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Abstract

We present our implementation of a re-
cent real-time global illumination method
based on irradiance fields, which uses ray
tracing to approximate multiple bounces
of light transmission in a virtual scene.
Then we present our method, which repur-
poses the global illumination algorithm
to compute global ambient occlusion in
real time. We also present our exten-
sions to the algorithm, such as field cas-
cades and geometry-aware probe culling.
Lastly, we discuss possible further exten-
sions, such as adaptive ray generation and
probe placement.

Keywords: DDGI, Real-time global
illumination, ray-tracing, ambient
occlusion
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Abstrakt

Predstavujeme nasi implementaci algo-
ritmu pro vypocet globalniho osvétleni
v realném case zalozeny na svételnych po-
lich z nedavno vydaného ¢lanku. Tato me-
toda vyuziva sledovani paprskt pro apro-
ximaci nékolika nasobného odrazu svétla
ve virtualni scéné. Déle predstavujeme
nasi metodu, kterd vyuziva konceptu im-
plementovaného algoritmu pro vypocet
globalniho okolniho zastinéni v realném
case. Predstavujeme také nami navrhnuté
rozsiteni algoritmu jako kaskddy svétel-
nych poli a selektivni aktualizace sond v
zévislosti na okolni geometrii. Nakonec,
diskutujeme nad moznymi dalsimi rozsire-
nimi jako adaptivn{ mnozstvi generovych
paprskll a umisténi sond.

Klicova slova: DDGI, Globalni
osvétleni v realném case, trasovani
paprsku, zastinéni okolim

Pteklad nazvu: Dynamické Diftizni
Globalni Osvétleni
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Chapter 1

Introduction

Figure 1.1: Sponza scene using environment mapping (left) and DDGI (right).

Accurate illumination in a virtual scene is often the most crucial visual
effect in computer graphics. Correct light transfer simulation blurs the line
between an actual image and an artificial one. Furthermore, the result can
yield stunning images even in stylized graphical applications. However, the
computation of correct light propagation is costly, and thus global illumination
is often only approximated for real-time applications.

With the rise of the ray-tracing GPUs in recent years, much development
into algorithms that try to leverage the potential of the hardware has spurred
up. We implemented one such algorithm called Dynamic Diffuse Global
illumination (DDGI) from a recent paper by Majercik et al. [MGNM19]
which complements traditional rasterization with a ray-traced irradiance field
to approximate a diffuse global illumination for dynamic illumination and
geometry. We also describe our extensions to the algorithm, which focus on
improving the technique’s performance and the quality of the final image.

We were intrigued by how DDGI handles shadowing, so we tried to re-
purpose the algorithm to approximate global ambient occlusion and shadows.
We detail our changes to the DDGI method to capture occlusion and describe
our implementation.

As a starting point for our real-time application, we used G3D Innovative
Engine [MMM17] which supports GPU raytracing using NVidia’s OptiX
framework [PBD*10]. The DDGI method was implemented as part of our
custom renderer, which uses some of the G3D’s features: a physically-based
illumination model, deferred shading, and shadow mapping.

The thesis is structured as follows: Chapter 2| gives an overview of the

1



1. Introduction

relevant work in the computer graphics field. Namely, we explain the theory
behind the rendering equation and how it is approximated using Monte Carlo
integration which is used by global illumination techniques. Then, we also
give an overview of some of the methods which are used today to approximate
global illumination in a virtual scene.

In Chapter 3| we describe some of the techniques our rendering pipeline uses
which are relevant to DDGI but not directly linked to it. Furthermore, Chap-
ter 4] will detail the DDGI method to approximate diffuse global illumination
in a fully dynamic scene. In Chapter |5 we present our modifications to the
DDGI algorithm to compute global shadowing. Also, in Chapter [6| we discuss
our proposed extensions to the algorithm, which are also used by our ambient
occlusion modification of DDGI. Our results are detailed in Chapter |7, where
we compare the quality of the resulting images to a path-traced reference.
Last but not least, Chapter |8 discusses the drawbacks and possible further
improvements to the global illumination method.



Chapter 2
Related Work

Since the implemented algorithm belongs to a class of algorithms for real-
time global illumination, we separated this chapter into multiple sections.
First, in Section we detail the theory behind the light transport with no
surrounding media described by the rendering equation. Then in Section
we give an overview of existing solutions for global illumination methods used
in real-time applications.

B 21 Rendering Equation

Rendering equation |[Kaj86| states that the outgoing radiance L, from a point
on a surface x in a direction w is a sum of emitted radiance L. and reflected

radiance L, ﬂm:
Ly(x,w) = Le(x,w) + L, (x,w) (2.1)

where the reflected radiance L, is computed as:
L, (x,w)= / flx,w,w;)Li(x,w;)cosO dw; (2.2)
Q

where Q is the upper hemisphere, f(x,w,w;) is the bidirectional reflectance
distribution function - BRDF, L;(x,w;) is the incident radiance and O is
an angle between w; and a normal vector N of the surface [ZBST05]. In
the original formulation of the rendering equation the incident radiance is

formulated as [Kaj86|:
Li(x,w;) = Lo(x, —w;) (2.3)

It can be seen that the rendering equation is one of the Fredholm equations
of the second kind. The Fredholm equations introduce a complication that
the unknown lies on both sides of the equation [ZBS*03].

Alternatively, the reflection integral in L, can also be formulated as an
integral over the whole scene’s surface S instead of directions [RDGK12].
Therefore if one interprets L, as such the resulting rendering equation would

look like [ZBST05):

Lo(x,w) = Le(x,w) + /S flx, ' = z,w)Li(z — x)V(z,z')G(z',x) dA’
(2.4)
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\ J

Figure 2.1: Spherical representation of the rendering equation

where S is the surface of the entire scene, V' (x) is a visibility term which says
that if location z is visible from point 2’ and vice versa [ZBS*05]:

Vi, z') = (2.5)

1 « is visible from x’
0 otherwise

Geometry term G(x,x’) contains coefficients which express projections of

emitted radiance after the ray leaves point x’ and after it hits point .

To summarize, the surface formulation of the rendering equation says
that to compute outgoing radiance from location @ in the direction w, the
contributions from the whole scene’s surface need to be taken into account.
Specifically, the visibility term of all points #’ and geometry term is computed
if a point « is visible. The geometry term is then multiplied together with the
outgoing radiance at the point & and the BRDF. The goal of GI algorithms
is to compute L,(x,w) for a given scene, materials and lighting L.

B 2.2 Global lllumination Methods

Since global illumination is costly to compute, GI methods usually resorted
to some trade-off to calculate the effect. The most notable is the use of a fully
static scene. For scenes where only the camera is dynamic, we can use any
of the well-established offline methods, e.g. path-tracing [Kaj86]. Using such
techniques, the light transfer would be precomputed and stored it in textures
beforehand for later rendering. This process is often called light baking.

However, for dynamic or at least partially dynamic scenes, the real-time
global illumination problem becomes more difficult. The paper by Ritschel
et al. [RDGKI12] separates the classical approaches of interactive global
illumination into multiple categories and this chapter makes an overview of
some of these approaches.

B 2.2.1 Finite Elements

The first category would be Finite Elements (Radiosity) methods [GTGB84],
whereas the name implies the scene is discretized into a finite number of
surface elements. The approach completely omits the camera view from its
calculations and only considers the light transfer between the surface patches.

4



2.2. Global lllumination Methods

The original method is suitable for diffuse light transfer and later was
extended [ICG86] by accounting for glossy materials. The quality of the
global illumination is dependent on the number of patches which introduces
the problem of scalability. Thus, due to the quadratic nature of the light
transfer calculation, the original approach does not scale well. However, P.
Hanrahan et al. [HSA91] introduced a hierarchical approach to solving the
light transfer thus reducing the complexity of the problem.

Bl 2.2.2 Photon Mapping

Another approach would be photon mapping [Jen96]. The idea behind photon
mapping is to emit a large number of photons from the light source and let
them bounce inside the scene. At each hit point, the photon is stored inside
a photon map. During rendering, the photon map is used to determine the
irradiance of each fragment based on the photon density in the area.

The method can be adapted to achieve interactive rates under some condi-
tions. Purcell et al. [PDCT05], and Ma and McCool [MM02] described an
approach where they used spatial hashing instead of the nearest neighbor
search required in density estimation, which better fits GPUs.

B 2.2.3 Monte Carlo Ray Tracing

A possible approach to solving GI is the use of Monte Carlo techniques [Kaj86].
These techniques produce A high number of directional samples, which are
evaluated for incoming light, and the mean of the results converges to the
correct solution.

In order to evaluate a sample, the incoming light from one direction has to
be computed. This computation is usually done by ray-tracing. A ray is sent,
and the light emitted from the first hit point is computed, potentially again
computing a solution of the rendering equation at the point.

Generating random samples that potentially have a low contribution to
the final value is rather inefficient. Instead the sample generating high
contribution samples to accelerate the convergence to the correct solution
would be more desirable. To do so, many techniques exist such as importance
sampling [RDGK12].

Instead of blindly sending rays everywhere, rays are focused where the
rendering function integral yields the highest values. This is easy for direct
illumination. However, indirect illumination is more complicated because
the origins of rendering function’s highest values are not known beforehand.
Furthermore, combining the factors of the rendering equation integrand, such
as BRDF and incoming light L; into one importance sampling approach is
difficult already for direct illumination. One solution to this problem presents
Bi-directional pathtracing from the paper by Lafortune et al. [LW93].

