
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3
Faculty of Electrical Engineering

Department of Computer Science

Master’s Thesis

Automatic evaluation of word
problems

Bc. Jan Kadlec
Open Informatics, Data Science

May 2022

Supervisor: doc. RNDr. Daniel Průša, Ph.D.

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

474727Osobní číslo:JanJméno:KadlecPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Datové vědySpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Automatické vyhodnocování slovních úloh

Název diplomové práce anglicky:

Automatic evaluation of word problems

Pokyny pro vypracování:
The aim of the thesis is to propose and implement a method for automatic evaluation of mathematical word problems in
Czech at the level of 1st to 4th grade of elementary school.
Detailed instructions:
- Get acquainted with existing methods of solving word problems in English, explain their principles.
- Base your solution on deep learning.
- Consider only word problems that can be solved by evaluating an arithmetic expression.
- Use the training and test data prepared during the software project, or expand this data set accordingly.
- Evaluate the implemented method empirically. Provide a thorough analysis of the achieved results. Compare the solution
with state-of-the-art methods (at least indirectly).

Seznam doporučené literatury:
[1] D. Zhang, L. Wang, L. Zhang, B. T. Dai, H. T. Shen: The Gap of Semantic Parsing: A Survey on Automatic Math Word
Problem Solvers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 9, pp. 2287-2305, 2020.
[2] I. Goodfellow, Y. Bengio, A. Courville: Deep Learning, The MIT Press, 2016.
[3] J. Kadlec, D. Průša: Solvers for Mathematical Word Problems in Czech, Proceedings of the 20th Conference Information
Technologies - Applications and Theory, 2020.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. RNDr. Daniel Průša, Ph.D. Strojové učení FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 20.05.2022Datum zadání diplomové práce: 02.02.2022

Platnost zadání diplomové práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. RNDr. Daniel Průša, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

I would like to thank my supervisor, doc.
RNDr. Daniel Průša, Ph.D., for his pro-
fessional guidance on my thesis.

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, date 20. 5. 2022

. .

v

Abstrakt / Abstract

Tato diplomová práce shrnuje vývoj a
poslední trendy solverů pro slovní úlohy
- jedná se o starou úlohu zpracování
přirozeného jazyka, která se datuje do
60. let minulého století. Tato práce
se zaměřuje na historii solverů, vy-
tváření datasetu, sequence-to-sequence
(seq2seq) modelu pro strojový překlad
a implementaci solveru, založeném na
seq2seq modelu pro slovní úlohy v čes-
kém jazyce a ověření na vytvořeném
datasetu. Nakonec se diskutuje o bu-
doucnosti solverů pro slovní úlohy a
jejich použití.

Klíčová slova: zpracování přirozeného
jazyka, strojové učení, automatické vy-
hodnocení, rekurentní neuronové sítě,
slovní úloha, český jazyk

Překlad titulu: Automatické vyhodno-
cování slovních úloh

This diploma thesis summarizes the
evolution and trends in word prob-
lem solvers - an old natural language
processing (NLP) task whose founda-
tions date back to the 1960s. This
work focuses on the history of solvers,
dataset creation, sequence-to-sequence
(seq2seq) model for machine transla-
tion, and solver implementation based
on the seq2seq model for word prob-
lems in Czech and its evaluation on
the created dataset. Finally, the future
of the word problem solvers and their
application will be discussed.

Keywords: natural language processing,
machine learning, automatic evaluation,
recurrent neural networks, word prob-
lem, Czech language

vi

/ Contents

1 Introduction 1
1.1 History 1
1.2 Existing online solvers 2
1.3 State-of-the-art 3
1.4 Problem definition 5

2 Related topics 6
2.1 Dataset 6
2.2 Sequence to sequence 9

2.2.1 Principle 10
2.2.2 Extensions 14

3 Implementation 16
3.1 Preprocessing 16
3.2 Training model 19
3.3 Evaluation 22

4 Experiments 24
4.1 Preprocessing templates

experiments 24
4.2 Training and evaluation on

different architectures 30
5 Conclusion 35

References 37

A Glossary 41

B Distribution of equations
in the data set 42

C Technical documentation
of the source code 43

D Documentation of the dataset 46

vii

Tables / Figures

2.1 Schema for dataset6
2.2 Existing datasets8
2.3 Schoolbooks and collections

that were processed9
2.4 Internet sources that were

processed .9
4.1 The first experiment tem-

plates accuracy using ground
truth information about a
significant numbers. 28

4.2 The first experiment tem-
plates accuracy using SNI
model . 28

4.3 The first experiment error
distribution . 30

4.4 The first experiment sizes
of models using a specific
template . 30

4.5 The second experiment tem-
plates accuracy with ground
truth information about sig-
nificant numbers 31

4.6 The second experiment mod-
els accuracy using SNI model. . 32

4.7 The second experiment error
distribution . 32

1.1 WolframAlpha solves a word
problem .3

1.2 Symbolab solves a word
problem .4

1.3 WolframAlpha fails to solve
a word problem.4

2.1 An example of a word prob-
lem record with only manda-
tory attributes.7

2.2 An example of a word prob-
lem record with optional fields . .7

2.3 The eight most common
equation templates from the
dataset and the number of
their occurrences9

2.4 An example of seq2seq mod-
el used for translation from
English to German 10

2.5 Schema for LSTM architec-
ture . 11

2.6 Schema for GRU architecture . 12
2.7 Sigmoid function 13
2.8 Derivative of sigmoid function . 13
3.1 Preprocessing of the input

word problem. 18
3.2 Syntactic analysis performed

by UDPipe REST service 18
3.3 An example of the input

where UDPipe fails 19
3.4 The encoder proposed in Py-

Torch tutorial 20
3.5 The simple decoder proposed

in PyTorch tutorial 20
3.6 The decoder with attention

mechanism proposed in Py-
Torch tutorial 21

3.7 Visualization of significant
number identification model . . . 23

4.1 An example of word problem
preprocessing 25

4.2 The figure of template losses . . 28
4.3 The accuracy of the eight

most common equations from
the first experiment 29

4.4 The figure of experiment loss-
es. 31

viii

4.5 The accuracy of the eight
most common equations tem-
plates for the second experi-
ment . 32

ix

Chapter 1
Introduction

Automatic evaluation of word problems is an old NLP task, which dates back to 1964,
but is still actual and, thanks to the new machine learning approaches, the methods of
solving this problem are still improving. The input to this task is a mathematical word
problem formulated in a natural language, and the output is the result, the equation(s)
or a procedure to obtain the result. This task may look trivial by its description, but
the opposite is true. It is similar to natural language translation: we are looking for
a corresponding translation of a word problem to a desired output with a substantive
difference that a slight change in the input text can result in a major change in the
output.

1.1 History

The history of word problem solvers is best described in [1]. This work identifies three
areas based on the period and used techniques. Let us take a closer look at these
approaches and discuss techniques and related solvers.

The pioneer among the word problem solvers is considered to be a solver STUDENT by
Daniel G. Bobrow, presented in his work [2] in 1964. The solver is written in the Lisp
programming language. It accepts word problems in English and outputs the answer
to the word problem (text answer with a number). First, the solver substitutes some
selected tokens (i.e., twice becomes 2 times). Then the words in the word problem are
tagged using a dictionary. The following part breaks the word problem into smaller
parts, called simple sentences. After this step, the transformation to mathematical
expressions is applied. A year later, the word problem solver DEDUCOM [3] was pre-
sented. DEDUCOM is just like STUDENT written in the Lisp programming language.
It uses 68 facts, representing general knowledge, and based on them, deduces the an-
swer to a question. Another well-known word problem solver is WORDPRO presented
in 1984 by Charles R. Fletcher [4]. Unlike STUDENT and DEDUCOM, WORDPRO
is written in an Interlisp-D programming environment built around Lisp. The solver
works on a third-grade student’s restricted set of word problems. The algorithm does
transformation, and after that, it applies rules, which yields the result. These all men-
tioned solvers have several things in common. All of them are written in the Lisp
programming language or in the Lisp-based programming environment. They all use
rule-based matching, using a transformation of input and then matching the rules. Last
but not least, it is hard for others to compare which solver is better because there was
no public testing dataset back then.

We can consider the second era of word problem solvers as a foundation for solvers as
we know them today. This era brought us standardisation measures for word problem
solvers, well-established datasets. The one we cannot forget to mention is the Alg514
dataset. It consists of 514 word problems in English and was presented together with a

1

1. Introduction .
word problem solver in [5] by Kushman et al. in 2014. Since then, other datasets have
been published, but Alg514 is considered to be the first standardised dataset. Except
for Alg514, Kushman et al. presented us with a solver in their work from 2014. The
solver first selects a template. The templates are extracted from the train set, which
means that the solver can solve word problems that have the same templates as word
problems from the train set. The template is selected using a probabilistic model. Then,
the numbers and variables from the word problem are mapped to the selected template,
resulting in a so-called aligned template. After these steps, instantiated equations are
extracted and solved, producing the result. It achieves 69% accuracy on Alg514. The
solver is related to two other research topics: situated semantic interpretation and
information extraction. Unfortunately, the dataset Alg514 lacks scale, as 514 word
problem instances are not enough for training and testing a general, robust solver. This
is why there was a need for more extensive datasets. Huang et al. took on this task,
and in their work [6] they presented the Dolphin18K dataset, which contains more than
18,000 annotated word problems in English. In Chapter 3, we will discuss the quality of
available datasets. Dolphin18K dataset was used to train and test the solvers existing
at that time and showed that they cannot cope with a large-scale dataset with various
word problems. The second era of word problem solvers brought us standardisation
of datasets, metrics for comparing solvers accuracy. Solvers of this era are based on
semantic parsing, feature engineering, and statistical learning.

