to parse it
assuming it is in the given format and returns a Graph6 string. If the parsing
fails, it is evaluated that the given input does not have the format expected
by the function and an exception is raised. The service provides a method
that takes in a list of bytes (as returned by the download service), and tries
to convert each item using the above-mentioned convert functions until one
of them successfuly converts the whole list into Graph6 strings. If none of the
convert functions succeeds, an exception is raised. This approach makes the
service easily extensible of other formats should the need arise in the future.
All that is needed is to implement a function with the same interface (input
bytes object, return Graph6 string, raise an exception if the input format is
different). Thanks to the input being bytes and not a string, even binary
graph formats can be included easily.

The implementation of two of the convert function can be seen in the code
snippet in the Figure 4.10. They both use the fact, that the Graph class
provided by Sage can be instantiated by a Sparse6 string or a list of edges,
and is able to output the Graph6 string of the loaded graph.

Collection service

This service is the most complex of all. It provides some basic logic behind
the collection API endpoints. As can be seen in the code snippet in the
Figure 4.11, these functions consist of only one database query. This very
simple implementation is possible mainly thanks to the exception handlers
described in the Section 4.1.3. However, the service contains more complex
methods as well. For example the function responsible for importing a
collection directly calls other services to download, convert and insert the

43

4. Implementation....................................
import httpx

async def get_graphs(url: str) -> list[bytes]:
try:

async with httpx.AsyncClient() as client:
content = (await client.get(

url, follow_redirects=True
)).content

filename = url[url.rfind("/") + 1 :]
if filename.endswith(".gz"):

res = await asyncio.to_thread(
gzip.decompress, content

)
return res.splitlines()

bytes_io_content = io.BytesIO(content)
if zipfile.is_zipfile(bytes_io_content):

tmp_dir = Config.path.tmp_dir / str(uuid4())
await asyncio.to_thread(tmp_dir.mkdir)
try:

zip_f = zipfile.ZipFile(bytes_io_content)
res = await asyncio.to_thread(

zip_f.extractall, tmp_dir
)
return [

f.read_bytes().strip()
for f in tmp_dir.glob("*")

]
finally:

await asyncio.to_thread(
shutil.rmtree, tmp_dir

)
return content.splitlines()

except Exception as e:
raise InvalidCollection

Figure 4.9: The implementation of the get_graphs function from the download
service

graphs from the collection. The service also implements a database commit
hook, which checks whether any collection in the approved state should be
moved to the imported state, when all its graphs are successfully computed
by the update service.

44

................................. 4.1. Application structure

from sage.all import Graph

def _sparse6(graph: bytes) -> str:
return Graph(

graph.decode(),
format="sparse6",
loops=False,
multiedges=False,
immutable=True,

).graph6_string()

def _edge_list(graph: bytes) -> str:
def parse_edge(edge: str) -> tuple[int, int]:

delim_idx = edge.find(" ")
return (

int(edge[:delim_idx]),
int(edge[delim_idx + 1 :])

)

edges = graph.decode().split(" ")
edge_list = [parse_edge(e) for e in edges]
return Graph(

edge_list,
format="list_of_edges",
immutable=True

).graph6_string()

Figure 4.10: Example implementation of two convert functions from the convert
service

4.1.7 Utils

The utils package contains modules with utility functions used in the rest
of the application. The most notable one is the db_session.py module.
To execute database queries using SQLAlchemy, a session must be opened
first. When the application needs to do multiple queries in order to achieve
something, one session should be used for all the related queries. This way,
if something fails before the whole application logic is fullfilled, the session
can be discarded without actually affecting the database. On the other hand,
when the application logic finishes successfully, the session is commited and
all the queries are persisted at once. Opening up a session in each function,
that requires database access, would be a lot of code duplication. Moreover, a
problem arises, when a function, with an already opened session, calls another
function, that would open a different session on its own. Ideally, the already
opened session should be passed down to the called function. Both of these

45

4. Implementation....................................
@with_session(commit=True)
async def submit_collection(

name: str, url: str, *, session
) -> None:

await db_api.insert_collection(session, name, url)
logger.info("new collection '%s' submitted", name)

@with_session(commit=False)
async def get_collections(

state: list[CollectionState], *, session
) -> list[Collection]:

return list(
await db_api.select_collections(session, state)

)

Figure 4.11: Example implementation of two basic functions from the collection
service

problems are elegantly solved by a decorator implemented in the db_session
module.

