
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Adversarial Attacks on Text Classifiers

Bc. David Herel

Supervisor: Ing. Tomáš Mikolov, Ph.D.
Field of study: Open Informatics
Subfield: Cybersecurity
May 2022

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474491Personal ID number:Herel DavidStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Cyber SecuritySpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Adversarial attacks on text classifiers

Master’s thesis title in Czech:

Adversarialní útoky na klasifikátory textu

Guidelines:

Adversarial attacks on image classifiers is a well established research topic. On the other hand, attacks on text classifiers
are more recent and less well developed. One of the problems is that some of these attacks completely change semantics
of the text.Thus, it is needed to develop a new, more realistic approach, and a new metric that will be useful for distinguishing
realistic attacks on classifiers from techniques that can rather be seen as minimal edits of text.
1. Get familiar with the state of the art text classifiers and their vulnerabilities to adversarial attacks
2. Survey existing attacks on these classifiers and analyze them
3. Provide a metric to compare sucesses of these attacks
4. Propose an adversarial attack on text classifiers that will be less problematic than the existing ones

Bibliography / sources:

1. Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial exam- ples: Attacks and defenses for deep learning.
IEEE transactions on neural networks and learning systems, 30(9):2805–2824.
2. John X. Morris, Eli Lifland,Jack Lanchantin, Yangfeng Ji, Yanjun Qi, 2020, Reevaluating Adversarial Examples in Natural
Language, arXiv preprint arXiv:2004.14174
3. Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limti- aco, Rhomni St John, Noah Constant, Mario
Guajardo-Cespedes, Steve Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint arXiv:1803.11175
4. Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu. 2020. Bert-attack: Adversarial attack against
bert using bert. In Proc. of EMNLP
5. Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018. Generating natural adversarial examples. In Proceedings of ICLR

Name and workplace of master’s thesis supervisor:

Ing.Tomáš Mikolov, Ph.D. RICAIP CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 20.05.2022Date of master’s thesis assignment: 02.02.2022

Assignment valid until: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signatureIng. Tomáš Mikolov, Ph.D.
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to thank my supervisor, Ing.
Tomáš Mikolov, Ph.D., for his invaluable
advices and excellent guidance not only
during writing this thesis, but also during
previous years of my studies. I would also
like to express my sincere appreciation to
my family and also to Daniela Hradilová
for their tremendous support.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information use within
it in accordance with the methodical in-
structions for observing the ethical princi-
ples in the preparation of university theses.
Prague, 16. May 2022

v

Abstract
Nowadays, some of the most common
means of communication are through so-
cial networks or discussion forums. This
produces an enormous amount of text
data, which often needs to be automat-
ically checked, classified and filtered to
identify malicious categories such as hate
speech, fake news or spam. This is han-
dled by automatic classifiers. However,
the classifiers can be fooled by an adver-
sarial attack, in which the text is slightly
modified in a way that it is no longer auto-
classified as, for example, hate speech
but is still considered hate speech to the
human eye. In this diploma thesis, I
have studied these attacks extensively
and discovered that many of them suf-
fer from a poor quality and frequently
do not preserve the semantics of a sen-
tence. Based on my research, the prob-
lem lies in the similarity metric, which
uses Universal-Sentence-Encoder (USE)
[39]. To overcome this, I propose a new
approach called Semantics-Preserving-
Encoder (SPE), which replaces USE in the
similarity metric. Due to the supervised
learning of our approach, we should cap-
ture the semantics better. This is proven
valid, and the similarity metric using our
SPE produces very good results on several
datasets. Finally, I propose a new adver-
sarial attack, which uses the new metric
and modifies sentences on both character
and word level. This attack produces high-
quality adversarial examples and is also
much faster than existing state-of-the-art
attacks.

Keywords: Adversarial attacks, text
classifiers, NLP, semantic metric, neural
networks, sentence vectors

Supervisor: Ing. Tomáš Mikolov, Ph.D.
CIIRC, CTU in Prague

Abstrakt
V dnešní době se velká část mezilidské
komunikace odehrává na sociálních sítích
nebo diskusních fórech. Vzniká tak ob-
rovské množství textových dat, která je
často nutné automaticky kontrolovat, kla-
sifikovat a filtrovat tak, aby bylo možné
identifikovat škodlivé kategorie, jako jsou
projevy nenávisti, fake news nebo spam.
To realizují automatické klasifikátory. Kla-
sifikátory však lze oklamat adversariálním
útokem, kdy je text mírně upraven tak,
že již není automaticky klasifikován jako
například nenávistný projev, ale je stále
považován za projev nenávisti z pohledu
člověka. V této diplomové práci jsem tyto
útoky důkladně studoval a zjistil jsem,
že mnohé z nich trpí špatnou kvalitou a
často nezachovávají sémantiku věty. Na
základě svého výzkumu jsem identifiko-
val, že problém spočívá v metrice podob-
nosti, která používá Universal-Sentence-
Encoder (USE) [39]. K vyřešení problému
navrhuji nový přístup nazvaný Semantics-
Preserving-Encoder (SPE), který nahra-
zuje USE v metrice podobnosti. Díky
supervizovanému učení našeho přístupu
bychom měli lépe zachytit sémantiku. To
se skutečně prokázalo a metrika podob-
nosti použivajíci naše SPE dává velmi
dobré výsledky, a to na několika datase-
tech. Nakonec navrhuji nový adversariální
útok, který používá tuto metriku a modi-
fikuje věty na úrovni znaků i slov. Tento
útok produkuje vysoce kvalitní adversari-
ální příklady a je také mnohem rychlejší
než stávající útoky.

Klíčová slova: Adversariální útok,
textové klasifikátory, NLP, semantická
metrika, neuronové sítě, vektory vět

Překlad názvu: Adversarialní útoky na
klasifikátory textu

vi

Contents
1 Introduction 1

2 Theoretical background 3

2.1 Text Classification Tasks in
Natural Language Processing 3

2.2 Feedforward Neural Networks . . . 4

2.2.1 Recurrent Neural Networks . . . 6

2.2.2 Transformers 7

2.3 Sentence Representation in NLP . 8

2.3.1 Bag of Words 8

2.3.2 N-gram Features 10

2.3.3 Word Embeddings 10

3 Related work 15

3.1 Adversarial Examples in Machine
Learning . 15

3.2 Categories of Attacks 16

3.3 Adversarial Attacks 17

3.3.1 White-box Attack Models . . . 17

3.3.2 Black-box Attack Models . . . 18

4 Method 21

4.1 Motivation Behind the New
Metric . 21

4.2 Semantics-Preserving-Encoder . . 23

4.3 Similarity Metric Using SPE . . . 24

4.4 Combined Adversarial Attack . . 25

4.4.1 Identification of the Most
Important Words 26

4.4.2 Modification of the Important
Words . 27

4.4.3 Pseudo-code Description 28

5 Experiments 31

5.1 Tasks . 31

5.2 Metric Definition and Evaluation 32

5.2.1 Datasets 32

5.2.2 Training FastText Models For
SPE . 37

5.2.3 Defining Metric Evaluation . . 38

5.3 Adversarial Attack Evaluation . . 39

5.3.1 Datasets Used To Fine-Tune
BERT Model 39

5.3.2 Training BERT Victim Model 39

5.3.3 Adversarial Attacks
Configuration 40

5.3.4 Automatic Evaluation 41

5.3.5 Human evaluation 41

6 Results 43

6.1 Metric Development and
Evaluation . 43

6.1.1 FastText Models Evaluation . 43

6.1.2 Fine-tuning Our SPE for the
Similarity Metric 44

6.1.3 Similarity Metric Evaluation 46

6.2 Adversarial Attacks Evaluation . 47

6.2.1 Automated Evaluation 47

6.2.2 Human Evaluation 48

vii

7 Discussion 51

7.1 Similarity Metric Using SPE . . . 51

7.2 Adversarial Attack 52

8 Conclusion 55

A Bibliography 57

B Shortcuts 65

C DCUS Examples with Similarity
Scores 67

viii

Figures
2.1 Illustration of the feedforward

neural network as a matrix-vector
multiplication as in [19]. 5

2.2 Transformers model architecture
[21]. 8

2.3 Example of a Bag of Words. 9

2.4 BERT model [23]. 12

3.1 Adversarial example for text
classification. 15

4.1 An adversarial example generated
by an adversarial attack algorithm
that does not preserve the original
meaning. 22

4.2 Concept of our
Semantics-Preserving-Encoder which
is used in our metric. 23

4.3 Scheme of the adversarial attack
workflow. 25

5.1 The instructions and questionnaire
used for DCUS creation. 35

5.2 Sample sentences from our 3
datasets: DCUS-RT (Rotten
Tomatoes), DCUS-Hate (Hate
speech), and DCUS-Offensive
(Offensive language). 36

6.1 Graphs show how the number of
models impacts the time and
accuracy on MRPC dataset for our
metric, USE-DAN, and USE-TRANS
metrics. 45

Tables
3.1 In the first row "Attacks" refers to

the attack models. "Accessibility"
refers to the accessibility to the
victim’s model. "Perturbation" states
on which level the attack was
performed: Char, Word, or Sentence.
The last column "Core Idea" explains
the main idea behind the attack
model. 19

5.1 Statistics of 5 datasets in total that
were used for metrics evaluation. . . 37

5.2 Hyper-parameters of the fastText
classifiers [65] used in our
Semantics-Preserving-Encoder. . . . 38

5.3 Statistics of 3 datasets in total that
were used in experiments with the
adversarial attacks. 40

6.1 Accuracy rate of the fastText
classifiers used in SPE on the test set
for each dataset. 44

6.2 Results of similarity metric using
SPE on each dataset measured in
accuracy (percentage) in comparison
with USE. 46

6.3 Results of our attack on 3 datasets
in total in comparison with
TextFooler [40] and DeepWordBug
[35]. Performance is measured in
original accuracy (Original acc),
after-attack accuracy (After-attack
acc), time (Time), and modification
rate (Mod. Rate). Bold font indicates
the best performance for each metric.
All numbers are reported on 100 test
instances. Symbols ↑ (↓) represent
that the higher (lower) the better. 47

ix

6.4 Overall results of our attack from
both automated and human
evaluation. Performance is measured
in original accuracy (Original acc),
after-attack accuracy (After-attack
acc), time (Time), modification rate
(Mod. rate), and real after-attack
accuracy (Real after-attack acc).
Bold font indicates the best
performance for each metric. All
numbers are reported on 100 test
instances. Symbols ↑ (↓) represent
that the higher (lower) the better. 49

x

Chapter 1

Introduction

To breathe life into inanimate objects is thought humanity has been dreaming
of for centuries. Thanks to the advances in the machine learning field we are
closer to this goal than ever. Looking at the timeline of the recent progress
in this field, we have moved from simple rule-based systems to algorithms
with an ability to learn. These algorithms have gradually become part of our
daily lives and most of us do not even notice their presence. They are used
for product recommendation [1], spam filtering [2], speech recognition [3] and
many more. Even large companies rely on these algorithms extensively, after
all, they generate most of their income.

But these algorithms are not just a source of income for the rich, they are
also in place for security purposes. Specifically, they often search for attackers
in the network [4], they keep us safe while driving, or even drive instead of us
[5]. Performing a successful attack and fooling these algorithms could have
devastating consequences. Unfortunately, such attacks exist [6] [35] [37] [38].

Machine learning algorithms are still far from human-level intelligence.
They are not as robust as one would think, and they can be easily fooled with
a small perturbation unnoticeable to the human eye - adversarial examples.
For example, we can modify a stop sign with small pixel noise, which is
invisible to the human eye but will fool the system to read the stop sign as a
speed sign [6].

This problem is one of the obstacles to the adoption of machine learning
algorithms in these core systems and has not yet been solved [8]. Intuitively
one might think that hiding the model will make these attacks impossible,
due to the unknown gradient. But it turns out that for a majority of the
attacks the model knowledge is not needed at all [7].

The idea of defense mechanisms against these types of attacks lies in the
so-called adversarial training [8]. We take these perturbed and modified
inputs and include them in the training dataset. This way we can make the

1

1. Introduction
model more robust.

Even though these attacks are the most common in the computer vision
field, they can work equally well in a discrete space like language. In this
context, we can imagine this attack as the lowest modification to the text
that fools the model. In this case, the human eye can obviously spot the
difference, but if we preserve the semantics, the text should be considered
the same. For example, we can introduce a typo, exchange a word with its
synonym or we can paraphrase the entire sentence.

The core idea of this attack is to preserve the semantics of the original
sentence. If we changed this, the attack would no longer be an attack by
definition. Unfortunately, this is the case with some of the existing attacks
[9], which do not often preserve the semantics.

The goal of this thesis is to overcome this problem and create a metric that
would be able to successfully detect the changed semantics of the sentence by
producing better vectors in the latent space. This would allow us to create
better quality adversarial examples, which would result in a better attack
algorithm. We could also use this metric to automatically and reliably decide
if the attack was successful or not.

To give an outline of how this work is structured, in Chapter 2 the reader
is introduced to the theoretical background, which our work builds upon.
Following this chapter, adversarial attacks are explained, and the most well-
known attacks are shown in Chapter 3. In Chapter 4 the method is described.
Chapter 5 evaluates the performance of our solutions on several benchmarks.
Results are shown in Chapter 6. After that, we discuss and conclude our
achievements (Chapter 7, Chapter 8).