The latest solvers from the third era are based on deep learning and reinforcement
learning. A significant change occurred with the seq2seq model and other NLP-based
methods. This era brought many significant benefits for word problem solvers and not
just for its success in solving word problems, but mainly due to datasets it brought
and still brings. DNS is the first solver from this era, based purely on deep learning
methods, meaning that the related algorithms do not use hand-crafted features. DNS
was presented by Wang et al. [7] in 2017 and uses the seq2seq model. The seq2seq
model was developed for machine translation and was introduced in 2014 [8], so in 2017,
it was still a new technology when DNS was introduced. A year after DNS publication,
another solver was proposed - Seq2SeqET. The Seq2SeqET solver [9] is an extension to
DNS, which brings several modifications to improve accuracy. Improvements include
equation normalisation, BiLSTM, ConvS2S, Transformer, and Ensemble. We should
pay particular attention to these improvements because the work shows that, thanks
to these improvements, the accuracy increased from 58.1% (DNS) to 68.4% (DNS with
improvements) when tested on dataset Math23K [7]. Last but not least, there is the
MathDQN solver [10], based on a reinforcement learning framework called deep Q-
network. It achieves accuracy of 76.0% on ArithM dataset [10]. These solvers use the
latest machine learning approaches to achieve the best possible accuracy, and as we can
see in the results, they are doing great.

1.2 Existing online solvers
There are few word problem solvers that are available online. Let us mention two of
them: WolframAlpha1 and Symbolab2. These solvers are examples of the ultimate goal
of word problem solvers, an interface for typing word problems and pressing the “solve”
button to uncover the step-by-step solution. Unfortunately, they have poor accuracy,

1 https://www.wolframalpha.com/
2 https://www.symbolab.com/

2

https://www.wolframalpha.com/
https://www.symbolab.com/

. 1.3 State-of-the-art

Figure 1.1. WolframAlpha solver applied to solve the word problem “Jack has 8 cats and
2 dogs. Jill has 7 cats and 4 dogs. How many dogs are there in all?”.

and after examination, we can conclude that they are template-based. Let us look at
the examples in Figure 1.1 and Figure 1.2.

It is essential to note that both solvers are focused on different word problems. Wolfra-
mAlpha extracts information from the word problem and answers the question with its
knowledge. Symbolab, on the other hand, creates a system of equation(s) and answers
the question of the word problem by solving the system of equation(s). As mentioned
before, both solvers are probably template-based, meaning that we can easily confuse
the solver to be unable to solve a word problem, as demonstrated in Figure 1.3. Let us
have a closer look at this issue.

1.3 State-of-the-art

It is challenging to identify a state-of-the-art word problem solver. Recently, there have
been a lot of new publications describing new word problem solvers and presenting
breaking boosts in their accuracy, but unfortunately, we can not consider a lot of
them as reliable because they do not provide a specific implementation of their solvers.
Another reason why it is hard to identify a state-of-the-art solver is that this diploma
thesis focuses on word problems in Czech, and there are not many solvers and even
datasets for this type of word problem.

My bachelor thesis[11] focused on word problems in Czech and proposed two solvers
based on solvers from the second era. This thesis will consider a state-of-the-art word

3

1. Introduction .

Figure 1.2. Symbolab solver applied to solve the word problem “If 2 tacos and 3 drinks
cost 12 and 3 tacos and 2 drinks cost 13 how much does a taco cost?”.

Figure 1.3. Slightly modifying an example word problem results in the solver being unable
to solve it correctly. Modified word problem “Jack has 8 ducks and 2 horses. Jill has 7

ducks and 4 horses. How many horses are there in all?”.

problem solver of the latest era, DNS. Although there is no source code, the implemen-

4

. 1.4 Problem definition

tation is straightforward. The majority of the latest solvers are based on this approach.
For example, there are two solvers [12] [13] from 2021 that directly use the foundation
concept of the DNS - seq2seq model or partly use it.

1.4 Problem definition

This thesis aims to propose and implement a method to automatically evaluate math-
ematical word problems in Czech at the level of 1st to 4th grade of elementary school.
For a further specification of word problems, we will consider only word problems that
are solved by a single equation. This requirement is based on known solvers, where some
solvers focus on the specific type of word problems, which results in better proposed
solutions. The solver is based on the latest NLP and machine learning approaches. The
output of the solver can differ. We can evaluate the solver accuracy by the numeric
result or compare the equation returned by the solver. Let us have a further insight
into these measures in the chapter that deals with the experiment.

Let us look at an example of a word problem that satisfies the requirements.

Na parkovišti stály 4 autobusy a 9 krát více aut.
Kolik dopravních prostředků bylo celkem na parkovišti?

The word problem translation to English is:

There were 4 buses and 9 times more cars in the parking lot.
How many vehicles were in the parking lot in total?

The word problem above is solved by the following equation.

4 + 4 * 9

The result of the word problem is 40.

5

Chapter 2
Related topics

This chapter will look at related topics of the proposed word problem solvers, dataset
and sequence to sequence. We will discuss existing datasets and the creation of the
Czech word problems dataset, which the proposed solver will use. Afterwards, we will
introduce the sequence-to-sequence approach and mention its principle, different forms,
and extensions.

2.1 Dataset

As mentioned in Subchapter 1.4, this thesis aims to evaluate mathematical word prob-
lems in Czech, which means that a dataset of the Czech word problem dataset is re-
quired. My bachelor thesis[11] introduced a dataset of word problems in Czech. This
dataset consists of 499 word problems, which is unfortunately not sufficient for a general
solver. For this purpose, a larger dataset of Czech word problems was created. Let us
describe the used dataset creation process before we have a look at the new dataset.

Creating a dataset is not an effortless task and is crucial for future work and evaluation
itself. One of the first things that come to mind when creating a dataset is what
storage to use. We can find inspiration in existing datasets that use schemaless data
storage, JSON. The vast advantages of using JSON as storage are easy to access,
editing, extending, and accessing using several popular technologies, such as Python
and MongoDB. Even though JSON is a schemaless data storage, we would like our
storage to follow a schema that we will know.

The created dataset has the following schema:

attribute data type optional (empty means False)

word_problem_CZ string
equation_CZ list
result list
source string
secret bool
word_problem_CZ_template string True
equation_CZ_template list True
mapping list True
word_problem_original string True
equation_original list True
units list True

Table 2.1. Schema for dataset.

6

. 2.1 Dataset

Figure 2.1. An example of a word problem record with only mandatory attributes.

Figure 2.2. An example of a word problem record with optional fields word_prob-
lem_CZ_template, equation_CZ_template and mapping due to not deterministic mapping

between word problem and equation.

The attributes word_problem_CZ and equation_CZ are the most important ones for
the model because they contain information about the word problem and the equa-
tion that solves it. When the direct mapping of numbers between word_problem_CZ
and equation_CZ is not deterministic, attributes word_problem_CZ_template, equa-
tion_CZ_template and mapping are used. It should be pointed out that word_prob-
lem_CZ and equation_CZ follow some rules. These rules establish data standardisa-
tion and consistency, which is crucial for a dataset. We want the attribute word_prob-
lem_CZ to follow the Czech grammar rules. Unfortunately, as we will see on the created
dataset, this demand does not have to be fully satisfied for some sets of word problems
because of translation to the Czech language.

The rules for the attribute equation_CZ are the following:

. the allowed maths operation symbols are +, −, ∗, /

7

2. Related topics .
. parentheses (and) are allowed. before the maths operation symbols and after them there is space

An example of equation_CZ value following standard:

(3 + 1) * (5 - 4) + 10 / 5

As mentioned in Subchapter 1.4, let us remind others of the standardisation we want
our word problems to follow.

. the word problem is solved using a single equation (of one unknown variable). the result of the word problem is an integer. there exists a mapping between the assignment of the word problem and all the
numbers that appear in the equation (no hidden or additional knowledge is required
to solve it);

The reason to consider only word problems solved using an equation of one unknown
variable was mentioned before. If we consider the results to have noninteger values,
we could face problems with simple arithmetic operations because computers generally
struggle with floating points1.

To create the dataset, I used the translation of existing word problem datasets in foreign
languages into Czech language. Some of the datasets can be seen in Figure 2.2. It should
be mentioned that finding a dataset from a paper is a challenging task. Sometimes
there is a link in the paper, but usually it is a dead link leading to a HTTP 404 error.
Other sources of word problems are schoolbooks or collections of math word problems.
Unfortunately, the number of these sources is limited. The schoolbooks and collections
used to create datasets can be seen in Figure 2.3. The Internet is the third source where
word problems were found. It is worth mentioning that extracting information from
some web pages is challenging. All used web pages can be seen in Figure 2.4.

dataset # word problems language year source

Alg514 514 English 2014 [5]
AllArith* 831 English 2017 [14]
Ape210K* 210,488 Chinese 2020 [15]
AQuA 100,000 English 2017 [16]
Dolphin18K 18,460 English 2016 [6]
Math23K 23,161 Chinese 2017 [7]
MAWPS 3,320 English 2016 [17]

Table 2.2. Existing datasets. Datasets with * were translated to the Czech and processed.

Unfortunately, not all dataset word problems are suitable for the resulting dataset, as
they do not follow the rules set during dataset creation. That is why word problems
have to be filtered and standardised. The final number of word problems in the created
dataset is 23,568. The distribution of the eight most common equations in the dataset
can be observed in Figure 2.3. We can find more accurate statistics of the equations in
Appendix B.1.

1 In Python 3.8.10 equation 1.2 − 1 results is 0.19999999999999996

8

. 2.2 Sequence to sequence

schoolbook/collection # of used word problems source
Matematika na základní a
obecné škole ve slovních úlo-
hách

499 [18]

SLOVNÍ ÚLOHY PRO 2.-5.
ROČNÍK

303 [19] [20] [21] [22]

Table 2.3. Schoolbooks and collections that were processed. Word problems from Matem-
atika na základní a obecné škole ve slovních úlohách is known from my bachelor thesis as
WP500 dataset. Unfortunately, we found a duplicate word problem, so in this thesis, we

will not call this subset of word problem as WP500.

link # of used word problems

https://www.umimematiku.cz/ 612
https://www.hackmath.net/ 67
https://www.matika.in/ 25

Table 2.4. Internet sources that were processed.

NUM1 *
 NUM2

NUM1 /
 NUM2

NUM1 *
 NUM2 *

 NUM3

NUM1 +
 NUM2

NUM1 *
 NUM2 /

 NUM3

NUM1 -
 NUM2

NUM1 *
 NUM2 +

 NUM3

NUM1 *
 NUM3 /

 NUM2
0

500

1000

1500

2000

2500

3000

Figure 2.3. The figure shows the eight most common equation templates from the dataset
and the number of their occurrences.