The use of the decorator can be seen in the code snippet in the Figure 4.11.
Each function, that is annotated with the @with_session decorator, must be
declared with a session parameter. When the function is called, the decorator
checks, whether the function was called with the session argument and if so,
it only passes the session to it. If the session argument is not present, the
decorator sets up a session, passes it to the function and potentially commits
the session after. This allows for the function to be called in two ways. The
examples can be seen in the code snippet in the Figure 4.12.

@with_session(commit=True)
def example_function(arg1, arg2, *, session):

use the session without caring where it comes from

1) the decorator manages the session automatically
example_function(1, 2)
2) already existing session is passed as an argument
s: Session = ...
example_function(2, 3, session=s)

Figure 4.12: Example of the two possible ways to call a function annotated with
@with_session

46

.................................... 4.2. Dockerization

4.2 Dockerization

As described in the Section 2.3.1, a Dockerfile is created to dockerize the
applications. The whole project consists of three parts, that are built and
deployed separately. This means, that each of them has its own Dockerfile.
The following sections will refer to these parts as services and they should
not be mistaken for the service modules described in the previous section.
They are the following:. database. web application (JavaScript frontend + backend). db_update (the new backend service of the extended application)

Dockerfile is built into a docker image. The resulting docker image should
be as small as possible and contain nothing that is unnecessary to run the
application, like for example the build dependencies. The created Dockerfiles
use a multi-stage build to achieve this. Multi-stage builds are divided into
stages, where each stage runs in a separate container. This allows to selectively
copy artifacts from one stage to another, while throwing away everything
else from the intermediate containers. Each stage is based on a predefined
image, which is selected using the FROM keyword. The implementation of
the Dockerfile for the new db_update service can be seen in the code snippet
in the Figure 4.13.

The lines 1 to 18 describe the first stage of the build. This stage downloads
the source code of Nauty and prepares it for installation on the final image
using curl and tar (lines 7-10). It copies the source code of the application
into the container (lines 13-15) and packages the application into a built
distribution (lines 16-17), that can be installed using Python package manager
in the final image.

The lines 20 to 42 describe the second stage. The image of the second stage
is based on the sagemath/sagemath:9.4 image, which has Python and Sage
preinstalled. It copies the build artifacts from the previous stage (lines 24,
25) and the migration scripts (line 26). It installs the built distribution of the
application and clears the distribution files (lines 28 - 30). Then it compiles
and installs the prepared Nauty sources (lines 32 - 35). That is where the
build ends. The last ENTRYPOINT command specifies what happens when
the container is started. It first runs the database migration tool to ensure
the database schema is up-to-date. Finally it starts the application using the
Uvicorn [31] webserver.

A similar Dockerfile is used for the dockerization of the JavaScript web
application. The first stage of the multi-stage build bundles the frontend code
while the second stage gets the bundled files and runs the Express backend
serving them.

47

4. Implementation....................................

1 ### BUILD ###
2 # build on the same system as it runs on
3 FROM python:3.9-slim-buster AS BUILD
4 # install dependencies
5 RUN apt update && apt install -y ca-certificates curl
6 # download nauty
7 WORKDIR /nauty
8 RUN curl https://pallini.di.uniroma1.it/nauty27r3.tar.gz \
9 -o nauty27r3.tar.gz

10 RUN tar xvzf nauty27r3.tar.gz
11 # build the app as a python wheel
12 WORKDIR /build
13 COPY setup.py ./setup.py
14 COPY db_update ./db_update
15 COPY requirements.txt ./requirements.txt
16 RUN pip install --upgrade pip build
17 RUN python -m build --wheel --outdir /dist ./
18