2

Chapter 2

Theoretical background

In this chapter, I would like to introduce the reader to the theoretical back-
ground upon which my work is built. In Section 2.1, we start with a brief
introduction to classification problems in the field of natural language pro-
cessing. Then, the reader is introduced to the basics of neural networks in
Section 2.2, which is a key concept to understand. Once the basics of these
computational models are introduced, more advanced concepts of deep learn-
ing are described, such as recurrent neural networks 2.2.1 and transformers
architecture 2.2.2. Finally, the problem of sentence representation in NLP 2.3
and the basic concepts like the bag of words, N-grams, and word embeddings
are explained.

2.1 Text Classification Tasks in Natural Language
Processing

As the name of this section suggests, text classification in natural language
processing is a task where we assign labels to the text in the form of words,
sentences, paragraphs, documents, queries, etc. A more formal definition of
the classification problem can be found in [10] [11], which both states the
same. Text classification is the process of assigning a label from a set of labels
to any text document provided as input.

The extension of this can be to categorize text documents into more than
one class, which is called multi-label text classification. The only difference
is that there is no limit to the number of classes to which the text can be
assigned.

A typical example of the classification problem is sentiment analysis, where
we want to decide the sentiment of a text, e.g. decide if a movie review is
positive or negative. We can also use it to detect spam, answer questions,

3

2. Theoretical background
categorize news, check if the hypothesis is true given the premise, and so on.

The possible applications of this process are immense. This puts pressure on
the automation of text classification because doing it manually is impossible
with the amount of data that fluctuates over the Internet.

However, this is a very difficult task due to the unstructured data of the
text. It is not in a form of SQL tables with predefined features, which many
engineers work with. On the other hand, if we use the right tools, we can
gain a great deal of insight from the text, which we would not get from other
sources.

Thanks to the advances in the machine learning field, we do not have
to classify the text manually. Unfortunately, a small group of annotators
with deep domain knowledge will always be needed, not only because of the
extensions and creation of datasets but also because of the need for human
evaluation of the algorithms themselves. But because of the previous work of
such people, we now have a large amount of labeled data, which are commonly
used as training data for our machine learning models.

2.2 Feedforward Neural Networks

The idea of using artificial neurons as a mathematical model was there for a
long time [12], but for decades nobody seemed to make it work better than
existing approaches. But due to the advancements in the last decades, these
models are now considered a state-of-the-art approach in many computer
science fields like computer vision, speech recognition, NLP etc.

The goal of a feedforward neural network model is to approximate an
unknown function f∗ : Rm −→ Rn [13], where m is the dimensionality of the
input vector and n is the dimensionality of the output vector. For example,
we can have the previously mentioned function f∗ that maps the vector x
to the vector y as follows: f∗(x) = y. The goal of the feedforward neural
network is to approximate function f∗ with function f, where y = f(x, w) and
w are the learned parameters that result in the best approximation of that
function.

A simple feedforward neural network typically consists of three functions
f1f2f3. These functions are called layers, and together they create a function
f(x) = f3(f2(f1(x))). These layers are typically called input, hidden, and
output layers. When we have multiple hidden layers, we can refer to our model
as a deep feedforward neural network. Our model can also be represented as a
directed acyclic graph (DAG) because it does not have recurrent connections.
In the model, information always moves forward, thus the name feedforward.
This is in contrast to networks with recurrent connections, which are discussed
in the next section.

4

............................. 2.2. Feedforward Neural Networks

Figure 2.1: Illustration of the feedforward neural network as a matrix-vector
multiplication as in [19].

Each layer consists of at least one neuron, and all layers except the input
layer use some kind of a non-linear activation function on each neuron.
Typical activation functions are sigmoid, tanh and relu. Due to the non-linear
activation function, the data can be separated even though they are not
linearly separable [15].

We can also define the feedforward neural network as a matrix-vector
multiplication [19]. An illustration of this concept is depicted in Figure 2.1,
where w(t), s(t), y(t) are the input, hidden and output layer vectors, U and
V are weight matrices. U is the weight matrix between the input and the
hidden layer, V is the weight matrix between the hidden and the output layer,
b0 and b1 are the biases. The output values for each layer can be computed
as follows.

s(t) = f(Uw(t) + b0) (2.1)

y(t) = g(V s(t) + b1) (2.2)

where f(z) and g(z) are ReLU and softmax activation function:

ReLU(x) = max(0, x) (2.3)

Softmax(xi) = exp(xi)∑
j exp(xj) (2.4)

5

2. Theoretical background
Optimization

Neural networks are typically trained by an optimization algorithm called
stochastic gradient descent (SGD) [14] with back-propagation [16]. Training
is typically done on a dataset, which is a sample of the probability distribution
over the input space of the NN. In the case of supervised learning, we have
input-output pairs. If we recall our previously mentioned function f with
learn able parameters w [13]. Our goal is to approximate the unknown
function f∗. If we want to find parameters to approximate our unknown
function, we first have to define a loss function. This loss function measures
the difference between the output of the function f and the true value. The
most common loss function for classification tasks is cross-entropy, which can
be defined as

−
M∑

c=1
yo,c ln(po,c) (2.5)

In this equation, M is the number of classes, y is the binary indicator, which
decides whether the label c is the correct classification for the observation
o, and p is the predicted probability if the observation belongs to class c.
Minimizing this error and adjusting w (weights) through back-propagation
[16] is called learning.

For each training sample x and label y, SGD performs the following weight
update:

w = w − η∇wJ(w, x, y) (2.6)

where J is the objective function and w are the model parameters. The
important factor is the size of the learning rate. It determines the size of steps
which are in the direction of a slope. The learning rate is usually constant
or decreases during the training. The learning rate can also be optimized
automatically through specialized optimizers, such as Adam [31].

2.2.1 Recurrent Neural Networks

Recurrent neural networks (RNN) [16] are an extension of feedforward neural
networks. Due to their recurrent nature they are suitable for sequential/time
series data like videos, speech recognition and so on.

The simplest form of RNN is the Elman network [17], which consists of an
input, hidden and output layer. For each time step, the state of the hidden
layer is saved and used in the next time step along with the input. Because
of this, the network can maintain some sort of memory through the hidden
layer.

Mathematically, we can define RNN as an extension of NN from the previous
Section 2.2. Following the description in [19], the equation is just extended

6

............................. 2.2. Feedforward Neural Networks

by a matrix W, between the input and hidden layers and the biases b2. The
hidden vector is then calculated as follows:

s(t) = f(Uw(t) + b0 + Ws(t− 1) + b2) (2.7)

The rest of the equation remains the same.

Training can be done in the same way as in feedforward neural network
by using SGD with a back-propagation algorithm. However, as stated in
[19], better performance can be achieved by using Back-propagation Through
Time algorithm described in [30].

RNN, despite their tremendous success, have a few problems. They do
not perform well when handling large sequences of texts [18], e.g., long
paragraphs. Due to the long sequences, it is hard to propagate the gradient
(vanishing, exploding gradient). As a consequence, the model might have
already forgotten what it learned at the beginning of the sequence by the time
it reaches the end. This issue can be particularly solved by using LSTM [20]
or the gradient clipping technique [19]. However, a bigger problem of RNN is
sequential input processing, which makes parallelism not really possible.

2.2.2 Transformers

Due to the problems of RNN, a novel architecture called Transformers was
introduced [21]. Through this architecture, we were able to train large models
like GPT-3 [25], T5 [24], BERT [23], because of the power of parallelism.
This architecture does not have any recurrent connections. It is based only
on feedforward neural networks with an attention mechanism. Surprisingly,
even without recurrence, the architecture is able to encode sequential data.

The architecture of the model can be seen in Figure 2.2. The main advantage
is that the input sequence can be passed in parallel. Architecture is built on
encoder-decoder blocks. An important feature is a positional encoder, which
is a vector that contains information on the distances between words in a
sentence. This vector is applied to word embedding, thus we can get word
vectors with positional context information. This is then passed into the
encoder block. The encoder block consists of two parts: multi-head attention
and feedforward neural network. Attention gives us information about what
part of the input we should focus on. At each time step, the feedforward
neural network is applied to the attention vector.

The decoder works similarly to the encoder block with the context word
embedding part. Attention vectors and vectors from the encoder are passed
to another attention block, where the layer determines how word vectors are
related to each other. Then the feedforward layer with softmax is applied.
Even though this architecture was developed mainly for translation purposes,
it became the SOTA approach in several NLP tasks.

7

2. Theoretical background

Figure 2.2: Transformers model architecture [21].

2.3 Sentence Representation in NLP

From the previous section, we are familiar with how a neural network works
with numbers, especially vectors, but we want to work with text. An important
question arises. How to convert the text into vectors. In this section, we will
show the most common ways of achieving this, starting with the most famous
one - the bag of words, following with some of the more advanced techniques,
such as N-grams. Lastly, we finish this section with word embeddings, which
is the best text representation we have, because it captures semantics.

2.3.1 Bag of Words

The simplest way to transform a word into a vector is to define an input layer
with a node for every word in the vocabulary [22]. Each node would represent
one word in our vocabulary. Thus, if we would like to only input one word
into the neural network, the input vector would be all 0 except at one index

8

............................ 2.3. Sentence Representation in NLP

with 1, to which our word is assigned. This representation of a word is called
one-hot encoding.

If we extended this idea to a sentence representation, we would have an
input vector with the same length, again filled with zeros, except for the
indices where the words occur in the given sentence. This is called one-hot
bag-of-words encoding.

Another extension of this would be not to put the 1 on indices where a
given word appears, but to count how many times the word appears in the
sentence, document, etc. This way we would also have information about the
word frequency. This is called Bag of Words (BoW) [22].

Figure 2.3: Example of a Bag of Words.

An example is shown in Figure 2.3. If we had a vocabulary with eight
words, the BoW input vector would have a dimension of eight. If we wanted
to input the word ’apple’, the vector would be 00100000. If we wanted to
input the sentence ’apple apple banana’, the input would be 00200001.

However, in this representation, we lose information about the word order.
Thus, the ’apple banana’ sentence is the same as ’banana apple’. But the
word order is usually important because it tells us a lot of information about
the meaning. Another problem is that there is no semantic information about
the word vector. We would expect words with the same meaning to be close
to each other, but this is not reflected in this representation.

9

2. Theoretical background
2.3.2 N-gram Features

The problem of word order information loss of BoW [22] explained in the
previous section is partially solved by N-grams.

N-gram can be defined as a continuous sequence of items, in our case
words, from a given text. The length of the continuous sequence of items is
defined by N. Usually N with a value of 2 or 3, called bigrams or trigrams, is
used. A higher N leads to far more combinations, which are computationally
impossible to store.

Bag of Words can be viewed as a bag of 1-grams. To introduce the word
order, at least partially, we could modify the BoW to use N-grams, so that
we would have a bag of N-grams. A great example can be shown in a simple
sentence: ’I am David’. In the bi-gram model, we would have a vocabulary
with ’I am’, ’Am David’. With a Bag of 1-grams model, we would have ’I’,
’am’, ’David’.

2.3.3 Word Embeddings

However, even the Bag of N-grams does not reflect any relationship between
the vectors. Also, these vectors have high dimensionality and are sparse. The
ideal scenario would be to have vectors with many times fewer dimensions,
which contain some useful semantic information [26]. These vectors are called
word embeddings.

There are several methods to generate these word vectors, but the most
successful is the one that uses neural networks [27]. Some of these methods
are used in our work, and it is necessary for the reader to understand how
they work.

FastText

FastText is a library, which is capable of creating both supervised and
unsupervised word embeddings and text classifiers [65] [66]. It can be viewed
as an extension of the famous word2vec library [27]. A major difference is
that in word2vec the smallest unit was the word in the vocabulary.

In the fastText approach, each word is represented as a bag of character
N-grams. This allows us to compute the word representation for words that
have not been seen in the training data. Another advantage is that the
usage of character N-grams is also helpful in captivating the semantics of
morphologically rich languages [65].

10

............................ 2.3. Sentence Representation in NLP

Word embeddings are typically trained unsupervised with the usage of
skip-gram or CBOW [27]. But fastText also enables them to be trained on
classification tasks [65]. These approaches differ greatly. In unsupervised
learning, words that appear in the same context have similar vectors. Thus,
the antonyms will be close to the synonyms, which is the problem we stated
in the introduction.

However, if we train word embeddings on a supervised task, the meaning
of our word embeddings will be different. The words that are the most
discriminative for a certain label will be close to each other. A good example
would be sentiment analysis on a movie review dataset. With supervised
training, the words ’best’ and ’worst’ would be far from each other because
they result in a different label. However, with unsupervised learning, they
would have vectors close to each other, because these words usually appear
in the same context.

The advantage of the fastText classifier is that it achieves almost state-of-
the-art performance and is faster than current deep learning approaches on
many orders of magnitude [65]. This is due to the simplicity of the algorithms
used - it is a linear model. The architecture is similar to that of CBOW, but
the middle word is replaced by the label [65]. There is only one linear layer,
which computes h = Ax for every input x. The h is the vector representation
of a word in latent space. Then the output logits are computed y = Bh. The
output matrix B is representing the classifier, which is multinomial logistic
regression [28]. The A is the input matrix that represents the word vectors.
Then softmax f is applied. The goal is to minimize the negative likelihood in
the classes [65]:

− 1
N

N∑
n=1

yn log(f(BAxn)), (2.8)

where yn is the label. Importantly, the dimension of the matrix A is usually
only 10, so the vectors in the latent space have much lower dimensionality
than the other approaches, which usually map vectors in a 512-dimensional
space.

In our use case, we particularly need sentence vectors, not just word vectors.
This is enabled with the fastText library as well [65]. For each word in the
sentence, the vector is summed and then divided by the number of words in
the sentence. This is how the sentence vector is obtained. If the classification
is needed, we take our B matrix and multiply it. After that, softmax is
calculated and we have a prediction score.