2.2 Sequence to sequence

As mentioned before, the seq2seq model was presented in 2014 by a group of researchers
from Google[8]. The motivation to create sequence-to-sequence learning was the lack of
deep neural networks (DNNs) to map an input sequence to an output sequence, which is,
in fact, the case of machine translation. The cited paper experiments with translation

9

https://www.umimematiku.cz/
https://www.hackmath.net/
https://www.matika.in/

2. Related topics .
from English to French and vice versa, outperforming existing state-of-the-art. Years
later, Google presented an open source sequence-to-sequence framework in Tensor Flow,
which we can still find on GitHub2. Also, Google started using a sequence-to-sequence
model called Google Neural Machine Translation [23] in its well-known production
systems, such as Google Translator3.

2.2.1 Principle

As is evident from the name, seq2seq performs the mapping from one sequence to
another, and it became successful in machine translation. The formal definition for
machine translation is that we have a sequence 𝑥1, 𝑥2, ..., 𝑥𝑚 (tokens, where 𝑥𝑖 is a
token of input sequence on position 𝑖) and another sequence 𝑦1, 𝑦2, ..., 𝑦𝑛 (tokens, where
𝑦𝑖 is a token of output sequence on position 𝑖), and the task is to find the most probable
output sequence by the given input sequence. Note that both sequences do not have to
be of the same length.

The model consists of two primary components, the encoder and the decoder, where
each is, in fact, a recurrent neural networks (RNNs). The most popular ones are Long
short-term memory (LSTM) and Gated recurrent unit (GRU). Both will be discussed
in more detail in the thesis.

Figure 2.4. An example of seq2seq model[24] used for translation from English to German.

LSTM is a recurrent neural network architecture commonly used in NLP tasks. The
architecture was presented in 1997 by Sepp Hochreiter and Jürgen Schmidhuber [25].
The neural network consists of several units: cell, input gate, output gate, and forget
gate. There are several variants of the LSTM architecture. In this thesis, we will work
with a variant that PyTorch4 uses, which is based on the work from 2014 of the Google
research group [26].

LSTM computes following:

𝑖𝑡 = 𝜎(𝑊𝑖𝑖𝑥𝑡 + 𝑏𝑖𝑖 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏ℎ𝑖)

𝑓𝑡 = 𝜎(𝑊𝑖𝑓𝑥𝑡 + 𝑏𝑖𝑓 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏ℎ𝑓)

𝑔𝑡 = tanh(𝑊𝑖𝑔𝑥𝑡 + 𝑏𝑖𝑔 + 𝑊ℎ𝑔ℎ𝑡−1 + 𝑏ℎ𝑔)

2 https://github.com/google/seq2seq
3 https://translate.google.com/
4 https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

10

https://github.com/google/seq2seq
https://translate.google.com/
https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

. 2.2 Sequence to sequence

𝑜𝑡 = 𝜎(𝑊𝑖𝑜𝑥𝑡 + 𝑏𝑖𝑜 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏ℎ𝑜)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔𝑡

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡)

Where, for a time 𝑡,

𝑥𝑡 is the input

ℎ𝑡 is the hidden state

𝑖𝑡 is a computation of the input gate

𝑓𝑡 is a computation of the forget gate

𝑔𝑡 is a computation of the cell

𝑜𝑡 is a calculation of the output gate

𝑐𝑡 is the cell state

𝜎 is the sigmoid function

⊙ is the Hadamard product

𝑊 is the weight matrix

Figure 2.5. Schema for LSTM architecture from [27]. Note that symbol “X” represents ⊙
— Hadamard product.

A GRU is another popular recurrent neural network used in the seq2seq model. GRU
was presented in 2014 by Kyunghyun Cho et al. [28]. The most significant difference
between GRU and LSTM is the number of parameters. GRU has fewer parameters
than LSTM, caused by the lack of an output gate in GRU, and it is worth mentioning
that the names of GRU units are different. Instead of the input, forget gate, GRU has
reset, update, and new gates. As we examined the variant of LSTM using PyTorch, we
will do the same for GRU 5.

5 https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

11

https://pytorch.org/docs/stable/generated/torch.nn.GRU.html

2. Related topics .
GRU computes following:

𝑟𝑡 = 𝜎(𝑊𝑖𝑟𝑥𝑡 + 𝑏𝑖𝑟 + 𝑊ℎ𝑟ℎ(𝑡−1) + 𝑏ℎ𝑟)

𝑧𝑡 = 𝜎(𝑊𝑖𝑧𝑥𝑡 + 𝑏𝑖𝑧 + 𝑊ℎ𝑧ℎ(𝑡−1) + 𝑏ℎ𝑧)

𝑛𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑖𝑛𝑥𝑡 + 𝑏𝑖𝑛 + 𝑟𝑡 ⊙ (𝑊ℎ𝑛ℎ(𝑡−1) + 𝑏ℎ𝑛))

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ 𝑛𝑡 + 𝑧𝑡 ⊙ ℎ(𝑡−1)

Where, for a time 𝑡,

𝑥𝑡 is the input

ℎ𝑡 is the hidden state

𝑟𝑡 is a computation of the reset gate

𝑧𝑡 is a computation of the update gate

𝑛𝑡 is a computation of the new gate

𝜎 is the sigmoid function

⊙ is the Hadamard product

𝑊 is the weight matrix

Figure 2.6. Schema for GRU architecture from [29]. Note that symbol “X” represents ⊙
— Hadamard product and symbol ℎ̃𝑡 is in fact 𝑛𝑡.

In summary, for the LSTM and GRU architectures, GRU has fewer parameters, which
means that we can expect faster learning and a smaller size of the trained model. On
the other hand, we will probably tend to use LSTM in large datasets due to the number
of parameters and complexity, resulting in better performance. The reason why LSTM
and GRU are used is to avoid the problem of vanishing gradients.

12

. 2.2 Sequence to sequence

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.7. Figure of sigmoid function

𝑆(𝑥) = 1
1 + 𝑒−𝑥

.

6 4 2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

Figure 2.8. Figure of derivative of sigmoid function

𝑆′(𝑥) = 𝑆(𝑥)(1 − 𝑆(𝑥))

.

The derivative of the activation function can cause the problem of vanishing gradients.
Let us demonstrate what can occur when the sigmoid is used as an activation function.

13

2. Related topics .
We can observe that the maximum value for the derivative function is 0.25, which is a
low number. It is important to note that the number produced by the derivative of the
activation function is then used in the chain rule in the backpropagation, where the goal
is to minimise loss. Multiplying several low numbers leads to a number close to zero,
which is called the vanishing gradient problem. A vanishing gradient causes the weights
not to be updated, which means that the network will stop learning. We can prevent
the vanishing gradient problem by using different activation functions, but we must be
careful because other activation functions, such as ReLU, can result in an exploding
gradient problem, which is the opposite of the vanishing gradient problem. Note that
LSTM uses a hyperbolic tangent for cell activation, and the sigmoid activation function
is usually used to activate the output of the node. It is important to note that, thanks to
the LSTM architecture, the problem of vanishing gradient does not occur even though
the sigmoid function is used as an activation function.

2.2.2 Extensions

So far, we have discussed the “basic” seq2seq model. Several extensions to the seq2seq
model increase its accuracy and robustness. Let us discuss attention and transformer.

The problem with the seq2seq model is that the encoder outputs a fixed-size vector.
That is, the entire input sentence (sequence of words) is compressed into a fixed-sized
vector as the input for the decoder. We can call this a bottleneck because we give
limited information about the input sequence. The decoder may need to “focus” on
different parts of the encoder in each step, and using a fixed size vector will not allow
this. Vanishing information can cause performance problems for long sentences that
are squeezed into a single fixed-size vector. The attention focuses on this issue and
proposes that the decoder have access to every state of the encoder.

Let us mention two attention mechanisms proposed by Bahdanau [30] and Luong [31].
These mechanisms are one of the most well-known and used attention mechanisms.
Bahdanau and Luong models differ in the encoder used, the attention score, and when
the attention is applied. Bahdanau model uses a bidirectional encoder, multilayer
perceptron as an attention score, and the attention is applied between decoder steps.
On the other hand, the Luong model uses a “simple” encoder, a bilinear function as
an attention score, and the attention is applied after the RNN decoder step before
prediction.

Attention mentioned above deals with “communication” between the encoder and the
encoder, but if we extend the encoder and the decoder with attention (called self-
attention), we get a transformer. The transformer can be summarised as “Attention
for everyone”. With attention, we extend the encoder, decoder, and communication
between the encoder and decoder. This approach led to several successful language
models, such as BERT (Bidirectional Encoder Representations from Transformers) [32]
by Google. The BERT is an English language model from 2018, trained for two tasks -
to place missing words in the sentence and predict the following sentence. The Czech
equivalent for BERT is Small-E-Czech6 by Seznam, which contributed to increasing the
quality of search results and can handle typographical corrections. Compared to BERT,
Small-E-Czech has fewer weights, about 14 million. BERT, on the other hand, has 110
million weights. The number of weights might be disputable because larger networks

6 https://github.com/seznam/small-e-czech

14

https://github.com/seznam/small-e-czech

. 2.2 Sequence to sequence

usually achieve higher accuracy, but their size is larger, and training and evaluation are
computationally intensive.

15

Chapter 3
Implementation

The proposed implementation in this thesis comes from a trend in mathematical word
problem solvers, which is described in the previous subchapter. Let us take a closer
look at the implementation of the solver.

For the implementation, the Python programming language is used. The motivation
for this programming language is that Python is standard for the latest solvers due to
several machine learning libraries such as PyTorch and TensorFlow.

3.1 Preprocessing

The first thing that has to be taken care of is the solver’s input and output data. The
essential raw data from the dataset are word problems, equations, and results. We
will consider a template for word problems and equations if we can not directly map
numbers from a word problem to an equation. Template usage will be considered only
during the training part. In the test part, the solver has to be capable of handling this
situation on his own, which will be discussed further in the thesis.

An example of an input to the solver in the training part.

