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Abstract
This Master’s thesis is focused on sand
simulation methods analysis in the field of
computer graphics and aims to compare
these methods and discuss their disad-
vantages. The thesis also reviews sand
and snow simulation similarities and com-
pares their behavior. An application is
designed and implemented to analyze ex-
isting simulation approaches within this
work. Such application may be used for
natural phenomena prediction or in the
study of geological principles.

Keywords: Computer graphics,
Simulation, Sand, Snow

Supervisor: Ing. Jaroslav Sloup
Karlovo náměstí 13
121 35 Prague 2
Czech Republic

Abstrakt
Tato diplomová práce je zaměřena na ana-
lýzu existujících metod simulace písku v
rámci počítačové grafiky a cílí na porov-
nání těchto metod zároveň s analýzou je-
jich nedostatků. Práce také zkoumá po-
dobnost simulace písku a sněhu a porov-
nává jejich chování. V rámci práce je na-
vrhnuta a vytvořena aplikace umožňující
analýzu existujících simulačních metod.
Taková aplikace může najít uplatnění v
predikci přírodních jevů nebo při zkou-
mání geologických principů.

Klíčová slova: Počítačová grafika,
Simulace, Písek, Sníh

Překlad názvu: Porovnání metod
simulace písku a jejich aplikace na
simulaci sněhu
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Chapter 1

Introduction

Natural phenomena have captured human attention since time immemorial.
People study the processes in nature in great depth to understand them, yet
there are plenty of unknown areas which are not explained or are somewhat
inexplicable, despite modern technology. Those imperfections prevent full
knowledge of natural phenomena. However, it does not stop scientists from
replicating those processes the best they can.

The growth of the computer industry made it possible to put theoretical
models of material movement in nature to a test. This way, scientists were able
to verify the functionality of simulation models and develop new simulation
approaches. Such a simulation model can reconstruct events based on known
data to improve the understanding of processes and interactions in nature or
predict future landscape development.

Figure 1.1: Desert dunes near Cadiz Dry Lake, California (from [27]).
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1. Introduction .....................................
The focus of this thesis is given on sand simulation techniques currently

known in computer graphics. Also, snow simulation approaches will be dis-
cussed because there are some similarities between sand and snow transport
principles. We will review both sand and snow properties from the geological
point of view in Chapter 2, Geological Principles, since understanding geo-
logical principles is crucial for realistic computer simulations. Then we will
examine already known approaches to sand and snow simulations in Chapter
3, Related Work. We aim to analyze discussed simulation approaches, and
therefore the following Chapter 4 will introduce the approach to designing an
application that meets the requirements, how the application should work and
what should be achieved. The following Chapter 5 provides specific details
of the used simulation algorithms. Finally, the results will be presented in
Chapter 6, and the thesis will be concluded in Chapter 7.

Figure 1.2: Simulated desert scenes (from [25]).
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Chapter 2

Geological Principles

Sand and snow properties will be reviewed in this chapter. Considering
sand, mainly factors influencing the sand transport will be investigated. Snow
properties will be reviewed afterward. The crucial observation is the transport
of those materials.

2.1 Sand

According to F.J. Pettijohn et al. [21], sand is a type of non-cohesive granular
material which forms a network of grains. This grain network differs from other
crystalline rock structures by the contact with individual grains. Crystalline
rock grains are in continuous contact, whereas sand grains are in tangential
contact, which means there is much space between the grains filled by air
compared with other rocks. As a result, the sand has high porosity. This
property is key for forming desertscapes because any fluid is quickly absorbed
in the sand grain network. The amount of air between grains is proportional
to the size of sand grains, defined by sand diameter, which is tightly connected
with the sand definition itself. The sand grain diameter is from 62.5 µm to
2.0 mm. Particles smaller than 62.5 µm are commonly referred to as dust
particles (J. F. Kok, [12]). This range is generally accepted and mostly used
by geologists. Furthermore, according to ISO 14688 [4], there are three sand
types: fine sand, medium sand, and coarse sand, with ranges in intervals
62.5 µm to 0.2 mm to 0.63 mm to 2.0 mm. Different sand grain types have
different abilities to be transported, which is a crucial observation.

3



2. Geological Principles .................................
2.1.1 Sand Transport

The processes shaping the surface of Earth are called aeolian processes, from
which we will be mainly focused on sand erosion, sand transport by wind,
and sand deposition. Those processes are typical for forming deserts and
dunes. The transport of sand particles by wind can occur in three modes,
depending on wind speed and sand grain size. Sand grains of different sizes
tend to be transported differently, as Jasper F. Kok [12] suggests:

Figure 2.1: Different grain size particle movements under the effects of wind
(from [16]).

Saltation: Sand particles of 100 µm diameter are the first to be moved
by the increasing wind speed. As soon as a particle lifts, it ’hops’ along the
surface as the wind carries it. As the particle is carried, it will eventually
reach a stable position after one of its ’hops.’ However, as the saltating
particle is bouncing along the surface, it interacts with other sand particles
on the surface, which might lead to mobilizing other particles influenced by
the bounce impact of the saltating particle. Interestingly, the most commonly
lifted particles are dust particles, which have higher cohesive forces than sand
particles carried by saltation. Here, depending on the size of the lifted dust
particle, we distinguish between short-term and long-term suspension.

Suspension: Suspension is a typical transport mode for sand and dust
particles of size lower than 70 µm. Moreover, we distinguish between long-
term and short-term suspension. Long-term suspension is typical for dust
particles of size lower than 20 µm. Those particles can be carried several
days or even weeks from their place of origin and travel in the atmosphere
thousands of kilometers. On the other hand, particles between 20-70 µm
usually undergo short-term suspension and are not carried for great distances,
unlike long-term suspended particles.

4



........................................ 2.1. Sand

Reptation and Creep: Particles of diameter bigger than 500 µm undergo
a process called reptation. Those sand particles are too heavy to be carried
by the wind; they instead settle back to the soil after a short ’hop,’ after less
than a centimeter. Alternatively, those particles can roll or slide along the
surface as they are driven by wind or undergo impacts of saltating particles
in an alternative transport mode called Creep. Both Reptation and Creep
are similar transport modes and are sometimes defined together as Creep.

Note that previously mentioned transport modes are not discrete. They
blend instead, depending on both particle and wind properties.

Figure 2.2: Sand transport modes. (a) Suspension, (b) Saltation, (c) Avalanching
(from [17]).

2.1.2 Wind Erosion and Deposition Details

N. Lancaster [14] defines the dune initiation process as poorly understood
and little studied. Nonetheless, the commonly accepted theory involves the
reduction of near-surface wind speed and transport rates due to changes in
aerodynamic roughness or microtopography of the sand surface. In other
words, particles carried by wind will decrease their speed, and then they
will be deposited. As soon as some particles are deposited, the dune has
a foundation created. As the dune grows, it projects into the atmospheric
boundary layer, i.e., it affects the airflow around it. The theory concerning
the wind behavior around the dune is as follows.

The windward side of the dune undergoes erosion as the wind ’hits’ the
dune slope. Because the wind continues to change direction according to the
dune shape, it accelerates up the slope as the streamlines are compressed,
and the maximum speedup can be observed around the dune crest. After
the wind reaches the crest and enters the leeward side of the dune, the wind
speed decreases rapidly with the transport rate, resulting in sand particle
deposition on the leeward side of the dune. The wind direction after it reaches
the dune leeward side is more complex due to different angles between the
wind and the dune crest. However, H. Tsoar [24] suggests that sand eroded on
the windward side is deposited on the upper lee side, causing oversteepening.

5



2. Geological Principles .................................
As particles accumulate, they eventually reach the critical angle of internal
friction, approximately defined as 35°. At this angle, the upper lee slope
is not steady, and particles will cause avalanches until they reach a stable
position. A stable position is reached as soon as the sand particles reduce
the slope angle to 32° - 33°. This stabilized angle is called ’repose angle’ or
’angle of repose’ and will be widely used throughout this thesis. The overall
visualization of wind speedup over the dune is shown in Figure 2.3.

Figure 2.3: Five sets of wind velocity measurements over a linear dune in
Namibia. Note the increase in velocity to the crest of the dune and the sudden
reduction in the lee (from [28]).

Before we start to discuss the dune types themselves, it is necessary to
introduce more wind properties. According to H. Tsoar [24], drift potential
prevents vegetation from growing in the sand and stabilizing it. The accepted
method of quantifying wind power is by referring to the drift potential of the
wind, which is based on the sand transport equation:

q = Ku2
∗(u∗ − u∗t) (2.1)

where u∗ is the shear velocity of the wind, u∗t is the threshold shear
velocity, K depends on grain size, sand sorting, and air density, and finally,
q represents the sand flux. Firstly, shear velocity, which is used to describe
shear-related motion in moving fluids, wind, in our case, basically describes
the stress caused by the wind applied to the surface. Threshold shear velocity
intuitively is a limit when the wind speed applies enough force to initiate
particle movement or deposition on the impact surface. The correlation
between those variables with the sand grain diameter is shown in Figure 2.4.

6



........................................ 2.1. Sand

Figure 2.4: Threshold friction velocity (U∗t) curve for quartz grains of different
diameters (solid line). The dashed line separates saltation from suspension
(from [24]).

2.1.3 Dune Types

Wind speed, direction, and sand particle size are crucial for desertscape
formation. This section will focus on introducing different types of dunes
and describing the dune formation prerequisites. Afterward, we will focus on
vegetation impact on the dune formation in Subsection 2.1.4.

Dunes are created by a series of interactions between sand particles and
shearing flow [14]. Dunes can be observed at the bottom of rivers or oceans,
where the flow of water forms the subaqueous dunes. We will mainly focus
on flow caused by wind force for our purposes. Moreover, dunes are created
and constantly developed over time as the surface responses to wind regime,
such as wind speed and direction. All dune types discussed below can evolve
from a variety of initial conditions. We will be mainly focused on some of the
shapes shown in Figure 2.5 and on dunes in a vegetated environment.
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2. Geological Principles .................................

Figure 2.5: Schematic views of typical dunes, arrows show the predominant
wind direction (from [1], modified).

Sand ripples: Sand ripples are typical for all sand-covered surfaces except
those with rapid material deposition [14]. Their existence is closely linked with
the sand transport modes saltation and reptation. Sand ripples are usually
perpendicular to the wind direction. Furthermore, they can be considered
an indicator of current wind direction and overall sediment transport since
they are formed within minutes. Typically, sand ripples have a wavelength
between 13 and 300 mm and an amplitude of 0.6 to 14 mm. Since ripples
are omnipresent, as mentioned earlier, a ripple index is typically introduced,
which corresponds to the ratio between ripple length and height. This way,
one can compare ripples in different environments, which is particularly useful
for comparing ripples created of differently sized sand grains and different
strengths of wind. The ripple wavelength is a function of both sand particle
size and sorting, and wind speed, i.e., ripples in coarse sands have a greater
spacing than ripples in fine sands [14].

Figure 2.6: Sand ripples in vegetated sandy area (from [13]).
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Barchan and Transverse Dunes: According to H. Tsoar [24], Barchan
dunes and Transverse dunes are the same dune type with the difference in
the amount of material available for aeolian transport. Both transverse and
barchan dunes are formed by unidirectional wind direction, with a maximum
angle variability of 15°. Transverse dunes are built of many barchans that
have merged. Barchan dunes are characterized by an ellipsoidal shape with
’horns’ extending downwind. The leeward side of a barchan is usually much
steeper than the windward side [14]. The increasing wind speed causes to
form the crescent shape of barchan as the wind ’hits’ the windward side,
diverging from the dune crest towards the flanks [24].

Linear dunes: Linear dunes, sometimes called linear seif dunes, are
characterized by their length, which may exceed even 20 km, parallelism,
and regular spacing. The slope of a linear dune is relatively small, usually
similar on both sides, with the upper crestal area with more active sand
movement [14]. As the wind changes its direction, both sides of linear dunes
undergo erosion and deposition with respect to the current wind direction, as
shown in Figure 2.7.

Figure 2.7: Schematic sketch of a linear seif dune that is under a bidirectional
wind regime. One wind direction is shown by the solid line and the other by the
dashed line (from [24]).

Star dunes: Star dunes are the largest dunes, which height may reach
more than 300m. They contain a great volume of sand in comparison with
other dune types [14]. Star dunes are created in areas of high wind direction
variability. The shape of a star dune is mostly pyramidal with a central peak
and commonly at 3 or 4 ’arms’ radiating from the central peak. Each arm
has a sharp crest, resulting from changing wind direction. Usually, the ’arms’
vary in sizes depending on the preferred orientation. Slope is greater along
the crest, with an angle of 15-30°, whereas the bottom part has a broad and
gentle slope of around 5-10°.
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2.1.4 Dunes and Vegetation

Previously discussed dunes are typical for areas without rainfall, but some
areas have enough rainfall and humidity to grow vegetation on the sandy
surface. The vegetation is mainly limited by human impact or naturally
limited by wind power. Vegetated surfaces cause steeper velocity gradients,
which results in more significant shear stress, unlike unvegetated surfaces –
vegetation causes greater friction than the unvegetated surface. Nonetheless,
the more significant stress does not usually affect sand entrainment since it is
not propagated from the plant to the ground itself. Interestingly, experiments
proved that dunes formed by isolated plants are similar to those formed due
to obstacles. Full vegetation cover prevents aeolian entrainment entirely, but
partial vegetation cannot. There are mainly three dune types being formed
in vegetated areas according to H. Tsoar [24]:

Nebkhas: Nebkhas, or coppice dunes, are isolated clumps of vegetation
that act as sand traps. They can reach greater heights, up to 30m. The
shape of a coppice dune depends on the vegetation coverage on the dune.
Furthermore, nebkhas are considered static bedforms because they are usually
changed as the vegetation changes only.

Figure 2.8: Sand dunes in vegetated areas. A) Nebkhas associated with plants
in the coastal strip south of Walvis Bay, Namib Desert, Namibia (from [10]).
B) Parabolic dunes in White Sands National Park, Tularosa Basin, Alamogordo,
New Mexico. Wind direction is towards the upper-right corner (from [10]).