Universal-Sentence-Encoder

USE is the algorithm that transforms sentences into 512-dimensional sentence
embeddings [39]. It does not employ the averaging of words in the sentence

11

2. Theoretical background
like fastText [65]. Instead, it is trained directly on the sentences itself. The
goal of this approach is to have a general representation of the sentences, and
therefore it is trained on a variety of NLP tasks.

In the implementation, we have 2 options of how to encode the sentence
into an embedding. The first approach is to use the transformer encoder
from the transformers architecture [21]. This results in more accurate results
but is much slower than the other approach called Deep Averaging Network
(DAN) [29]. This approach is similar to the fastText approach, but among
the words also the bi-grams are averaged. This results in reduced accuracy,
but much better time complexity.

The training of the selected architecture is on unsupervised problems along
with supervised training on SNLI corpus [32]. One of the unsupervised tasks
is similar to skip-gram architecture, but instead of words, we predict sentences.
Another unsupervised task is to choose the correct response for input, among
the given responses. The supervised task, on which the architecture is trained,
is SNLI corpus [32], where the model has to choose if the hypothesis entails,
contradicts, or is neutral to the premise.

BERT

BERT is now considered a state-of-the-art approach in word embeddings
[23]. The acronym stands for Bidirectional Encoder Representations from
Transformers. From that, the reader can correctly assume that it is built on the
transformer architecture described in Section 2.2.2, where the bidirectional
encoder is used. The advantage of this model is that it can capture a
bidirectional context.

Figure 2.4: BERT model [23].

The idea behind learning word embeddings in BERT is similar to skip-gram
[27]. An input sequence is masked with mask tokens and the goal of this model
is to predict the original value of the masked tokens from their surroundings.

12

............................ 2.3. Sentence Representation in NLP

The model is also trained on the next sentence prediction task. In this task,
the model tries to predict if the sentence is after the sentence given.

This first part of training is called the pretraining phase. The model is
unsupervised-trained on NSP and Masked LM tasks. But it can be fine-tuned
to perform downstream tasks like sentiment analysis or question-answer pairs.
This can be seen in Figure 2.4, where a pre-trained model was fine-tuned on
several tasks.

Fine-tuning is usually done by adding another feedforward neural network,
as we described in Section 2.3.3. This layer is attached to the end of the
model, e.g. for the sentiment analysis, a classification layer is added on top
of the output.

13

14

Chapter 3

Related work

In this chapter, we will first have a brief look at the theory behind adversarial
examples for text classifiers in Section 3.1. Then, the basic taxonomy will be
presented in Section 3.2 and attacks are categorized. Lastly, state-of-the-art
attacks are presented and compared with each other in Section 3.3.

3.1 Adversarial Examples in Machine Learning

Figure 3.1: Adversarial example for text classification.

In this section, I want to define the adversarial attack as broadly as possible
and then specify it for our case: text classification ([33]). Adversarial attack
can be defined as follows. Let f be a threat model, x is the input and y is
the correct label. We assume f(x)=y. An adversarial attack is the process of
generating x’, which is the modification of x, such that f(x′) ̸= f(x). The
modification should be minimal, so that human predictions on x and x’ are
the same.

In our case, f is the text classifier, x is the sequence, and y is the correct
label. The goal of an attack is to create x’, by modification of x, such that
f(x′) ̸= f(x).

In computer vision, the modification is usually an addition of some pixel
noise. In our case, it is often an addition, removal, or substitution of a letter
or a word, as Figure 3.1 demonstrates.

15

3. Related work.....................................
The next part of the definition is the proximity of x and x’. In computer

vision, such modification in the continuous space can barely be seen, however,
the text perturbation is more likely to be spotted by a human observer. So,
the goal is to require semantic similarity. This is usually done by defining
a similarity metric and a threshold. If the result of the similarity metric
exceeds the threshold, then f and x’ are not similar, therefore it is not an
adversarial example. Typically, the similarity metric uses sentence encoding
techniques, such as USE [39], to calculate word embeddings and then measure
their cosine similarity in the latent space.

3.2 Categories of Attacks

To have a good comparison of the attacks, we need to understand their
differences, which can be significant. Attacks differ in their access to the
model - complete knowledge of parameters, only the softmax output, or
nothing at all. They also differ in the text perturbations - characters, words,
sentences etc.

We can categorize intuitively, which has already been done in literature
before [33]. All the categorizations available are alike. The taxonomy defined
in [33], where the approaches were systematically analyzed and divided into
categories, is a good starting point on which other works are based or which
they extend, such as [34]. I would like to describe several aspects of this
classification in detail: adversary’s knowledge, adversarial specificity, and
granularity [34], which are the properties that will be in focus the most.

. Adversary’s knowledge is based on how much information we know from
the DNN model. We divide this category into two parts: a white-box
attack and a black-box attack. In a white-box attack, we know all the
information about the model - the weights, architecture, loss function,
activation function, training data, etc. In a black-box attack, we do not
have access to the model. The only information available is the output
of the model or the confidence scores.. Granularity is an extension property provided in the extended taxonomy
by [34]. It categorizes an attack based on the level at which the pertur-
bations are made. It could be done at the character-level, the word-level,
or the sentence-level.. Adversarial specificity allows us to split the attacks into two categories
as well. Targeted attacks try to generate an example that misguides
DNN to a specific class. For example, we could purposely classify a stop
sign as a speed sign. In the non-targeted attack, we do not care about
the class, unless the output is wrong. For example, we do not care if a

16

.................................. 3.3. Adversarial Attacks

stop sign is classified as an elephant or a giraffe unless it is not classified
as a stop sign.

We could also mention a similar categorization, which was done in the
OpenAttack paper [49].

Attacks are filtered according to the model access ability into four classes:
gradient-based, score-based, decision-based, and blind-based. Gradient-based
is equal to our white-box category. These attacks require complete knowledge
of the model. The black-box models are covered in the remaining 3 categories:
score-based, decision-based, and blind-based. In the first one, knowledge of
the classification probabilities of the model is needed. The second one only
needs to know the final predicted class and the last one does not need any
information at all. Then attacks could also be filtered according to the level
of perturbations e.g. char, word, and sentence-level. Finally, attacks can also
be targeted or non-targeted.

We can see that the categorization of the technique is very similar across
different literature. However, it is worth mentioning that most of the models
support both targeted and non-targeted attacks. Therefore, we will not
consider this last category and only focus on the model accessibility and the
level of perturbation.

3.3 Adversarial Attacks

From the previous section, we are familiar with the classification of the attacks.
The current approach in the field of textual adversarial attacks focuses on
black-box attack models, which are a more realistic scenario because in reality
models are not accessible most of the time. That is the reason why we have
also focused on this kind of attack and its problems. Despite this fact, we
will still mention how the white-box attacks are constructed.

3.3.1 White-box Attack Models

Most of these attacks use the fast gradient sign method [50], which tricks the
neural network into making a wrong decision due to the knowledge of the
gradient. This is quite trivial if we have access to the victim’s model. The
other common practice is to use the forward derivative method [51], which
constructs adversarial saliency maps indicating how to produce adversarial
samples.

17

3. Related work.....................................
3.3.2 Black-box Attack Models

We will now focus on the more common black-box setup, where the gradients
are not available and the selection mechanism is not so straightforward. These
attack models can be divided thanks to the Granularity category mentioned
in Section 3.2.

Character-level Attacks

One example of a character-level attack could be DeepWordBug [35]. This
algorithm generates small text perturbations by swapping adjacent characters,
deleting, inserting a character, or substituting it with a random one. This
causes the deep learning model to misclassify the text input most of the time
[35].

The other type of attack could be VIPER [37], which aims for a visually
similar character substitution and does not need any information from the
victim’s model.

Word-level Attacks

In the TextFooler [40], words are ranked in a sentence by their prediction
relevance. The most important ones are replaced with the most similar
synonyms. These synonyms are found due to the word embedding being
optimized for this task [41]. Another word-level attack is BERT-Attack [38],
which generates adversarial examples using a pre-trained BERT [23] language
model. Then it greedily replaces tokens with the language models prediction.
Other attacks with a similar idea are BAE [47] and CLARE [42]. For instance,
CLARE can not only replace words with others but also supports insertions
and merges. Therefore, the output and input lengths can differ.

Sentence-level Attacks

The sentence-level attacks usually create paraphrases of the original at
sentence-level as SCPN algorithms do [44]. This algorithm is considered
blind, so it does not need any information about the model. The other option
is for example adding distracting sentences [45] or text generation using
encoder-decoder [46].

18

.................................. 3.3. Adversarial Attacks

Attacks Accessibility Perturbation Core Idea
VIPER [37] Blind Char Character substitution to look vi-

sually similar
DeepWordBug
[35]

Score Char Character manipulation (e.g. sub-
stitution, swapping, insertion, dele-
tion)

TextFooler[40] Score Word Word substitution with synonyms
Genetic [52] Score Word Word substitution with a usage of

genetic algorithm
BERT-
Attack [38]

Score Word Word substitution with usage of a
BERT language model

BAE [47] Score Word Word insertion and substitution
CLARE [42] Score Word Contextualized perturbations with

replace, insert and merge opera-
tions

SCPN [44] Blind Sentence Sentence paraphrasing
GAN [46] Score Sentence Usage of encoder-decoder to gener-

ate text

Table 3.1: In the first row "Attacks" refers to the attack models. "Accessibility"
refers to the accessibility to the victim’s model. "Perturbation" states on which
level the attack was performed: Char, Word, or Sentence. The last column "Core
Idea" explains the main idea behind the attack model.

Technique Summary

In summary, the char-level attacks do not have a problem with antonyms, due
to their simplicity in swapping adjacent characters, deleting, or inserting a
character. At the word-level, attacks often need information about the model
scores. All the algorithms mentioned above enforce semantic similarity, where
Universal-Sentence-Encoder [39] is used as a constraint. At the sentence-level
attack, paraphrasing or adding a disruptive sentence is often the case.

To provide an even better understanding of the information mentioned
above, some of the commonly known attacks are listed in Table 3.1 together
with the information about the accessibility, perturbation, and their core
idea.

19

20

Chapter 4

Method

In this chapter, I would like to introduce our new Semantics-Preserving-
Encoder (SPE) as a replacement for Universal-Sentence-Encoder [39] in a
similarity metric, along with an adversarial attack, where this metric is used.
In the first Section 4.1, the motivation behind the development of the new
metric is described. The SPE itself is then outlined in Section 4.2, and a
similarity metric using this approach is defined next in Section 4.3. Lastly,
the new adversarial attack is proposed and described in detail in Section 4.4.

4.1 Motivation Behind the New Metric

The motivation to create a new metric arises after looking closely at the
adversarial examples generated by SOTA algorithms such as TextFooler [40].
The problem I have identified is that some of the attacks do not preserve the
semantics and therefore cannot be considered successful. Interestingly, the
same problem has already been observed in other sources, such as [9].

A good example of this problem can be seen in Figure 4.1, where we
have a pair of sentences to demonstrate such a situation. As we can see,
the original sentence was successfully modified by the adversarial example
in such a way that the prediction of the model changed from positive to
negative. Also, the cosine similarity between the sentences is higher than the
threshold, therefore, this attack would be considered successful by a SOTA
attack algorithm. However, even though the two sentences are close to each
other in the vector space (based on their cosine similarity in relation to the
threshold), each sentence has a substantially different meaning, which should
be reflected in the word embedding, and finally, the attack should not be
considered successful.

To further examine the cause of the problem, we need to look at the
similarity metric in detail. A majority of attacks use the Universal-Sentence-

21

4. Method
Encoder, described in 2.3.3, which encodes the original and the perturbed
sentence into a 512-dimensional vector space and then measures the cosine
distance between these vectors. If the cosine distance exceeds a certain
threshold, the sentences are considered to be similar, otherwise they are
considered dissimilar.

Figure 4.1: An adversarial example generated by an adversarial attack algorithm
that does not preserve the original meaning.

One point of view sees the threshold as the main problem [9]. Generally,
attacks have a low cosine distance between the vectors set as their threshold
and the authors of [9] propose to increase it. When the threshold is increased
to 0.95, the semantic similarity issue becomes much more scarce, which was
confirmed by a human study that evaluated more attacks to be successful
in comparison with the lower threshold setting [9]. Because of the stricter
criteria of what is considered to be similar (higher threshold), the semantics
of the sentence is more likely to be preserved. However, the downside is
that the overall attack success rate drops significantly by more than 70% [9],
making this approach difficult to apply.

In my opinion, the problem lies in the Universal-Sentence-Encoder [39] itself
more than in the threshold. This encoder is mostly trained on unsupervised
tasks such as skip through as described in Section 2.3.3. The only supervision
comes from the SNLI dataset. Since this problem with semantic similarity
cannot be easily auto-detected at this stage and we are largely dependent
on human evaluation to even recognize this problem, we cannot expect an
encoder mostly trained on unsupervised tasks to recognize and avoid it.

Building on that, we could create a new encoder that takes advantage of
human-labeled datasets. Thus, the encoder will be able to recognize which
words change the semantics or the label and prevent examples in Figure 4.1
from happening, by producing better sentence vectors in the latent space.
This way we should be able to generate high-quality attacks with the same
or higher performance while avoiding the substantial attack success rate drop
of the increased threshold approach.

22

............................. 4.2. Semantics-Preserving-Encoder

4.2 Semantics-Preserving-Encoder

As stated in the previous section, we decided to create a new sentence encoder
called Semantics-Preserving-Encoder that will tackle the problem of changed
semantics by using our new supervised sentence embeddings. As a result, the
words that are the most discriminative for the given label will be close to each
other in the vector space. For the implementation, the fastText library [65]
has been chosen due to its simplicity, speed, and the results of the classifiers,
which are on par with deep learning approaches.