Word problem:

U školy roste 22 břízek, 8 lip a 15 smrčků. Kolik stromů roste u školy?

Word problem translation into English:

The school has 22 birches, 8 lindens, and 15 spruces.
How many trees grow at school?

Equation:

22 + 8 + 15

Result:

45

Additional information in case direct mapping is not possible.

Word problem without deterministic direct mapping:

Babička sbírala na zahrádce první jahody. Sebrala jich 30.
Radkovi dala 8 a Jitce také 8 jahod. Kolik jahod zůstalo babičce?

16

. 3.1 Preprocessing

Equation without direct deterministic mapping:

30 - 8 - 8

Word problem template for word problem:

Babička sbírala na zahrádce první jahody. Sebrala jich NUM1.
Radkovi dala NUM2 a Jitce také NUM3 jahod. Kolik jahod zůstalo babičce?

Equation template for word problem:

NUM1 - NUM2 - NUM3

As can be seen, the word problem template and the equation template have substituted
numbers with constants NUMY, where Y is the order number. Note that numbers that
are not used in an equation can be substituted, for example, by NUMX, where X is
not an order number. The substitution is essential for solvers because the equation
solving the word problem will remain the same no matter what specific numbers are
in the word problem. We can easily substitute numbers with constants because, in
our dataset, we have two categories of word problems. The one where we can make
direct mapping between word problems and equation numbers and after that assign
every mapping a constant. The second category of word problems does not have direct
mapping, but it has fields word_problem_CZ_template, equation_CZ_template and
mapping containing information about the substitution. The question of how to make
a substitution during the evaluation part will be discussed in the following chapters.

The generalisation above has strong prospects, but we can generalise even more. The
motivation for the generalisation is to shrink the input and the output sequence space to
cover more word problems and make the solver as general as possible. We do not have to
stop only at the substitution of numbers. Some word classes can be substituted to cover
general word problem cases, but other word classes should not be substituted as they
can have a massive impact on solving a word problem. Another possible substitution is
to replace words by their lemmas. This type of substitution should be less harmless than
word class substitution, which can substitute essential words with a constant, resulting
in loss of meaning. Syntactic analysis of the word problem is needed to perform word
classes substituting or substituting words by their lemmas. One of the best tools for
syntactic analysis is UDPipe [33]. It is a tool that can perform tagging, lemmatization,
and syntactic analysis, which can all be used for any substitution.

The UDPipe provides the REST service1 and the Python library2 to perform syntactic
analysis. Several inputs can be passed to UDPipe. We will consider the most intuitive
one, plain text. The output, on the other hand, is in CoNLL-U format3 containing all
information about syntactically analyzed input.

Although UDPipe is one of the best syntactic analyzers for the Czech language (sup-
porting other languages), it is not flawless. That is why it is not a good idea to rely only
on syntactic analyzers. It should always be taken into account that they can produce
errors. Fortunately for our approach, we will rely on the UDPipe results minimally.

1 https://lindat.mff.cuni.cz/services/udpipe/
2 https://pypi.org/project/ufal.udpipe/
3 https://universaldependencies.org/format.html

17

https://lindat.mff.cuni.cz/services/udpipe/
https://pypi.org/project/ufal.udpipe/
https://universaldependencies.org/format.html

3. Implementation .

Na louce poletuje pět žlutých motýlů a šest modrých
motýlů. Kolik motýlů poletuje na louce?

Na louce poletuje 5 žlutých motýlů a 6 modrých
motýlů. Kolik motýlů poletuje na louce?

Na louce poletuje NUM1 žlutých motýlů a NUM2
modrých motýlů. Kolik motýlů poletuje na louce?

na louka poletovat NUM1 žlutý motýl a NUM2 modrý
motýl . kolik motýl poletovat na louka ?

Equation: 5 + 6
Mapping {"NUM1": 5, "NUM2": 6}

Five yellow butterflies and six blue butterflies fly in
the meadow. How many butterflies fly in the

meadow?

5 yellow butterflies and 6 blue butterflies fly in the

meadow. How many butterflies fly in the meadow?

NUM1 yellow butterflies and NUM2 blue butterflies fly
in the meadow. How many butterflies fly in the

meadow?

NUM1 yellow butterfly and NUM2 blue butterfly fly in
the meadow . how many butterfly fly in the meadow ?

Figure 3.1. The figure shows preprocessing the input word problem. Numbers are substi-
tuted by variables, words are substituted by their lemmas.

Figure 3.2. The figure shows an example of syntactic analysis for the sentence “Na
parkovišti stály 4 autobusy a 9 krát více aut.” outputted by UDPipe REST service.

We will focus only on lemmas and parts of speech, meaning we do not expect UDPipe
errors to cause many issues for us.

Using a syntactic analyzer provides another benefit. In the word problem examples,
there are numbers written using digits, but the input to the word problem solver can
contain a number written by words, which is valid from the grammar point of view.
Thanks to syntax analysis, the lemma of the word number can be obtained and, using
a defined dictionary, it can be converted to a number written by digits.

18

. 3.2 Training model

Figure 3.3. The figure shows an error that UDPipe made. The input sentence is “Ve
školní knihovně je 210 pohádkových knih a 335 dětských románů”. As we can observe the
UDPipe changes lemma for number 335 to 3358. This error occurs for UDPipe model

czech-pdt-ud-2.5-191206.udpipe (the latest available model to download).

3.2 Training model
The previous subchapter summarizes the input and output data preprocessing for a
solver. This subchapter will be dedicated to the solver training. As mentioned earlier,
our approach is based on the seq2seq model and modifications derived from the latest
solvers.

The seq2seq model was introduced in detail in Subchapter 2.2, and as we found, the
model is complex. It consists of an encoder and decoder, which can have different
architectures using GRU or LSTM. Other extensions can be added, such as the attention
mechanism, greedy or beam search in the decoder, and parameters for RNN (hidden
size, drop out, teacher force ratio, and others). The PyTorch framework presents a
tutorial4 dedicated to translating French into English. Let us have the model from the
tutorial as a foundation for the word problem solver presented in this thesis and adapt
and extend it to solve word problems.

The PyTorch tutorial presents a simple encoder based on GRU, reproducing a single
output vector with hidden values. The architecture of the encoder can be seen in
Figure 3.4.

The tutorial proposes two decoders, a simple one and a decoder with an attention
mechanism. Both decoders use GRU as an RNN architecture. The visualization of the
simple decoder can be seen in Figure 3.5. As can be observed, the decoder does not
hide anything complex. On the contrary, the decoder using an attention mechanism
becomes more complex, as shown in Figure 3.6.

We can make several observations for the model proposed in the tutorial. One obser-
vation is that the model is trained using stochastic gradient descent, which is worth
considering to try out the different approaches to training, batch, and mini-batch.
Both decoders and encoders use GRU as part of their architecture. LSTM, Bi-LSTM
are worth trying out. Lastly, the model deals with translation and can also be used
to solve word problems without any modifications, but we can easily make some im-
provements. The seq2seq model uses so-called “greedy decoding”, which means that it
picks the token with the highest probability. Unfortunately, this may not always lead
to picking semantically/syntactically valid tokens, resulting in nonsense equations.

For example, the following sequence can be obtained:

NUM1 NUM2 / + NUM3
4 https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

19

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

3. Implementation .

input

embedding

embedded

previous hidden

GRU

output hidden

Figure 3.4. The encoder proposed in PyTorch tutorial.

input

embedding

ReLU

previous hidden

GRU

out

hidden

softmax

output

Figure 3.5. The simple decoder proposed in PyTorch tutorial.

DNS proposes a solution in the form of a set of rules applied before “greedy decoding”,
before the activation function is called, which results in the zero probability of placing
the token incorrectly.

20

. 3.2 Training model

previous hidden input encoder outputs

embedding

dropout

embedded

attn

attn softmax

attn weights

bmm

attn applied

attn combine

ReLU

GRU

out

softmax

output hidden

Figure 3.6. The decoder with attention mechanism proposed in PyTorch tutorial.

The adjusted rules are the following (𝑟𝑡−1 is a token in the previous position):

. If 𝑟𝑡−1 is in { +, −, ∗, / }, then 𝑟𝑡 will not be in { +, −, ∗, /,) }

. If 𝑟𝑡−1 is a number, then 𝑟𝑡 will not be a number

. If 𝑟𝑡−1 is (, then 𝑟𝑡 will not be in { +, −, ∗, /,), (}

. If 𝑟𝑡−1 is), then 𝑟𝑡 will not be a number and not in {), (}

Binary vector 𝜌𝑡 is created using these rules and then used as a mask to filter out the
unwanted candidates for a token before the activation function. The following equation
shows how a binary vector 𝜌𝑡 (mask) is applied to the softmax function that produces
the probability distribution, where the invalid tokens for position 𝑡 have zero probability.

𝑃(𝑟𝑡|ℎ𝑡) = 𝜌𝑡 ⊙ 𝑒ℎ𝑇
𝑡 𝑊 𝑠

∑ 𝜌𝑡 ⊙ 𝑒ℎ𝑇
𝑡 𝑊 𝑠

21

3. Implementation .
One of the observations made in this thesis is that during training, the length of the
sequence is known, but this does not apply to the testing part. The assumption that
can be made is that the length of the valid sequence will always be an odd number not
less than 3. The reason for this is that, in this case, math operations are always binary
operations, which means that the operation requires two input values. Then there
are parentheses, which always have even numbers starting with 0. The length of the
equation is then the sum of input values (numbers), math operations, and parentheses,
which is (2𝑘+1)+2𝑙, where 2𝑘+1; 𝑘 ∈ ℕ+ is the number of math operations and numbers
and 2𝑙; 𝑙 ∈ ℕ is the number of parentheses. The resulting sum is then (2𝑘 + 1) + 2𝑙 =
2(𝑘 + 𝑙) + 1 = 2𝑚 + 1; 𝑚 ∈ ℕ+. The assumption above is valid only when we know
that all math operations are binary operations. The assumption does not hold for the
following equation because ’−’ (unary minus) is not a binary operation.