Parabolic dunes: Parabolic dunes are formed in humid or cold areas as
well as in arid and semiarid areas with vegetation. The shape is parabolic,
similar to the barchan dune, but the ’arms’ are pointing upwind. They are
usually present in coastal areas, where the vegetation is more easily established
at the dune base. Vegetation in parabolic dune formation protects the less
mobile ’arms’ against the wind, which allows the central, wind-covered part
to advance downwind, which eventually leaves the ridges behind and forms
a U-shaped, parabolic dune. Some geologists see the parabolic dune as a
further development of a spot blowout (wind-excavated sandy area).
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Vegetated-linear Dunes: Those dunes are relatively lower, with rounded
profiles. The vegetation covers them, sometimes entirely, sometimes abun-
dantly on the lower slopes, but the vegetation is sparse or absent at the crest.
When the vegetation covers the entire dune, the dune tends to be stabilized.
Vegetated-linear dunes are usually parallel and can reach up to kilometers in
width. A typical feature considering this dune type is the tendency of two
adjacent dunes to co coverage and continue as a single ridge. This connection
of dunes usually happens when the dunes form a Y-junction, which is typical
for vegetated-linear dunes and is one of the distinguishing features between
linear seif dunes and vegetated-linear dunes, together with the vegetation
presence and straight shape.

Figure 2.9: Aerial photograph of vegetated linear dunes. These linear dunes
elongate in the direction of the dominant, strong wind. The dominant wind
blows from left to right (from [24], modified).

2.2 Snow

According to Doesken et al. [5], the origin of snow formation lies in subfreezing
clouds, where water exists in all three forms, liquid, solid, and vapor. Clouds
are formed by water vapor transported in the atmosphere. When it comes
to precipitation, only a fraction of the water contained in clouds is available
for precipitation, and an even smaller fraction of precipitation consists of
snow crystals. There are multiple snow crystal types, and each type is formed
under different climate conditions. The main factors affecting the crystal are
humidity, temperature, and wind. There may be even more crystal types
created within one cloud, but most crystals tend to have hexagonal symmetry
because of atom molecular arrangement in the crystal lattice. As the crystals
are formed, they gain mass and size and start to fall downwards. The falling
speed depends on the crystal properties and wind speed. Since snowfall does
not directly influence our topic, we will focus on some fundamental snow
properties and snow transport.
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The humidity and temperature are crucial while observing fresh snow

characteristics. Since snow crystals are subject to constant changes due to
above-freezing temperatures, crystals tend to change their state even while
falling to the ground. The most important snow property is snow density,
which can be defined as a mass of water or ice per unit volume. Figure 2.10
shows different densities per unit volume. Snow density is constantly changing.
As Doesken et al. [5] suggest, water density, considering the density definition
above, is 1, ice is 0.917, and the upper density of fallen snow is around 0.40,
while the lower density limit is near 0.01. Interestingly, fresh snow density
does not correlate with location latitude or elevation. In Figure 2.11 we
observe that most new densities are in range 0.04 to 0.10 despite altitude
difference. Obviously, the lower the density, the higher the ability of snow to
be transported by wind.

Figure 2.10: Relationship between the density of water states. The shaded parts
show the volume that would be occupied by liquid water in case the cube content
melted (from [5], modified).

Figure 2.11: The distribution of density of 24-hour new snowfall totals at various
U.S. locations (from [5]).
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2.2.1 Snow Transport

Similarly to sand transport, it is still unclear how snow properties are respon-
sible for snow bedform shapes and how the different shapes relate to each
other. As stated by S. Filhol and M. Sturm [8], snow bedforms have analogs
in sandy deserts or river bottoms, including dunes and ripples, whereas some
features, such as snow pits, are snow specific. The process of snow transport
is also almost identical; snow particles also undergo saltation, suspension, and
creep. This observation of similarities is surprising if we consider snow particle
density of 917kg/m3 versus 2650kg/m3 for sand. However, the critical differ-
ence is the ability of snow particles to bond to each other. This process, called
sintering, significantly influences the snow bedform morphology. Sintering is
absent in sand morphology because sand grains do not bond to each other
in this way. Moreover, snow-pack is formed from snow precipitation under
different conditions. Therefore the individual layers tend to have different
properties. Snow also moves due to avalanches, which even more changes the
snow-pack structure compared to sand avalanches.

2.2.2 Snow Dunes

Strong parallels between snow and sand bedforms have been recognized, and
it was concluded that these forms develop through broadly similar transport
processes, but the forms differ significantly in size, geometry, age, and particle
properties [8]. Sand dunes can reach a hundred meters high, and their
formation process might exceed centuries, whereas snow dunes are usually
formed within hours, rarely last more than a few months, and hardly get
higher than a meter.

There are seven typical snow bedforms, shown in Figure 2.12, that are
widely recognized: transverse dunes, barchans, whalebacks, ripple marks, crag
and tails, pits, and a broad group of erosional features called sastrugi. Since
the shapes, properties, and conditions for some dune types formation are
similar, we will not mention them explicitly. Also, we will be mainly focused
on bedforms common for both sand and snow.

Snow barchans are usually 3 – 20m long, between 5 – 12m wide, but only
0.1 – 0.5m tall, whereas sand barchans can be 10m high, 100m wide, and 150m
long. The windward side of a barchan also often develops erosion features
resembling flutes and scallops, whereas the windward side of sand barchans is
usually smooth. Ripple marks look similar to sand ripples and are formed by
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Figure 2.12: Snow bedforms classification. (a) Snow waves (transverse dunes),
(b) barchan dunes surrounded by small pits, (c) a whaleback dune, (d) ripple
marks, (e) crag and tail, (f) pits, with the handle of a ski pole for scale, and (g)
sastrugi, with a glove for scale (from [8]).

saltation and creep. The difference is that creeping sand particles are located
towards the ripple crest, whereas saltating particles tend to accumulate in
the troughs.

2.3 Geological Principles Conclusion

In this Chapter, we discussed the main properties of both sand and snow.
We focused on the properties of transport of those materials and analyzed
common structures resulting from their transport. A brief description of the
differences between snow and sand has been provided. With this knowledge
background, we can consult the related work considering sand simulations in
the upcoming Chapter 3 Related Work. For more detailed geological principles
explanations, we recommend the reader to consult sand-related literature in
[14], [24], [28], [12] or [10]. Snow-related literature can be consulted in [5]
or [8].
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Chapter 3

Related work

Computer graphics simulations can be divided into two groups. The first one
copes with plausible results, usually at the expense of realistic phenomenon
behavior, aiming at real-time visualization. The second approach is physically
based. Such simulation is computationally demanding and usually uses more
complicated formulas to describe the simulated phenomenons. Physically-
based simulations tend to run offline and are more complicated to implement
correctly, especially since setting the simulation parameters proved to be a
challenge. We will discuss various approaches to sand and snow simulation in
this Chapter and review their advantages, disadvantages, and other valuable
insights. We will provide a more detailed explanation of individual imple-
mented simulation algorithms and properties in the following Chapters 4
and 5.

3.1 The Base Model

One of the first sand simulation models was created by B. T. Werner [26]. In
their model, dunes are formed by moving sand slabs, which stack on each other
on a square lattice with a non-erodible substance representing the ground.
They consider the number of slabs on a lattice grid cell as the elevation at
this cell. Sand slabs are transported individually to roughly approximate the
wind transport of sand grains (i.e., saltation). The slab is moved a specified
number of lattice sites, L, in the transport direction and is deposited at the
destination with a probability that depends upon sand slabs count at this
location; therefore, it can bounce and be carried further. If it exceeds the
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3. Related work.....................................
lattice dimension, periodic boundary conditions are applied on this slab. As
slabs deposit, height differences between neighboring lattice grid cell stacks
occur, which is not acceptable due to the material stability. Therefore, an
angle of repose is introduced and set to 30° to ensure that neighboring cells
maintain the angle of repose. When the sand slabs reach a shadowed cell, the
slab will be forced to deposit here. Shadowed cells are detected by setting
a shadowed area with an angle equal to 15° from the highest peak located
against the wind. The principle is visualized in Figure 3.1. The application
simulates different types of dunes, such as barchans, linear dunes, and star
dunes, shown in Figure 3.2.

Figure 3.1: Side view illustrating dune-simulation transport algorithm (from [26]).

Figure 3.2: B. T. Werner’s implementation results. A) Barchans, B) Linear
dunes, C) Star dunes. The arrow indicates the simulated wind direction in the
lattice throughout the simulation (from [26]).

The principle of their algorithm is rather simple while generating relatively
plausible results. Other simulation algorithms use the idea presented by
B. T. Werner further. However, this presented approach has some disadvan-
tages. Firstly, the sand dunes might not be initiated, especially while setting
different values for the wind speed. Secondly, the rules of material deposition
according to the repose angle might be too simplified. Also, there is a problem
with the algorithm functionality when the wind changes its direction so that
it is not perpendicular to the square lattice. Then the transported slab would
need to choose between multiple slabs while being transported by the wind
above the grid, which would not be possible at all when L = 1. The question
is whether this in-determinism is acceptable because such a situation does
not occur while the wind is perpendicular to the lattice. The algorithm does
not consider differently shaped non-erodible surfaces, such as hills or other
phenomena. Finally, there is ambiguity in the time domain since the slab
transport and the stabilization according to the angle of repose is performed
per time step, whereas in reality, the sand avalanches occur faster, and a part
of the sand mass is moved at the same time.
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3.2 Modification to the Base Model

Momiji et al. [18] revised Werner’s implementation and added two main
improvements. The first revision incorporates more realistic wind behavior
into the simulation, and the second considers the wind speedup and the
equilibrium dune shape.

The base of the algorithm is similar to Werner’s approach. The angle of
repose of 33.7° is defined here instead of 30°. They removed the sand slabs’
ability to erode on a cell in the dune’s lee since the wind cannot cause erosion
in the shadowed area. The shadow angle that defines the shadow zone slope
is set to 15°. Momiji also reports that removing the ability of erosion in
the shadow zone makes the slip face in the lee sustained, the dunes grow
more quickly due to a substantial accumulation of sand slabs, and the dunes
migrate downwind with constant speed.

Figure 3.3: Relation between saltation length (λ) and shear velocity (u*) suggest
non-linear relation between them (from [18]).

The wind speedup has not been considered in Werner’s implementation,
but it has been proved to be essential for dune transformations. They state
that introducing wind speedup makes dunes lower and migrate more quickly.
It also makes the dune windward slopes gentler, producing asymmetric dunes.
Momiji uses a kinematic formulation for wind speedup, which counts with
wind speed and the wind shear velocity or equivalently wind shear stress
which causes the sand transport. They implemented both linear and non-
linear wind speedup to achieve this behavior since the saltation length, which
corresponds to the slab transport length in their model, non-linearly increases
as shear velocity increases (Figure 3.3). Momiji reports that linear wind
speedup controls windward dune slopes, whereas the non-linear increase of
the transport length lowers dunes height and potentially increases the number
of dunes. However, choosing better values for the shear velocity coefficients,
both linear and non-linear, may result in better lee-side dynamics, as stated
by Momiji.
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Figure 3.4: Comparison of Momiji et al. implementation improvements with
Werner’s implementation. A) Werner’s implementation, B) Momiji’s implemen-
tation with removed erosion from shadow zones, C) Momiji’s implementation
with added wind speedup and shear velocity (from [18], modified).

3.3 Modifying the Wind Speedup

S. R. Bishop et al. [1] further adjusted the wind speed-up implemented in
previously discussed Momiji’s approach. Momiji et al. defined the wind
speed-up based on a constant representing the average number of slabs per
cell. This value is assigned after the simulation grid is generated and remains
the same throughout the simulation. Bishop et al. introduced a modified
value for the wind speed-up computation. This value is dynamically adjusted
according to the number of slabs at a given cell at each time step, and the
results indicate a more realistic dune appearance, especially on barchan dunes.

Figure 3.5: Bishop et al. simulation results. Left: Simulated barchans with
gentler windward slope and steep leeward slope, Right: The lattice is rotated in
response to the wind directional change (from [1], modified).
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They also added a solution to apply wind in any direction. The wind
essentially blows according to the same axis; it is the simulation grid that
rotates by an angle, as shown in Figure 3.5. This way, the topography remains
unchanged, and the angle of repose is checked after the rotation. However,
the number of slabs is not conserved. If the average number of slabs is small,
the situation is even worse, where as much as 10 % difference between the
initial and the final number of slabs might occur. Bishop states that choosing
an optimal pivot for the grid rotation might lower the sand slab reduction.

3.4 Vegetation Presence

Joanna M. Nield and Andreas C. W. Baas [19] focused on studying the impact
of vegetation in the area of sand dunes simulation as well as new observations
considering numerical slab-based models.

They used the original Werner’s model (described in Section 3.1) to rep-
resent the simulation grid. They state that using other values of L, which
represents the wind speed in the model, more precisely, the number of slabs
skipped by the transported slabs per bounce, does not contribute to dune
patterns development. They further mention different strategies for lattice
cell polling (or equivalently sand slab polling) and define the difference in both
methods. Original Werner’s polling method allows repeatedly polled slabs in
one time step, where one time step equals Dim×Dim slab polling events.
Nield et al. report that this strategy smooths the landscape, preventing dune
formation. While using the strategy of non-repeated polling, i.e., the slab
is polled precisely one time per time step, this artificial effect is eliminated.
Furthermore, changing the wind direction has been examined by setting a 60°
transport direction by moving one-third of all polled slabs in the ’longitudinal’
direction and two-thirds of the polled slabs in the ’transverse’ direction. Their
results show that barchan dunes modeled using this method are elongated
perpendicular to the wind and tend to have unequal ’horns.’

Vegetation increases the threshold shear velocity required to initiate and
sustain transport, and therefore Nield et al. imitate this by changing the
probabilities of sand slab erosion and deposition and adjusting the angle of
repose on vegetated cells. These modifications can be modeled as a local
’vegetation effectiveness’ function on each cell. Note that this approach does
not reflect vegetation’s physical shape whatsoever; rather, it expresses the
cell’s ability to influence sediment transport. Since vegetation grows and
dies throughout the years, an annual update of vegetation effectiveness seems
reasonable. In order to represent a variety of vegetation types, a cell may
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contain multiple values of vegetation effectiveness for each vegetation type,
and the overall influence is expressed as a sum of those values.

Figure 3.6: Growth functions for typical vegetation types used in model by Nield
et al., representing annual growth response to deposition and erosion conditions
(from [19]).