The Monte Carlo integration is a complex problem for millions of dynamic
lights. The paper by Bitterli et al. [BWP™20] introduces an algorithm called
ReSTIR that renders such lights interactively. They achieve this by repeatedly
resampling a set of candidate light samples and leveraging information from

5



2. Related Work

relevant nearby samples by further spatial and temporal resampling. Later
Majercit et al. [MMK™21] proposed to combine ReSTIR’s shadowing with
DDGI. Combining these two algorithms outperforms hardware accelerated
path tracing in both runtime and noise.

Silvennoinen et al. [SL17] presented a radiance field method for mostly static
scenes with dynamic lights, cameras, diffuse, and emissive materials. Their
approach features minor light leaking due to their algorithm for faithfully
interpolating incidence radiance captured at a sparse set of low-frequency
radiance probes to nearby receiver points.

B 23 Shadowing Methods

In recent years many shadowing methods have been presented. Most use a
single sample hard shadow maps together with some smart filtering method
to compute perceptually or even physically accurate soft shadows. One such
technique is called variance shadows [DLO06] which creates physically correct
shadows by reducing aliasing using approximation of how shadows soften on
their edge.

On the other hand there is the class of algorithms that calculate physically
correct soft shadows by taking and combining many light samples. Paper
by D. Sherzer et al.[SSMWQ09] proposes a method which samples the light
source over multiple frames. Then they make use of temporal coherence and
spatial filtering to create correct and fast soft shadows.

Another class of shadowing algorithms is ambient occlusion. Ambient
occlusion is a cheap but effective approximation of high frequency global
illumination. Methods such as screen-space ambient occlusion (SSAO) [BS0§]|,
which sample the framebuffer as a discretization of the scene geometry, have
become rather popular for real-time rendering. SSAO however suffers from
bluring and noise artifacts due to strong spatial filtering. A paper on temporal
SSAO (TSSAO) by Mattausch et al. [MSWI0] solves this issue by caching
and reusing previously computed SSAO samples.



Chapter 3
Rendering Pipeline

Render
Compute Compute . LS Render
GBuffur | ®] Shadowing [*|Update Fields— indirect > o Co g
illumination

Figure 3.1: A diagram of steps which our renderer takes in each frame to
compute the final image.

For rendering, we used a custom rendering pipeline implemented using the
G3D innovative engine. Our primarily OpenGL renderer uses many of the
G3D’s features, such as shadow mapping and deferred rendering. However,
for this thesis, the essential feature of G3D was its implementation of Nvidia’s
Optix raytracing framework and its integration with OpenGL.

In this chapter, we mainly describe parts of our rendering pipeline that are
not directly part of the DDGI algorithm but are analogous to its concepts.
Therefore we do not go into greater detail on how we sample indirect illumina-
tion or how the fields are updated since those two topics are described in later
chapters. However, in Section |3.1 we describe what deferred rendering is and
how it uses a structure called GBuffer to compute direct illumination for the
final image efficiently. Furthermore, since our renderer uses G3D’s shadow
maps, we also explain what those are and how they are used in Section [3.2.
Lastly, in Section |3.3| we describe how ray casting works in G3D and how we
gather and store rays.

B 3.1 GBuffer and Deffered Rendering

To better understand what deferred rendering is and why it is used, we first
need to give a bit of background on graphics pipeline and forward rendering.
After that, we describe what deferred shading is and when it is a good idea
to use.

There are numerous methods to render a scene, such as forward rendering,
deferred rendering, or extensions of these two, for example, forward plus
rendering [HMY12]. The main difference between the forward and deferred
rendering [HHO04] is when the direct illumination from light sources in the
scene is computed.



3. Rendering Pipeline

Forward rendering is the standard most modern rendering engines use to
compute direct illumination in the scene. The principle behind it is direct
illumination is computed at the same time as the the rendered object into
the scene.

The basic idea is simple. The geometry of the object is sent to the GPU.
On the GPU, vertices are either directly projected to the screen or in more
complex pipelines; they are first sent to a geometry shader (or tessellation
shader). Consequently, the GPU decides if each fragment is visible and,
therefore, if it should be drawn. If the GPU decides to draw the fragment
onto the screen, it is shaded by the direct illumination from a light source. On
top of that, this is usually done in one or more passes based on the number
of lights in the scene.

This leads to a problem. The whole graphics pipeline needs to be called
for every object for possibly every light in the scene. It would be much more
efficient to store the data about the portion of the scene the viewer sees once.
Later the direct illumination would be computed using only the data already
stored in the structure. This is precisely what deferred shading aims to do.

Deferred shading decouples the geometry from the shading routine utilizing
a structure called GBuffer. GBuffer is best to imagine as a buffer of textures
with the exact resolution as the final image. The GBuffer computation is
done using a framebuffer with multiple render targets for each of the scene’s
attributes, see Figure |3.2.
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Figure 3.2: Geometry and material attributes stored inside GBuffer.

Deferred shading starts by rendering the opaque geometry of the scene into
the GBuffer. The whole graphics pipeline is called as described above only
with one difference to the forward rendering. During GBuffer computation,
the lighting is not computed. This pass only renders object attributes into
each render target. Depending on the implementation of the later deferred
rendering pass and the used lighting model, the GBuffer usually contains
world space positions and normals. Some deferred renderers also store depth
values. GBuffer also contains material attributes such as albedo, glossiness,
and the emissive term based on the illumination model.

After the GBuffer is computed, the renderer would usually do other work
needed for the final image. For example, it would compute shadow maps.
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3.2. Shadows

This is why the method is called deferred shading; it postpones the shading
until the very end of the rendering routine.

Once the GBuffer has information about opaque objects and all the extra
rendering work is done, the renderer can start shading the final image. This
is done simply by rendering a quad over the whole screen. Each fragment on
the screen is then shaded using its corresponding data stored inside GBuffer.

Notice that only data about opaque objects were stored inside GBuffer
and later shaded. This is because GBuffer cannot store information about
visibility for translucent objects, which is the main disadvantage of the method.
However, since deferred shading is effective for opaque geometry, and most
scenes usually do not have many translucent objects, most modern engines
use deferred shading in conjunction with forward rendering.

Also, since we render the image into an HDR framebuffer, we need to
convert it to LDR for the image to be displayed on the screen. We use G3D’s
tone mapping and gamma correction solution, which is applied after we pass
the image to the framework for display.

B 3.2 Shadows

Shadows are one of the most important effects used in graphical applications.
The reason is that they give the viewer more information about the scene.
Mainly it gives the viewer information about the depth and positions of
objects on a 2D image. The approach G3D uses to compute shadows in a
scene is called variance shadow maps [DLO06] together with naive shadow
mapping. Variance shadow maps are discussed in later part of the thesis since
the DDGI algorithm makes use of the same principle for visibility between
probes. Therefore, in this section will mainly discuss the underlining principle
behind shadow mapping. We will also discuss one of our shadow modes for
creating pixel perfect sharp shadows.

Shadow maps solve the visibility function by keeping information about
what each light in the scene sees. Furthermore, the information is then
compared with the camera’s view to determine what part of the view is in
shadow.

Each light in the scene carries a depth texture into which the scene is drawn
whenever it changes. Later, when the camera’s view is rendered, each visible
fragment projected into each light’s space. Then the fragment’s distance to
the light is compared with the depth value in its corresponding location in the
depth map. If the fragment is further away, it can assumed that the fragment
is occluded by some object the light sees. Therefore, it is in shadow.

Naive shadow maps have many problems from being sharp and therefore
not physically accurate to having issues with visible artifacts. The relevant
artifacts for our application are either caused by imprecise representation of
depth by floating-point values or by the low resolution of depth maps.

The artifacts caused by floating-point values cause self-shadowing problems,
which are usually dealt with by offsetting the fragment from its surface
using a slight bias. However, this solution is imperfect and usually leads to

9



3. Rendering Pipeline

a phenomenon called peter panning, where the shadow does not correctly
connect with the occluder.

=

e Ak

Figure 3.3: Shadow mapping artifacts. The artifact on the left is caused by
small shadowing bias causing a phenomenon called peter panning. The right
image shows shadow aliasing caused by low resolution shadow maps. Depth map
for the light source had resolution 1024 x 1024.

The second artifact manifests itself by visible aliasing on the edges of a
shadow. This artifact happens when an object is far away from a light source.
With increasing distance, the objects become increasingly smaller in the depth
map, and therefore there are simply not enough texels to accurately represent
them. Both of these artifacts are shown in Figure |3.3.

In addition to shadow mapping we also support simple sharp ray-traced
shadows calculated from camera as shown in Figure 3.4 To compute shadow-
ing we make use of world position data stored inside GBuffer, which we use
as origins for our rays.

Figure 3.4: Direct illumination with environment map utilizing one sample
ray-traced shadows cast from camera.