−𝑁𝑈𝑀1 + 𝑁𝑈𝑀2

We can replace “greedy decoding”, which picks the most probable token, with “beam
search”, which tracks several of the most probable hypothesis, and then selects the most
probable one, and we can further extend it with requirements such as that the equation
is valid, or application of rules mentioned before.

3.3 Evaluation
When we train a model, we are ready to evaluate the test dataset, but a challenge must
be solved before that. The challenge is to map the number of word problems. Since we
were unable to develop a deterministic mapping during training, we used an attribute
that holds the information. Unfortunately, this cannot be done in the evaluation part
because we do not want to provide a model with this information. It would be too trivial
for the model to evaluate the word problem and it would not be able to solve some word
problems without additional information. The DNS deals with this issue using the SNI
(Significant number identification) model. The SNI is a binary classification based on
LSTM that determines if a number is significant in a chunk of a word problem. The
number is considered to be “significant” if it is used in the equation that solves the
assignment.

Word problem in Czech:
Tobiáš dostal za úkol vypočítat 2 cvičení z matematiky. V prvním byly 4
sloupečky po 5 příkladech a ve druhém 3 sloupečky po 4 příkladech.
Kolik musel Tobiáš vypočítat příkladů?

Word problem in English:
Tobias was given the task of calculating 2 exercises in mathematics.
There were 4 columns of 5 examples in the first and the second 3 columns
of 4 examples. How many examples did Tobias have to calculate?

Equation:
4 * 5 + 3 * 4

In the word problem above, we have five numbers, and, as we can see, the equation
solving this word problem needs four of them (number 2 is not a part of the equation).

22

. 3.3 Evaluation

Figure 3.7. Visualization of SNI (Significant number identification) from [7].

SNI from DNS does not seem optimal because it only evaluates a part of the problem.
What if the information, when the number is significant, is hidden in a different chunk?
That is why a modified SNI is required. The modification of SNI proposed in this
thesis works on the whole word problem with all numbers substituted by constants.
The output sequence consists of numbers, essential constants. We can apply a similar
trick to that proposed by DNS. When the decoder decodes the output sequence, we
can force it to return unique tokens. Let us say that the decoder’s first token is NUM1,
which means that the token NUM1 is significant, and by this, we can deduce that the
following tokens will not be NUM1 because we already know that the token NUM1 is
significant.

Although we will be able to find “significant” numbers for word problems and pass
replaced numbers by constants to the model, we will have to determine how to evaluate
the model’s output. We cannot determine precisely if the equation output by the
model is correct without taking into account the mapping found by SNI because it
could happen that the ground truth equation would be the same as the predicted
equation, but the constants in the equation would point to different numbers. One of
the solutions is to replace constants with numbers from mapping and evaluating the
equation. However, this approach is suboptimal because the results can be the same,
but the mapping can be different. Therefore, the equation and the mapping should be
checked during the evaluation test dataset.

23

Chapter 4
Experiments

This chapter describes two experiments. The first experiment is focused on different
preprocessing templates and their impact on accuracy. Afterward, we use the best
performing preprocessing template from the first experiment in the second experiment
where we work with various seq2seq architectures and compare their accuracy with the
results from the first experiment.

The following libraries and tools were used in the implementation:

. Python 3.9.5

. PyTorch 1.10.0

. CUDA 11.3.1

. UDPipe 2 (czech-pdt-ud-2.5-191206)

All models for the experiment were trained on GPU servers of the Department of
Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague.
The specification of the GPU used for training is the following:

. NVIDIA GTX 1080Ti

. Memory: 11178MiB

4.1 Preprocessing templates experiments

Let us present four preprocessing templates, but before that, we have to clarify that
these templates are something different from the word_problem_CZ_template, which
helps us in training to find the correct mapping of numbers. These preprocessing
templates were already mentioned in Subchapter 3.1. Their purpose is to generalise the
training record for the word problem, resulting in higher model accuracy.

The four preprocessing templates are:

. NoSub

. Simple

. Smarter

. Ultimate

24

. 4.1 Preprocessing templates experiments

Figure 4.1. The word problem “Petra read 3 books during the holidays. The first book
had 217 pages, the second 49 pages less. How many pages did the third book have if Petra

read 639 pages together?” demonstrates how a template is used.

We will consider word problem and equation from Figure 4.1 as an input to the four
preprocessing templates and show how the preprocessing affects the word problem and
describe what the template does.

NoSub template does nothing at all. This template takes the word problem and equa-
tion and returns them unchanged. This template demonstrates how preprocessing is
crucial and how even tiny preprocessing can boost accuracy. Although we consider this
template to be the one that will not work well in the test set, it still has an enormous
advantage over other templates. It does not need to detect significant numbers because
it does not substitute them. Not being dependent on significant number identification
might be an advantage because the solver depends only on itself, so it avoids the situa-
tion when the significant number identification wrongly identifies a significant number,
resulting in the solver’s wrong solution. Another positive side effect is that it should
be faster than templates using significant number identification.

Word problem:
Petra o prázdninách přečetla 3 knihy . První kniha měla 217 stran , druhá
o 49 stran méně . Kolik stran měla třetí kniha , jestliže Petra dohromady
přečetla 639 stran ?

Equation:
639 - 217 - (217 - 49)

Mapping:
{}

Simple template provides one of the essential preprocessing procedures. It substitutes
numbers with constants, resulting in basic generalisation when we do not mind about
numbers presented in the word problem because they do not affect the equation which

25

4. Experiments .
solves it. As mentioned above, this template must identify significant numbers in the
test set to use the trained significant number identification model. We substitute num-
bers that are not significant with constant string NUMX , as can be seen in the example
below.

Word problem:
Petra o prázdninách přečetla NUMX knihy . První kniha měla NUM1 stran ,
druhá o NUM2 stran méně . Kolik stran měla třetí kniha , jestliže
Petra dohromady přečetla NUM3 stran ?

Equation:
NUM3 - NUM1 - (NUM1 - NUM2)

Mapping:
{'NUM1': 217, 'NUM2': 49, 'NUM3': 639}

The Czech language is a so-called fusional language, which means that it does inflec-
tion, i.e. word formation. Unfortunately, inflection makes solving word problems more
challenging because it does not bring additional information that would help solve the
word problem. Sometimes similar words mean the same thing. Smarter template should
handle this issue. As Simple template, it substitutes numbers with constants, but it
also substitutes words with their lemmas, which should solve the challenge of inflection.

Word problem:
Petra o prázdniny přečíst NUMX kniha . první kniha mít NUM1 strana ,
druhý o NUM2 strana málo . kolik strana mít třetí kniha , jestliže
Petra dohromady přečíst NUM3 strana ?

Equation:
NUM3 - NUM1 - (NUM1 - NUM2)

Mapping:
{'NUM1': 217, 'NUM2': 49, 'NUM3': 639}

Unlike the previous templates, the last template uses syntactic analysis obtained using
the UDPipe program. It uses information about the part of speech of each word. The
idea is that not all parts of speech are essential and that we can substitute some parts
of speech with constants, such as numbers. So, the Ultimate template is an extension
of the Smarter template with the difference that we replace some parts of speech with
constants. For testing purpose, we decided to replace nouns and proper nouns by NOUN
and PROPN, respectively. These are not only parts of speech that can be substituted,
but in our opinion, it is possible to substitute some other less important parts as well,
such as ADJ (adjective), but it is essential to mention that this substitution comes with
a penalty which is losing information. Some parts of speech can be crucial to solving
a word problem, such as VERB (verb) or ADV (adverb). On the other hand, we gain
generalisation (simplification) of word problems.

Word problem:
PROPN1 o NOUN1 přečíst NUMX NOUN2 . první NOUN2 mít NUM1 NOUN3 , druhý o
NUM2 NOUN3 málo . kolik NOUN3 mít třetí NOUN2 , jestliže PROPN1

26

. 4.1 Preprocessing templates experiments

dohromady přečíst NUM3 NOUN3 ?

Equation:
NUM3 - NUM1 - (NUM1 - NUM2)

Mapping:
{'NUM1': 217, 'NUM2': 49, 'NUM3': 639}

The templates mentioned above should show us how a generalisation of the word prob-
lem can help us find a robust solver. We expect that some templates may overfit, and
these solvers should be those that do not generalise enough, such as NoSub template.

For this experiment, we provided all templates with the same conditions. We trained
the four templates in 20 epochs on the same training data consisting of 18,834 word
problems, which were randomly chosen from the created dataset. The architecture
proposed in the PyTorch tutorial, which we mentioned before, was used for training.
Unfortunately, the architecture did not allow us to use the mask that uses DNS. The
reason is that the architecture uses negative logarithmic likelihood, logarithmic softmax,
and mask force values to have zero probability. The logarithm of zero is minus infinity,
resulting in a loss that will be plus infinity, making the model unable to be well trained.
We evaluated models using the four proposed templates on the same test dataset of size
4,709 samples. Word problems from the matikain dataset were excluded from the train
and test dataset to show how the solver performs on a small dataset and which also
includes types of word problems that were not present in the training set. We consider
one more dataset for comparison - the reischigova dataset from bachelor thesis [11],
which contains 499 word problems (396 of them are part of training data and 103 of
them are part of testing data).

Some templates need significant number identification for evaluation to replace numbers
with constants. We trained a significant number identification model in 20 epochs on the
different training data we used for the training templates. The train dataset contains
18,854 word problems, and the test dataset contains 4,714 word problems. We expect
Ultimate template to be the best performing template, and that is why we use it in
significant number identification in the preprocessing part.

As we can observe in Figure 4.2, the advanced templates, preprocessing the word prob-
lem, achieved a lower loss than the naive NoSub template. However, the loss started
to increase. An unsuitable learning rate can cause an increase in training loss, which
is probably our example. We used the 0.01 learning rate for the experiment, so using
the next iteration’s lower learning rate for the templates would be wise. Interestingly,
the learning rate was improper only for models that used templates that modified the
input sequence.

The experiment revealed that, as expected, templates significantly impact the model’s
accuracy. An interesting observation is that, on the testing dataset, Smarter template
performed better than Ultimate template, which is unexpected. However, we will con-
sider Ultimate to be the best performing template because it is more accurate when
considering the absolute number of solved word problems.