The core idea of our SPE algorithm is to combine multiple classifiers trained
on different tasks, which will allow us to have a diverse set of different sentence
vectors (each classifier creates a sentence vector from the input sentence as
described in 2.3.3). The sentence vectors will differ from each other because
each classifier produces its vector according to the task on which it was
trained. Therefore, the diversity of the classifiers implicates a diverse set of
sentence vectors. By combining several sentence embeddings from different
classifiers, we can create a robust classifier, which can produce a high-quality
embedding for a broad range of topics.

In the implementation of our Semantics-Preserving-Encoder, we first select
and train a set of the classifiers to be used. Then, we simply average the
different sentence embeddings received from each classifier to create one
general sentence embedding as our final embedding as shown in Figure 4.2.

Figure 4.2: Concept of our Semantics-Preserving-Encoder which is used in our
metric.

The classifier selection and training process are key to achieving a robust
solution with high-quality results. To give a general outline of this process,
we can distinguish two steps. First, to train several fastText [65] classifiers
on general NLI tasks such as STS Benchmark [63] and SNLI [62], which will

23

4. Method
provide general language understanding. Second, to employ several classifiers
trained on more applicable datasets, such as Yelp reviews [59], Amazon
reviews [61]. The selection process of the classifiers, their detailed description,
and their hyper-parameters are explained in depth in Chapter 5.

As mentioned above, we have used the fastText library [65] in our SPE.
Due to the speed of fastText [65] classifiers, we should be able to create
sentence vectors quickly with SOTA performance for the given task. Another
advantage is the reduction of the dimensionality of the vector space. Since
the hidden layer of these classifiers is 10, we will have 10-dimensional vectors
instead of 512-dimensional ones. This way can put more information into
fewer dimensions, which results in more efficient space storage.

The pseudocode of our SPE algorithm can be described as follows:

Algorithm 1 Semantics-Preserving-Encoder
1: Input: Original sentence and perturbed sentence
2: Output: Original sentence vector and perturbed sentence vector
3: original_vectors← []
4: perturbed_vectors← []
5: for classifier in classifiers do
6: original_vector = classifier.get_sentence_vector(original_sentence)
7: perturbed_vector = classifier.get_sentence_vector(perturbed_sentence)
8: end for
9: original_averaged_vector ← original_vectors.mean()

10: perturbed_averaged_vector ← perturbed_vectors.mean()
11: return original_averaged_vector, perturbed_averaged_vector

The logic of our SPE is described in the pseudocode in Algorithm 1. The
input of our function is the original and perturbed sentences, and the output
is their vector embeddings. A "for each" follows on line five of the code, in
which we iterate over the models and create sentence vectors of the original
and perturbed sentences. These vectors are stored and later averaged to a
final vector for each sentence.

4.3 Similarity Metric Using SPE

Similarity metric in adversarial attacks tells us if the sentences are similar
or not. Typically, Universal-Sentence-Encoder is used to create sentence
embeddings, and then the cosine distance is measured between these vectors.
Cosine distance between two vectors x and y is defined as:

cos(x, y) = 1−
∑n

i=1 xiyi√∑n
i=1 (xi)2

√∑n
i=1 (yi)2 (4.1)

If the cosine threshold is surpassed, sentences are similar.

24

..............................4.4. Combined Adversarial Attack

In our similarity metric, we substitute USE with our SPE, for the already
mentioned reasons. The rest of the similarity metric remains the same.

We also need to define the cosine threshold for our metric, which we expect
to have a big impact on the accuracy. In many adversarial attacks, the cosine
distance is set to 0.85, however, study [9] suggests increasing the distance to
0.95, which achieves the most accurate results. This is the reason why we
also use 0.95 as our cosine threshold on our adversarial datasets. Nonetheless,
for the NLI datasets, we decided to use the original 0.85 due to the nature of
NLI.

4.4 Combined Adversarial Attack

Building on the new metric, the goal was to create a new adversarial attack
that produces less problematic and semantically incorrect examples than other
existing attacks. We should be able to achieve this mainly by substituting
USE[39] with our SPE in the similarity metric. This should result in better
quality attacks with a higher success rate.

Analysis of existing attacks shows that the vast majority of them focus on
just one of the three granularity categories - char, word, or sentence and that
there are very few that combine these approaches [36]. Motivated by the fact
that the combined approach has not been explored as much and the fact that
it could produce more diverse attacks that are less likely to be detected, we
decided to take the combined approach. Thus, we will create an algorithm
that changes the sentence on both char and word level.

To be more specific, our adversarial attack will be an untargeted one and
will be performed on a black-box model, meaning that nothing except the
final softmax will be available. The black box scenario is the most realistic
because most of the deployed machine learning models are not fully accessible,
the access is limited to their final probabilities.

Figure 4.3: Scheme of the adversarial attack workflow.

Generally speaking, an adversarial attack receives the original sentence on
input, analyses and modifies it, and therefore produces a perturbed sentence
on the output. A schematic example of this workflow is shown in Figure 4.3.

In this workflow, we can distinguish the following two steps that need to

25

4. Method
be executed:..1. Identify the most important words..2. Modify these words slightly while keeping the constraints

4.4.1 Identification of the Most Important Words

To perform an attack, we need to identify which words to modify or replace
in the next step of the attack. Intuitively, it should be the words with the
highest impact on a classifier. Existing attacks determine the importance of
a word in several ways, but generally, a series of operations are performed
sequentially on each word in a sentence, which assigns the word a final score
equivalent to its importance.

DeepWordBug [35] uses a series of quite complex scoring functions that are
weighted to get the final score of a word. The scoring process is based on the
sentence being split into two by removing a word. Then, the two sub-sentences
are fed into a classifier, and the classifier’s outputs are compared. Finally,
the differences are weighted and the final score of the word is estimated.

TextFooler [40] uses a simpler approach in which the importance of a word
is determined by its removal from the sentence. This modified sentence is fed
into a classifier and the difference between the prediction results is measured.
The bigger this difference is, the more important the word is.

For our attack, we have chosen the simpler approach in determining word
importance identical to the one of TextFooler [40] due to its simplicity and
effectiveness.

The implemented word importance function can be described as follows.
Given a document, meaning a sentence of words, X = (x1, x2, ..., xn) and a
classifier F, where y = F (X) is the final prediction. We construct a ranking
function rankit, which is defined as the difference between the original X and
the X ′, where the i-th word is removed:

rankit = F (x1, x2, .., xi, xi + 1, .., xn)− F (x1, x2, .., xi + 1, .., xn) (4.2)

It is important to mention that a majority of attacks remove the stop words
from the ranking function. While TextFooler [40] argues that this is done
to avoid grammar destruction, we observe that a certain degree of grammar
destruction is almost inevitable in these kinds of attacks and sometimes it is
even necessary e.g. typos. Moreover, in our observation, the stop words also
influence the classifier. Given these facts, we have decided not to filter any
stop words from our ranking function.

26

..............................4.4. Combined Adversarial Attack

4.4.2 Modification of the Important Words

When the word importance ranking is completed, we can proceed with the
word modification. In this step, the most important words are modified in
order to change the output of a classifier while also maintaining the original
meaning. Three important factors need to be determined: the levels of
granularity of these modifications, the technique used to achieve them, and
the constraints to be fulfilled.

As mentioned in Section 4.4, our attack applies the modifications on char
and word level. The technique we have chosen for the char level modifications
is based on the results of study [67], which show that char level modifications
are more likely to preserve the meaning of the text when only a few characters
are changed. Therefore, our char-level modifications have a scope limited
to a single char per word. Specifically, we either insert a random character
into the word, delete a random character from the word, or swap adjacent
characters. This is similar to the logic used by DeepWordBug [35].

The word level modifications can also be approached in different ways. One
option is to use a pre-trained language model like BERT [23] to choose the
word substitution, merging, or deletion. Another simpler solution is to try to
substitute the word with its synonym, which is implemented in TextFooler
[40]. We decided to implement the second approach.

For the word for synonym replacement, we had to use a pre-trained word
embeddings model such that the synonyms as word vectors are close to each
other. For this reason, we could not use a model like word2vec [27], which
does not distinguish between synonyms and antonyms and would consider
both to be close to each other. Fortunately, there are context-aware models
like GloVe [68] that are able to identify synonyms as the k-nearest neighbors
of a word and the antonyms are filtered out. In our attack, we use GloVe [68]
model for synonym replacement, where experimentally we chose k to be 10.

In summary, our modifications are:..1. Insertion - insert a random char into the word..2. Deletion - delete a random char from the word..3. Swap - swap adjacent chars in the word..4. Substitution - substitute a word with a synonym

Importantly, for the attack to be successful these modifications need to
fulfill the following constraints:

. Preserve the semantics similarity

27

4. Method
. Fool the classifier

The first constraint should be mostly ensured by our metric. The second
constraint is to fool the classifier, meaning that our modifications to the
sentence (the perturbed sentence) need to change the final decision of the
classifier.

4.4.3 Pseudo-code Description

The principles described above are applied in code in Algorithm 2, which
realizes our untargeted black-box adversarial attack. In summary, our attack
ranks the words and sorts them by their importance first, then the words are
modified until the constraints are fulfilled and the attack is successful.

Algorithm 2 Our adversarial attack
1: Input: Original text: text, our modification function: modification,

our similarity metric: our_metric, text classifier: classifier, truth label:
original_label, similarity threshold: threshold

2: Ouput: Perturbed text: perturbed_text or None
3: importance_score← [−1] ∗ len(text)
4: for i in len(text) do
5: importance_score[i]= rank_it(i, text)
6: end for
7: importance_score.sort(reverse=True)
8: perturbed_text = text
9: for word in importance_score do

10: perturbation = modification(word, perturbed_text, original_label,
classifier)

11: perturbed_text ← substitute word in text with perturbation
12: if classifier(perturbed_text) != original_label then
13: if cos_dist(spe(perturbed_text, text)) > threshold then
14: return perturbed_text
15: end if
16: end if
17: end for
18: return None

In the pseudo-code, several core sections can be distinguished. Lines 1-
2 specify the input and output, lines 4-7 execute the ranking of the most
important words and sorting in the descending order, and finally, the word
modification stage is on lines 8-18.

The word modification is implemented in a "for loop" iterating over the
sorted list of the most important words. The modification function is applied
to each word, attempting to perform: insertion, deletion, or swapping on char

28

..............................4.4. Combined Adversarial Attack

level or synonym substitution on word level. Out of these, the modification
which changes the classifier probabilities the most is chosen. Then, on line
11 the original word is replaced with the modified one and on the next line,
the constraints are checked. If the constraints are fulfilled, the perturbed
sentence is returned and the attack is successful. Otherwise, the iteration
over the ordered list of words continues and the whole process is repeated
for the second most important word and so on. When no perturbation that
satisfies the constraints is found, None is returned and the attack was not
successful.

29

30

Chapter 5

Experiments

In this chapter, the experiments which were conducted to create, evaluate
and compare our similarity metric and attack to the existing solutions are
described. The results of these experiments can be found in Chapter 6.

In the first Section 5.1, the evaluation tasks that were proposed to measure
the effectiveness and robustness of our methods are described. In the following
Section 5.2, datasets, properties, and evaluation of the proposed similarity
metric with SPE are presented. The last Section 5.3 focuses on the adversarial
attack - the datasets, setup and methods of evaluation.

5.1 Tasks

To evaluate and compare our metric with SPE and the proposed adversarial
attack with the others, evaluation tasks had to be defined and created.

First, we propose a metric evaluation task designed to compare our metric
using SPE to the metric using USE [39] with both DAN and Transformers
models. For metrics evaluation, we need datasets to be able to compare the
quality of the two approaches. To achieve results that are not context-biased,
it is necessary to use various datasets for the evaluation.

Building on that, we used 5 different datasets for the evaluation, 2 of which
are aimed at evaluating the general performance and 3 of which are our own
datasets focused on semantic similarity.

To evaluate the general performance of the metrics, we performed testing
on two existing NLI datasets - MRPC [69] and SICK [72], which are described
in detail in Section 5.2.1.

Due to the character of the semantic similarity preservation and the lack
of existing datasets that would target this problem, using only the existing

31

5. Experiments
datasets would not be sufficient. That is why we created our datasets - 3
in total that are also used for the metric evaluation. We call them datasets
with contradictory and unrelated sentence pairs - DCUS. More details on the
creation of these datasets can be found in Section 5.2.1.

The second task is designed to evaluate our proposed adversarial attack and
compare it with SOTA attacks such as TextFooler [40] or DeepWordBug [35].
To do this, first of all, we need a victim model on which the adversarial attacks
will be performed. For this task, we have chosen to use the pre-trained model
BERT [23] as our victim model, which we fine-tuned on down-stream tasks
like movie sentiment analysis, hate-speech, and offensive language detection.
Once the adversarial attacks are performed on the victim model, statistics
like success rate and modification rate can be measured.

In addition to these statistics, we need to evaluate how the semantics is
preserved in the attacks. This can currently only be done through human
evaluation, which can determine if the attack was successful or not. The
specifics of the evaluation by human judges are described in Section 5.3.5.

In summary, two evaluation tasks are proposed:..1. Metric evaluation - evaluate the accuracy of our metric using SPE
in comparison with the metric using USE [39] on 5 datasets in total - 2
NLI datasets and 3 own DCUS datasets...2. Adversarial attack evaluation - evaluate the accuracy of our proposed
attack in comparison with SOTA attacks (TextFooler [40], DeepWordBug
[35]); evaluate the success rate by human analysis.