Nield et al. focused on implementing two phenomenons involving vegetation
presence in a semi-arid environment: nebkha and parabolic dunes formed from
blowouts. Both simulated scenes resemble their real-world correspondences.
They also studied different initial conditions for the sand bedform formation.
Results of their simulation are shown in Figure 3.7.

Figure 3.7: Nield et al. simulation results. A) Nebkha dune field, transport
direction from upper left to lower right. Vegetation is represented by red bars.
B) Parabolic dune development, vegetated surface with five identical 6-m-wide
blowouts. Green shading indicates pioneer grass; the size and density of red bars
indicate shrubs. Transport from lower left to upper right (from [19], modified).
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3.5 Particle Based Simulation

The final sand simulation model that will be reviewed was published by Wang
et al. [25]. Their approach is based on the same data representation, a uniform
height map. However, it differs from other simulation models by moving
particles instead of previously mentioned sand slabs and using a Eulerian form
of ordinary differential equation of Newton’s motion to compute the path of
a moving particle instead of using probability-based sand material erosion or
deposition. They also introduced a more complex wind field model, which,
together with different particle motion computations, enabled the definition
of any wind direction in the simulation grid. Vegetation was added to the
simulation as a cylindrical shape. The wind field reacted to the vegetation,
and on the leeward side of the cylinder, a wind shadow was formed. See
Figure 3.8, where sand particles react accordingly to vegetation while forming
the sand ripples. The main disadvantage of this model is the particle motion
computation, which is slower than the probability-based movement of other
simulation approaches. To counter that partially, they implemented their
solution on GPU. Their model is used for sand ripple simulation with possible
extensions to simulate transverse dunes since their geometry is similar to
sand ripple geometry but on a larger scale. This combined simulation of both
dune types was achieved by combining two simulation layers scaled differently
together, with the effect resembling sand suspension, which is shown in Figure
3.9 below and Figure 1.2 at the beginning of this thesis.

Figure 3.8: Particle based sand simulation with effect of wind shadowing behind
vegetation. Captured after 100 s, 200 s and 400 s (from [25]).

Figure 3.9: Sand dunes with the added effect of suspension (from [25]).
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3.6 Snow Simulations

Due to the similarity of sand and snow particles, it seems possible to define
the transported particle and other simulation parameters with different values,
and one can observe the results, as Chopard et al. [2] showed in their model
for material particle transport. They simulated both sand and snow transport
and used it to simulate sand ripples. We will go through two snow simulation
approaches, spanning most of our intended research areas.

Snow simulation consists of several steps. Typically snowfall is implemented,
then snow needs to be stabilized as it reaches the ground and falls onto
objects. Then a simulation of the thermodynamic process on the snow can
be applied. The snow is also transported by wind, especially while falling
to the ground, and avalanches occur when the snow becomes unstable. P.
Fearing [7] in his thesis describes the simulation process of creating snow
landscapes and provides efficient snow rendering insights. He uses a reverse
approach for generating snow surfaces. Particles are emitted in the reverse
direction, from the surface towards the sky, to determine if an object shadows
a surface point. The surfaces of both ground or objects are further subdivided
whenever a particle tracing indicates an interesting occlusion boundary or
the surface is combined in case the area is wholly occluded or exposed. This
computation generates a mass accumulation picture, making it possible to add
an appropriate amount of snow to the scene. As soon as the snow is added, it
is tested for stability. The snow stabilization process may affect the stability
of both uphill and downhill neighbors, and therefore, it is implemented in
several passes. The angle of repose is a crucial parameter for the stabilization
process, and its value varies with the current snow type since it can range
from near 90° in fresh dendritic snow to 15° in extreme slush conditions. A
scene with added snowfall is shown in the following Figure 3.10.

E. Galin et al. [3] investigated the interactive generation of time-evolving,
snow-covered landscapes with avalanches. They use a layered model to
represent the surface, where the simulation grid can span from meters to
kilometers. Each cell contains a stack of height values representing layers,
where each layer represents either surface or several snow types, such as
powdery snow or compacted snow. Their work aims to capture snow effects –
snow cornices on the leeward side of mountain crests, snow buildup at the base
of slopes scoured by avalanches, and also investigate ski-tracks simulation.
They work with temperature influence in their simulation. The temperature
depends primarily on altitude and sunlight exposure. As for sunlight exposure,
they compute both direct and indirect. They also work with the effect of wind
in the simulation resulting in snow transport. For avalanches, they define a
rupture point at which the avalanche starts. If it is located in unstable snow,
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Figure 3.10: Showcase of P. Fearing snowfall and snow accumulation implemen-
tation. A) Initial scene, B) Scene with automatically added snowfall (from [7],
modified).

the avalanche rapidly propagates to neighboring areas. All unstable snow
in the rupture zone is immediately set into motion, as well as all unstable
snow in the downslope reach of the avalanche. Some results of their work are
shown in Figure 3.11.

Figure 3.11: Showcase from Galin et al. snow forming application featuring
some of their simulation results (from [3]).
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Chapter 4

Solution Design and Analysis

There are numerous approaches suitable to implement an application with
evolving dune field; nonetheless, they all have one thing in common – since the
simulated phenomena are complex to understand, applications lack real-world
realism, even with nowadays technologies. However, the plausibility of results
is one of the critical properties of successful simulation in computer graphics.
As mentioned earlier, all those combined processes are complicated so that it
is currently not possible to implement them in a computationally acceptable
way, and therefore, it is necessary to omit some features or implement them
more straightforwardly. For example, implementing a wind field over the
dune field is a difficult task, and many simulations try to simplify the wind
behavior while maintaining the properties observed in the real world. Firstly
we present various approaches to sand simulation and explain the thought
process of designing our solution.

4.1 Simulation Approaches

Considering the data structure of simulated sand and the chosen approach to
interact with it, there are more ways to approach the simulation. The first
option is a numerical model, where the sand grains are generalized into sand
slabs and moved as one unit. This representation is usually implemented on a
uniform grid. Overview of this approach presented by B. T. Werner [26] and
later extension of Werner’s model by Momiji et al. [18], and Bishop et al. [1]
was provided in 3.1, 3.2 and 3.3.

25



4. Solution Design and Analysis..............................
Another approach is based on cellular automaton (CA). There is a regular

uniform lattice with discrete variables on each cell, and the values of variables
specify the state of the automaton in each cell as it evolves in discrete time
steps. Noritaka Endo [6] observed similar results as in Werner’s simulation
approach mentioned earlier using CA. CA is also useful for simulations of
material movement, such as debris, as introduced by D. D’Ambrosio et al.
[11], where they use a hexagonal grid (Figure 4.1). The hexagonal grid might
be more suitable than the rectangular grid for material distribution since one
cell has more neighboring cells, i.e., there is a better variability of directions
where the material can be moved. The CA approach and numerical approach
are sometimes considered to be equivalent.

Figure 4.1: A portion of a 2-D-hexagonal cellular space. The central cell (0,0)
and its six adjacent cells are marked in dark and light grey (from [11]).

As a third possibility, we may represent the sand grains as particles and
use a particle-based simulation technique with computational fluid dynamics
(CFD) to, for example, compute the wind field. CFD is beyond the scope of
this thesis. We will instead refer to a particle-based simulation model by Wang
et al. [25], which was discussed previously in 3.5. The idea is to use spherical
grains of chosen diameter and iteratively compute their position within the
grid based on forces applied to that particle. Since the number of sand grains
limits all particle-based simulation approaches, a GPU acceleration is usually
used to achieve better performance.

Those approaches have the potential to be combined. For instance, a
hexagonal grid might also be helpful for higher wind direction variability
in the case of a simulation with changing wind direction. For this case, an
algorithm based on the principle of DDA algorithms may be used for moving
sand slabs in any given wind direction.
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4.2 Time Domain

Real-world simulation should consider the time domain with respect to the
simulated phenomenon. It needs to be considered how fast dunes are formed
and how fast they travel under certain conditions, and how those events will
be measured. In all simulation approaches, the term time step t consists
of the number of cell polls and sand slabs transporting initiations, equal to
the number of grid cells. We refer to cell polls and sand slabs transporting
initiations as a simulation step, i.e., one time step consists of Dim ×Dim
simulation steps. The connection with the realistic time domain might be
made by specifying the physical dimension of a sand slab in correspondence
with the time scale. By applying those parameters appropriately, one can
achieve realistic sand flux, and dune migration speed [26]. Inspiration also
might be a model by Nield et al. [19], where vegetation grows and dies in an
annual cycle, which consists of several time steps t. For example, when they
simulate 50 years of landscape evolution and define 80 time steps t per year,
a total of 4000 time steps are performed.

In model by Wang et al. [25] they let the simulation run for a number of
seconds and they observe the sand ripple formation. The time required to
form sand ripples is therefore implementation dependent and we are unsure
what the connection with realistic time domain is.

4.3 Simulation Model Analysis

The model by B. T. Werner [26] will be used as the base of the simulation.
They introduced a model based on heightmap and sand slab movement,
which impacted other simulation approaches; therefore, it enables adding
other models based on this approach to the application easier. To add to
previously mentioned principles in 3.1, they defined two probabilities for slab
deposition on cell. The first one, denoted as ps, represents the probability of
sand slab deposition on a cell with at least one sand slab. This probability
should be higher than the second variable, denoted pns, which represents the
probability of sand slab deposition on a cell without any other slabs, essentially
representing a bare surface. The slab will be deposited with probability set
to 1 when the cell is shadowed. Sand slabs then move within the grid based
on those conditions in the direction specified by the user and are stabilized
to ensure the angle of repose within the grid is satisfied. Considering the
grid scale, they used the cell width equal to 1 unit and the slab height equal
to 1/3 unit, where one unit can be seen as one meter.
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Momiji et al. [18] adds realism to Werner et al. model by removing the

ability to erode slab in the shadowed area and by adding the wind speed-up
across dunes because the wind speed increases as it goes over an obstacle.
It is worth noting that they mention the effect of those modifications on
transverse dunes only. Therefore, investigating the impact on other dune
types, such as barchans and star dunes, is worth investigating. Nonetheless,
removing the ability to slab erosion in shadowed areas should allow the dunes
to be created sooner. The wind speed-up is added to the base wind speed
based on the following equation:

L(i,j) =
{
L0 + C1(h(i,j) − havg) + C2(h(i,j) − havg)2 (h(i,j) ≥ havg)
L0 + C1(h(i,j) − havg) (h(i,j) < havg),

(4.1)

where L(i,j) denotes the wind speed at cell (i, j), L0 denotes the base
wind speed, C1 denotes the shear velocity linear coefficient, C2 the the shear
velocity non linear coefficient, h(i,j) denotes the height at cell (i, j) and finally
havg denotes the average number of slabs per cell in the simulation grid. C1
influences the windward dune slope and should produce an asymmetric dune
profile with a longer windward side, whereas the non-linear term C2 controls
dune height.

Bishop et al. [1] further modifies the wind speed-up and explains the
impact on forming both barchans and transverse dunes. The modification is
done by defining the reference number of slabs on each cell in a given time
step t, denoted as href (t). This value replaces havg in Equation 4.1 and is
defined as

href (t) = havg −
1

2Dim2

(Dim−1,Dim−1)∑
(i,j)=(0,0)

|h(i,j;t) − havg|, (4.2)

where havg denotes the average number of slabs per cell in the simulation
grid, Dim denotes the grid dimension and h(i,j;t) denotes the height at cell
(i, j) at time t. The second term in this equation expresses the average
deviation from havg. Let S denote the sum in Equation 4.2. The value of
S can be updated without the need to iterate through the whole grid at
each time step before the sand erosion or deposition process at cell (i, j), as
M. Fousek [9] suggests:
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For sand slab erosion at cell (i, j):

S =
{
S − 1 (h(i,j) > havg)
S + 1 (h(i,j) ≤ havg). (4.3)

For sand slab deposition at cell (i, j):

S =
{
S − 1 (h(i,j) < havg)
S + 1 (h(i,j) ≥ havg). (4.4)

Considering grid rotation to achieve variety in wind directions, this approach
will not be implemented because the number of slabs is not conserved while
rotating the grid, which might cause undesirable behavior.

Nield et al. model [19] adds vegetation to the model, which enables
simulation of semi-arid environments with vegetation presence with other
dune types. The vegetation coverage on a cell is expressed as a ’vegetation
coefficient’ ρ, which is used to adjust the erosion or deposition probability on
a given cell as follows:

pe(veg) = pe(bare) − ρ,
pd(veg) = pd(bare) − ρ(1− pd(bare)),

(4.5)

where pe(veg) is the probability of slab erosion affected by vegetation, pe(bare)
is the base erosion probability without vegetation (set to 1), pd(veg)) is the
probability of slab deposition affected by vegetation and pd(bare) is the base
deposition probability without vegetation (either ps or pns). All probabilities
are forced to be in [0, 1]. However, the vegetation coefficient is allowed to
exceed those bounds. ρ > 1 suggests that the vegetation has grown above the
value required to shut down transport, and ρ < 0 represents nutrient depletion
or a hydrologically deficient environment. When ρ ≥ 0.3, the angle of repose
is set to 40° allowing steeper slopes to form on vegetated areas. Normalized
change in ρ on each cell is then obtained from grow functions shown in 3.6.
Furthermore, three vegetation coefficients for three vegetation types were
introduced – Grass, Mesquite, and Shrub. Their vegetation coefficient ranges
are shown in Equation 4.6, the influence on a cell is based on the sum of their
values:

ρgrass ∈ [0, 1],
ρmesquite ∈ [−1, 3],
ρshrub ∈ [−0.5, 1.5].

(4.6)
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They also proposed different strategies for cell polling, which are mentioned

in the following Section 4.6. Another change they added was a more precise
explanation of the time domain and different sand slab heights. Unlike
previous simulation approaches, they defined the sand slab height as 1/10 unit
length instead of 1/3 unit length. They also locked the wind speed L equal
to 1 and stated that L ≥ 1 does not contribute anything additional to the
development of dune patterns.