From the results and examination of the wrong-solved word problems, we identify two
major error categories: syntactically incorrect equations and wrong equations. The
number of syntactically incorrect equations could be reduced using the trick presented

27

4. Experiments .

3 6 9 12 15 18
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

NoSub

3 6 9 12 15 18

0.4

0.5

0.6

0.7

0.8

0.9

Simple

3 6 9 12 15 18

0.4

0.5

0.6

0.7

0.8

0.9

Smarter

3 6 9 12 15 18
0.4

0.5

0.6

0.7

0.8

0.9

Ultimate

Templates losses

Figure 4.2. The figure of template losses. X-axis are epochs, Y-axis are losses.

dataset NoSub Simple Smarter Ultimate

training 41.6%/45.67% 42.68%/46.41% 47.16%/51.99% 48.64%/52.60%
testing 14.7%/21.21% 33.45%/38.97% 37.06%/43.39% 35.17%/42.11%
reischigova 48.1%/53.9% 51.9%/53.31% 58.12%/59.12% 68.14%/68.93%
matikain 12.00%/16.00% 16.00%/16.00% 16.00%/12.00% 16.00%/16.00%

Table 4.1. Template models accuracy on the datasets with ground truth information about
significant numbers on the datasets. As we mentioned in Subchapter 3.3, there are two
options to compute the accuracy — comparing equations or comparing results. In the
table, the first number is the accuracy of comparing equations, and the second is the

accuracy of comparing results.

dataset NoSub Simple Smarter Ultimate

training 41.6%/45.67% 41.32%/40.28% 45.63%/45.75% 47.05%/46.02%
testing 14.7%/21.21% 32.63%/34.27% 36.22%/38.52% 34.06%/37.07%
reischigova 48.1%/53.9% 51.50%/50.30% 57.91%/56.11% 67.73%/64.72%
matikain 12.00%/16.00% 16.00%/16.00% 16.00%/16.00% 16.00%/16.00%

Table 4.2. Template models accuracy on the datasets when using SNI. The accuracy for
NoSub template did not change, because it does not need to use SNI model. The first num-
ber is the accuracy of comparing equations, and the second is the accuracy of comparing

results.

28

. 4.1 Preprocessing templates experiments

NUM1 *
 NUM2

NUM1 /
 NUM2

NUM1 *
 NUM2 *

 NUM3

NUM1 +
 NUM2

NUM1 *
 NUM2 /

 NUM3

NUM1 -
 NUM2

NUM1 *
 NUM2 +

 NUM3

NUM1 *
 NUM3 /

 NUM2
0

500

1000

1500

2000

2500

3000

Figure 4.3. The figure shows accuracy of the eight most common equations from the train-
ing and testing dataset. The green area shows the number of correctly solved word prob-
lems, and the red area shows the number of wrongly solved word problems. The results
are shown for Ultimate, using equation comparison with SNI. The overall accuracy of the

eight most common equations is 61.16%.

in DNS, there would not have to be any syntactically incorrect word problems in the
best scenario. On the other hand, minimising the wrong equations is a challenge and
could be done using a more robust architecture or more advanced preprocessing. The
distributions of two error categories in the dataset can be seen in Figure 4.3.

An example of a syntactically incorrect equation on the output:

Word problem:
Jídelna nakoupila zpět 36 pytlů rýže a mouky.
Rýže je 60 kg na pytel a mouky 50 kg na pytel.
Počítejte, kolik kilogramů rýže a mouky jste nakoupili zpět?

Word problem in English:
The dining room bought back 36 bags of rice and flour.
Rice is 60 kg per bag, and flour is 50 kg per bag.
Count how many kilograms of rice and flour you bought back?

Ground truth equation:
NUM1 * (NUM2 + NUM3)

Equation from the model:
(* NUM1 * NUM1

An example of a wrong equation:

29

4. Experiments .
Word problem:
Poměr broskvoní a hrušní v sadu je 5:3.
Existuje 40 broskvoní a kolik hrušní?

Word problem in English:
The ratio of peaches and pears in the orchard is 5:3.
There are 40 peaches, and how many pears?

Ground truth equation:
NUM3 / (NUM1 / NUM2)

Equation from the model:
NUM3 * (NUM2 / NUM1)

From the above examples, we can observe that syntactically incorrect equations cannot
be evaluated. The wrong equations can be evaluated, but they are not the same as the
ground truth equations.

dataset syntax error incorrect equation incorrect sum

training w/o SNI 2,759 (28.55%) 6,906 (71.45%) 9,665
testing w/o SNI 870 (28.52%) 2,180 (71.48%) 3,050
training + testing w/o SNI 3,629 (28.54%) 9,086 (71.46%) 12,715

Table 4.3. The table shows the error distribution for Ultimate template using the ground
truth information about significant numbers.

template model size [kB]

NoSub 30,994
Simple 26,689
Smarter 16,739
Ultimate 10,850

Table 4.4. The table shows the sizes of models using a specific template.

As we can observe in Figure 4.4, preprocessing using templates has, except for higher
accuracy and generalisation, another advantage - the model size. We need to keep in
mind that for Simple, Smarter, and Ultimate templates, we may also want a significant
number identification model, which is of size 10,807kB, which means that the model
of the largest size (together with significant number identification) is Simple template.
However, Smarter and Ultimate templates are still smaller than NoSub template.

4.2 Training and evaluation on different architectures

Ultimate template achieved the best accuracy in the previous subchapter. That is why
we used it in this experiment as a primary preprocessing template. The first experiment
revealed that the learning rate was set too high and caused problems during model

30

. 4.2 Training and evaluation on different architectures

training. Therefore, this experiment will use a lower learning rate: 0.001. Another
change in the architecture used in the second experiment is the usage of RNNs. The
first experiment used a tutorial example of the seq2seq architecture, which used GRU
as RNN for the encoder and decoder. We will use bidirectional LSTM with two layers
in this experiment because our dataset is quite large. LSTM has more parameters than
GRU, which we hope will result in higher accuracy. The PyTorch architecture uses well-
known SGD, an iterative optimizer of objective function, as an encoder and decoder
optimiser, and the architecture in the second experiment uses an Adam optimiser [34].
This change occurs because we expect the Adam optimiser to provide better learning,
resulting in higher accuracy. Lastly, we mentioned that we could not use the trick with
the mask presented by DNS for the previous experiment. Let us try to modify the trick
with the mask. Instead of the vector 𝜌𝑡 with ones and zeros, we propose to use 𝜌𝑡 with
ones and a penalisation, which is a real number in the interval (0, 1). As we mentioned
earlier, the architecture from the first experiment uses a negative logarithmic likelihood
to compute the loss. The input of negative logarithmic likelihood is formed of the
logarithmic probabilities of each class. If the probability is zero, the log-probability is
minus infinity, resulting in an infinity loss if the ground truth class has zero probability.
The idea behind this proposed modification is to penalise, making the probability of
the class smaller, but not zero, to avoid an infinity loss. For this experiment, we use
penalisation 0.5.

3 6 9 12 15 18
0.4

0.5

0.6

0.7

0.8

0.9

Experiment1 Ultimate

3 6 9 12 15 18
0.4

0.5

0.6

0.7

0.8

0.9

Experiment2 Ultimate

Figure 4.4. The figure of experiment losses. X-axis are epochs. Y-axis are losses.

From Figure 4.4 we can observe that our proposed architecture solved the problem of
increasing the loss, which we faced in the first experiment.

dataset Experiment1 Ultimate Experiment2 Ultimate

training 48.64%/52.60% 65.63%/74.71%
testing 35.17%/42.11% 47.63%/59.35%
reischigova 68.14%/68.93% 80.36%/81.36%
matikain 16.00%/16.00% 12.00%/12.00%

Table 4.5. The model’s accuracy with ground truth information about significant numbers
on the datasets.

31

4. Experiments .

dataset Experiment1 Ultimate Experiment2 Ultimate

training 47.05%/46.02% 62.40%/62.25%
testing 34.06%/37.07% 46.42%/50.96%
reischigova 67.73%/64.72% 77.95%/76.55%
matikain 16.00%/16.00% 12.00%/12.00%

Table 4.6. The model’s accuracy accuracy using SNI to identify significant numbers.

dataset syntax error incorrect equation incorrect sum

training w/o SNI 149 (2.36%) 6,173 (97.64%) 6,322
testing w/o SNI 49 (2.01%) 2,387 (97.98%) 2,436
training + testing w/o SNI 198 (2.26%) 8,560 (97.74%) 8,758

Table 4.7. The error distribution for Ultimate template using ground truth information
about significant numbers.

NUM1 *
 NUM2

NUM1 /
 NUM2

NUM1 *
 NUM2 *

 NUM3

NUM1 +
 NUM2

NUM1 *
 NUM2 /

 NUM3

NUM1 -
 NUM2

NUM1 *
 NUM2 +

 NUM3

NUM1 *
 NUM3 /

 NUM2
0

500

1000

1500

2000

2500

3000

Figure 4.5. The figure shows the accuracy of the eight most common equations templates
from the training and testing dataset. The green area shows the number of correctly solved
word problems, and the red area shows the number of wrongly solved word problems. The
experiment uses the model proposed in the second experiment, equation comparison with

SNI. The overall accuracy of the eight most common equation templates is 79.90%.

Figures 4.5 and Figure 4.6 show that we were able to obtain higher accuracy in both
scenarios (with ground truth information about significant numbers and with SNI).
Unfortunately, the architecture proposed in this experiment performed worse for the
matikain dataset, which need not to mean that it is worse for general word problems.
There are 173 word problems in the testing set that are solved by an equation not

32

. 4.2 Training and evaluation on different architectures

present in the training set. The architecture of the second experiment was able to
solve 14 of them. The architecture of the first experiment did not solve any such
problem. After all, the proposed architecture has higher accuracy for word problems
with equation templates do not present in the training set. Figure 4.7 shows that, as
expected, the mask worked and that we were able to lower the number of syntactically
wrong equations compared to the result of the Ultimate template from the previous
experiment, which can be seen in Figure 4.3.

Here is an example of a word problem, which is solved by an equation that is not part
of the training set:

Word problem:
V sadu je 6 řad jabloní s 12 stromy v každé řadě.
Celkem se letos nasbíralo 648 košů jablek.
Kolik košů jablek v průměru obdrží každá jabloň?