5.2 Metric Definition and Evaluation

In this section, the properties related to the metric using SPE are described.
Firstly, the datasets are presented, then the model training with the hyper-
parameters is described. Lastly, we conclude with the specification of the
automatic evaluation process of the similarity metrics.

5.2.1 Datasets

The following section focuses on the datasets used for the fastText classifiers
training [65] that are incorporated into SPE and the datasets used for metric
evaluation.

32

............................ 5.2. Metric Definition and Evaluation

Datasets Used To Train FastText Classifiers

As previously described in Chapter 4, our Semantics-Preserving-Encoder
combines multiple fastText classifiers [65]. In this set of classifiers, we want to
equally represent classifiers trained to provide a general language understand-
ing, which will be trained on more general NLI datasets, and classifiers trained
on more down-stream tasks like sentiment analysis or news categorization
that will provide a more specialized knowledge.

Therefore, we need to determine which and how many datasets, NLI
or down-stream, will be used in our SPE, which was done experimentally.
We have trained 30 different classifiers, created numerous combinations,
and comparisons of different aspects of SPE to find the best performing
combination. The factors that were taken into consideration and the results
of these experiments are further described in Section 6.1.2. In the end, we
have determined that having 7 classifiers is sufficient. These classifiers were
trained on 7 datasets in total - 4 NLI datasets: SNLI [32], COLA [69], RTE
[69], SST2 [69], and 3 down-stream datasets: StackOverflow [71], Emotion
[70], Yelp Review Polarity [59].

Because these classifiers are a key component of SPE, we find it necessary
to describe them in depth:..1. SNLI [32] - Stanford Natural Language Inference Corpus is an English

dataset for NLI created by crowd workers. It contains 570k human-
written sentence pairs, which were manually labeled with one of 3 labels
- entailment, contradiction or neutral...2. COLA [69] - Corpus of Linguistic Acceptability from GLUE [69] contains
sentences from books and journal articles that are labeled into two
categories - whether it is a grammatically correct English sentence or
not...3. RTE [69] - Recognizing Textual Entailment from GLUE [69] consists of
text data from news and Wikipedia that are labeled with one of three
labels - neutral, contradiction, and entailment...4. SST2 [69] - Stanford Sentiment Treebank dataset from GLUE [69], where
movie reviews are annotated with their sentiment - positive or negative...5. StackOverflow [71] - consists of 60k StackOverflow questions from
years 2016-2020. Each question is annotated with one of three labels -
hq, lq_edit and lq_close, which determines the quality of a question...6. Emotion [70] - contains 16k Tweets, which are labeled with one of six
emotions - anger, fear, joy, love, sadness and surprise.

33

5. Experiments7. Yelp Review Polarity [59] - contains 598k Yelp reviews, where each
review is assigned a binary label - negative or positive. The binary
classification is extracted from the original Yelp reviews dataset [59],
where 1 or 2 stars are considered negative and 3 or 4 are considered
positive.

NLI Datasets

To prove the robustness of SPE applied in the similarity metric, we performed
the metric evaluation on several NLI tasks, specifically on MRPC [69] and
SICK [72] datasets.

MRPC stands for Microsoft Research Paraphrase Corpus [69], which con-
tains sentence pairs that are binary labeled if they are semantically similar
or not. The SICK dataset stands for Sentences Involving Compositional
Knowledge [72] and it consists of sentence pairs annotated on a scale of 1-5,
indicating how semantically similar they are, where 1 is the least similar, 5 is
the most.

However, for our purposes a binary label was needed instead, that is why
we modified the labeling of the SICK dataset as follows: when the original
label is smaller than 3, the sentences are now considered dissimilar, and when
the original label is bigger than 3, they are considered similar; when the
label equals 3 it is considered borderline, and the pair is excluded from the
modified dataset. After these modifications were made, the modified SICK
dataset is referred to as SICK-Adjusted.

DCUS - Our Own Datasets

To provide an in-depth comparison between the metric with SPE versus
USE, three new datasets were created and then used in the metric evaluation
process. These datasets with contradictory and unrelated sentence pairs
(DCUS) were created by human evaluation of adversarial attacks.

A set of sentence pairs from adversarial attacks, performed especially by
TextFooler [40] attack, was presented to human annotators to be labeled.
These attacks were done on 3 datasets - Rotten Tomatoes [60], hate speech
[73] and offensive language Tweets [74], which represent some of the most
common applications of the adversarial attacks. Especially hate speech and
offensive language auto-detection is currently an emerging problem on the
Internet.

For human evaluation, there were 3 annotators in total with English level
C1 or higher that were instructed to label each sentence pair, the original and
perturbed sentence, if it preserves the meaning. For example, if the original

34

............................ 5.2. Metric Definition and Evaluation

film review is positive, the perturbed sentence should also be a positive film
review in order to be labeled as meaning preserving. Also, there were some
sentence pairs where the original sentence was modified to such extent that
it was nonsensical, these cases were labeled as not successful by the human
annotators.

Figure 5.1: The instructions and questionnaire used for DCUS creation.

The dataset labeling process was carried out through a questionnaire
handed over to the annotator. For each sentence pair, the original and
perturbed sentences were presented, where the perturbed sentence is the
sentence produced by the attack as a result of a series of modifications of the
original sentence in order to fool the classifier. For the purpose of neutrality of
the annotator, we did not specify which sentence is the original and which is
the perturbed one in the questionnaire. For each sentence pair, the annotator
was asked to answer a simple Yes/No question, whether both sentences belong
in the same group, such as a positive or negative movie review. An example
of the questionnaire is shown in Figure 5.1. It is important to mention that
the annotators also had access to an online translator of their choice because
some of the attacks use archaic or non-English word replacements.

35

5. Experiments
Finally, the human labeling was post-processed. Because we had 3 an-

notators we have decided to consider the attack successful when 2 or more
human judges agree. Meaning that when 2 people labeled the pair as meaning
preserving, the attack is considered successful, otherwise, it is unsuccessful.

This allowed us to build 3 binary labeled DCUS datasets. For simplicity,
we refer to them as DCUS-RT for Rotten Tomatoes, DCUS-Hate for Hate
Speech, and DCUS-Offensive for Offensive language. Examples of some of
the sentence pairs from the datasets can be seen in Figure 5.2. In the picture,
the first sentence pair always shows a successful attack, where meaning is
preserved. The rest of the examples are false positives, which have the cosine
distance within the threshold, but do not preserve the meaning.

Figure 5.2: Sample sentences from our 3 datasets: DCUS-RT (Rotten Tomatoes),
DCUS-Hate (Hate speech), and DCUS-Offensive (Offensive language).

Datasets Used For Evaluation In Summary

To summarize, the datasets that were used to evaluate how the similarity
metric using SPE compares to USE were 5 in total - 2 NLI datasets, MRPC
[69] and SICK-Adjusted (modified SICK dataset [72]), and 3 own DCUS
datasets. Table 5.1 shows the basic statistics of all the datasets. Naturally,

36

............................ 5.2. Metric Definition and Evaluation

MRPC [69] and SICK-Adjusted [72] are the largest, but the classes are not
well balanced. This can result in a situation where a dummy classifier that
predicts only one label can achieve a decent accuracy on the unbalanced
dataset. However, this is negligible for our purposes of testing NLI.

On the other hand, our DCUS datasets contain fewer sentence pairs but are
much more determinant of the quality of the metric considering the semantics
meaning preservation. It is important that these datasets are nearly balanced,
containing a comparable number of equivalent and not equivalent pairs. Thus,
when a high score is achieved on these datasets, it indicates that the metric
is able to detect not only if the sentences are similar, but also that they are
dissimilar.

Dataset Average
length [words]

Number
of classes

Test examples

MRPC 18 2 1725
SICK-Adjusted 10 2 4762
DCUS-RT (ours) 13 2 220
DCUS-Hate (ours) 20 2 224
DCUS-Offensive (ours) 23 2 121

Table 5.1: Statistics of 5 datasets in total that were used for metrics evaluation.

5.2.2 Training FastText Models For SPE

In this section, the hyper-parameters of the fastText models [65] that we
use in SPE will be specified. FastText models, despite their complexity, are
conceptually simple. They employ basic logistic regression and include many
hyper-parameters that allow us to adjust the model to our use case [65]. Some
of the most important hyper-parameters are learning rate, dimensionality of
vectors, loss function, and number of epochs. Other parameters such as the
minimum and maximum length of char n-grams, word n-grams, number of
buckets, minimal and maximal word and label occurrences can be also chosen
[65].

In our implementation, most of these hyper-parameters are left with their
default value [65]. The hyper-parameters which we have found important to
modify are:..1. epoch - number of epochs..2. lr - learning rate..3. dim - hidden layer dimensionality (size of the word/sentence vectors)..4. wordNgrams - maximum length of word n-grams

37

5. Experiments5. minn - minimum length of char n-gram..6. maxnn - maximum length of char n-gram..7. loss - loss function used

For the dimensionality of the hidden layer, we have chosen the value 10, which
corresponds to the value in the original fastText paper [65]. In comparison
with the value 512 of USE [39], this number is very small, yet we are able
to concentrate far more information into just 10 dimensions while achieving
SOTA results on classification problems. For the loss function, we use a
simple softmax function because our classification problem only has a few
classes.

The remaining hyper-parameters were fine-tuned for our use case, which
can be done with an automatic tool integrated into the fastText [65] library
that finds the best values for the given task for us. The complete list of these
hyper-parameters for each classifier is shown in Table 5.2.

Classifier epoch lr minn maxnn wordNgrams
SNLI 5 0.05 3 6 4
COLA 1 0.09 0 0 5
RTE 11 0.09 6 3 1
SST2 55 0.04 6 3 5
StackOverflow 23 0.05 6 3 5
Emotion 6 0.073 6 2 3
Yelp Review
Polarity 5 0.05 0 0 2

Table 5.2: Hyper-parameters of the fastText classifiers [65] used in our Semantics-
Preserving-Encoder.

Another advantage of the fastText library [65] is the possibility to specify
the size of the model. The size compression is realized through a quantization
method [75], which is very effective. For example, if we take a 409MB classifier
with 0.957 accuracy rate on Amazon Review Polarity dataset [59], we are
able to reduce it to 1.5MB while maintaining the same accuracy rate [75].

Similarly, in our SPE where 7 classifiers are integrated, if each classifier
had over 400MB in size, it would make it very difficult to work with the
metric that implements it. Quantization solves this issue for us and helps us
tremendously. Finally, we decided to limit our model size to 2MB.

5.2.3 Defining Metric Evaluation

This section explains the means of evaluation and comparison of the metric
using SPE with others.

38

............................. 5.3. Adversarial Attack Evaluation

Regarding semantic similarity, the most important criterion is accuracy. It is
measured for both metrics with SPE and USE [39] on the previously mentioned
datasets. Accuracy is calculated as the number of correctly classified examples
divided by the total number of examples. We also measure the time complexity
of the algorithms.

5.3 Adversarial Attack Evaluation

This section outlines the properties of the adversarial attack, which integrates
the metric with SPE. Firstly, the datasets are presented, then the model
training and hyper-parameters that we used are described. Finally, the
evaluation process is explained from the automated evaluation and human
evaluation perspectives.

5.3.1 Datasets Used To Fine-Tune BERT Model

To perform an adversarial attack, we need a classifier. We use the pre-trained
BERT model [23], which needs to be fine-tuned for our use cases. The fine-
tuning is performed on three datasets well fitted for our problem. The last
two datasets were chosen to reflect some of the most common problems in
the Internet society, where hate speech and general disinformation are widely
spread on both social media and various discussion forums.

The following datasets are used for the fine-tuning of our BERT model:..1. Rotten Tomatoes [60] - dataset of short movie reviews that are binary
labeled as positive or negative...2. Hate Speech TweetEval [73] - dataset of Tweets with hate-speech
characteristics, which are labeled as hate or non-hate...3. Offensive Language TweetEval [74] - dataset of Tweets with offensive
language characteristics, which are labeled as offensive or non-offensive.

The statistics of all three datasets are specified in Table 5.3, where we can
see that all datasets are robust, have binary labels, and are split into a test
and train subset.

5.3.2 Training BERT Victim Model

Now to fine-tune our pre-trained BERT model [23] was, we need to define
hyper-parameters for it. Despite the more complex nature of this model com-
pared to fastText classifiers [65], we discovered that fewer hyper-parameters

39

5. Experiments
Dataset Average

length
[words]

Number
of
classes

Train
subset

Test
subset

Rotten Tomatoes [60] 18 2 8530 1066
Hate Speech TweetEval [73] 20 2 9000 2970
Offensive Language TweetEval [74] 22 2 11916 860

Table 5.3: Statistics of 3 datasets in total that were used in experiments with
the adversarial attacks.

have an impact on the final model accuracy. Therefore, for our BERT model,
most of the hyper-parameters were left with their default values and only the
following parameters were modified:..1. epoch - number of epochs..2. lr - learning rate

The learning rate was set to 2e-05 and the number of epochs was set to 10 for
all the datasets. The maximum sequence length also needed to be specified,
which was done according to the dataset properties.

5.3.3 Adversarial Attacks Configuration

At this point, we have explained the datasets and training of the model
used in our attack. However, the adversarial attack itself also has some
hyper-parameters that can be specified.

There are many adversarial attack algorithms available, thus we have only
chosen the ones which are considered SOTA - TextFooler [40] and DeepWord-
Bug [35]. Our proposed attack will be compared to these algorithms.