19 ### RUN ###
20 FROM sagemath/sagemath:9.4
21 ENV PATH="/home/sage/sage/local/bin:$PATH"
22 WORKDIR ./app
23 # copy build artifacts
24 COPY --from=BUILD /nauty/nauty27r3 ./nauty
25 COPY --from=BUILD /dist ./app_wheels
26 COPY db_migration ./db_migration
27 # install the app
28 RUN pip install --upgrade pip setuptools
29 RUN pip install ./app_wheels/*
30 RUN sudo rm -rf ./app_wheels
31 # install wait-for-it and downloaded nauty
32 RUN sudo apt update && sudo apt install wait-for-it make
33 RUN cd ./nauty && sudo ./configure && sudo make && \
34 sudo make install
35 RUN sudo rm -rf ./nauty
36 # run the app
37 ENTRYPOINT wait-for-it $DB_HOST:$DB_PORT && \
38 cd ./db_migration && \
39 python3 ./migrate.py upgrade && \
40 cd .. && \
41 uvicorn --factory "db_update:asgi" \
42 --host 0.0.0.0 --port 9000

Figure 4.13: Implementation of the db_update Dockerfile

48

................................... 4.3. Docker Compose

4.3 Docker Compose

The containers defined by the Dockerfiles are orchestrated together using
Docker Compose, which handles port mapping and passing environment vari-
ables to the containers. This configuration is saved in a docker-compose.yml
file in the root of the project. The compose file defines a set of services, where
each service corresponds to one of the containers and its configuration. One
of the service definitions can be seen in the code snippet in the Figure 4.14.
As can be seen, the compose configuration uses environment variables. The
variables used to configure the application, like the database credentials, are
injected to the environment from the GitLab variable storage, as described
in the Section 3.9. The other variables needed only to correctly execute
the compose file, like the deploy environment and image prefix and tag, are
provided by the GitLab Pipeline, as described in the following Section 4.4.

db_update:
container_name: db_update_$DEPLOY_ENV
image: ${IMAGE_PREFIX}db_update${IMAGE_TAG}
build: ./db_update
environment:

DB_HOST:
DB_PORT:
DB_USR:
DB_PSW:
DATABASE:

env_file:
- ${ENV_VARS_DB_UPDATE:-.env}

networks:
- graphs_network

ports:
- "$DB_UPDATE_PORT:9000"

depends_on:
- graphs_db

Figure 4.14: Example of a service defined inside a docker-compose.yml file

4.4 GitLab Pipeline

The CI/CD pipeline is implemented in a YAML file called .gitlab-ci.yml, stored
in the root of the repository. The three separate services can be deployed
to two different environments, as described at the end of the Section 3.9.
This means, that there are six build jobs and six deploy jobs, which are
practically the same. They differ only in the following properties: which
one of the three services is the job target and which ports to use based on

49

4. Implementation....................................
the target environment. Fortunately, GitLab Pipeline configuration allows
the use of inheritance between the jobs and the creation of so-called hidden
jobs. Hidden jobs are never added to the pipeline and are supposed to be
used as templates for reusable configuration (therefore the following text
sometimes refers to hidden jobs as templates). This way the actual logic of
the build and deployment job can be implemented only once as a hidden job,
in a generic way parametrizable by variables. The parametrization variables
can be also implemented as hidden jobs. The twelve actual jobs can be
then implemented as a combination of the templates using inheritance. The
template combinations can be seen in the three-dimensional matrix in the
Table 4.1.

Pipeline jobs matrix
database web app db_update

build impl prod vars X X X
stage vars X X X

deploy impl prod vars X X X
stage vars X X X

Table 4.1: Matrix showing the pipeline job combinations

The choice of the service is implemented as three hidden jobs. One of them
can be seen in the code snippet in the Figure 4.15. This template declares the
APP variable, which is used by the build and deploy implementation job to
select the correct service as its target. It also limits the jobs only to commits,
which change the files, that actually require a redeploy of the service. For
example changing the code of the UI, does not require building and deploying
a new version of the db_update backend.

.db_update_vars:
variables:
APP: db_update
only:

changes:
- db_update/**/*
- docker-compose.yml
- .gitlab-ci.yml

Figure 4.15: Implementation of the db_update variables hidden job

The choice of the target environment is implemented as two hidden jobs.
One of them can be seen in the code snippet in the Figure 4.16. The variables
define the ports on which the application runs in that environment. It also
limits the environment to a specific branch, using the only attribute.