Word problem in English:
There are 6 rows of apple trees in the orchard,
with 12 trees in each row.
A total of 648 baskets of apples were collected this year.
How many baskets of apples on average will each apple tree receive?

Word problem template:
v NOUN1 být NUM1 NOUN2 jabloň s NUM2 NOUN3 v každý
NOUN2 . celkem se letos nasbírat NUM3 NOUN4 NOUN5 . kolik NOUN4 NOUN5 v
NOUN6 obdržet každý jabloň ?

Equation:
(NUM3 / NUM1) / NUM2

Prediction:
NUM3 / NUM1 / NUM2

Result: 9

We may observe an issue from the above example mentioned in Subchapter 3.3. There
are several options to evaluate the model’s output, such as comparing equations and
comparing results. The example above shows that some equations in the training set
may contain redundant parentheses, which we can omit and still get the syntactically
correct result. For future work, preprocessing should be extended with an equation
simplification, simplifying the word problem equation to its elementary form while
preserving the core information. We can use a simplification of the equation by the
Python library SymPy1.

Let us compare our model’s accuracy with DNS and the solver presented in my bachelor
thesis. As we mentioned in Subchapter 1.1, DNS achieved 64.7% on the Math23K
dataset. This accuracy is for an approach based on using a seq2seq and retrieval
model. Unfortunately, we cannot evaluate our model on the Math23K dataset, and we
cannot compare accuracy directly because there are several incomparable facts. We

1 https://www.sympy.org/en/index.html

33

https://www.sympy.org/en/index.html

4. Experiments .
do not know how many epochs were used to train the DNS model. It is also worth
noting that the best precision mentioned in DNS is not purely based on seq2seq. The
achieved accuracy using purely seq2seq model by DNS was 53.7% without using SNI
and 58.1% using SNI in the Math23K dataset. The solver from my bachelor thesis was
based on representing a word problem as a point in a vector space, and it was trained
and evaluated using the SVM algorithm. The precision of this approach was 74.34%
for all reischigova word problems. Our approach using seq2seq achieved slightly better
accuracy - 77.56%. However, we have to take into account that the approach from the
bachelor thesis cannot solve a word problem that was not part of the training set, which
leaves only 13 unique equations the solver can deal with. The proposed approach can,
in theory, handle any equation, including those not present in the dataset.

34

Chapter 5
Conclusion

This thesis dealt with the problem of solving Czech word problems using neural net-
works. We performed several experiments using seq2seq architecture as a primary
approach for solving word problems and made several observations from these experi-
ments. One of the essential observations made is the importance of preprocessing the
word problem and how it is essential to identify critical features of the language to
generalise natural input language to a model, such as lemmatisation or how each part
of speech contributes to the model. Although this thesis does not present revolutionary
seq2seq architecture, it evaluates an existing architecture and presents its improve-
ments. It confirms that general seq2seq architectures can be used for a broader class
of natural language tasks, even though their primary usage was focused on something
else. In the case of our used architecture, the primary usage was machine translation.

In future work, we suggest focusing on preprocessing intensively as experiments showed
that the use of preprocessing leads to significant improvements. Auxiliary tools for
preprocessing are essential, such as UDPipe, which is beneficial for natural language
preprocessing, and their development is crucial for future research. Unfortunately,
we find poor availability of the existing solver’s implementations and unsatisfactory
standardisation and availability of datasets. It would be enormously beneficial for
future work to define a standard for datasets and make the solver’s implementations
accessible.

The definition of scope should be the first thing that is done before creating a solver
to specify what the solver is expected to do. As we mentioned in this thesis, there are
several pitfalls that have to be defined before the solver and dataset are created, such
as what type of word problems do we want to solve, how do we want to evaluate them,
and whether we need step-by-step instructions on how to get equation or solution, and
many others.

Using a sequence-to-sequence model, we obtained a general solver for the word problem
capable of solving word problems that are not present in the training dataset. We
obtained solid results using this technique, but we should not consider this technique
as the peak of word problem solvers. We should pay attention to older approaches that
tried to model a solver that is capable of producing step-by-step instructions to solve
the word problem. These solvers would be more beneficial because they would provide
us with information extraction and could be used in other NLP tasks like chatbots or
voice assistants.

It is no doubt that solving word problems in Czech is a more complex task than solving
word problems in English or Chinese. There are several arguments for this statement.
As mentioned before, the Czech language is a fusional language, unlike English and
Chinese. There is the inflexion of words which depends on gender, nominative case, or
singular number. On the other hand, English and Chinese belong to so-called analytic
languages, a group of languages with a strict syntax and do not use inflexion. Another

35

5. Conclusion .
argument supporting the statement above is that there are more datasets and tools for
working with these languages. We know what to expect from the language, thanks to
strict syntax.

As far as we know, the proposed solver is one of the first solvers for the word problems
in the Czech language using the seq2seq approach, which achieved 61.24% using SNI.
The proposed solver has the potential to achieve 72.72% on the whole dataset if it
identifies all significant numbers correctly. For comparison, the pioneer solver DNS
achieved 53.7% without using SNI and 58.1% with using SNI on dataset Math23K. Both
achievements are purely for the seq2seq approach. It should be essential to note that
DNS was trained and evaluated on a similar size dataset, but for the English language
and entirely using the trick, which causes that there are no syntactically incorrect
equations. We find our solution to be a significant success for the word problem solver
for the Czech language. We want to encourage others to explore word problem solvers
for other languages than English and Chinese.

36

References

[1] Dongxiang Zhang, Lei Wang, Luming Zhang, Bing Tian Dai, and Heng Tao Shen.
The gap of semantic parsing: A survey on automatic math word problem solvers.
IEEE transactions on pattern analysis and machine intelligence. 2019, 42 (9),
2287–2305.

[2] Daniel G. Bobrow. Natural Language Input for a Computer Problem Solving Sys-
tem. 1964.

[3] James R Slagle. Experiments with a deductive question-answering program. Com-
munications of the ACM. 1965, 8 (12), 792–798.

[4] Charles R Fletcher. Understanding and solving arithmetic word problems: A com-
puter simulation. Behavior Research Methods, Instruments, & Computers. 1985,
17 (5), 565–571.

[5] Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and Regina Barzilay. Learning
to Automatically Solve Algebra Word Problems. In: Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Baltimore, Maryland: Association for Computational Linguistics, 2014.
271–281.
https://www.aclweb.org/anthology/P14-1026.

[6] Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin, and Wei-Ying Ma. How
well do Computers Solve Math Word Problems? Large-Scale Dataset Construction
and Evaluation. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Berlin, Germany: Associa-
tion for Computational Linguistics, 2016. 887–896.
https://aclanthology.org/P16-1084.

[7] Yan Wang, Xiaojiang Liu, and Shuming Shi. Deep Neural Solver for Math Word
Problems. In: Proceedings of the 2017 Conference on Empirical Methods in Natu-
ral Language Processing. Copenhagen, Denmark: Association for Computational
Linguistics, 2017. 845–854.
https://aclanthology.org/D17-1088.

[8] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In: Advances in neural information processing systems. 2014.
3104–3112.
https://storage.googleapis.com/pub-tools-public-publication-data/
pdf/43155.pdf.

[9] Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang, and Xiaojiang Liu. Translating
a Math Word Problem to a Expression Tree. In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. Brussels, Belgium:
Association for Computational Linguistics, 2018. 1064–1069.
https://aclanthology.org/D18-1132.

37

https://www.aclweb.org/anthology/P14-1026
https://aclanthology.org/P16-1084
https://aclanthology.org/D17-1088
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43155.pdf
https://storage.googleapis.com/pub-tools-public-publication-data/pdf/43155.pdf
https://aclanthology.org/D18-1132

References .
[10] Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan Song, Long Guo, and Heng Tao

Shen. Mathdqn: Solving arithmetic word problems via deep reinforcement learning.
In: Proceedings of the AAAI Conference on Artificial Intelligence. 2018.

[11] Kadlec Jan. Automatické vyhodnocování matematických slovních úloh. Bachelor
thesis, Czech Technical University in Prague. 2020.

[12] Oishik Chatterjee, Aashish Waikar, Vishwajeet Kumar, Ganesh Ramakrishnan,
and Kavi Arya. A Weakly Supervised Model for Solving Math word Problems.
2021.

[13] Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng Tang, and Liang Lin. Neural-
Symbolic Solver for Math Word Problems with Auxiliary Tasks. 2021.

[14] Subhro Roy, and Dan Roth. Unit dependency graph and its application to arith-
metic word problem solving. In: Proceedings of the AAAI Conference on Artificial
Intelligence. 2017.

[15] Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and Jingming Liu. Ape210K:
A Large-Scale and Template-Rich Dataset of Math Word Problems. 2020.

[16] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program Induction by
Rationale Generation: Learning to Solve and Explain Algebraic Word Problems.
In: R Barzilay, and MY Kan, eds. PROCEEDINGS OF THE 55TH ANNUAL
MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS
(ACL 2017), VOL 1. 2017. 158-167. ISBN 978-1-945626-75-3. 55th Annual Meeting
of the Association-for-Computational-Linguistics (ACL), Vancouver, CANADA,
JUL 30-AUG 04, 2017.

[17] Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate Kushman, and Hannaneh
Hajishirzi. MAWPS: A math word problem repository. In: Proceedings of the 2016
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies. 2016. 1152–1157.

[18] Marie Reischigová. Matematika na základní a obecné škole ve slovních úlohách.
Pansofia, 1996.

[19] Petr Šulc. Procvičování - Slovní úlohy pro 2. ročník. PIEROT s.r.o., 2018.
ISBN 978-80-7353-622-0.

[20] Petr Šulc. Procvičování - slovní úlohy pro 3. ročník. PIEROT s.r.o., 2018.
ISBN 978-80-7353-623-7.

[21] Petr Šulc. Procvičování - slovní úlohy pro 4. ročník. PIEROT s.r.o., 2018.
ISBN 978-80-7353-624-4.

[22] Petr Šulc. Procvičování - slovní úlohy pro 5. ročník. PIEROT s.r.o., 2018.
ISBN 978-80-7353-625-1.