The hyper-parameters of both of these algorithms are set to match the
original configuration from their respective papers [40] [35]. The parameters
of our combined adversarial attack are the following:..1. Stop words - stop words are not ignored, they can be modified and

ranked just like the other words...2. Char insert, delete, swap - all the characters in a word can be
swapped, deleted, including the first and last characters. The same
applies to the char insertion, where a random char can be inserted to a
random position in a word...3. KNN - the k-nearest neighbors of a word in embedding space; set to 10.

40

............................. 5.3. Adversarial Attack Evaluation..4. Cosine distance threshold - cosine distance between the original
and the modified sentence has to exceed the threshold value 0.95 to be
considered successful.

For the implementation of our attack, TextAttack framework [48] was
used, which enabled us to reproduce the results of the SOTA adversarial
attacks. I have modified this framework to meet the requirements of our use
case. Finally, I have added our similarity metric, attack, and other necessary
functions to the framework.

5.3.4 Automatic Evaluation

To compare adversarial examples, we need to define means to measure the
performance of the attacks. Similarly to metric evaluation, the most important
metric here is also accuracy.

First, we determine the accuracy of the original victim model and then
we measure the accuracy of the model on our adversarial examples. This is
called an accuracy after-attack. We also measure the time needed to generate
an adversarial example. The last important indicator of the overall success is
the modification rate, which is defined as the percentage of tokens that had
to be modified to create a successful attack.

These 4 main factors were measured and used for adversarial attack evalu-
ation are:..1. Accuracy - the number of correctly classified examples..2. Accuracy after-attack - the number of correctly classified examples,

when model is fed with adversarial examples..3. Time - the average time needed to create one adversarial example..4. Modification rate - the percentage of modified tokens

Throughout this work, we also use the term attack success rate, which refers
to the number of successful attacks. This can also be calculated from the
after-attack and the original accuracy.

5.3.5 Human evaluation

From the previous section, it may seem that we have everything needed to
evaluate the performance of our adversarial attack. Adversarial attacks are
considered successful if they preserve the semantics of the original sentence and

41

5. Experiments
manage to change the label of a classifier. However, as we already know, the
meaning of preservation is a very complex topic and is very hard to determine
automatically. After all, sometimes even multiple human annotators cannot
uniformly agree on one example.

This is why we have proposed to include an extra step of evaluation -
human evaluation. During this process, we performed a human analysis of
all three adversarial attacks - TextFooler [40], DeepWordBug [35] and our
combined attack. These algorithms attacked the fine-tuned BERT [23] model
on three datasets. Overall, we generated 100 attacks on each dataset for each
attack, thus resulting in 900 adversarial examples in total.

These sentence pairs were then presented to 3 annotators, who assigned each
pair a binary label stating whether the example preserved its meaning or not.
This evaluation process was performed in the same way as the one described
for DCUS dataset creation in Section 5.2.1. Based on this evaluation, we
were able to measure the real success rate of the attacks.

42

Chapter 6

Results

At this point, we assume the reader is familiar with the theoretical background,
related work, method, and experiments that have all been explained previously.
In this chapter, we build on these prerequisites and present the results of the
experiments described in the previous chapter.

The following results will be presented. The first Section 6.1 describes the
results obtained throughout the development and evaluation of the metric
using SPE on various datasets. Then in Section 6.2, we evaluate our adver-
sarial attack and compare it with the TextFooler [40] and DeepWordBug
[35] baseline. In addition, the results of the human evaluation of adversarial
attacks are presented.

6.1 Metric Development and Evaluation

The scope of this section includes the results obtained throughout the devel-
opment of the metric and we will introduce them chronologically. Firstly, we
will describe the results obtained on the datasets that were used to train our
fastText classifiers, then the results of the experiments that were performed
to build similarity metric based on SPE. Finally, our metric is evaluated on
predefined tasks and compared to the metric based on USE [39] with DAN
and Transformers.

6.1.1 FastText Models Evaluation

Our metric uses Semantics-Preserving-Encoder, which implements a set of
fastText classifiers [65]. These were trained on seven datasets 5.2.1 with the
hyper-parameters stated previously. Each dataset consists of training and
testing subsets, which allows us to test the classifiers on the dataset once the

43

6. Results
training stage is finished. The final accuracy rate obtained on the testing
subset of each dataset is presented in Table 6.1.

Classifier Test accuracy rate ↑
SNLI 0.595
COLA 0.686
RTE 0.563
SST2 0.829
StackOverflow 0.891
Emotion 0.898
Yelp Review Polarity 0.957

Table 6.1: Accuracy rate of the fastText classifiers used in SPE on the test set
for each dataset.

Based on the results in Table 5.2, we can conclude that better results are
achieved on datasets that are more down-stream, such as Emotion, Yelp
Review Polarity, or Stack Overflow, where the training was very successful in
terms of accuracy.

However, more general tasks such as NLI resulted in a much lower accuracy
rate. My explanation is that these problems are very abstract and require a
deep language understanding, which we are still unable to reproduce artificially
at this point. But overall, even on the less successful tasks, our accuracy is
very reasonable. Especially given the fact that we have 3 labels - entailment,
contradiction, and neutral, we are still more than two times better than a
random classifier.

6.1.2 Fine-tuning Our SPE for the Similarity Metric

Due to the character of our Semantics-Preserving-Encoder, which combines
multiple classifiers, some parameters had to be determined experimentally.
We have experimented with the number of classifiers and which ones to select
to produce the best results.

Overall, we have trained 30 classifiers that we experimented with and
determined whether to include them or not. The main focus of the experiments
was to observe how the number of models used influences the time needed
to score a particular dataset and the performance in the means of accuracy.
In both approaches, we have tested these qualities across different datasets
where the similarity metric with our SPE was compared to USE with DAN
and Transformers models.

Because of the large scale of the conducted experiments on this topic, we
have decided to only include an illustrative example of the results of the
experiment on MRPC [69] dataset visualized in Figure 6.1. Based on the

44

.......................... 6.1. Metric Development and Evaluation

(a) : Time curve (b) : Time curve - zoomed in

(c) : Accuracy curve

Figure 6.1: Graphs show how the number of models impacts the time and accu-
racy on MRPC dataset for our metric, USE-DAN, and USE-TRANS metrics.

overall results, we have determined that having exactly 7 classifiers leads to
high-quality robust results across all datasets.

First, in Figures 6.1a and 6.1b, we experimented with the number of models
used in SPE (x-axis) and how it influences the time needed to score the dataset
(y-axis) when it is used in a similarity metric. From Figure 6.1a we can see
that our solution is much faster than the one using USE with Transformers.
When we zoom in on the same graph in Figure 6.1b, we can see how our
metric compares to the metric using USE with DAN in more detail. It is
clear that when the number of classifiers increases, the time increases as well.
In conclusion, with the finally selected 7 classifiers, we are still faster than
both Universal-Sentence-Encoder algorithms.

Secondly, in Figure 6.1c we experimented with the number of models
used in SPE (x-axis) and how it influences the performance of the similarity
metric, specifically the accuracy (y-axis) in comparison with USE. In this
particular dataset, we can see that having just 4 classifiers would be sufficient.
However, the results on the other datasets have shown that only 4 classifiers

45

6. Results
are insufficient, which is why all 7 classifiers are needed. Overall on the
MRPC [69] dataset, USE with DAN is faster than USE with Transformers,
but achieves worse results, while our approach is both the fastest and the
most accurate with 7 classifiers.

Instinctively, the addition of more classifiers could increase the performance
on some of the tasks. On the other hand, it could decrease for the others at
the same time. After numerous experiments, the most robust and accurate
combination of the classifiers is the one described in Section 6.1.1. However,
I strongly believe more accuracy is achievable.

6.1.3 Similarity Metric Evaluation

Finally, we compare the similarity metric using our SPE against the similarity
metric using USE-DAN and USE-Transformes [39], which are both used
in adversarial attacks to measure the sentence similarity. The metric was
evaluated in terms of accuracy rate on 5 datasets in total, 3 of them are our
own. Results are shown in Table 6.2.

The results show that our metric performs better than both USE based
metric approaches on all the datasets. For the NLI tasks - MRPC and SICK-
Adjusted, the difference in performance between our metric and the next best
performing one is 4% on MRPC and 17% on SICK-Adjusted. Results on
the other 3 datasets with contradictory and unrelated sentence pairs (DCUS)
also show this improvement in accuracy - around 8% on average.

Dataset USE-DAN USE-
TRANS

SPE (ours)

MRPC 60.9 63.5 67.4
SICK-Adjusted 39.1 38.1 55.2
DCUS-RT (ours) 57.7 60.4 65.9
DCUS-Offensive (ours) 53.7 62.8 64.4
DCUS-Hate (ours) 54.9 54.9 71.4

Table 6.2: Results of similarity metric using SPE on each dataset measured in
accuracy (percentage) in comparison with USE.

I believe that even better results can be achieved if we elaborated the
fine-tuning process even more. Selecting different new classifiers or their
combination with the currently used ones could produce even better results.

It is important to highlight that similarity metrics using our SPE or USE
are not fine-tuned on any of these datasets. They are both general techniques
how to measure semantics similarity between the sentences. Much higher
accuracy can be achieved on any of these datasets with a specific classifier
for each task, but it would not be as robust as our metric.

46

............................. 6.2. Adversarial Attacks Evaluation

6.2 Adversarial Attacks Evaluation

This section demonstrates how our adversarial attack stands in comparison
with the SOTA approaches, specifically TextFooler [40] and DeepWordBug
[35]. To give a complex outline of the performance in the context of semantic
similarity, our attack is evaluated both automatically in Section 6.2.1 and
manually by human judges in Section 6.2.2.

6.2.1 Automated Evaluation

Rotten Tomatoes [60]
Model Original

acc [%] ↑
After-attack
acc [%] ↓

Time [s]↓ Mod.
rate [%]
↓

TextFooler[40] 99 25 112 16.6
Deepwordbug[35] 99 8 88.7 22.6
Our attack 99 9 55 23.7

Offensive language [74]
Model Original

acc [%] ↑
After-attack
acc [%] ↓

Time [s]↓ Mod.
rate [%]
↓

TextFooler[40] 90 35 125.2 17.5
Deepwordbug[35] 90 44 96.4 17.3
Our attack 90 31 69.9 23.9

Hate speech [73]
Model Original

acc [%] ↑
After-attack
acc [%] ↓

Time [s]↓ Mod.
rate [%]
↓

TextFooler[40] 93 36 127.9 14.5
Deepwordbug[35] 93 38 109.4 16.5
Our attack 93 21 67.6 25.1

Table 6.3: Results of our attack on 3 datasets in total in comparison with
TextFooler [40] and DeepWordBug [35]. Performance is measured in original
accuracy (Original acc), after-attack accuracy (After-attack acc), time (Time),
and modification rate (Mod. Rate). Bold font indicates the best performance
for each metric. All numbers are reported on 100 test instances. Symbols ↑ (↓)
represent that the higher (lower) the better.

First, we have performed an automated evaluation of the results of our
attack in comparison with TextFooler [40] and DeepWordBug [35] on 3

47

6. Results
datasets. As mentioned previously, our attack implements the new metric
and combines the char level and word level attack.

The results are shown in Table 6.3, where we measure the overall perfor-
mance using the success rate of the fine-tuned BERT model [23] (Original
Accuracy), accuracy after-attack (After-attack acc), the time needed to per-
form the attack (Time) and the modification rate (Mod. rate).

From the results in Table 6.3, we can see that our attack outperforms the
other approaches in a majority of the measured parameters.

The accuracy after-attack is in most cases by far the best, in other cases
close to the best. We can imagine that the process behind the after-attack
accuracy is feeding the classifier with our adversarial examples and observing
how the accuracy rate drops, which is expressed by the after-attack accuracy,
where ideally we want it to be very low.

Another factor to be evaluated was the time it took to carry out the
attack. Our attack is the fastest, generally approximately 1.5-2× faster than
TextFooler [40] or DeepWordBug [35]. This is mainly due to the speed of our
SPE in the similarity metric, which is used in the attack.

Looking at the modification rate, we can assume that our attack performs
more modifications than others. But the difference is not that significant,
especially when we take into consideration that DeepWordBug [35] attacks
only on char level.

Overall, our attack has been proven successful and better than the compared
SOTA approaches. The only factor in which it has been slightly worse is the
modification rate. However, this does not imply that the quality of the attack
itself is worse in terms of output quality or semantic similarity. This should
be better determined by the human evaluation in the next section.

6.2.2 Human Evaluation

The results of the human evaluation are shown in Figure 6.4 together with the
results of the automated evaluation from Table 6.3. The human evaluation
results were included in the computation of the real after-attack accuracy in
the rightmost column (Real after-attack acc). Thanks to human evaluation,
we are able to detect some attacks as false positives and get the final real after-
attack accuracy rate. We can then evaluate how the after-attack accuracy
has improved compared to the real after-attack accuracy.