Therefore, whenever the shadowing is computed the renderer generates a
ray origin for every world position in GBuffer and a ray direction towards
each light source. This way we get a texture of rays for every light source in
the scene. Then we pass these rays to a Optix raytracer for any hit occlusion
cast which returns a boolean texture. Each texel in this textere therofore
is either zero or one, where one means the ray had a hit. Texture is then
used during rendering as a mask which indicates which fragments should be
shaded by direct lighting.
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3.3. Field Update
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Figure 3.5: Ray atlas of directions. There are three fields placed in the scene.
Fields 0 and 1 are DDGI irradiance fields. Field 2 is a shadowing field, so it has
directions for probes and directions toward the only light in the scene. Each
field had 64 probes, and for each probe, the field casts 64 rays.

B 3.3 Field Update

Ray casting and sampling the scene’s geometry is an important part of the
DDGI algorithm. We looked for a framework that already supports GPU ray
tracing, such as Unity engine and G3D. We settled on G3D not only since it
contains an Optix ray casting but also because it uses OpenGL, with which
we are more familiar.

The G3D’s Optix bounding volume hierarchy is the main class we interact
with for ray casting. Its ray-cast method takes two buffers or textures as an
input, one for origins and the second for directions. It then returns an array
of buffers (or textures) that contains the scene’s attributes. We decided to
use textures since they provide more straightforward access from shaders and
can be easily visualized, see Figure [3.5l We detail the generation of these
textures in Sections 4.2 and where we describe how we generate rays for
one field. The array of textures is also explained in the following chapter.

Our extensions require updates of multiple fields, possibly in each frame.
Therefore doing a cast for each field in each frame, where each texture does
not contain many rays, is inefficient. The Optix engine’s scheduler would
do much better work if we gave him all those rays at once. Thus, instead
of doing multiple casts in each frame, we use a large unified ray atlas that
contains rays from every field in the scene.

We gather rays from each field and batch them into our ray atlas in each
frame. The fields are placed into the atlas next to each other. We offset each
field in the atlas based on the number of rays generated by fields before it.
Therefore, the width of the atlas is the sum of all of the rays per probe across
all fields. The height is the maximum number of probes between all fields.
When we gather rays from a field, we already know how many rays will be
generated, so we pass it the location where the field will write its ray data.
We then pass the atlas as a whole to the Optix BVH for ray casting.
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Chapter 4

Dynamic Diffuse Global lllumination
Algorithm Overview

To approximate diffuse global illumination for a dynamic virtual scene, Ma-
jercik et al. [MGNM19] proposed to compute the light transfer by recurrently
updating the irradiance field every frame. This is achieved by using informa-
tion gathered by rays cast from each irradiance probe placed in a virtual scene.
Since the ray casting is independent of the rendering, it avoids denoising or
prefiltering high-resolution spherical textures.

Our probe placement strategy and probe representation for DDGI are
detailed in Section The geometry data and material attributes gathered
by ray casting are saved into a structure similar to the G-buffer called a surfel
buffer. The surfel buffer is then used for ray shading by direct and indirect
light. Lastly, the computed illumination contributions are used to update
data inside the probes. To summarize, the algorithm executes four steps in
each frame:

1. Generate m rays from each probe, creating m x n rays, where n is the
number of probes in the scene. The ray generation is further detailed in

Section 4.2

2. Cast and trace the generated rays into the scene. Each ray gathers
attributes from the scene’s geometry into a G-buffer-like structure of
surfels. Section gives a more in-depth description of the ray casting
and the surfel buffer.

3. Shade rays by direct and indirect illumination using data inside the surfel
buffer. The ray shading method is detailed in Section

4. Update irradiance and distance probe data for each of m probes using
the shaded rays and their hit distances. The update procedure is detailed
in Section 4.5l

The resulting irradiance probe field is then used to compute the indirect
illumination contribution for the final image visible from the camera. This is
done in the same way as in ray shading by indirect illumination, but instead
of probe rays, the fragments seen from the camera are used.

13



4. Dynamic Diffuse Global lllumination Algorithm Overview

The whole algorithm was implemented as a set of OpenGL compute shaders
for each of the above passes. We avoid overhead caused by memory transfers
between the device and the host memory by keeping all necessary data
necessary for computation and simple decisions on the GPU device. Where
relevant, we discuss the implementation details such as the format of used data
structures, memory access strategy, and parallel algorithms. We also define
used parameters for compute shader dispatch parameters such as workgroup
sizes and computational grid dimensions if they are not trivial.

B 4.1 Probe Placement and Representation

o4 Maad

ReEE
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Figure 4.1: On the first image is a standard Cornell box scene where we placed a
4 x 4 x 4 probe grid. The second image is our atlas of octahedral irradiance maps
for each of the probes placed in the scene, where each map has a resolution of
8 x 8. The final image shows the distance atlas where each map has a resolution
of 16x16. Each entry in the distance atlas contains a distance and a squared
distance. The guard borders are set to be black to illustrate the environment
maps better.

The irradiance probes are placed in the scene’s bounding volume at vertices
of a uniform 3D grid. Using the uniform grid, we can leverage the fast
queries and effective interpolation between probes for accurate sampling of
the dynamic scene. The original paper always uses the power of the two
resolution strategy for the grid to achieve faster probe queries. On the other
hand, we opted for a more general solution where the grid can use an arbitrary
resolution. This provides us with a bit more flexibility in probe placement at
the cost of a slight performance decrease due to slow modulo operations on
the GPU. Inside the application, grid properties such as resolution or probe
spacing are fully customizable to better sample a given scene.

As shown in Figure the probes’ data is stored inside two texture atlases.
The first atlas holds irradiance maps of each probe, and the second contains
distance maps used for visibility testings during irradiance sampling from the
field. Traditionally such maps are stored as cube maps, where we would store
the values inside each of the cube’s sides. However, this is incredibly memory
inefficient for maps that do not need much precision. In order to save space,
the original authors proposed to use octahedral representation for environment
maps ﬂm instead of standard cube maps. The implementation allows
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4.2. Generating Rays

for separate settings of maps’ side lengths for each atlas for scenes where we
need higher precision.

B a2 Generating Rays

Figure 4.2: In order to get uniform distribution of spherical directions for each
ray we use Fibonacci spherical mapping. [KISST5]

For each of the n probes placed in the scene, m rays are generated, yielding
m X n rays. These rays share a common origin with their probe’s center
position. Since we would ideally want to cast the rays uniformly from the
whole surface of our spherical probe, we need a uniform distribution.

We use the same uniform distribution as the original paper, which proposed
to use Fibonacci spherical distribution. The distribution returns a spherical
Fibonacci point set SF' uniformly spread across the surface of a unit sphere
based on the desired total number of points. Each point P in SF set on the
unit sphere is defined using spherical coordinates:

P(6,6) = (cos(s),sin (8), cos(8), sin (6), cos(6))” (11)
The point with index 7 of a point set SF for n samples is given as [KISS15):

SEM = P(¢;,cos () (4.2)
i 2i+1
67 zZi = 1—
where ® = (/5 + 1)/2 is the golden ratio.

Now that we have origins and directions, we need to tell G3D’s raytracer
the minimum and maximum distances a ray can travel. To do so, we use the
alpha channels of our two textures. The alpha channel of an origin holds the
minimum distance, which we set to a slight offset to avoid self shadowing. On
the other hand, the direction’s alpha channel contains the maximum distance.

¢ =2m ,i€40,...,n—1} (4.3)
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4. Dynamic Diffuse Global lllumination Algorithm Overview

Since we do not care how far a ray should travel, the maximum distance of
our rays is set to infinity.

We generate and batch ray origins and directions in each frame into two
textures and later pass it to G3D’s Optix implementation for casting. For
reference these textures are shown in Figure 4.3

Figure 4.3: Images demonstrate the generated ray textures for a field with eight
probes and 64 rays per probe. Top texture stores ray origins. Each entry in the
texture contains the corresponding probe center and a minimum ray distance.
The bottom texture contains ray directions sampled using Fibonacci spherical
mapping. The alpha channel contains the maximum distance a ray can travel,
set to infinity.

B 43 Probe Ray Casting

Figure 4.4: Each probe casts m rays in m uniformly sampled spherical directions.
The rays then sample the geometry attributes at their points of intersections
with the scene and store them inside a surfel buffer.

From each probe, we cast m rays, which were generated in the previous
pass. We ignore backface culling to avoid visibility errors from probes enclosed
inside geometry. Each ray gathers data about the scene’s geometry into a
G-buffer-like structure of surfels. The structure for one field is a set of textures
with the exact dimensions as our ray textures, where each entry in the surfel
buffer represents information about surfels’ attributes. The structure contains
information about world-space positions, normals, and material attributes:
albedo, specular reflectance, emissive and transmissive terms. We also get
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4.4. Ray Shading

information about ray misses from the ray cast, which is encoded into the
normal texture as zero vectors.

Using this information, we then calculate the distances to hit points of each
ray. We also encode any backfaces hit by the rays into the distance values.
This is done using a sign of cosine of an angle between a normal of a surfel
and a ray’s direction.

B 2.4 Ray Shading

.-".; Il l

Figure 4.5: Indirect illumination contribution in the Sponza scene. On the left
image is the indirect illumination sampled from a camera. On the right image is
the final image.

For clarity, we separated the ray shading into two standalone passes: direct
and indirect illumination passes. However, the indirect illumination does not
have to be a standalone pass, and its contributions could be sampled directly
from the atlases inside a unified illumination pass.

First, we start with the indirect illumination, where we shade the rays
by diffuse indirect illumination leveraging the probe data accumulated in
previous frames. Section 4.4) describes the indirect illumination pass and the
interpolation weights used to handle visibility errors such as light leaks and
shadow leaks.