Two more variables still need to be provided to the compose file, as men-
tioned in the Section 4.3. One of them is IMAGE_PREFIX. This variable

50

................................... 4.4. GitLab Pipeline

.prod_vars:
variables:

DEPLOY_ENV: prod
DB_UPDATE_PORT: $PORT_PROD_DB_UPDATE
WEB_APP_PORT: $PORT_PROD_WEB_APP

only:
refs:

- master

Figure 4.16: Implementation of the production variables hidden job

is used to identify the GitLab container registry where the built docker
images are stored and pulled from during deployment, as described in the
Section 3.9. Docker also needs to be authenticated with the registry. The reg-
istry image name, url and credentials are automatically set as environmental
variables inside every job as $CI_REGISTRY_IMAGE, $CI_REGISTRY
$CI_REGISTRY_USER and $CI_REGISTRY_PASSWORD. The other
variable needed by the compose file is IMAGE_TAG, which specifies the
image inside that registry. The tags prod and stage are used. This variable is
derived from the variable supplied by the hidden job specifying the target
environment. The job also needs to execute docker commands via SSH when
deploying the application, as described in the Section 3.9. In order to do
that, SSH keys and known hosts need to be set up first. These values are also
saved as the GitLab project variables. One more level of inheritance is used
to achieve this, as can be seen in the code snippet in the Figure 4.18.

The twelve final jobs are then implemented as jobs, which extend multiple
templates, as can be seen in the example in the code snippet in the Figure 4.17.

build_prod_db_update:
extends:

- .build
- .prod_vars
- .db_update_vars

Figure 4.17: Job created by a combination of templates

51

4. Implementation....................................

.docker_base:
image: docker:20.10.14
services:

- docker:dind
variables:

IMAGE_PREFIX: "$CI_REGISTRY_IMAGE/"
IMAGE_TAG: ":$DEPLOY_ENV"
DOCKER_DRIVER: overlay2
DOCKER_TLS_CERTDIR: "/certs"

before_script:
- apk add ca-certificates docker-compose
- docker login -u $CI_REGISTRY_USER \

-p $CI_REGISTRY_PASSWORD $CI_REGISTRY
- eval $(ssh-agent -s)
- echo "$SSH_PRIVATE_KEY" | tr -d '\r' | ssh-add -
- mkdir -p ~/.ssh
- echo "$SSH_KNOWN_HOSTS" >> ~/.ssh/known_hosts

.build:
extends:

- .docker_base
stage: build
allow_failure: false
script:

- docker-compose build --no-cache $APP
- docker-compose push $APP

.deploy:
extends:

- .docker_base
stage: deploy
when: on_success
retry: 2
script:

- docker-compose -H "ssh://$SERVER_USER@$SERVER_IP" \
-p "graphs_$DEPLOY_ENV" down $APP

- docker-compose -H "ssh://$SERVER_USER@$SERVER_IP" \
-p "graphs_$DEPLOY_ENV" pull $APP

- docker-compose -H "ssh://$SERVER_USER@$SERVER_IP" \
-p "graphs_$DEPLOY_ENV" up -d --no-deps $APP

Figure 4.18: The implementation of build and deploy hidden jobs

52

Chapter 5
Conclusion

The goal of this master thesis was to propose and implement an extension
of an existing web application called Web Graph Service. The main goal of
the extension is to provide unified access to graphs and their properties from
various Internet sources. The extension also requires to automate the process
of deployment of the current and future modifications of the application.

The core of the extension has been built as a Python backend service.
It is able to import graph collections stored in three different file formats
containing graphs also in three different graph formats (Graph6, Sparse6,
Edge list). The list of supported formats is ready to be easily extended even
of non-textual graph formats. Some of the service’s API is accessible only by
administrators and the authorization is done via CTU single sign-on. The
source code is commented using standardized Python docstrings, from which
documentation is generated, available at https://gitlab.fel.cvut.cz/
graphs/development/-/tree/master/db_update/docs. The application is
fully dockerized and has an automated deployment pipeline. This will make
life much easier for the future developers of the application.

The CTU single sign-on authorization is convenient, but it makes it im-
possible to grant administrator rights to anyone outside of the CTU domain.
This is unlikely to become an issue. However, should the need for external
administrator arise, the authorization would need to be completely rewritten.