Based on the results, we can conclude that our attack using SPE in the
similarity metric produces better quality attacks than the existing SOTA
approaches, achieving the best accuracy rate across all tasks. However, many
adversarial examples produced by our method were still marked false, meaning

48

............................. 6.2. Adversarial Attacks Evaluation

Rotten Tomatoes [60]
Model Original

acc [%] ↑
After-
attack
acc [%] ↓

Time [s]↓ Mod.
rate [%]
↓

Real
after-
attack
acc [%] ↓

TextFooler
[40]

99 25 112 16.6 45

Deepwordbug
[35]

99 8 88.7 22.6 40

Our attack 99 9 55 23.7 37

Offensive language [74]
Model Original

acc [%] ↑
After-
attack
acc [%] ↓

Time [s]↓ Mod.
rate [%]
↓

Real
after-
attack
acc [%] ↓

TextFooler
[40]

90 35 125.2 17.5 56

Deepwordbug
[35]

90 44 96.4 17.3 74

Our attack 90 31 69.9 23.9 52

Hate speech [73]
Model Original

acc [%] ↑
After-
attack
acc [%] ↓

Time [s]↓ Mod.
rate [%]
↓

Real
after-
attack
acc [%] ↓

TextFooler
[40]

93 36 127.9 14.5 54

Deepwordbug
[35]

93 38 109.4 16.5 51

Our attack 93 21 67.6 25.1 45

Table 6.4: Overall results of our attack from both automated and human
evaluation. Performance is measured in original accuracy (Original acc), after-
attack accuracy (After-attack acc), time (Time), modification rate (Mod. rate),
and real after-attack accuracy (Real after-attack acc). Bold font indicates the
best performance for each metric. All numbers are reported on 100 test instances.
Symbols ↑ (↓) represent that the higher (lower) the better.

that our solution still carries some of the issues other SOTA approaches are
currently facing.

49

50

Chapter 7

Discussion

In this chapter, I would like to further discuss the results of Chapter 6,
highlight the general aspects of our metric and attack and suggest potential
improvements that could be explored in the future. First, these points will
be discussed for the metric using Semantics-Preserving-Encoder, then for the
adversarial attack.

7.1 Similarity Metric Using SPE

To recapitulate, our hypothesis was that the problem of false positive ad-
versarial attacks lies in the semi-supervised technique of Universal-Sentence-
Encoder (USE) [39]. To improve this, I have presented a new technique called
Semantics-Preserving-Encoder (SPE), which stands on multiple supervised
fastText classifiers [65].

We have shown that our metric, which uses SPE instead of USE [39], per-
forms better on various datasets. The difference between these two encoders
is even more significant on the more specific datasets, which is observed on
our datasets with contradictory and unrelated sentence pairs (DCUS). On all
three DCUS datasets our metric with SPE is able to differentiate between
false positives adversarial attacks more than 10-20% better when compared
to the metric with USE [39]. This result is even more substantial considering
the simple and fast approach of our concept.

The results on DCUS datasets show that USE [39] falls behind in terms
of adaptation to more specific tasks. We can imply that, in this case, the
universality of USE [39] is a disadvantage. Reflecting on the real-world
application, attacks are usually aimed at a specific classifier, e.g. hate speech,
offensive language, or spam. Therefore, having a more specific sentence
embedding, such as our SPE, that is suited specifically for the relevant

51

7. Discussion
platform is advantageous and allows for better detection of the semantically
incorrect adversarial examples.

Although our approach largely improves the existing semantics metric, it is
important to note that for a different cosine threshold different results may be
obtained. As mentioned previously, the threshold we used was based on the
suggested optimum in paper [9] with respect to the quality of the adversarial
examples.

As demonstrated in Figure 6.1, the addition of more classifiers increases the
time complexity. The asymptotic complexity of SPE is O(n), same as USE
with DAN, while for USE with Transformers it is O(n2) [39]. However, looking
at the real-time complexity, a significant difference can be observed between
our SPE and USE, where SPE is able to vastly reduce the computation
complexity. The first aspect is the size of the hidden layer, which affects the
matrix dimensions and the complexity of matrix multiplication. While USE
has a hidden layer of size 512 [39], SPE only has a size 10. Moreover, our
SPE only needs to perform 7 matrix multiplication operations with small
matrices, in contrast, to USE [39], which needs to perform these operations
with 512-dimensional vectors and therefore very large matrices. The final
time complexity of one step is defined as follows:

O =
7∑

i=1
Vi ∗Hi (7.1)

where Vi is the vocabulary size for i-th classifier and Hi is the size of the
hidden layer for i-th classifier.

Even though the results of SPE in terms of time complexity are already
substantial, I believe there is still room for improvement. The time complexity
of SPE could be further reduced if we created just one classifier from the
seven currently used. This could be achieved by merging the 7 datasets, on
which the currently used classifiers were built, together into one, which would
then be trained. This would allow us to minimize the matrix multiplication
to just a single operation and to add new models easily. The model addition
process would be independent of the overall time complexity of the metric,
because we would only need to rebuild and retrain the single classifier with
the new model included.

7.2 Adversarial Attack

I have presented a new adversarial attack, which builds on the metric with
SPE and combines word and char level modification, similarly to TextBugger
[36]. We expected the attack to produce adversarial examples of better
quality than attacks implementing USE [39] and to be faster because of SPE.

52

.................................. 7.2. Adversarial Attack

In the end, this assumption was correct, our attack was indeed the fastest,
produced the most accurate results, and had more successful attacks overall
across all three datasets when evaluated automatically or by humans. The
only downside is that more modifications were needed in our attack when
compared to others.

For further improvement of the adversarial attack, the idea to modify
SPE to only use one classifier as mentioned in the previous Section 7.1 also
applies here, because decreasing the time complexity of SPE would also lead
to a faster attack. Another suggestion could be to add some more complex
modifications to the text, such as word deletion or merging of multiple words.

53

54

Chapter 8

Conclusion

The goal of this thesis was to develop a new similarity metric, which will
tackle the problem of false positive adversarial attacks, and build a new
adversarial attack using this metric. I have extensively researched state-
of-the-art text classifiers and their properties and identified problems in
adversarial attacks. Building on that, I propose a new solution aimed at
overcoming these problems.

In the first part of this work, the fundamentals of this topic are outlined,
which are essential for the reader’s understanding. Specifically, classification
problems in NLP and neural network models are explained in detail. Then,
sentence and word representation and various word and sentence embedding
techniques are shown. Finally, an analysis and an overview of the existing
adversarial attacks are presented.

In Chapter 4, I propose a new sentence embedding technique called SPE -
Semantics Preserving Encoder, which is designed to tackle the problem of
false positive adversarial examples, by producing better vectors in the latent
space. This technique is then used in the similarity metric as a substitution
for USE [39]. I also describe our new adversarial attack, which combines both
character and word level modifications, similar to [35].

Once the concept of the proposed metric using SPE and the adversarial
attack are explained, various experiments are constructed in the following
Chapter 5 to evaluate the performance of our techniques with others. To
ensure that the metric evaluation is performed on a diverse set of data, I
have developed 3 new datasets (DCUS) containing more than 500 sentence
pairs that are used for this evaluation. This chapter also includes information
about the hyper-parameters and setup that were used throughout and an
in-depth explanation of both the automated and human evaluation of the
adversarial attack.

In the following Chapter 6, I describe the results achieved throughout the

55

8. Conclusion......................................
training of over 30 fastText classifiers [65], out of which the 7 best were
implemented in SPE. Training results were the determining factor for which
and how many of these classifiers to use in our SPE, which is described in
the fine-tuning section. Then, the overall results of the similarity metric
evaluation are presented. Compared with USE, which is commonly used in
the similarity metric for adversarial attacks, the performance of our approach
is significantly better both in time complexity and in accuracy on various
datasets for the given cosine threshold. Moreover, our sentence embeddings
are also only 10 dimensional, whereas USE uses 512-dimensional vectors.

The second half of the results focuses on the attack evaluation. First, we
have performed an automated evaluation. Compared to SOTA attacks like
TextFooler [40] and DeepWordBug [35], we achieve a higher attack success rate
and much less time needed to perform the attack. However, our modification
rate is higher by a few percentages.

Then, the evaluation of the produced adversarial examples was performed
by human judges. This has shown that some of these adversarial examples are
still false positives, however, our adversarial attack ranks the best, maintaining
the highest attack success rate.

I believe that the proposed concept has great potential and shows promising
results. In the future, it would be interesting to explore more diverse classifiers,
which could further increase the accuracy of SPE. Also, the idea proposed
in Chapter 7 could be implemented to decrease the calculation time of the
sentence embedding.

In summary, the new metric and adversarial attack have been proven
successful in various tasks. They are on par with existing solutions, and in
some cases, even outperform them. I believe that I have fully met the thesis
objectives and also contributed to the machine learning community. Thanks
to the promising results, I plan to summarize my achievements and findings
in a scientific paper.

56

Appendix A

Bibliography

[1] Marchand A, Marx P. Automated product recommendations with
preference-based explanations. J Retail. 2020;96(3):328–43.

[2] Bhowmick, A., Hazarika, S. M. (2016). Machine learning for e-mail spam
filtering: review, techniques and trends. arXiv preprint arXiv:1606.01042.

[3] Chiu C-C, Sainath TN, Wu Y, Prabhavalkar R, Nguyen P, Chen Z,
Kannan A, Weiss RJ, Rao K, Gonina E, et al. State-of-the-art speech
recognition with sequence-to-sequence models. In: 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
2018 pages 4774–4778. IEEE .

[4] Ahmad, T., Truscan, D., Vain, J., Porres, I. (2022). Early Detection of
Network Attacks Using Deep Learning. arXiv preprint arXiv:2201.11628.

[5] Fujiyoshi H, Hirakawa T, Yamashita T. Deep learning-based image
recognition for autonomous driving. IATSS Res. 2019;43(4):244–52.

[6] Eykholt, Kevin, et al. "Robust physical-world attacks on deep learning
visual classification." Proceedings of the IEEE conference on computer
vision and pattern recognition. 2018.

[7] Yang G, Li M, Fang X, Zhang J, Liang X. Generating adversarial exam-
ples without specifying a target model. PeerJ Comput Sci. 2021;7:e702.
Published 2021 Sep 13. doi:10.7717/peerj-cs.702

[8] Goodfellow, Ian J., Jonathon Shlens, and Christian Szegedy. "Explaining
and harnessing adversarial examples." arXiv preprint arXiv:1412.6572
(2014).

[9] Morris, John X., et al. "Reevaluating adversarial examples in natural
language." arXiv preprint arXiv:2004.14174 (2020).

[10] Charu C. Aggarwal and ChengXiang Zhai. Mining Text Data. Springer
New York, 2012. ISBN 9781461432234.

57

A. Bibliography.....................................
[11] Miner, G., Delen, D., Elder, J., Fast, A., Hill, T., Nisbet, R. A.

(2012). Chapter 17 - Summary To Practical Text Mining and Statisti-
cal Analysis for Non-structured Text Data Applications (1007–1016).
doi:10.1016/B978-0-12-386979-1.00045-1

[12] McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas
Immanent in Nervous Activity". Bulletin of Mathematical Biophysics. 5
(4): 115–133. doi:10.1007/BF02478259

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learn-
ing. MIT Press. http://www.deeplearningbook.org

[14] Bottou, Léon (1998). "Online Algorithms and Stochastic Approxima-
tions". Online Learning and Neural Networks. Cambridge University
Press. ISBN 978-0-521-65263-6.

[15] Cybenko, G. 1989. Approximation by superpositions of a sigmoidal
function Mathematics of Control, Signals, and Systems, 2(4), 303–314.

[16] Rosenblatt, Frank. x. Principles of Neurodynamics: Perceptrons and the
Theory of Brain Mechanisms. Spartan Books, Washington DC, 1961

[17] Elman, Jeffrey L. (1990). "Finding Structure in Time". Cognitive Science.
14 (2): 179–211. doi:10.1016/0364-0213(90)90002-E

[18] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term
dependencies with gradient descent is difficult. IEEE Transactions on
Neural Networks, 5(2), 157–166.

[19] Mikolov, T. (2012). Statistical Language Models based on Neural Net-
works. Ph.D. thesis, Brno University of Technology.

[20] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8), 1735–1780.

[21] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.
N., Polosukhin, I. (2017). Attention is all you need. Advances in neural
information processing systems, 30.

[22] Harris, Zellig (1954). "Distributional Structure". Word. 10 (2/3): 146–62.
doi:10.1080/00437956.1954.11659520. And this stock of combinations
of elements becomes a factor in the way later choices are made ... for
language is not merely a bag of words but a tool with particular properties
which have been fashioned in the course of its use

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
2019. BERT: Pre-training of deep bidirectional transformers for language
understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Association for Computa-
tional Linguistics

58

..................................... A. Bibliography

[24] Raffel, Colin, et al. "Exploring the limits of transfer learning with a
unified text-to-text transformer." arXiv preprint arXiv:1910.10683 (2019).

[25] Brown, Tom, et al. "Language models are few-shot learners." Advances
in neural information processing systems 33 (2020): 1877-1901.

[26] Jurafsky, Daniel; H. James, Martin (2000). Speech and language pro-
cessing : an introduction to natural language processing, computational
linguistics, and speech recognition. Upper Saddle River, N.J.: Prentice
Hall. ISBN 978-0-13-095069-7.

[27] Tomáš Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff
Dean. 2013b. Distributed representations of words and phrases and their
compositionality. In Adv. NIPS.

[28] Greene, William H. (2012). Econometric Analysis (Seventh ed.). Boston:
Pearson Education. pp. 803–806. ISBN 978-0-273-75356-8.

[29] Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber, and Hal Daume
III. 2015. Deep unordered compo- sition rivals syntactic methods for
text classification. In Proceedings of ACL/IJCNLP.

[30] D. E. Rumelhart, G. E. Hinton, R. J. Williams. Learning internal repre-
sentations by back-propagating errors. Nature, 323:533.536, 1986.

[31] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic
optimization." arXiv preprint arXiv:1412.6980 (2014).

[32] Bowman, Samuel R., et al. "A large annotated corpus for learning natural
language inference." arXiv preprint arXiv:1508.05326 (2015).

[33] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. 2019. Adversarial
examples: Attacks and defenses for deep learning. IEEE transactions on
neural networks and learning systems, 30(9):2805–2824.