After we sample the irradiance field for indirect illumination, we begin the
second pass, where we compute the direct illumination for each ray from the
light sources in the scene. Once we get each light’s direct contribution, we
add indirect illumination from the previous pass. The Direct illumination is
described in Section 4.4l

Please note that these passes are not limited only to shading rays. Since
the surfel buffer is analogous to a GBuffer, we use the same passes to render
indirect contribution and the final image inside the renderer. The only
difference is that instead of sampling the scene using arbitrary samples from
probes inside the field, we use fragmens seen from the camera, see Figure [4.5

B Diffuse Indirect lllumination

Once the probes collect their data from the scene, we can shade the rays
by diffuse indirect illumination. We sample each ray’s hit location from the
surfel buffer. If the hit surfel exists, we find eight closest probes to that surfel
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4. Dynamic Diffuse Global lllumination Algorithm Overview

forming a grid cage around it (see Figure 4.6). Due to the grid structure of
the irradiance field, we can therefore encapsulate every point in the scene in
a grid cage.

‘i

Figure 4.6: Depiction of the eight probe grid cage around a surfel X. Each
probe P is sampled using the surfel’s normal n in world space. Each probe’s
contribution is weighted based on its visibility using direction dir from the
sampled point X to the current probe P. r represents the mean distance from
X to P.

After the probe cage is formed, we iterate over every probe in the cage.
We sample the irradiance from the probe’s environment map in the direction
of the surfel’s normal. More specifically, we take the normal of the surfel
point, encode it into octahedral texture coordinates, and sample the corre-
sponding irradiance texture. The sampled irradiance is then added to the
total irradiance sum of the cage.

The sampled irradiance from probes on its own would not yield correct
results since it does not account for visibility. To ensure that the indirect
light appears continuous and accounts for dynamic geometry and lighting,
Majercik et al. describe various methods to smooth it and cull
unwanted contributions. The authors use the following interpolation weights
to blend the irradiance from the closest eight probes:

Wrap diffuse shading. The first applied weight is acquired using a method
called Wrap diffuse shading [SNYT11]. Wrap shading is a technique commonly
used as a cheap approximation of subsurface scattering or as a more expressive
base-shading model. Furthermore, the method works well as a heuristic to
cull indirect contributions from probes that are not mutually visible to the
surfel. The wrap shading is defined as follows [SNY11]:

f(0,a) = ((cos® +a)/(1+a)t™ (4.4)
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4.4. Ray Shading

where 6 is an angle between surfel’s normal and direction to the active probe
and a is a parameter in the range [0,1]. In our case we use a = 1. For
reference, see Figure 4.7

-3.14 0 3.14

Figure 4.7: The graph shows the wrap shading function curve for a = 1. The
image shows the wrap diffuse shading on a sphere, where the light is placed on
the opposite side.

Chebyshev moment visibility test. In CG, Variance-biased Chebyshev
interpolant [DLO6] is used to counter shadow aliasing and produce physically
accurate shadows by approximating how they soften on their edges. DDGI
uses the variance shadow maps as a practical heuristic to counter light leaks by
filtering out probe contributions that are occluded by geometry. To calculate
The Chebyshev interpolant, we sample moments M; and My stored in the

active probe’s depth map.
M, = E(x) (4.5)
My = E(z?) (4.6)
The moments are sampled from the depth atlas, similar to how we sample
irradiance. However, since we are sampling visibility in a particular direction,

we do not use the normal’s direction for sampling but rather a direction from
the current probe to the surfel. Once we sample the moments M; and Mo,

we use them to obtain the mean p and variance o2:
w= DM (4.7)
o2 = My — M? (4.8)

Finally, we calculate the Chebyshev interpolant, which is described by Cheby-
chev’s inequality theorem: Let there be a random wvariable drawn from a
distribution with mean u and variance 0. Then for r > u [DLO6:

0.2

=y (4.9)

Pz >=71) <= pras(r) =
Where r is the exact distance from the current probe to the evaluated sample.
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4. Dynamic Diffuse Global lllumination Algorithm Overview

Log perception weight. To account for human perception, specifically how
human eyes are sensitive to contrast in low-light conditions, we crush any
weights smaller than some threshold c¢. The log perception weight is defined
as:

flw) =

Wi < c
{ c? (4.10)

1 otherwise

This way, we eliminate any small weights, but keep the curve continuous.

Trilinear weight. The standard trilinear interpolation to smooth the contri-
butions of probes based on their distance from the surfel point.

Biasing. Some scenes also require a slight global normal bias to eliminate
self-shadowing caused by the Chebyshev weight. Our shadowing bias b is
defined as follows:

b=(0.8n+0.3v) x k, (4.11)

where n is a surfel’s normal, v is a view direction and k, is normal bias
multiplier constant in range [0,1]. However, using the normal bias brings
its own set of problems namely for large k,, light leaks may appear on thin
geometry.

Lastly, the algorithm does not obey the law of energy preservation, which
means that values inside our irradiance atlas can start to diverge. The problem
is most prominent in scenes with bright surfaces where the scene gradually
explodes with energy. Therefore we apply energy preservation constant in
the range [0, 1] whenever we return sampled irradiance [MGNM19].

B Direct lllumination

To calculate direct illumination for each sample, we use the surfel buffer as
a standard G-buffer as if we were rendering the final image. The pass is
analogous to the standard deferred rendering, where we render into a texture
of the same size as the surfel buffer. We compute direct light contributions
from each light source in the scene using G3D’s illumination model for each
texel in the texture.

For shadowing queries, we project surfel’s world space coordinates from
the surfel buffer to light space to check if the point is in shadow using shadow
maps. Once the contribution of the direct light is computed, we sample the
indirect illumination texture from the previous pass and add its contribution.

B a5 Updating Probes

The final step is to update the irradiance and distance maps. We gather the
irradiance value F, for each texel from all sampled points. Then we use them
to update the value in the texel using the linear interpolation. We linearly
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4.5. Updating Probes

interpolate the new value with the old one present in the atlas using hysteresis
parameter « as the interpolant:

1
E.,..,(w) =lerp(E,,,,(w), — Z maz(0,w - 1) * L, @) (4.12)
Wsum probeRays
Weym (W) = Z maz(0,w - T) (4.13)
probeRays

where F. is irradiance, w is the probe’s texel direction in octahedral coordi-
nates, r is the ray’s direction, L. is the rays radiance, and wsum is the sum
of all weights for a given texel direction to normalize to contribution.

The distance map is updated in the same way. For each texel in the
distance map, we compute a mean of distances between the probe center and
hit locations of the rays. Furthermore, we also compute the mean of squared
distances needed for visibility sampling during indirect illumination sampling.

On the contrary, for irradiance update, we do not use w - r weight for depth
values since it will not reduce the light leaks as much. To make visibility
sampling more accurate and, therefore better reduce the light leaks, the
original paper recommends using weight ~, which is defined as:

v = (w-r)ks (4.14)

where ks is a constant in range [1,50], w is the probe’s texel direction in
octahedral coordinates, r is a ray direction. For reference on how ks helps
with light leak reduction see Figure 4.8,

Figure 4.8: The images show light leak reduction and k4 values used to sharpen
the values in the depth atlas.

Lastly, we update the old distance and the squared distance means by
using the temporal hysteresis parameter:

1

Dnew(w) = lerp(Dold(w)7 Z ma:U(O, 7) 1, Oé) (4'15)

SUM probeRays

1

Dye(w) = lerp(Diq(w),

new

Z maz(0,7) * 12, ) (4.16)
SUM probe Rays
where D is the distance mean value and [ is the ray’s length.

The hysteresis values close to 1 change the texture map very slowly, im-
proving stability at lower accuracy when objects move in the scene. On the
other hand, values close to 0.9 (and lower) lead to rapid reactions to changes
in the scene. However, it also leads to noticeable flickering. Furthermore,
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4. Dynamic Diffuse Global lllumination Algorithm Overview

the flickering can occur even with the hysteresis parameter close to 1. This
is due to the low amount of sampling rays, which leads to rapid changes in
irradiance maps if there is an exceptionally bright surface in the scene.

The naive implementation of these updates can be slow because of each
map’s size in the atlas or the number of rays to be processed. Therefore the
compute shaders that do these updates are tailored to address these factors.

In order to optimize the sum of the contributions of all rays across the
sphere, we use shared memory. The size of the shared memory is directly
proportional to the number of rays per probe. The size of a single workgroup
Glsize varies based on the number of rays per probe. To ensure that we always
use all threads inside every warp, we require the ray count per probe to be
multiple of a warp size, 32 threads. However we limit the size of a single
workgroup to a maximum of 64.