5.1 Future improvements

The new service in the extended application has been built as a monolith,
which serves the database management API as well as computes the graph
properties using a process pool. This allows for a parallelization of computing
multiple graphs at once. However, it is limited by the number CPU cores of the
machine on which the service runs. Greater parallelization could be achieved
by splitting the service into multiple microservices and creating an external
queue for graph computations. The compute microservice would run as a
single process consuming the queue entries one by one. This implementation
would provide greater vertical scalability, as the number of consumers could
be increased or decreased based on the queue size. They could also run on
different machines or potentially in a cloud, utilizing many CPU cores.

53

https://gitlab.fel.cvut.cz/graphs/development/-/tree/master/db_update/docs
https://gitlab.fel.cvut.cz/graphs/development/-/tree/master/db_update/docs

5. Conclusion......................................
The current way of storing the graphs and ensuring there are no isomor-

phisms relies on the unique constraint of the Graph6 column in the database.
However, as metioned in the Section 3.1, this implies a limit of 2730 bytes
on the Graph6 representation of each graph. The limit cannot be simply
converted to a number of graph vertices, because Postgres compresses the
data before storing and indexing them. However, by testing the limits it was
found, that graphs above 600 vertices start getting rejected because of this.
The standard approach to overcome this limit would require adding a column
containing a hash of the Graph6 string and setting up the unique constraint
on that, instead of the Graph6 column itself. However, this comes with a risk
of running into hash collisions.

54

Bibliography

[1] Diestel, R., 2000. Graph theory. New York: Springer, p.3.

[2] Hog.grinvin.org. 2022. House of Graphs. [online] Available at:
https://hog.grinvin.org/ [Accessed 26 April 2022].

[3] McKay, B., 2022. graph formats. [online] Users.cecs.anu.edu.au. Available
at:
https://users.cecs.anu.edu.au/~bdm/data/formats.html [Accessed
1 May 2022].

[4] Ullrich Herbert. User Extensible Graph Database. Czech Technical Uni-
versity in Prague, 2018. [CTU Bachelor thesis]

[5] McKay, B., 2022. Brendan McKay’s Home Page. [online]
Users.cecs.anu.edu.au. Available at:
http://users.cecs.anu.edu.au/~bdm/ [Accessed 27 April 2022].

[6] Atlas.gregas.eu. 2022. GReGAS Atlas. [online] Available at:
http://atlas.gregas.eu/ [Accessed 2 May 2022].

[7] Expressjs.com. 2022. Express - Node.js web application framework. [online]
Available at:
https://expressjs.com/ [Accessed 1 May 2022].

[8] Graphviz - Graph Visualization Software. (n.d.). Graphviz.org. [online]
Available at:
https://graphviz.org/ [Accessed 27 April 2022].

[9] Reactjs.org. 2022. React – A JavaScript library for building user interfaces.
[online] Available at:
https://reactjs.org/ [Accessed 1 May 2022].

[10] webpack. 2022. webpack. [online] Available at:
https://webpack.js.org/ [Accessed 1 May 2022].

[11] SageMath Mathematical Software System. 2022. SageMath Mathematical
Software System - Sage. [online] Available at:
https://www.sagemath.org/ [Accessed 1 May 2022].

55

https://hog.grinvin.org/
https://users.cecs.anu.edu.au/~bdm/data/formats.html
http://users.cecs.anu.edu.au/~bdm/
http://atlas.gregas.eu/
https://expressjs.com/
https://graphviz.org/
https://reactjs.org/
https://webpack.js.org/
https://www.sagemath.org/

5. Conclusion......................................
[12] Networkx.org. 2022. NetworkX — NetworkX documentation. [online]

Available at:
https://networkx.org/ [Accessed 1 May 2022].

[13] Wolfram.com. 2022. Wolfram: Computation Meets Knowledge. [online]
Available at:
https://www.wolfram.com/ [Accessed 1 May 2022].

[14] PostgreSQL Documentation. 2022. psql. [online] Available at:
https://www.postgresql.org/docs/current/app-psql.html [Ac-
cessed 1 May 2022].