The simulation approach by Wang et al. [25] is particle-based, on contrary
to other models (all following equations taken from [25]). They focus on
particles capable of saltation; therefore, they have chosen sand grain diameter
d = 15mm. Sand particle at position P = (Px, Py, Pz) erodes and is lift-off to
the air by initial lift-off velocity V . They set the ascend initial velocity Vy as

Vy = Bu∗, (4.7)

where B is an impact coefficient with a value in [0.8, 2] and u∗ is a friction
velocity corresponding to wind speed. Grain is being lift-off in a random
direction from 21° to near 90° with respect to the horizontal axis. Furthermore,
spherical coordinate (ϕ, ψ) is used to express the lift-off angle, denoted as ϕ,
and the wind direction denoted as ψ. Equation 4.8 shows the process of
lift-off velocity V = (Vx, Vy, Vz) computation:

Vx = ∥V ∥ cosϕ cosψ,
Vy = Bu∗ = ∥V ∥ sinϕ,
Vz = ∥V ∥ cosϕ sinψ,

where:
∥V ∥ =

√
V 2

x + V 2
y + V 2

z ,

0 ≤ ϕ ≤ π/2,
0 ≤ ψ ≤ 2π.

(4.8)

When the sand grain is lifted, several forces are applied to this grain in
the real world, but the two most influential forces are gravitation force Fg

and drag force Fd, which can be computed as
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Fg = (0,−1
6πd

3ρsg, 0),
= (0,−mg, 0),

Fd = 1
8πd

2Cdsρa∥∆V ∥∆V ,

= A∥∆V ∥∆V ,

(4.9)

where for Fg, m denotes the sand particle mass and can be considered a
constant (given the grain diameter d is constant), ρs = 2655kg ·m−3 denotes
sand particle density and g = 9.81m ·s−2 denotes gravity acceleration. For Fd,
A denotes the sand particle drag in the air and can be considered a constant,
Cds = 0.5 denotes drag coefficient of the sand grain (value corresponds to a
rough sphere), ρa = 1.1644kg ·m−3 denotes air density at 30°C and finally
∆V = U − V denotes the relative velocity between wind and flying sand
particle. The direction of Fd is the same as ∆V . Since the initial particle
position P lift off velocity V is known, both Fg and Fd are known, sand
grain position and velocity after a specified time step ∆t can be computed
iteratively by the Eulerian form of ordinary differential equation of Newton’s
motion:

Vcurr = Vprev + Fd + Fg

m
∆t,

Pcurr = Pprev + Vcurr∆t.
(4.10)

When a sand grain reaches the ground in the next time step ∆t, it has hit
the ground with impact velocity V1 and has outgoing velocity V2. Impact
velocity is then divided into a normal component V1n and a tangential
component V1t. Moreover, two damping parameters are used to simulate the
friction force ffrac on the tangential and the momentum attenuation fattenu

on the normal direction:

V1n = V1 ·N ×N ,
V1t = V1 − V1n,
V2 = −V1n × fattenu + V1t × ffrac,

(4.11)

where N denotes the terrain normal at the impact location, · denotes the
dot product of two vectors, and × denotes vector – scalar multiplication.
If the outgoing velocity V2 is less than a given threshold, it is set to zero
to avoid infinite bouncing. When the sand particle is eroded or deposited,
the cell containing the particle position changes its height h(i, j) by δ. The
simulation grid is stabilized similarly to previous simulation models.

31



4. Solution Design and Analysis..............................
Lastly, we will discuss the wind field model used in Wang et al. [25]

simulation. They formalize logarithmic wind profile:

U(z) = u∗
k

ln (z − zd

z0
) + Φ, (4.12)

where z denotes the height above the surface, U(z) denotes the mean
velocity at the height z, k = 0.4 denotes dimensionless Von Karman’s constant,
Φ = 0 denotes thermal stability term, which is not taken into account by
setting the value to zero. zd = 0 denotes zero-plane displacement, ignored by
their model, and finally, z0 denotes the height at which wind speed reaches
zero. They set z0 = d/30 for surface without vegetation.

4.4 Initial Grid

The user should be able to define the grid dimension he requires, limited
by memory availability only. Nonetheless, we capped the dimension at
4096× 4096 cells because larger grids would take long to compute. Based on
the simulation presented in the previous chapter, we do not expect a detailed
grid with a higher dimension. We instead expect a larger area with more
dunes. Having a simulation of a detailed dune being formed would require
an alternative approach to simulation since all simulation algorithms and
parameters would need to be scaled appropriately. We should provide the
possibility to choose the initial grid characteristics and observe the behavior of
implemented models on different initial grid types – for example, investigating
if any dunes will be formed when the initial grid already has dunes generated
or is entirely flat.

Furthermore, researched models consider flat non-erodible material layer.
They do not consider the impact of non-erodible material layer variability, or
they do not mention they addressed this explicitly. The problem is in the
height difference between neighboring cells, where there is a more significant
non-erodible material difference. If this fact is not taken into consideration,
a non-realistic behavior might occur, as shown in Figure 4.2. Here, if the
wind speed (denoted as L) is represented as ten slab movements per one
slab bounce, the slab will not even consider the height difference it needs to
overcome as the wind carries it. This issue should be further examined and
addressed by checking the slab’s collision with the surface between bounces.
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Figure 4.2: Slab is transported with wind speed equal to 10 slabs per ’hop’. The
slab will completely ignore the small dune between the origin and the destination,
even though it should hit the windward slope of the dune. Non-erodible material
is grey, erodible material is yellow.

4.5 Wind Properties

The wind speed and direction have a crucial role in desertscapes formation.
Identifying the simulation behavior under the variability of those parame-
ters might yield crucial observations. Firstly we need to analyze possible
approaches to wind properties representation.

The simulation approaches presented in related work usually simulate
constant wind speed, only modified by some models according to the elevation.
Modifying the wind speed throughout the simulation even further might be
worth investigating. For example, star dunes tend to be formed under variable
wind direction, speed, and various time windows for each wind direction, with
one dominant direction. Those more advanced conditions were not considered
in any model we found. In the Werner et al. approach, they defined equal
time windows for each direction to simulate star dunes. Moreover, the
problem is shown in Figure 4.2 also points out the problem of setting the
wind speed too high, which will allow the transported slab to bypass the
dune pattern formation mechanisms, as Nield et al. [19] noticed in their
research. Computing the wind field as precisely as possible usually requires
to use computational fluid dynamics (CFD) based on the Reynolds-averaged
Navier-Stokes equations, as shown by Liu et al. [15], which is not suitable in
our case. Therefore we will instead focus on a simpler approximation.
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4.6 Slab Polling

According to mentioned simulation models based on slab movement, choosing
a cell with slabs for erosion seems straightforward: choosing a suitable random
cell within the grid, transporting it with respect to the wind direction and
speed, and eventually depositing it later. We refer to a suitable cell for
erosion as a cell that contains at least one slab and meets other slab erosion
requirements. Those requirements might be different for each implemented
model. For example, Werner’s model requires at least one slab present at a
cell only, the Momiji et al. model requires at least one slab at a given cell,
which is not in the wind shadow, and Nield et al. modify the slab erosion
probability based on vegetation present. However, there are more ways to
choose a random cell. Considering the randomness of slab polling, one can
use several random number generators available, but because this option of
implementing various random number generators is not that significant, we
will instead focus on different slab polling approaches.

As Nield et al. [19] mentioned, they found differences in dune formation
while using repeated and non-repeated polling. While using repeated polling,
one cell can be polled multiple times, and some cells could be omitted entirely.
While using non-repeated polling, each cell is guaranteed to be polled exactly
once per one time step. Non-repeated polling can be achieved by creating an
array of indices with a size equal to the number of cells in the simulation and
assigning a sequence of numbers from one through the number of cells to this
array. Then during the simulation, it is sufficient to shuffle the indices prior
to each simulation time step, go through this array one by one, and poll slabs
according to an index, which is incremented after each poll. This way, we
ensure every slab is polled exactly once per one time step.

There are also two ways to approach the polling process of sand slab erosion.
One can choose one cell suitable for sand slab erosion, and when the polled
cell is not suitable for erosion, the process of cell polling is repeated until a
suitable cell is found, all within one attempt to initiate sand slab transport.
Alternatively, when a cell is not suitable for erosion, one can abandon the sand
slab transport attempt and continue to poll cells using random or non-random
polling. The process of cell polling will be further discussed in the following
Chapter 5.
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4.7 Probability Aspect in Simulation

In discussed simulation models, one should have the opportunity to modify
the probabilities crucial for sand slab behavior. Modifying those parameters
will likely lead to different simulation behavior and results. Furthermore,
alternating those parameters might correspond to different sand properties
or weather conditions. As discussed in the previous Chapter in Nield et al.
model [19], which introduced vegetation, by alternating those parameters
they achieved to simulate vegetation presence in the simulation. This concept
can be further applied to snow simulation as well.

4.8 Snow

Snow simulation in a scale presented by Chopard et al. [2], P. Fearing [7] or
Galin et al. [3] is beyond the scope of this work. However, the base principle
of sand behavior can be addressed by modifying the probabilities used for
slab deposition or erosion. This way, one can achieve behavior corresponding
to the snow packing process, where the snow layer becomes more stable
and immune to wind erosion. The snow packing process also depends on
temperature and snow density. A strategy for snow simulation based on
previously introduced sand models should be based on dealing with snow
density and the impact of temperature on the snow. We suggest omitting
snowfall simulation and studying the impact of those parameters on freshly
fallen snow.

The initial snow density can be obtained from the function describing the
relationship between temperature and snowfall density shown in Figure 4.3,
left. As Doesken et al. [5] explain, the density of freshly fallen snow is not
strictly a function of temperature. Snow density generally decreases with
temperature, but for temperatures below -5°C, the density increases again
because sand crystals are generally small and pack in high-density layers as
they reach the ground. After snowflakes reach the ground, they undergo
metamorphism, which describes the melting process of snowflakes based on
temperature, sublimation, and vapor pressure. This process can be expressed
as shown in Figure 4.3, right, where functions describe the process of snow
density increase over time at various locations.
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Figure 4.3: Impact of temperature on snow density and snowpack over time.
Left: Relationship between temperature and snowfall density at High Altitude
Observatory at Climax, Colorado, US (from [5]). Right: Changes of snowpack
density over time in various US locations (from [5]).

4.9 Analysis Conclusion

In this chapter, we analyzed available simulation approaches, provided details
on existing simulation models that we chose to implement, and went through
the crucial properties of each model. Then we identified critical simulation
parameters and suggested possible solutions and remarks. We also stated
possible drawbacks, which should be further considered and possibly resolved.
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Chapter 5

Implementation

Our simulation is written in C++ and visualized using OpenGL. We im-
plemented the simulation model by B. T. Werner [26] described in 3.1 as
the application base and then added other functionalities from discussed
simulation models. In Figure 5.1, the simulation workflow is shown. This
diagram describes the base model. We will go through the simulation loop and
give detailed insights into the implemented procedures. Before we describe
the diagram, we will discuss the data representation in Section 5.1 and the
visualization in Section 5.2.

5.1 Data Representation

Similar to sand simulation models presented in related work, we use a regular
uniform lattice to represent our simulation space, represented by a right-
handed Cartesian coordinate system with a Y-axis pointing towards the
sky. Each cell represents a stack (or column) of sand slabs, i.e., we do not
consider individual slabs as objects accumulating on a cell. This way, we
do not unnecessarily create a high number of slabs, which would be both
memory and computationally demanding. Each column is still considered to
be formed by sand slabs internally – the height of the stack is proportional to
the number of stored sand slabs on this lattice cell. As a sand slab erodes at
a cell, we only decrease the cell’s stack height by δ, which usually corresponds
to the slab height. For further extension, we define the height of non-erodible
material at each cell. The non-erodible material is always under the erodible
material.
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Figure 5.1: Workflow diagram of the application.

5.2 Visualization

We chose a suitable and straightforward data visualization for our case, a
heightmap. The heightmap is visualized as uniformly shaped triangle strips
(Figure 5.2). Each vertex has its (x, z) coordinates within the grid and its
height y, which corresponds with the number of sand slabs on a cell plus
the height of the non-erodible material, respectively. The y value expresses
the elevation at a cell. Since the coordinates within the grid do not change
during the simulation, we only need to update the height of vertices as the
simulation runs. We apply color according to the chosen color palette based
on the vertex’s height.
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Figure 5.2: Detailed wireframe view of the simulation grid.

We chose two color palettes to represent the elevation in the simulation
grid (Figure 5.3). The first palette is RdY lGr, commonly used for elevation
visualization in most maps. The red color expresses the maximum stack
height (or elevation) currently on the grid, and the green color expresses the
minimum height. The color between the minimum and maximum height is
interpolated. As the slabs are moved and the elevation changes, the maximum
height is adjusted accordingly, which ensures there is always the maximal
color difference. The second color palette is used for vegetation visualization.
The color depends upon the vegetation coefficient value in a given cell. The
dark green color expresses the vegetation presence, and the light green color
expresses no vegetation. The user can choose between those color palettes
while running a simulation based on Nield et al. model.

The simulation result can be exported into ParaView to show a more
detailed view or other visualization techniques. This third-party visualization
program allows to smooth the surface and show contours, which are essential
for comparison and correct elevation perception of the exported scene. This
modified scene can be further exported to Blender or any other modeling
software, where additional modifications can be applied, such as textures or
mesh decimation. This way, our results can be used, for example, as terrain
for video games or similar purposes.

Figure 5.3: Used color palettes. a) RdY lGr color palette, b) Color palette used
for vegetation presence visualization.
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5.3 Simulation Parameters

The simulation requires various parameter settings in order to generate various
dune types. Figure 5.4 shows the Main Menu window, where parameters
are customized. Firstly user chooses between sand and snow simulation and
then between simulation models. Based on the model selection, simulation
model parameters are shown or hidden. In Figure 5.4 left, the Model by
Nield et al. is chosen, which enables the modification of vegetation related
parameters, such as the vegetation scene, annual vegetation update cycle,
vegetation coefficients for each vegetation type, and the functionality to enable
randomness of vegetation coefficient initial generation. Another standard
simulation parameters are the grid type, where the user can choose between
flat or randomly elevated surfaces or other possibilities such as transverse
dunes or sand ripples.

An advanced wind regime setting will become accessible by ticking ’Ad-
vanced wind setup,’ Figure 5.4 right. The user can add, remove, or move
up or down a specific wind regime in the upper part. Each wind regime is
defined by wind direction, initial and final wind speed, and the duration the
wind will blow from a specified direction. Modification of the wind speed
throughout this wind season is possible using the chart with the Beziér curve
with interactable control points. The X-axis represents the normalized value
of the wind regime duration; Y-axis represents normalized wind speed. By
moving those control points by hold and drag, the user modifies the wind
speed in this wind regime. Button ’RESET CP’ will reset the control point’s
position. By ticking ’Show CP guidelines,’ the control points will be visually
connected by a line with the curve’s beginning or ending point.