We use all three dimensions for the computational grid of size D. We set up
the computation grid proportionally to the field’s uniform grid resolution R
and the side length of octahedral maps L. The computational grid is defined
as follows:

L2
Gsize

D, and D, are self-explanatory. We want to have workgroups for each
probe. What D, effectively splits each environment map in the atlas into
multiple groups. Therefore if we had 8 x 8 resolution maps and 64 rays per
probe, we would have one group for each map. On the other hand, 64 x 64
maps would lead to 64 groups per map. These groups are placed below each
other, so if we reach 64 groups per map, each group handles one row of a
map. This approach limits us to environment maps of sidelength of 64 texels.
However, we think that this size is more than enough in general since, most
of the time, DDGI does not need more than 8 x 8 maps. Since we limit the

D, =R, xRy,Dy=R.,D, =

(4.17)

Figure 4.9: Octahedral enviroment map of size s x s extended by a border of
width b [EDOS].

workgroup size to 32 or 64 threads, we need to define the number of batches
we need to perform to load ray data into the shared memory. Therefore we
need to spread the workload over our limited number of rays. Thus if we
had two warps per group and 128 rays per probe, each thread must load
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data about two rays into the shared memory. However, 64 rays per probe are
usually enough to get a stable sampling of a scene.

Now that the atlases are updated, we still have one problem. Atlases of
octahedral environment maps have an issue with color bleeding when bi-linear
sampling or mipmapping is used. This issue and its solution are described in
a paper by Engelhardt et al. [ED0S]. To summarize, the solution is to extend
each octahedral map by a border the width of one pixel. After the atlas
updates, we also added a step: to copy texels on borders of each environment
map into their guard bands. The pattern of how the texels are copied is
shown in Figure |4.9.
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Chapter 5
Dynamic Global Shadowing
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Figure 5.1: San Miguel scene where we computed shadowing using only our
ambient occlusion method. The probe density for the scene was set to 16 x 16 x 16
with 16 x 16 occlusion maps.

We were tasked to reconstruct shadowing using probe volumes placed in
a scene as part of this project. We used DDGI as a starting point and
repurposed it to compute global ambient occlusion. The method works
similarly to DDGI because we have an occlusion field defined by a uniform
probe grid of ray-tracing sampling probes with octahedral environment maps.

These probes in each frame cast a fixed number of rays into a scene to
sample its geometry, serving as origin locations for shadow rays directed into
lights placed in the scene.

Then we compute the visibility of each surfel from each light using infor-
mation gathered using the cast shadow rays. The visibility is then used to
update probe data inside our occlusion volume. To summarize, the method
makes the following steps each step

® Generate primary and shadow rays and cast them into the scene. We
generate primary rays from each probe in the scene in each frame. We
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5. Dynamic Global Shadowing

also generate shadow rays based on hit locations found in the previous
frame. Section [5.1] gives a more in-depth description of we generate the
primary rays and the way we spread the ray generation over multiple
frames.

® Compute visibility and probe update. Using the occlusion data gathered
from shadow rays, we determine the visibility of each surfel from each light.
Using the visibility information, we update each probe’s environment
map. After the field is updated, we can use it to sample shadowing inside
our occlusion volume. The visibility function evaluation, probe update,
and how we sample the occlusion volume for the rendering of the final
image are detailed in Section [5.2.

B 51 Ray Generation and Casting

Figure 5.2: Shadow casts are spread over two frames. We cast primary rays
from probe P in the first frame, which sample geometry in a scene. We generate
secondary shadow rays from the hitpoints directed towards light receiver L in
the next frame.

We spread the ray generation for shadowing probes over two frames, see
Figure 5.2l In the first frame, we generate m X n primary rays, as we would
for the irradiance field. This is done in each frame using probe centers as
origins and spherical Fibonacci mapping for ray directions. We then cast
these rays into the scene and gather information about the scene’s geometry:
world-space positions and normals. Based on information encoded in normals
and the ray directions, we determine if a ray missed a scene or hit backface
and compute distances for probe visibility queries.

Then we generate up to m x n shadow rays for each light in the scene.
These rays have origins at the primary rays’ hit locations and are directed
toward light receivers. Primary rays that missed the scene or hit a back face
generate a dummy ray with zero max distance in their alpha channel. This
way, we indicate to G3D that we do not wish to trace these rays. However,
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5.2. Occlusion Probes Update and Sampling

even though they will not be traced, we still use them by encoding ray miss
information into them. The generated rays are then batched with the original
primary rays in a ray texture atlas to be cast in the next frame.

B 52 Occlusion Probes Update and Sampling

Figure 5.3: On the left image we show the occlusion sampling with the cosine
weight and on the right we use wrap diffuse shading. Note that there is no
normal biasing. Notice the much more pronounced shadow leaking artifacts next
to the door in the wrap shading image.

Once our shadow rays are cast from sampled surfels we determine the
visibility V' (z,1) of each surfel  from each light [. The visibility function
V(a,1) is defined as:

V(1) = {1 x is visible from 1 (5.1)

0 otherwise

To evaluate the V(x,l) for & we check if the shadow ray to I had any hit
along its way. To do so, we use the miss information encoded into normals as
a zero vector. Therefore, if we detect any non-zero normal conclude that the
x is not visible from .

During DDGI sampling, we want to know the amount of irradiance a
surfel receives in the direction of its normal. Therefore, the probe update
reflects that by spreading the irradiance values evenly over the environment
map. However, we cannot do that for shadowing since our occlusion rays
are not sampled uniformly but rather concentrated towards each light in the
scene. Hence when we update an occlusion map, we do not us the probe’s
uniformly distributed rays, but rather the mean of the visibility contributions
is computed using the directions of the shadow rays instead. The occlusion
environment maps thus reflect the visibility mean towards each light in the
scene, which is defined as follows:

! Z Z max(0,w-1)xV(x,l),a) (5.2)

SUM 1ights probeRays

‘/;n,ew (w) = lerp(‘/;old (UJ), w

Weym (W) = Z Z maz(0,w - 1) (5.3)

lights probe Rays
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5. Dynamic Global Shadowing

To evaluate the V(x,l) for & we check if the shadow ray to I had any hit
along its way. To do so, we use the miss information encoded into normals as
a zero vector. Therefore, if we detect any non-zero normal can conclude that
the x is not visible from I.
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Chapter 6

Extensions

This chapter describes our extensions to the DDGI algorithm to solve some of
its problems. These extensions mainly target the uniform grid representation
that the DDGI and our shadowing algorithm use for probe placement. First,
in Section [6.1| we present our geometry aware strategy to determine probes
that are not actively participating in global illumination or shadowing. In
Section [6.2| we describe field cascades to locally increase probe density for
medium to large scenes where the uniform grid can become too sparse for
accurate sampling.

B 61 Geometry Aware Probe Update

As mentioned in Section 4.5/ the update of each texture atlas can be relatively
slow. For outdoor scenes where the geometry is sparse, the uniform 3D grid
structure of the fields can yield a high amount of probes that are not actively
sampled and do not need to be updated every frame. However, we would
want to keep the uniform grid structure of our fields since it interacts well
with dynamic geometry.

Figure 6.1: Probe culling comparison. The left image is our forest scene where
we placed a 32 x 16 x 32 probe grid. The same probe grid is on the right after
we culled all inactive probes.

Furthermore, many probes can be placed inside geometry in scenes with
large objects. However, some probes cannot be considered inactive in a
traditional sense. This is because they may still be close enough to geometry
and therefore are included in a probe cage during indirect light sampling.
Unfortunately, the inclusion of these probes during sampling causes artifacts
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6. Extensions

to appear. Typically, DDGI deals with these artifacts by offsetting a surfel
from the surface using a large enough normal bias, which causes its own
problems. Due to these issues, samples from such probes are not desirable, and
we would want a way to detect them and potentially cull their contribution,
see Figure [6.2

Figure 6.2: Dead probe contribution culling comparison. On the left image
are visible artifacts caused by probes that are oversampling small areas inside
geometry. The right image shows the DDGI’s result when we cull contributions
from dead probes.

We propose a fast and straightforward extension that directly leverages
ray-traced data gathered by the probes to detect and flag inactive probes.

B 6.1.1 Inactive Probe Detection

The probe detection works as a local heuristic which tells us if a probe would
be included in some probe cage grid during indirect illumination pass. We
do this by computing distances from each probe to its samples. If a sample
was a miss, it is flagged by setting its distance to a slightly larger value than
the length of a probe cage’s diagonal r. We also compute if a sample was a
backface and encode it into the distance value.

B Relevant Samples

Once we have our encoded distances, we start computing the usage of each
probe P by counting its relevant samples. A relevant sample is such a sample
that has a distance smaller or equal to a length of a probe cage’s diagonal or
is smaller than zero. The final usage of a probe P is computed as follows:

1
Usage(P) = Z R(d;,) (6.1)
Np
1 ifd<r
R(d)=< -1 ifd<0 (6.2)

0 otherwise

where d;,, is a distance from a probe P to a sample 7 and r is the length of a
diagonal, see Figure |6.3
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6.1. Geometry Aware Probe Update

v

X

Figure 6.3: We are finding relevant samples and probe states. The left image
shows a relevant sample x, used during sampling by one of the probe cages that
probe P is part of. The second image shows our three types of probes. The
ALIVE (green) probe is a probe with a positive number of samples. SLEEPING
(red) probes that have no relevant samples in their radius. Lastly, the DEAD
(black) samples are mostly backfaces.

We use the parallel reduction algorithm in our compute shader for the
sum of relevant samples. The compute shader also uses shared memory for
better memory access during the computation. Parallel reduction refers to
algorithms that take an array of elements and produce a single value. There
are many problems where this algorithm applies, such as the sum of elements
or finding a minimum or maximum value.