[23] A Neural Network for Machine Translation, at Production Scale. 2016.
https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html.

[24] Aditya Mohanty. SEQ2SEQ model and the exposure bias problem. 2019.
https://medium.com/analytics-vidhya/seq2seq-model-and-the-exposure-
bias-problem-962bb5607097.

[25] Sepp Hochreiter, and Jürgen Schmidhuber. Long short-term memory. Neural com-
putation. 1997, 9 (8), 1735–1780.

[26] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long Short-Term Memory
Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recog-
nition. 2014.

38

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html
https://medium.com/analytics-vidhya/seq2seq-model-and-the-exposure-bias-problem-962bb5607097
https://medium.com/analytics-vidhya/seq2seq-model-and-the-exposure-bias-problem-962bb5607097

. .
[27] Aya Abdelsalam Ismail, Timothy Wood, and Héctor Corrada Bravo. Improving

Long-Horizon Forecasts with Expectation-Biased LSTM Networks. 2018.
[28] Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.

On the Properties of Neural Machine Translation: Encoder–Decoder Approaches.
In: Proceedings of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation. Doha, Qatar: Association for Computational Linguistics,
2014. 103–111.
https://aclanthology.org/W14-4012.

[29] Saddam Abdulwahab. Deep Learning Models for Paraphrases Identification. MS
thesis. 2017,

[30] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Trans-
lation by Jointly Learning to Align and Translate. 2014.

[31] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective Approaches
to Attention-based Neural Machine Translation. In: Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language Processing. Lisbon, Portugal:
Association for Computational Linguistics, 2015. 1412–1421.
https://aclanthology.org/D15-1166.

[32] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. In: Pro-
ceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Minneapolis, Minnesota: Association for Computational Lin-
guistics, 2018. 4171–4186.
https://aclanthology.org/N19-1423.

[33] Milan Straka. UDPipe 2.0 Prototype at CoNLL 2018 UD Shared Task. In: Pro-
ceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies. Brussels, Belgium: Association for Computational Lin-
guistics, 2018. 197–207.
https://www.aclweb.org/anthology/K18-2020.

[34] Diederik P Kingma, and Jimmy Ba. Adam: A method for stochastic optimization.
2014,

39

https://aclanthology.org/W14-4012
https://aclanthology.org/D15-1166
https://aclanthology.org/N19-1423
https://www.aclweb.org/anthology/K18-2020

Appendix A
Glossary

BiLSTM . Bidirectional long short-term memory

ConvS2S . Fully convolutional sequence-to-sequence

DNS . Deep Neural Solver

GRU . Gated recurrent unit

LSTM . Long short-term memory

NLP . Natural language processing

ReLU . Rectified Linear Unit

RNN . Recurrent neural network

SGD . Stochastic gradient descent

41

Appendix B
Distribution of equations in the data set

equation count

NUM1 * NUM2 2984
NUM1 / NUM2 1377
NUM1 * NUM2 * NUM3 1342
NUM1 + NUM2 1258
NUM1 * NUM2 / NUM3 1094
NUM1 - NUM2 956
NUM1 * NUM2 + NUM3 921
NUM1 * NUM3 / NUM2 695
NUM2 / NUM1 672
(NUM1 - NUM2) / NUM3 663
NUM2 * NUM3 / NUM1 604
NUM3 * (NUM1 + NUM2) 569
(NUM1 - NUM3) / NUM2 529
NUM1 - NUM2 + NUM3 475
(NUM1 + NUM2) / NUM3 466
NUM1 / (NUM2 * NUM3) 453
- NUM1 + NUM2 367
NUM1 * (NUM2 + NUM3) 361
NUM1 - NUM2 * NUM3 359
NUM1 - NUM2 - NUM3 354
NUM3 / (NUM1 * NUM2) 321
NUM1 + NUM2 - NUM3 318
NUM1 * NUM2 - NUM3 316
NUM1 + NUM2 + NUM3 278
(NUM1 - NUM2 * NUM3) / NUM4 228
NUM1 + NUM2 * NUM3 199
NUM1 / NUM2 - NUM3 170
- NUM1 + NUM2 + NUM3 167
NUM1 / (NUM2 + NUM3) 166
(NUM2 - NUM3) / NUM1 165

Table B.1. The figure shows the distribution of equation templates in the created dataset.
There are 782 unique equation templates in the dataset after equation simplification using
Python library SymPy. It is worth noting that these equations respect number order in

the word problem. We plot only 30 of them, which have a count higher than 150.

42

Appendix C
Technical documentation of the source code

Automatic Evaluation of Mathematical Word
Problems
This source code was created for the diploma thesis of the same name. As the name suggests,
the goal is to evaluate mathematical word problems automatically. Word problems in the Czech
language for pupils of primary schools are considered. The implemented method is based on the
seq2seq model and template preprocessing.

Required libraries to run the program are specified in file requirements.txt. The best practice is
to create a virtual environment first and install requirements there. The procedure for creating
and using a virtual environment is listed below. If you would like to train your model, the
recommendation for faster learning is to use GPU, if possible.

This command creates a virtual environment named .venv
root@computer:~$ python3 -m venv .venv

Activate virtual environment
root@computer:~$ source .venv/bin/active
After virtual environment activation, you should see the following line
(.venv) root@computer:~$

Now install the requirements.txt file
(.venv) root@computer:~$ pip3 install -r requirements.txt

IMPORTANT: If you want the solver demo to work, you need to download the model for
UDPipe. The following link will download czech-pdt-ud-2.5-191206.udpipe directly or you
can find it in Universal Dependencies repository. Placed download file to the model
directory and do not rename it.

Project structure

.
├── model
│ ├── data
│ │ ├── __init__.py
│ │ ├── base.py
│ │ ├── check.py
│ │ ├── dataset.py
│ │ ├── template.py
│ │ └── word_problem.py
│ ├── utils
│ │ ├── __init__.py
│ │ ├── file_utils.py
│ │ ├── help_functions.py
│ │ ├── model_actions.py
│ │ ├── model_constants.py

43

C Technical documentation of the source code .

│ │ └── model_utils.py
│ ├── __init__.py
│ ├── conllu_record.py
│ ├── decoder.py
│ ├── encoder.py
│ ├── seq2seq_wrapper.py
│ ├── sequence.py
│ ├── udpipe_model.py
│ └── word2number.py
├── trained_models
│ ├── sni
│ │ └── UltimateSni_model.pt
│ └── wp_solvers
│ ├── UltimateTemplate_model.pt
│ └── experiment_UltimateTemplate_model.pt
├── README.md
├── evaluate.py
├── requirements.txt
├── sni_train.py
├── templates_introduction.ipynb
└── train.py

Templates
NoSubTemplate
SimpleTemplate
SmarterTemplate
UltimateTemplate

All templates are located in file template.py.

Train
Train word problem solver model

Word problem solver can be trained using scripts in file train.py using functions run or
run_existing. For the usage, read the description of the functions.

Train significant number identification model

SimpleTemplate, SmarterTemplate, and UltimateTemplate require significant number
identification to define the mapping for number constants when the mapping can not be
determined deterministically. We can train a model which determines which numbers are
significant (are part of the equation).

The training can be performed in file sni_train.py using functions run or run_existing. For the
usage, read the description of the functions.

44

. .

Run script
When you train a model, you can easily create an application which can evaluate it using the file
evaluate.py.

The following script runs a solver on the default word problem.

Joan našla na pláži 70 mušlí. Dala Samovi několik mušlí. Má 27 mušlí. Kolik
mušlí dala Sam?

using experiment_UltimateTemplate located in trained_models/wp_solvers.

python3 evaluate.py --example

Using argument --word_problem, you can specify your word problem.

python3 evaluate.py --word_problem "Petr má tři jablka, Pavel má dvě
jablka a Eva má čtyři jablka. Kolik jablek mají dohromady?"

The following command creates a loop asking the user for word problem input, outputting the
predicted equation. You can quit the program by typing 'q'. If you do not specify the model, the
default model will be used.

python3 evaluate.py

Using the argument --model, you can specify which model will be used. If nothing else is
specified, it creates a loop waiting for the input.

python3 evaluate.py --model UltimateTemplate

Run notebook
We provide a Jupyter notebook introducing templates. The Jupyter notebook contains text with
commands showing the user how the preprocessing affects the word problem.

45

Appendix D
Documentation of the dataset

Basic information about dataset

This dataset contains two partly translated existing datasets - Ape210K, arithmetic.

Unfortunately, we cannot provide word problems from schoolbooks and collections due to legal

reasons.

Directory structure

├── Ape210K

│ ├── README.md

│ └── final.json

├── README.md

└── arithmetic

 ├── README.md

 └── final.json

Both directories contain a final.json file containing word problems and a README.md file with

information about the original dataset and translated dataset.

How to get access to the whole dataset or how to contribute

Suppose you are interested in these word problems and creating a word problems dataset for

the Czech language. Please, reach out Department of Cybernetics, Faculty of Electrical

Engineering, Czech Technical University in Prague or directly doc. RNDr. Daniel Průša, Ph.D. who

has access to the entire dataset. You are more than welcome to contribute.

An example of word problem from dataset:

{

 "word_problem_CZ": "Joan našla na pláži 70 mušlí. Dala Samovi několik

mušlí. Má 27 mušlí. Kolik mušlí dala Sam?",

 "equation_CZ": [

 "70 - 27"

],

 "result": [

 43

],

 "secret": false,

 "source": "arithmetic",

 "word_problem_original": "Joan found 70.0 seashells on the beach . She

gave Sam some of her seashells . She has 27.0 seashells . How many

seashells did she give to Sam ?",

 "equation_original": [

 "70.0-27.0"

]

}

46

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	History
	Existing online solvers
	State-of-the-art
	Problem definition

	Related topics
	Dataset
	Sequence to sequence
	Principle
	Extensions

	Implementation
	Preprocessing
	Training model
	Evaluation

	Experiments
	Preprocessing templates experiments
	Training and evaluation on different architectures

	Conclusion
	References
	Glossary
	Distribution of equations in the data set
	Technical documentation of the source code
	Documentation of the dataset