Furthermore, other parameters are the repose angle and the simulation grid
dimension, which is restricted from 10× 10 through 4096× 4096 cells. The
Height parameter defines generated number of slabs per cell. Probabilities
ps and pns are restricted on interval [0, 1] and are used to adjust the slab
deposition behavior. Wind speed L can be set on interval [1, dimension/2]
to counter the problem of extra-long slab travels per iteration. Non-repeated
polling ensures exactly one slab poll per cell in each time step, and forced
erosion per time step ensures a cell suitable for sand slab erosion will be
chosen per each simulation step. Ticking the checkbox ’Custom seed’ enables
the customization of a random number generator seed used for ’seeding’ this
generator. Any integer number can be submitted here. Once all simulation pa-
rameters are set or loaded from a configuration file, clicking on the ’CREATE’
button launches the simulation, and the grid will be generated. Resetting
default simulation parameters is possible after clicking on the button ’RESET
DEFAULT’.
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Figure 5.4: Application UI for setting parameters. Left: Main Menu window
with simulation parameters settings. Right: The user interface of advanced wind
setup.

5.4 Simulation Loop

After the simulation parameters are defined and the simulation created, the
user defines the desired number of time steps t, and the simulation loop can be
started. Pseudocode of simulation loop is in Algorithm 1. In the pseudocode,
advancedWind is a boolean variable determining if the advanced wind option
is enabled. L denotes the original value of wind speed chosen by the user
in the simulation parameters setting. Function BezierV alue determines the
current wind speed based on the y-coordinate value of the point on the Beziér
curve, which x-axis coordinate is computed from the current time step i and
current simulation step j.

5.5 Simulation Step

The pseudocode of one simulation step is shown in Algorithm 2 and Algo-
rithm 3 respectively. We implemented those two approaches based on the
previous discussion in 4.6. Nonetheless, each simulation step consists of three
events, shown in the diagram 5.1: Slab erosion, slab transport, and slab
deposition.
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1 Function simulationLoop():
2 begin
3 for i = 0; i < timeSteps; ++i do
4 for j = 0; j < cellCount; ++j do
5 if advancedWind then
6 windSpeed← {BezierValue((i * cellCount + j) /

(cellCount * timeSteps))};
7 else
8 windSpeed← L
9 end

10 simulationStep(windSpeed)
11 end
12 end
13 end

Algorithm 1: Pseudocode of simulation loop.

Slab erosion: Different cell polling strategies for slab erosion are why we
present two pseudocodes for simulation steps. Slab erosion is the process
of finding a suitable slab to erode. Requirements on the cell for erosion
differ between each simulation model. Werner’s model requires at least one
slab on the cell, both Momiji’s and Bishop’s model additionally require the
cell to be in the wind shadow, and Nield and Baas’s model further modifies
the probability of slab erosion based on the vegetation coefficient, shown
previously in Equation 4.5. More detail on the slab erosion process is described
in Section 5.6.

Slab transport: The slab is transported as long as the sand transport
conditions are valid. Two conditions are required for Werner’s, Momiji’s,
and Bishop’s model to terminate the transport and deposit the slab. Firstly,
deposition probabilities ps and pns on the given cell influence the slab bounce
probability, based on the cell’s number of slabs. Secondly, the slab will be
immediately deposited if the current slab location is in the wind shadow.
Wind shadow detection is explained in 5.9. Nield and Baas’s model further
modifies the slab erosion and deposition by the value of vegetation coefficient
on the given cell, as shown previously in Equation 4.5.

Slab deposition: Any condition for slab transport termination has to
be fulfilled to end the slab transport and begin the slab deposition process.
More detail on the slab erosion process is described in Section 5.7. Moreover,
Nield’s model also tracks the height change at each cell, which is used to
compute the vegetation coefficient change after the annual cycle. Every slab
erosion and deposition on the cell is tracked, and the deposition balance is
updated accordingly.
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1 Function simulationStepForceErosion(windSpeed):
2 begin
3 while (Slab not eroded) do
4 CurrentCell← {Randomly choose a lattice cell}
5 if (CurrentCell.slabCount > 0) then
6 StabilizeErodedSlab(CurrentCell)
7 break
8 end
9 end

10 shift← {windSpeed in the wind direction}
11 while Slab not deposited do
12 CurrentCell.position← CurrentCell.position+ shift
13 generatedProb← {Random probability on [0, 1]}
14 depositionProb← CurrentCell.slabCount > 0 ? ps : pns

15 if (IsInShadow(CurrentCell) or (generatedProb <
depositionProb)) then

16 StabilizeDepositedSlab(CurrentCell)
17 break
18 end
19 end
20 end

Algorithm 2: Pseudocode of simulation step with erosion forcing per
simulation step.

1 Function SimulationStep(windSpeed):
2 begin
3 CurrentCell← {Randomly choose a lattice cell}
4 if (CurrentCell.slabCount == 0) then
5 return
6 end
7 StabilizeErodedSlab(CurrentCell)
8 shift← {windSpeed in the wind direction}
9 while Slab not deposited do

10 CurrentCell.position← CurrentCell.position+ shift
11 generatedProb← {Random probability on [0, 1]}
12 depositionProb← CurrentCell.slabCount > 0 ? ps : pns

13 if (IsInShadow(CurrentCell) or (generatedProb <
depositionProb)) then

14 StabilizeDepositedSlab(CurrentCell)
15 break
16 end
17 end
18 end

Algorithm 3: Pseudocode of simulation step without erosion forcing per
simulation step.
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5.6 Stabilization Process of Slab Erosion

Both stabilization processes work similarly. As for erosion, we lift the chosen
slab and begin the slab transport process. However, we need to ensure the
angle of repose is not violated on the cell where the slab eroded. Therefore
we have to check if the angle of repose from the eroded cell’s neighbors
is violated, and if yes, we choose the steepest gradient, and from the cell
where the steepest gradient was found, we continue the process of checking
neighboring cells until we find a cell without the angle of repose violation.
Here we remove the slab. The outcome is precisely the same as if we removed
the slab from its original location and then moved a slab from a stabilized cell
in the direction of the steepest gradient to take its place since the unstable
slab in the location of the steepest gradient would be transported on the
original place of sand slab erosion in any case. This approach can be justified
because only one slab can erode simultaneously, and only one can move
down the steepest gradient to take its place. The deterministic order in
which the neighboring cells are processed is shown in Figure 5.5 B). The
pseudocode of this process is shown in Algorithm 4. Note that it differs from
Algorithm 5 only in the order in which the neighbors are processed, and the
action performed on the stabilized slab.

1 Function StabilizeErodedSlab(Cell):
2 begin
3 CurrentCell← Cell
4 CurrCellIsNotStable← true
5 while (CurrCellIsNotStable) do
6 NeighbouringCell← null
7 for (Neighbour : CurrentCell.neighbours.inOrder(erosion)) do
8 if (Repose angle violated and gradient is the steepest) then
9 NeighbouringCell← Neighbour

10 end
11 end
12 if (NeighbouringCell is null) then
13 CurrCellIsNotStable← false
14 else
15 CurrentCell← NeighbouringCell
16 end
17 end
18 CurrentCell.slabCount –= 1
19 end
Algorithm 4: Pseudocode of sand slab erosion stabilization process.
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5.7 Stabilization Process of Slab Deposition

When the slab reaches its location where it should be deposited, we try
to place it at its final destination and check the surrounding cells to see
whether the angle of repose is violated. In case it is not violated, the slab
is deposited. Otherwise, we choose the steepest gradient from neighboring
stacks and move the slab down the steepest slope. This ’avalanche’ process
repeats until the slab reaches a cell, where it can be safely deposited without
the repose angle violation. The order in which we process the angle of repose
violation is shown in Figure 5.5 A). Further details considering the order of
choosing the neighboring cells are described later in 5.8. The pseudocode of
the stabilization process of sand slab erosion is shown in Algorithm 5.

1 Function StabilizeDepositedSlab(Cell):
2 begin
3 CurrentCell← Cell
4 CurrCellIsNotStable← true
5 while (CurrCellIsNotStable) do
6 NeighbouringCell← null
7 for (Neighbour : CurrentCell.neighbours.inOrder(deposition))

do
8 if (Repose angle violated and gradient is the steepest) then
9 NeighbouringCell← Neighbour

10 end
11 end
12 if (NeighbouringCell is null) then
13 CurrCellIsNotStable← false
14 else
15 CurrentCell← NeighbouringCell
16 end
17 end
18 CurrentCell.slabCount += 1
19 end

Algorithm 5: Pseudocode of sand slab deposition stabilization process.

5.8 The Order of Choosing Neighbouring Cells

Here we shortly review the difference between the order of processing the
neighbouring cells in the slab erosion and deposition stabilization process. The
order matters only in case of equal gradients defining slope of neighbouring
cells towards the tested cell, because the steepest gradient should be chosen in
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a deterministic manner. For the deposition process, we use the Von Neumann
neighbourhood order shown in Figure 5.5 A), where we prefer the direction
of wind to be processed first. For slab erosion process we use the order on
the right, B), where the direction against the wind is processed first. This
way the deposited slabs tend to move down the wind and eroded slabs tend
to be replaced by those located against the wind. When changing the wind
direction, the processing order is adjusted accordingly.

Figure 5.5: The order in which the neighbouring slabs are checked. Wind blows
from left to right. A) Slab deposition order, B) Slab erosion order.

5.9 Wind Shadow

Wind shadow, in reality, is a complicated phenomenon. We took the idea
of wind shadow computation from Werner’s model. The wind shadow is
simplified to obtain an area downwind from the highest peak under the angle
of 15°. All cells in the area are shadowed. To determine if the cell is shadowed
or not, we iterate several cells downwind and compute the shadow area. The
idea is presented in Algorithm 6, where UpperBound is an experimentally
obtained value based on the height difference between the maximum elevation
in the grid and the elevation of the processed cell. If the procedure does not
detect the shadow area on the given cell, the function returns true, false
otherwise. shadowZoneAngle is tan of 15 degrees converted in radians.

1 Function IsInShadow(currCell):
2 begin
3 for dist = 0; dist < UpperBound; ++dist do
4 nextCell← {Next Cell in direction against wind}
5 ∆h← {Height difference between currCell and nextCell}
6 if ∆h / dist > shadowZoneAngle then
7 return true
8 end
9 end

10 return false
11 end

Algorithm 6: Pseudocode of shadow area computation.
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5.10 Dealing with Obstacles

In the previous chapter, we mentioned the problem when sand slab travels
with higher wind speed and ignores the surface beneath. This problem extends
when we consider a rock in the scene. Ignoring the fact that sand hits the
windward side of the rock would result in unnatural behavior; however, none
of the models based on sand slab movement explicitly discussed this problem.
Here we introduce the approach to eliminate this artifact.

When the sand slab travels above cells, it should iteratively check whether
it hit an obstacle along the way or not. Obstacles added to the scene do
not contain erodible material. Obstacles can be added by setting the initial
grid parameter to ’Three rocks’ or ’Uneven surface.’ For the ’Three rocks’
scene, we added three rectangular-shaped areas to the simulation grid, and
their height is dependent on the Obstacleheight parameter. Those areas will
consist of the non-erodible substrate, which cannot be moved by erosion. To
ensure the sand slab will react to the non-erodible surface, we implemented a
function to detect this event, shown in Algorithm 7. The sand slab iteratively
confirms that the angle of repose is not violated because of an obstacle made
of non-erodible material. If the repose angle is violated, the slab will deposit
on the cell, and the slab transport will be terminated. Otherwise, the slab
will continue its travel to the target location specified by the wind speed. This
approach ensures that the slabs will not get on top of the obstacle, completely
ignoring it.

1 Function detectObstacle(currPos, targetPos):
2 begin
3 returns true when obstacle detected, false otherwise
4 nextPos← currPos
5 while (nextPos ̸= targetPos) do
6 nextPos← Next slab in the wind direction
7 if (Repose angle violated and nextPos has nonerodible

material) then
8 depositeSlab(currPos);
9 return true

10 end
11 currPos← nextPos

12 end
13 return false

14 end
Algorithm 7: Pseudocode of obstacle detection.

47



5. Implementation....................................
5.11 Particle-based Model

Wang’s model has a different approach than numerically-based models. We
adjusted their implementation to fit our models. Instead of tracing many
particles at once each time step, we trace individual particles from start to
their final position. Each simulation step consists of tracing one particle. The
number of traced particles is equal to the cell count. The particle is lifted off
the ground by an initial velocity, and then the tracing begins. The tracing
procedure in one simulation step is shown in Algorithm 8. Pseudocode func-
tions, such as generateParticleV elocity(), are based on formulas presented
in 4.3.

1 Function simulationStep(windSpeed):
2 begin
3 V elprev ← generateParticleV elocity()
4 Posprev ← generateParticlePosition()
5 while (particle not deposited) do
6 V elcurr ← updateParticleV elocity()
7 Poscurr ← updateParticlePosition()
8 if (is under surface) then
9 newV elocity ← computeParticleSpeedAfterBounce()

10 Poscurr ← Move particle above surface
11 if (newV elocity < thresholdV elocity) then
12 depositParticle()
13 return
14 end
15 V elcurr ← newV elocity

16 end
17 Posprev ← Poscurr

18 V elprev ← V elcurr

19 end
20 end
Algorithm 8: Pseudocode of particle tracing in one simulation step.

We simplified the implementation by setting the wind direction from
the West only. We also adjusted the simulation scale, where the spacing
between cells is 1 cm only, instead of 1 m for numerically-based models.
The scale adjustment is because of the more realistic computation of sand
grain movement by wind transport. Also, moving traced particles above the
surface is necessary because particles will get under the surface to detect the
ground-particle collision. The particle should continue to bounce when it is
above the surface.
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5.12 Snow Simulation

Since most of the focus of this thesis is given on sand simulation, the imple-
mentation of snow simulation in our application is experimental. We also
implemented the snow simulation based on the model by B. T. Werner only.
It uses the principles used for sand simulation methods, where discrete sand
amounts are moved as sand slabs. In our implementation, snow is also moved
in a probability-driven model, where snow slabs represent a transported mate-
rial unit. However, to apply the snow properties to the previously introduced
sand-based simulation model, we define new parameters.