Each probe gets one or more one-dimensional workgroups of 32 or 64
threads based on the number of rays each probe has. These groups then get
a shared memory of the same as a single workgroup. Each thread writes
into the shared memory the relevancy of each sample based on the distance
stored in the distance texture 6.2. Then in each step, we half the number
of threads accessing the shared memory while we sum the values inside the
shared memory as shown in Figure |6.4)

Once the first thread in the workgroup has the sum of all values for the
workgroup, we make the final sum. In case of each probe having only one
group, we write the workgroup’s result into a buffer that is the same size as
the number of probes in the field. On the other hand, if a probe had more
than one workgroup, we do an atomic sum of their results and then store the
final result.

Bl Probe State

Now that we know probes’ usage values, we can update their state and
hysteresis values. A probe can be flagged by one of three flags:

® ALIVE: A probe had a positive number of relevant samples. Since probes
might exist almost at the rim of r, we keep active probes in this state
for some minimum of frames. This is done to reduce possible flickering
between states due to random sampling.

Active probes are updated every frame if not stated otherwise. Further-
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Figure 6.4: Parallel accessing [HT07].

more, we logarithmically increase their hysteresis every update until it
reaches a user-defined maximum.

# SLEEPING: These are probes that had usage equal to zero. Sleeping
probes are updated every couple of frames to keep their data updated.
More specifically, in the implementation, they are updated every tenth
frame. Similarly, as alive probes, their hysteresis parameter changes
every iteration, although their hysteresis parameter logarithmically falls
off longer they stay in this state.

® DEAD: Probe is dead if more than half of its relevant samples were
backfaces. Such probes are updated in their first frame with probes
starting hysteresis. Once they are updated will not be updated again as
long as they remain in this state. This is because they most likely got
into this state for one of two reasons. First, the probe was placed inside
static geometry on scene initialization, and it will never leave this state,
so there is no point in updating the probe. Second, it got occluded by a
dynamic object, and it will most likely leave this state soon.

Furthermore, we check for dead probes during indirect illumination
passes. If a probe was flagged as dead, we would cull its contribution to
the final irradiance value sampled from the probe cage it was part of.

. 6.2 Field Cascades

A single irradiance field for accurate light propagation approximation in a
large scene requires a high-density probe grid. However dense irradiance grid
would lead to an excessive amount of memory. Furthermore, much of the
memory would be wasted due to the high number of probes that may not
be used during sampling. To avoid this issue, we use field cascades inspired
by Kaplanyan et al. [KDI0] nested grids. The cascades are a level of detail

32



6.2. Field Cascades

technique where we have multiple levels of irradiance fields centered around
the camera with decreasing probe density. This way, we always have a high
density of irradiance probes near the viewer’s vicinity, which provides a more
accurate sampling of the scene. Lower resolution grids of higher-level cascades
then cover distant parts of the scene. The highest level cascade is built as a
standard probe grid enveloping the scene.

In further sections, we detail the extension using only the irradiance field.
However, even though we present it for irradiance fields, the extension would
work the same way for our shadowing field.

Figure 6.5: Field cascades. On the left image is a representation of the field
cascades nestled into each other. These cascades are centered on the viewer’s
position and allow for higher fidelity the closer a sample is to the viewer. On the
right is a since cascade, where the green area demonstrates the volume where
the viewer can freely move without displacing the grid. The red is probe cages
that are not sampled during indirect illumination sampling but are rather used
as buffers with low hysteresis.

B 6.2.1 Representation and Update

The cascades are represented as standalone grids nested inside each other.
Since moving the grids with the viewer continuously would cause artifacts.
Thus we use discreet steps to move the grids. Each cascade has a closed area,
where the viewer can move freely without offsetting the grid, see Figure 6.5
In each frame, we check if the camera left the area, and if we detect that
it did, we decide on an offset direction. To offset the grid, we are using
axis-aligned unit directions. We compute a new grid origin for each of these
offsets and choose the one that yielded the grid’s starting position closest to
the camera and move the grid accordingly.

However, moving the grid by discrete steps does not solve the problem
that suddenly a probe has data that do not match its location. To solve this
issue, we offset the indices of the probes in the opposite direction of the grid
movement. Thus remapping data inside the probe atlas to moved probes.
This way, whenever we move the grid, we keep sampling the correct data for
a particular location.
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Figure 6.6: Grid indices offeseting. In the top image is the grid state if we did
not offset the probes in the opposite direction of the grid’s movement. Although
probes were moved, they have incorrect values from the previous position. The
bottom images show the correct probe positions.
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The only exceptions are probes on the cascade’s edges, which can suddenly
appear on the opposite side of the grid when we move the viewer. However,
this is not an issue. We do not sample these probes but rather use them as
buffering probes with low hysteresis parameters. So when the grid is moved,
these probes already have correct data about the scene to which can be passed
on.

Currently, the default size of the cascaded fields is based on the size of the
highest cascade and their count. However, we give the user the ability to
customize the size of each cascade volume together with probe density and
probe spacing. The cascades are then sorted by their size, so we always start
sampling from the smallest grid. We also give the user the option to customize
other field attributes, such as the number of rays per probe, irradiance map
sizes, and depth map sizes.

The cascades are updated independently of each other. Thus, a cascade
works as a standalone irradiance field that performs each DDGI step indepen-
dently with no knowledge about other cascades. The only difference is in ray
casting, where we batch every cascade in the pyramid into one unified atlas of
rays. This batching is done by the renderer and was detailed in Section

34



6.2. Field Cascades

Bl 6.2.2 Final Image Sampling

We sample the irradiance cascade pyramid as an array of irradiance fields
during the final image rendering. Therefore, we start the sampling at the
lowest level for each sample and continue to the highest cascade. On the way
to the largest cascade, we gather each field’s indirect contribution as was
described in Section 4.4l However, we also need to determine if a given field
is used and how much.

To do so, we weigh each cascade based on a given sample’s location. We
first compute the normalized coordinates of the sample inside the grid. Then
the final weight is the geometrical mean of these normalized coordinates in
each axis; see Algorithm [I. Each weight is then scaled based on how far we
are in the pyramid. Lastly, we weigh the current field’s contribution and
add it to the final sum. The final indirect illumination contribution of the
whole pyramid is thus computed as a mean of all fields in the pyramid; see
Algorithm 2|

Algorithm 1 Get Field Weight. Compute the weight of a field for a given
sample as a geometrical mean across all axes.

Input: F > irradiance field
x > sample
Output: Field Weight
o < FieldOrigin(F) > Origin of the field
s < FieldStep(F) > Space between probes
w1

x < (x —o0)/s > Normalized coordinates of the sample inside the field
for i <=3 do
a < T;
if a < 1 then > Is the sample inside the field
w < w * clamp(a,0,1)
else
R + FieldResolution(F)
if a > R; — 1 then
w — w * clamp(R; — 1 — a,0,1)
end if
end if
end for
return w
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Algorithm 2 Sample Irradiance Fields

Input: Fi...Fy, > irradiance fields
x > sample
Output: Irradiance mean E
Wsym < 0
Esym <0
for f <= N And wgym <=1 do
w1
E+0
if f <N Or wgym > 0.9 then
w « GetFieldWeight(Fy, x)
end if
if w > 0 then > Is the field going to be used?
E  SamplelrradianceField(Fy, x)
w 4— w * clamp(l — Wym, 0, 1)
Esym < Esym +wE
Wsym — Wsuym + W
end if
end for
return Egypm/Wsum > normalize the result
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Chapter 7

Results

We evaluated our implementation of the DDGI algorithm and our ambiance
occlusion method and proposed extensions on multiple scenes in terms of
performance and quality of produced images. This section is structured as
follows. We detail our quality comparisons in Section [7.1 The produced
images by the DDGI method are compared to a reference image from a brute-
force path-tracer. We also show a perceptual error between the reference image
and the image produced by our implementation. The error was measured
using Nvidia’s FLIP algorithm [ANAM™20] which incorporates principles of
the human eye to show the perceptual difference between two images using
magma color space. Ray-tracing throughput, timings, and other performance
evaluations are detailed in Section [7.2.

. 7.1 Qualitative Results

In this section, we show qualitative results of our implementation of the
DDGI algorithm together using our extensions. First, we demonstrate how
the method handles shadow and light leaks by itself. In order to evaluate
these artifacts, we prepared an outdoor scene with a closed section with a door
opening. The scene is enclosed in a 16 x 8 x 16 grid, where each probe has a
resolution of 8 x 8 and a 16 x 16 distance map. A spotlight then illuminates
the scene placed far from the scene, simulating sunlight. Figure 7.1 shows
this scene where we gradually added the visibility weights. No tone mapping
or gamma correction is used to brighten the image artificially.

However, this scene was constructed using water-tight geometry. A scene
like San Miguel is constructed using production techniques which means that
there are walls that are represented only as planes. DDGI has problems with
such geometry since its visibility weights cannot accurately cull contributions,
and therefore the scene would need normal biasing. In Figure |7.2) we show
light leaks caused by the infinitely thin walls and how our probe culling
extension handles them without any normal biasing. The scene is enveloped
by a probe grid 32 x 8 x 32. The light leak is caused by a probe behind
a one-sided wall that primarily samples the skybox environment map. In
the figure, we also show the positions of the probes in the area for better
reference where the troublesome probes are. Please note that the light leak
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Figure 7.1: Irradiance visibility sampling comparison. Scene (a) is a closed
room where light enters through a small door opening. Images (b) to (e) show
the interior view of the room, illustrating the gradual reduction of light-leaking
by added sampling weights. On image (b) are no weights applied, (¢) backface
weight, (d) Chebyshew weight, and finally (e) with normal biasing. The last
three images are images (e) and (f) together with FLIP error.

on the right is not caused by DDGI but the inaccurate shadow mapping.