[34] Wei Emma Zhang, Quan Z Sheng, Ahoud Alhazmi, and Chenliang Li.
2020. Adversarial attacks on deep-learning models in natural language
processing: A survey. ACM Transactions on Intelligent Systems and
Technology (TIST), 11(3):1–41.

[35] Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. 2018. Black-
box generation of adversarial text sequences to evade deep learning
classifiers. In 2018 IEEE Security and Privacy Workshops (SPW), pages
50–56. IEEE.

[36] Li, Jinfeng, et al. "Textbugger: Generating adversarial text against
real-world applications." arXiv preprint arXiv:1812.05271 (2018).

[37] Steffen Eger, Gozde G ¨ ul S¸ ahin, Andreas R ¨ uckl ¨ e, Ji´Ung Lee,
Claudia Schulz, Mohsen Mesgar, Krishnkant Swarnkar, Edwin Simpson,
and Iryna Gurevych. 2019. Text processing like humans do: Visually
attacking and shielding NLP systems. In Proceedings of NAACL-HLT

59

A. Bibliography.....................................
[38] Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue, and Xipeng Qiu.

2020. Bert-attack: Adversarial attack against bert using bert. In Proc.
of EMNLP

[39] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco,
Rhomni St John, Noah Constant, Mario Guajardo-Cespedes, Steve
Yuan, Chris Tar, et al. 2018. Universal sentence encoder. arXiv preprint
arXiv:1803.11175

[40] Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter Szolovits. 2020. Is BERT
really robust? A strong baseline for natural language attack on text
classification and entailment. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 8018–8025.
AAAI Press

[41] Nikola Mrkšic, Diarmuid Ó Séaghdha, Blaise Thomson, Milica Gašic,
Lina M. Rojas-Barahona, Pei Hao Su, David Vandyke, Tsung-Hsien Wen,
and Steve Young. 2016. Counter-fitting word vectors to linguistic con-
straints. In Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pages 142–148, San Diego, California. Association
for Computational Linguistics.

[42] Dianqi Li, Yizhe Zhang, Hao Peng, Liqun Chen, Chris Brockett, Ming-
Ting Sun, and Bill Dolan. 2021. Contextualized perturbation for textual
adversarial attack. In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 5053–5069, Online. Association
for Computational Linguistics.

[43] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019b. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692.

[44] Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke Zettlemoyer. 2018.
Adversarial example generation with syntactically controlled paraphrase
networks. In Proceedings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pages 1875–1885, New
Orleans, Louisiana. Association for Computational Linguistics

[45] Robin Jia and Percy Liang. 2017. Adversarial examples for evaluating
reading comprehension systems. In Proceedings of EMNLP.

[46] Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018. Generating natural
adversarial examples. In Proceedings of ICLR

60

..................................... A. Bibliography

[47] Siddhant Garg and Goutham Ramakrishnan. 2020. Bae: Bert-based
adversarial examples for text classification. In Proc. of EMNLP.

[48] John Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and
Yanjun Qi. 2020. TextAttack: A framework for adversarial attacks,
data augmentation, and adversarial training in NLP. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 119–126, Online. Association
for Computational Linguistics.

[49] Guoyang Zeng, Fanchao Qi, Qianrui Zhou, Tingji Zhang, Zixian Ma,
Bairu Hou, Yuan Zang, Zhiyuan Liu, and Maosong Sun. 2021. OpenAt-
tack: An open-source textual adversarial attack toolkit. In Proceedings of
the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language
Processing: System Demonstrations, pages 363–371, Online. Association
for Computational Linguistics.

[50] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Ex-
plaining and harnessing adversarial examples. In Proceedings of ICLR.

[51] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z
Berkay Celik, and Ananthram Swami. 2016a. The limitations of deep
learning in adversarial settings. In 2016 IEEE European symposium on
security and privacy (EuroS&P). IEEE.

[52] Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,Bo-Jhang Ho, Mani
Srivastava, and Kai-Wei Chang. 2018. Generating natural language
adversarial examples. In Proceedings of the EMNLP.

[53] Danish Pruthi, Bhuwan Dhingra, and Zachary C. Lipton. 2019. Combat-
ing adversarial misspellings with robust word recognition. In Proceedings
of the 57th Annual Meeting of the Association for Computational Lin-
guistics, pages 5582–5591, Florence, Italy. Association for Computational
Linguistics

[54] Aminul Islam and Diana Inkpen. 2009. Real-word spelling correction
using Google Web 1T 3-grams. In Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing, pages 1241–1249,
Singapore. Association for Computational Linguistics

[55] Keisuke Sakaguchi, Matt Post, and Benjamin Van Durme. 2017. Gram-
matical error correction with neural reinforcement learning. In Proceed-
ings of the Eighth International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 366–372, Taipei, Taiwan.
Asian Federation of Natural Language Processing

[56] Xinshuai Dong, Hong Liu, Rongrong Ji, and Anh Tuan Luu. 2021.
Towards robustness against natural language word substitutions. In
International Conference on Learning Representations (ICLR).

61

A. Bibliography.....................................
[57] Chenglei Si, Zhengyan Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,

Qun Liu, and Maosong Sun. 2020. Better robustness by more coverage:
Adversarial training with mixup augmentation for robust fine-tuning.
arXiv preprint arXiv:2012.15699.

[58] Chen Zhu, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing
Liu. 2020. Freelb: Enhanced adversarial training for natural language
understanding. In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020

[59] Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level
convolutional networks for text classification. In Advances in neural
information processing systems, pages 649–657.

[60] Pang, B., & Lee, L. (2005). Seeing stars: Exploiting class relationships
for sentiment categorization with respect to rating scales. arXiv preprint
cs/0506075.

[61] McAuley, Julian, and Jure Leskovec. "Hidden factors and hidden topics:
understanding rating dimensions with review text." In Proceedings of
the 7th ACM conference on Recommender systems, pp. 165-172. 2013.

[62] Bowman, Samuel R., et al. "A large annotated corpus for learning natural
language inference." arXiv preprint arXiv:1508.05326 (2015).

[63] Cer, Daniel, et al. "Semeval-2017 task 1: Semantic textual similarity-
multilingual and cross-lingual focused evaluation." arXiv preprint
arXiv:1708.00055 (2017).

[64] Thomas Wolf , LysandreDebut, VictorSanh, JulienChaumond, Clement-
Delangue, AnthonyMoi, PierricCistac, TimRault, R’emiLouf, Morgan-
Funtowicz, and JamieBrew. 2019. HuggingFace’s Transformers: State-of-
the-art natural language processing. arXiv preprint arXiv:1910.03771.

[65] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov.
Bag of tricks for efficient text classification. arXiv preprint 1607.01759,
2016.

[66] Bojanowski, Piotr; Grave, Edouard; Joulin, Armand; Mikolov, Tomas
(2017-06-19). "Enriching Word Vectors with Subword Information".
arXiv:1607.04606

[67] G. Rawlinson, “The significance of letter position in word recognition,”
IEEE Aerospace and Electronic Systems Magazine, vol. 22, no. 1, pp.
26–27, 2007.

[68] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in EMNLP, 2014, pp. 1532–1543.

[69] Wang, Alex, et al. "GLUE: A multi-task benchmark and analysis platform
for natural language understanding." arXiv preprint arXiv:1804.07461
(2018).

62

..................................... A. Bibliography

[70] Saravia, Elvis et al. “CARER: Contextualized Affect Representations
for Emotion Recognition.” EMNLP (2018).

[71] Annamoradnejad, I., Habibi, J. & Fazli, M. Multi-view ap-
proach to suggest moderation actions in community question
answering sites. Information Sciences. 600 pp. 144-154 (2022),
https://www.sciencedirect.com/science/article/pii/S0020025522003127

[72] Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., and
Zamparelli, R. (2014). A SICK cure for the evaluation of compositional
distributional semantic models. In Proceedings of LREC.

[73] Basile, V., Bosco, C., Fersini, E., Nozza, D., Patti, V., Rangel Pardo,
F., Rosso, P. & Sanguinetti, M. SemEval-2019 Task 5: Multilingual
Detection of Hate Speech Against Immigrants and Women in Twitter.
Proceedings Of The 13th International Workshop On Semantic Evalua-
tion. pp. 54-63 (2019), https://www.aclweb.org/anthology/S19-2007

[74] Zampieri, M., Malmasi, S., Nakov, P., Rosenthal, S., Farra, N. & Ku-
mar, R. SemEval-2019 Task 6: Identifying and Categorizing Offensive
Language in Social Media (OffensEval). Proceedings Of The 13th Inter-
national Workshop On Semantic Evaluation. pp. 75-86 (2019)

[75] Joulin, Armand, et al. "Fasttext. zip: Compressing text classification
models." arXiv preprint arXiv:1612.03651 (2016).

63

64

Appendix B

Shortcuts

ADAM: Adaptive Moment Estimation
BERT: Bidirectional Encoder Representations from Transformers
BoW: Bag of Words
BPTT: Backpropagation through time
CBOW: Continuous bag of words
CV: Computer Vision
DAN: Deep Averaging Network
DCUS: Datasets with contradictory and unrelated sentence pairs
DNN: Deep Neural Networks
GPT-3: third generation Generative Pre-trained Transformer
LSTM: Long-short term memory
MLM: Masked Language Model
NN: Neural Network
NLI: Natural Language Inference
NLP: Natural Language Processing
NSP: Next Sentence Prediction
RNN: Recurrent Neural Network
SGD: Stochastic Gradient Descent
SOTA: state-of-the-art
SPE: Semantic-Preserving-Encoder
T5: Text-to-Text Transfer Transformer
USE: Universal-Sentence-Encoder

65

66

Appendix C

DCUS Examples with Similarity Scores

I would like to show some examples of the sentences from our DCUS datasets
and how our proposed similarity metric using SPE can better distinguish
between the contradictory and similar sentences than the metric with USE
[39].

If the semantics is preserved, the cosine distance between the original and
perturbed sentences should be close to high. If semantics is not preserved
then the cosine distance should be low.

DCUS-RT
original: "bears is even worse than i
imagined a movie ever could be ."
perturbed: "bears is even strongest than
i imagined a movie ever could be ."

semantics: preserved
our_cos_dist = 0.92
use_dan_cos_dist = 0.57
use_trans_cos_dist = 0.83

original: "more trifle than triumph"
perturbed: "more trifle than victoria"

semantics: preserved
our_cos_dist = 0.99
use_dan_cos_dist = 0.61
use_trans_cos_dist = 0.61

original: "one of the worst movies of
the year....watching it was painful"
perturbed: "one of the strongest
panorama of the enjoyment....watching
it was poignant"

semantics: not preserved
our_cos_dist = 0.23
use_dan_cos_dist = 0.35
use_trans_cos_dist = 0.28

DCUS-Offensive
original:
"sex with strangers is fascinating . . ."
perturbed:
"sex with strangers is entrancing . . ."

semantics: preserved
our_cos_dist = 0.93
use_dan_cos_dist = 0.88
use_trans_cos_dist = 0.93

67

C. DCUS Examples with Similarity Scores
original: "worst potus ever!"
perturbed: "greatest potus ever!"

semantics: not preserved
our_cos_dist = 0.63
use_dan_cos_dist = 0.77
use_trans_cos_dist = 0.82

original: "@user Well I mean by all
means do you but not all men are like
that!!!!"
perturbed: "@user Nicer I wherewithal
by all wherewithal making you but not
all virile are lover that!!!!"

semantics: not preserved
our_cos_dist = 0.37
use_dan_cos_dist = 0.59
use_trans_cos_dist = 0.58

DCUS-H
original: "The awkward moment when
Lexus is showing you how much crack
fits in the cup holders..."
perturbed: "Both embarrassing dating
when Lexus is proves you how much
crack fits in the trophy landlady..."

semantics: not preserved
our_cos_dist = 0.36
use_dan_cos_dist = 0.67
use_trans_cos_dist = 0.67

original: "She’s a b***h... No less than
a w***e."
perturbed: "She’s a vixen... Sans fewer
than a nympho."

semantics: not preserved
our_cos_dist = 0.25
use_dan_cos_dist = 0.53
use_trans_cos_dist = 0.57

original: "@user hell no!!!!!"
perturbed: "@user f**k no!!!!!"

semantics: preserved
our_cos_dist = 0.92
use_dan_cos_dist = 0.86
use_trans_cos_dist = 0.96

68

	Introduction
	Theoretical background
	Text Classification Tasks in Natural Language Processing
	Feedforward Neural Networks
	Recurrent Neural Networks
	Transformers

	Sentence Representation in NLP
	Bag of Words
	N-gram Features
	Word Embeddings

	Related work
	Adversarial Examples in Machine Learning
	Categories of Attacks
	Adversarial Attacks
	White-box Attack Models
	Black-box Attack Models

	Method
	Motivation Behind the New Metric
	Semantics-Preserving-Encoder
	Similarity Metric Using SPE
	Combined Adversarial Attack
	Identification of the Most Important Words
	Modification of the Important Words
	Pseudo-code Description

	Experiments
	Tasks
	Metric Definition and Evaluation
	Datasets
	Training FastText Models For SPE
	Defining Metric Evaluation

	Adversarial Attack Evaluation
	Datasets Used To Fine-Tune BERT Model
	Training BERT Victim Model
	Adversarial Attacks Configuration
	Automatic Evaluation
	Human evaluation

	Results
	Metric Development and Evaluation
	FastText Models Evaluation
	Fine-tuning Our SPE for the Similarity Metric
	Similarity Metric Evaluation

	Adversarial Attacks Evaluation
	Automated Evaluation
	Human Evaluation

	Discussion
	Similarity Metric Using SPE
	Adversarial Attack

	Conclusion
	Bibliography
	Shortcuts
	DCUS Examples with Similarity Scores