Firstly, the initial snow density is determined based on initial temperature
according to the function shown previously in Figure 4.3, left. The user then
determines the temperature at the end of the simulation and adjusts the
temperature development throughout the simulation. The simulation length
is then based on those parameters – higher temperature causes the snow to
pack faster. Moreover, the simulation length corresponds to individual time
steps, corresponding to days in our simulation. The snow density is each
time step (day) adjusted based on the lowest from shown functions shown
previously in Figure 4.3, right. If the snow is packed before the simulation
reaches the target step count, the simulation loop terminates since no other
slabs can be moved. This state corresponds to the snow packing, which
eventually causes the snow surface to become resistant to wind erosion. The
user interface is shown in Figure 5.6. Temperatures can be adjusted from
-20°C through 0°C, which is also the y-axis range of the curve setting window.

Figure 5.6: The user interface for temperature settings for snow simulation.

Throughout the simulation, we use the same principle of adjusting the ero-
sion and deposition probability which was used in the model by Nield et al. [19],
where they use a vegetation coefficient to adjust the probabilities. In this
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case, we use a coefficient representing the resistance of snow to be transported
by wind. This coefficient is increased each time step according to the snow
density development, which also depends on the current temperature. The
snow density development is approximated by the lowest function shown
previously in Figure 4.3, right. With higher temperatures, the coefficient is
increased more. The current temperature at each time step is taken from the
current value of the temperature curve in a given time step. This way, we
approximately ensure that snow reacts to temperature. The density increase is
computed as a multiplication of current snow density and temperature, scaled
to interval [0,1] to correspond to the used temperature range. Pseudocode
of snow density update is shown in Algorithm 9, where func(t) represents
obtaining the value of density change based on previously introduced density
function.

1 Function updateSnowDensity():
2 begin
3 currTempScaled← getCurrentTemperature()
4 ∆density ← currTempScaled× func(t)
5 for (all cells) do
6 Cell.resistanceCoef ← Cell.resistanceCoef + ∆density
7 if (Cell.resistanceCoef ≥ 1) then
8 Cell.resistantToTransport← true
9 end

10 end
11 end

Algorithm 9: Pseudocode of snow resistance coefficient update in each
time step. × is scalar – scalar multiplication.

5.13 Configuration Files

The user can create configuration files that hold the simulation parameters.
The main reason to implement this functionality is to make setting specific
simulation parameters faster and easier. After a simulation is set up and
started, the user can save the simulation parameters of this specific simulation
for later simulation re-run. When creating a configuration file, the user will
be asked to specify where to save the file. When the user wishes to load a file,
he will choose one from the system. Configuration files can be loaded when
setting simulation parameters. After the file is loaded, simulation parameters
will be set to values specified in the configuration file. The user might further
open those files and modify any values here; however, setting invalid values
might lead to file corruption. If the file is corrupted, the notification about
which parameter was not loaded correctly will be shown in the Application
Log window. Configuration files are in the .json format.
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Chapter 6

Results

Before diving into the result presentation, we need to clarify some assumptions
and conventions used in our simulation. Multiple simulation models have a
variety of possible parameter combinations, and it is not possible to discuss
all of them. We will present the most compelling results and results proving
the implemented model’s functionality. We always introduce the results of
the given model and then review its functionality and behavior, possible
with various parameters. Each model’s results will be accompanied by a
table of parameter settings for that simulation. Changed parameters in
individual other results will always be mentioned. The result presentation
will consist of the simulation result in the application view, accompanied
by the view of contours on a smooth surface obtained after exporting to
ParaView. All configuration files used for the result presentation are included
as an attachment. Also, the comparison with real-world photographs of sand
dunes with our simulation results will be analyzed. Lastly, we will review the
results of the snow simulation.

6.1 Werner’s model

The basic model should simulate barchans, transverse, linear, and star dunes.
We confirmed the functionality of Werner’s approach. According to our
observation, non-repeated polling significantly impacts dune formation in
Werner’s model. The dunes are formed faster and have a more regular and
sharper shape.
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Figure 6.1 shows the results of the barchan simulation in Werner’s model.

The parameters are stated in Table 6.1. We observe the barchan-like structures
being formed; however, the shape does not directly correspond to barchans
found in nature. The most significant difference is the absence of a gentler
windward slope, which makes the simulated barchans more ’moon-shaped.’
This lack of realism is caused by not considering the wind speed-up on the
windward slope, which is confirmed by the symmetrical windward and leeward
dune slope and well visible in the contour visualization. We also observe not
entirely flat surface between the dunes, which might suggest smaller sand
bumps that are not entirely part of the dune morphology, where barchans
are present. Nonetheless, we observe barchan ’horns’ elongating in the wind
direction. Throughout the simulation, we also observed that higher barchan
dunes tend to have less visible ’horns.’

Parameter Value
Grid type Flat surface

Angle of Repose 30°
Dimension 256×256

Height 3
Slab Height 1/3

ps 0.6
pns 0.4

Wind speed 5
Wind direction West

Advanced wind setup false
Non-repeated polling false

Force erosion false
Time steps 1000

Table 6.1: Parameters for barchan dunes simulation using Werner’s model.

Figure 6.1: Barchan dunes simulated using Werner’s model, maximum elevation
reached 26 slabs per cell in the final result. Left: Visualization with elevation in
the application. Right: Visualized contours in ParaView.
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Transverse dunes in Werner’s model more likely resemble a zoomed-in
view of sand ripples (Figure 6.2). The regular shape is caused by the wind
speed-up effect’s absence on the windward dune slope, and the regularity is
also visible thanks to the contour visualization in the Figure below on the
right. We also see that the leeward dune side is not as steep as expected.
Small bumps between dunes seem typical for Werner’s model and are caused
by the slab erosion in the shadowed area. Parameters to simulate this scene
are identical to those presented in 6.1 except for the parameter Height. For
transverse dunes, we set the parameter Height to 10 slabs per cell as the
initial condition. The resulting height in the simulation result was 28 slabs
per cell. We have simulated linear dunes as well with the same parameters
as for transverse dunes, but the result looks very similar to the transverse
dune result, even though we set two opposite wind directions altering after
100 times steps and run the simulation for a total of t = 1000 time steps.

Figure 6.2: Transverse dunes simulated using Werner’s model, maximum el-
evation reached 28 slabs per cell in the final result. Left: Visualization with
elevation in the application. Right: Visualized contours in ParaView.

Star dunes form under varying wind directions. For star dunes simulation,
we kept the same parameters for the simulation of transverse dunes except for
the parameter advancedwindsetup. Here, we defined four wind directions in
order: West, North, East, and South under constant wind speed L = 5. The
wind blew 80 time steps per direction, and we performed a total of 640 time
steps to achieve the result in Figure 6.3. In the result, one can observe some
star-shaped dunes consisting of a central area and ’arm’ resembling dunes
emanating from the central peak, similar to those shown in 3.2. There are also
dunes without a central area. We think those are formed as secondary dunes
which were separated from a central peak or were not merged with other
dunes yet. We used a grey-scale color palette and fewer contours to visualize
the elevation to achieve better visibility in the contour visualization. Star
dunes will be merged and spaced according to the wind direction and speed
when we let the simulation run longer, but their shape will stop resembling
star dunes. We assume that it is caused by constant wind speed and the
periodicity of wind direction changes.
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Figure 6.3: Star dunes simulated using Werner’s model, maximum elevation
reached 23 slabs per cell in the final result. Left: Visualization with elevation in
the application. Right: Visualized contours in ParaView.

Next, we present the difference between repeated and non-repeated polling
strategies applied to Werner’s model for barchan simulation. Parameters for
the simulation are the same as in 6.1 except the time step t, which was set
to 200. In Figure 6.4 we observe a dramatic difference between the polling
strategy. Dunes are formed faster and have sharper shapes using a non-
repeated polling strategy. Barchans are sharper when we let the simulation
with non-repeated polling run for t = 1000.

Figure 6.4: Difference between non-repeated and repeated polling after t = 200.
Left: Repeated polling. Right: Non-repeated polling.

When we let the simulation run long enough, barchan dunes will merge
and form one long dune. For transverse dunes, they will be merged and
eventually reach an equilibrium state, where all dunes straighten, will be
equally spaced, and will travel at a constant speed. This is caused by the
wind speed being constant throughout the whole simulation. The amount of
stabilized dunes depends on the amount of sand available for transport in
the simulation grid, which is tightly connected with grid dimension and wind
speed. This equilibrium state, in reality, does not occur since the wind speed
varies in time and varies depending on the surface elevation.
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6.2 Momiji’s model

Momiji’s model was primarily used to simulate transverse dunes, but we
tested its functionality also by simulating barchans and star dunes. For the
simulation of barchans in Figure 6.5, we used the parameters shown in 6.2.
We observed that barchans are usually no longer as thin as in Werner’s model,
and the windward slope is usually gentler than the leeward slope. Also, we
observed that the top parts of barchan dunes tend to be more flat, which
is visible in the contour visualization. Star dunes look similar to Werner’s
model with more flat top areas – those results are not included here.

Parameter Value
Grid type Flat surface

Angle of Repose 33.7°
Dimension 256×256

Height 3
Slab Height 1/3

ps 0.6
pns 0.4

Wind speed 5
Wind direction West

Linear coef. 0.4
Quadratic coef. 0.002

Advanced wind setup false
Non-repeated polling false

Force erosion false
Time steps 1000

Table 6.2: Parameters for barchan dunes simulation using Momiji’s model.

Figure 6.5: Barchan dunes simulated using Momiji’s model, maximum elevation
reached 26 slabs per cell in the final result. Left: Visualization with elevation in
the application. Right: Visualized contours in ParaView.
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Transverse dunes in Momiji’s model have a gentle windward slope and

steep leeward slope, as shown in Figure 6.6. Parameters declared in Table 6.2
are used except the Height parameter, which was set to 10, and we simulate
t = 10000 time steps. Some dunes are more curved than expected during the
simulation; however, they will straighten when the simulation runs longer.
Here transverse dunes have already reached an equilibrium state and travel
at a constant speed while maintaining the same spacing. According to the
contour visualization, the top dune parts are flatter than expected.

Figure 6.6: Transverse dunes simulated using Momiji’s model, maximum el-
evation reached 34 slabs per cell in the final result. Left: Visualization with
elevation in the application. Right: Visualized contours in ParaView.

Star dunes shown in Figure 6.7 are simulated using Momiji’s method and
are wider and slightly lower with flatter top areas. Wind directions were set
in order: West, North, East, and South under constant wind speed L = 5,
and we set 40 time steps per wind season, total of t = 320. Initial height was
set to Height = 10. Other parameters remain the same as in Table 6.2.

Figure 6.7: Star dunes simulated using Momiji’s model, maximum elevation
reached 22 slabs per cell in the final result. Left: Visualization with elevation in
the application. Right: Visualized contours in ParaView.
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6.3 Bishop’s model

Bishop’s model adjusts the wind speed-up computation, ensuring a gentler
windward slope for barchans. We confirmed that the dynamic update of wind
speed-up computation changes the dune shape, as shown in 6.8. However,
some barchans might have the top dune part flatter or even shift slightly
against the wind. This artifact is probably due to the quadratic wind speed-up
coefficient, which influences the dune’s height. The parameters used for the
simulation are listed in Table 6.3. Transverse dunes have identical structures
to those formed using Momiji’s model, and we do not include the result here.

Parameter Value
Grid type Flat surface

Angle of Repose 33.7°
Dimension 256×256

Height 3
Slab Height 1/3

ps 0.6
pns 0.4

Wind speed 3
Wind direction West

Linear coef. 0.4
Quadratic coef. 0.002

Advanced wind setup false
Non-repeated polling false

Force erosion false
Time steps 1500

Table 6.3: Parameters for barchan dunes simulation using Bishop’s model.

Figure 6.8: Barchan dunes simulated using Bishop’s model, maximum elevation
reached 28 slabs per cell in the final result. Left: Visualization with elevation in
the application. Right: Visualized contours in ParaView.
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6.4 Dunes In Vegetated Environment

Nield and Baas’s model introduced vegetation. We created three simulation
scenarios, and the results are presented below. First simulation scene in 6.9
shows Nebkha dune formation, parameters for this simulation are in Table 6.4.
’Natural development’ option lets the vegetation grow naturally, based on the
vegetation growth functions. By adjusting the wind speed, nebkha dunes have
various shapes. When L = 1, dunes tend to be wider and shorter, whereas
dunes are longer and thinner when L = 5. The shorter the annual update of
vegetation coefficients, the faster the simulation reaches an equilibrium state.
An equilibrium state with vegetation presence occurs when the vegetation
coefficients for each cell reach value 1; therefore, erosion and transport will
stop. This situation corresponds to a state where the vegetation covers the
whole scene, and no sand movement happens. In Nield’s model presented
in [19], they analyse the equilibrium state in their model by setting different
growth function values, which leads to different equilibrium state scenarios.

Parameter Value
Grid type Flat surface

Angle of Repose 30°
Dimension 256×256

Height 3
Slab Height 1/10

ps 0.6
pns 0.4

Wind speed 5
Wind direction West

Advanced wind setup false
Non-repeated polling true

Force erosion false
Time steps 500

Vegetation update per year 80
Initial vegetation distribution Natural development

Veg. coef. Grass 0
Veg. coef. Mequite 0
Veg. coef. Shrub 0

Random vegetation distribution false

Table 6.4: Parameters for nebkha dunes simulation using Nield’s model.

We also observed parabolic dunes formation when we let the simulation
run longer, with the same parameters as in 6.4 except the time step, which
was t = 1500. The results resembles parabolic dunes shown in 2.8 B). As
mentioned in the result discussion about nebkha dunes, the equilibrium state
will change according to growth functions.
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Figure 6.9: Nebkha dunes simulated using Nield’s model, maximum elevation
reached 58 slabs per cell in the final result. Left: Visualization with elevation
and smooth surface in Paraview. Right: Vegetation presence visualized in the
application.

Figure 6.10: Parabolic dunes simulated using Nield’s model, maximum elevation
reached 85 slabs per cell in the final result. Left: Visualization with elevation in
the application. Right: Vegetation presence visualized in the application.