Disabled = Enabled

Figure 7.2: Staircase in San Miguel scene. We placed a 32 x 8 x 8 irradiance
field into the scene. The left image demonstrates light leaks caused by probes
behind a one-sided wall. The right image shows global illumination with our
probe culling enabled.

To see how the light propagates, we created a closed scene with a ceiling
opening from which the light floods it, see Figure [7.3. A wall separates the
room into two parts to create an occluded section in the scene. See how the
DDGI method correctly makes a shadowed area in the corner of the room
occluded by the wall. The scene was discretized by a 16 x 16 x 16 probe grid,
with 8 X 8 probe resolution and 16x16 distance map resolution.

To further demonstrate how DDGI handles ambient occlusion, we prepared
an utterly closed scene with two occluders and one spotlight, as shown in
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Reference FLIP

Figure 7.3: Our global illumination testing scene. The first Image demonstrates
the global illumination produced by DDGI. The next is our ground truth reference.
The final image shows the perceptual image error produced by FLIP. The probes
were placed in a 16 x 16 x 16 resolution, where each probe had an 8 x 8 irradiance
map and 16 X 16 depth map.

Table 7.1l The table shows the scene with different grid configurations and
environment map resolutions. Notice that to approximate correct ambient
occlusion, the method can compensate for the lack of probes by environment
map size.

The color bleeding effect introduced by the diffuse light transfer is illustrated
in Figure 7.4, The scene is a closed box with two colored objects and a
dynamically translating spotlight. We set the probe density to 2 x 2 x 2,
where each probe had an 8 x 8 irradiance map and 16x16 distance map.
Notice that the approximated color bleeding matches almost perfectly the
ground truth.

Reference Reference

Figure 7.4: Comparison between the DDGI method and path-traced reference.
The images illustrate color bleeding in the scene, with a dynamically translating
light source introduced by the diffuse indirect light reflected from the two objects
placed in the scene.

In Table 7.2 we further show the diffuse transfer captured by DDGI. The
table shows our forest scene with a spotlight high in the air simulation
sunlight. We demonstrate the amount of diffuse light transfer based on the
grid configuration and size of environment maps. Notice that the green color
bleeding in the bottom corner increases with the irradiance map size. Please
note that DDGI does not cause the light leaks in the foliage but rather the
faulty geometry used to create this scene. Figures|7.5/and |7.6/show the DDGI
method on scenes with more elaborate geometry. Notice the diffuse light on
the left wall reflected from the floor in Figure |7.5. In Figure 7.6, we can see
noticeable light leaks on the leaves of the tree. This is due to the dense foliage
geometry, which would require a much denser irradiance field to be sampled
accurately. Also, notice how the scenes tend to be over illuminated by the
indirect illumination produced by the method. Next, Figure [7.8shows the
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Table 7.1: The table illustrates the global illumination quality with respect to
grid density and probe resolution size in a closed scene with a spotlight. The
scene with 2 x 2 x 2 probe grid resolution and 32 x 32 probe resolution (a) is
then compared to our path-traced reference (b). The last image (c¢) shows the
FLIP perceptual error between the compared images (a) and (b), where (a) has
probe density 4 x 4 x 4 and 32 x 32 resolution.

Reference

Figure 7.5: Sibenik global illumination comparison. The first Image demon-
strates the global illumination produced by DDGI. The next image is our ground
truth reference. The last image shows the perceptual image error produced by
FLIP. The grid resolution was set to 16 x 8 x 12 with 16 x 16 probe resolution.

Sponza scene with cascaded irradiance fields. Since we did not have a large
enough scene that would generally be the target for this extension, we decided
to use a coarsely discretized Sponza scene. Every cascade in the scene has
8 x 8 x 8 probes. The figure shows three images where we gradually add
lower cascades. Each image also shows probes of each cascade, where in the
first picture are only shown probes of the largest cascade, and in the last are
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Probe resolution
16 x 16

16 x16 x 1616 x 8 x 16 8 x8 x 8

Table 7.2: Probe density and environment maps resolution comparison.

Figure 7.6: San Miguel global illumination comparison. The first image demon-
strates the global illumination produced by DDGI. The next image is our ground
truth reference. The last image shows the perceptual image error produced by
FLIP. The grid resolution was set to 16 x 8 x 15 with 64 x 64 probe resolution.

shown probes of the whole pyramid.

Lastly, we present dynamic global ambient occlusion produced by our
shadowing field. In Figure [7.9| we demonstrate our global ambient occlusion
on the Sponza Scene with only sunlight. The field grid density was set to
16 x 16 x 16 where each probe had 64 rays and 16 x 16 occlusion maps.

We used our closed scene with two occluders to show the soft shadows
the method can produce. There we placed two lights directed at one of the
occluders. The Figure [7.10 shows the scene. Each image uses an increasing
sharpening value used on the sampled occlusion to emphasize the shadows.
For reference to the shape of the shadows, we include an image with shadow

mapping.
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Reference

Figure 7.7: Sponza global illumination comparison. The first image demonstrates
the global illumination produced by DDGI. The following image is our ground
truth reference. The last image shows the perceptual image error produced by
FLIP. The grid resolution was set to 16 x 16 x 16 with 8 x 8 probe resolution.

Figure 7.8: The images depict a Sponza scene with upto three irradiance field
cascades. Each cascade had 8 x 8 x 8 probe grid with 8 x 8 irradiance maps and
16 depth maps.

Figure 7.9: Dynamic Global Shadowing in Sponza scene. For the shadowing we
used probe 16 x 16 x 16 probe grid.

Figure 7.10: Ambient occlusion box scene. There are two spotlights placed
in the scene. The images show the shadows produced by our shadowing field,
where we sharpened the sampled values by a power shown on each picture. For
reference, the last image shows shadows produced by shadow mapping. The AO
field’s density was set to 32 x 8 x 32, where each probe had an occlusion atlas of
size 16 x 16.
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. 7.2 Performance Results

The performance was measured on the following machine. OS: Windows 10;
Processor: AMD Ryzen 2700X, 4100 MHz, 8 cores, 16 Logical processors;
RAM: 32 GB; GPU: RTX 3080. Times in milliseconds were measured using
G3D’s GPU profiler.

First, we present the raytracing throughput of the DDGI algorithm in
Table [7.3| without our probe culling extension. The throughput of the DDGI
method was measured in the Sibenik scene (72862 triangles) with a single
irradiance field using multiple probe grid configurations and the number of
rays per probe. This measurement’s irradiance and depth atlas contained
maps with sizes 8 x 8.

I I
1,000 16 x16 x 16 |+ |
32 x 16 X 32 |—— ]
800 | 32x32x32 |[-e— i
— i 1
~~ L B
£, 600 .
2 -
= i
2. 400 //
200 £
;
0 Yy |
100 200 300 400 500
rays/probe
Rays per Probe || 16 x 16 x 16 | 32 x 16 x 32 | 32 x 32 x 32
64 55.2 201.3 311.7
128 110.1 323.4 447.5
256 202.3 438.8 532.1
512 296.9 486.9 537.1

Table 7.3: Ray-trace throughput [MRays/s] of the irradiance field update with
respect to probe density and number of rays per probe without probe culling.

As the graph shows, the throughput starts to fall off the more rays each
probe has. For reference, in Table [7.4] we present timings of the DDGI
algorithm for grid configuration 32 x 16 x 32, and two ray counts 64 and 512.

The table suggests that the bottleneck shown in the graph is not caused
by ray-tracing but by the slow probe update that we tried to address with
the geometry-aware update extension. In Table [7.5| we show the ray-tracing
throughput with the same setup and the extension enabled. We also include
reference timings of the probe update together with the probe culling step in
Table [7.6.

Next, we measured the speed up of the probe atlas update in the San
Miguel scene(10M triangles) based on the number of probes placed in the
scene. Table [7.7] shows the average times of the update with and without

43



7. Results

Irradiance field pass 64 rays time[ms] | 512 rays time[ms]
Ray generation 0.06 0.425
Ray cast 2.245 4.357
Indirect shade 0.228 2.228
Direct shade 0.211 2.632
Probe irradiance update 0.057 1.858
Probe depth update 0.056 2.101

Table 7.4: Table of timings [ms] of the irradiance field update without probe
culling.
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rays/probe
Rays per Probe || 16 x 16 x 16 | 32 x 16 x 32 | 32 x 32 x 32
64 58.6 213.2 343.2
128 116.1 350.4 506.1
256 212.0 503.6 642.9
512 326.8 595.5 705.9

Table 7.5: Ray-trace throughput [MRays/s] of the irradiance field update with
respect to probe density and number of rays per probe with probe culling
enabled.

culling. It also shows the average speedup of the update the extension brings
for San Miguel. Each probe in the scene had irradiance maps of size 8 x 8
and depth maps 16 x 16.