[15] CTU - Faculty of Electrical Engineering. 2022. IT Centre (SVTI). [online]
Available at:
https://svti.fel.cvut.cz/en/ [Accessed 3 May 2022].

[16] PostgreSQL Documentation. 2022. pg_dump. [online] Available at:
https://www.postgresql.org/docs/current/app-pgdump.html [Ac-
cessed 1 May 2022].

[17] Docker. 2022. Home - Docker. [online] Available at:
https://www.docker.com/ [Accessed 1 May 2022].

[18] Tomáš Roun. Graph Database Fundamental Services. Czech Technical
University in Prague, 2018. [CTU Bachelor thesis], p.51.

[19] Openid.net. 2022. Final: OpenID Connect Core 1.0 incorporating errata
set 1. [online] Available at:
https://openid.net/specs/openid-connect-core-1_0.html [Ac-
cessed 8 May 2022].

[20] Sqlalchemy.org. 2022. Features - SQLAlchemy. [online] Available at:
https://www.sqlalchemy.org/features.html [Accessed 8 May 2022].

[21] Alembic.sqlalchemy.org. 2022. Auto Generating Migrations — Alembic
1.7.7 documentation. [online] Available at:
https://alembic.sqlalchemy.org/en/latest/autogenerate.html
[Accessed 8 May 2022].

[22] Djangoproject.com. 2022. The web framework for perfectionists with
deadlines | Django. [online] Available at:
https://www.djangoproject.com/ [Accessed 3 May 2022].

[23] Flask.palletsprojects.com. 2022. Welcome to Flask — Flask Documenta-
tion (2.1.x). [online] Available at:
https://flask.palletsprojects.com/en/2.1.x/ [Accessed 3 May
2022].

[24] Ivory.idyll.org. 2022. An Introduction to the Python Web Server Gateway
Interface (WSGI). [online] Available at:
http://ivory.idyll.org/articles/wsgi-intro/what-is-wsgi.html
[Accessed 6 May 2022].

56

https://networkx.org/
https://www.wolfram.com/
https://www.postgresql.org/docs/current/app-psql.html
https://svti.fel.cvut.cz/en/
https://www.postgresql.org/docs/current/app-pgdump.html
https://www.docker.com/
https://openid.net/specs/openid-connect-core-1_0.html
https://www.sqlalchemy.org/features.html
https://alembic.sqlalchemy.org/en/latest/autogenerate.html
https://www.djangoproject.com/
https://flask.palletsprojects.com/en/2.1.x/
http://ivory.idyll.org/articles/wsgi-intro/what-is-wsgi.html

................................. 5.1. Future improvements

[25] Connexion.readthedocs.io. 2022. Welcome to Connexion’s documenta-
tion! — Connexion 2020.0.dev1 documentation. [online] Available at:
https://connexion.readthedocs.io/en/latest/ [Accessed 3 May
2022].

[26] Swagger.io. 2015. API Resources. [online] Available at:
https://swagger.io/resources/open-api/ [Accessed 3 May 2022].

[27] Fastapi.tiangolo.com. 2022. FastAPI. [online] Available at:
https://fastapi.tiangolo.com/ [Accessed 6 May 2022].

[28] Techempower.com. 2022. TechEmpower Framework Benchmarks. [online]
Available at:
https://www.techempower.com/benchmarks/#section=test&runid=
7464e520-0dc2-473d-bd34-dbdfd7e85911&hw=ph&test=composite&l=
v2qiv3-db&a=2&f=4ftlb4-1-5slc-0-4zt38-18y68-4-18y80-w-18y6k-
1w4qp-0 [Accessed 6 May 2022].

[29] Docker Documentation. 2022. Overview of Docker Compose. [online]
Available at:
https://docs.docker.com/compose/ [Accessed 8 May 2022].

[30] Asgi.readthedocs.io. 2022. Introduction — ASGI 3.0 documentation.
[online] Available at:
https://asgi.readthedocs.io/en/latest/introduction.html [Ac-
cessed 9 May 2022].

[31] Uvicorn.org. 2022. Uvicorn. [online] Available at:
https://www.uvicorn.org/ [Accessed 9 May 2022].

[32] Pydantic-docs.helpmanual.io. 2022. pydantic. [online] Available at:
https://pydantic-docs.helpmanual.io/ [Accessed 9 May 2022].