The scene with simulated blowouts is similar to the parabolic simulation
from blowouts shown in 3.7. We initially placed three 5×6 m (width×length)
not vegetated areas. The parameter settings are shown in Table 6.5. Not veg-
etated area resulted in the material erosion and transport onto the vegetated
area in the wind direction. Throughout the simulation, the parabolic dunes
were getting larger. In the vegetation presence view, we observe areas with
lower vegetation coefficients (light green color), which indicate the previous
blowout area. This area is enlarging, and vegetation is present at a lower rate
than in other surrounding areas. Parabolic dunes formation from blowouts is
also possible because of the higher initial shrub presence because Shrub grows
slowly, but it is harder to die out when it establishes. If we lower the shrub
presence and make the presence of grass or mesquite higher, the surrounding
vegetated area will eventually become extinct, and the whole sediment in
the grid will move and form smaller parabolic dunes similar to those shown
in Figure 6.10 but will reach equilibrium state faster. Generally, changes in
coefficient parameters for each vegetation type have a considerable impact on
the simulated scene for Nield’s model.
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Parameter Value
Grid type Flat surface

Angle of Repose 30°
Dimension 100×100

Height 20
Slab Height 1/10

ps 0.6
pns 0.4

Wind speed 1
Wind direction West

Advanced wind setup false
Non-repeated polling false

Force erosion false
Time steps 4000

Vegetation update per year 80
Initial vegetation distribution Blowouts

Veg. coef. Grass 0.2
Veg. coef. Mequite 0
Veg. coef. Shrub 0.9

Random vegetation distribution false

Table 6.5: Parameters for parabolic dunes simulated from blowouts using Nield’s
model.

Figure 6.11: Parabolic dunes simulated from blowouts using Nield’s model,
maximum elevation reached 76 slabs per cell in the final result. Left: Visualization
with elevation and smooth surface in Paraview. Right: Vegetation presence
visualized in the application.

Finally, we created a scene with three isolated rectangular areas with
vegetation presence, Figure 6.12. The parameters are shown in Table 6.6.
Since Nields’s model is based on Werner’s model, dunes outside the vegetated
areas developed into transverse dunes covered with vegetation mainly on the
windward slope. In the vegetated areas, the sand is caught by the growing
vegetation and is moving slower through this area. Letting the simulation run
longer results in vegetation growth on all dunes, and the initially vegetated
areas will disappear.

60



............................6.4. Dunes In Vegetated Environment

Parameter Value
Grid type Flat surface

Angle of Repose 30°
Dimension 256×256

Height 20
Slab Height 1/10

ps 0.6
pns 0.4

Wind speed 1
Wind direction West

Advanced wind setup false
Non-repeated polling true

Force erosion false
Time steps 200

Vegetation update per year 80
Initial vegetation distribution Vegetation islands

Veg. coef. Grass 0.2
Veg. coef. Mequite 0.4
Veg. coef. Shrub 0.6

Random vegetation distribution true

Table 6.6: Parameters for scene with isolated vegetation islands using Nield’s
model.

Figure 6.12: Dunes simulated from isolated vegetation islands using Nield’s
model, maximum elevation reached 57 slabs per cell in the final result. Left:
Visualization with elevation in the application. Right: Vegetation presence
visualized in the application.
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6.5 Various Parameter Settings

A variety of parameters defines implemented simulation models. The combi-
nation of those parameters and altering their values leads to different results.
This section presents some interesting observations of parameter influence on
the simulation result.

6.5.1 Grid Dimension

Firstly, the dimension makes the grid larger, so more dunes can be formed.
The dune size tends to be similar to those dunes formed on grids with lower
dimensions. We did not observe any marginal differences while using larger
grids, except that the simulation runs slower when the dimension is bigger.
It also naturally adds more sand into the simulation. In Figure 6.13 we
present the result of the barchan dune simulation using Momiji’s model, with
parameters from Table 6.2 but with dimension set to 1024× 1024.

Figure 6.13: Barchan dunes on larger grid, using Momiji’s model, maximum
elevation reached 29 slabs per cell in the final result. Left: Elevation visualization
in the application. Right: Close-up view on smooth surface with elevation in
ParaView.

6.5.2 Uneven Initial Grid and Obstacles

The initial grid type might also influence the simulation. In our simulation,
we may choose between ’Flat surface’ and ’Random height,’ which adjust
the number of slabs by +– one from the original value specified in the
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Height parameter. The difference between those does not significantly impact
the simulation; the simulated dune type will be formed. However, the
layout and shape of simulated dunes will be different. ’Sand ripples’ and
’Transverse dunes’ initial grid settings have a surprisingly negligible impact on
the simulation. We observed that any simulation algorithm would eventually
remove the artificially placed sand slabs, and the dunes will evolve naturally.
Even the simulation of transverse dunes ignores the ’Transverse dune’ initial
grid setting. However, setting the different heights of the non-erodible surface
underneath the sand significantly impacts the simulation. We will discuss the
case when we do not adjust the model to react to the uneven non-erodible
surface. For this purpose, we created the ’Three rocks’ scene. The problem
is shown in Figure 6.14, where the dunes ignore the rocks and cross them.
The sand ignores the height difference and is freely deposited on top of the
rock. Only the stabilization algorithm adjusts the slopes thanks to the repose
angle. On the other hand, in Figure 6.15, we observe that the sand mass
reacts to the obstacles accordingly, and sand is accumulating at the frontal
area of the obstacle, and no sand is on the top of the rock. We observe that
transverse dunes are formed in areas where rocks are absent. Similar results
are for other models and simulated dunes. Adding the impact of non-erodible
surface on dune simulation added more realism, which was not considered in
existing numerically based models.

Figure 6.14: Transverse dunes with rocks in the scene. The sand is not accumu-
lating in the frontal rock area. Simulated using Momiji’s model, wind from left
to right. A) t = 100, B) t = 300, C) t = 500.

Figure 6.15: Transverse dunes with rocks in the scene. The sand is correctly
accumulating in the frontal rock area. Simulated using Momiji’s model, wind
from left to right. A) t = 100, B) t = 300, C) t = 500.
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6.5.3 Angle of Repose

Repose angle has a considerable effect on simulated dunes. The most visible
impact can be observed in Nield’s model, where the angle of repose is set to
40° when ρ ≥ 0.3, which allows steeper slopes to be formed. In Figure 6.16
we show the difference between the angle of repose set to 30° and 33.7°
using Bishop’s model to simulate barchans. Figures taken after t = 500
time steps. We observe that contours are closer together for a higher repose
angle, representing steeper slopes. Both results are simulated using the same
parameters, except the angle of repose.

Figure 6.16: Barchan dunes simulated using Bishop’s model. Left: Contours,
Angle of repose is 30°. Right: Contours, Angle of repose is 33.7°.

6.5.4 Forced Erosion in Simulation Step

The difference between forced erosion and default behavior usually impacts
the simulation result. For Werner’s approach to barchan dunes simulation,
we observed that forced erosion causes the dune surface to be more smooth
than in the default simulation step. The simulation of barchan and transverse
dunes while using the force erosion option leads to faster dune development
than using the default option. The forced erosion option does not significantly
impact Star dunes. Having this option disabled in Nield’s model leads to
slower time step iterations. The most significant difference in simulation
speed can be observed while simulating parabolic dunes from blowouts.

Nonetheless, in Figure 6.17 the difference between the forced erosion and
default erosion is shown. The barchans are beginning to be formed on the left,
whereas, on the right, the barchans are already formed. For other simulation
models and simulated dunes, the impact is similar.
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Considering the impact of non-repeated polling, we already showed the
difference in Figure 6.4. For other simulated dunes, the difference has similar
nature; the dunes are formed slower when using repeated polling, and it is
usually necessary to simulate with a higher number of time steps t.

Figure 6.17: Impact of forced erosion in simulation steps on the development of
barchans, Bishop’s model. Both figures captured after t = 700 time steps. Left:
Default simulation step. Right: Forced erosion per time step.

6.5.5 Wind Speed

The most significant impact of all other parameters on the simulation has
wind speed. Variable wind speed also enables customization options, but
setting a correct wind speed for the simulation is crucial. Dunes will not be
formed on some occasions even though the wind speed is constant. On the
contrary, variable wind speed may also prevent the dunes from forming, even
though it may stop the sand from entering the equilibrium state. We will go
through our conclusions considering the wind speed.

Firstly, we will discuss Transverse dunes. For Werner’s model, transverse
dunes were formed on a 100×100 grid from wind speed L = 2 to L = 42. Less
and above this interval, no transverse dunes were formed. The equilibrium
state usually consisted of only one transverse dune. However, for wind speed
around L = 40 the spacing between the dunes was significantly smaller, and
the equilibrium state consisted of several transverse dunes instead of only one.
The same holds for Momiji’s model, except that transverse dunes were formed
at L = 1. Bishop’s model formed transverse dunes on interval L = [2, 39].
It is worth mentioning that this interval gets bigger by increasing the grid
dimension. We think the periodic boundary conditions cause this behavior.
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Setting the correct wind speed for barchans is tougher than for transverse

dunes. For Werner’s model on grid dimension of 256× 256, barchans were
formed on interval L = [3, 10]. For values of L ≤ 10, barchans were not
formed. Dunes resembling mounds of sand were formed instead – typical
barchan ’horns’ were not visible. We also observed dunes resembling sand
ripples around L = 50. For Momiji’s model, the interval for wind speed
required to form barchans was larger. For L = 1 unspecified dunes were
formed. Surprisingly, on L = 2 the dunes resembled sand ripples. Bishop’s
model behaved similarly to Momiji’s model under the changes of L.

Dunes resembling star dunes were formed under lower or higher wind
speeds. For wind speed L = 1 and variable wind direction, each after t = 40
time steps, the star dunes formed slower than for higher wind speeds. In
Figure 6.18, left, sand ripples using Momiji’s model were formed for L = 2.
Star dunes formed using Momiji’s method are shown on the right.

Figure 6.18: Impact of different values of constant wind speed L on Momiji’s
model. A) L = 2, barchans should have formed. B) L = 1 for all directions,
subtle star dunes are formed after multiple wind regime iterations.

Modifying the wind speed throughout the simulation using the Beziér curve
caused the dunes not to reach the equilibrium state. Unspecified dunes were
usually formed throughout the simulation. When a specified dune shape began
to be formed, the changing wind speed prevented it from further initiation,
and the dunes changed into unspecified mounds of sand. In Figure 6.19, we
present one result of settings varying wind speed L throughout the simulation
using Bishop’s model, which resulted in unspecified dune formation. Even
though changing wind speed comes naturally into mind, using models based
on sand slab movements, which use probability for material deposition, does
not lead to any sensible simulation results. Those models are susceptible to
changing wind speed and usually require constant wind speed throughout the
simulation to form some dunes. Nonetheless, careful setting of wind speed in
the simulated wind regime might eventually result in dunes formation while
avoiding the equilibrium state.
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Figure 6.19: Impact of different values of variable wind speed L on Momiji’s
model. A) Settings used for the simulation. B) Simulation result after total of
t = 1000 time steps, contours applied in ParaView.

6.5.6 Deposition Probability

Adjusting the deposition probabilities ps and pns influenced the simulation
results. However, those values should be adjusted sensibly, following the
expected sand behavior in nature. Figure 6.20 shows the result of adjusting
deposition probabilities on barchan simulation using Werner’s model. The
parameters are taken from 6.1 except we turned on Forced erosion and set
probabilities ps = 0.4 and pns = 0.9. An increase of pns resulted in faster
barchan formation because the sand was more likely to bounce on a surface
without sand. Lowering ps ensured sand was more likely to be deposited on
a surface containing sand. This eventually resulted in forming of barchans
using t = 500 time steps only. Barchans also have a more natural shape;
probably the best-looking barchans formed using Werner’s model.

Figure 6.20: Barchans formed using Werner’s model. Left: Elevation visualized
in the application. Right: Contours applied in ParaView.
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6.6 Particle-based Model

We encountered complications implementing Wang’s particle-based model.
Wind ripples were forming only under certain conditions. The best-looking
sand ripples created by Wang’s model are shown in Figure 6.21, where the
wind speed was set to 10m/s. Total of t = 100 time steps were performed on
100× 100 simulation grid. Next, we will review the encountered problems in
our implementation.

Figure 6.21: Sand ripples formed by Wang’s model. Left: Visualized elevation
in the application. Right: Contours added in ParaView.

6.6.1 Implementation Problems

The first problem is the ripple movement in the direction against the wind.
When the particle trajectories are visualized, most particles do not bounce
and are deposited immediately after contact with the ground. Also, the
particle’s usual deposition position is on the windward side instead of on the
leeward side of the specific sand ripple, which might make the sand ripples
evolve against the wind. This can be caused mainly by two factors, dependent
on parameter settings. Firstly, the dampening factors control the particle
bounce for tangential and normal bounce velocity. Setting those parameters
based on wind speed might ensure the particle will bounce correctly. Secondly,
the problem of wind field computation seems to be the key to the correct
implementation of this model. The wind should reach a lower speed while the
particle is closer to the ground, and therefore the dampening factors should
be scaled differently. However, our implementation of a wind field does not
ensure the wind slows down enough while closer to the ground. This artifact
then causes the particles to bounce indefinitely because at each ’hop,’ they
will reach relatively high speed, and on the next bounce, they will not slow
down enough. We ensured that the effect of indefinite bounces would not
happen by restricting the number of allowed bounces.
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................................. 6.6. Particle-based Model

Furthermore, correct wind behavior in numerically-based models requires
detecting the wind shadow. Transported sand slabs then react to wind shadow
accordingly. In implementation by Wang et al. [25] they do now mention the
wind shadow explicitly, but when we consider a particle traveling across a
sand ripple peak, the wind speed should decrease based on the real-world
measurements presented in 2.3. Consequently, the implemented wind field
might cause the traveling particle to skip the leeward ripple slope instead of
depositing, and the particle will reach the lower windward area of the next
sand ripple where it deposits, which might eventually cause the sand ripple
movement against the wind.

Figure 6.22: Trajectories of particle transportation visualized in our application
(white lines).

In Figure 6.22, we show the traced particle trajectory visualized in our
application. When the particles are moved according to the periodic boundary
conditions on the other side of the grid, a line across the simulation grid shows
this event. We assume the correct particle trajectory would differ from those
captured in our application. Since the wind slows down near the surface, the
particle at the end should fall more. Note that the particle’s acceleration after
its lift-off is correct because the wind is faster than the initial particle speed,
and while the wind carries the particle, it should accelerate. In Figure 6.23 the
captured and expected trajectory is visualized. The trajectory should have
the expected shape by implementing the correct wind field, where particles
would slow down closer to the ground. This way, the infinite bouncing should
also be eliminated.