We also measured how well our extension prunes the uniform grid field on
various scenes. Table [7.9| presents the amounts of active, inactive, and dead
probes in different scenes and grid configurations. Notice that the Sponza
scene had only three inactive probes in configuration 16 x 16 x 16. In Sponza,
there is not much open space where a probe could become inactive in this
configuration. Therefore most probes find some number of relevant samples.

Next in Table [7.8 we show timings of each pass in our shadowing field.
The measurement was taken on Sibenik Scene with one light outside of the
cathedral. Around the cathedral we placed 32 x 16 x 32 field, where each
probe had 16 x 16 occlusion map.
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7.2. Performance Results

Irradiance field pass 64 rays time[ms] | 512 rays time[ms]
Indirect shade 0.201 1.297
Direct shade 0.153 1.244
Probe irradiance update 0.053 0.892
Probe depth update 0.049 1.014
Mark inactive probes 0.044 0.226

Table 7.6: Table of timings [ms] of the irradiance field update with probe culling
enabled.

1.5 T 1.8 T
No Culling |— | Speed up | —— i
S Culling T 16] h
R 1 |
g | | 14l ]
= 05) 8 i |
- {12} .
L | | | | | ]
0 1 2 3 1 2 3
N 10 N 10
N No Cull [ms] | Cull [ms] | Speed Up
2048 0.13 0.12 1.083
4096 0.22 0.19 1.157
8192 0.32 0.26 1.230
16384 0.62 0.45 1.377
32768 1.21 0.84 1.440

Table 7.7: Timing measurements of DDGI probe atlas update in San Miguel
scene. We show timings comparison with and without probe culling for N probes
in the scene on the left graph. On the right is shown the speed up the culling
provides.

Shadowing field pass | time[ms]

Primatry ray generation 0.06
Shadow ray generation 0.07
Ray cast 2.58

Ray occlusion 0.11
Probe occlusion update 0.5

Table 7.8: Sibenik scene. Table of timings [ms] of the shadowing field update
without probe culling.
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7. Results

Scene Density Alive | Sleeping | Dead
GI Box 16 x 16 x 16 || 2636 480 980
32 x 32 x 32 || 17606 9772 6090

San Miguel || 16 x 16 x 16 || 2049 559 788
32 x 16 x 32| 7375 6001 3008
32 x 32 %32 || 15237 | 12363 | 5168

Sponza 16 x 16 x 16 || 3667 3 426
32 x 16 x 32 || 13008 1286 2090
32 x 32 x 32 || 24221 3887 4660

Forest 16 x 16 x 16 || 2941 1135 20
32 x 16 x 32 || 8888 7370 126

32 x32x 32| 17470 | 15109 189

Table 7.9: Culling
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Chapter 8

Discussion and Future Work

As mentioned in the methods overview and results, the method DDGI has
some drawbacks, which we further discuss in Section |8.1. Two further pos-
sible extensions to improve the performance of the method are discussed in
Section 8.2l

B 8.1 DDGI Drawbacks

As mentioned in Section 4.5, the method can suffer from noticeable flickering.
This problem can be caused by a low hysteresis parameter or an insufficient
quantity of sampling rays in a scene with bright materials. Unfortunately,
the only way to stabilize the image is to increase the number of sampling
rays, increasing the number of samples to process in the probe update.
Unfortunately, this could lead to infeasible number of rays cast in each frame.

Another drawback of the method is a noticeable illumination delay caused
by the recurrent computation of indirect light between frames. This problem
is most pronounced in mostly static scenes where for example we suddenly
occlude large part of the scene; however, it is not apparent in dynamic scenes
with many moving objects.

As was shown in Figures [7.5 the method can struggle with light leaks in
scenes with dense geometry, such as foliage, and not water-tight geometry.
These problems we were addressed with our extensions. However, in case of
light leaks on fine geometry, there is so far we can go. Even a dense irradiance
field cannot accurately approximate high-frequency ambient occlusion. A
better and much cheaper approach is to use ambient occlusion methods, which
work best for such situations as SSAO. SSAO would create shadows on the
dense geometry and therefore reduce light leaks. It would also darken corners
in a scene, making it look more natural. Of course, the same problem with
occlusion applies to our shadowing field, which cannot accurately capture
high-frequency occlusion.
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8. Discussion and Future Work

. 8.2 Future Work

Even though the approximation of diffuse transfer produces images that
are sometimes almost indistinguishable from the ground truth, the probe
update in each frame is still relatively costly, even with our update extension.
We update every probe in each frame with an initial set ray budget even
though they are inactive, which leads to an infeasible amount of ray casts.
An adaptive approach would be more appealing, where we would change the
budget of each probe based on its surroundings. One approach would be to
use our data about active probes and reduce the ray budget of inactive probes
with time. Another way would be to use data about each probe’s contribution.
A probe with a low contribution to the overall global illumination, such as
probes placed in geometry or dark areas, does not need the same ray budget
as a probe in a well-illuminated area.

We could take inspiration from the paper of K. Vardis et al. [VVP21],
which describes an illumination-driven technique to optimize automatic probe
placement methods for light baking, e.g., uniform 3D grids or tetrahedral
grids. More specifically, their use of YCoCg color space to determine which
probes to disable. To reduce the number of rays a probe emits, we would
compute the cost based on absolute percentage errors, e.g., SMAPE. Since the
DDGI method already computes illumination between frames, we calculate
the errors of current and previous frames. Probes with minor errors or probes
placed inside geometry would gradually reduce their budget to a set minimum.

Another possible extension would be to use more elaborate probe placement
to break the uniform grid placement strategy. This way, we would reduce
artifacts caused by the grid structure and increase performance by reducing
the required probes in the scene. However, this approach would possibly
lessen the dynamic aspect of the method. Inspiration could be taken from the
paper by Wang et al. [WKKN19] or Sedlacek’s approach [Sed19] for placing
sparse radiance probes [SL17]. The solution by Sedlacek uses a voxelization
of a scene together with a few simple rules to avoid putting irradiance probes
inside geometry and to avoid probe overlap. However, as already mentioned,
this approach might limit the method to static or only partially dynamic
scenes due to the costly voxelization of the scene.
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Chapter 9

Conclusion

We showed our implementation of a recent real-time global illumination
method called DDGI, which complements traditional rasterization by hardware-
accelerated ray-tracing.

We also presented our extensions, such as geometry aware probe update,
which culls passive probes from the update and sampling process. The
extension was mainly focused on addressing performance issues with high-
density grids. However, the method can also have an emerging behavior of
culling irradiance contributions of probes closed inside geometry that would
still be sampled. Therefore, it reduces artifacts caused by the grid placement
strategy.

We also extended the algorithm by cascaded fields. This extension increased
the visual fidelity around the viewer without unnecessarily wasting memory
on dense fields.

Furthermore, we presented our modified DDGI algorithm, which recon-
structs low-frequency soft shadows using shadow rays.

We showed our findings and results from our implementation of the tech-
nique. We also discussed possible extensions such as adaptive scaling of
probes’ ray budget and possible dynamic probe placement tactics.
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Appendix A

User Manual

All controls are listed in this appendix. Prepared scenes can be loaded from
inside the application.

. A.1 User Interface

The application provides a basic user interface, as shown in Figure The
toolbar in the bottom left is used to open widgets to control the application,
such as debug window(top window), Debug camera, Scene Editor, and many
more. However, the debug window is the main widget used to control our
application. It provides control over different shadowing modes and DDGI.
Furthermore, tabs on the top of the window give control over the implemented
DDGI method parameters, dynamic shadowing field, and even the used path
tracer.

The scene can be changed by selecting one from the drop list next to the
scene in the scene editor.

To unlock the camera, change the camera in the Camera drop list to Debug
Camera or press F2. Then the camera is controlled by WSAD and the mouse
while holding the left mouse button.
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A. User Manual

] oo | o o

Figure A.1: User Interface
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Appendix B

Dependencies

G3D Innovation Engineﬂ

Thttp://casual-effects.com/g3d /www/index.html
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Appendix C

Electronic Contents

Documentation

Application

Source Code

Videoslmages

Pictures
tex Thesis pdf, latex
source code
tex files
diploma_thesis.pdf

execition file
with application

ReadMe.txt files (scenes,
DDGl.exe
shaders...)
data-files
L\ Visual Studio
Documentation project with
Doxygen
Source documantation
GIBOX.mp4
Sponza.mp4 i .
Tyrs.mp4 Promotional Material
Shadowing.mp4
GIBox.mp4

Ut

9



	Introduction
	Related Work
	Rendering Equation
	Global Illumination Methods
	Finite Elements
	Photon Mapping
	Monte Carlo Ray Tracing

	Shadowing Methods

	Rendering Pipeline
	GBuffer and Deffered Rendering
	Shadows
	Field Update

	Dynamic Diffuse Global Illumination Algorithm Overview
	Probe Placement and Representation
	Generating Rays
	Probe Ray Casting
	Ray Shading
	Updating Probes

	Dynamic Global Shadowing
	Ray Generation and Casting
	Occlusion Probes Update and Sampling

	Extensions
	Geometry Aware Probe Update
	Inactive Probe Detection

	Field Cascades
	Representation and Update
	Final Image Sampling


	Results
	Qualitative Results
	Performance Results

	Discussion and Future Work
	DDGI Drawbacks
	Future Work

	Conclusion
	Bibliography
	User Manual
	User Interface

	Dependencies
	Electronic Contents