[33] Winters, H., 2022. GitHub - HarryMWinters/fastapi-oidc. [online]
GitHub. Available at:
https://github.com/HarryMWinters/fastapi-oidc [Accessed 12 May
2022].

[34] McKay, B.D. and Piperno, A., 2014. Practical Graph Isomorphism, II.
Journal of Symbolic Computation, 60, p. 94-112

57

https://connexion.readthedocs.io/en/latest/
https://swagger.io/resources/open-api/
https://fastapi.tiangolo.com/
https://www.techempower.com/benchmarks/#section=test&runid=7464e520-0dc2-473d-bd34-dbdfd7e85911&hw=ph&test=composite&l=v2qiv3-db&a=2&f=4ftlb4-1-5slc-0-4zt38-18y68-4-18y80-w-18y6k-1w4qp-0
https://www.techempower.com/benchmarks/#section=test&runid=7464e520-0dc2-473d-bd34-dbdfd7e85911&hw=ph&test=composite&l=v2qiv3-db&a=2&f=4ftlb4-1-5slc-0-4zt38-18y68-4-18y80-w-18y6k-1w4qp-0
https://www.techempower.com/benchmarks/#section=test&runid=7464e520-0dc2-473d-bd34-dbdfd7e85911&hw=ph&test=composite&l=v2qiv3-db&a=2&f=4ftlb4-1-5slc-0-4zt38-18y68-4-18y80-w-18y6k-1w4qp-0
https://www.techempower.com/benchmarks/#section=test&runid=7464e520-0dc2-473d-bd34-dbdfd7e85911&hw=ph&test=composite&l=v2qiv3-db&a=2&f=4ftlb4-1-5slc-0-4zt38-18y68-4-18y80-w-18y6k-1w4qp-0
https://docs.docker.com/compose/
https://asgi.readthedocs.io/en/latest/introduction.html
https://www.uvicorn.org/
https://pydantic-docs.helpmanual.io/
https://github.com/HarryMWinters/fastapi-oidc

Appendix A
Graph formats

This is a list of the descriptions of the widely used graph formats. The
formats Digraph6, GraphML and DOT are not relevant for this thesis, but
are included for the sake of completeness..Graph6, Sparse6, Digraph6

http://users.cecs.anu.edu.au/~bdm/data/formats.txt. Edge list
https://www.khanacademy.org/computing/computer-science/algorithms/
graph-representation/a/representing-graphs.GraphML
http://graphml.graphdrawing.org/primer/graphml-primer.html. DOT
https://graphviz.org/doc/info/lang.html

58

http://users.cecs.anu.edu.au/~bdm/data/formats.txt
https://www.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/representing-graphs
https://www.khanacademy.org/computing/computer-science/algorithms/graph-representation/a/representing-graphs
http://graphml.graphdrawing.org/primer/graphml-primer.html
https://graphviz.org/doc/info/lang.html

Appendix B
Source code

The source code can be found in the attachments in src.zip or in the git
repository at https://gitlab.fel.cvut.cz/graphs/development.

59

https://gitlab.fel.cvut.cz/graphs/development

	Project Specification
	Introduction
	Feature overview
	Database contents
	Adding graphs
	Retreiving graphs from the database
	Graph collections
	Deployment

	Analysis
	Requirements
	Graph collections
	Importing collections
	Graph formats

	Original application structure
	node-www
	node-www/compute
	db_update
	db_counter

	Deployment
	Dockerized applications
	CI/CD

	Design
	Importing collections
	Administrator access

	Extended application structure
	Database schema
	Communication with the database
	SQLAlchemy

	Database migration
	Web framework choice
	Django
	Flask
	Connexion
	FastAPI
	Result

	API design
	POST /compute
	GET /collection
	POST /collection
	GET /collection/{name}/{resolution}
	DELETE /collection/{name}

	Manage collections UI
	Deployment

	Implementation
	Application structure
	Config
	Database
	Exception
	Model
	Routers
	Services
	Utils

	Dockerization
	Docker Compose
	GitLab Pipeline

	Conclusion
	Future improvements

	Bibliography
	Appendix
	Graph formats
	Source code