Figure 6.23: Sand grain trajectories. Left: Traced trajectory. Right: Expected
trajectory.

69



6. Results .......................................
6.7 Comparison with Real-world Dunes

This section reviews the authenticity of our results with real-world dunes.
Firstly, there are more types of barchans formed in various locations. In
Figure 6.24, barchans created by Werner’s approach are compared to real-
world barchans formed in Paracas National Park, Peru. Simulated barchans
are relatively thinner than the real-world example. The shape difference is
mainly caused by the lack of wind speed-up in Werner’s model, which results in
almost equal windward and leeward dune slopes. In both simulated barchans
and real-world barchans, smaller barchan dunes are present. We also observed
that when simulated barchans get bigger, they usually lack the sharp-angled
middle part of the dune at the base of the leeward slope, whereas the real
world barchans are usually more ’V-shaped’ in this area. The difference is
also caused by the lack of more realistic computation of wind speed-up. Apart
from the almost equal windward and leeward slopes causing sharper shape,
the insufficient wind speed-up computation also causes the simulated barchan
dunes to be higher than expected. Based on the comparison with a real-world
example, we can confirm that the wind speed-up factor and the ability of
sand to be eroded in the wind shadow significantly impact barchan shape
correctness.

Figure 6.24: Comparison of simulated barchans with real-world dunes. Left:
Real-world barchans (from [23]). Right: Barchans generated using Werner’s
model.

On the contrary, Figure 6.25 shows barchans with a gentler windward
slope, simulated using Bishop’s model, which resemble the real-world example
better. In the lower-left part of real-world photography, we observe that
multiple barchan dunes connect, forming one larger dune. This process is
typical for simulated barchan dunes as well. Also, barchans simulated using
Bishop’s model are lower and sharper at the base of the middle leeward slope
than the result generated by Werner’s model, which gives the simulated result
better authenticity. Both models generate dunes with elongating ’horns’ in a
unidirectional wind regime, typical for real-world barchans.
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Figure 6.25: Second comparison of simulated barchans with real-world dunes.
Left: Real-world barchans (from [20]). Right: Barchans generated using Bishop’s
model.

Linear dunes are formed mainly in two directions, and they usually evolve
in wave patterns, as shown previously in schematic 2.7. In Figure 6.26 we
present the comparison of real-world linear dunes and linear dunes formed
using Werner’s model. Contrary to the simulated result, the real-world
linear dunes are more ’wavy’ and have a sharper crest. The difference in
crest sharpness is caused primarily by two factors. Firstly, the sharper crest
shape cannot be represented in the simulation grid due to repose angle
constraints and material stabilization algorithms. Even if those factors were
addressed, the simulation grid visualization does not support sharp edges,
which a different visualization approach may resolve. Secondly, since we
cannot choose arbitrary wind directions required for more realistic linear dune
development, the simulated result is formed using opposing wind directions,
which eventually causes the dunes to be less ’wavy.’

Figure 6.26: Comparison of simulated linear dunes with real-world dunes. Left:
Real-world linear dunes (from [24]). Right: Linear generated using Werner’s
model.
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Transverse dunes are formed under the same conditions as barchans, but

more sand available for transport is required to form them. The comparison of
real-world examples with our results is in Figure 6.27. Real-world transverse
dunes are close together, and right after one transverse dune’s leeward slope
ends, the windward slope of the next dune begins. The real-world photo
confirms the previously shown transverse dune sketch in Figure 2.5. Momiji’s
model generated a transverse dune with higher spacing than spacing in the
real-world example. This difference is caused by the wind speed concept in
the probability-driven simulation model, which does not allow the dunes to be
formed closer together. Transverse dunes are closer together during the early
stages of the simulation, but their shape is not straight – they straighten later
when more time steps are simulated. However, apart from the non-realistic
spacing, we observe the sharper leeward slope and gentler windward slope
typical for transverse dunes. The results resemble transverse dunes simulation
results presented by Momiji et al. in Figure 3.3.

Figure 6.27: Comparison of simulated transverse dunes with real-world dunes.
Left: Real-world transverse dunes (from [22], modified). Right: Transverse dunes
generated using Momiji’s model.

Star dunes have a central part and radiating ’arms’ originating here. Sim-
ulation of star dunes in our implementation in comparison with real-world
aerial photography is shown in 6.28. Simulated dunes tend to have wider
’arms’ closer together than real-world star dunes. The crest sharpness absence
in our results was explained previously in the linear dunes comparison. We
also observe that simulated star dunes are more connected than the real-world
example, which might be caused by the absence of arbitrary wind direction
settings. The small dune spacing is caused by the wind speed concept in
the numerically-based sand simulation model. We conclude that Momiji’s
numerically based model could not reproduce star dunes perfectly as can be
found in nature. On the other hand, the simulation results resemble the star
dunes simulation presented by B. T. Werner in their simulation results in
Figure 3.2.

Nebkha dunes are sand dunes created in vegetated areas. The shape of
nebkha dunes generated by our application resembles a real-world example.
The comparison is shown in Figure 6.29. We observe that sand accumulates
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Figure 6.28: Comparison of simulated star dunes with real-world dunes. Left:
Real-world star dunes (from [24]). Right: Star dunes generated using Momiji’s
model.

on the leeward dune side, elongating the dune shape. However, in the results
shown in Section 6.4, we observed that the vegetation covers almost the
entire dune, which does not precisely correspond to the real-world principles
discussed in Chapter 2. On the other hand, the vegetation coverage in
our simulation result resembles the simulated nebkha dunes presented by
Nield et al. quite well. Adjustments to vegetation presence evolution and
distribution might be made by adjusting the vegetation growth functions to
fit real-world examples better.

Figure 6.29: Comparison of simulated nebkha dunes with real-world dunes. Left:
Real-world star dunes (from [10]). Right: Nebkha dunes generated using model
by Nield et al.

Parabolic dunes are vegetated dunes, shaped similarly to barchans but with
’horns’ elongating against the wind direction. The dunes are also covered
with vegetation, especially covering the ’arms,’ so the middle part can travel
faster. The comparison is in Figure 6.30. Firstly, the shape resembles the real-
world example quite well, especially the extending middle section of parabolic
dunes. We cannot see the vegetation coverage in the real-world example, and
therefore we cannot precisely determine the vegetation coverage correctness
of our simulation. The vegetation coverage imprecision was already discussed
while comparing nebkha dunes with real-world examples, which applies to
parabolic dunes, too – the vegetation should not cover almost the entire dune;
it should be rather on the base of the windward slope.
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Figure 6.30: Comparison of simulated parabolic dunes with real-world dunes.
Left: Real-world parabolic dunes (from [24], modified). Right: Parabolic dunes
generated using model by Nield et al.

6.8 Snow Simulation Results

Finally, we present the results of our snow simulation implementation. Our
approach is experimental, based on a previously introduced snow behavior
theory, and not based on any known existing snow simulation model. However,
we present the result of snow ripples development over time in Figure 6.31. The
simulation parameters are shown in Table 6.7. Throughout the simulation, the
temperature was constant. The target time step count for the simulation was
set to t = 100, but the simulation ended after t = 98 time steps. Essentially,
this corresponds to a situation where snow was located in an area without
any precipitation for 98 days, and eventually, the snowflakes ’decayed’ to
a state where they cannot be transported by wind. Our model does not
consider the temperature difference between day and night or the impact
of sun shafts and the melting process itself. However, the snow simulation
added the development of snow based on parameters influencing the snow
development.

We observe that the snow formations in our simulation results do not
precisely represent the real-world snow ripples shown previously in Figure
2.12. The shape is not consistent, but their height might correspond to
the real-world observation that snow dunes are generally smaller than sand
dunes. In order to improve the snow simulation, more realistic thermodynamic
computations should be accounted for, and more attention should be given
to analyzing the snow behavior.
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Parameter Value
Grid type Flat surface

Angle of Repose 30°
Dimension 256×256

Height 3
Slab Height 1/3

ps 0.6
pns 0.4

Wind speed 20
Wind direction West

Advanced wind setup false
Initial temperature -20°C
Target temperature -20°C
Target time steps 100

Table 6.7: Parameters for scene with snow ripples.

Figure 6.31: Snow ripples simulated using a snow model, initially based
on B. T. Werner’s sand model. Left: Simulation result with elevation visu-
alized in the application. Right: Contours added in ParaView.

Our final result shows our attempt to simulate snow barchans or sastrugi.
In Figure 6.32 we observe that no apparent snow dunes are formed; however,
in the left part, we may observe barchan-shaped snow formations resembling
snow barchans starting to be formed. Results were simulated with changing
temperatures throughout the simulation and changing wind speed. The wind
blows from the west. The snow was immune to erosion after t = 51 time
steps. Temperature and wind regime settings are also shown in Figure 6.32.

75



6. Results .......................................

Figure 6.32: Attempt to simulate snow barchans or sastrugi using a snow model
initially based on B. T. Werner. Left: Temperature and wind regime settings.
Right: Simulation result with elevation visualized in the application.
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Chapter 7

Conclusion

This thesis aimed to investigate several sand simulation approaches and
create an interactive application used for changing the simulation parameters.
Simulation models were identified and implemented to analyze their behavior.
In Chapter 6, we reported and discussed the correctness of the simulation
results on barchans, transverse dunes, linear dunes, star dunes, parabolic
dunes, and other dune types using those models. We also concluded that
dunes tend to enter an equilibrium state after the simulation runs long
enough, depending on the parameters settings. Theoretically, this state can
be prevented by the careful setting of the wind regime. Based on drawbacks
of some implemented simulation models, techniques to eliminate artifacts
were proposed, such as the impact of uneven erodible surface on the sand
dune formation. The most significant parameters influencing the simulation
behavior were identified, and their influence was explained. The most crucial
parameter to set was the wind speed. Also, because of the unclear nature of
sand grain entrainment, implemented simulation procedures are limited in
the erosion procedure and time domain. Finally, we discussed the difference
between simulated dunes with real-world photos.

The wind-driven snow simulation was added to the application using some
of the simulation parameters used for snow bedform development, such
as temperature and snow density. Simulating snow is similar to the sand
simulation approach while considering the differences between sand and snow.
Because of the simplification of our snow simulation, we could not replicate a
variety of snow dune types.
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7.1 Future Work

The addition of other particle-based simulation models to simulate sand will
enlarge the model collection. Some snow simulation models might be added,
and sand and snow behavior similarities might be investigated. Models with
hexagonal grids might improve the wind direction variability.

Implemented simulation algorithms are serial. Optimizing the current
algorithms and enabling parallelism will result in faster computation; however,
the behavior of parallel simulation algorithms has to be carefully examined
because the computations should be independent, especially when using the
GPU’s massive parallel computation capability to a maximum.

Wang’s particle-based model [25] in our implementation has problems
concerning the wind field setup and parameters setting; we observed unnatural
behavior of the implemented model. Those problems should be further
resolved. The key to solving these problems seems to be understanding
wind speed behavior concerning the wind shadowed areas, which might lead
to correct wind field behavior. Modifying the sand grain diameter of each
generated particle might result in more realistic results. Additionally, it might
be worth considering simulating snow instead of sand using Wang’s model
and observing the results.

Further identification of more simulation parameters influencing the simu-
lation might result in more natural results, especially considering the snow
simulation. More snow simulation parameters might be introduced to extend
our work, and current parameters may be more realistically based.

Visualization in our application can be improved by implementing contour
visualization or other visualization modes. Also, techniques used to smooth
the simulation grid might be applied. Different approaches to visualization
should be taken to visualize sharp dune crests.
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Appendix A

Application Usage, Third-Party Addons

A.1 Application Usage, Source Code

Visual Studio 2019 was used as IDE for development. The application uses
C++17, OpenGL 4.6, and Freeglut and GLEW libraries. The computer
specifications are shown in Table A.1 below. Doxygen was used to generate
the application’s code documentation. In order to run the application, a
multi-threaded processor is required. While using the application, the mem-
ory requirements vary by the generated simulation grid size. Therefore we
recommend using lower grid dimensions. Using higher grid dimensions may
also cause frame rate drops due to CPU-GPU bottleneck because the elevation
map update is performed each frame to ensure real-time visualization. This
problem might be resolved by implementing a heightmap update pipeline,
where only selected heightmap elevation values would be updated.

Model DELL G5 5587
OS MS Windows 10 Home 64-bit

Processor Intel Core i7-8750H
GPU NVIDIA GeForce GTX 1060 6GB
RAM 16GB

Table A.1: Computer specifications.

The user can launch the application using the binary ’SandAndSnow.exe’
attached to this thesis. Configuration files can be loaded from the file
browser dialog when clicking on ’LOAD CONFIG.’ By clicking on the button
’CREATE,’ the simulation is created. Then the user specifies the required
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number of time steps and clicks on ’RUN.’ Example configuration files can be
loaded from folder ’../cfg/’ by clicking on ’LOAD CONFIG.’

The source code is attached to this thesis and can be reviewed in Vi-
sual Studio 2019. Building the project in Release and x64 architecture is
recommended after opening the project.

The memory requirements of our application depend on the simulation grid
size, the simulation model used, and the operating system. The simulation
speed is dependent on the computer specifications.

A.2 Third-Party Addons

. Dear ImGUI, a graphical user interface suitable for OpenGL. Available
at ’github.com/ocornut/imgui’.. ImGUI add-ons, add-on widgets for GUI library Dear ImGui. Used
for File browser dialog. Available at ’github.com/gallickgunner/ImGui-
Addons’.. ImGUI Bezier curve widget. The code was slightly modified to fit the
implementation. Available at ’github.com/ocornut/imgui/issues/786’.. Stb_image, public domain library for loading images. Available at
github.com/nothings/stb.. JSON parser, used for creating and parsing configuration files. Available
at ’github.com/nlohmann/json’.. ParaView, a third party software suitable for visualisation of volumetric
data and export into modelling software. Available at www.paraview.org..Overleaf, an easy to use, online, collaborative LaTeX editor. Available
at www.overleaf.com.
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Appendix B

List of Attachments

. This thesis as a PDF file. An executable application. A folder containing the application source code. Doxygen documentation of the source code. Screenshots of the application
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